High-Level Real-Time Concurrency

Ashif S. Harji

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2000

(©Ashif S. Harji 2000

I hereby declare that I am the sole author of this thesis.
I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by pho-
tocopying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of scholarly research.

111

The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below, and give address and date.

Abstract

The primary goal of all real-time systems is predictability. Achieving this goal
requires all levels of the system to be well defined and have a fixed worst-case execu-
tion time. These needs have resulted in the creation of overly restrictive commercial
real-time systems providing only ad-hoc scheduling facilities and basic concurrent
functionality. Ad-hoc scheduling makes developing, verifying, and maintaining a
real-time system extremely difficult and time consuming. Basic concurrent func-
tionality forces programmers to develop complex concurrent programs without the
aid of high-level concurrency features.

Encouraging the use of sophisticated real-time theory and methodology requires
a more flexible and extensible approach. By giving the real-time programmer ac-
cess to the underlying system data structures, the programmer is able to interact
with the system to easily incorporate new ideas and to fine tune the system for a
particular application.

This thesis explores this idea by examining a selection of problems related to
creating a real-time system, including real-time monitors, timeouts, dynamic prior-
ity scheduling and basic priority inheritance. These features are then implemented

in pCH+.

Vil

Acknowledgements

I would like to thank my supervisor, Peter Buhr, for his guidance, encourage-
ment and availability. Any clarity that exists in this thesis is a result of his input.

I am also grateful to Prabhakar Ragde for his graciousness in the face of bu-
reaucracy and for his support, especially in reading my thesis. I would also like to
thank Ajit Singh for reading my thesis and making valuable suggestions.

Thanks to Robert Zarnke for his input in developing a timeout mechanism.

In addition, I would also like to thank my friends for their support and for
putting up with my quirkiness. Oliver Schuster for making sure I was well fed and
entertained. Tayfun Umman for many lively discussions and for keeping me active.
As well, T would like to thank my lab mates Ming Zhou, Tom Legrady, Dorota Zak
and Jiongxiong Chen for making my work enjoyable.

And finally, T would like to thank my parents and my brother for their tremen-

dous support and patience.

1X

Contents

1 Introduction

1.1 Thesis OQutline.

2 Real-Time Monitors

2.1 Background
2.1.1 Internal Scheduling
2.1.2 External Scheduling
2.1.3 Internal and External Scheduling

2.2 Real-Time Considerations

2.3 Implementationo

24 Related Worko
241 Ada ...
242 POSIX

2.5 SUWmMmary . . . o.o. oo e e e e

3 Timeouts

3.1 Background

x1

10
13
26
30
37
38
41
43

47

3.2 Goals. 50
3.3 Syntax and Semantics Lo 51
3.4 Design 57
3.4.1 Timeout Tasks: User Level Implementation 57
3.4.2 Timeout Tasks: System Level Implementation 64
3.4.3 Kernel Level Implementation 65
3.5 Implementation 67
3.5.1 puCH Background 68
3.5.2 Data Structure Enhancements 71
3.5.3 Scenarios to Consider 76
3.5.4 TImplementation Details 78
3.5.5 Interaction Details, 88
3.5.6 Analysis 94
3.6 Summary e 95
Practical Scheduling Considerations 97
4.1 Background 98
4.1.1 Fixed Priority Scheduling 100
4.1.2 Dynamic Priority Scheduling 101
4.2 Implementing Priority Based Scheduling 102
4.2.1 Implementing Fixed Priority Scheduling 103
4.2.2 Implementing Dynamic Priority Scheduling 105
4.3 pCH+ Implementation Details 112
4.4 Summary ... e 116

xi1

5 Priority Inheritance

5.1 Background Lo
5.1.1 Basic Priority Inheritance Protocol
5.1.2 Priority Ceiling Protocol
5.1.3 Immediate Ceiling Priority Protocol

5.2 Implementing Basic Priority Inheritance
5.2.1 Transitivity oo
5.2.2 Priority Disinheritance

5.3 Related Work

5.4 pCH+ Implementation L oo
5.4.1 Mutex Object Acquire
5.4.2 Mutex Object Release
5.4.3 Entry Blocking on a Mutex Object
5.4.4 Blocking Inside a Mutex Object
5.4.5 Analysis

5.5 Summary e

6 Conclusion

6.1 Future Work

6.1.1 puCH . .

6.1.2 Scheduling

6.1.3 Lock Free Systems
Bibliography

X111

119
120
120
124
129
132
133
136
140
143
146
161
162
164
165
166

169
170
170
172
173

175

List of Tables

5.1 Sampletaskset.o

5.2 Ceiling Values. L

Xv

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

Example of a monitor. oo 7
Task x blocks on condition queue B. 8
Task z signals condition variable B. 8
Accept blocking in a monitor. 12
Only specified entry calls are allowed in the monitor. 12
Internal and external scheduling in a monitor. 14
Calling task performs a signal. 14
Satisfying conditions after signalling. 17
First equivalence relating internal and external scheduling. 18
Second equivalence relating internal and external scheduling. 19
Internal monitor queues are merged. L 23
One internal monitor queue has higher priority. 23
Calling task blocks on condition variable B. 26
pCH Monitor L 32
Structure of a pC++ Mutex Object [11] 33
uBasePrioritySeq 35
Example of a bounded buffer in Ada. 39

xvil

3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1
4.2
4.3
4.4

5.1
5.2

Simulating multiple timeout statements in pCH+-. 56

Timeout task isdeleted 61
Timeout task is short-circuited 62
Timeout task expires before call occurs 63
Nodes on the event queue L. 68
Livelock occurs if the timeout is removed after processing of accept

statement.o oL Lo 74
Entry calls can be missed if entry lock is released. 75
Nested Accept Statement 77
Expansion of Accept Statement 81
uProtectAcceptStatement L. 81
uRemoveEvent L 82
UAcceptPause 83
UEntero 86
uLeave 87
uEnterTimeout L. 88
operator>> L e &9
Example of an array based priority queue. 104
Example of relative ordering in a heap. 107
Using FIFO queues as elements of the heap. 111
2 array FIFO queue heap. 114
Sample run sequence. 122
Basic Priority Inheritance Example. 123

XViil

3.3
5.4
3.5
3.6
5.7
3.8
3.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25

Sample run sequence.o
Priority Ceiling Example. L.
Immediate Ceiling Example.
Example of Transitivity.
Priority queues need updating when a task blocks on a resource. . .
The ultimate blocker changes as tasks block on or release resources.
Disinheritance using a stack. L 0oL
Updating stale information on a stack.
Disinheritance using a list.
Resources in a list are independent.
Example priority queue for counting technique.
Example UPIQ.

UENter s,

Tg’s current mutex changes to Ry.
Tg’s current mutex changes to Ry.
Ty’s current mutex changes to Ry.
T5 updates Tg’s UPIQ but not its active priority.
Ts cannot use Tg’s UPIQ to update its active priority.

uOnRelease

X1X

157

5.26 uLeave

XX

Chapter 1

Introduction

The most important aspect of a real-time system 1is its ability to meet specified
timing constraints. In order to achieve this goal, all aspects of the system must
be predictable. The criteria to achieve this predictability range from using data
structures with fixed worst-case execution time to scheduling tasks using a well-
defined algorithm.

Ideally, in addition to a system being predictable, it should also be flexible and
extensible in order for it to be suitable for a diverse set of real-time applications.
The ability to program different real-time applications with the same system dis-
courages multiple ad-hoc systems and encourages the exploitation of new ideas.
The primary motivation of this thesis is the construction of a flexible real-time
system in pCH++ [11, 35].

uCH+ is a translator and runtime kernel that supports lightweight concurrency
using a shared memory model. The ;C4+ language constructs are transformed into

C++ by the translator. A runtime kernel to support concurrency on uniprocessor

2 CHAPTER 1. INTRODUCTION

and multiprocessor architectures is also provided. Extensions to C4+ for real-time,
exception handling, debugging and profiling are ongoing.

The issues related to constructing a predictable real-time system are examined
by considering a selection of specific problems that demonstrate the requirements
at various levels of the system. As well, the interaction of these parts are examined
where appropriate. These ideas are then implemented as real-time extensions to

pCH.

1.1 Thesis Outline

The remainder of this thesis considers four specific real-time problems. Each of
these problems is discussed in a separate chapter, and each chapter roughly con-
sists of a section introducing the problem, a section describing related work, a
section describing an appropriate solution and finally a section describing the im-
plementation of this solution in puC+.

Chapter 2 considers how monitors can be extended for a real-time system. Both
internal and external scheduling considerations are discussed. It also proposes a
flexible implementation to support various kinds of scheduling.

Chapter 3 discusses adding a timeout mechanism for accept statements.

Chapter 4 discusses priority-based scheduling. Specifically, a method for as-
signing dynamic priorities and a corresponding priority queue data structure is
proposed.

Chapter 5 discusses basic priority inheritance and an implementation of basic

priority inheritance with mutex objects is presented.

1.1. THESIS OUTLINE

Finally, conclusion and future considerations are discussed in Chapter 6.

Chapter 2

Real-Time Monitors

A monitor is a high level concurrency construct that can be used for indirect task
synchronization and communication. Preliminary work on monitors was done by
Hansen [8] and Hoare [24]. For a thorough discussion of monitors see Buhr [10].

A monitor consists of a set of data coupled with a set of routines to manipulate
this data, similar to the structure of a class. The basic function of a monitor,
however, is to guarantee mutually exclusive access to this data and to provide
a mechanism for synchronization. To accomplish this functionality, the monitor
routines, called mutex routines, are executed with mutual exclusion with respect
to one another and special statements are available in the mutex routines to block
and restart task execution.

In addition to these special statements used for synchronization, decisions re-
garding which task can enter the monitor next are also determined by the kind of
monitor. The major difference among the various kinds of monitors relate to how

tasks associated with the monitor are scheduled. As scheduling is fundamental to

6 CHAPTER 2. REAL-TIME MONITORS

real-time programming, whether it be a CPU or another resource, it is important

to analyse all these decisions from a real-time perspective.

2.1 Background

Before considering the real-time issues relating to monitors in Section 2.2, basic
monitor semantics are presented using Figure 2.1. Tasks enter a monitor by calling
one of the mutex routines associated with the monitor. If a task is executing inside
the monitor, then the monitor is referred to as active and this task is designated
the owner of the monitor. Otherwise, the monitor is referred to as inactive and
the monitor has no owner. As only one task can own the monitor at any given
time, tasks calling into the monitor mutex routines may need to block. These tasks
are referred to as entry blocked tasks. In general, the next task chosen to own the
monitor from among these entry blocked tasks is the one that has been waiting the
longest. This effect is usually implemented by putting calling tasks onto a first-in

first-out (FIFO) queue, referred to as the entry queue.

