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Abstract

Concurrency is a programming tool that is widely used in applications. Con-

current user-level threads can be used to structure the execution of a program in a

uniprocessor environment and/or speed up its execution in a multiprocessor setting.

Unfortunately, threads may interact with each other in unpredictable ways, often

leading to performance problems that are nonexistent in the sequential domain.

A profiler can be used to help locate performance problems in sequential and

concurrent programs. A profiler is a tool that monitors, analyzes, and visualizes

the execution performance of a program to help users verify its expected behaviour,

and locate its bottlenecks and hotspots. One of the important tools a profiler has at

its disposal is a set of hardware counters, which are specialized CPU registers that

count the occurrences of hardware events as a program executes. Hardware-event

counts provide extremely precise insight into the execution behaviour of a program,

and can be used to pinpoint portions of code where performance is suboptimal.

This thesis describes the design and implementation of µProfiler, which is a

profiler for sequential and concurrent programs written in a concurrent dialect of the

C++ programming language called µC++. µC++ offers user-level concurrency in

a uniprocessor or multiprocessor shared-memory environment. A new architecture-

abstraction layer is developed, which allows µProfiler to access hardware counters

on multiple CPU types. As well, two new profiling metrics are presented, which

use the architecture-abstraction layer to gather hardware-event counts for µC++

programs. These metrics offer performance information about µC++ programs

that is unavailable by any other means.
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Chapter 1

Introduction

Concurrency has been an integral part of computer science since its beginning

[Sno92]. Although concurrency has its roots in multitasking/multiprocessing oper-

ating systems, it has since evolved into a user-level programming tool that offers

solutions to problems in a variety of application domains [Ous96]. User applications

currently making use of concurrency include database and web servers, Internet

search engines, Java interpreters, web applications, numerical computations, and

graphical user interfaces [XMN99].

Many programming languages, such as Ada [U.S00], Java [AGH00], and C#

[HWG03], offer native support for user-level concurrency via built-in language con-

structs. Other (originally sequential) programming languages such as C [KR88] and

C++ [Str97] have been extended to introduce support for user-level concurrency,

resulting in new dialects like Concurrent C [GR89], µC++ [BDS+92] and pC++

[BBG+93]. Other concurrent extensions of sequential programming languages in-

clude Concurrent Pascal [Han75], Multilisp [Hal85] and Concurrent ML [Rep91].

1.1 Performance of Concurrent Programs

While concurrency is a powerful and useful programming tool, writing correct, high-

performance concurrent code is extremely difficult because concurrent programs

1



2 CHAPTER 1. INTRODUCTION

suffer from a variety of potential pitfalls that are not present in sequential programs

[JFL98]. These pitfalls include nondeterminism, synchronization, mutual exclusion,

context switching, race conditions and deadlock, which affect program performance,

correctness, or both.

This thesis is only slightly concerned with the correctness of concurrent pro-

grams; instead it focuses on those pitfalls affecting performance. While it is true

that understanding performance can aid in establishing correctness, many perfor-

mance enhancements occur after correctness is established. For information on

debugging concurrent programs for correctness, the reader can peruse a list of con-

current debuggers [PN93].

Issues affecting concurrent program performance include:

• Nondeterminism: Concurrent programs are inherently nondeterministic;

threads interact with one another in unpredictable ways [CL00]. While this

is mainly a correctness issue, it also indirectly affects performance because its

solutions, synchronization and mutual exclusion, can cause bottlenecks (see

below).

• Synchronization: Synchronization is used when thread interactions need to

be made predictable, i.e., operations need to happen in a certain temporal

order. This effect is accomplished by blocking one or more threads until

the contraints on their execution order have been satisfied. If threads block

too often and/or for too long, the overall program may suffer a noticeable

degradation in performance.

• Mutual exclusion: Threads accessing shared information must protect this

information in critical sections. Mutual exclusion is used to restrict the num-

ber and kinds of threads occupying a critical section at any given time. Any

threads arriving at an occupied critical section must block until the number

or kind of threads in that critical section drops below the maximum thresh-

old. If a piece of code protected by a critical section is large and frequently

executed, performance can suffer dramatically as threads queue up and await

entry.
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• Context switching: Each time a thread blocks or is preempted, a certain

amount of overhead is incurred to save its state and schedule another thread.

Though this overhead is typically small for user threads, superfluous context

switching due to unnecessary synchronization, excessive mutual exclusion,

a poor scheduling algorithm or an inappropriate time-slice value can cause

performance degradations.

1.1.1 Locating Performance Problems

Performance tuning effort is often wasted because programmers spend time im-

proving code that minimally affects the overall program performance [AL90]. This

problem is especially true for a concurrent program because its additional pitfalls

generally make locating problematic sections of code non-intuitive, e.g., context

switching does not appear in a program’s source code. Thus, the key to alleviating

the slowdowns caused by these pitfalls is actually locating them. This process is

the primary task of a profiler, which is a tool that monitors, analyzes and visualizes

the execution performance of a program to help users verify its expected behaviour,

and locate its bottlenecks and hotspots.

Expected Behaviour

When a programmer writes software, s/he generally has a mental model of how

the completed program will behave at run time. If the program deviates from this

expected behaviour, a profiler can be used to help figure out where and why. By

studying the execution profile of a program, a programmer may be able to pinpoint

areas where the program does not behave according to the expected model.

Bottlenecks

Programs that perform suboptimally often do so because of bottlenecks, which are

specific areas where performance degradations occur. A profiler can help isolate

these bottlenecks, allowing a programmer to focus performance-tuning effort in
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areas where it is needed, thus bringing the target program closer to its optimal

performance.

Hotspots

Hotspots are areas of a program that are executed frequently in relation to the rest

of the program. While they do not necessarily suffer from performance problems,

the sheer amount of time spent executing them makes them candidates for opti-

mization. A profiler can help identify hotspots in a program, which are good places

for programmers to focus their performance tuning efforts.

1.1.2 Hardware Counters

One of the latest tools that a profiler has at its disposal is a set of hardware counters,

which are specialized registers in the CPU that have recently been made accessible

at the user level by many modern operating systems. Hardware counters count the

occurrences of different hardware events such as completed instructions, elapsed

CPU cycles, branch mispredictions and cache misses. Hardware-event counts pro-

vide extremely precise insight into the run-time behaviour of a program, and can

be used to pinpoint portions of code where performance is suboptimal.

1.2 Objectives

The goal of this thesis is to profile concurrent programs using hardware counters.

The target environment for this effort is µProfiler, which is a concurrent profiler

written in, and tightly integrated with, a concurrent dialect of C++ called µC++.

µC++ implements an M:N user-to-kernel thread model, and a run-time library

(called the µC++ kernel) to support its threads.

The first objective of this thesis is to extend µProfiler by adding an architecture-

abstraction layer that provides a consistent interface for accessing hardware coun-

ters across CPU types. This layer must fit the existing µProfiler interface, and
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define a useful common subset of features, allowing µProfiler to extract informa-

tion from hardware counters on multiple platforms.

The second objective of this thesis is to use the architecture-abstraction layer

to implement a concurrent profiling system that makes use of hardware counters

to effectively profile µC++ programs. This profiling system must fit the existing

µProfiler framework so that no changes to the existing infrastructure are required.

Because of the tight coupling between µC++ and µProfiler, the profiling system

must also gather performance information from the µC++ run-time kernel and ex-

press results in terms of the µC++ concurrent execution model, i.e., performance

data must be expressed on a per-thread basis and be related back to µC++ con-

currency constructs and source code.

1.3 Definitions

This section provides definitions for terms used extensively throughout this thesis.

• A thread is an independent sequential execution path through a program.

• A process is a program in execution [SG98]. It is encapsulated in a separate

memory that contains at least one thread and an execution state. Generally, a

process is an operating system construct, so its threads are often referred to as

kernel threads. Kernel threads are scheduled independently by an operating

system.

• A task is the user-level counterpart of a process. It contains at least one

thread and an execution state, but it is generally a programming language

construct that shares a common memory with other tasks in the same process.

A language’s threads are often referred to as user threads. User threads are

scheduled independently by the language run-time across the kernel threads

within a process.
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• Concurrency is when the executions of multiple threads are rapidly inter-

leaved on a processor so they appear to be running at the same time. Con-

currency can be achieved on a single CPU, and is thus the logical notion of

threads executing simultaneously [BH05].

• Parallelism is when multiple threads are actually executing at the same time.

Since only one thread can be executing on a processor at any given time, true

parallelism can only be achieved on multiprocessor systems. Parallelism is

thus the physical notion of threads executing simultaneously [BH05].

Note that given the above definitions, there is no such thing as a parallel pro-

gram. A program is a logical entity, so it cannot exhibit physical behaviour. There-

fore, throughout this thesis, multithreaded programs are called concurrent programs

with the understanding that they have the potential for parallelism if run on a mul-

tiprocessor system.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides a detailed de-

scription of profiling.

Chapter 3 presents related work in the field of profiling, introducing one hardware-

counter library and seven profiling tools.

Chapter 4 briefly describes the µC++ programming language, which is µProfiler’s

target environment.

Chapter 5 presents the design and implementation of µProfiler, which is the

profiling tool that provides the basis for the contributions of this thesis.

The next three chapters cover the major contributions of this thesis. Chapter 6

explains the hardware-counter related functionality added to µProfiler. Chapter 7

discusses the Exact Hardware Metric, which provides exact hardware-event counts

for a profiled program. Chapter 8 explains the Statistical Profiling Metric, which
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provides a statistical call-graph of a profiled program, based on hardware-counter

samples.

Finally, Chapter 9 summarizes the contributions of this thesis and presents

possible directions for future work.





Chapter 2

Profiling

A profiler is a tool that monitors, analyzes and visualizes the execution performance

of a program to verify expected behaviour, and help programmers locate bottlenecks

and hotspots. Ideally, a profiler relates any such findings back to the program’s

original source code in a high-level way that closely matches the programmer’s

mental model. This feedback guides the programmer in making changes to the

high-level algorithms and data structures of the application [Int04].

Profiling consists of three main steps (see Figure 2.1):

• Instrumentation insertion: instrumentation is inserted into a program to

allow its run-time behaviour to be monitored.

• Execution and monitoring of instrumented program: the instrumented

program is run and performance data is gathered.

• Analysis and visualization: the performance data is analyzed to extract

useful information, which is then visually presented to the user.

The above steps form a crucial “feedback cycle”. Based on the visualized per-

formance data, the user may make changes to the instrumentation to refine their

understanding of the program’s execution, and subsequently change the problem-

atic areas of the program. This cycle repeats until the program is behaving within

acceptable performance parameters.

9
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Modification of
Program

Modification of
Instrumentation

Execution and Monitoring

Analysis and Visualization

Instrumentation Insertion

Raw Performance Data

Instrumented Program

Analyzed Performance Data

Original Program

Figure 2.1: Steps in the profiling process.

2.1 Instrumentation

At the heart of most profilers is the instrumentation insertion phase, where instruc-

tions are added to a program to generate run-time performance data. Instrumen-

tation can be broken down into points, primitives and predicates [MCC+95]:

• An instrumentation point is a location in a program’s code where instru-

mentation is inserted.

• An instrumentation primitive is an operation that gathers performance

data for a metric (see Section 2.1.1).

• An instrumentation predicate is a boolean expression that guards the

execution of an instrumentation primitive (essentially, an if statement).

The combination of an instrumentation predicate and an instrumentation prim-

itive is often referred to as a hook.
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Probe Effect

The insertion of instrumentation into a program causes an anomaly called the

probe effect, which can ultimately change the run-time behaviour of that program

[LP85, MH89]. In a sequential program, such changes are limited to extraneous

delays caused by the execution of instrumentation primitives. Provided the instru-

mentation itself contains no logic errors, a sequential program still behaves as it

did before instrumentation, albeit somewhat slower.

The situation is far more complex for a concurrent program. Because of the in-

herent nondeterminism that is present in a concurrent program, introducing delays

in one thread can affect the behaviour of others, in terms of both correctness and

performance. As mentioned, the discussion in this thesis focuses on performance;

see [Gai86] for a discussion of the correctness issues caused by the probe effect in

concurrent programs.

The probe effect can cause a concurrent program to deviate from its expected

performance in a number of ways. Bottlenecks and hotspots in one thread may move

to different locations or even disappear altogether as a result of delays experienced

by other threads during the execution of instrumentation primitives. In extreme

cases, adding instrumentation, which is supposed to help track down bottlenecks,

may actually introduce new ones [HM93]. However, a profiler strives to minimize

its impact on the program it is profiling, so in practice, probe effects are generally

small and program execution is only slightly disturbed.

2.1.1 Instrumentation Primitives and Metrics

There are two basic types of instrumentation primitives: counters and timers

[GKM82, MCC+95]:

• A counter keeps track of the number of occurrences of a certain event, such

as the number of times a routine is called, or the total number of cache misses.

A counter can be implemented in software or hardware.
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• A timer tracks the amount of time spent performing a certain event, or the

amount of time spent in a certain state, such as the time spent executing

a routine, or time spent in the blocked state. A timer is implemented in

hardware.

Given the nondeterminism of concurrent programs, counts can vary over time,

even if the final totals are fixed. Consider a concurrent program that is run multiple

times, and during each run, event counts are sampled every three seconds. Almost

certainly, the interleaving of the program’s threads differs for each run. Thus, event

counts at the end of the first time interval are most likely different every time the

program is run, as are the event counts for subsequent intervals. However, the

totals at the end of each program run may or may not be the same, depending on

the type of event being counted. For example, the number of calls to a routine may

be constant for each task given the same data, but when the calls occur can vary

during the execution of the program.

Metrics

A metric is a measurement of some aspect of program performance. It consists of

data from one or more instrumentation primitives, and possibly some additional

information. For example, a routine-call metric consists of data from two instru-

mentation primitives (a counter for the number of calls to each routine, and a

timer for the total time spent in each routine), as well as additional information

such as the routine’s name, each routine called, each routine’s caller, source-code

file location, etc.

2.1.2 Direct and Indirect Instrumentation

Instrumentation is either direct or indirect. Direct instrumentation is code placed

directly at an instrumentation point (see Figure 2.2). This method entails a lower

probe effect than indirect instrumentation, but it also has drawbacks such as code

duplication; if the same instrumentation primitive is used multiple times in an
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Figure 2.2: Direct and indirect instrumentation.

application, it must be duplicated at every desired instrumentation point. When

instrumentation code is substantial, this method can cause a significant increase in

code size (called code bloat).

Indirect instrumentation replaces the direct code at the instrumentation point

with a jump to a trampoline. The instrumentation code is placed in the trampoline,

which executes and then returns to the instruction following the jump, much like a

routine call (see Figure 2.2). The difference from a normal routine call is that the

trampoline can often be specially simplified and optimized to reduce the probe effect

of the indirection. These trampolines allow jumps to the same instrumentation

to be inserted through a program without significant code bloat. As well, this

method modularizes the instrumentation, which allows for techniques like static

and dynamic insertion and modification.

2.1.3 Instrumentation Insertion

Instrumentation insertion can be done at almost any point during the writing,

compilation or execution of a program (see Figure 2.3). As the insertion point moves
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Figure 2.3: Compilation/execution chain (possible insertion points are shaded).
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down the compilation/execution chain, the instrumentation goes from language-

specific to platform-specific [She99]. For example, instrumentation that is inserted

at the source-code level may be portable across all platforms that support the

programming language being used. However, the instrumentation is most likely

incompatible with other languages. On the other hand, instrumentation that is

inserted at the machine-code level is independent of the program’s source language,

but it does not work on more than one architecture.

Instrumentation insertion is usually divided into static and dynamic insertion.

Static Insertion

Static instrumentation insertion is performed at any point before the execution of

a program [Zak00]. Most often, it is done during the writing, compiling or linking

stage, but it can also be done afterwards by changing the executable directly in a

process called binary-rewriting.

The majority of profilers use static insertion in the form of indirect instrumen-

tation via shared trampolines. The advantage of static insertion is that it provides

information about a profiled program that is difficult to obtain by any other means,

such as the number of traversals through a code segment or the callers of a partic-

ular routine [Den97]. It is also generally an easier task to insert instrumentation

statically than it is to do it dynamically.

The disadvantage of static instrumentation is that once it is in place, it cannot

be removed without a recompile or binary re-write. Thus, if an instrumented section

of code is not helping to locate a bottleneck or hotspot, unnecessary performance

data is generated and a higher probe effect needlessly occurs. This extra overhead

can be minimized, though not eliminated, by using instrumentation predicates to

disable unwanted instrumentation (see Section 2.1), although predicates also have

a cost and effect.
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Dynamic Insertion

Dynamic instrumentation [Hol94] is done during the execution phase of a program.

Usually, the dynamic instrumentation process is handled automatically by a profiler

because the speed at which computers operate makes it nearly impossible for a

human to do it effectively.

While the target program is running, the profiler decides where and when to

insert or remove instrumentation. If an instrumented code-section is found not

to be a bottleneck or hotspot, its instrumentation can be removed. In this way,

the profiler can check multiple sections of a program looking for bottlenecks and

hotspots, which may move during execution, especially if the profiled program is a

concurrent program.

Deciding where and when to insert or remove instrumentation is an iterative

process and can be quite time-consuming. For this reason, dynamic instrumentation

is usually suitable only for long-running programs.

No Instrumentation

A program can be profiled without any instrumentation at all. In this case, perfor-

mance data is gathered by occasionally sampling the execution state of the program

(see Section 2.2.2).

2.1.4 Hardware Counters and Instrumentation

Hardware counters are unique in that they provide useful information at virtually

no cost, and hence, have a low probe effect. Once the hardware counters are

configured, no further instrumentation needs to be inserted into a profiled program

to count hardware events during execution. The hardware counters simply run in

parallel with the executing program at the hardware level. There is still the cost of

reading from or writing to the hardware counters and storing necessary information

for a metric. Nevertheless, complex information can be gathered at low cost, and
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some of this information, such as cache misses or missed branch predictions, cannot

be gathered in any other way.

2.2 Monitoring

Monitoring is the process of gathering, filtering and storing performance data during

a program’s execution. Filtering is an optional step in this process, which imme-

diately discards irrelevant performance data, thus reducing the amount of memory

required to store the data that is kept. A filtering decision during monitoring is

generally a “local” decision, i.e., it is based solely on the value of the information

being considered for rejection. For example, a metric that gathers program-counter

values may only be interested in addresses that lie within a certain range. In this

case, the decision to keep or discard a program-counter value is based solely on

whether or not it lies within the desired range.

When monitoring a sequential program, it is usually enough to simply gather

and store performance data as an aggregate. However, the situation is more com-

plicated for a concurrent program. In this case, an aggregation of performance

data is not particularly useful, as it most likely does not fit a user’s task-based

execution model. Therefore, when monitoring a concurrent program, performance

data should either be collected and stored on a per-task basis, or the data should

be marked according to the task that generates it, so that it can be separated into

task-specific groups during the analysis phase.

There are two different kinds of monitoring: exact and statistical, each of which

is discussed below.

2.2.1 Exact Monitoring

Exact monitoring (also called event-driven monitoring) captures all occurrences of

events registered by active metrics. The profiling monitor acts as a passive entity

in this case, waiting for instrumentation primitives to be triggered as the profiled
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Figure 2.4: Exact monitoring.

program executes (see Figure 2.4). This type of monitoring is extremely precise

and is used when a complete trace of a program’s execution is needed, e.g., for a

complete dynamic call-graph.

On the other hand, capturing all events incurs a penalty. While it provides a

high degree of precision, it also creates a large probe effect. For each event that

is triggered, a cost is introduced while it is processed, which can change the be-

haviour of the profiled program. Furthermore, exact monitoring has the potential

to generate huge amounts of performance data. If a large number of events is being

monitored, hundreds of megabytes of data can be produced within minutes. The

amount of data collected can be reduced by disabling unnecessary static instru-

mentation through the use of predicates, or removing unwanted dynamic instru-

mentation. As mentioned, the latter approach takes time and is thus only suitable

for long-running programs. Moreover, by the time a user or profiler makes a final

decision as to what instrumentation to use, a large amount of performance data has

likely been collected. Thus, exact monitoring is typically used to garner a precise

event trace for a short-running application or for a short segment of a long-running
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Figure 2.5: Statistical monitoring.

application.

2.2.2 Statistical Monitoring

Statistical monitoring (also called polling or sampling) provides a lower-cost al-

ternative to exact monitoring. The performance data it produces is less precise,

but the probe effect and the amount of performance data collected are also much

smaller. In statistical monitoring, the profiling monitor is an active entity; it polls

the running program at specified intervals (called sampling periods) and records

various information from its execution state, such as the program counter value,

the currently executing routine, and in the case of a concurrent program, the cur-

rent task (see Figure 2.5). Traditionally, the sampling period is based on time,

e.g., every ten milliseconds, but it can now be based on the occurrence of hardware

events as well (see Section 2.2.3).

Statistical monitoring offers the user a tradeoff between precision and cost: a

small sampling period generates more precise performance data, but entails a higher
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Figure 2.6: Two possible call-graph results when using statistical profiling.

probe effect. With a well-chosen sampling period, statistical monitoring provides a

reasonable amount of information, and incurs only a small overhead. However, it is

inappropriate in cases where precision and complete event coverage are paramount.

For example, if statistical monitoring is used to build a call-graph, and each sample

consists of the currently executing routine and its parent, the result could be a

disjoint call-graph. In Figure 2.6, shortFunc1 and shortFunc2 are relatively short

routines; if the sampling period is too large, a statistical profile may never poll

the target program at times when these routines are executing, so the parents of

routines shortFunc1 and shortFunc2 may not be recorded. As a result, shortFunc1

and shortFunc2 are shown as roots of their own subtrees, when in fact they should

be children of C.

2.2.3 Hardware Counters and Monitoring

Hardware counters are useful for both exact and statistical monitoring. If an exact

hardware-count is needed for a section of code, instrumentation to read the hard-

ware counters is inserted at the entry and exit points of the section. Determining

the number of events that occur during the execution of the section is then simply

a matter of taking the difference between the entry and exit values. Note that for a

concurrent program, hardware-event counts must also be saved on context switches.



2.3. ANALYSIS 21

In the case of statistical monitoring, the hardware counters are used to create a

sampling period based on the occurrence of a chosen number of events. Hardware

counters count from 0 to 2w−1, where w is the architecture-dependent width of the

counters, in bits. Upon overflow, a signal is delivered. To create a sampling period

of n events, a hardware counter is set to a value of 2w − n. After the nth event

occurs, the counter overflows and a signal is generated. The overflow signal-handler

then polls the target program and resets the counter to 2w − n.

2.3 Analysis

Performance data must be analyzed to extract useful information about a program’s

behaviour. The analysis process involves:

• Filtering to remove extraneous information and reduce the relevant data down

to an appropriate and manageable subset,

• Performing calculations on the raw performance data to derive human-readable

information,

• Relating the derived information back to the program’s source code, if possi-

ble, and

• Preparing the derived information for visualization, which may include prepar-

ing a summary view as well as a more detailed view.

As is the case during monitoring, filtering during analysis is an optional step.

A filtering decision during analysis tends to be a “global” decision, i.e., it is made

based on all the available performance data. Returning to the example of the

program-counter metric, assume it is interested in tallying a unique list of all the

program-counter values that were gathered during program execution. In this case,

the decision to keep or discard a program-counter value is based on whether or not

it already exists in the list.
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Analysis is more intricate if the performance data is the result of profiling a

concurrent program rather than a sequential program, for three reasons. First,

if it has not already been done during the monitoring phase, the data must be

separated into groups according to which task was active when the performance

data was generated. Second, the data from each task must be analyzed separately

to relate bottlenecks and hotspots back to the high-level language constructs of

which a user’s execution model is comprised. Finally, the data from separate tasks

should be compared so that performance problems due to their interactions can be

discovered.

Analysis can be done on-the-fly, post-mortem, or with a combination thereof.

2.3.1 On-The-Fly Analysis

On-the-fly analysis is done while a target program is executing, which has several

advantages. The first advantage is that it offers a second opportunity during a

target program’s execution to filter extraneous performance information, meaning

less data has to be stored during profiling. The second advantage of on-the-fly

analysis is that it can give immediate feedback to the user and/or profiler, allowing

either one to adjust the instrumentation by inserting or removing it as necessary (if

dynamic instrumentation insertion is being used), and/or turning instrumentation

on or off via instrumentation predicates.