2.1.1 Internal Scheduling

As previously mentioned, special statements are available to allow an active task
to perform explicit synchronization in the monitor, referred to as internal schedul-
ing. This synchronization is achieved using condition variables, and wait and signal
statements. A condition variable is basically a queue of blocked tasks. For example,
task X executing inside a monitor can block on condition variable B by executing

the statement wait B (see Figure 2.2). When this task blocks, the monitor becomes

2.1. BACKGROUND 7

entry queue

condition signalled
A queue
i O @ \ 3 shared i / :
l variables l
C) &) / j
condition signaller
B queue
exit

O active task O blocked task

Figure 2.1: Example of a monitor.

inactive and another task can be scheduled. When a subsequent task inside the
monitor issues the statement signal B, called the signaller task, a task is removed
from the specified condition queue and placed on another queue, called the sig-
nalled queue. The signaller task, currently in the monitor, is then placed on the
signaller queue. Tasks are typically removed from each of the signalled and the sig-
naller queues in FIFO order. When the signaller task blocks, the monitor becomes
inactive again and another task can be scheduled (see Figure 2.3).

Based on the discussion so far, there are three ways that an active monitor can
become inactive, i.e., a task can explicitly exit the monitor, a task can block inside
the monitor by issuing the wait statement or a task can block inside the monitor by
issuing the signal statement. When the monitor becomes inactive, there are three

queues from which a task can potentially be selected to become the next monitor

CHAPTER 2. REAL-TIME MONITORS

entry queue

condition signalled
A queue
i O ®\ i shared i /
| variables l
(=&

condition signaller
B queue
exit

O active task Q blocked task

Figure 2.2: Task x blocks on condition queue B.

Q entry queue

condition signalled
A queue
| variables |
(A o)
condition signaller
B queue
exit

O active task O blocked task

Figure 2.3: Task z signals condition variable B.

2.1. BACKGROUND 9

owner, 1.e., the entry, the signaller or the signalled queue. As the tasks blocked
on either the signaller queue or the signalled queue are blocked inside the monitor,
these queues are referred to as internal queues, whereas the calling tasks on the
entry queue are blocked outside the monitor, and this queue is referred to as an
external queue. Note that the condition queues are not considered during scheduling
decisions as the tasks on these queues are blocked waiting to be signalled, and hence,
not yet eligible for re-entry into the monitor. The decision as to the order in which
these three queues are considered is determined by the kind of monitor. Not only
is the order in which these three queues are considered fixed for a particular kind of
monitor, but monitors are typically classified according to this order (see Buhr [10]).

One example of a useful kind of monitor (pages 72-73, Buhr [10]) is the priority
non-blocking monitor. Here, priority refers to the property that internal queues
are given preference over external queues, and non-blocking refers to the property
that the signaller queue is scheduled first among the three queues. With this kind
of monitor, the signaller queue has highest priority, followed by the signalled queue
and the entry queue has lowest priority. Another kind of monitor is the no priority
non-blocking monitor. With a no priority non-blocking monitor, the signaller queue
is still given highest priority but the signalled queue and entry queue have equal
priority, so one internal queue is not given priority over the external queue. If
two or more queues have equal priority, often FIFO ordering across the queues is
supported in the implementation by merging these queues. It is important to note
that not all orderings for scheduling these three queues result in useful monitors.

For example, any ordering in which the entry queue is given highest priority can

10 CHAPTER 2. REAL-TIME MONITORS

result in starvation and synchronization difficulties with tasks blocked inside the
monitor.

While three queues exist from a theoretical point of view, typically at most two
queues are needed to implement a monitor. Normally, one of the signaller queue or
the signalled queue can be eliminated for priority monitors, because one of these
queues has a maximuin size of one. This queue has a maximum size of one because
tasks are only placed on these queues as a result of a signal statement. As a signal
statement causes the monitor to become inactive, requiring a scheduling decision,
the task placed on the highest priority queue is immediately selected as the next
task to execute inside the monitor. Thus, the actual queue is eliminated and any
task that would have been placed on this queue is directly made the new monitor

OowIler.

2.1.2 External Scheduling

An interesting extension to the monitor described by Hoare [24] is the notion of
external scheduling. With external scheduling, the decision regarding which task is
allowed to execute inside the monitor next is made by selecting a particular task
waiting outside the monitor on the entry queue. External scheduling is typically
achieved by the monitor owner specifying which calls to mutex routines are consid-
ered callable. Only a task calling one of these callable mutex routines is permitted
to enter the monitor when the next scheduling decision is made, i.e., when the
monitor becomes inactive. Tasks blocked inside the monitor are usually not consid-

ered when external scheduling decisions are made. A common implementation of

2.1. BACKGROUND 11

external scheduling, using an accept statement, is described below, but other imple-
mentations of external scheduling have been proposed, including protected entries
in Ada [59], operation avoidance in Sylph [17] and path expressions [2].

An accept statement consists of a list of callable mutex routines, e.g., accept(AMy,
M3). When a task inside the monitor executes an accept statement, this task blocks
waiting for another task to call one of the specified mutex routines (see Figure 2.4).
The task executing the accept statement is referred to as the acceptor and this
task is said to be accept blocked while waiting for this call to occur. Tasks blocked
inside the monitor are not considered when the acceptor relinquishes ownership of
the monitor by accept blocking. Only a task already blocked on the entry queue or
subsequently calling into one of the specified mutex routines is allowed entry into
the monitor (see Figure 2.5). In general, the acceptor must wait for the calling
task to exit the monitor before it can continue. Requiring the calling task to finish
first allows it to satisfy whatever conditions the acceptor may require to continue
executing, as well as, providing a method for synchronization, called a rendezvous.

However, it is also possible for this calling task to subsequently block on an
accept statement while in the monitor, and, in order to maintain the described se-
mantics, tasks blocked on accept statements are restarted in last-in first-out (LIFO)
order. This ordering can be implemented by using a stack, called the acceptor stack,

for managing the accept blocked tasks.

12 CHAPTER 2. REAL-TIME MONITORS

O M, entry queue
® Vv, (M; => called mutex routine)

(O M,

condition

A
: OO\ i shared i

| variables | © OO

i o | acceptor stack
condition

B

exit

O acceptor task O other blocked tasks . calling task

Figure 2.4: Accept blocking in a monitor.

entry queue

O M, (M; => called mutex routine)

condition

variables | O O O

Lo] \ acceptor stack

A
i O O \ i shared
(=

condition

B

exit

O acceptor task Q other blocked tasks . calling task

Figure 2.5: Only specified entry calls are allowed in the monitor.

2.1. BACKGROUND 13

2.1.3 Internal and External Scheduling

When internal and external scheduling are combined, conflict can occur (see Fig-
ure 2.6). The problem is determining how accept statements fit into the earlier
discussion on internal scheduling. Due to the strict semantics imposed by accept
statements, having separate queues for internal and external scheduling can cause
potential starvation and semantic problems. With external scheduling, not only
must the calling task have highest priority, but the acceptor must be the next task
to execute when the calling task exits the monitor, which means scheduling it ahead
of tasks on internal scheduling queues. The following discussion considers the order
in which the acceptor stack could be scheduled relative to the other internal queues.

If the acceptor stack has lower priority than the other internal queues, then
when a calling task exits a monitor, the acceptor may not be the next task to
execute. In the example given in Figure 2.6, the acceptor would not be scheduled
when the calling task exits because tasks exist on the other internal queues.

On the other hand, if the acceptor stack is given higher priority than the other
internal queues, then a calling task cannot employ the signalling facilities in a useful
manner. After a calling task performs a signal, the monitor must make a scheduling
decision (see Figure 2.7). If the acceptor stack has higher priority, then the acceptor
is restarted even though the calling task has not exited the monitor, nor has the
signalled task executed. In this situation, it is more appropriate for a task on either
the signalled queue or signaller queue to be scheduled next because the calling task
may have prepared some event for the signalled task.

In both cases, having separate queues for internal and external scheduling results

14 CHAPTER 2. REAL-TIME MONITORS

entry queue

queue

condition
; > signalled

shared

signaller

b J /©7> queue
. O acceptor

stack

REX

condition

B

exit

O acceptor task () other blocked tasks @ calling task

Figure 2.6: Internal and external scheduling in a monitor.

O entry queue

condition

signalled

—— /00) e

A
i Q \ i shared i
(=

variables signaller
b a /ﬁ queue
acceptor
condition O stack
B

exit

O acceptor task O other blocked tasks . calling task

Figure 2.7: Calling task performs a signal.

2.1. BACKGROUND 15

in problems. The most reasonable semantics are obtained when the tasks associated
with accept statements are integrated into the existing monitor data structures.
This integration is achieved by using the signaller and signalled queues to schedule
calling and acceptor tasks as well. The following analysis shows the constraints
that must be dealt with.

To begin, consider the semantics of internal scheduling (see left side of Fig-
ure 2.8). First, a task inside the monitor blocks on a condition variable (Wait C).
At some point, another task enters the monitor, satisfies the conditions required by
the blocked task (Prepare X) and subsequently signals the blocked task (Signal C).
Depending on the kind of monitor, when the signal occurs either the signalled task
(T) or the signaller task (T3) is scheduled next (Use X). (While it is also possi-
ble for a task on the entry queue to be scheduled next, depending on the kind of
monitor, this situation is omitted because the internal and external scheduling data
structures cannot be merged for this kind of monitor (see below)). As the signaller
task must own the monitor in order to perform the signal, it is possible for this
task to satisfy any conditions required by the blocked task before it performs the
signal (Prepare X). Therefore, executing either the signaller or signalled task after
a signal is reasonable, as long as the signaller does not invalidate X before exiting
or waiting.

Furthermore, if the signaller task is given higher priority than the signalled task,
e.g., with a Priority Non-Blocking monitor, then it is possible to delay satisfying the
conditions required by a task blocked on a condition variable until after the signal

is performed because the signaller task is always scheduled first (see right side of

16 CHAPTER 2. REAL-TIME MONITORS

Figure 2.8). In this example, the Signal C statement corresponds to a scheduling
decision between tasks 7} and T,. While the diagram on the left works regardless
of the kind of monitor because the condition is prepared first, the diagram on the
right is only appropriate in situations where the signaller task is given priority over
the signalled task.

It is possible to relate the semantics of an accept statement to the semantics
described above for internal scheduling (see Figure 2.9). Similar to a task block-
ing on a condition variable (Wait C), the acceptor blocks on an accept statement
(Accept(...)). A calling task can then enter the monitor (Call) in order to satisfy
whatever conditions the acceptor requires to continue execution (Prepare X). When
this calling task finishes, the acceptor is restarted (Use X). The equivalence sug-
gested is that the acceptor (T7) is the waiting / signalled task, the calling task (73)
is the signaller and the actual call is the signal. In this situation, a Call acts like a
Signal because at this point a scheduling decision between T and Ty must be made.
Note that the Signal cannot be related to a calling task exiting a monitor because
when the calling task exits, it is no longer eligible to be scheduled by the monitor.

From this analogy, the calling task is placed on the signaller queue and the ac-
ceptor is placed on the signalled queue. However, the problem with this equivalence
is that the acceptor and the calling task must be executed in a specific order, i.e.,
the calling task (signaller) must be executed before the acceptor (signalled). How-
ever, certain kinds of monitors may schedule tasks from the signaller and signalled
(or even the entry) queues in a different order. Therefore, this equivalence is only

appropriate for certain kinds of monitors.

2.1. BACKGROUND 17

T T, T T,

Wait C Wait C

Signal C

Prepare X Prepare X

Signal C

Use X

Use X

T - Signalled 1) - Signalled

T, - Signaller T, - Signaller

|| Mutex Object || Mutex Object

Figure 2.8: Satisfying conditions after signalling.

18 CHAPTER 2. REAL-TIME MONITORS

Ty T Ty T,
Wait C Accept(...)
| |
| ! Call
I Signal C :
|
| |
: Prepare X | Prepare X
| |
| |
Use X Use X ‘
Ty - Signalled T1 - Acceptor
T, - Signaller T, - Calling Task
|:| Mutex Object |:| Mutex Object

Figure 2.9: First equivalence relating internal and external scheduling.

2.1. BACKGROUND 19

Tl T2 T1 TZ
Wait C Call —
| |
: Prepare X : Prepare X
| |
| |
‘ Signal C | Accept(...)
Use X | Use X |
l l
| |
| |
| |
| |
| |
Ty - Signalled Ty -Calling Task
T, - Signaller Ty - Acceptor
|:| Mutex Object |:| Mutex Object

Figure 2.10: Second equivalence relating internal and external scheduling.

20 CHAPTER 2. REAL-TIME MONITORS

In fact, even if the equivalence is reversed, i.e., the acceptor is the signaller and
the calling task is the waiting / signalled task, the same problem occurs (see Fig-
ure 2.10). In this case, the equivalence suggested is that the calling task (Call) must
block waiting for a condition to be satisfied before it can enter the monitor. When
the acceptor has satisfied the condition required by the calling task (Prepare X), the
calling task is signalled (Accept(...)) to proceed (Use X). In this case, the execution
of the accept statement can be considered the signal. With this analogy, the calling
task is placed on the signalled queue and the acceptor is placed on the signaller
queue. However, the order of execution of the acceptor and the calling task must
still be maintained to achieve reasonable semantics. Again, this equivalence is only
appropriate for certain kinds of monitors.

While these equivalences suggest that it is possible to use the internal scheduling
queues for processing accept statements, two problems must be addressed. First,
the acceptor and the calling task must be executed in a specific order regardless
of the order in which the monitor schedules signaller, signalled and entry blocked
tasks. Second, acceptors are processed in LIFO order but tasks involved in internal
scheduling are processed in FIFO order.

If one internal queue is not given higher priority (remember monitors where
the external queue is given higher priority than both internal queues are rejected),
then both the calling task and the acceptor must be placed on the internal queue
with higher priority in order to guarantee that they are executed before other entry
blocks tasks. However, placing both the acceptor task and the calling task on the

internal queue of higher priority, again, prevents the calling task from employing

2.1. BACKGROUND 21

the signalling facilities in a useful manner. The problem arises because the acceptor,
as it 1s on the queue with highest priority, is scheduled before any task on the lower
priority internal queue including either the calling task or any tasks signalled by
the calling task depending on the kind of the monitor. For this kind of monitor,
separate queues must be used for accept statements and the user must address any
starvation or semantic issues at the implementation level.

As well, if the external and internal queues have equal priority and the internal
scheduling queues are used to process accept statements, then it is impossible to
guarantee that the acceptor and the calling task are scheduled before entry blocked
tasks without violating the semantics of the kind of monitor. This violation occurs
because any changes giving the acceptor and the calling task priority over entry
blocked tasks also applies to the signaller and signalled tasks. Therefore, separate
queues must also be used for accept statements with this kind of monitor and the
user must address any associated problems at the implementation level.

In fact, the first problem can only be solved if the monitor assigns the internal
queues higher priority than the external queue during scheduling decisions. This
situation can be further subdivided depending on whether the internal queues have
equal priority.

In order to simplify the analysis, assume that if both internal queues have equal
priority, with respect to scheduling decisions, then these queues are merged to form
a single queue. Now, the acceptor and the calling task should be placed on this
single queue such that the calling task is scheduled first (see Figure 2.11). For this

kind of monitor, it is irrelevant whether the calling task or the acceptor is associated

22 CHAPTER 2. REAL-TIME MONITORS

with the signaller or signalled task, respectively because all these tasks are placed
on the same queue.

On the other hand, if the two internal queues have different priorities, then the
calling task must be placed on the internal queue with highest priority and the ac-
ceptor should be placed on the other internal queue (see Figure 2.12). The freedom
to place the calling task on the internal queue with higher priority, irrespective of
whether it is the signaller or the signalled queue, exists because, depending on the
actual ordering of the internal queues, one of the previous equivalences applies. If
the signaller queue has higher priority, then the first case, where the calling task is
considered the signaller and the acceptor is considered the signalled task, applies.
If, however, the signalled queue is given preference, then the second case, where
the calling task is considered the signalled task and the acceptor is considered the
signaller, applies.

The problem relating to the different order in which tasks on the various queues
are processed remains. When the internal queues have differing priorities, the queue
that the calling task is placed on has a maximum size of one (see the discussion
above) so it does not matter whether this queue is a FIFO queue or a LIFO queue.
In fact, this queue can be eliminated and the calling task made the owner of the
monitor directly. The problem occurs when the acceptors are merged into the
remaining queue because the acceptors are restarted in LIFO order, but the tasks
on the other queues are restarted in FIFO order. When these two queues are
merged, the merged queue can be implemented in LIFO order and FIFO ordering

can be achieved by the programmer for the non-acceptor tasks through an explicit

2.1. BACKGROUND

O
O entry queue
O

condition
A
i Q Q \ 1 shared 1
1 variables | @O O
Lo i merged internal
—\ queue
condition
B
exit

O acceptor task () other blocked tasks @ calling task

Figure 2.11: Internal monitor queues are merged.

O

O entry queue

condition low priority
A queue
S T /OO
m 1 shared |
| variables 1
E\ high priority
- queue
condition
B
exit

O acceptor task () other blocked tasks @ calling task

Figure 2.12: One internal monitor queue has higher priority.

23

24 CHAPTER 2. REAL-TIME MONITORS

technique called daisy-chain signalling (Chapter 8, Buhr [9]).

If the non-acceptor tasks are signalled tasks, then with daisy-chain signalling,
instead of signalling multiple tasks, only one task is signalled initially and the other
tasks to be signalled are left on their respective condition queues. Then, when the
currently executing signalled task reaches a specified point, it signals the next task
to proceed. In this way, the signalled tasks can be processed in FIFO order.

On the other hand, if the non-acceptor tasks are signaller tasks, then daisy-chain
signalling is more complicated. In this situation, signaller tasks are placed directly
on the merged LIFO queue without blocking on a condition variable first. In order
to process the signaller tasks in FIFO order, a count of the number of signaller tasks
is required. Then, every signaller task on the queue except the last one immediately
blocks on a condition variable when it restarts. The last signaller task, however,
actually executes and then signals the next signaller task on the condition queue
when it finishes. This signal restarts the next signaller task and causes the previous
signaller task to be placed on the LIFO queue again. Repeating this sequence for
all the signaller tasks on the condition queue causes the signaller tasks to execute
in FIFO order but leaves all the signaller tasks blocked on the LIFO queue again.
As the signaller tasks are finished executing, they can be restarted in a LIFO order
as they simply exit when restarted. The biggest problem with this approach is that
the signaller tasks remain blocked in the monitor until all the signaller tasks are
finished executing.

Finally, in the case where the two queues have equal priority, the single merged

internal queue should also be implemented in LIFO order, with the acceptor and

2.1. BACKGROUND 25

calling tasks placed on this queue so that the calling task is scheduled first. It
should also be possible to use daisy-chain signalling to process the non-acceptor
tasks in FIFO order, but the process is even more complicated than that described
above.

An interesting exception to the semantics of the accept statement arise when
both accept statements and condition variables are used together. Consider the sit-
uation where the calling task of an accept statement blocks on a condition variable
(see Figure 2.13). In this situation, it is possible for the acceptor to be restarted
even though the calling task has not finished execution. When a calling task blocks
on a condition variable, another task is scheduled for entry into the monitor. De-
pending on the order in which the queues are considered, it is possible for the
acceptor to be scheduled despite the fact that the calling task has not finished.

There are certain types of problems that must be solved using this semantics.
The logical explanation behind this semantics is that the action (cooperation) the
acceptor was waiting for did not occur at this time, i.e., the calling task could
not satisfy the cooperation and/or the rendezvous is broken. In this case, the
acceptor must subsequently restart the calling task when the calling task can satisfy
the cooperation or the rendezvous can complete. This situation differs from the
situation described above in which the calling task performs a signal. In that
situation, the calling task is ready to proceed but, because of the ordering of the
queues, the acceptor is scheduled first. The semantics resulting from the use of
both accept statements and condition variables can be difficult to understand and

to program but is essential in certain cases. As will be seen next, maintaining the

26 CHAPTER 2. REAL-TIME MONITORS

O entry queue
O
O

condition low priority
queue
************* T /@0
shared |
|
variables 1
high priority
— queue
condition
B
exit

O acceptor task Q other blocked tasks . calling task

Figure 2.13: Calling task blocks on condition variable B.

logical behaviour of monitors is crucial when they are extended in the real-time

domain.