A disadvantage of on-the-fly analysis is that analyzing during program execu-

tion results in a higher probe effect. Also, if there is an overly large amount of

performance data and/or the CPU is slow, there may be a noticeable lag between

the occurrence of an event and its subsequent analysis and visualization, making

adjustment of the instrumentation difficult or impossible. Finally, analysis, vi-

sualization, and any ensuing instrumentation adjustment takes time. Therefore,

on-the-fly analysis of short-running programs is difficult for a profiler and next to

impossible for a user. It is better suited for long-running programs.
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2.3.2 Post-Mortem Analysis

Post-mortem analysis is done after a target program has terminated. Since no anal-

ysis of performance data occurs during program execution, it contributes nothing

to the probe effect. However, this means that dynamic adjustment of instrumen-

tation is impossible because there is no feedback available. Also, all performance

data must be retained until execution has finished. As has already been men-

tioned, large amounts of profiling data can become quite a problem. Therefore,

post-mortem analysis is better suited for short-running programs.

2.3.3 Combination

On-the-fly and post-mortem analysis can also be used together. For example, per-

formance data can be analyzed and displayed on-the-fly, and also saved to disk for

further post-mortem analysis. This technique is useful for replaying the execution

of a nondeterministic concurrent program in a deterministic fashion [RBC+03].

2.4 Visualization

Visualization is the displaying of performance data on screen in a human-readable

fashion. It is arguably the most important step in profiling, as it guides the pro-

grammer in making decisions towards improving the performance of a program.

The performance data must be clear, concise, and it should convey key points at a

single glace. After all, an analysis whose results cannot be understood is no better

than no analysis at all [Jai91].

As is the case with monitoring and analysis, visualization is done differently

when it displays performance data from a concurrent program as opposed to a

sequential program. As usual, performance data should be presented in terms of

a user’s high-level execution model, so each group of per-task information should

be visualized separately. However, because visualization should quickly convey key

points at a single glance, a terse summary of each task should first be presented on
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a single screen. The user should then be offered a choice as to which tasks should

be examined in greater detail.

Performance data can be displayed using a number of different visualization

media, including tables, charts and graphs.

Tables

Tables display discrete values in a row-and-column format. They are the simplest

visualization technique available, and are most often used to display a small amount

of raw numerical data.

Charts

Charts also display discrete values, but in a pictorial fashion. Examples are bar

charts, pie charts, histograms and Gantt charts. Histograms display the frequencies

or number of occurrences of different values of a single parameter. For example, the

profiling tool Tmon uses histograms to graphically depict the frequencies of different

ready-queue lengths [JFL98]. See [Jai91] for an explanation and an example of

Gantt charts for profiling.

Graphs

Graphs are the most complex of the three visualization media, consisting of points,

lines and surfaces that represent multi-dimensional relations [Den97]. They are used

to display relationships among metric data that would not be easily discernable with

tables and charts.

Graphs are often customized towards specific metrics. For example, the profil-

ing tool IPS [YM88] breaks a distributed-program’s execution into non-overlapping

individual jobs, which it refers to as activities. Many of these activities have prece-

dence relationships, meaning some activities must finish before others can start.

These relationships are displayed in the form of a program activity graph, which is
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Figure 2.7: A Kiviat graph with all metrics performing well.

“a weighted, and directed multigraph, that represents program activities and their

precedence relationship during a program’s execution” [YM88].

An example of a graph in common use is a Kiviat graph, which is able to

display multiple metrics in one picture. A Kiviat graph is depicted as a circle with

an even number of radial lines, each representing a different metric. Metrics for

which higher values are considered better alternate around the circle with metrics

for which lower values are better (see Figure 2.7). Each metric has a point on its

radial line, where larger values are farther from the centre of the circle. When

the points are connected to their neighbours, a closed polygon is formed. In an

ideal situation where all metrics are performing well, the polygon is an N -pointed

star, where N is the number of “higher-is-better” metrics. Any metric that is not

performing well is easy to detect, as the star is deformed on that metric’s radial

line.

For more information on properly displaying quantitative data, refer to [Tuf83].





Chapter 3

Related Work

Hardware counters are used extensively in today’s profiling tools. This chapter in-

troduces a number of such tools, including a portable library for accessing hardware

counters on many different architectures, as well as seven profilers that support (or

are in the process of adding support for) hardware counters.

3.1 PAPI

The PAPI (Performance Application Programming Interface) library specifies a

standard set of hardware events and a standard interface (offered in both C and

Fortran) for accessing hardware counters on multiple platforms [BDG+00]. Calls

to this library can be inserted into the source code of C and Fortran programs to

gather performance data from the hardware counters.

3.1.1 Design and Architecture

The PAPI library consists of two layers. The first layer is a portable, machine-

independent layer that exposes a high-level interface and a low-level interface to the

hardware counters. These interfaces vary in terms of complexity and functionality;

each targets a different type of user, as is explained below.

27
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The second layer, called the substrate, contains all of the library’s architecture-

dependent code. One substrate per supported platform is needed to access the

hardware counters, which is necessarily an architecture-dependent undertaking.

Architecture-Independent Interface Layer

PAPI’s architecture-independent interface is broken into two parts: a high-level

interface, and a low-level interface. The high-level interface provides basic routines

to start, stop and read the underlying hardware counters. It is designed to allow

users to quickly and easily obtain simple performance data.

The low-level interface is geared towards experienced application programmers

and tool developers who need more control over the PAPI library and the hard-

ware counters. For example, the low-level interface provides information about the

hardware being used (such as the clock rate in MHz and the number of CPUs) and

the executable being profiled (such as the addresses of the text and data sections).

The low-level interface also provides routines for multiplexing events and counter

overflow notification. Multiplexing is used to count more events than there are

hardware counters on the underlying CPU. To this end, PAPI defines the notion

of an event set, which is simply a group of events to be counted at the same time.

To count a large number of events, a user divides these events into event sets, each

containing an amount less than or equal to the number of available counters. During

execution of a target program, PAPI multiplexes these event sets by reprogramming

the hardware counters every 25000 clock cycles. It does so, however, at a loss of

precision. Since no one event is counted throughout the entire program run, only

an estimate of the total number of occurrences of each event is generated. The

more events that are multiplexed, the more statistical the final results. Finally,

the constant swapping of event sets incurs some overhead, which adds to the probe

effect.

As mentioned in Section 2.2.3, counter overflow is used for statistical profiling

based on hardware events. PAPI supports statistical profiling by allowing users

to register callbacks to be activated from within a signal context upon counter
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overflow. When one or more counters overflow, all registered callbacks are invoked

and each one is provided with information via routine arguments, such as a reference

to the event set in use, the address of the program counter when overflow occurred,

and an overflow vector specifying which counters overflowed.

Architecture-Dependent Substrate Layer

For every platform supported by PAPI, an architecture-dependent substrate layer

is written, which is the code that actually accesses and manipulates the machine’s

hardware counters. The substrate uses whatever method is most appropriate for

accessing the underlying counters, whether that is system calls, calls to another

library, assembly language, or some other method.

3.2 Paradyn

Paradyn [MCC+95] is the most advanced tool available for profiling large-scale

concurrent and distributed programs. It is capable of profiling programs that run

for hours or days on large parallel machines (consisting of thousands of nodes),

manipulating large data sets. Paradyn does not require target programs to be

instrumented. It inserts instrumentation dynamically and uses an automated, top-

down search algorithm to isolate bottlenecks (see Section 3.2.2). Paradyn only

relates to the objectives laid out at the beginning of this thesis in its ability to

profile concurrent programs and visualize performance data in terms of some high-

level concurrent language constructs. In fact, the majority of Paradyn’s design

objectives are largely the antithesis of this work, but are presented as a contrast

and because Paradyn is the most pervasive profiler in the literature.

Paradyn consists of the main Paradyn process, one or more Paradyn daemons,

and zero or more external visualization processes (called visis). The main Paradyn

process is multithreaded, and consists of the following threads:

• A Performance Consultant that searches for bottlenecks in the target pro-

gram by requesting and receiving performance data from the Data Manager.
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• A Data Manager that is responsible for delivering performance data from

the Paradyn daemons to the Performance Consultant.

• A User Interface Manager that displays Paradyn’s main controls and per-

formance data in a graphical fashion.

• AVisualization Manager that creates visis and manages their “Visi Threads”.

• Zero or more Visi Threads, one for each visi. Each Visi Thread handles

communication between its visi and the main Paradyn process.

The Paradyn daemons contain all of the architecture-dependent code, and are

responsible for inserting, modifying and removing dynamic instrumentation in the

executing target program, as requested by the Performance Consultant. Each dae-

mon consists of a Metric Manager and an Instrumentation Manager, whose func-

tions are explained in Section 3.2.1.

Visis are responsible for visualizing performance data. Paradyn provides a stan-

dard set of visis, including time-histograms, bar charts, and tables, but it is straight-

forward to build visis that use visualization displays from other systems, such as

ParaGraph [HE91] and Pablo [RRA+93].

3.2.1 Instrumentation and Monitoring

Paradyn uses dynamic instrumentation to profile a target program, meaning instru-

mentation insertion, modification and deletion are done at run-time. This process

can be handled by the user, but is usually done automatically by Paradyn itself. In

this way, only those parts of the program that are relevant to finding bottlenecks

are instrumented [HMC94].

The Performance Consultant delivers instrumentation requests to the Paradyn

daemons, which translate these requests into machine code during a two-step trans-

lation process. First, the daemon’s Metric Manager translates the instrumentation

request into an intermediate, architecture-independent representation called the
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Metric Description Language (MDL) [HMG+97]. Second, the daemon’s Instru-

mentation Manager translates the MDL code into architecture-dependent machine

code, which contains the primitives and predicates needed to update the values of

active metrics. This machine code is then inserted into the target program in the

form of trampolines.

Two types of trampolines are used in Paradyn, base-trampolines and mini-

trampolines. There is one base-trampoline for each active instrumentation point. A

base-trampoline is inserted into a program by replacing one or more instructions at

an instrumentation point with a jump to the trampoline, and relocating the replaced

instructions to the trampoline itself. Jumps to one or more mini-trampolines are

then inserted into the base-trampoline either before or after the relocated instruc-

tions. Each mini-trampoline contains machine code for one primitive or predicate.

Once instrumentation is inserted into the target program, profiling actually

begins. The counter and timer primitives in the mini-trampolines are sampled

periodically by the Paradyn daemons for analysis and visualization. Note that the

instrumentation primitives keep precise counts and times for all active metrics, and

the sampling period determines only how often Paradyn receives updated values.

3.2.2 Analysis

The Performance Consultant uses a well-defined model, called theW 3 Search Model

[HM93] to automate its search for bottlenecks. This model defines a search space

that the Performance Consultant searches in an attempt to locate why, where, and

when performance problems arise in the target program.

The Performance Consultant searches the W 3 search space using a top-down

approach, beginning with a set of high-level hypotheses, each representing a class

of potential performance problems. To test these hypotheses, the Performance Con-

sultant requests the insertion of a small amount of instrumentation, and analyzes

the resulting performance data. Based on this analysis, the hypotheses are revised,

and more detailed instrumentation is requested so they can be tested. No detailed

instrumentation is inserted for problems that do not appear to exist in the target
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program. Hypotheses are tested and refined until the Performance Consultant is

able to isolate the location and cause of as many bottlenecks as possible.

3.2.3 Visualization

All visualization in Paradyn is handled by visis, which are external processes that

display the results of performance metrics. A visi is created when a user requests

one from Paradyn’s main menu. At that point, Paradyn offers a list of foci (program

components) and metrics that the new visi is capable of displaying, from which the

user makes a selection. The visi is then started and sent the selected foci and/or

metrics.

Once running, a visi notifies the Data Manager of the performance data it re-

quires to fulfill the user’s request. If the required performance data has not already

been requested by the Performance Consultant, the Data Manager adds instrumen-

tation to the target program to generate it. With all the necessary instrumentation

in place, the Data Manager begins passing the requested performance data to each

visi at every sampling period. The visis visualize this data immediately, providing

the user with on-the-fly feedback.

3.2.4 Hardware Counters

Some initial work with hardware counters has been done, but that code has not

officially been added to Paradyn. Thus, as of this writing, none of Paradyn’s

metrics currently make use of hardware counters. The Paradyn team is currently

experimenting with the PAPI hardware counter library, and plans to add support

for it in a future release.

3.3 q-tools

q-tools [qto] is a collection of Linux-specific performance analysis tools, and the

major ones are qprof, q-syscollect, q-view, and q-dot.
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3.3.1 qprof

qprof [qpr] is a simple command-line-based statistical-profiling tool. It uses a polling

mechanism to gather information from a target program without requiring any

instrumentation. Before enabling qprof, the user chooses the sampling period,

which then remains fixed throughout the execution of the target program. After

each sampling period, qprof simply records the value of the program counter (PC).

Upon program completion, qprof uses these PC values to give a “flat” statistical

summary of where the target program spends its time. The manner in which the

statistical summary is presented can be selected by the user. If the target program

is compiled with debugging information, the samples can be presented in terms of

instruction address, source-code line, or routine name, along with the source-code

file-names. Otherwise, the samples can only be displayed in terms of instruction

address or routine name.

When reporting the amount of time spent in a routine, qprof does not normally

include the time spent in that routine’s callees. However, qprof is able to include

information about each routine’s callees on systems that support the libunwind

library [lib], which is a portable C API that determines the call-chain of a program.

When run on an Intel Itanium machine, qprof can use hardware events instead

of time to determine when to poll a target program. The user selects one hardware

event to count, and the number of occurrences of this event that should expire

before polling. The resulting statistical summary shows a breakdown of where in

the target program these events tend to occur.

qprof supports profiling of applications with multiple processes, which is accom-

plished by generating a separate statistical summary for each subprocess spawned

by the application. qprof also supports profiling of concurrent applications at the

kernel-thread level, although in this case only one aggregate summary, representing

all threads, is presented. Finally, qprof supports profiling of dynamically-linked

code. The statistical summary for any target program includes information on the

time spent in dynamic libraries. However, Linux kernel routines are not profiled

separately; time spent in the kernel is charged to the routine making the system
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call.

Relation to Thesis Objectives

qprof touches on a number of the objectives this thesis attempts to accomplish.

It is a statistical-profiling tool that uses hardware counters on Itanium systems to

statistically profile a target program, and it presents a flat, histogram-like summary

of the distribution of events among its routines or instructions. qprof is also able

to profile concurrent programs at the process level.

However, qprof does not make use of hardware counters on any machines other

than the Itanium. It is also unable to gather and display performance data on a

per-thread basis, and does not offer any exact hardware-counter metrics.

3.3.2 q-syscollect/q-view/q-dot

q-syscollect, q-view, and q-dot are different component tools of the same statistical

profiler. q-syscollect does the monitoring, q-view is responsible for analysis and

textual visualization, and q-dot is an optional component that handles graphical

visualization.

q-syscollect is a command-line-based systemwide statistical-monitoring tool for

Itanium 2 machines running Linux 2.6 kernels. It uses a general-purpose hardware

counter, as well as the Itanium-specific Branch Trace Buffer (BTB), to gather his-

togram and call-graph information for all programs running on a system during a

user-definable time period. The BTB is a set of eight specialized hardware counters

that record the source and destination addresses of user-selectable types of branch

instructions. The BTB acts like a ring buffer, so at any given time, it contains

information on the four most recently executed branch instructions.

For every CPU on a system, q-syscollect programs one hardware counter to

count a user-selectable hardware event (the default is CPU cycles), and to overflow

based on a user-chosen sampling period. It also sets up the BTB on each CPU

to record return branch instructions. Each time a “sampling” counter on a CPU
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overflows, the program counter is sampled, as are the addresses in the BTB. This

sampling information is used by q-view to build a histogram and statistical call-

graph.

q-syscollect creates three text files for each process it samples on each CPU.

Thus, a process that executes on more than one CPU while q-syscollect monitors a

system will have multiple sets of text files. The first file is a .info file, which contains

general profile information in a Scheme-like syntax, readable by q-view. The second

file is a .hist file, which is a simple list of program counter values and the number of

times each was sampled. Finally, there is a .edge file, which contains a list of edges,

i.e., source and destination addresses from a BTB, for a program’s call-graph. Note

that since q-syscollect is a statistical profiler, the call-graph information can be

disjoint and/or incomplete.

q-syscollect does not do any visualization itself, but instead relies on q-view to

analyze and display its profiles in a human-readable format. q-view is a Scheme

script that processes q-syscollect’s profile files and visualizes the resulting perfor-

mance data in a text-based gprof-like [GKM82] format. The output is separated

into a histogram section and a call-graph section. The histogram section has one

line of text per sampled routine. Each line includes the name of a sampled routine,

the percentage of the total time (or events, if CPU cycles are not used) occurring

in that routine, the number of seconds (or events) spent in that routine, and the

number of calls to that routine.

The call-graph portion of the output is split into sections (one per sampled

routine). Each section has one line displaying its routine’s name, the percentage

of the total time/events spent in that routine and its children, the number of sec-

onds/events spent only in that routine, and the number of seconds/events spent in

that routine’s children. Every section of the call-graph also has one line for each

of its routine’s parents and children. Each of these lines contains the name of a

parent/child routine, the number of seconds/events spent in it, and the number of

calls made to it.

q-dot is a tool for graphically visualizing call-graphs produced by q-syscollect.

Much like q-view, it processes q-syscollect’s profile files, but instead of displaying
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a text-based call-graph, it creates a graphical version of the resulting call-graph in

a “dot” file [dot]. This dot file can then be converted to a common graphical file

format, such as PostScript [Ado99].

Relation to Thesis Objectives

q-syscollect relates to the objectives laid out at the beginning of this thesis, as it

is a hardware-counter-based, statistical profiler, capable of profiling short-running,

concurrent applications. However, there is also a number of areas in which q-

syscollect falls short of the objectives. For example, it does not offer an exact-

profiling mode. It is also incapable of utilizing hardware counters on any systems

other than the Itanium 2. Additionally, while it is capable of profiling short-running

applications, its focus is on the system as a whole; it is impossible to profile only

one application at a time. Finally, its concurrent profiling abilities are limited

to the process level; no information is collected or presented on a per-user-thread

basis. Furthermore, process-level performance data may be separated into multiple

streams if a process executes on more than one CPU during a profiling session. In

this case, it is up to the end user to combine these streams from multiple CPUs for

a single process in a meaningful way.

3.4 Other Profiling Tools

Other profiling tools with hardware-counter support include OProfile, SvPablo, and

TAU. Each of these profilers achieves some, but not all, of the objectives enumerated

at the beginning of this thesis.

OProfile

OProfile [opr] is a systemwide statistical profiler for Linux systems, consisting of

a kernel module, a daemon for transparently collecting performance data, and a

collection of post-mortem analysis tools. Profiling is done via PC sampling, much
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like qprof. OProfile is able to profile all running code, including hardware and

software interrupt handlers, kernel modules, the kernel itself, shared libraries, and

regular application code, all without any instrumentation or special recompilation.

However, OProfile does offer some visualization options, such as annotated source

trees, that require compilation with debugging symbols enabled. On x86 machines

running 2.6 Linux kernels, OProfile also provides gprof-like call-graph visualization.

On systems that support hardware counters, OProfile’s sampling period is based

on the occurrence of a user-configurable number and type of hardware event. Oth-

erwise, sampling is done according to timer interrupts, with the added restriction

that sections of the kernel with interrupts disabled cannot be profiled.

OProfile provides much of the same functionality as q-syscollect, although it

supports hardware counters on multiple architectures, rather than just the Itanium

2. Still, it is a systemwide profiler, it does not offer any exact profiling metrics, and

it offers only limited thread support.

SvPablo

SvPablo [DR99] is a statistical performance analysis and visualization system which

supports programs written in C, Fortran 77/90, and High Performance Fortran

(HPF) on a variety of sequential and parallel systems. Hardware counters can

only be used if SvPablo is run on a MIPS R10000 system. Both automatic and

interactive instrumentation of target programs is supported. The former is done

via a compiler; SvPablo is integrated with Portland Group’s HPF compiler, which

inserts calls to SvPablo into a program as it is being compiled. The automatically-

inserted instrumentation gathers statistics for each executable line in the original

program, as well as routine entries and exits. Interactive instrumentation is done

using SvPablo’s graphical source-code browser. Instrumentation inserted in this

manner is restricted to outer loops and routine calls.

SvPablo summarizes performance data as it is collected during program exe-

cution, making it suitable for long-running programs. Performance data is also

written to disk in Pablo’s Self-Defining Data Format (SDDF) [Ayd03], which is an
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architecture-independent meta-format. SDDF files can be examined post-mortem

using the aforementioned source-code browser. This powerful graphical environ-

ment displays the statistical performance data in the context of the program’s

original source-code constructs.

SvPablo falls short of the thesis objectives as it only supports hardware counters

on one architecture, it offers no exact profiling metrics, and it does not profile on a

per-user-thread basis.

TAU

TAU (Tuning and Analysis Utilities) [TAU04] is a performance analysis environ-

ment for OpenMP and MPI concurrent programs written in C, C++, Fortran

77/90, HPF, Python and Java. TAU supports both statistical profiling (which it

refers to as profiling), and exact profiling (which it calls tracing). Profiling gathers

summary statistics for metrics such as CPU time in a routine or the number of

calls to a routine. TAU supports the use of hardware counters on all its target

platforms, so profiling can also summarize the occurrences of hardware events and

relate them back to the source code. Tracing captures all the occurrences of events

of interest, showing when and where they happened. Hardware counters are not

used for tracing.

Instrumentation in TAU is done by adding macros directly to the source code

of a target program. This step can be done manually by inserting calls to the

TAU API at all desired instrumentation points, or it can be done automatically

using a variety of language-specific TAU instrumentation tools. TAU provides

tools for visualization, which is done post-mortem, either textually or graphically.

pprof is a text-based, gprof-like visualization tool for displaying profile (statistical)

information. The same data can be visualized graphically in terms of histograms

and text displays with paraprof, which is simply a GUI for pprof. Trace (exact)

performance data is visualized using a third-party tool called VAMPIR [Gmb98],

which is a performance analysis and visualization tool for MPI concurrent programs.

TAU is the only profiler in this chapter to offer both exact and statistical profil-
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ing. However, only the statistical side of this tool makes use of hardware counters.

Further, its target environment is OpenMP and MPI programs, while this thesis

focuses on µC++ programs.

SBT

SBT (Stupid Barrier Tricks) [NL01, Nov02] is a library for performance monitoring

of shared-memory concurrent programs written in C and C++ with POSIX threads

or SGI Irix’s sproc threads. It is based on the notion that concurrent programs often

use barriers to delimit different phases of execution. Barriers are synchronization

points between these phases; no thread is allowed to pass a barrier until all threads

in the program reach it. SBT allows users to watch one barrier as a program

executes, and exact per-thread performance data is visualized on-the-fly as threads

reach that barrier.

SBT uses the Performance Counter Library (PCL) [BM03] to access hardware

counters on multiple platforms. However, because PCL is not thread safe, hardware

counts can only be displayed for one thread during a program run. For this reason,

the SBT team is considering supporting PAPI.

SBT relates to the objectives of this thesis in that it provides access to hardware

counters on multiple platforms, and provides exact performance data on a per-

thread basis. However, it offers no statistical profiling metrics.

3.5 Summary of Related Profilers

Table 3.1 summarizes the relevant features of µProfiler and the seven profilers

introduced in this chapter. From left to right, the columns represent the following

features:

1. Hardware-counter support.

2. Hardware-counter support on multiple architectures.
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HW Counters HW Counters Exact Statistical Per-Thread

on Multi Archs Profiling Profiling Data

µProfiler
√ √ √ √ √

Paradyn ? ?
√

qprof
√ √

q-syscollect
√ √

OProfile
√ √ √

SvPablo
√ √

TAU
√ √ √ √ √

SBT
√ √ √ √

Table 3.1: Summary of related profilers.

3. Exact profiling metrics.

4. Statistical profiling metrics.

5. Per-thread performance data.

Paradyn has question marks under the first and second columns because it does

not currently support hardware counters, but it will in a future release. Also, note

that while TAU supports the same features as µProfiler, it does not use hardware

counters for exact profiling.
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µProfiler’s Target Environment

Since a programmer thinks in terms of a specific execution model, and implements

programs using that model’s given components, it is crucial for a profiler to gather

and display performance data in the same way. Having profiling results presented in

this fashion allows the programmer to easily map performance data back to a target

program’s high-level components, which in turn facilitates locating bottlenecks and

other performance related issues.