2.2 Real-Time Considerations

The most important criteria for a real-time system is that tasks meet their specified
deadline. As access to a monitor is serialized, it is possible that a high priority
task calling into a monitor may have to wait for many other low priority tasks to
proceed through the monitor, referred to as priority inversion, when the default
FIFO ordering is used for the entry queue. This priority inversion can result in
unacceptable delays that could cause deadlines to be missed. The desirable change

in behaviour is for high priority tasks to be given preference over lower priority

2.2. REAL-TIME CONSIDERATIONS 27

tasks when determining which task should gain control over the monitor next.
This section discusses how the behaviour of a monitor can be modified to better
suit a real-time environment.

Unfortunately, the notion of a real-time monitor is complicated by the fact that
the logical behaviour of a monitor must be maintained. The order of scheduling
the three queues, i.e., the entry queue, the signaller queue and the signalled queue,
determines which task gains control over a monitor and defines the kind of monitor.
When augmenting monitors for a real-time environment, it is important to preserve
the order in which these queues are considered. Allowing a user to modify the
behaviour of a monitor in a limited and controlled manner is reasonable, but not if
it changes the semantics of the kind of monitor in an unpredictable way, making it
impossible to program. Thus, the semantics of the kind of monitor must be fixed,
which in turn fixes the order in which the three queues are considered for scheduling
decisions.

Fixing the order that the queues in a monitor are scheduled limits the possible
real-time changes to the ordering of the tasks within a particular queue. A naive
idea might be to simply prioritize all the various queues in the monitor, but, unfor-
tunately, this is not necessarily possible. It is certainly reasonable to prioritize the
entry queue as this expedites the entry of higher priority tasks into the monitor. If
the monitor does not support accept statements, then it is also possible to prior-
itize the signaller and signalled queues. The only caveat with signals is that this
deviation from FIFO ordering is the same as switching to LIFO, that is, daisy-chain

signalling must be used to control the order in which tasks are processed or the

28 CHAPTER 2. REAL-TIME MONITORS

prioritized scheduling resulting from multiple signalling must be adopted.

If, however, the monitor allows accept statements, then from section 2.1, there
are two possibilities. If the signaller and signalled queues do not have higher priority
than the external queue, then separate queues must be used for accept statements.
As the calling task is always immediately scheduled, its queue has a maximum size
of one and can be eliminated in the implementation. The acceptor stack, however,
can contain more than one task but cannot be prioritized, as it must be processed
in LIFO order. The remaining internal queues, however, can be prioritized as
discussed above. Unfortunately, the problems discussed in section 2.1 with these
kinds of monitors still exist.

If the internal queues do have higher priority than the external queue, then
either one internal queue has higher priority or both queues have equal priority. If
one queue has a higher priority (see Figure 2.12), then this queue has a maximum
size of one. As prioritizing a queue of size one has no effect, this queue can be
eliminated in the implementation. The other queue, however, can contain more
than one task. If this queue is merged with the acceptor stack, then it must be
processed in LIFO order because of the acceptors. As described in section 2.1,
the acceptors must be restarted in LIFO order so that a calling task can satisfy
whatever conditions are required to restart an acceptor. In this case, the second
queue cannot be prioritized.

Unfortunately, merging the acceptor stack with the internal queue of lower pri-
ority prevents this internal queue from being prioritized. By using the technique of

daisy-chain signalling, however, it is possible to process subgroups of tasks associ-

2.2. REAL-TIME CONSIDERATIONS 29

ated with signalling in priority order. While this prioritization may not be global
to the entire queue, subgroups of non-acceptor tasks that appear contiguously on
the queue can be processed in locally prioritized order.

If the internal queues have equal priority, then to simplify the analysis, again
assume that these queues are merged (see Figure 2.11). This merged queue must
be LIFO because it may contain acceptors. Again, the technique of daisy-chain sig-
nalling can be used to process subgroups of non-acceptor tasks in locally prioritized
order.

Now, consider the ordering of tasks within a particular condition queue. It
would seem reasonable to allow this queue to be prioritized. Unfortunately, this
presents a problem if dynamic priorities are used. A task’s priority is considered
dynamic if its priority is allowed to changed over time. Dynamic priorities present
a queue maintenance problem because the priorities of blocked tasks can change
when dynamic priorities are used, but condition queues are usually only modifiable
by the task currently owning the monitor, as they are considered internal data
structures. In order to support dynamic priorities, a condition queue may need to
be adjusted by a task outside of the monitor to re-order the queue if the priority of
blocked tasks change. To allow tasks outside the monitor to change these queues,
locks would have to be added in order to protect condition queues. This solution,
however, introduces additional complexity and overhead that may not be generally
required. Rather than forcing all users to pay for the costs of locks on condition
variables, it is reasonable to suggest that the programmer enforce whatever queuing

scheme is appropriate for a given situation with the monitor, which requires priority

30 CHAPTER 2. REAL-TIME MONITORS

values to be accessible at the user-level.

Finally, always using a priority ordering on the entry queue is incorrect in some
cases, e.g., the readers/writer problem could result in stale information if tasks
are processed in priority order rather than FIFO ordering. But, from a real-time
perspective, priority ordering is exactly the behaviour that is desired for a typical
monitor. These problems, as well as the desire to use schemes to deal with priority
inversion or to perform dynamic scheduling suggest that a more flexible approach

is required.

2.3 Implementation

This section discusses the design and implementation of the real-time extensions
I developed for monitors in uC++. pC4+ monitors differ from those presented by
Hoare [24] in several ways. These extensions also exist in similar constructs provided
by other languages and are intended to make monitors easier to use without limiting
their inherent functionality.

First, the monitors in pC+4++ can be classified as priority non-blocking moni-
tors. The priority property requires tasks scheduled in the monitor (using internal
scheduling) to be serviced before tasks entering the monitor. This property al-
lows cooperation to be established between the signaller and signalled tasks, and
eliminates inefficient busy waiting (e.g., loops around wait statements) because call-
ing tasks cannot barge into the monitor. The non-blocking property requires the
signaller task to continue executing after a signal statement. This property makes

monitors easier to use and more efficient for the following reasons. Ease of use arises

2.3. IMPLEMENTATION 31

because 1t is more intuitive for the programmer when the signaller task continues
executing after a signal. Efficiency arises because signal statements usually occur
before a task exits or blocks inside the monitor. Therefore, allowing the signaller
task to continue execution eliminates a context switch and increases concurrency.
This non-blocking property occurs with monitors in Turing [25] and with mutex
and condition variables in POSIX [1].

The second difference is that pC44 monitors support recursive entry, i.e., a
monitor owner is allowed to call back into the monitor. Recursive entry is useful
because it eliminates a common source of deadlock, e.g., if the monitor owner calls
another mutex member routine, either directly or indirectly. While it is possible to
restructure the monitor to prevent this problem, the rewritten code is unnecessarily
complex. Recursive entry is also supported by monitors in Java [22] and serialized
objects in Obliq [14].

The final major difference is that pC4+4 monitors support both internal and
external scheduling. As described in Section 2.1.2; external scheduling in pCH4+ is
achieved using accept statements similar to those in Ada tasks [59], while internal
scheduling follows the Hoare monitor. The advantage of accept statements is that
they provide high-level synchronization and are also easier to use and understand
than condition variables in many cases.

A potential drawback of these enhancements is the requirement that the pro-
grammer learn additional semantics and adopt a coding style that differs slightly
from that used with the Hoare monitor. However, experience with these enhance-

ments suggests that they tend to make monitors easier to use and more intuitive

32 CHAPTER 2. REAL-TIME MONITORS

uMutex class monitor {
private:
. /I default no mutex routines
public:
/I default mutex routines

Figure 2.14: uC+4+ Monitor

for the programmer.

Monitors in yC++ are structured as C4++ classes. In order to specify a class as a
mutex object, the qualifier uMutex is added before class (see Figure 2.14), which re-
sults in all public members of the class being mutex routines. Alternatively, the key-
words uMutex and uNoMutex can be used to explicitly indicate whether a member
routine should be executed with mutual exclusion. For example, uMutex int f(...),
specifies that member routine f is be executed with mutual exclusion. All private
and protected member routines default to no mutual exclusion, but can be explicitly
changed.

The structure of a pC+ mutex object is given in Figure 2.15. As yC+4 monitors
are priority non-blocking monitors, the signaller queue has highest priority and is
eliminated from the implementation. As well, the acceptor stack and the signalled
queue are merged to create the acceptor / signalled stack. The only feature not
yet discussed is the mutex member queues. A separate member queue is associated
with each mutex member routine. When a task calling into the monitor blocks, it is
placed on both the entry queue and the mutex queue associated with the member
routine it called. The mutex member queues are an optimization to allow accept
statements to be processed quickly. If the mutex member queues are not present,

then each uAccept clause must linearly search the entire entry queue for calls to a

2.3. IMPLEMENTATION 33

entry
. queue
mutex
queues @
X Y @ order of
@ @ @ arrival
condition @ @ @
A

OO

acceptor /
Fmm e T signalled
m shared 1 stack

f\

condition

B

exit

@ active task O blocked task O duplicate

Figure 2.15: Structure of a uC++ Mutex Object [11]

particular member routine. Associating a mutex queue with each member routine
eliminates this O(n) search, where n is the number of tasks on the queue, because
outstanding calls can be located in O(1). The entry queue is still maintained to
allow entry tasks to be processed efficiently in FIFO order, otherwise every mutex
queue would need to be consulted and each entry timestamped.

The basic approach to implementing monitors is for the language to implement
a different version of monitor for each kind that is desired, such as a version with
FIFO ordering, as well as a variety of versions for different real-time schemes. This
approach is problematic for obvious reasons, such as excessive code duplication,

maintaining multiple versions, etc., as well as, the fact that a language extension

34 CHAPTER 2. REAL-TIME MONITORS

is necessary for each new type of monitor that is implemented.

However, considering the restrictions discussed above, there are only a few real
differences possible among the various types of real-time monitors. In order to
maintain the semantics of a priority non-blocking monitor, the order in which the
various queues are considered cannot change. Therefore, the possible changes are
restricted to the order in which tasks are processed on the entry, mutex and con-
dition queues, as well as, allowing tasks to perform some additional functionality
when entering or leaving a monitor. As suggested in the previous section, the con-
dition queues are left as FIFO and the user is responsible for different scheduling
schemes within the monitor. The functionality required when tasks enter or leave
a monitor can be achieved by providing hooks that are invoked in the monitor
entry and exit code and the remaining changes can be encapsulated within the
functionality of the various queues.

The extensions I designed and implemented for C4+ generalize the internal
scheduling mechanism of the monitor to achieve the desired range of functionality.
First, the specification of a monitor class is extended by requiring two additional
types to be specified. The new format is based on C4+ template syntax and is

given below.

uMutex<EntryQueueType, MutexQueueType> class monitor {
private:

public:
2

The first parameter specifies the type for the entry queue and the second parameter

2.3. IMPLEMENTATION 35

class uBasePrioritySeq : public uBaseScheduleFriend {
uBaseTaskSeq list;
public:
virtual bool uEmpty() const;
virtual uBaseTaskDL *uHead() const;
virtual int uAdd(uBaseTaskDL *node, uBaseTask *uOwner, uSerial *s);
virtual uBaseTaskDL *uDrop();
virtual void uRemove(uBaseTaskDL *node);
virtual void uOnAcquire(uBaseTask &uOwner, uSerial *s);
virtual void uOnRelease(uBaseTask &uOldOwner, uSerial *s);
}; 1/ uBasePrioritySeq

Figure 2.16: uBasePrioritySeq

specifies the type for the mutex queues. These types must be derived from the class
uBasePrioritySeq (see Figure 2.16). The ability to specify different types for the
entry and mutex queues can be useful for certain kinds of monitors. For example,
if FIFO queues are used for both the monitor entry and mutex queues, then less
overhead can be achieved by using a singly linked list for the mutex queues. This
efficiency arises because tasks are only removed from the front of the mutex queues
with this kind of monitor, but removed from anywhere in the entry queue.

In uBasePrioritySeq, the routines uEmpty, uHead, uAdd, uDrop and uRemove
provide a generalized interface to a queue. The routine uOnAcquire provides a hook
so that work can be performed when a task acquires control of a monitor. Similarly,
the routine uOnRelease also provides a hook, but this hook is executed as the task
leaves the monitor. No hook is invoked when a task blocks on an entry queue
because the uAdd routine is already invoked to add the task to the entry queue.
Therefore, any additional work can be added to the end of the uAdd routine.

These hooks allow advanced schemes such as priority inheritance (see Sec-

tion 5.4) to be implemented. In the current implementation, the uOnAcquire and

36 CHAPTER 2. REAL-TIME MONITORS

uOnRelease routines are not called for mutex queues. The basic idea is to allow
a task about to block on the monitor the ability to influence the task currently
running in the monitor. Then, when a task exits the monitor, it can reevaluate any
modifications it underwent while it was in the monitor.

In order to provide backwards compatibility with existing pCH+ pro-
grams, the monitor arguments are optional. If no arguments are speci-
fied, as in Figure 2.14, then the system defaults to using internally de-
fined FIFO queues for the monitor. Therefore, the header in Figure 2.14 is
expanded to uMutex<uBasePrioritySeq,uBasePriorityQueue> class monitor, where
uBasePrioritySeq i1s a doubly linked FIFO queue provided with pC4+ and
uBasePriorityQueue is a singly linked FIFO queue provided with pC4. It is also
possible to allow this default behaviour to be modified, so, when no monitor argu-
ments are specified, user specified default queues are used instead. Note that while
no changes to the source code are required, programs must be recompiled for these
changes to take effect.

Another interesting aspect of this implementation is that it is independent of the
template features available in C4++. Therefore, it is possible to combine template
features with the monitor extension capability by basing the parameters required

for the new definition of a monitor on the template parameters, as in:

template<class x,class y> uMutex<x,y> class monitor {
private:

public:

2.4. RELATED WORK 37

This definition uses template parameter x for the type of the entry queue and
template parameter y for the type of the mutex queues. This monitor template can
be instantiated with various types of queues to get different kinds of monitors.
This feature allows a monitor to be defined and then instantiated with differ-
ent queue types in order to function in various real-time and non-real-time situa-
tions. For example, assume that two versions of the same type of monitor are re-
quired, i.e., a non-real-time version called NonRTmon and a real-time version called
RTmon. The first step is to define an appropriate FIFO queue data structure and
an appropriate priority queue data structure, e.g., uFIFOQueue and uPriorityQueue,
respectively. Then, the statement monitor<uFIFOQueue, uFIFOQueue> NonRTmon
instantiates the non-real-time version of the monitor and the statement
monitor<uPriorityQueue, uPriorityQueue> RTmon instantiates a real-time version of

the same monitor.

2.4 Related Work

While many real-time languages do not support monitors as a language construct,
many of the considerations relevant to monitors apply to the constructs that are
supported in these languages. This section considers accept statements and pro-

tected objects in Ada [59] and mutexes and condition variables in POSIX [1, 29].

38 CHAPTER 2. REAL-TIME MONITORS

2.4.1 Ada

Although Ada does not provide a monitor construct, a similar method of synchro-
nization is provided with protected objects. A protected object is a class that allows
access to its data via protected procedures, protected functions and protected en-
tries. Protected procedures and protected entries are like mutex routines and are
executed with mutual exclusion with respect to each other and protected func-
tions. Protected functions, however, can execute concurrently, but are restricted to
read-only access to any data. Protected functions are similar to no mutex routines
except that no mutex routines can execute concurrently with mutex routines but
protected functions can only execute concurrently with protected functions.

Protected objects support external scheduling by allowing barriers to be spec-
ified in the definition of protected entries. This capability does not exist with
protected procedures or protected functions. Barriers are conditional expressions
and a call to a protected entry is only allowed to proceed if the associated barrier
condition evaluates to true. A call to a protected object that cannot proceed be-
cause of mutual exclusion or invalid barrier conditions is placed on the entry queue
associated with the call. Figure 2.17 contains an example of a bounded buffer in
Ada. In this example, Size and item are defined external to the bounded buffer.
Size is a Natural variable containing the size of the buffer and item is a type defining
the kinds of elements stored in the buffer. The when clauses on the Insert and
Remove entries determine when calls to each entry are allowed to proceed.

In Ada, entries are also associated with tasks which are pseudo-classes, i.e,

having no member routines. Instead, entry points are part of the accept statement,

2.4. RELATED WORK

type ItemArray is array(1l..Size) of item;

protected type BoundedBuffer is

entry Insert(Element : in item);

entry Remove(Element : out item);

private

Front, Back : Integer := 1;

Count : Integer := 0;

Elements : ItemArray; -- bounded buffer
end BoundedBuffer;

protected body BoundedBuffer is
entry Insert(Element : in item) when Count < Size is
begin
Elements(Back) := Element; -- insert into buffer
Back := Back mod Size + 1;
Count := Count + 1;
end Insert;

entry Remove(Element : out item) when Count > 0 is
begin
Element := Elements(Front); -- remove from buffer
Front := Front mod Size + 1;
Count := Count - 1;
end Remove;
end BoundedBuffer;

Figure 2.17: Example of a bounded buffer in Ada.

39

40 CHAPTER 2. REAL-TIME MONITORS

combining control structure and entry code. A task services its entries by using
a select statement composed of accept clauses. The synchronization that occurs
when an accept clause and a corresponding call to an entry occur is a rendezvous.
When the accept statement is finished, both the calling task and the acceptor
resume independent execution after their call or accept, respectively. If an entry
call cannot proceed immediately, it is placed on the entry queue associated with
the call.

Each entry associated with tasks and protected objects is serviced by a separate
entry queue. Ada entry queues are processed in FIFO order by default, but the
Real-Time Annex also allows priority ordering to be selected through the use of
a pragma. With priority ordering, the highest priority eligible task is selected
to proceed. If several tasks among the eligible entries have this highest priority,
then the entries are processed in the textual order of the accept clauses in the
select statement. However, if a particular entry has several tasks with this highest
priority, then the task blocked the longest is selected. The Real-Time Annex also
allows support for priority ceiling (see chapter 5) to be selected through the use of
a pragma.

While pragmas allow easy specification of appropriate real-time facilities for use
in conjunction with high-level constructs, they do not provide the flexibility to allow
users to incorporate any additional real-time functionality, for example, different
priority inheritance protocols. This limitation, however, does allow more thorough
run-time checks to be incorporated into the system and allows the implementation

to be optimized for a particular scheduling strategy.

2.4. RELATED WORK 41

Ada offers functionality similar to internal scheduling through the use of the
requeue statement. Requeue statements are used within entry bodies or accept
statements and allow the current entry call to be requeued onto the specified en-
try queue. Requeuing an entry call also ends the current entry body or accept
statement. This facility is more flexible than internal scheduling because a task
can be requeued on a task or protected object different from that specified by the
initial call. The drawback of using this approach for internal scheduling is that any
intermediate results calculated (locally) by the entry call are lost when a requeue
occurs. This approach also tends to be more expensive because internal scheduling
with a monitor can typically be achieved without additional locking.

Despite the limitations described above, the facilities provided by Ada are ad-
equate for many applications. The trade off for these limitations, however, is the

potential for a simpler and in some cases more efficient implementation.

2.4.2 POSIX

While POSIX does not explicitly support monitors, similar functionality can be
obtained by using mutexes and condition variables. In POSIX, a mutex variable is
like a binary semaphore initialized to one and can be used to guarantee mutually
exclusive access to a critical region. The big difference between a binary semaphore
and a mutex variable is that a mutex variable has an owner associated with it. This
owner is the task that locked the mutex variable and it is the only task allowed to
unlock the mutex variable. To obtain functionality similar to a monitor, the code

in every routine associated with the monitor is enclosed in calls to lock and unlock

42 CHAPTER 2. REAL-TIME MONITORS

the associated mutex variable. As only one task can own a mutex variable at any
given time, additional calls to lock the mutex variable are queued. This queue is
considered an external queue, and is equivalent to the entry queue described above
for monitors.

Condition variables are also supported in POSIX. POSIX condition variables
allow tasks to synchronize with respect to a mutex variable. A task in the monitor
can atomically block on a condition variable and release the mutex variable. A
subsequent owner of the mutex can then signal a condition variable to wake up a
blocked task. It is interesting to note that a signal operation in POSIX is defined
to unblock at least one of the threads blocked on the condition variable. Further-
more, a broadcast operation can be used to wake up all the tasks blocked on a
particular condition variable. The order in which tasks are unblocked depends on
the scheduling policy in effect. A signalled task implicitly reacquires the mutex
variable, competing with attempts by new calling tasks and tasks already blocked
on the entry queue. The order in which these tasks lock the mutex variable also
depends on the current scheduling policy. If the signaller task owns the mutex
before it signals, then it continues execution as the owner of the mutex.