µProfiler (Chapter 5) is a profiler that gathers and presents performance data in

terms of its execution environment. To understand µProfiler’s data gathering and

presentation approach, the reader must first become familiar with the environment

in which it operates. To that end, this chapter describes µProfiler’s execution

environment and its components.

4.1 µC++

µProfiler’s target environment is a concurrent dialect of the C++ programming

language [Str97] called µC++ [BDS+92, BS05]. µC++ extends C++ by introduc-

ing new language constructs that afford lightweight concurrency on uniprocessor

and multiprocessor shared-memory computers. On uniprocessor systems, concur-

rency is achieved by interleaving the executions of tasks, while on multiprocessor

41
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systems, concurrency is achieved by using a combination of interleaving and true

parallel execution.

µC++ is implemented using a translator and a run-time library. The translator

reads a µC++ program and translates each language extension into one or more

C++ statements, which are then compiled by a C++ compiler and linked with the

µC++ run-time concurrency library, also known as the µC++ kernel. The µC++

kernel is responsible for managing and scheduling all user threads, and interacting

with the operating system threads, while a program is running.

4.2 µC++ Language Constructs

Like other concurrent environments, such as those supplied by Java [AGH00] and

C# [HWG03], µC++ provides its own execution model, composed of multiple

components. µC++ introduces six new language constructs that provide execution

properties such as advanced flow control, synchronization, mutual exclusion, and

concurrency. These constructs are coroutines, monitors, coroutine-monitors, tasks,

virtual processors, and clusters.

4.2.1 Coroutine

A coroutine has all the properties of a C++ class, as well as its own execution state.

Thus, execution of a coroutine can be suspended as control leaves it, and resumed

at the same point in the same state, i.e., with all local variables preserved, when

control returns. In contrast, a normal routine is restarted at the beginning each

time it is called, always executes to completion before returning, and no execution

state is preserved, i.e., its local variables do not persist across invocations.

A coroutine has one distinguished member routine called main, which is either

private or protected, i.e., it cannot be called from outside the coroutine. Instead,

a coroutine provides an interface for resuming execution of its main routine at the

point where it was last suspended, via a public member routine that executes a
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uResume statement. Thus, a coroutine is activated by making a call to this public

member routine, which then explicitly resumes main. At that point, the caller

context switches from its own execution state to the coroutine’s execution state,

and main continues execution from the point where it was last suspended.

A coroutine can suspend its execution in one of two ways. It can implicitly

reactivate the coroutine that activated it by suspending execution of its own main

routine, or it can explicitly activate another coroutine by calling one of that corou-

tine’s public member routines, which in turn resumes that coroutine’s main routine.

4.2.2 Monitor

A monitor has all the properties of a regular C++ class. In addition, it also provides

mutual exclusion through the use of mutex routines, which are a set of routines that

allow only one task to execute them at any given time. For example, if a task T1

is active within a monitor’s mutex set and a second task T2 calls a routine in that

monitor’s mutex set, T2 blocks and is added to an entry queue, where it waits until

T1 returns or blocks on a condition variable. Entry order into a monitor depends

on that particular monitor’s scheduling algorithm, which may include accepting

mutex routines and/or unblocking tasks that are waiting on condition variables;

more details are available in [BS05].

Not all of a monitor’s member routines are mutex routines. Some member

routines provide read-only access, or provide complex interactions (protocols) with

the monitor’s mutex routines. These routines are called non-mutex routines, and

they can be executed simultaneously by an unlimited number of tasks.

4.2.3 Coroutine-Monitor

A coroutine-monitor has a combination of the properties of both a coroutine and

a monitor. It is simply a coroutine with mutual exclusion, meaning only one task

can be active inside its mutex set at any given time.



44 CHAPTER 4. µPROFILER’S TARGET ENVIRONMENT

4.2.4 Task

A task is a coroutine-monitor with its own thread of control. Like a coroutine, a

task has a distinguised member routine called main, but instead of using an existing

thread to execute it, a new thread is created and starts execution in main. main

is either private or protected, and thus cannot be called from outside the task. A

task’s thread runs concurrently with all other task threads in the same program.

4.2.5 Virtual Processor

A virtual processor is a “software processor” upon which user threads are sched-

uled for execution. Virtual processors are implemented by kernel threads, which

are scheduled for execution on physical processors by the underlying operating sys-

tem. In uniprocessor mode, µC++ simulates all virtual processors with one kernel

thread, whereas in multiprocessor mode, each virtual processor gets a kernel thread

of its own. Thus, when a µC++ program is run in multiprocessor mode on a multi-

processor system, there is the potential for true parallelism as the operating system

may schedule multiple virtual processors for execution at the same time on different

physical processors. A µC++ program may also be run in multiprocessor mode on

a uniprocessor machine, which prevents the entire program from blocking if one

virtual processor makes a blocking system call.

When a virtual processor is executing, the µC++ kernel schedules tasks to run

on it. Thus, when the operating system gives a time-slice to a virtual processor,

µC++ may further subdivide that time-slice among two or more tasks.

Since virtual processors are not bound to physical processors, µC++ programs

can be written using more virtual processors than there are physical processors on

the underlying machine. In this way, µC++ programs are kept portable across

both uniprocessor and multiprocessor systems.
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Figure 4.1: Run-time structure of µC++ language constructs.

4.2.6 Cluster

A cluster is a collection of virtual processors and tasks that execute on them.

Clusters are used to control the amount of potential parallelism among tasks. A

cluster requires at least one virtual processor to run tasks, and a task may only run

on the virtual processors associated with its cluster. However, during the execution

of a µC++ program, tasks and processors may explicitly migrate from cluster to

cluster.

Each cluster has its own algorithm for scheduling its tasks for execution on

its virtual processors. By default, the scheduling algorithm is round-robin using

a single-queue, multi-server queueing model, which results in an automatic load

balancing of tasks on virtual processors. However, users can implement their own

scheduling algorithms, and several real-time schedulers are available [BS05].

Figure 4.1 shows the run-time structure of the µC++ language constructs de-

scribed in this chapter.





Chapter 5

µProfiler

µProfiler is a concurrent, object-oriented profiler for concurrent, object-oriented

programs written in µC++. It is part of the MVD Toolkit [Buh99], which is a set

of applications forMonitoring,Visualizing andDebugging µC++ programs. Other

MVD tools include SMART [Sch99], which records the execution of a nondetermin-

istic concurrent program and then replays it in a deterministic fashion, and Kalli’s

DeBugger (KDB) [BKS96], which is a multithreaded debugger for multithreaded

programs.

The original µProfiler prototype was implemented in 1997 by Robert Denda

[Den97], and was subsequently extended in 2000 by Dorota Zak [Zak00], who added

a number of new metrics.

This chapter describes the design and implementation of µProfiler, taking into

account the work done for both of the aforementioned theses, as well as changes

and extensions I have made.

5.1 Design Objectives

µProfiler’s original design is derived from the requirements laid out in [Den97].

The result is a list of six objectives, all of which are fulfilled by µProfiler’s current

implementation.
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5.1.1 Profiling on a Per-Thread Basis

Concurrent programs are based on the notion of multiple threads of control. A

profiler for concurrent programs must be aware of, and able to profile, each indi-

vidual thread a programmer creates. To do this, µProfiler must be aware of how

the µC++ kernel manages its threads.

5.1.2 Profiling at Different Levels of Detail

Profiling concurrent, object-oriented programs requires gathering performance data

at different levels of detail. In the case of µC++ programs, µProfiler must be able to

profile at the cluster, virtual processor, task, coroutine, object, and routine levels,

using both exact and statistical metrics.

5.1.3 Selective Profiling

Users are not necessarily interested in profiling everything that goes on in an ap-

plication. Rather, they may be interested in profiling only certain aspects of their

program. This discrimination is accomplished by using a technique called selective

profiling, whereby only those aspects of interest are instrumented.

µProfiler affords selective profiling of µC++ programs at both compile-time and

run-time. At compile-time, profiling can be turned on for any program module by

compiling with the -profile flag, while at run-time, profiling can be enabled and

disabled for each task by calling the uProfileActivate and uProfileInactivate routines,

respectively. Both profiled and unprofiled modules are compatible with each other,

i.e., a selectively-profiled µC++ program (composed of both profiled and unprofiled

modules) compiles and links just as if the program is not profiled at all.

5.1.4 Support Different Visualization Devices

Performance data can be visualized in a number of different ways, ranging from

simple tables of raw numbers to graphical charts. µProfiler supports several dif-
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ferent visualization devices and provides a custom Motif widget [HF94] for each

one.

5.1.5 Extendibility

Most profilers have a built-in set of metrics that they are capable of measuring.

However, no set of metrics can possibly fulfill the needs of all users. To that end,

profilers should be extendible so that users can add their own metrics. µProfiler

accomplishes this through the use of class hierarchies for its monitors, analyzers

and visualizers. Users may customize any of µProfiler’s metrics (or create entirely

new ones) by deriving new monitors, analyzers and visualizers from their respective

base classes, and linking the new metric into their program.

5.1.6 Portability, Interoperability, and Maintainability

µC++ is implemented on a number of different operating system/architecture pairs,

such as Solaris on UltraSPARC, Linux on x86 and Linux on Itanium. Nothing

in µProfiler’s design or implementation precludes a port to any of the systems

on which µC++ runs. In fact, µProfiler currently runs on the three operating

system/architecture pairs listed above.

Since µProfiler is part of the MVD Toolkit, it is designed in such a way that

it is interoperable with all other MVD tools. For example, a program profiled by

µProfiler can simultaneously be debugged with KDB.

An important part of all software development is the maintainability of the

end product. µProfiler is designed and implemented with maintainability in mind,

making full use of high-level, object-oriented, and concurrent software development

techniques.
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5.2 Overview of µProfiler

This section provides an overview of µProfiler’s implementation, which is explained

in detail throughout the rest of this chapter. µProfiler offers two levels of instru-

mentation insertion, µC++ kernel instrumentation and user-code instrumentation,

which are explained in Section 5.3. The object-oriented infrastructure and main

functionality of µProfiler is contained in the µProfiler kernel, which is discussed in

Section 5.4. µProfiler offers two types of metrics, user metrics and built-in met-

rics, which are presented in Section 5.5. µProfiler’s execution monitors, which are

objects responsible for enabling instrumentation hooks and collecting performance

information, are explained in Section 5.6. Finally, Section 5.7 discusses µProfiler’s

analyzers and visualizers, which are objects that analyze the performance data

collected by execution monitors, and display it on the screen, respectively.

5.3 Instrumentation Insertion

There are two different instrumentation insertion methods used by µProfiler. The

first is insertion of instrumentation hooks into the µC++ kernel, and the second is

insertion of shared trampolines into the user code of µC++ programs.

5.3.1 µC++ Kernel Instrumentation

Instrumentation hooks exist in areas of the µC++ kernel where events of potential

interest occur. These hooks are present in all µC++ programs, but are guarded

by instrumentation predicates that prevent them from being triggered unless the

following conditions are true:

1. Profiling is currently enabled for the active task.

2. µProfiler is currently running, i.e., some portions of the target program are

compiled with the -profile flag.
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void uBaseTask::uSetState( uBaseTask::uTaskState state ) {

    . . .

    if ( uProfileActive && uProfiler::uProfiler_RegisterTaskExecState ) {

        (*uProfiler::uProfiler_RegisterTaskExecState)( uProfiler::uProfilerInstance, *this, state );

}

    . . .

    }

Figure 5.1: A µProfiler instrumentation hook.

3. The hook is enabled by at least one execution monitor (see Section 5.6).

Figure 5.1 is an example of a µC++ kernel hook for a task changing its exe-

cution state. The instrumentation predicate is the if statement surrounding the

routine call, and it verifies that the three antecedent conditions are true. Condition

1 is verified simply by checking the uProfileActivate flag for the current task; if it is

true, then profiling is enabled. Conditions 2 and 3 are verified by checking that uP-

rofiler::uProfiler RegisterTaskExecState is non-null. uProfiler::uProfiler RegisterTask-

ExecState is a routine pointer that points to the uProfiler::RegisterTaskExecState

member routine if and only if at least one execution monitor activated it. Since

routine pointers are only set if µProfiler is running, conditions 2 and 3 are satisfied

if the routine pointer contains a non-null value. Thus, if both conditions in the

if statement are true, the hook is triggered. All other µC++ kernel hooks have a

similar structure.

5.3.2 User Code Instrumentation

Instrumentation of the user code in a profiled µC++ program is done using shared

trampolines, which are inserted into a target program with the help of the C++

compiler gcc [gcc]. When the -profile flag is specified, the µC++ translator activates

a flag called -finstrument-functions, which causes gcc to insert calls to instrumenta-
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. .
 .

...
Foo

Foo2()
...

{

Foo2 {
call function prologue
...

}

}
call function epilogue

. .
 .

. .
 .

__cyg_profile_func_enter {

}

* if routine−level profiling disabled, return
* push state information onto profiling stack
* gather performance data for builtin metrics

* if user hook active, trigger it

}

* if routine−level profiling disabled, return

* gather performance data for builtin metrics

* if user hook active, trigger it

Routine Epilogue

__cyg_profile_func_exit

* pop state information off of profiling stack

{

Target Program

Routine Prologue

Figure 5.2: Flow of control for routine-level profiling in µProfiler.

tion trampolines at the entry and exit points of each routine in a program. The

entry and exit trampolines are called the routine prologue and routine epilogue,

respectively, and each is passed the address of the routine being entered or exited,

as well as the address of the call site in its parent routine. Figure 5.2 shows the flow

of control for a routine call in a µC++ program profiled with shared trampolines.

The routine prologue and epilogue first verify that at least one µProfiler metric

is enabled that requires routine-level profiling; if not, then the trampolines return

immediately and no data gathering is done. Otherwise, the current task or corou-

tine’s profiling stack (see Section 5.4) is updated to reflect its new execution-state

location; specifically, the routine prologue pushes a new frame onto the profiling

stack containing information about the routine being entered, and the routine epi-

logue pops that frame off the stack.
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Once the profiling stack is updated, the data gathering is performed. Built-

in metrics (Section 5.5.2) have their monitoring code in the trampoline itself and

gather their data by accessing µProfiler data structures directly. User metrics

(Section 5.5.1) have no special access to µProfiler’s data structures, so they must

do their data gathering using hooks and execution monitors. There is a hook for

routine entry in the routine prologue trampoline, and a hook for routine exit in the

routine epilogue trampoline. As before, µProfiler verifies that each hook actually

points to a uProfiler member routine. If so, the hook is triggered and all interested

execution monitors are notified of the routine entry or exit.

5.4 µProfiler Kernel

µProfiler’s main functionality lies in the µProfiler kernel, which is shown in Figure

5.3, using the object-oriented notation described in Appendix A. The µProfiler

kernel is made up of the following tasks and objects: uProfiler, uProfilerStartWidget,

uProfileTaskSampler, uExecutionMonitor, uMemoryExecutionMonitor, uMetricAnalyze,

uProfileAnalyze, and uSymbolTable.

The uProfiler task acts as an administrator [Gen81] for all active metrics. All

execution monitors register with uProfiler upon creation, and are managed by it

from that point forward (see Section 5.6). uProfiler keeps a global list of all active

execution monitors, as well as a hook-monitor list for each available instrumenta-

tion hook. These hook-monitor lists contain one entry for each execution monitor

requesting notification of when its corresponding instrumentation hook is triggered.

Depending on the type of profiling being done (exact or statistical), uProfiler either

notifies execution monitors when events occur, or it polls at specified intervals. Fi-

nally, once monitoring is complete, uProfiler invokes an analyzer (see Section 5.7)

for each execution monitor on its global list.

uProfilerStartWidget creates the µProfiler startup window, which is displayed be-

fore the application begins execution (see Figure 5.4). The startup window presents

a list of available built-in and user metrics, from which the user makes a selection.
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Figure 5.4: The µProfiler startup window.

Based on that selection, uProfilerStartWidget creates a subset of the available exe-

cution monitors.

Each profiled task and coroutine has one uProfileTaskSampler, which holds its

pertinent performance data. If required by any active metrics, each uProfileTaskSam-

pler also creates and maintains a per-task/coroutine profiling stack, which contains

information about a task or coroutine’s current routine-call sequence. Each stack

frame contains the following information:

• The address of the current routine.

• The address of the parent routine.
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• The address of the call site in the parent routine.

• An object pointer (currently unused).

This profiling stack is required by metrics needing an inexpensive method of

obtaining information about a task’s current routine and its parent. The profiling

stack is obtained simply by dereferencing the profiling-stack pointer in a task’s

uProfileTaskSampler.

uExecutionMonitor, uMemoryExecutionMonitor and uMetricAnalyze are abstract

bases-classes from which all metrics must derive their execution monitors and an-

alyzers. They are explained in more detail in Sections 5.6 and 5.7.

uProfileAnalyze is invoked by uProfiler after monitoring of the target program is

complete. It goes through the list of execution monitors registered with uProfiler

and creates their associated analyzers.

uSymbolTable is an architecture-independent interface, built on top of the Bi-

nary File Descriptor Library [Cha91], for accessing a target program’s architecture-

dependent symbol table. It provides member routines for retrieving the addresses,

names, and source-file names of a target program’s routines.

5.5 µProfiler Metrics

A µProfiler metric is composed of an execution monitor, an analyzer and a visu-

alizer. An execution monitor gathers performance data during program execution,

its analyzer prepares the raw performance data for display, and its visualizer dis-

plays the performance data on the screen. This separation of duties not only makes

clear what portions of a metric are responsible for performing which tasks, but it

provides a simple interface for the addition of new metrics by users, and reusing

components among metrics.

To create a new metric, a user simply derives an execution monitor and analyzer

from the uExecutionMonitor and uMetricAnalyze base classes, respectively. For visu-

alization, users have the choice of using one of the visualization devices provided by
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µProfiler (see Section 5.7), or creating a new one by deriving from the uVisualDevice

base class.

5.5.1 User Metrics

A user metric is built using the µProfiler API, which provides a well-defined inter-

face for adding execution monitors, analyzers and visualizers to µProfiler’s infras-

tructure. The API includes abstract base-classes for all three metric components,

which provide the minimum basic functionality necessary to register and interact

with µProfiler. In this way, the user need not be concerned with the intrinsic details

of µProfiler metrics, and can instead concentrate on the code to gather, analyze

and display all required performance data.

User metrics gather performance data through the use of user hooks, which are

instrumentation hooks in non-privileged areas of the µC++ kernel. Events that

occur in privileged areas of the µC++ kernel can only be processed by built-in

metrics, which are explained in the next section.

To create a trivial user metric to count the number of tasks created in a target

program, a user does the following:

1. Derive an execution monitor that overrides the RegisterTaskNotify hook-notifi-

cation routine (see Section 5.6) to activate the RegisterTask hook. This routine

gets called every time a task is created by the µC++ kernel, and it is passed

the address in memory of the task being created, as well as that of its parent

task. However, since this simple metric only counts the number of created

tasks, these addresses are ignored.

2. Derive an analyzer to manipulate the collected performance data as necessary.

In this case, analysis is unnecessary as only one piece of performance data is

collected. However an analyzer is still required because its base class provides

code for creating the visualization devices.

3. Either use an existing visualization device, or derive a new one, to display the

performance data on the screen.
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Centralized Monitoring

All user metrics operate in centralized monitoring mode, which means the uProfiler

task is responsible for gathering performance data. A task that triggers a user

hook passes pertinent information to the uProfiler task, and then resumes normal

execution. Meanwhile, the uProfiler task concurrently forwards that information

to all execution monitors on the relevant hook-monitor list by calling their hook-

notification routines and passing the information in as routine arguments. This

system is a necessary consequence of creating and registering user metrics with

µProfiler’s API, but has the advantage of potential parallelism between a task that

triggers a hook, and the uProfiler task that processes the resulting performance

data.

5.5.2 Built-in Metrics

Built-in metrics are low-level metrics that are tightly integrated into µProfiler; they

circumvent portions of the µProfiler API to provide core performance data from

deep inside the µC++ kernel. This structure is essential for metrics that require

notification of events that occur while a task is executing inside the µC++ kernel,

such as when a task blocks or unblocks. Hooks for these types of events are called

built-in hooks because they can only be used by built-in metrics. User hooks can

be used by both user metrics and built-in metrics.

Like a user metric, a built-in metric is composed of an execution monitor, an

analyzer, and a visualizer, all of which assume mainly the same responsibilities

as above. The one exception to this rule for built-in metrics is the gathering of

performance data, which is not handled exclusively by execution monitors, as is

explained below.

Decentralized Monitoring

Built-in metrics operate in decentralized monitoring mode when processing built-

in hooks, which means the task that triggers the built-in hook is responsible for
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gathering the resulting performance data. For example, a task that is in the midst

of context-switching gathers and stores information about its own execution state,

rather than requiring the uProfiler task to do it. There is no need for hook-monitor

lists for built-in hooks, because execution monitors are not notified when built-in

hooks are processed. This method incurs less overhead than centralized monitoring,

because no communication is necessary between the task that triggers the hook and

the uProfiler task. Furthermore, all performance data is placed directly into each

execution monitor’s data structures by the current task, rather than being passed

to the execution monitors via routine calls.

5.6 Execution Monitors

µProfiler’s execution monitors are passive objects that monitor a target program’s

execution behaviour. Each monitor registers itself with uProfiler upon creation

to indicate the hooks necessary for its particular data gathering. Among other

things, this allows uProfiler to keep a list of active monitors so that it can create

the appropriate analyzers (which subsequently create visualizers) once monitoring

is complete.

All execution monitors are derived, directly or indirectly, from uExecutionMoni-

tor (an intermediate execution-monitor base-class called uMemoryExecutionMonitor

is presented in Chapter 7). This base class has one hook-notification routine for

each user hook in the µC++ kernel. Hook-notification routines are called by uP-

rofiler to notify execution monitors that a user hook has been triggered. However,

the hook-notification routines in uExecutionMonitor are placeholders (pure virtual

routines); derived execution monitors provide functionality for these routines by

defining them. This structure provides a technique for dynamically determining

which hooks a derived monitor needs activated.

A user metric activates hooks using the µProfiler API by calling the Initialize

routine in the uExecutionMonitor base class, which dynamically checks which hook-

notification routines have been overridden, activates those hooks, and adds the

monitor to the corresponding uProfiler hook-monitor lists.
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Figure 5.5: µProfiler task-selection box.

An execution monitor for a built-in metric circumvents the µProfiler API to

activate any built-in hooks it requires. Besides calling the Initialize routine in the

base class to activate any required user hooks, it also manually switches on the

built-in hooks it needs. Since the execution monitor is not notified when built-in

hooks are triggered (because of decentralized monitoring), there is no need for it to

manually add itself to any hook-monitor lists.

5.7 Analyzers and Visualizers

Once monitoring is complete, i.e., once the target program terminates, the uProfiler

task creates an object of type uProfileAnalyze, which creates and manages all of

the required analyzers. uProfileAnalyze accomplishes this task by calling the Cre-

ateMetricAnalyze routine for each monitor in uProfiler’s global execution monitor

list. CreateMetricAnalyze is a virtual routine in the uExecutionMonitor base class

that must be defined by all derived monitors. It returns a reference to the newly

created analyzer, which uProfileAnalyze stores in a list.

Like execution monitors, all µProfiler analyzers must be derived from a com-

mon base class, called uMetricAnalyze. uMetricAnalyze provides basic routines for

creating and managing selection windows, which are used extensively by µProfiler

to display performance data in a hierarchical fashion. For example, in Figure 5.5, a

list of profiled tasks is displayed in the leftmost column. Clicking on any task drills

down and opens another window with information specific to that task. Selection
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windows are implemented by the uSelectionWindow class.

µProfiler currently provides three different types of visualization devices, all

built with Motif widgets. There is a table widget (uTableWidget), a bar chart widget

(uProfileBarChartWidget), and a Kiviat graph widget (uKiviatGraphWidget). These

widgets allow users to create metrics that display their data in a variety of ways,

without requiring them to learn Motif syntax. However, nothing precludes advanced

users from creating and adding their own Motif-based visualization devices.





Chapter 6

Accessing Hardware Counters

with µProfiler

This chapter describes the first of the three major contributions of this thesis,

namely, integrating hardware-counter support for three different architectures into

µProfiler. Currently, support is in place for accessing hardware counters on the

UltraSPARC I/II/III running Solaris, the x86 (including Intel Pentium/MMX/-

Pro/II/III and AMD Athlon) running Linux, and the IA-64 (Itanium I and II)

running Linux.

All µProfiler hardware counter support is encapsulated in a single class called

uHWCounters, which shields programmers from all low-level details. In fact, the

uHWCounters API completely abstracts away the notion of the underlying hardware

counters, allowing programmers to focus on choosing which events to count, rather

than how to cause them to be counted.

I was unable to use an existing hardware-counter library, such as PAPI [BDG+00]

(see Section 3.1), to add hardware-counter capabilities to µProfiler, for the following

reasons. First, only a small subset of PAPI-like routines are necessary to program

and use the hardware counters to the extent that they are required in this thesis

(six routines per architecture). Most of the other routines in the uHWCounters class

consist of architecture-independent code tailored towards µProfiler’s requirements.

63



64 CHAPTER 6. ACCESSING HARDWARE COUNTERS WITH µPROFILER

Second, µProfiler allows users to interactively select the hardware events they wish

to count, which requires immediate feedback showing which events are available

to be counted given a user’s current event-selection. This type of feedback is un-

available from PAPI. The implementation of this feature in µProfiler is presented

in Section 6.5.1.

6.1 Hardware Events

The number and types of measurable hardware events vary significantly from pro-

cessor to processor. This variance is due to differences in the physical properties of

each processor, such as cache hierarchies, branch predictors, and number of physical

hardware counters. At present, the uHWCounters class is only capable of measuring

a small subset of hardware events common to all supported platforms, where this

subset represents some of the more commonly used events in program profiling.

This approach has three advantages. First, it provides a proof-of-concept, showing

that the uHWCounters class is capable of counting hardware events on multiple plat-

forms. Second, it shows that the design of the uHWCounters class is flexible enough

to be ported to different architectures in a straightforward manner. Finally, it keeps

the user interface identical across platforms because the user is always presented

with the same list of events to count. However, the design of the uHWCounters class

does not preclude creating platform-specific lists of hardware events in the future.

6.1.1 User-Level vs. System-Level Hardware Events

Hardware events can be counted at two different levels: the user level and the system

level. User-level hardware events are events that occur while executing user code,

while system-level hardware events are events that occur while executing kernel

code. The uHWCounters class is capable of measuring user-level events, system-

level events, or both. Users can toggle the counting of each type of event separately

(see Section 6.4.1).
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6.2 Event Tables

Every CPU has a different set of events that it is capable of measuring, as well

as constraints on how these events can be counted. Borrowing a concept from the

PAPI library, this information is encapsulated in a set of event tables, one for each

supported CPU. Each of the hardware events supported by µProfiler has one entry

in each CPU-dependent event table. Generally, these entries contain the following

information:

• Whether this event is supported by the current CPU.

• Whether this event is a component event or a composed event (see below).

• What the CPU-dependent bit-encoding of this event is, which is used to

program the hardware counters when uStartCounters is called.

• Which counters can count this event.

All event tables list their events in the same order, which means that every event

has a unique index, independent of which CPU is being used. These unique indices

are how events are referred to when using the uHWCounters API (see Section 6.4).

6.2.1 Component Events vs. Composed Events

Oftentimes, a user wishes to measure an event that cannot be counted using only

one hardware counter. For example, some architectures provide a “cache miss”

event, while others provide only “cache reference” and “cache hit” events. In the

latter case, the number of cache misses can be derived by subtracting the number

of cache hits from the number of cache references, but such a procedure requires

two counters. Another example is an event involving a ratio of two other events,

such as instructions per CPU cycle.

To handle the situation described above, two hardware event types are stored

in the event tables: component events and composed events. Component events
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are hardware events that can be counted using only one hardware counter, while

composed events are hardware events obtained by adding, subtracting or dividing

the counts of two or more component events.

6.3 uHWCounters State

The uHWCounters class contains a number of member variables representing a user’s

desired configuration of the underlying hardware counters, such as which events to

count, and at what level they should be counted (e.g., user level, system level, or

both). This information is stored in an architecture-independent format, and is only

converted to platform-specific data to program the underlying hardware counters

at a user’s request. In this way, the majority of the architecture-dependent code is

localized in a handful of low-level routines, which makes porting the uHWCounters

class to other platforms straightforward.

Examples of the state variables contained in the uHWCounters class are the

counters array, which has one cell for each underlying hardware counter, and the

event availabilities array, which has one cell for each hardware event in the event

tables (see Figure 6.1). counters[i] contains an index into the event table corre-

sponding to the event that hardware counter i is currently set to count, or −1 if

the counter is empty. event availabilities[j] contains true if hardware event j is

available to be counted given the current state of the counters array, and false oth-

erwise. Section 6.5.1 explains in detail how the counters and event availabilities

arrays are used by the uHWCounters class.

6.4 The uHWCounters API

The uHWCounters public interface is composed of both architecture-independent

and architecture-dependent member routines. The architecture-independent por-

tion of the API consists of routines to read and modify the uHWCounters state
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Figure 6.1: uHWCounters state.

information. The architecture-dependent routines interact with the hardware coun-

ters, converting uHWCounters state information from platform-neutral to platform-

specific where necessary. All uHWCounters routines accept an index into the event

tables when a specific event is required as a parameter.

6.4.1 Architecture-Independent Interface

The architecture-independent portion of the uHWCounters API is used to read

and change the values that specify how the underlying hardware counters are pro-

grammed. These routines are grouped into two sections: accessor routines, which

are used to query the current uHWCounters state, and mutator routines, which are

used to change it.
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Accessor Routines

Accessor routines provide read-only access to the current state of a uHWCounters

object, such as:

• The name of a hardware event, given its index in the event table, e.g., “cache

hits”.

• Whether or not a hardware event is available to be counted by the hard-

ware counters, given the current set of hardware events already chosen to

be counted (i.e., given information from counters). This information can be

used in a graphical user interface to “grey out” unavailable hardware events

in a list, as is explained in Section 6.5.1.

• The total number of hardware events currently set up to be counted.

• The calling task’s current event count for each hardware event being counted.

Mutator Routines

Mutator routines manipulate the current state of the uHWCounters object. The

architecture-independent interface has mutator routines that:

• Toggle the counting of user-level hardware events.

• Toggle the counting of system-level hardware events.

• Add a hardware event to the current event set.

• Remove a hardware event from the current event set.

6.4.2 Architecture-Dependent Interface

The architecture-dependent portion of the interface contains the low-level routines

responsible for interacting with the hardware counters. Five routines make up this

part of the interface:
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• uStartCounters: programs the hardware counters according to the uHWCoun-

ters object’s internal state, and activates them.

• uRestartCounters: restarts the hardware counters after an overflow occurs.

• uStopCounters: Deactivates the hardware counters.

• uReadCounters: Reads the event counts currently contained in the hardware

counters.

• uGetOverflowMask: Returns a bitmask indicating the counters that have over-

flowed most recently.

6.5 Implementation Issues

This section describes some of the interesting implementation issues encountered

and solved while writing the uHWCounters class.

6.5.1 Hardware Event Availabilities

Setting up hardware counters to count a desired set of hardware events can be a

difficult task. Each CPU has a different number of hardware counters, is capable

of counting a different set of hardware events, and has different constraints on

which events can be counted by which counters. For example, Sun Microsystems’

UltraSPARC III processor [Sun04] has only two hardware counters, and most of

the events it is capable of counting are constrained to one counter or the other.

Many CPUs have similar restrictions.

The uHWCounters API shields users from these and all other low-level details

of the hardware counters. In fact, users require absolutely no knowledge of the

configuration of the underlying hardware counters to use the API. Their focus can

and should be on selecting the hardware events to be counted. The uHWCounters

class automatically figures out how to configure the counters for a given selection

of hardware events.
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The uHWCounters API is designed to be used in conjunction with the µProfiler

startup window’s graphical user interface, which displays available hardware events

as a list of clickable buttons (see Figure 7.1 on page 78). The uEventAvailable routine

accepts an event index and returns the boolean value stored in the corresponding

cell in the event availabilities array, which is true if that event can legally be added

to the counters given the current event set to be counted, and false otherwise. The

return value of this routine is used to “grey out” unavailable events in the µProfiler

startup window.

The interesting part of this problem is how to properly determine the availability

of all events and correctly populate the event availabilities array, which must be

done every time an event is added to, or removed from, the current event set. The

general method for determining whether or not an event can be counted by the

hardware counters is to add that event to the current event set, and then attempt

to legally place the new event set into the counters. The latter step is done by

exhaustively checking all permutations of the event set’s events in the counters,

which is the only way to guarantee that a solution is found if one exists.

The algorithms for determining the availability of a component event and a

composed event differ slightly; each is explained in detail in the following sections.

Determining the Availability of a Component Event

Let S be a legal component-event set, i.e., a set of distinct component events that

can be counted simultaneously by a certain CPU’s hardware counters. Further,

assume that that CPU’s hardware counters are currently programmed to count all

the component events in S. Then a component event e is available to be added to

the hardware counters if and only if S ∪ {e} is a legal component-event set.

Let n be the number of physical hardware counters. The component event availa-

bility algorithm, which determines if e is available to be counted given the current

event set S, is as follows:

1. If e ∈ S, then e is available (it is already in the counters), and stop.



6.5. IMPLEMENTATION ISSUES 71

2. If the counters array is full, then e is unavailable, and stop.

3. If e can be counted by an unoccupied counters[i] for some i ∈ {0 . . . n − 1},
then e is available, and stop.

4. Create a temp counters array with the same length as counters, and set each

temp counters[i] to −1, i.e., empty, for i ∈ {0 . . . n− 1}.

5. If legal event set( S ∪ {e}, temp counters ) is true, then e is available; other-

wise, e is unavailable.

legal event set is an algorithm for determining if a given event set is legal. It

accepts two parameters: an event set E, and an array c representing the hardware

counters. It returns true if E is a legal event-set, and false otherwise. The algorithm

is as follows:

1. If |E| is 0, return true.

2. For each c[i], i ∈ {0 . . . n− 1}, do:

If c[i] is empty and component event E0 can be counted by c[i], do:

(a) Insert E0 into c[i].

(b) If legal event set( E − {E0}, c ) is true, return true.

(c) Set c[i] to −1.

3. Return false.

The component event availability algorithm starts out by verifying that there is

room to add an event to the counters, which is an O(1) operation. If that fails, it

then runs through the counters array to determine if there are any empty counters

capable of counting e, which is an O(n) operation. If that also fails, a new array

of length n is populated with −1’s (O(n) operation), and legal event set is called.

Thus, the correctness and algorithmic complexity of component event available de-

pend on legal event set.
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legal event set is an exhaustive search that uses a branch-and-bound technique.

At each level, component event E0 attempts to occupy each available counter.

For each successful occupancy, legal event set is called on the event set E − {E0},
meaning the next event in E attempts to occupy each of the remaining n − 1

counters, and so on until E is the empty set. If at any point, the event being

examined cannot be counted by any of the available counters, the partial solution

is abandoned and the search backtracks. Thus, once a partial solution is shown to

be incorrect, it is not explored further.

Since this search is exhaustive, it is guaranteed to find a solution if one exists.

Furthermore, if E is found to be a legal event-set, the temp counters array contains

a proper configuration of E’s events in the hardware counters, which can be saved

and used to configure the counters array if e is subsequently added to the hardware

counters.

Theoretically, the algorithmic complexity of legal event set is a combinatorial

O( n!
(n−|E|)!

) = O(n!). However, in practice this is not an issue. Among the three

architectures currently supported by uHWCounters, the largest number of hardware

counters on any single CPU is four. Moreover, in many cases, the branch-and-

bound technique shortens the search time significantly. However, if architectures

with more counters are to be supported in the future, a more efficient algorithm

may be needed.

Determining the Availability of a Composed Event

Let S be a legal component-event set, and assume that a certain CPU’s hardware

counters are currently programmed to count all the component events in S. Let K

be the set of component events in a composed event k. Then k is available to be

added to the CPU’s hardware counters if and only if S ∪K is a legal component-

event set.

Let n be the number of physical hardware counters. The composed event availabi-

lity algorithm, which determines if k is available to be counted given the current

event set S, is as follows:
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1. If K ∈ S, then k is available, and stop.

2. If |S ∪K| is greater than the number of hardware counters, then k is unavail-

able, and stop.

3. Create a temp counters array with the same length as counters, and set each

temp counters[i] to −1, i.e., empty, for i ∈ {0 . . . n− 1}.

4. If legal event set( S ∪K, temp counters ) is true, then k is available. Other-

wise, k is unavailable.

This algorithm is a generalization of component event available, and thus shares

its correctness and algorithmic complexity.

6.5.2 Per-Thread Virtual Hardware-Counter Contexts

µC++ programs are multithreaded, both at the kernel level (virtual processors) and

the user level (tasks). However, since there is only one set of hardware counters

per CPU, they must be shared among all the threads that want to use them. This

sharing is accomplished through the use of per-thread virtual hardware-counter

contexts. Essentially, this means that the values of the physical hardware counters

become part of each thread’s execution state, just like other registers; they are

saved when a thread blocks, and restored when a thread resumes.

Since each virtual hardware-counter context can be set up to count a different

set of events, it is possible to have different threads count different events. However,

it was decided to keep the event set homogeneous across all threads of a µC++

program profiled by µProfiler. This design decision was made for two reasons. First,

µProfiler currently only allows users to set profiling parameters (such as which

hardware events to count) in one place: at the µProfiler startup window. Since

users are not always aware of how many virtual processors or tasks are created by a

program, it is impossible to select an event set for each thread ahead of time. Even

if it were, selecting an event set for each thread in a program with thousands of

tasks would be quite cumbersome. Second, profiling data is much easier to visualize,
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read, and comprehend when it is done in a uniform fashion. For example, it is easier

to compare the performances of two tasks that measure retired instructions than

it is to compare the performance of one task that counts CPU cycles and one task

that counts cache hits.

Implementing virtual hardware-counter contexts at the task level is straight-

forward, as there are built-in hooks in the µC++ kernel for a task blocking and

unblocking. This process is explained in Chapter 7. Using virtual hardware-counter

contexts at the kernel level, however, requires operating-system support. The next

three sections explain how this operating-system support is obtained and used on

the three architectures supported by uHWCounters to provide a virtual hardware-

counter context for each virtual processor in a µC++ program. The general pro-

cedure is as follows:

• The uStartCounters routine creates a virtual hardware-counter context based

on the uHWCounters state variables and binds it to the calling kernel thread.

• The uReadCounters routine reads the calling kernel thread’s virtual hardware-

counter context.

• The uStopCounters routine unbinds and destroys the calling kernel thread’s

virtual hardware-counter context.

Solaris/UltraSPARC

Of the three operating system/architecture pairs supported by the uHWCounters

class, the Solaris operating system for SPARC platforms has the simplest virtual

hardware-counter context interface. It provides the cpc library [Sun] for accessing

the hardware counters on the UltraSPARC I, II, and III processors. One call to the

cpc bind event routine creates a virtual hardware-counter context and automatically

binds it to the calling kernel thread. No extra work is needed or done by the

uHWCounters class. The cpc library also provides routines to read and write the

virtual hardware counters, as well as unbind a virtual hardware-counter context
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from its kernel thread. Like cpc bind event, these routines automatically use the

calling kernel thread’s virtual hardware-counter context.

The Solaris operating system for SPARC platforms provides a second library,

called pctx, which can be used by a kernel thread to monitor a different kernel

thread’s virtual hardware-counter context. For each routine in the cpc library, there

is a routine in the pctx that is directly analogous, but each one accepts two extra

parameters: a pointer to the virtual hardware-counter context being monitored,

and the ID of the kernel thread that the context belongs to. The pctx library

is used to build performance tools that monitor processes other than themselves.

However, because the µProfiler metrics in this thesis only require kernel threads to

read their own virtual hardware-counter contexts, the pctx library is not used.

Linux/x86

The x86 Linux kernel has no inherent support for virtual hardware-counter con-

texts; it is obtained with Mikael Pettersson’s perfctr Linux-kernel patch and library

[Pet]. The kernel patch causes the hardware counter registers to be saved and

restored when a kernel thread context switches, and the library provides routines

for creating, reading and writing hardware-counter contexts, which reside in kernel

space. The vperfctr open routine creates a context, binds it to the calling kernel

thread, and returns a pointer to a vperfctr structure representing that context. Un-

like Solaris’ cpc library, perfctr does not provide a set of functions specifically for

self-monitoring kernel threads. Therefore, the context pointer must be passed to

all other vperfctr routines, even though all kernel threads are self-monitoring. As

a result, an extra field had to be placed in the µC++ uProcessor class to hold

each kernel thread’s virtual hardware-counter context pointer. The uStartCounters

routine fills in this field after creating a new hardware-counter context, and the

uStopCounters routine clears this field after destroying a hardware-counter context

that is no longer needed. When reading the hardware counters, the uReadCounters

routine retrieves the pointer from the calling kernel thread’s uProcessor object and

passes it to the appropriate vperfctr routine.
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Linux/IA-64

The IA-64 Linux kernel [ME02] includes support for virtual hardware-counter con-

texts via the perfmon kernel interface [per], which contains only the perfmonctl

system call. perfmonctl handles all hardware-counter related tasks by accepting a

command flag as a parameter, and a file descriptor on which to operate. This file

descriptor is analagous to the vperfctr pointer in the x86 case; it identifies which

one of the kernel’s virtual hardware-counter contexts is to be used (there are no

specific routines for self-monitoring kernel threads). To create a context, the uS-

tartCounters routine calls perfmonctl with file descriptor 0 and the command flag

PFM CREATE CONTEXT. The return value of this routine call is a file descrip-

tor representing the newly-created context. To bind this context to the calling

kernel thread, perfmonctl is called again, and passed the new file descriptor and the

command flag PFM LOAD CONTEXT. The file descriptor is then copied into the

calling kernel thread’s uProcessor object so it can easily be accessed for all subse-

quent calls to perfmonctl. As in the x86 case, the uReadCounters routine retrieves

the calling kernel thread’s file descriptor from its uProcessor object and passes it to

perfmonctl with an appropriate flag when reading the hardware counters. Finally,

the uStopCounters routine closes its kernel thread’s file descriptor in the correspond-

ing uProcessor object, thereby destroying its associated context, and sets it to zero.



Chapter 7

Exact Hardware Metric

The two remaining contributions of this thesis are in the form of new µProfiler met-

rics. This chapter describes the first of these metrics, called the “Exact Hardware

Metric”, which is a built-in metric that produces an exact execution profile of a

µC++ program using hardware counters. The objective of this metric is to provide

users with two different levels of per-task exact hardware-counter profiling, each

with a different cost and precision. The low level has a higher overhead, but pro-

vides exact hardware counts for each routine executed by each task. The high level

is less expensive, but only provides hardware counts for each task on a time-slice

basis.

7.1 Functionality

To activate the Exact Hardware Metric, the user clicks the “Hardware-Event Pro-

filing” button in the “Exact Profiling” frame of the µProfiler startup window (refer

to Figure 5.4 on page 55), which sensitizes the “Select Hardware Event(s)” button

just beneath it. The user then clicks the “Select Hardware Event(s)” button, which

pops up a dialog box with a list of available hardware events, as well as a list of

options (Figure 7.1). A hardware event is selected by clicking the button to the left

of its name. Note, as the user selects hardware events to count, other events become

77
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Figure 7.1: Hardware-event selection dialog box.

unavailable and are greyed out due to hardware-counter constraints, as described

in Chapter 6.

The option buttons on the right allow the user to choose among counting

user-level events, system-level events, or both, as well as whether or not to break

hardware-event counts down by routine. The latter option gives the user a choice

between precision and overhead. If the “Break Events Down By Routine” button is

pressed, then hardware-event counts are gathered and presented at the routine level

for each task. This option offers an in-depth look at where each task’s hardware

events occur, but has a higher overhead. Conversely, if the button is not pressed,

only an aggregate event count, broken down by time-slice, is gathered for each task.

This option is not as expensive, but only gives an overall look at the number of

hardware events during a task’s execution.

Once the desired hardware events and options are chosen, the user clicks “OK”
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Figure 7.2: Task-selection box.

to close the dialog box and then clicks “Start” on the startup window to run the

program. At program termination, a selection box appears on the screen, displaying

a list of tasks created by the program, as well as the total number of hardware events

incurred by each task (Figure 7.2). Clicking on a task shows one of two breakdowns

of that task’s activities, depending on whether or not the user chose to break down

hardware-event counts by routine.

7.1.1 Routine Breakdown

If the “Break Events Down By Routine” option was chosen, then clicking on a task

in the selection box displays a list of routines called by that task, as well as call

counts and hardware-event counts for each routine (Figure 7.3). The “From/To”

column lists the names of all routines called by the task, as well as the caller/callee

relationships between them. Caller (non-indented) routines have a list of their callee

(indented) routines directly below them.

The meanings of the remaining columns depend on whether they describe a

caller routine or a callee routine. In the case of a caller routine, the “Calls” column

lists the total number of times a routine is called throughout a program’s execution.

Similarly, the “Average” and “Total” columns list the average number of hardware

events per call and the total number of hardware events for all calls to a routine.

In the case of a callee routine, the “Calls”, “Average”, and “Total” columns list

the same information as above, but only for calls made to the callee by the caller
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Figure 7.3: Hardware-event counts by routine.

it is listed under. Breaking the event counts down in this fashion shows differences

in the routines’ behaviour when they are called by different parents. For example,

Figure 7.3 shows the routine breakdown of the Test task from the program listed in

Figure 7.4. It can be seen that routine C executes almost twice as many instructions

when it is called by routine A than when it is called by routine B. This information

gives the user an insightful glance into a program’s run-time behaviour.

7.1.2 Non-Routine Breakdown

If the “Break Events Down By Routine” option is not chosen at program startup,

then clicking on a task in the selection box displays a breakdown of hardware-

event counts by time-slice (Figure 7.5 shows the non-routine breakdown of a Test

task from the program listed in Figure 7.19(b) on page 109). Each line represents

one time-slice, and lists the name of the task’s cluster, the address of the task’s

virtual processor, the UNIX PID of the task’s virtual processor, and the number
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#include <uC++.h>

int a = 5, b = 4, c = 8, d = 2, e = 9, f;

void C( int numTimes ) {
for ( int i = 0; i < numTimes; ++i ) {

f -= a - b + c - d - e;
} // for

} // C

void B() {
for ( int i = 0; i < 100; ++i ) {

f += a + b + c + d + e;
C( 500 );

} // for
} // B

void A() {
for ( int i = 0; i < 100; ++i ) {

f += a + b + c + d + e;
C( 1000 );

} // for
} // A

void empty() {
for ( int i = 0; i < 5000; ++i ) {

f += a - b - c + d - e;
} // for
A();
B();

} // empty

uTask Test {
void main() {

for ( int i = 0; i < 2000; ++i ) {
f = a + b - c + d - e;
f += a - b - c + d - e;
f += a + b + c + d - e;
f += a + b - c - d - e;
f += a + b - c + e + e;
empty();

} // for
} // main

}; // Test

void uMain::main() {
Test test;

} // main

Figure 7.4: Example program.
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Figure 7.5: Hardware-event counts by time-slice.

of occurrences of each hardware event. This non-routine breakdown provides the

user with a high-level glance at a task’s hardware-event activities as it moves from

processor to processor and cluster to cluster between time-slices, which is useful

in two ways. First, it provides a check if a hardware event has an expected value

(e.g., an expected number of CPU Cycles can be determined based on a machine’s

clock speed and the running time of a program). If a task’s event count deviates

noticeably from its expected event count, this is an indication of a performance

problem, which makes the program a good candidate for a routine breakdown to

help pinpoint it. Second, it provides information about the performance of tasks

on different processors and clusters, which is unavailable in Routine mode. For

example, if a task displays an usually high number of data-cache misses during

its time-slices on a particular cluster, this may be an indication of a data-locality

problem with respect to the other tasks on that cluster.

7.2 Design

Figure 7.6 shows the design of the Exact Hardware Metric, using the object-oriented

notation described in Appendix A. Following the metric-creation requirements
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laid out in Section 5.5, the metric’s execution monitor (uHWMonitor) and analyzer

(uHardwareAnalyze) are derived from µProfiler’s uExecutionMonitor and uMetricAna-

lyze base classes, respectively. Further, because this metric is divided into “Routine”

and “Non-Routine” modes of operation, its three main classes are specialized by

Routine and Non-Routine derived classes, as is explained in the next three sections.