The semantics described above are similar to a no priority non-blocking monitor,
as the entry queue and the signaller queue have equal priority. The problem with
not giving signaller tasks priority over tasks on the entry queue, however, is that
the condition a signalled task is blocked waiting on must be reevaluated when the
task regains control of the mutex, resulting in further waiting, as the condition may

no longer be true by this time.

2.5. SUMMARY 43

There are three scheduling policies supported in POSIX. These policies are re-
ferred to as SCHED _FIFO, SCHED_RR and SCHED_OTHER. With respect to
mutex objects and condition variables, SCHED _FIFO and SCHED_RR restart the
highest priority task that has been blocked the longest. SCHED_OTHER is im-
plementationally defined, and thus, tasks can be restarted in arbitrary order. For
real-time purposes, SCHED FIFO and SCHED_RR seem the most appropriate.
POSIX mutexes also support priority inheritance protocols (see chapter 5). The
desired priority inheritance protocol and the scheduling policy can be specified as
attributes of the mutex or condition variable’s initialization. This feature allows
different scheduling policies to be specified for mutex and condition variables.

While the facilities provided in POSIX are reasonable for dealing with priority
inversion with respect to mutex objects, they lack a certain flexibility. For example,
it would be difficult to program a FIFO version of the readers/writer problem or
add support for a different priority inheritance protocol. However, these limitations

are adequate for a commercial system that only needs basic real-time features.

2.5 Summary

When considering the changes required to make monitors appropriate for use in a
real-time system, the semantics of the kind of monitor must be maintained, oth-
erwise, programming with these monitors becomes very difficult. Therefore, these
semantics limit the possible changes to the ordering of tasks on a particular queue.

Enhancing monitors for a real-time environment, however, requires a flexible

implementation to capture various semantics. These semantics may include non-

44 CHAPTER 2. REAL-TIME MONITORS

real-time and real-time, as well as, the ability to handle dynamic priorities, priority
inversion and other real-time schemes. This flexibility is also needed when trying to
solve various problems that may require specific behaviour, e.g., even in a real-time
program the readers/writer problem must deal with stale information, and thus,
require certain queues to be processed in FIFO order, but it still may be desirable
to deal with priority inversion. However, simply allowing the order of tasks on the
entry queue to change only addresses problems related to external scheduling.

Unfortunately, condition variables are a problem because they involve internal
scheduling. As the condition queues are internal to the monitor, it is inefficient to
modify them from outside the monitor to maintain real-time properties. It is left
for the programmer to resolve these problems in the most efficient manner for a
given situation through programming. This situation is not entirely new, however,
as other problems associated with internal scheduling, for example processing non-
acceptor tasks in FIFO order, rather than LIFO order, when the acceptor stack is
merged with an internal monitor queue, are also left for the programmer to solve
and any real-time changes are an extension of this problem.

The design and implementation of monitors [developed for pC4+, tries to
address some of the flexibility requirements needed to solve a broader class of prob-
lems. The basic idea is to encapsulate the possible variations in functionality into
the definition of the entry and mutex queues used by the internal scheduler and to
provide hooks to achieve the remaining functionality. The user is given the abil-
ity to affect the order in which tasks enter the monitor, as well as, the freedom

to add some additional functionality when a task acquires or releases a monitor.

2.5. SUMMARY 45

These enhancements allow a user to program monitors for a variety of real-time
and non-real-time systems. However, even with the limited flexibility that is pro-
vided, a real-time developer must be careful. For example, it is important for the
operations in the queue data structures to maintain constant execution time for
real-time systems. Therefore, much of the problem is now moved into the data

structure domain.

Chapter 3

Timeouts

A fundamental part of real-time programming is the ability to specify timing con-
straints for tasks. These constraints are necessary to create a system which is both
predictable and schedulable. To satisfy these conditions, it must be possible to
specify the worst-case execution time of a task. Thus, it is inappropriate to use
potentially unbounded operations in a real-time system. For some operations it is
reasonable to expect the user to address the potential for unboundedness in their
implementation. For example, loops can be bounded by specifying a fixed number
of iterations and recursion can be limited to a fixed depth. For operations such
as I/0, and process synchronization and communication, however, this expectation
may not be quite as reasonable. Clearly, making a requirement that all tasks in a
system be independent (i.e., no synchronization and communication) or perform no
I/0 is unrealistic. Therefore, a method to bound these operations is required. The
real problem with these operations is not that they may execute for an unbounded

amount of time but rather that they might block indefinitely.

47

48 CHAPTER 3. TIMEOUTS

To address this potential for unbounded blocking, it is necessary to implement
a timeout mechanism. A timeout mechanism is a method to limit operations by
causing them to be aborted if they have not progressed to a certain point within a
specified amount of time. The amount of progress to prevent abnormal termination
varies depending on the type of operation. For operations that could block for a
potentially unbounded amount of time, as opposed to operations that might execute
for an unbounded amount of time, the requirement is usually that the operation
has begun executing within the specified time limit. This degree of progression is
reasonable for these operations because once the operation has actually started, it
is possible for the user to limit the worst-case execution time.

With I/0, unless the operating system provides an explicit mechanism to abort
an operation before it is completed, it is impossible to limit the blocking time of
these operations. Without operating system support, it would be necessary to limit
I/O operations at the user level, which is generally infeasible.

With task synchronization and communication, however, it may be possible,
though not necessarily practical, to limit the blocking time of these operations
at the user level. The reason for the difficulty is that the completion of these
operations is dependent on other tasks in the system and this makes it difficult to
characterize the exact behaviour of the tasks. Not only must transient overloads
and error conditions be considered, but also an extremely large number of execution
paths, if time slicing is enabled. As suggested, the most reasonable approach to deal
with this potential for indefinite blocking is to implement a timeout mechanism.

However, similar to limiting loops or recursion, the onus is on the user to use the

49

timeout facilities where appropriate.

For example, consider a simple timeout mechanism to block a task for a specified
period of time, e.g., sleep(1.0) to block a task for one second. Is it possible for a
user to construct a timeout mechanism for synchronization and communication
using this simple time delay? Suppose task T blocks on a synchronization or
communication operation. In order to limit the blocking time associated with this
operation, T} creates a separate task, before it blocks, to serve as a timeout task.
This timeout task blocks for the specified amount of time using sleep and then tries
to wake up T7. If the expected action occurs before the timeout expires, the timeout
needs to be short-circuited and the wake up from the timeout task prevented. Short-
circuiting the timeout requires waking up the timeout task immediately, rather than
waiting until the timeout actually expires. This approach is reasonably complex,
requiring a fair amount of setup and coordination on the part of the user, and it
also incurs the additional overhead of creating and managing many timeout tasks,
depending on their degree of usage.

The other option to address the indefinite blocking problem is to allow a timeout
value to be specified with the blocking operations. Similar to the idea described
in the user level implementation, if an operation is not completed within a speci-
fied time limit, the operation is terminated and the task is restarted. The easiest
approach to implementing this timeout facility might be to mimic the actions de-
scribed with the user-level implementation. While this approach would insulate
the user from the complexity, it does not address the concerns regarding cost. This

chapter describes a more integrated and efficient approach to implementing timeout

30 CHAPTER 3. TIMEOUTS

facilities for accept statements, which are a blocking operation for synchronization

and communication.

3.1 Background

The notion of time is extremely important in all real-time systems, e.g., timeout fa-
cilities in ADA [59] and (Real-Time) Concurrent C [19, 20]. However, pC+- did not
have timeout facilities available for any operations. Therefore, I augmented pC+4+
to allow timeouts to be specified for accept statements because most synchroniza-
tion and communication operations in pC4+ involve accept statements. Specific
comparisons with ADA and Concurrent C are presented as each component of the
timeout mechanism for pC++ is discussed.

Note that limiting operator delay should not be confused with techniques for
guaranteeing general timing constraints. The idea behind augmenting these opera-
tions is to eliminate indefinite blocking, and thus, allowing timing constraints to be
specified. More general timing mechanisms exist to guarantee that specified timing

constraints are met.

3.2 Goals

In designing a timeout facility, several issues and conditions are important. In terms
of syntax and semantics, the facilities should be easy to use and provide a natural
extension to the existing syntax. As well, the details of the implementation should

be transparent to the user.

3.3. SYNTAX AND SEMANTICS 51

From an implementation perspective, it is important that any changes made
have minimal impact when the timeout facility is not employed. As well, the design
has to guarantee that no potential for deadlock is introduced into the system.
This requirement does not mean that deadlock cannot exist in the system when
these operations are used, but rather that using timeouts does not introduce any
additional potential for deadlock into the system. Another important condition,
especially from a real-time perspective, is to design the facility so that its usage
only incurs a small, fixed amount of overhead. Finally, for maintenance reasons it

is also important for the implementation to have limited complexity.

3.3 Syntax and Semantics

In pC++, the communication facility is the call, in conjunction with the accept
statement / mutex object combination. (See chapter 2 for a complete discussion
of the interaction between accept statements and mutex objects.) The syntax
described is for pC4+ [11], but similar syntax is used in Ada and Concurrent C.

Counsider the syntax of a general accept statement in pC4+:

52 CHAPTER 3. TIMEOUTS

uWhen (conditional-expression) /l optional guard
uAccept(mutex-member-name)
statement /I optional statement
uOr uWhen (conditional-expression) /I optional guard
uAccept(mutex-member-name)
statement /I optional statement
uElse /l optional default clause
statement

A communication (rendezvous) between two tasks involves a calling task and an
acceptor. The acceptor executes an accept statement as given above. Each uAccept
statement consists of a list of the kinds of messages the acceptor is willing to accept
next. In pC4+, accept statements are associated with mutex objects and the kinds
of messages consist of the names of mutex routines that may proceed. Each uAccept
clause is associated with exactly one mutex routine from the mutex object. The
calling task, on the other hand, performs its side of the operation by calling one of
the mutex routines in the object. As described in chapter 2, it is possible for a call
into a mutex object to proceed without using an accept statement, e.g., when the
mutex object is inactive.

The optional uWhen clauses are referred to as guards and consist of a con-
ditional expression. If the guard evaluates to true or does not exist, the accept
alternative is referred to as open, otherwise it is referred to as closed. The evalua-
tion of an accept statement begins by determining if an open uAccept clause can
be immediately accepted, i.e., an outstanding call to the routine associated with

the accept statement exists. If there is more than one such clause, then the first

3.3. SYNTAX AND SEMANTICS 93

available alternative is chosen, as opposed to a non-deterministic selection.