7.2.1 Common Aspects

uHWMonitor, uHardwareAnalyze, and uHardwareInfo are all abstract base-classes that

encapsulate commonalities in both the Routine and Non-Routine sides of this met-

ric. Each abstract base-class is discussed below.

uHWMonitor

Since the Exact Hardware Metric is a built-in metric, its execution monitor does not

do any data gathering. Thus, uHWMonitor’s main responsibility is activating the

hooks needed by both the Routine and Non-Routine sides of the Exact Hardware

Metric. These hooks are summarized below and represented pictorially in Figure

7.7.

• Task Creation/Destruction: Allows the metric to create/destroy a uProfile-

TaskSampler for a newly-created/destroyed task.

• Task Start/End Execution: Allows the metric to get a starting/ending hard-

ware-event count for a task’s execution.

• Task Block/Unblock: Allows the metric to get an ending/starting hardware-

event count for a task’s time-slice.

• Processor Creation/Destruction: Allows the metric to create/destroy a hard-

ware-counter context for a processor’s underlying kernel thread. These two

hooks are not active in uniprocessor mode, since all processors share the same

kernel thread.
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Processor Creation Hook

Task Creation Hook

Task Start Execution Hook

Task Block Hook

Task Unblock Hook

Task End Execution Hook

Task Destruction Hook

Processor Destruction Hook

Processor created

. . .
. . .

uMain::main() {

. . .

context switch

. . .
Foo()

. . .

Task uMain created

} // uMain::main

. . .
. . .

Task uMain destroyed

Processor destroyed

Figure 7.7: Hooks common to Routine and Non-Routine modes.

Each newly-created task also requires a uHardwareInfo object for storing task-

specific performance data. However, since the type of the required uHardwareInfo

object depends on what mode the metric is in (Routine or Non-Routine), its creation

cannot be done in uHWMonitor, but must instead be handled by one of its derived

classes. To accomplish this, uHWMonitor adds itself to the Task Creation hook-

monitor list, which means it is notified when the Task Creation hook is triggered,

i.e., in this one particular case, the Task Creation hook is made to behave like both

a user hook and a built-in hook. uHWMonitor’s hook-notification routine is a pure

virtual routine, which is overridden by uHWMonitor’s derived classes, allowing them

to create the specialized instance of uHardwareInfo that is required (see Sections

7.2.2 and 7.2.3).
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uHardwareAnalyze

uHardwareAnalyze’s sole purpose is to create a task-selection box (see Figure 7.2 on

page 79), which is common to both modes of operation. Routines to handle a user

clicking on a specific task in the selection box are defined by uHardwareAnalyze’s

derived classes (see Sections 7.2.2 and 7.2.3).

uHardwareInfo

uHardwareInfo stores task-specific information common to both modes of operation,

including the task’s name and address in memory, and the total hardware-event

count over the task’s lifetime.

7.2.2 Routine-Specific Aspects

Aspects specific to the Routine mode of operation are encapsulated in the uHWRou-

tineMonitor, uHardwareRoutineAnalyze, and uHardwareRoutineInfo classes, which are

derived from uHWMonitor, uHardwareAnalyze, and uHardwareInfo, respectively.

uHWRoutineMonitor

uHWRoutineMonitor activates the hooks needed only by the Routine side of the

Exact Hardware Metric. These hooks are summarized below and represented pic-

torially in Figure 7.8 along with the hooks activated by uHWMonitor.

• Coroutine Creation/Destruction: Allows the metric to create/destroy a uP-

rofileTaskSampler for a newly-created/destroyed coroutine. The sampler is

created solely for the purpose of maintaining a profiling stack for the corou-

tine, which allows the metric to allocate hardware-event counts to the proper

routines when a task is executing on a coroutine’s stack rather than its own

stack.
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Processor Creation Hook

Task Creation Hook

Task Start Execution Hook

Task Block Hook

Task Unblock Hook

Coroutine Creation Hook

Task End Execution Hook

Task Destruction Hook

Coroutine Destruction Hook

Processor Destruction Hook

Coroutine Unblock Hook

Coroutine Block Hook

Routine Exit Hook

Routine Entry Hook
Foo() {

.  .  .

} // Foo

uCoRtn::main() {

uSuspend

. . .
. . .

} // uCoRtn::main

Processor created

. . .

Coroutine uCoRtn created

. . .
. . .

uMain::main() {

. . .

context switch

. . .

Foo()

. . .

Task uMain created

Resume Coroutine uCoRtn

. . .

} // uMain::main

. . .
. . .

Coroutine uCoRtn destroyed

Task uMain destroyed

. . .

Processor destroyed

Figure 7.8: Hooks activated in Routine mode.

• Coroutine Block/Unblock: Allows the metric to get an ending/starting hard-

ware-event count for a task’s time-slice when it is executing on a coroutine’s

stack rather than its own stack.

• Routine Entry/Exit: Allows the metric to get a starting/ending hardware-

event count for the time a task spends executing in a routine.

uHWRoutineMonitor also provides a definition for the Task Creation hook-notification

routine, which is necessary because its base class adds itself to the Task Creation

hook-monitor list. The routine creates two task-specific objects: a uHashTable and

a uHardwareRoutineInfo (see below). uHashTable is a hash table used to keep track
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of the caller/callee relationships between routines, as well as the number of occur-

rences of hardware events in the callee when called by the caller. It was originally

written by Dorota Zak for the “Call Graph and Run Time” µProfiler metric [Zak00]

to hold only routine-specific timing information, but was extended for this thesis

to also include routine-specific hardware-event counts.

uHardwareRoutineAnalyze

uHardwareRoutineAnalyze implements a routine to handle a user clicking on a task in

the task-selection box while in Routine mode. This routine creates a uHardwareAna-

lyzeFuncCallTable object, which analyzes the uHashTable and assigns hardware-event

counts to all routines. This object uses the same algorithm as the “Call Graph and

Run Time” metric [Zak00], but is customized to analyze hardware-event counts

rather than timing information. Once the analysis is complete, the uHardwareAna-

lyzeFuncCallTable object creates a uHardwareRoutineAnalyzeWidget, which creates a

Motif display such as the one seen in Figure 7.3 on page 80.

uHardwareRoutineInfo

The uHardwareRoutineInfo object is responsible for updating its task’s total hardware-

event counts during time-slicing. When a task begins a new time-slice and triggers

the Task Unblock hook, it notifies its uHardwareRoutineInfo object, which then reads

and stores the values of the hardware counters. Similarly, when a task ends its cur-

rent time-slice and triggers the Task Block hook, it notifies its uHardwareRoutineInfo

object, which reads the values in the hardware counters, subtracts the values ob-

tained at the start of the time-slice, and adds the difference to the running totals.

When a task ends its execution, its uHardwareRoutineInfo object contains the total

number of occurrences of each hardware event during its lifetime. These totals are

displayed in the task-selection box, as shown in Figure 7.2 on page 79.
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7.2.3 Non-Routine-Specific Aspects

The Non-Routine components of the Exact Hardware Metric are handled by the uH-

WNonRoutineMonitor, uHardwareNonRoutineAnalyze, and uHardwareNonRoutineInfo

classes, which are derived from uHWMonitor, uHardwareAnalyze, and uHardwareInfo,

respectively.

uHWNonRoutineMonitor

The Non-Routine side of the Exact Hardware Metric tracks the number of hard-

ware events that occur during each task’s time-slices. All of the needed events

are covered by the hooks activated by the uHWMonitor base class. However, the

Non-Routine mode of this metric requires memory allocation to be done while pro-

cessing a built-in hook inside the µC++ kernel, so uHWNonRoutineMonitor activates

special µC++ kernel memory-allocation hooks by also inheriting from the uMem-

oryExecutionMonitor class. Refer to Section 7.3.1 for a more in-depth discussion of

this issue.

As in Routine mode, uHWNonRoutineMonitor also defines a routine to handle

the Task Creation notification message. This routine creates a uHardwareNonRou-

tineInfo object, which is where time-slice information for the newly-created task is

stored.

uHardwareNonRoutineAnalyze

uHardwareNonRoutineAnalyze’s purpose is to handle when a user clicks on a task in

the task-selection box while in Non-Routine mode. It implements a routine that

handles this situation by creating a uHardwareNonRoutineAnalyzeWidget, which goes

through a task’s list of time-slices and displays information from each one on a

separate line in a Motif widget. The result is a display such as the one seen in

Figure 7.5 on page 82.
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uHardwareNonRoutineInfo

The uHardwareNonRoutineInfo object is responsible for gathering time-slice informa-

tion when its associated task blocks and unblocks, so when it is first instantiated,

it creates an empty linked list for storing this time-slice data. uHardwareNonRou-

tineInfo also provides routines for gathering and storing this time-slice information.

When a task begins a new time-slice, it triggers the Task Unblock hook and notifies

its uHardwareNonRoutineInfo object, which then allocates a new time-slice structure,

stores the cluster name, current processor address, UNIX PID and hardware-event

counts in it, and adds it to the tail of the time-slice linked list. Similarly, when

a task ends its current time-slice, it triggers the Task Block hook and notifies its

uHardwareNonRoutineInfo object, which stores the current hardware-event counts in

the time-slice structure at the tail of its linked list. At the end of a task’s lifetime,

its uHardwareNonRoutineInfo object has a complete, ordered list of all its time-slices,

including starting and ending hardware-event counts.

7.3 Implementation Issues

This section provides discussion on some of the implementation issues I encountered

and solved while writing the Exact Hardware Metric.

7.3.1 Dynamic Memory Allocation in the µC++ Kernel

A metric uses hooks to gather information at appropriate times during execution

of a program. When a hook is triggered, a metric usually performs three steps:

1. Allocate memory to store performance data.

2. Obtain the data.

3. Copy the data into the allocated memory and connect it to other related data.
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Preallocation of all necessary storage can only be done by simple metrics, such

as counting the total number of tasks created, or obtaining the creation time of each

task. Typical metrics are more complex, and need to store multiple data samples

during a task’s lifetime, which are then analyzed post-mortem. In general, a metric

has no problems accomplishing the necessary three steps.

However, a problem can occur depending on the placement of a µProfiler hook.

The Task Block/Unblock hooks are conceptually placed in the µC++ kernel because

their execution cannot be interrupted. For example, if a metric is storing state

transitions (e.g., ready, running, and blocking states), it is essential for a task to

store the blocking transition and block without interruption. If the task could be

interrupted between storing the state data and it blocking, it would eventually

attempt to block again, resulting in two consecutive blocking states being stored

with no intervening ready or running states, which is logically inconsistent. So

the placement of these hooks with respect to data gathering is crucial to generate

consistent results for metrics needing this kind of information. In these special cases,

the operation that triggers the hook and the subsequent metric data-gathering must

be atomic.

Unfortunately, it is impossible to perform a dynamic storage-allocation from

within the Task Block/Unblock hooks, which is an essential first step for a complex

metric. The problem is that storage allocation may require blocking the task re-

questing storage. However, this task is running in the µC++ kernel, and the kernel

cannot block, i.e., enter itself recursively to schedule another task. While it might

be possible, in general, for a kernel to allow this complex behaviour, the µC++

kernel does not.

There are only two options to deal with this problem: either preallocate storage

for the current performance data before entering the kernel to gather it, or postal-

locate storage after coming out of the kernel in anticipation of the next piece of

performance data. However, it is now possible for a task to be interrupted with re-

spect to either memory-allocation approach, which causes problems. The following

discussion presents a solution to these problems.
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Memory-Allocation Schemes

Figure 7.9 illustrates the two methods that can be used to allocate memory for

performance-data gathering by hooks in the µC++ kernel. In the preallocation

scheme, there exists a window between the time a task becomes aware that it is

about to enter the kernel, and the time that it actually does enter the kernel.

Memory is allocated while in this window, so that the Task Block/Unblock hooks

have a place to store the collected peformance data. In the postallocation scheme,

one initial memory allocation is done when a task is created, so a storage block

is in place for use by the Task Block/Unblock hooks during the first kernel entry.

When a task unblocks, there is a window between the time it exits the kernel, and

the time that it resumes execution at the point where it was interrupted. During

this window, another block of memory is allocated for the hooks to use during the

next kernel entry.

Spinlocks

The µC++ kernel protects critical internal data structures with spinlocks. A task

that requires access to any such data structure must first acquire its spinlock. Since

entering the µC++ kernel is an expensive operation, tasks are permitted to acquire

these spinlocks and access these data structures outside the kernel. However, while

a task is holding a spinlock, µC++ does not permit it to enter the kernel and

block, otherwise problems could occur. For example, consider what happens if a

task enters the kernel and blocks while holding the spinlock for its cluster’s ready

queue. Since the kernel cannot acquire this spinlock to access and modify that

queue, no other task can be scheduled to run in place of the blocked task, and a

live-lock results. While it might be possible, in general, for a kernel to allow this

complex behaviour, the µC++ kernel does not.

A task has two options if it attempts to enter the kernel while holding a spinlock.

The first option is to postpone the kernel entry and set a “postponement” flag,

which is checked when a task eventually releases the spinlock. Upon releasing

its spinlock and finding its “postponement” flag set, a task immediately resumes
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Figure 7.9: Memory-allocation schemes.

its postponed kernel entry and blocks. This option is used for involuntary kernel

entries, which are explained in the next section. The second option is for a task to

atomically release its spinlock as it blocks. This option is used for voluntary kernel

entries, which are also covered in the next section.

In µC++, spinlocks are the source of a problem with respect to memory alloca-

tion. The µC++ memory manager is built in such a way that memory allocations

and deallocations are potential blocking operations, i.e., they may cause a kernel

entry. For this reason, a task may not allocate or deallocate memory while holding

a spinlock, which then presents a problem during profiling.
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Figure 7.10: Memory-allocation windows for kernel entries.

Involuntary vs. Voluntary Kernel Entry

When a task reaches the end of its time-slice, it is delivered a signal, which attempts

to force it to involuntarily enter the µC++ kernel and block. However, if the

task holds a spinlock when the signal is received, the kernel entry is postponed as

described above. When the task finally proceeds with the postponed kernel entry

(or if the kernel entry was not postponed in the first place), it is guaranteed not

to be holding a spinlock. Thus, for all involuntary kernel entries, there exist two

windows during which memory allocations can take place: one between receiving

a preemption signal and actually entering the kernel, and one between exiting the

kernel and resuming normal execution (Figure 7.10(a)).
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Anytime a task enters the µC++ kernel and blocks as a direct result of its own

actions, it is said to enter the kernel voluntarily. Voluntary kernel entries are caused

by a number of different situations, including:

• A task blocking itself by calling yield.

• A task blocking on an accept queue while trying to enter a mutex routine.

• A task blocking on a monitor’s internal condition variable.

Voluntary kernel entries differ from involuntary kernel entries in that a task is

allowed to hold a spinlock until the moment it blocks, at which time the spinlock is

atomically released. In this case, when the task eventually unblocks and exits the

kernel, it is guaranteed not to be holding a spinlock. Thus, for all voluntary kernel

entries, there exists a single window after exiting the kernel, but before resuming

normal execution, where memory allocations can take place (Figure 7.10(b)).

7.3.2 Solution to the Memory-Allocation Problem

Each type of kernel entry provides at least one window of opportunity just outside

the kernel where memory allocations can take place. To allow µProfiler metrics to

allocate memory in those windows, I created a special set of hooks called µC++

kernel memory-allocation hooks. Metrics activate these hooks by deriving their

execution monitors from the uMemoryExecutionMonitor abstract base-class. When

its constructor is invoked, uMemoryExecutionMonitor arms the memory-allocation

hooks, and requests a metric-memory index, which is a unique index used to ob-

tain memory blocks from an array of pointers to pre/postallocated memory. The

memory-allocation hooks allocate blocks of memory for each task at the appro-

priate time, and pass pointers to these blocks to each task’s uProfileTaskSampler,

where they are retrieved by the metric as needed (see Figure 7.11). This process is

explained in depth below for both types of kernel entry.
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Figure 7.11: Memory blocks for µProfiler metrics.

Involuntary Kernel Entries

Involuntary kernel entries have two windows during which memory allocations can

take place: one just before the kernel entry, and one just after the kernel exit.

However, because of a reentrancy issue, a postallocation scheme, i.e., allocating

memory after exiting the kernel, is infeasible. Assume the use of a postallocation

scheme for involuntary kernel entries. An initial allocation is done when each task

is created, so performance-data storage is in place for each task’s first kernel entry.

When a task involuntarily enters the kernel and blocks, this storage is used up.

Upon exiting the kernel, the task replaces the memory it consumes by performing

a postallocation. However, the moment the task returns from the kernel, it may

be preempted. If preemption occurs before the task is able to replace the storage

it consumes, then it has nowhere to store its performance data as it reenters the

kernel (see Figure 7.12).

Reentrancy is not an issue for a preallocation scheme, because a task allocates

storage for metric data before each kernel entry. So even if a task is preempted
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Figure 7.12: Postallocation scheme failure for involuntary kernel entries.

before it can preallocate storage for its impending kernel entry, the preallocations

are done in such a way that both kernel entries have storage for their metric data

(see Figure 7.13). Therefore, a preallocation scheme is the only safe way to allocate

memory for involuntary kernel entries.

To perform the preallocation, I wrote a new routine called uYieldInvoluntary,

through which all involuntary µC++ kernel entries are now funneled. Any task

that reaches this routine is guaranteed not to hold a spinlock, so it is safe to do

memory allocations. Therefore, a memory-preallocation hook is placed in uYield-

Involuntary just before a task enters the kernel (Figure 7.14 on page 99). If the
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Figure 7.13: Preallocation scheme for reentrant involuntary kernel entries.

memory-allocation hooks are active, a local array of memory pointers is created

for storing pointers to memory blocks (one for each metric that requires memory

at time-slices). Then the memory-preallocation hook is called, which allocates one

block of memory for each metric that requires it, and stores pointers to them in

the local array. Finally, a pointer to the local array is inserted into the current

task’s uProfileTaskSampler, and the task enters the kernel and blocks. While in

the kernel, the Task Block/Unblock hooks are triggered, which causes performance

data to be gathered for all appropriate metrics. Any metric that requires a mem-

ory block to store profiling data, simply retrieves one from the cell corresponding

to its metric-memory index in the array that was inserted into the current task’s

uProfileTaskSampler. The cell from which the memory block pointer is taken is set
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if memory hooks active
    create local array of memory pointers
    preallocate metric memory and store pointers in array
    pass pointer to array to current task’s    uProfileTaskSampler
}

{

    delete any unused memory blocks
}

if memory hooks active {

uYieldInvoluntary

.  .  .
.  .  .

enter kernel and block

.  .  .

unblock and exit kernel

Inside kernel; unsafe to allocate/deallocate memory

Outside kernel; safe to allocate/deallocate memory

Figure 7.14: Memory-preallocation hook for involuntary kernel entries.

to NULL to indicate that it has been consumed. Finally, when the task exits the

kernel, any of the preallocated blocks in the local memory array that were not re-

trieved by their metrics are deleted. This final step is in place for future metrics

that may require memory-allocation in the µC++ kernel, but may not consume a

block at each and every time-slice. While there is a performance inefficiency for

this scenario, there does not seem to be any better alternative.

Voluntary Kernel Entries

The preallocation scheme discussed above does not work for voluntary kernel entries

because in these cases, a task is allowed to hold a spinlock until the moment it

enters the kernel. Therefore, the only option is a postallocation scheme. Also, the

voluntary situation is much simpler, since it is not affected by any reentrancy issues.
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A task cannot voluntarily enter the kernel until its previous voluntary kernel entry

is complete, and if it is preempted at any point, the resulting kernel entry is now

involuntary. Since reentrancy is not an issue, only one set of memory blocks per

task need be available at any given time. To that end, an array of memory pointers

was added to the uProfileTaskSampler class, to be used only in the case of voluntary

kernel entries. This array is independent of the array of memory pointers that is

passed into the uProfileTaskSampler during involuntary kernel entries.

When a task is created, it checks if the memory-allocation hooks are active. If

so, it allocates a block of memory for each metric that obtained a metric-memory

index, and stores pointers to them in the uProfileTaskSampler’s “voluntary kernel-

entry array”, which guarantees that memory blocks are in place for a task’s first

voluntary kernel entry. When a task exits the kernel after a voluntary entry, the

Task Block/Unblock hooks may have consumed some of the memory blocks stored

in the task’s uProfileTaskSampler, so some blocks may need to be replaced. Thus,

a memory-postallocation hook is placed immediately after the kernel exit for every

voluntary kernel entry (see Figure 7.15). When a task triggers this hook, any blocks

that were used by the Task Block/Unblock hooks are replaced, so they are available

for the next voluntary kernel entry.

7.3.3 Interrupts While Reading Hardware Counters

On most architectures, reading the hardware counters is not an atomic operation.

For example, on the x86 architecture, it is necessary to read each hardware counter

with a separate routine call. This lack of atomicity can lead to incorrect hardware-

event counts if a task is interrupted while it is reading the counters.

Consider a task that is in the process of reading four hardware counters, and

assume that an interrupt occurs immediately after the second counter is read. The

task is context-switched out, but since hardware-counter contexts are processor-

specific, hardware events continue to be counted while the task is blocked. At best,

when the task unblocks, it is assigned to the same processor as its previous time-

slice, and the remaining two hardware counters provide inflated event counts. At
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Figure 7.15: Memory-postallocation hook for voluntary kernel entries.

worst, the task is assigned to a different processor, and the remaining two hardware

counters provide completely irrelevant event counts. Either way, the results are

incorrect and undesirable.

To eliminate this problem, it is necessary to prevent interrupts from occurring

while the hardware counters are being read. Therefore, every call site for the

uReadCounters routine was examined. Those call sites that are in areas where

interrupts are allowed to occur are bracketed by calls to the uDisableInterrupts and

uEnableInterrupts routines, which disable and enable interrupts, respectively, at the

virtual-processor level. Finally, to guard against any future calls being made to

uReadCounters with interrupts enabled, an assertion was placed in that routine,

which verifies that interrupts are disabled.
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7.4 Validation

This section provides validation for the Exact Hardware Metric by verifying that it

produces correct results for a variety of simple µC++ programs. Since I was unable

to find any profilers that use hardware counters for exact monitoring, a simple exact-

monitoring test-harness from the perfmon website was used as an experimental

control. The perfmon test-harness was used to profile a piece of code, and the

results are used as a control for all Exact Hardware Metric validation tests.

Validation testing is performed on a dual-processor 900 MHz Itanium 2 machine,

with Completed Instructions and CPU Cycles as the benchmark hardware-events.

The reason these events are used is that they produce nearly identical event-counts

across multiple program runs, which is important for establishing consistent re-

sults for comparison purposes. Many other hardware events tend to produce event

counts that vary across program runs. For example, consider cache memory, which

is a shared resource. Any program counting cache-related events can produce event

counts that vary over time, depending on the number of processes actively compet-

ing with it for access to the cache.

The goal of these validation tests is to show that the Exact Hardware Metric

is properly gathering hardware-event counts. I argue that if the Exact Hardware

Metric produces correct counts for hardware events with a predictable value, then

the data gathering is being done properly. Consequently, if the data gathering

is being done properly, then the Exact Hardware Metric is able to gather proper

event counts for any hardware event, since the selection of which hardware events

to count is completely independent of the methods used to actually count them.

7.4.1 perfmon Test-Harness

The perfmon website [per] provides a general hardware-counter test-harness into

which specific tests can be placed for gathering exact hardware-event counts. The

harness configures the hardware counters to count Completed Instructions and

CPU Cycles, and the specific test is inserted between the comments (see Appendix
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B.1.1). The program’s output shows the number of Completed Instructions and

CPU Cycles that occur while the test code executes. I modified this program so it

loops through the profiled section of code twenty times, and then displays the total

number of Instructions and CPU Cycles over all twenty iterations. This addition is

important for comparison with other validation tests, as some divide the workload

among twenty tasks, each executing the equivalent of one iteration of the test code.

7.4.2 Testing Strategy and Hypothesis

The Exact Hardware Metric presents hardware-event counts in three different ways:

1. Per-task aggregate hardware-event counts (see Figure 7.2 on page 79).

2. Per-routine hardware-event counts (see Figure 7.3 on page 80).

3. Non-routine (or time-slice) hardware-event counts (see Figure 7.5 on page

82).