Only if there is no clause that is immediately acceptable, i.e., no outstanding
calls exist for the specified mutex routines, is the optional uElse clause processed.
The uElse clause is referred to as an immediate alternative and is always chosen
if no uAccept clause is immediately acceptable. In pC++, only one uElse clause
is allowed and it must appear as the last clause in the accept statement. These
restrictions are reasonable because only one immediate alternative can be selected
even if several are allowed to exist and forcing the uElse statement to appear last,
not only fits logically with the semantics of other language constructs, but implies
the order of processing that is enforced in pC++.

If no immediate alternative exists, then the accept statement blocks until a call
to one of the open accept alternatives occurs. When such an acceptable call occurs,
the calling task is allowed to continue inside the mutex object until it exits, at which
time the accept blocked task is typically restarted. (It is possible for the acceptor to
be restarted before the calling task exits, see chapter 2, page 25 for details.) When
the acceptor restarts, it continues execution of the accept statement by executing
the block of code associated with the clause for the accepted routine.

The semantics for the accept statement available in Ada differs from the pCH++
version. While Ada also allows only one immediate alternative, if more than one
calling task is immediately acceptable then a task is chosen according to the entry
queuing policy in effect. This selection is made from among all the tasks associated
with open accept alternatives. For the default queuing policy, an arbitrary choice

is made. The ability to consider all open alternatives before selecting a task is

54 CHAPTER 3. TIMEOUTS

advantageous for a real-time system as it can be used to allow the acceptable task
with the highest priority to continue execution. However, this flexibility also incurs
more overhead, for example, all the accept alternatives must be examined before a
choice can be made.

The semantics for the accept statement in Concurrent C also differ somewhat
from pC+. First, if more than one accept alternative is immediately acceptable
then the choice as to which one is selected is arbitrary. As well, Concurrent C allows
multiple immediate alternatives to be specified but, again as only one alternative
can be selected, an arbitrary choice is made. The deterministic choice made in pC++
however, seems more appropriate to achieve the real-time goal of predictability.

To incorporate a timeout capability in uC4+, I augmented the accept statement

in the following way:

uWhen (conditional-expression) /l optional guard
uAccept(mutex-member-name)
statement /I statement
uOr uWhen (conditional-expression) /l optional guard
uTimeout(duration or time value) // optional timeout
statement /I statement

In this version of the accept statement, the uTimeout clause replaces the termi-
nating uElse clause, making the uElse clause and the uTimeout clause mutually
exclusive. The uOr separator is necessary for uTimeout but not uElse because
the keyword uTimeout is also used as a time delay in pC4+, e.g., uTimeout(1.0)
causes a task to delay (block) for one second. Without the uOr separator, accept

statements using the timeout facilities are ambiguous, e.g.:

3.3. SYNTAX AND SEMANTICS 99

uAccept(...)
a,
uTimeout(...);

if the uOr separator is not required, then it is unclear if this example represents an
accept statement with a timeout clause or an accept statement followed by a delay
request. Since the uOr separator is required for accept statements, this example
represents an accept statement followed by a delay request.

Choosing to make the uElse clause and the uTimeout clause mutually exclusive
seems reasonable because if an immediate alternative exists, then the timeout clause
would never be selected. As well, mimicking the semantics of the uElse clause, it
is invalid to have more than one active timeout clause in an accept statement.
This restriction is reasonable, as well, because if several choices are available, then
logically the timeout alternative with the smallest value is always selected. Fur-
thermore, it is possible to achieve the functionality of multiple timeout statements
by using conditional operators when specifying the duration of the timeout and in-
side the associated code segment for the timeout clause. In the example presented
in Figure 3.1, the routine selecttimeout returns the appropriate timeout value and
which choice is made. The code segmented associated with this choice can then be
executed if the accept statement times-out.

The evaluation of this augmented accept statement begins by determining if an
open UAccept clause exists. Again, if there is more than one such clause, then the
first available alternative is chosen. Similar to the uElse version, only if no open

accept alternative is available is the uTimeout clause processed. This semantics

36 CHAPTER 3. TIMEOUTS

uAccept(...) /I accept clauses
uOr uTimeout(T = selecttimeout(...)) /I timeout clause
if(T==...) /I choice 1
statement /I statement
elseif (T==...) /I choice 2
statement /I statement
else /Il default
statement /I statement

Figure 3.1: Simulating multiple timeout statements in pCH4

means that if a uAccept alternative is immediately available, then no additional
overhead is incurred for including a uTimeout clause. Otherwise, assuming the
guard on the uTimeout clause is true, the accept statement blocks no longer than
the duration specified. If no calls occur to an acceptable member routine within this
time, the acceptor is restarted and the block of code associated with the uTimeout
clause is executed. If a wvalid call does occur, i.e., a call to an acceptable member
routine, the timeout is cancelled and the accept statement proceeds as normal.
Again, the semantics for Concurrent C and Ada differ somewhat when timeouts
are used. First, several timeout clauses are permitted in these languages, and the
clause with the smallest time value is selected. Furthermore, in Concurrent C
both timeout clauses and immediate alternatives are permitted in the same accept
statement, but an arbitrary immediate alternative is always selected. As discussed
above, the restrictions imposed by the existing pC+H+ design, with respect to the
types of clause that can be used together in an accept statement, plus the extensions

I made are reasonable and do not exclude any significant functionality.

3.4. DESIGN 57

3.4 Design

There are many different ways in which to design a timeout facility. One key consid-
eration is to design a facility that fits naturally into the semantics of the operation
being augmented. This type of design not only makes the facilities easier for the
user to understand, but also tends to allow the operations to be terminated in a
graceful manner. This section begins by considering how a user might augment ac-
cept statements to allow for a timeout facility and then tries to evolve this technique
into an integrated and efficient facility provided by the system.

In order to implement a timeout facility, there are some minimum system re-
quirements. First, the system must provide some notion of time. Ideally, the system
should provide a time delay operation that allows a task to block for a specified
duration. While an approximation of a time delay operation can be constructed
using a loop and an operation to get the current time, this method is inefficient
and inaccurate. The discussion in this section assumes that a time delay operation

1s available.

3.4.1 Timeout Tasks: User Level Implementation

To begin, reconsider the idea of implementing timeouts at the user level, presented
at the beginning of the chapter, but now for accept statements. The basic idea is
to create a separate task to serve as a timeout task. This task blocks for a specified

amount of time and then calls into the mutex object, for example in pCH+:

38 CHAPTER 3. TIMEOUTS

/l routine start is passed time value and stores reference to acceptor

uAccept(start); /I synchronize with acceptor
uTimeout(time); /I block for specified time
acceptor.timeout(); /I call acceptor

The timeout task begins by blocking on an accept statement for a call specifying a
timeout value. The acceptor task then calls this timeout task with a particular time
value, in order to activate the timeout. Having the timeout task begin by blocking
eliminates the uncertainty introduced by the overhead of task creation and allows
a more accurate timeout value to be obtained. This uncertainty exists because the
amount of time required to create a task can vary depending on the speed of the
system. This task then blocks for the specified amount of time and then calls the
acceptor when it wakes up. As well, an empty mutex routine, i.e., a mutex routine
with an empty code body, must be created for the timeout task to invoke and this
routine is accepted in every accept statement requiring a timeout.

If a valid entry call occurs before the timeout expires, then some method is
needed to short-circuit the timeout. It would be incorrect to leave the timeout out-
standing as it may interfere with a subsequent accept statement using the timeout
facility. Typically, there are two methods available for short-circuiting a timeout,
i.e., deleting the timeout task or using a special capability to immediately unblock
the timeout task. Typically, the timeout task is short-circuited by the acceptor,

after it restarts, as the acceptor has explicit knowledge of the timeout task.

3.4. DESIGN 99

Deleting the Timeout Task

With this technique, if a valid entry call occurs before the timeout expires, the
acceptor deletes the timeout task when it restarts. However, deleting the timeout
task creates a potential race condition. This potential race condition exists because
there is a window between a valid entry call occurring and the call to delete the
timeout task (see Figure 3.2). During this window, the delay in the timeout task
could expire, causing the timeout task to call into the mutex object. The result of
this potential race condition is that sometimes there may be an outstanding call to
the timeout mutex routine after a calling task has been accepted. However, it is
impossible to process an entry call for a task that no longer exits (see Figure 3.2).
Furthermore, checking to see if the timeout has already expired before attempting
to delete the task does not eliminate the race condition. There is no easy solution

to this potential race condition.

Waking up the Timeout Task

Another technique for short-circuiting the timeout is to use a special capability
to immediately unblock the timeout task. The timeout task then restarts and
calls into the acceptor exactly as if the timeout had expired. Short-circuiting the
timeout task in this manner eliminates the concern regarding the potential race
condition between the valid entry call and the call to short-circuit the timeout. By
requiring the acceptor to wake up the timeout task, instead of deleting this task, an
outstanding call always exists to the timeout mutex routine regardless of whether

the timeout is short-circuited or expires on its own. If the accept statement timed-

60 CHAPTER 3. TIMEOUTS

out, then the call to the timeout routine is used to restart the acceptor. On the
other hand, if a valid call occurs before the accept statement times-out, then a
call to the timeout routine is still outstanding. In this case, the acceptor executes
another accept statement with the timeout routine as the only valid call to finish
cleaning up the timeout task (see Figure 3.3).

On the other hand, if the timeout expires before a valid call occurs, then the
timeout task gains entry into the monitor (see Figure 3.4). As the timeout mutex
routine is empty, the timeout task immediately exits, which restarts the acceptor.
The acceptor, detecting that the timeout mutex routine was invoked, can then
perform the behaviour associated with a timeout. Any entry call that occurs sub-
sequently simply blocks as required because of the default behaviour of the monitor
when a valid entry call occurs, in this case a call to the timeout mutex routine.

This approach can be implemented in uC++ as follows:

timeoutTask = createTimeout(); /I create timeout task

timedout = false;

timeoutTask.start(time); /I synchronize with timeout task
uAccept(...) /I accept statement with timeout
uOr uAccept(timeout) { /I timeout mutex routine

timedout = true;

} I/ uAccept

if (timedeout) { /I if accept did not timeout
shortcircuit(timeoutTask); /l wake up timeout task
uAccept(timeout); /I ignore timeout mutex routine call
Yt

Thus, it is possible to implement timeouts for accept statements at the user level.

3.4. DESIGN 61

Timeout Acceptor Caller

) Create Timeout Task
Wait for Sync.

Start| Timeout

Process Request

Delay for Time Value
Block on Accept

Call Acceptor

Call Accdeptor

Deletie Timeout

Process Timeout??