The three portions of the Exact Hardware Metric are validated with separate

tests, each of which profiles the same code under different conditions. Each vali-

dation test consists of three separate experiments, and the results are compared to

the perfmon control (see Section 7.4.3). The first is a purely sequential experiment,

consisting of a µC++ program that uses no tasks other than the standard uMain

task, which is time-sliced at regular intervals. The second experiment is concurrent,

and consists of a µC++ program that divides its workload evenly among twenty

tasks on five virtual processors, but the program is run in uniprocessor mode, so

only one kernel thread is used with time-slicing. The third experiment is a parallel

experiment, and it uses the same program as its concurrent counterpart, but runs

it in multiprocessor mode, which uses a separate kernel thread with time-slicing for

each virtual processor. The total event-counts for each experiment are reported,

as well as the percentage difference with respect to the perfmon control. The pur-

pose of this trio of experiments is to show that the Exact Hardware Metric gathers

hardware-counter performance data correctly in all of µC++’s execution modes.
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Note, five virtual processors are used, even though the underlying system has only

two physical processors, which is done to increase the chances of contention among

the virtual processors as they compete for the shared physical processors, which

should give results that more accurately reflect the behaviour of concurrent µC++

programs.

I hypothesize that each Exact Hardware Metric validation test will produce

hardware-event counts that are close to the perfmon control. However, µC++

tasks incur overhead, and hence, extra instructions and execution time, that is

not present in a normal C++ program, such as entering and exiting the µC++

kernel at every time-slice. Furthermore, if multiple tasks are executing in the

same program concurrently, they compete with each other for access to shared

virtual processors. Similarly, in programs that run in multiprocessor mode, virtual

processors’ kernel threads compete for access to shared physical processors. This

competition introduces overhead that does not exist in a sequential program. For

these reasons, the parallel experiments should produce larger event counts than

the concurrent ones, which in turn should produce larger event counts than the

sequential ones. Finally, the sequential experiments should produce larger event

counts than the perfmon control, due to time-slicing (while time-slicing can be

turned off, it would not be representative of a normal µC++ program).

7.4.3 perfmon Control

The perfmon control code is listed in Figure 7.16, and consists of three nested loops

of 1000, 1000, and 10 iterations, respectively, for a total of 10000000 iterations

of the inner loop. Each loop performs one or more mathematical calculations to

ensure a reasonably large number of instructions and CPU cycles occur. This code

is useful as a control because it is small enough to allow many experiments to be

run quickly, yet it is clearly nontrivial.
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int w = 14, x = 99, y = 37, z = 24;

for ( int i = 0; i < 1000; ++i ) {
w += w + x + y + z;
x += w - x - y - z;
for ( int j = 0; j < 1000; ++j ) {

y += w - x + y + z;
for ( int k = 0; k < 10; ++k ) {

z += w + x - y - z;
} // for

} // for
} // for

Figure 7.16: perfmon control code.

7.4.4 Aggregate Event-Count Test

The sequential and concurrent programs used in the aggregate event-count test are

listed in Figures 7.17(a) and 7.17(b). In the sequential version, the uMain::main

routine simply executes the perfmon control code twenty times, while in the con-

current version, twenty tasks are created, each executing one iteration. Table 7.1

presents the total event-counts from each test, as well as the percentage difference

relative to the perfmon control.

Instructions CPU Cycles

Total Diff. (%) Total Diff. (%)

perfmon: 7281301480 0.000 4061099726 0.000

Sequential: 7281449164 0.002 4061131384 0.001

Concurrent: 7281457715 0.002 4061321703 0.005

Parallel: 7281663154 0.005 4061565277 0.011

Table 7.1: Results from the aggregate event-count test.

The results of these experiments all closely match those of the perfmon control.

They also agree with my hypothesis of a slight rise as the experiments move from

sequential to parallel.
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#include <uC++.h>

void uMain::main() {
for ( int iter = 0; iter < 20; ++iter ) {

// perfmon control code
} // for

} // uMain::main

(a) Sequential

#include <uC++.h>

uTask Test {
void main() {

// perfmon control code
} // main

}; // Test

void uMain::main() {
uProcessor processors[5];
Test test[20];

} // uMain::main

(b) Concurrent

Figure 7.17: Aggregate event-count test programs.

7.4.5 Routine Test

One validation test was run to verify that the Routine mode of the Exact Hardware

Metric properly counts hardware events on a per-routine basis. The sequential and

concurrent test programs are listed in Figures 7.18(a) and 7.18(b). Both programs

insert the perfmon control code into two routines called one and two. In the sequen-

tial program, the uMain::main routine invokes these two routines twenty times each,

while in the concurrent program, twenty tasks are created, with each one invoking

the two routines once each. If the Exact Hardware Metric is working correctly, the

event counts in routines one and two should be close to each other, and close to

the perfmon control as well. Also, as per my hypothesis in Section 7.4.2, the event

counts should rise as the experiments move from sequential to parallel. The results

from these experiments are listed in Table 7.2 on page 108. The Diff column is

the percentage difference between the event counts of routines one and two, and is

with respect to the results of routine one. The perfmon control is included in the

first row of the table for comparison purposes.

The results of these experiments agree with my hypothesis. The hardware-event

counts for the two routines are close, for all three experiments. Furthermore, the
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#include <uC++.h>

void one() {
// perfmon control code

} // one

void two() {
// perfmon control code

} // two

void uMain::main() {
for ( int iter = 0; iter < 20; ++iter ) {

one();
two();

} // for
} // uMain::main

(a) Sequential

#include <uC++.h>

void one() {
// perfmon control code

} // one

void two() {
// perfmon control code

} // two

uTask Test {
void main() {

one();
two();

} // main
}; // Test

void uMain::main() {
uProcessor processors[5];
Test test[20];

} // uMain::main

(b) Concurrent

Figure 7.18: Routine test programs.

event counts all rise as the experiments move from sequential to parallel. Finally,

all event counts are close to the perfmon control, with the maximum deviation

being 0.016% for the CPU Cycles event-count of routine one during the parallel

experiment.

7.4.6 Non-Routine Test

One test was used to verify that the Non-Routine mode of the Exact Hardware

Metric properly counts events on a time-slice basis. The sequential and concurrent

programs used for this test are listed in Figures 7.19(a) and 7.19(b) on page 109.

Each program creates two clusters with five virtual processors each. Tasks migrate
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Instructions CPU Cycles

one two Diff. (%) one two Diff. (%)

perf: 7281301480 4061099726

Seq: 7281478089 7281467560 0.000 4061298051 4061286374 0.000

Con: 7281479366 7281468742 0.000 4061324056 4061316322 0.000

Par: 7281664900 7281619936 -0.001 4061765548 4061729534 -0.001

Table 7.2: Results from the routine test.

to the first cluster and execute the perfmon control code, then migrate to the second

cluster and execute that same code again. In the sequential program, the only task

is uMain, and it executes the perfmon control code twenty times on each cluster.

In the concurrent program, twenty tasks are created, each of which executes the

perfmon control code only once per cluster. If the Exact Hardware Metric is func-

tioning properly, the event counts on each cluster should be close to each other,

and close to the perfmon control as well. Furthermore, in accordance with my hy-

pothesis in Section 7.4.2, the event counts should all rise as the experiments move

from sequential to parallel. Results from these experiments are listed in Table 7.3.

The Diff column is the percentage difference between the event counts of Cluster 1

and Cluster 2, and is with respect to the results of Cluster 1. The perfmon control

is included in the first row of the table for comparison purposes.

Instructions CPU Cycles

Cluster 1 Cluster 2 Diff. (%) Cluster 1 Cluster 2 Diff. (%)

perf: 7281301480 4061099726

Seq: 7281451736 7281454920 0.000 4061123557 4061347642 0.006

Con: 7281512396 7281476190 -0.000 4061255122 4061112094 -0.004

Par: 7281786546 7281600708 -0.003 4061886354 4061691154 -0.005

Table 7.3: Results from the non-routine test.

The hardware-event counts for the two clusters are close for all three exper-

iments, as my hypothesis predicted. Furthermore, except for one case (which is

underlined), the event counts all rise as the experiments move from sequential to

parallel. The reason for this anomaly is unclear. However, all results are slightly
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#include <uC++.h>

uCluster cluster1( "TestCluster1" );
uProcessor processor1( cluster1 );
uProcessor processor2( cluster1 );
uProcessor processor3( cluster1 );
uProcessor processor4( cluster1 );
uProcessor processor5( cluster1 );

uCluster cluster2( "TestCluster2" );
uProcessor processor6( cluster2 );
uProcessor processor7( cluster2 );
uProcessor processor8( cluster2 );
uProcessor processor9( cluster2 );
uProcessor processor10( cluster2 );

void uMain::main() {
migrate( cluster1 );
// perfmon control code
migrate( cluster2 );
// perfmon control code

} // uMain::main

(a) Sequential

#include <uC++.h>

uCluster cluster1( "TestCluster1" );
uProcessor processor1( cluster1 );
uProcessor processor2( cluster1 );
uProcessor processor3( cluster1 );
uProcessor processor4( cluster1 );
uProcessor processor5( cluster1 );

uCluster cluster2( "TestCluster2" );
uProcessor processor6( cluster2 );
uProcessor processor7( cluster2 );
uProcessor processor8( cluster2 );
uProcessor processor9( cluster2 );
uProcessor processor10( cluster2 );

uTask Test {
void main() {

migrate( cluster1 );
// perfmon control code
migrate( cluster2 );
// perfmon control code

} // main
}; // Test

void uMain::main() {
Test test[20];

} // uMain::main

(b) Concurrent

Figure 7.19: Non-routine test programs.

higher than the perfmon control, and close enough to it to conclude that event

counts are being gathered properly. The maximum deviation is 0.019% for the

CPU Cycles event-count of Cluster 1 during the parallel experiment.
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7.4.7 Summary

These experiments show that the Exact Hardware Metric properly counts hardware

events on a per-task, per-routine, and per-time-slice basis, for programs execut-

ing sequentially, concurrently, and in parallel. Moreover, in all but one case, the

hardware-event counts rose as the experiments moved from sequential to parallel,

as my hypothesis predicted.



Chapter 8

Statistical Profiling Metric

This chapter discusses the final major contribution of this thesis: the Statistical

Profiling Metric. This built-in metric is a complete rewrite of the original Statistical

Profiling Metric by Robert Denda [Den97], with many fundamental changes in

design, and of course, the addition of hardware-counter capabilities. The objective

of this metric is to allow users to obtain a per-task statistical profile of a µC++

program using sampling periods based on hardware-event counts. A statistical

profile for each task includes:

• A “flat” histogram showing the distribution of samples across the task’s exe-

cuted routines.

• A call-graph showing the propagation of samples up the task’s call-tree.

• A list of call-cycles found in the task’s call-graph.

The call-graph has two features currently unavailable in any other statistical

call-graph. The first feature combines samples from multiple hardware events into

one display, which gives the user the opportunity to compare the results from

statistically sampling on multiple hardware events without having to run a program

multiple times. The second feature is that it is constructed with complete call-stack

111
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samples, rather than single routine samples. While this does not mean the call-

graph is complete (sampling may not cover all the routines executed by a task), it

does guarantee that the call-graph is connected.

8.1 Functionality

In the “Statistical Profiling” frame of the µProfiler startup window (Figure 5.4

on page 55), the user is given two choices: “Sample by Time” and “Sample by

Hardware Event(s)”. Clicking on the “Sample by Time” button sensitizes the

slider underneath it, which allows the user to choose a sampling rate in millisec-

onds. This time-based profiling option is in place for three reasons. First, it

provides a statistical-profiling option for systems that do not have a fully func-

tioning set of hardware counters. For example, x86 machines require an Advanced

Programmable Interrupt Controller (APIC) to support hardware-counter overflow

monitoring [Adv02, Int05]. Machines lacking an APIC cannot use hardware coun-

ters for statistical profiling, so time-based statistical profiling is their only option.

The second reason is that the x86 architecture uses a special register, called the

Time-Stamp Counter (TSC), to count CPU cycles. The TSC does not generate an

interrupt on overflow like other hardware counters, so it is impossible to sample

timing information using hardware counters on the x86. The third reason that

time-based statistical profiling is provided is for users who simply do not want to

manually convert CPU cycle information to time. However, other than using a

sampling period based on the expiration of a virtual timer instead of a hardware-

counter overflow, the time-based option is identical in its implementation to the

hardware-counter-based option. Thus, the time-based profiling option is not men-

tioned further.

Clicking on the “Sample by Hardware Event(s)” button sensitizes the “Select

Hardware Event(s)” button underneath it, which allows the user to open an event-

selection dialog box (Figure 8.1(a)). This dialog box is identical to the one shown

in Figure 7.1 on page 78, except for two differences. First, all composed events are

greyed out and the user is never given the opportunity to choose them, because
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(a) Hardware-event selection

(b) Overflow-threshold selection

Figure 8.1: Selection dialog boxes.
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Figure 8.2: Task-selection box.

it is only possible to monitor an event for overflow if it occupies a single counter.

Second, there is no “Break Events Down By Routine” option, as it has no meaning

in this context.

Once the user selects which events to monitor and clicks the “OK” button, a

second dialog box appears (Figure 8.1(b)). This dialog has one text box for each

selected event, allowing the user to choose a non-default overflow threshold, i.e.,

number of occurrences before overflow and sample, for each one. Once all thresholds

are chosen, the user clicks “OK” to dismiss the dialog box, and then “Start” to run

the program.

At program termination, a selection list is displayed that contains the names of

all tasks created by the program, along with the number of samples occurring in

each task, listed in descending order by number of samples (Figure 8.2). The total

number of samples across all tasks is listed at the bottom.

Clicking on a task pops up a display containing three panes. Figure 8.3 shows

this display for the uMain task of the program listed in Appendix B.2.2. The first

pane is a histogram showing the distribution of samples for one particular hardware

event taken during a task’s execution of its routines. The histogram’s event can be

changed by clicking “Options”, then “Histogram Event”, and finally, the event of

choice (Figure 8.4 on page 116).

The second pane is a statistical call-graph with a format based on q-syscollect
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Figure 8.3: Statistical histogram, call-graph, and list of call-cycles.
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Figure 8.4: Selecting the histogram event.

[qto]. There is one row for each routine executed by a task. The routine corre-

sponding to each row is outdented under the “Routine Name” column (last colum);

its direct parents are indented above it, and its direct children are indented below

it. If any call-cycles are found in the call-graph, each is reported as a single routine

named “Cycle n”, where n ∈ {1 . . . number of cycles}. The routines in each cycle

are listed in the third pane of the display.

For each row in the call-graph, there are a number of different columns. The first

column is the routine’s “Weight”, which is the average of the percentages of each

hardware event that occur in the routine and its descendants. For example, if the

call-graph is based on two hardware events, and routine foo and its descendants

account for 13% of the first hardware event’s samples, and 24% of the second

hardware event’s samples, then foo’s weight is (13 + 24) / 2 = 18.5. The rows in

the call-graph are ordered by weight, and in the case of a tie, they are ordered by

their routine’s call-graph depth.

Next, there is one column for each hardware event, subdivided into “self” and

“descendant” categories, the meanings of which depend on the type of routine being

examined (current, parent, or child). For the current (outdented) routine, the “self”

category corresponds to the number of samples that occurred in the routine, and

the “descendant” category corresponds to the number of samples that occurred in
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its descendants. For a parent routine, “self” means the number of self-samples

propagated up to the parent by the current routine, and “descendant” means the

number of descendant-samples propagated up to the parent by the current routine.

Finally, in the case of a child routine, “self” means the number of self-samples

propagated up from the child to the current routine, and “descendant” means the

number of descendant-samples propagated up from the child to the current routine.

For example, refer to the CPU Cycles column in Figure 8.3 on page 115. Routine

z has 933 self-samples, all of which are passed up to its only parent, Cycle 3. In

the row just above, Cycle 3 is shown receiving 933 descendant-samples from routine

z, all of which are passed up to routine c. Finally, routine uMain::main is shown

receiving 1866 descendant-samples from three different children, and passing them

up to its parent, routine uMachContext::uInvokeTask.

The third and final pane lists the call-cycles found in a task’s statistical call-

graph, if any. Each cycle is listed on a separate line, which shows its exact routine-

call sequence.

8.2 Design

Figure 8.5 shows the design of the Statistical Profiling Metric, using the object-

oriented notation described in Appendix A. As usual, the execution monitor

(uSPMonitor) and analyzer (uSPAnalyze) are derived from the uExecutionMonitor

and uMetricAnalyze base classes, respectively. The following sections explain the

functions of the uSPMonitor, uSPAnalyze, uSPTaskAnalyze, and uSPTaskAnalyzeWid-

get classes, as well as the classes that they use.

8.2.1 uSPMonitor

The Statistical Profiling Metric is a built-in metric, so its execution monitor is not

responsible for gathering any data; its sole purpose is to activate the hooks needed

by the metric. These hooks are summarized below.
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• Task Creation: Allows the metric to add the newly-created task’s address to

a list, which is stored in uSPMonitor and passed to uSPAnalyze in the analysis

phase (see Section 8.2.2).

• Processor Creation/Destruction: Allows the metric to create/destroy a uPro-

fileProcessorSampler for a newly-created/destroyed processor, and to start/stop

hardware-counter overflow monitoring for its underlying kernel thread. The

latter portion of these two hooks is not active in uniprocessor mode, since all

processors share the same kernel thread.

When a uProfileProcessorSampler is created, it in turn creates a uSPRawInfo ob-

ject to hold raw data for all samples taken on its processor. uSPRawInfo contains

the address in memory of its corresponding processor, and a buffered list of uS-

PRawInfoEntry objects, each of which holds raw information for one sample. This

information includes:

• The address in memory of the task executing on the uSPRawInfo’s processor

when the sample was taken.

• A bitmask indicating which hardware counters overflowed to cause the sample

to be taken.

• A list of addresses representing a snapshot of the task’s entire call-stack at

the moment the sample is taken.

Part of the Processor Creation hook’s job when it activates hardware-counter

overflow monitoring is to install a signal handler to catch hardware-counter over-

flow signals generated by its kernel thread. This signal handler is responsible for

collecting the sample information listed above and storing it in the appropriate

uSPRawInfoEntry object.
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Collecting Sample Information

When the signal handler is triggered, it first verifies that the current task, i.e., the

task that is executing when the overflow signal is delivered, has profiling enabled.

If so, it obtains the current task’s address, the current overflow bitmask, and an

ordered list of routine addresses from the current task’s call-stack. This information

is then passed to the current processor’s uSPRawInfo object, which stores it in the

next empty uSPRawInfoEntry object in its buffered list.

By the time a processor is destroyed, its uSPRawInfo object has a complete list

of samples that occurred on it ready for analysis. When the Processor Destruction

hook is triggered, it destroys the processor’s uProfileProcessorSampler, but leaves its

uSPRawInfo object intact. A pointer to this object is then passed to the uSPMonitor,

which adds it to a linked list (see Figure 8.6).

At the beginning of the analysis phase, uSPMonitor creates a uSPAnalyze object,

and passes it a list of all created tasks (addresses), as well as the list of processor

samples.

8.2.2 uSPAnalyze

The purpose of the uSPAnalyze object is to separate all the processor-specific sample

information into groups according to what task was active when each sample was

taken, and to display a task-selection box allowing a user to choose which task’s

sample information to examine. Upon creation, uSPAnalyze creates a uSPHashTable

object, which is a template hash-table written specifically for the Statistical Pro-

filing Metric, to make the storing and accessing of statistical-profiling information

efficient. uSPHashTable uses either a single address, or a list of addresses together

with the size of the list (integer), as hash keys, and uses chaining for resolving

collisions. In this case, the hash table is made to store uSPTask objects, each of

which holds sample information for one task. The unique hash key for each such

object is the address of the task it represents.

Once the hash table is created, uSPAnalyze runs through its list of created-task
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uSPRawInfo

uSPRawInfoEntry list:

uProcessor: 0x00112233

uSPRawInfo

uSPRawInfoEntry list:

uProcessor: 0xABF16341

uSPRawInfo

uSPRawInfoEntry list:

uProcessor: 0x6904FFDB

uTask: 0x66913BB2

ovfl mask: 1010

call−stack addresses

uSPRawInfoEntry

uTask: 0xA892BAFC

ovfl mask: 1100

call−stack addresses

uSPRawInfoEntry

uTask: 0xB8025F7B

ovfl mask: 0010

call−stack addresses

uSPRawInfoEntry

uTask: 0xA892BAFC

ovfl mask: 0001

call−stack addresses

uSPRawInfoEntry

uTask: 0xDD4028AF

ovfl mask: 0110

call−stack addresses

uSPRawInfoEntry

uSPMonitor

. . .

raw info list:

. . .

.  .  .

.  .  .

.  .  .

.  .  .

Processors Processor−Specific Samples

Figure 8.6: uSPMonitor’s list of processor-specific uSPRawInfos.

addresses. For each address in the list, a new uSPTask object is created and added

to the hash table. Each uSPTask object contains the address of its corresponding

task, and a linked list for storing sample information (uSPTaskSamples).

After the hash table is populated, uSPAnalyze traverses its list of processor-

specific uSPRawInfos, and for each one, traverses its list of uSPRawInfoEntrys. Each

uSPRawInfoEntry is processed as follows:

• Its task address is used to retrieve the correct uSPTask object from the task

hash-table.

• Its overflow bitmask and a pointer to its call-stack addresses are stored in a

new uSPTaskSample, which is then added to the linked list of the uSPTask

object obtained above.
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.  .  .

uTask: 0xA829BF3C

uSPTask

sample list:

ovfl mask: 0100

call−stack addresses

uSPTaskSample

ovfl mask: 1101

call−stack addresses

uSPTaskSample

uTask: 0x7244FD29

uSPTask

sample list:

ovfl mask: 0101

call−stack addresses

uSPTaskSample

ovfl mask: 0011

call−stack addresses

uSPTaskSample

uSPHashTable<uSPTask>

.  .  .

.  .  .

Figure 8.7: Raw sample information separated according to task.

When the list traversals are complete, all sample information is properly sep-

arated according to the task it belongs to, and is easily and efficiently retrievable

from the task hash-table (see Figure 8.7). At this point, uSPAnalyze displays a task-

selection box on the screen, such as the one seen in Figure 8.2 on page 114. When

a user clicks on a task in this selection box, a pointer to its corresponding uSPTask

object is retrieved from the hash table, and is passed to a newly-constructed object

of type uSPTaskAnalyze, which performs sample-data analysis at the task level.

8.2.3 uSPTaskAnalyze

uSPTaskAnalyze simply creates an object of type uSPCallGraph, and passes it a

pointer to the list of samples belonging to the task being analyzed. uSPCallGraph

immediately organizes all its sample information into a call-graph format. Once this

organization is complete, uSPTaskAnalyze creates a uSPTaskAnalyzeWidget object,
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and passes it a pointer to the uSPCallGraph. The uSPTaskAnalyzeWidget creates

a three-paned Motif widget and fills it with histogram, call-graph, and call-cycle

information from the uSPCallGraph, resulting in a display such as the one shown in

Figure 8.3 on page 115.

The remainder of the objects in the Statistical Profiling Metric work together

with uSPCallGraph to organize the sample information from one task into a call-

graph format. Their complete implementations are explained below.

8.3 Implementation Issues

The most challenging task I faced while creating the Statistical Profiling Metric was

the building of the statistical call-graph given one task’s raw sample information.

This section explains in detail the data structures and algorithms used to solve this

problem.

As explained in Section 8.2.1, each sample consists of a hardware-counter over-

flow bitmask, and a list of routine addresses representing a task’s entire call-stack

at the moment the sample is taken. Each sample’s call-stack is preprocessed to

detect local call-cycles, and is then added to a global call-graph, where sample

propagation takes place.

8.3.1 Call-Stacks

Each sample’s call-stack is used to build a directed graph, encapsulated in the uS-

PCallStack, uSPCallStackVertex, and uSPCallStackEdge objects. uSPCallStack con-

tains a uSPHashTable that stores instances of uSPCallStackVertex. Each uSPCall-

StackVertex represents one routine in the call-stack, and contains the address of the

routine it represents, as well as two adjacency linked-lists of uSPCallStackEdges.

One list represents directed parent edges, and the other represents directed child

edges (Figure 8.8). At first glance, these adjacency lists may seem unnecessary

for a call-stack, since each of its vertices should only have one parent and one
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address: 0xFFFFFF22

address: 0xFFFFFF00 address: 0xFFFFFF66

uSPCallStackEdge

uSPCallStackEdge uSPCallStackEdge

.  .  .

address: 0xFFFFFFFF

uSPCallStackVertex

parent edges:

child edges:

Figure 8.8: A uSPCallStackVertex with its parent and child adjacency lists.

child. However, if a call-stack contains any call-cycles, then at least one routine ap-

pears in the stack twice, and may have more than one unique parent and/or child.

Therefore, one or more uSPCallStackVertexes may have multiple parent and/or child

uSPCallStackEdges, which necessitates the adjacency lists.

Each uSPTaskSample is analyzed when a pointer to it is passed to a new in-

stance of a uSPCallStack, which then creates the necessary uSPCallStackVertexes

and uSPCallStackEdges. The list of routine addresses stored in the uSPTaskSample

is traversed, starting with the address at the top of the call-stack.1 For each rou-

tine address encountered, a new uSPCallStackVertex is added to the uSPCallStack’s

uSPHashTable (if it does not already exist in the table). Two uSPCallStackEdges

are also added to the uSPCallStackVertex: one in its child adjacency-list pointing to

the address immediately above it in the stack, and one in its parent adjacency-list

pointing to the address immediately below it in the stack. The obvious exceptions

to this rule are the routine addresses at the top and bottom of the call-stack; their

corresponding uSPCallStackVertexes only receive one parent and one child edge,

respectively.

At this point, the uSPCallStack is a directed, and possibly cyclic, graph repre-

sentation of the uSPTaskSample’s call-stack. However, before it can be merged with

the global call-graph for sample propagation, all vertices that belong to call-cycles

must be marked. This allows the call-graph to collapse them into single nodes

1Throughout this discussion, the assumption is made that all stacks grow in an upward di-

rection. Therefore, at the top of the stack is the routine that is executing when a sample is

taken.
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before adding them to its own list of vertices (see Section 8.3.2).

Call-cycles are detected by finding a list of strongly-connected components in

the uSPCallStack. A strongly-connected component of a directed graph G = (V,E)

is a maximal set of vertices C ⊆ V such that for every pair of vertices (u, v) ∈ C,

there exists both a directed path from u → v and from v → u. Therefore, by

definition, any of the following strongly-connected components in the uSPCallStack

directed graph are call-cycles:

1. Those consisting of more than one vertex.

2. Those consisting of a single vertex with a self-edge.

The STRONGLY-CONNECTED-COMPONENTS algorithm [CLRS01] is run

on the uSPCallStack to obtain a list of call-cycles in its directed graph. Each

strongly-connected component that matches one of the above criteria is stored in

a uSPCallCycle object, which is simply a linked-list of routine addresses. Marking

vertices that belong to a call-cycle is then straightforward: the list of uSPCallCycles

is traversed, and for each routine address found, a pointer to the uSPCallCycle is

stored in the corresponding uSPCallStackVertex (retrieved from the uSPHashTable).

The uSPCallCycle pointer serves as a “cycle marker” (see Figure 8.9).

At this point, the uSPCallStack has all the information it requires to be merged

with the global call-graph. The merging of uSPCallStacks with the global call-graph

is explained in Section 8.3.2.

Algorithmic Analysis

Building a uSPCallStack consists of two steps: creating the actual directed graph

G = (V,E) with the information in the provided uSPTaskSample, and discovering

and marking call-cycles in that graph. Each step is analyzed separately.

As mentioned, the uSPHashTables used for this metric use chaining for resolving

collisions. The expected search time of a chaining hash-table is O(1+α), where α is
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address: 0xABCDABCD

child edges:

cycle:

uSPCallStackVertex

parent edges: .  .  .
.  .  .
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0x00112233
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addresses:

.  .  ..  .  .

Figure 8.9: A uSPCallStackVertex that belongs to a call-cycle.

the load factor of the hash table [CLRS01]. Thus, by putting an upper bound on the

load factor, the expected search time becomes bounded as well. This bounding is

accomplished by sizing the hash table proportionally to the size of the symbol table

of the program, which is easily obtained from its uSymbolTable (see Section 5.4).

The complexity of a search then becomes independent of the number of vertices.

Thus, for the purposes of this analysis, hash-table operations are assumed to be

unit cost.

Building a uSPCallStack directed graph G = (V,E) involves traversing a uSP-

TaskSample’s call-stack S, and for each routine address in S, creating up to one

vertex and two edges (one parent edge and one child edge). For the vertex, a hash-

table lookup is done to determine whether a vertex already exists with the current

routine address. If no such vertex exists, a new vertex is created and stored in the

hash table. For the edges, no hash table exists, so duplicate checking is done by

running through the vertex’s list of edges. However, this cost is generally negligible,

for two reasons. First, when a routine address is encountered on a call-stack for

the first time and a vertex is created for it, its edge lists are empty. Thus, there

is zero cost for duplicate-edge checking for a reasonably large number of vertices.
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Figure 8.10: A typical call-cycle.

Second, in a typical call-cycle, such as the one shown in Figure 8.10, most vertices

have only one parent edge and one child edge, and the entry and exit vertices have

only two parent edges and two child edges. Note that in the worst case, the call-

cycle is a clique and each vertex has c − 1 edges, where c is the size of the clique.

However, the expected case is a typical call-cycle and therefore, for the purposes

of this analysis, duplicate-edge checking, and hence the creation of a vertex and its

edges, are considered to have unit cost. Since this operation is done once for each

routine on the call-stack, the creation of the uSPCallStack graph is O(|S|).

Discovering the call-cycles in a directed graph G = (V,E) is done using the

STRONGLY-CONNECTED-COMPONENTS algorithm, which consists of the fol-

lowing steps:
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1. Perform a DEPTH-FIRST-SEARCH [CLRS01] on G to obtain a topological

ordering of its vertices.

2. Compute GT , the transpose of G.

3. Perform a DEPTH-FIRST-SEARCH on GT , considering vertices in reverse-

topological order.

Step 3 returns a forest, with each tree in the forest being a strongly-connected

component. Step 2 is unnecessary in my implementation of the algorithm because

of the parent edges built into the uSPCallStack; traversing GT is simply a matter of

traversing G by following its parent edges rather than its child edges. Thus, finding

the strongly-connected components of a uSPCallStack graph can be reduced to two

depth-first searches, each of which is O(|V |+ |E|) [CLRS01].

The discarding of strongly-connected components that are not call-cycles is done

during the depth-first search in Step 3, and it does not add any complexity to the

algorithm. Strongly-connected components made up of a single vertex without

a self-edge are discarded. This information is easily obtained while examining

the neighbours of the root vertex each time a new tree, i.e., strongly-connected

component, is searched.

The final step is to mark the vertices of the uSPCallStack that are part of a

cycle, which is done simply by traversing the list of call-cycles and the list of vertex

addresses in each. Since a vertex cannot be in more than one strongly-connected

component [CLRS01], it cannot appear in more than one call-cycle. So the total

number of vertices examined while traversing the list of call-cycles is |Vcycle| ≤ |V |,
which means the entire procedure is O(|V |).

The aggregate complexity of creating a uSPCallStack is thus O(|S|) + O(|V | +
|E|) + O(|V |). The largest possible number of vertices in G occurs when no call-

cycles appear in the call-stack. In this case, |V | = |S|. However, if any call-cycles

exist, then at least one routine address is repeated in S but only gets one entry in

G, and therefore |V | < |S|. So it is true in general that |V | ≤ |S|, which means the

complexity of this entire procedure is O(|S|)+O(|S|+ |E|)+O(|S|) = O(|S|+ |E|).
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8.3.2 Call-Graph

This section explains how a task’s complete list of raw samples is converted into one

global directed call-graph, encapsulated in the uSPCallGraph, uSPCallGraphVertex,

and uSPCallGraphEdge classes. These classes are analogous to those used in the

construction of a call-stack’s directed graph, but contain extra information needed

by the global call-graph, such as sample-propagation data.

uSPCallGraph’s constructor accepts a pointer to a task’s list of uSPTaskSamples,

and immediately creates a uSPHashTable to store the uSPCallGraphVertexes used to

build the directed call-graph. It then traverses the list of uSPTaskSamples, processes

each one separately, and adds it to the directed call-graph.

The first step in the processing of each uSPTaskSample is to create a temporary

uSPCallStack object and pass it a pointer to the uSPTaskSample. The uSPCallStack

builds a directed call graph representation of the sample’s call-stack, and marks

all vertices that are part of call-cycles. Once the temporary uSPCallStack is built,

its edge and vertex information is transferred to the uSPCallGraph, with one major

change: call-cycles are represented in the uSPCallGraph as single vertices (see Figure

8.11).

To transfer the necessary information, the uSPCallStack must be traversed from

the top down, and any vertices and edges not already in the uSPCallGraph must be

added. However, because the uSPCallStack’s directed graph may contain cycles, it

is impossible to traverse it linearly from top to bottom. To solve this problem, it is

actually the corresponding uSPTaskSample’s call-stack that is traversed. For each

routine address encountered, its counterpart uSPCallStackVertex is retrieved from

the uSPCallStack, and the information contained therein is transferred to the uSP-

CallGraph. How this transfer is made depends on whether the uSPCallStackVertex

is marked as belonging to a call-cycle or not.

If the uSPCallStackVertex is not marked as being part of a call-cycle, then trans-

ferring its information to the uSPCallGraph is straightforward. The routine address

of the uSPCallStackVertex is used as a hash-table key, and the uSPCallGraph’s uS-

PHashTable is queried. If no uSPCallGraphVertex with that address is found, then
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uSPCallStack representation: uSPCallGraph representation:

CYCLE 1: foo, fred, mary, joe
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Figure 8.11: Call-cycles in uSPCallStack and uSPCallGraph.

one is created and added to the uSPHashTable. Finally, the uSPTaskSample call-

stack pointer is advanced to the next routine address in the call-stack in preparation

for the next iteration. This process is shown in Figure 8.12(a).

If the uSPCallStackVertex is marked as being part of a cycle, then a different

procedure is used to add its information to the uSPCallGraph. In this case, the

uSPCallCycle is retrieved from the uSPCallStackVertex, and its routine-address list

is used as a hash-table key to query the uSPHashTable. If no uSPCallGraphVertex

representing a cycle with that list of routine addresses is found, then a new call-

cycle is added to the uSPCallGraph in two steps. First, a pointer to the uSPCallCycle

is added to the tail of the uSPCallGraph’s call-cycle list. Second, a new uSPCall-

GraphVertex is created and added to the uSPHashTable, but instead of being given
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Figure 8.12: Adding a uSPCallGraphVertex to the uSPCallGraph.
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Figure 8.13: Assigning samples to a uSPCallGraphVertex.

a routine address, it is instead passed a pointer to the uSPCallCycle it represents.

This procedure is similar to the one used in the uSPCallStack. Finally, in prepa-

ration for the next iteration, the uSPTaskSample call-stack pointer is advanced to

the next routine address that does not belong to the uSPCallCycle that was just

processed. This process is shown in Figure 8.12(b).

Once the singleton- or cycle-uSPCallGraphVertex is added to or retrieved from the

uSPHashTable, one or more hardware-event samples are assigned to it, depending on

the uSPTaskSample’s overflow bitmask. Each uSPCallGraphVertex has two parallel

arrays with one cell for each of the hardware events being monitored for overflow

(see Figure 8.13). One array is used to count direct samples, i.e., samples that occur

in the routine or cycle that the vertex represents, and the other array is used to

count descendant samples, i.e., samples that occur in a descendant routine or cycle.

If the current uSPCallGraphVertex represents the routine or cycle at the top of the

current call-stack, then the sample count in every cell of the direct-sample array

whose index matches a set bit in the overflow bitmask is incremented. Otherwise,

the sample counts in the descendant array are incremented.

The final step in processing the current uSPCallGraphVertex is to add a child

edge leading to the previous uSPCallGraphVertex, and a parent edge in the previous

uSPCallGraphVertex leading to the current one. This step is obviously skipped if
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the current vertex represents the routine or cycle at the top of the call-stack, as

it has no previous, i.e., child, vertex in that case. Each uSPCallGraphVertex has

two uSPHashTables: one for parent uSPCallGraphEdges, and one for child uSPCall-

GraphEdges. The current uSPCallGraphVertex’s child hash-table is queried, and if

it has no child edge leading to the previous uSPCallGraphVertex, an edge is created

and added. A similar parent edge is added in the previous uSPCallGraphVertex if

necessary. Samples are then assigned to each edge, much as in the case of the vertex

samples above. The purpose of having sample counts on the uSPCallGraphEdges is

to keep track of the routine-call sequence leading up to each sample, which allows

the uSPCallGraph to provide the information seen in the call-graph pane in Figure

8.3 on page 115. The “self” and “descendant” columns for each non-indented rou-

tine/cycle come from the sample information in the uSPCallGraphVertexes, and the

“self” and “descendant” columns for each indented parent and child routine/cycle

come from the sample information in the uSPCallGraphEdges.

At this point, all the information from the current routine in the uSPTaskSam-

ple’s call-stack has been added to the uSPCallGraph. The algorithm then proceeds

to process the next routine pointed to by the uSPTaskSample’s call-stack pointer,

which was set earlier. After the entire call-stack is traversed, the algorithm moves on

to the next uSPTaskSample and begins the process again, starting with the creation

of a temporary uSPCallStack. Once the list of uSPTaskSamples is exhausted, the

uSPCallGraph is complete, and ready to be displayed by the uSPTaskAnalyzeWidget.

A high-level representation of the uSPCallGraph’s final form is shown in Figure 8.14.

Algorithmic Analysis

Building a uSPCallGraph’s directed graph G′ = (V ′, E ′) involves combining the

algorithm from the previous section with this one, forming two nested loops: an

outer loop to traverse a list L of uSPTaskSamples, and an inner loop to traverse a

uSPTaskSample’s call-stack S. Each is analyzed separately, from the outer loop to

the inner.

Let s be the maximum |S| over all uSPTaskSamples, that is, the number of
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Figure 8.14: A high-level depiction of a uSPCallGraph.

routines in the largest call-stack. Let e be the maximum |E| over all uSPCallStacks,
that is, the number of edges in the largest uSPCallStack graph.

The outer loop traverses a list L of uSPTaskSamples, and for each uSPTaskSam-

ple, invokes the algorithm from Section 8.3.1 to create a uSPCallStack based on

its call-stack S, and then invokes the inner loop. Thus, the running time for one

iteration of the outer loop is O(s+ e) plus the running time of the inner loop.

The inner loop traverses a uSPTaskSample call-stack S, and for each routine

address, creates up to one uSPCallGraphVertex and two uSPCallGraphEdges, and

assigns samples to each. Each of these tasks is analyzed separately.

The first step in creating the uSPCallGraphVertex is to retrieve the uSPCallStack-

Vertex corresponding to the current call-stack routine address. This step is done

using a hash-table lookup with the routine address as a hash key, so it is a unit-cost
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operation. Next, another hash-table lookup is done to determine if a correspond-

ing uSPCallGraphVertex already exists in the uSPCallGraph. The hash key used for

this second lookup depends on whether or not the uSPCallStackVertex is part of

a call-cycle. If it is not, then its routine address is used as a hash key, and the

lookup is a unit-cost operation. If the uSPCallStackVertex is part of a call-cycle,

then the hash-table lookup must use the entire uSPCallCycle’s list of routine ad-

dresses, which is done as follows. The first routine address in the list is used as the

actual key to obtain a hash bucket. Then the cardinality of the uSPCallCycle’s list

is checked against the cardinality of the address list of the first entry in the hash

bucket (entries with a single address as a key are considered to have a cardinality of

−1). Only if the cardinalities match are the address lists traversed and compared.

Thus, the only situation in which an address list is traversed more than once is

if two uSPCallGraphVertexes representing different call-cycles of the same size are

in the same hash bucket, and the target entry is the further of the two down the

collision-resolution chain, which should happen infrequently in general. Although

in the worst case, a lookup of this kind is O(|S|), the number of routines in a

call-cycle’s routine address list should, in general, be small in comparison to the

number of routines in a uSPTaskSample, so a hash-table lookup of this kind is also

considered to be unit cost.

In either case (cycle or non-cycle), if the hash-table lookup determines that

the needed uSPCallGraphVertex does not already exist in the uSPCallGraph, it is

created and added to the uSPHashTable. Then, the relevant sample counts are

incremented, which is done by checking each bit of the current uSPTaskSample’s

bitmask, up to the number of hardware events being monitored. For each bit that

is set, one integer is incremented. Since the number of active counters, and thus the

number of hardware events being monitored for any given program is a constant,

this operation is O(1).

The final step in processing a call-stack routine address is to create up to two

uSPCallGraphEdges, and assign samples to them. Samples are assigned in exactly

the same way as for the uSPCallGraphVertex above, so they do not increase the

complexity and are not discussed. For each uSPCallGraphEdge, a hash-table lookup
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is done in the originating uSPCallGraphVertex’s child-edge uSPHashTable, using the

destination uSPCallGraphVertex’s address as a hash-table key (unit cost). If the

necessary uSPCallGraphEdge does not exist, it is created and added to the proper

uSPHashTable (also unit cost). Since this procedure is done a maximum of two

times, it is a unit-cost operation.

Since all its operations run in constant time, the total complexity for processing

one routine address on a uSPTaskSample’s call-stack is O(1). A maximum of s

routine addresses are processed, so the inner loop has a running time O(s). One

iteration of the outer loop consists of the creation of a uSPCallStack, and an invo-

cation of the inner loop, so its running time is O(s + e) + O(s) = O(s + e). Since

the outer loop runs |L| times, its complexity is O(|L|(s+ e)).

8.4 Validation

This section provides validation for the Statistical Profiling Metric by verifying

that it produces correct results for a variety of simple µC++ programs. Validation

testing is performed on the same dual-processor 900 MHz Itanium 2 machine used

for validation in Section 7.4.

8.4.1 Testing Strategy

The testing strategy for the Statistical Profiling Metric is broken into two phases,

each targeting a specific function. The first phase verifies sample collection is

being done properly, i.e., the metric collects the correct number of samples and

assigns them to the proper tasks. This validation is accomplished by profiling the

perfmon control from Chapter 7. The second phase verifies the samples are being

analyzed correctly, i.e., a proper call-graph and list of call-cycles is being produced.

This validation is accomplished by running some new µC++ test programs, and

comparing them to results obtained from the q-syscollect/q-view statistical profiling

suite (see Section 3.3.2). The test programs for this phase are written to highlight
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key features of the sample analysis, including sample propagation in the call-graph,

and call-cycle detection.

The sampling period for all validation tests is 9000000 events. This number was

chosen because it is significantly smaller than the expected event-counts of all vali-

dation tests and should thus produce results with a reasonable degree of precision.

Moreover, it makes the conversion of CPU Cycle samples to time (which is neces-

sary for comparison with q-syscollect) straightforward, as each sample represents

ten milliseconds on the 900 MHz CPU.

8.4.2 Sample-Collection Test

This section provides validation of the Statistical Profiling Metric’s sample col-

lecting. The sequential, concurrent, and parallel experiments from the aggregate

event-count test of Section 7.4.4 are repeated for this test, and the results of the

perfmon control of Section 7.4.1 provide the experimental control. The programs

are profiled by the Statistical Profiling Metric, sampling on Instructions and CPU

Cycles. If the Statistical Profiling Metric is working correctly, its results should be

close to the perfmon control. However, since this test is being done statistically, an

exact match between the two is unlikely, and unnecessary for showing correctness.

I hypothesize that the results of these experiments will all be close to, but

less than the perfmon control. Since profiling is done statistically, the reported

hardware-event counts are quantized in increments of the sampling period. Thus,

a “round-down effect” should occur, meaning the results of the Statistical Profiling

Metric compared to be perfmon control should be rounded down to the nearest

multiple of the sampling period. Unlike the Exact Hardware Metric, I do not

expect any difference between the results of the sequential, concurrent, and parallel

tests, because the extra overhead incurred by the µC++ programs should be small

relative to the sampling period.

Table 8.1 summarizes the results of the experiments and compares them to the

perfmon control. Event counts for each experiment are obtained by multiplying
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the number of samples by the sampling period. The equivalent number of sam-

ples corresponding to each event count is listed to the right in parentheses. The

Diff column is the percentage difference between the experiments and the perfmon

control, and is relative to the perfmon control.

Instructions CPU Cycles

Total (Samples) Diff. (%) Total (Samples) Diff. (%)

perfmon: 7281301480 (809) 0.000 4061099726 (451) 0.000

sequential: 7281000000 (809) -0.004 4059000000 (451) -0.052

concurrent: 7281000000 (809) -0.004 4059000000 (451) -0.052

parallel: 7263000000 (807) -0.251 4041000000 (449) -0.495

Table 8.1: Results of the sample-collection validation test.

The results of the experiments agree with my hypothesis insofar as all results

are close to, but less than the perfmon benchmark. However, the parallel experi-

ment underestimates the event counts by the equivalent of two samples for both

Instructions and CPU Cycles, which goes against my hypothesis. The experiment

was rerun a number of times, sometimes with a smaller sampling period, and the

parallel experiment consistently underestimated the control by approximately the

same percentage. I am unable to explain this anomaly. However the parallel exper-

iment, as well as the sequential and concurrent experiments, produces results close

enough to the perfmon control to conclude that the Statistical Profiling Metric is

correctly gathering samples and assigning them to the proper tasks.

8.4.3 First Sample-Analysis Test

This test provides validation for the sample-analysis phase of the Statistical Profil-

ing Metric through a comparison with the q-syscollect/q-view statistical profiling

suite. Since sample collection has already been validated in all of µC++’s execution

environments, there is no need to break this test into three experiments. Analy-

sis of collected samples is independent of whether the program is run sequentially,

concurrently, or in parallel. Thus, this new test is comprised of a single sequential
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Figure 8.15: The call-tree of the first sample-analysis test program.

experiment, profiled by both the Statistical Profiling Metric and q-syscollect.

This test uses the program listed in Appendix B.2.1, and it creates the call-tree

shown in Figure 8.15. Preprocessor directives allow a C++ version of the program

to be compiled with a main routine, and a µC++ version to be compiled with a

uMain::main routine. The C++ program is profiled by q-syscollect, while the µC++

program is profiled by the Statistical Profiling Metric.

Each routine in the program performs the same set of mathematical calculations

in a loop, but each routine executes the loop a different number of times, which

ensures each routine has a different running time. Besides performing the mathe-

matical calculations, the (uMain::)main routine also makes calls to A and B to begin

the routine-call sequences. It executes all of its code twenty times to ensure that

the program runs for a reasonable length of time.

The test program is written in such a way that routine G executes three times

longer when called by E than when called by D. Thus, in the resulting call-graph, G

should pass 25% of its self-samples to D and 75% to E. Also, G calls H twice when

it is called by D, but only once when it is called by E. Therefore, in the resulting
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call-graph, G should pass 67% of its descendant-samples to D, and 33% to E.

q-syscollect is only able to statistically sample on one hardware event at a

time, therefore CPU Cycles is the only event sampled for this test. q-syscollect

also automatically converts CPU Cycles into seconds, so the Statistical Profiling

Metric’s results are also converted into seconds for comparison, using the following

equation:

seconds = samples× sampling period

clock speed
(8.1)

where clock speed is the speed in Hz of the underlying CPU.

I hypothesize that the Statistical Profiling Metric’s sample propagation will

closely reflect the expected behaviour explained above, due to its use of complete

call-stacks. I also expect the Statistical Profiling Metric’s sample propagation to

be more precise than q-syscollect’s, because the latter profiler estimates sample

propagation using only partial information from the BTB (see Section 3.3.2).

Sample-Collection Comparison

As mentioned, the sample-collection portion of the Statistical Profiling Metric has

already been validated, but its results (and those of q-syscollect) are presented

here for completeness. They are summarized in Table 8.2. The Diff column is

the percentage difference between the Statistical Profiling Metric’s results and q-

syscollect’s results, and is relative to the Statistical Profiling Metric’s results.

The sample-collection results for q-syscollect and the Statistical Profiling Metric

are similar, which indicates that they are both collecting sample data properly.

Call-Graph Comparison

The sample propagation done by the Statistical Profiling Metric is shown in Figure

8.16(a) on page 142. The numbers along each edge represent samples propagated
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SP Metric q-syscollect Diff. (%)

(seconds) (seconds)

(uMain::)main 1.09 1.09 0.000

A 0.26 0.26 0.000

B 3.66 3.65 -0.273

C 0.53 0.52 -1.887

D 0.08 0.10 25.000

E 0.52 0.52 0.000

F 0.79 0.78 -1.266

G 0.87 0.87 0.000

H 0.32 0.32 0.000

Table 8.2: Sample collections from the first sample-analysis test.

from a child to a parent. Descendant-samples are in italics, and are always listed

below self-samples. The majority of the routines have only one parent, and so they

pass 100% of their self- and descendant-samples up to that parent. The interesting

portion of the call-graph is routine G, which has two parents. As expected, G

passes almost three times as many self-samples to E as to D (the actual split is

about 25.3% to D and 74.7% to E). Also as expected, G passes about twice as

many descendant-samples to D than to E (the actual split to about 68.8% to D

and 31.3% to E). This indicates that sample propagation is being done correctly,

using each sample’s call-stack. In contrast, q-syscollect does not use the entire call-

stack, and hence incorrectly propagates self- and descendant-samples in proportion

to execution time. For example, referring to the q-syscollect call-graph shown in

Figure 8.16(b), G passes 5.7% of its self-samples to D and 94.3% to E. Also, G passes

6.3% of its descendant-samples to D and 93.7% to E. Both propagations are clearly

incorrect, given the way the test program is written.
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Figure 8.16: Call-graphs from the first sample-analysis test.

Summary

This test shows that the Statistical Profiling Metric’s sample-collecting is as accu-

rate as that of q-syscollect. Furthermore, the test shows that its call-graph reflects

the actual execution behaviour of its target program more consistently than does

q-syscollect.

8.4.4 Second Sample-Analysis Test

This test provides validation for the Statistical Profiling Metric’s call-cycle de-

tection capabilities, and shows how its method of detecting “local” call-cycles in

each sample’s call-stack provides a better picture of the run-time behaviour of a

program than traditional call-cycle detection algorithms, such as the one used by

gprof [GKM82]. The test is comprised of a single sequential experiment, profiled

by both the Statistical Profiling Metric and gprof. gprof is used as a substitute for

q-syscollect in this test because q-syscollect does not do any call-cycle detection (it

simply ignores back-edges in its sample-propagation algorithm).

The program used for this test is listed in Appendix B.2.2. Preprocessor direc-
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a b c

q

d e f

q

x y z

(uMain::)main

Figure 8.17: The call-tree of the second sample-analysis test program.

tives allow separate C++ and µC++ versions to be compiled as for the previous

example program. Routine q accepts a routine pointer as a parameter and simply

calls that routine. Routines a through f call q and pass in a pointer to the routine

that q is to call. Routines x, y and z are the only routines where any significant

amount of time is spent; each has a spinning loop of a different size. y’s loop is

twice the size of x’s, while z’s is thrice the size of x’s. Finally, routine (uMain::)main

makes calls to routines a, b and c twenty times each. This type of dynamic call-

structure can be found in object-oriented programs making significant use of virtual

routines; for instance in applications of the Visitor design pattern [GHJV95].

This program creates the call-tree shown in Figure 8.17. The different line styles

show the routine-call sequences that occur in the program. There are three cycles

in the call-tree:
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1. q → d → q

2. q → e → q

3. q → f → q

Note, gprof samples only on time, so CPU Cycles is the only event sampled

for this test. The CPU Cycle event-counts are converted to time for comparison,

using Equation 8.1. I hypothesize that the Statistical Profiling Metric will produce

sample-collection data similar to gprof, and discover the three call-cycles that occur

in the program’s call-tree. Also, I expect that sample propagation will only occur

between routines along the call-sequences shown in Figure 8.17. In other words,

x’s samples should be propagated to a, y’s to b, and z’s to c. Finally, I expect that

gprof will collapse all three call-cycles into a single call-cycle, due to the fact that

it discovers call-cycles after the entire call-graph is constructed. Moreover, I expect

gprof will propagate the call-cycle’s samples evenly between routines a, b and c, as

gprof assumes that all calls to the same routine take the same amount of time.

Sample-Collection Comparison

Sample-collection results for the Statistical Profiling Metric and gprof are provided

here for completeness. They are summarized in Table 8.3. Only those routines that

have any time attributed to them by either profiler are displayed. The Diff column

is the percentage difference between the Statistical Profiling Metric’s results and

gprof’s results, and is relative to the Statistical Profiling Metric’s results.

The sample collections produced by the Statistical Profiling Metric and gprof

are similar, but gprof’s distribution is slightly more precise, as y has exactly twice

the time that x does, while z has exactly thrice the time. In the Statistical Profiling

Metric’s sample collections, y has slightly more than twice the time of x, and z has

slightly more than thrice the time of x.

Relative to gprof, the Statistical Profiling Metric also reports about 0.639% less

total time, and did so consistently over multiple runs of the experiment. I hypoth-

esized that the additional time reported by gprof may have been due to its probe
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SP Metric gprof Diff. (%)

(seconds) (seconds)

x 3.10 3.13 0.968

y 6.23 6.26 0.482

z 9.33 9.39 0.643

Total: 18.66 18.78 0.643

Table 8.3: Sample collections from the second sample-analysis test.

effect, so I profiled the test program twice with q-syscollect, once after compiling

with the -pg flag, and once without. The -pg flag specifies that performance data is

to be collected during the program’s execution, for post-mortem analysis by gprof.

Table 8.4 summarizes the results of these experiments.

with -pg flag without -pg flag

(seconds) (seconds)

x 3.11 3.11

y 6.22 6.22

z 9.33 9.32

Total: 18.66 18.65

Table 8.4: q-syscollect’s samples from the second sample-analysis test.

The q-syscollect results are much closer to those of the Statistical Profiling

Metric than to gprof’s. The total time with the -pg matches the Statistical Profiling

Metric’s total time, while the total time without the -pg flag is ten milliseconds less.

I am unable to explain this discrepancy between the Statistical Profiling Metric/q-

syscollect’s and gprof’s reported times. However, the differences between them are

small enough to conclude that the Statistical Profiling Metric is correctly gathering

sample data.
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Call-Graph Comparison

The Statistical Profiling Metric finds all three call-cycles in this program, as well

as the correct routine-call sequences, which are summarized in Figure 8.18(a). The

numbers along each edge represent samples propagated from a child to a parent.

Descendant-samples are in italics, and are always listed below self-samples. Since

the cycles are discovered locally in individual call-stacks, they are reported sep-

arately, even though in the global call-graph they are part of the same strongly-

connected component. This makes the routine-call behaviour of the program, i.e.,

which routines are parents and children of what cycles, clear. Furthermore, because

cycles are discovered in individual call-stacks, their exact routine-call sequences are

preserved, as can be seen at the bottom of the figure. Finally, the sample propa-

gation is precise, as routines a, b, and c only receive descendant-samples from the

routine-call sequences that they initiate, i.e., they only receive descendant-samples

from x, y, and z, respectively.

In contrast, gprof discovers call-cycles globally, i.e., after the entire call-graph

has been built, which results in the graph shown in Figure 8.18(b). Since routines

d, e, f, and q form one strongly-connected component in the global call-graph,

they are reported as one cycle. Moreover, gprof is unable to display the different

routine-call sequences that exist in the cycle. What is reported is simply a list

of parent-child relationships between the routines in the cycle. In this case, gprof

reports that routine q has routines a through f as parents, and routines d through f

and x through z as children. Finally, the descendant-sample propagation from cycle

1 to routines a, b, and c is split evently, which is clearly incorrect.

Summary

Relative to gprof, the Statistical Profiling Metric slightly underestimates the total

time spent in the test program, and its sample distribution for this test is slightly

less precise. Both differences are small enough to conclude that the Statistical

Profiling Metric is collecting and assigning sample data correctly.
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Figure 8.18: Call-graphs from the second sample-analysis test.

The Statistical Profiling Metric is able to discover call-cycles at a finer level of

granularity than gprof, as it finds individual cycles, based on complete call-stacks,

that may be part of a larger strongly-connected component in the complete call-

graph. Furthermore, because it retains the routine-call sequences of each cycle, the

Statistical Profiling Metric is able to propagate samples through a cycle according to

the actual execution behaviour of its target programs, rather than simply splitting

the cycle’s self- and descendant-samples evenly among its parents.

The Statistical Profiling Metric’s method of call-cycle detection does have one

major drawback: it can discover “partial cycles”. For instance, consider the call-

graph in Figure 8.19(a), and assume two samples are taken:

1. A → B → C → B → D
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C
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(a) Actual call-graph
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Bcycle 1

cycle 1: B −> C −> B

(b) Reported call-graph

Figure 8.19: An example call-graph.

2. A → B → C

The call-graph produced by the Statistical Profiling Metric looks like the one

in Figure 8.19(b). Routines B and C are represented twice in this graph: once

as single routines, and once as part of a cycle. Thus, the self- and descendant-

samples propagated to these routines are divided among the two representations,

neither of which paints a complete picture of their execution behaviour. Currently,

interpretation of these results is not done by the Statistical Profiling Metric, but is

left to the user.



Chapter 9

Conclusions and Future Work

The focus of this thesis is using hardware counters to profile user threads in concur-

rent, object-oriented programs running in a shared-memory, uni/multiprocessor en-

vironment. The target environment for this effort is µProfiler, a concurrent object-

oriented profiler written in µC++, a concurrent dialect of the C++ programming

language.

9.1 Contributions

The major work done for this thesis includes the following additions to the µProfiler

kernel: an architecture-abstraction layer for accessing hardware counters on multi-

ple platforms, and two new profiling metrics that make use of the new layer to help

users locate bottlenecks and hotspots in programs.

To allow µProfiler to use hardware counters, an architecture-abstraction layer

was written. This layer defines a useful common subset of features, allowing

µProfiler to extract information from hardware counters on multiple platforms.

It also interfaces with µProfiler’s startup window, interactively updating the list of

available hardware event buttons as users choose which events to measure, ensuring

that only legal combinations of hardware events are used to profile target programs.

149
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Two metrics were written and added to µProfiler that use the architecture-

abstraction layer to profile concurrent programs using hardware counters. The first

metric is the Exact Hardware Metric, which provides exact hardware event counts

on a per-task basis, and the second metric is the Statistical Profiling Metric, which

samples target programs at regular intervals to provide statistical approximations

of hardware-event counts.

The Exact Hardware Metric uses hardware counters to generate exact perfor-

mance data. It offers exact hardware-event counts in terms of µC++’s execution

environment on three different levels. For each task in a target program, an ag-

gregate hardware-event count is presented. Each task’s hardware-event counts can

be further subdivided into a routine and non-routine breakdown. The routine

breakdown shows exact event-counts for each routine executed by a task, while the

non-routine breakdown gives exact event-counts on a per-time-slice basis. Each

breakdown offers insight into the run-time behaviour of each task in a program

for a given cost and probe effect, and can be used to help locate bottlenecks and

hotspots. The performance of this metric on all three levels has been validated by

testing it against established code.

The Statistical Profiling Metric offers a lower cost and less intrusive, albeit less

precise, alternative to the Exact Hardware Metric. Performance data is gathered

by periodically sampling all virtual processors in a target program. Sample data

is presented to the user in three ways: a flat histogram showing the distribution of

samples across the routines executed by a task, a call-graph showing routine-call

sequences and sample propagation, and a list of call-cycles found in a task’s call-

graph. The call-graph produced by the Statistical Profiling Metric is unique among

statistical call-graphs because it is based on complete call-stacks, which means

that while it may not be complete, the call-graph is guaranteed to be connected.

Also unique to this call-graph is the ability to display event counts from multiple

hardware events. The histogram, call-graph, and call-cycle detection functions of

this metric have all been validated by testing it against established code.

Finally, one major implementation issue that had to be solved was allocating

memory for profiling data for certain µProfiler hooks. µProfiler is able to glean in-
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formation from the µC++ kernel at run-time, but µProfiler metrics had no way of

dynamically allocating storage to hold this information because memory allocation

is not allowed in the µC++ kernel. To solve this problem, a new class called uMem-

oryExecutionMonitor was added to the µProfiler kernel, which, when instantiated,

activates memory-allocation hooks. Metrics can now use these hooks to dynami-

cally allocate memory just outside the µC++ kernel, for storing performance data

generated by tasks executing inside it.

9.2 Future Work

There are a number of possible directions for future work for µProfiler. Currently,

performance data is visualized only on screen; there are no provisions in place for

saving the data directly to disk. This avenue should be explored, as it would allow

easy comparisons of separate program runs. In particular, the data should be saved

into a well-supported profiling data file-format, such as Pablo’s Self-Defining Data

Format (SDDF).

Hardware counters are not currently supported on all of the µC++-supported

architectures (e.g., the Pentium IV). Future work should include efforts to add

hardware-counter support on all of the µC++ platforms.

The Exact Hardware Metric’s routine breakdown provides information with a

layout similar to the Call Graph and Run Time metric. Although it was developed

as a standalone metric, it may be useful to examine the possibility of integrating

the Exact Hardware Metric with the Call Graph and Run Time metric. Such a

metric would offer a useful contrast between per-routine timing information and

per-routine hardware-event counts.

A number of improvements can be made to the Statistical Profiling Metric.

For example, an automatic sampling-period calibration would be a useful addition.

Currently, users accept the default or choose a sampling period as a raw number of

hardware events. This method is useful when sampling on events with an expected

count, such as Instructions or CPU Cycles, but it is quite unintuitive for events
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like Branch Mispredictions or Instruction-Cache Hits. Future research should also

examine ways of combining the “partial call-cycles” reported by the Statistical

Profiling Metric with the complete call-cycles that they are part of. Finally, the

Statistical Profiling Metric currently does not estimate the number of routine calls

in its statistical call-graph, so the average event-counts per routine are not reported.

Future work should include adding this capability.



Appendix A

Object-Oriented Notation

This appendix explains the object-oriented notation used in Chapters 5, 7 and 8 to

depict the designs of the µProfiler kernel, Exact Hardware Metric, and Statistical

Profiling Metric, respectively. It is a simplified version of the notation presented

by Peter Coad and Jill Nicola [CN93], and includes a µC++-specific extension

introduced by Dorota Zak [Zak00].

The notation in this appendix is broken up into two sections. Section A.1 intro-

duces the symbols that represent classes and objects, while Section A.2 describes

the notation used to represent the three different relationships between classes and

objects.

A.1 Class and Object Notation

The basic building blocks of the object-oriented notation are the class and object

symbols, which are shown in Figure A.1. The abstract class symbol represents a

class that cannot be instantiated; it is depicted as a rectangle with rounded corners.

The class/object symbol depicts a class with at least one instantiated object. The

inner rectangle represents the definition of the class itself, while the outer rectangle

represents its instances.
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Class NameClass Name

Class/Object SymbolAbstract Class Symbol

Figure A.1: Class and object notation.

Coad and Nicola’s original notation does not allow for the representation of

objects with a thread of control and execution state (e.g., µC++ tasks), so it

was extended for this purpose by Zak, who introduced notation for an “active

object” (Figure A.2). An active object is represented by regular rectangles, i.e.,

ones without rounded corners, with the space between the inner and outer rectangle

shaded.

Class Name

Active Object Symbol

Figure A.2: Active object notation.

A.2 Relationship Notation

The inheritance or “is-a” relationship is depicted as a line and semicircle connecting

a base class to one or more derived classes. The derived classes inherit all the

appropriate attributes and member routines from the base class, and may further

specialize them, and/or add new functionality. The base class is connected to the

top of the semicircle, while the derived classes are connected to the bottom (Figure

A.3). Inheritance takes place between classes rather than objects, which is why the

lines are connected to the inner rectangles of class objects.

The aggregation or “has-a” relationship is represented by a line and triangle

connecting a “member object” and a “containing object”. The triangle points
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Derived Class
Name

Abstract Base
Class Name

Abstract Derived
Class Name

(a) Abstract derivation

Derived Class
Name

Derived Class
Name

Base Class
Name

(b) Concrete derivation

Figure A.3: Inheritance notation.

towards the containing object, which contains the member object as an attribute

(Figure A.4). The cardinality symbols next to each object represent the numeric

relationship between the objects. In the figure, the whole object contains zero or

more instances of the part object, and each part object is an attribute of only one

whole object.

Containing
Class Name

Class Name
Member

0,n

1

Figure A.4: Aggregation notation.

The last type of relationship between objects is association, which means the

two objects are aware of each other, but neither contains the other. Association is

represented by a line connecting two objects (Figure A.5). The cardinality symbols



156 APPENDIX A. OBJECT-ORIENTED NOTATION

represent the numeric relationship between the objects. In the figure, object A is

associated with two objects of type B, while object B is associated with one or more

objects of type A.

Class Name A

Class Name B

2

1,n

Figure A.5: Association notation.
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Program Source Code

B.1 Exact Hardware Metric Test Programs

The following program is a modified version of the one available on the perfmon

website [per].

B.1.1 perfmon Test-Harness

#include <sys/types.h>

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <perfmon3/perfmon.h>

#include <perfmon3/pfmlib.h>

#de£ne MAX_ EVT_ NAME_ LEN 256

int main(int argc, char **argv) {

int i, ret, fd;

pfmlib_ input_ param_ t inp;

pfmlib_ output_ param_ t outp;
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pfarg_ reg_ t pc[2];

pfarg_ reg_ t pd[2];

pfarg_ reg_ t pd_ before[2];

pfarg_ reg_ t pd_ after[2];

pfarg_ load_ t load_ args;

pfarg_ context_ t ctx[1];

char name[MAX_ EVT_ NAME_ LEN];

if (pfm_ initialize() != PFMLIB_ SUCCESS) {

fprintf(stderr, "cannot initialize libpfm\n");

exit(1);

}

memset(pc, 0, sizeof(pc));

memset(pd, 0, sizeof(pd));

memset(pd_ before, 0, sizeof(pd_ before));

memset(pd_ after, 0, sizeof(pd_ after));

memset(ctx, 0, sizeof(ctx));

memset(&inp,0, sizeof(inp));

memset(&outp,0, sizeof(outp));

memset(&load_ args,0, sizeof(load_ args));

ret = pfm_ £nd_ event("cpu_cycles", &inp.pfp_ events[0].event);

if (ret != PFMLIB_ SUCCESS) {

fprintf(stderr,"cpu_cycles not found\n");

exit(1);

}

ret = pfm_ £nd_ event("ia64_inst_retired", &inp.pfp_ events[1].event);

if (ret != PFMLIB_ SUCCESS) {

fprintf(stderr,"ia64_inst_retired not found\n");

exit(1);

}

inp.pfp_ d¤_ plm = PFM_ PLM3;

inp.pfp_ event_ count = 2;

ret = pfm_ dispatch_ events(&inp, NULL, &outp, NULL);
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if (ret != PFMLIB_ SUCCESS) {

fprintf(stderr, "cannot configure events: %s\n", pfm_ strerror(ret));

exit(1);

}

for (i=0; i < outp.pfp_ pmc_ count; i++) {

pc[i].reg_ num = outp.pfp_ pmcs[i].reg_ num;

pc[i].reg_ value = outp.pfp_ pmcs[i].reg_ value;

}

for (i=0; i < inp.pfp_ event_ count; i++) {

pd[i].reg_ num = pc[i].reg_ num;

pd_ before[i].reg_ num = pc[i].reg_ num;

pd_ after[i].reg_ num = pc[i].reg_ num;

}

ret = perfmonctl(0, PFM_ CREATE_ CONTEXT, ctx, 1);

if (ret == -1) {

fprintf(stderr, "PFM_CREATE_CONTEXT errno %d\n", errno);

exit(1);

}

fd = ctx[0].ctx_ fd;

ret = perfmonctl(fd, PFM_ WRITE_ PMCS, pc, outp.pfp_ pmc_ count);

if (ret == -1) {

fprintf(stderr, "PFM_WRITE_PMCS errno %d\n",errno);

exit(1);

}

ret = perfmonctl(fd, PFM_ WRITE_ PMDS, pd, inp.pfp_ event_ count);

if (ret == -1) {

fprintf(stderr, "PFM_WRITE_PMDS errno %d\n",errno);

exit(1);

}

load_ args.load_ pid = getpid();

ret = perfmonctl(fd, PFM_ LOAD_ CONTEXT, &load_ args, 1);
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if (ret == -1) {

fprintf(stderr, "PFM_LOAD_CONTEXT errno %d\n",errno);

exit(1);

}

pfm_ self_ start(fd);

double instrAccum = 0.0, cycleAccum = 0.0;

int iter;

for ( iter = 0; iter < 20; ++iter ) {

perfmonctl( fd, PFM_ READ_ PMDS, pd_ before, inp.pfp_ event_ count );

/*

******************** CODE TO BE PROFILED STARTS HERE ********************

*/

/*

********************* CODE TO BE PROFILED ENDS HERE *********************

*/

perfmonctl( fd, PFM_ READ_ PMDS, pd_ after, inp.pfp_ event_ count );

unsigned long cycle = pd_ after[0].reg_ value - pd_ before[0].reg_ value;

unsigned long instr = pd_ after[1].reg_ value - pd_ before[1].reg_ value;

instrAccum += instr;

cycleAccum += cycle;

} // for

pfm_ self_ stop(fd);

printf( "\n" " Instructions CPU Cycles\n"

" ------------ ----------\n" );

printf( "Avg: %20.3f %20.3f\nTotal: %20.3f %20.3f\n\n",
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instrAccum / iter, cycleAccum / iter,

instrAccum, cycleAccum );

close(fd);

return 0;

}

B.2 Statistical Profiling Metric Test Programs

B.2.1 First Sample-Analysis Test Program

#ifdef _ _ U_ CPLUSPLUS_ _

#include <uC++.h>

#endif

int a = 4, b = 19, c = 25, d = 99, e = 34, f = 7;

void A(); void B(); void C(); void D();

void E(); void F(); void G( int ); void H();

void A() {

for ( int i = 0; i < 250000; ++i ) {

a += a + b + c + d + e + f;

b += a + b + c + d + e + f;

c += a - b - c - d - e - f;

} // for

C();

D();

} // A

void B() {

for ( int i = 0; i < 3500000; ++i ) {

a += a + b + c + d + e + f;

b += a + b + c + d + e + f;

c += a - b - c - d - e - f;

} // for

E();

F();
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} // B

void C() {

for ( int i = 0; i < 500000; ++i ) {

a += a + b + c + d + e + f;

b += a + b + c + d + e + f;

c += a - b - c - d - e - f;

} // for

} // C

void D() {

for ( int i = 0; i < 100000; ++i ) {

a += a + b + c + d + e + f;

b += a + b + c + d + e + f;

c += a - b - c - d - e - f;

} // for

G( 200000 );

} // D

void E() {

for ( int i = 0; i < 500000; ++i ) {

a += a + b + c + d + e + f;

b += a + b + c + d + e + f;

c += a - b - c - d - e - f;

} // for

G( 600000 );

} // E

void F() {

for ( int i = 0; i < 750000; ++i ) {

a += a + b + c + d + e + f;

b += a + b + c + d + e + f;

c += a - b - c - d - e - f;

} // for

} // F

void G( int numTimes ) {

for ( int i = 0; i < numTimes; ++i ) {
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a += a + b + c + d + e + f;

b += a + b + c + d + e + f;

c += a - b - c - d - e - f;

} // for

H();

if ( numTimes == 200000 ) { // if called by D, call H twice

H();

} // if

} // G

void H() {

for ( int i = 0; i < 100000; ++i ) {

a += a + b + c + d + e + f;

b += a + b + c + d + e + f;

c += a - b - c - d - e - f;

} // for

} // H

#ifdef _ _ U_ CPLUSPLUS_ _

void uMain::main() {

#else

int main() {

#endif

for ( int iter = 0; iter < 20; ++iter ) {

for ( int i = 0; i < 1000000; ++i ) {

a += a + b + c + d + e + f;

b += a + b + c + d + e + f;

c += a - b - c - d - e - f;

} // for

A();

B();

} // for

} // main

B.2.2 Second Sample-Analysis Test Program

#ifdef _ _ U_ CPLUSPLUS_ _

#include <uC++.h>

#endif
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void a(); void b(); void c(); void d(); void e();

void f(); void x(); void y(); void z(); void q( void (*)() );

void a() {

q( d );

} // a

void b() {

q( e );

} // b

void c() {

q( f );

} // c

void d() {

q( x );

} // d

void e() {

q( y );

} // e

void f() {

q( z );

} // f

void x() {

for ( int i = 0; i < 20000000; ++i ) {}

} // x

void y() {

for ( int i = 0; i < 40000000; ++i ) {}

} // y

void z() {

for ( int i = 0; i < 60000000; ++i ) {}
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} // z

void q( void (*func)() ) {

func();

} // q

#ifdef _ _ U_ CPLUSPLUS_ _

void uMain::main() {

#else

int main() {

#endif

for ( int iter = 0; iter < 20; ++iter ) {

a();

b();

c();

} // for

} // main
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