Mutex Object

---- Blocked

— Running

Figure 3.2: Timeout task is deleted

62 CHAPTER 3. TIMEOUTS

Timeout Acceptor Caller

) Create Timeout Task
Wait for Sync.

Start| Timeout

Process Request

Delay for Time Value
Block on Accept

Call Acceptor

Shortrcircuit Timeout

Call Acdeptor
Process Timeout

Terminate

Mutex Object

---- Blocked

— Running

Figure 3.3: Timeout task is short-circuited

3.4. DESIGN

Wait for

63

Timeout Acceptor Caller

Sync.

Process Request

Delay for Time

Value

Call Accdeptor

Terny

1inate

Create Timeout Task

Start| Timeout

Block on Accept

Finish Accept

Call Acceptor

Mutex Object

---- Blocked

— Running

Figure 3.4: Timeout task expires before call occurs

64 CHAPTER 3. TIMEOUTS

The problem with this approach, however, is that it is complex to use from the
user’s point of view and incurs high overhead, including task creation and deletion
and the additional synchronization to coordinate the timeout task, plus it requires

the system to also implement a short-circuit capability.

3.4.2 Timeout Tasks: System Level Implementation

The easiest approach to extending accept statements to incorporate a timeout facil-
ity is for the system to perform the same actions as the user implementation. The
first step is for the system to implicitly define an empty mutex member routine
to be used for timeouts. Then, whenever the user specifies a timeout clause in an
accept statement, the system automatically creates a timeout task. As described
earlier, this task blocks for an amount of time specified by the user and then calls
the mutex object. To avoid the problems associated with the potential race con-
dition created by deleting the timeout task, the timeout task is short-circuited by
immediately restarting the task and allowing it to call the mutex object.

In order to handle the situation where the timeout is short-circuited or ex-
pires after a valid call occurs the compiler inserts the required additional accept
statement. Similarly, the additional call required to activate the initially blocked
timeout task needs to be inserted as well. It might even be possible to reuse the
timeout task for several timeouts to partially reduce the cost. While it is possible
to hide most of the complexity from the user with this approach, especially if the
compiler augments the accept statement code, it does not deal with all the concerns

regarding overhead.

3.4. DESIGN 65

3.4.3 Kernel Level Implementation

The biggest overhead involved in the two previous methods is the creation and sub-
sequent handling of a new task to implement the timeouts. A natural enhancement
is to use the kernel task to perform the timeout activities. However, this approach
suffers from a major problem, i.e., the kernel task is usually not allowed to block.
This restriction exists because the kernel task is used to block and unblock tasks
and it is impossible for the kernel task to perform this function for itself. Further-
more, the kernel task also performs other functions, like processing timer events,
that require prompt service. So, it would be inappropriate for the kernel task to
call a mutex member routine as this call might block, i.e., if a valid call has already
occurred and the calling task is currently executing inside the mutex object, which
leads to undefined behaviour.

This problem can be resolved by considering why the blocking is necessary. By
calling a member routine, the kernel may have to block while waiting to execute this
routine because another task is currently inside the monitor. But, the actual mem-
ber routine called by the kernel is empty (i.e., no code), so there is no requirement
that the kernel actually execute this routine. In fact, all the kernel, or even the
timeout task, needs to do is to restart the acceptor when the timeout occurs (i.e.,
synchronize via rendezvous). For the kernel to perform this timeout functionality,
a special type of time event or timeout is required; when this time event expires
the kernel calls into the mutex object, similar to what a timeout task does when
it wakes up. Now, if the kernel cannot immediately execute the empty member

routine, then a valid entry call has already occurred and the timeout call can be

66 CHAPTER 3. TIMEOUTS

discarded and the kernel does not need to block. This suggests that a specialized
entry routine can eliminate the problem of the kernel blocking. Furthermore, if a
specialized entry routine is used, then calls associated with an expired timeout can
be distinguished from general entry calls and an actual timeout member routine is
unnecessary.

Using a specialized timeout entry routine to eliminate blocking also means that
timeout calls are not queued. Therefore, unlike with the timeout task method, a
subsequent accept statement is not required to deal with a timeout expiring in the
window between the entry call occurring and the timeout being short-circuited be-
cause the timeout call is discarded. So, the technique described earlier to eliminate
the race condition when timeouts are short-circuited is no longer necessary. Fur-
thermore, as no subsequent accept statement is used, it is no longer advantageous
to call the timeout member when the timeout is short-circuited, i.e., the timeout
member is only called when the timeout actually expires. However, the outstand-
ing timeout event must be dealt with by guaranteeing that if a valid entry call
occurs, then the timeout entry call is uncallable until either the timeout has been
short-circuited or until the kernel has finished executing the specialized timeout
entry routine. Remember that when a valid entry call occurs, all mutex routines
(including the timeout) become uncallable.

The obvious approach to enforcing this guarantee is to have the calling task
short-circuit the timeout before it begins executing the member routine. However,
this method incurs an additional penalty for all calling tasks because it is impossible

for the calling task to know if the timeout facilities are being used and so it must

3.5. IMPLEMENTATION 67

always check if the timeout needs to be short-circuited. For example, if a mutex
member appears in an accept with a timeout and an accept without a timeout,
the check must be inserted in the mutex routine even though it is unnecessary in
certain cases. This violates the objective of limiting the impact of the timeout
facility when 1t is not being used.

The most practical solution is to remove the outstanding timeout before starting
a new accept statement with a timeout for a particular mutex object. This solution
satisfies the required guarantee because the timeout member is not acceptable again
until this next timeout accept statement is executed. Thus, if the timeout does
expire, as the kernel cannot gain immediate entry into the monitor, the timeout
is discarded. This choice also limits any additional costs to only those accepts
statements using the timeout facilities. The main drawback to this approach is
that it requires compiler support in order to insert the call to short-circuit the
timeout at the start of an accept statement using a timeout. The requirement that
the kernel task must finish executing the specialized timeout entry routine before
the short-circuiting is finished can usually be achieved by a locking mechanism,
but tends to be implementation specific. I chose to adopt this final approach for

implementing timeouts in uC+H-.

3.5 Implementation

In order to better understand my implementation of the described timeout facilities

for pCH, an understanding of some of the relevant components of C4+ is required.

68 CHAPTER 3. TIMEOUTS
a4 = — =

Time

Handler Routine e o o

uExecuteLocked I _

Figure 3.5: Nodes on the event queue

3.5.1 uC++ Background

In order to handle timeouts, a method of registering and processing time related

events is necessary. The pC+H++ kernel provides support for registering time related

events through the use of an event queue and interrupts. This section provides a

description of the event handling facilities in pC++, as well as, a description of the

implementation of mutex objects.

1. Event Queue and Interrupts.

An event queue in pC4+ is a time ordered list of events the kernel manages.
These events can include time-slice context switches and requests by blocked
tasks to be woken up at a specified time. Each node in the event queue spec-
ifies the time at which the event expires, a handler routine to be invoked at
that time and a flag indicating whether the handler routine should be exe-
cuted with the event queue lock acquired (see Figure 3.5). This additional
flag is named uExecuteLocked and is discussed further on page 85. The han-
dler routine is invoked by the kernel task and performs the required action
depending on whether the node is associated with a context-switch, a delay,

a timeout, etc.

All access to the event queue is protected by a spinlock. The timing property

3.5.

IMPLEMENTATION 69

of the event queue is provided by an operating system timer. Nodes are added
to the list in increasing order by time; the timer is set to expire at the time
indicated by the node at the front of the list. When the timer expires, the
currently executing task is interrupted and this task processes the event queue
on behalf of the kernel. (In fact, there is no actual kernel task, but this co-
opted task is referred to as the kernel task.) This task begins by acquiring the
event queue lock, and then the next expired event is removed from the queue
and the associated handler routine is invoked. This processing is repeated
for all expired nodes on the event queue, as there could be more than one.
The lock is released and reacquired between the processing of each node.
This semantics allows other tasks the chance to manipulate the event queue
without having to wait for the entire set of expired nodes to be processed,
which is useful in minimizing the blocking time experienced by high priority

tasks.

Mutex Objects.

There are two kinds of mutex objects present in puC+4+, namely monitors
and tasks. This discussion focuses on monitors, as a task can simply be
considered a monitor with a thread of execution. (See chapter 2 for a thorough
description of the semantics associated with a monitor.) A spinlock protects
the monitor’s entry queue and mutex queues. As well, the current task inside
the monitor is considered the owner and has mutual exclusion over all internal
data structures of the monitor. These internal data structures do not include

the entry queue and the mutex queues.

70

CHAPTER 3. TIMEOUTS

Ownership of the monitor is typically changed in one of two ways. Control
is either passed to a task made ready inside the monitor or control is passed
to a task external to the monitor. In the first case, a task is removed from
the internal acceptor/signalled stack and ownership of the monitor can be
transferred without consulting any external queues. As no external data
structures need to be consulted in this situation, the entry lock does not need

to be acquired in order to change ownership.

In the second case, either the monitor is inactive and a task calling into the
monitor becomes the new owner or the current owner hands ownership of the
monitor to a task blocked on the entry queue. In both of these situations,
the entry lock is acquired while ownership of the monitor is changed. If the
monitor is inactive, the task calling into the monitor acquires the entry lock,
sets itself as the owner of the monitor and subsequently releases the entry
lock. Requiring the calling task to acquire the entry lock, even though it
does not manipulate any of the external queues, is necessary to eliminate a
potential race condition. If the entry lock is not acquired, then several tasks,
seeing the monitor is currently empty, could try to set themselves as the new

owner of the monitor.

If the monitor is active and the owner is exiting or blocking, then the owner
acquires the entry lock so that it can examine the entry and mutex queues.
If the owner cannot find an eligible task on the entry queue, the owner relin-
quishes control of the monitor, making the monitor inactive. Otherwise, the

current owner selects the next eligible task from these queues and passes own-

3.5. IMPLEMENTATION 71

ership of the monitor to this task. Then, the owner atomically wakes up this
eligible task and releases the entry lock; at this point, the task is no longer
the owner. The selected task wakes up already owning the monitor and can
begin executing its mutex routine. Requiring the monitor owner to acquire
the entry lock when selecting an external task is necessary to maintain the
integrity of the entry queue and mutex queues because other tasks calling
into the monitor also manipulate these data structures when blocking on the

monitor.

A calling task that cannot enter the monitor immediately blocks on the mutex
queue associated with its call, as well as the entry queue. There are a couple
of reasons a calling task might block. Either a task is already inside the
monitor or the member routine that the calling task invoked is uncallable for

the accept statement currently being processed.

3.5.2 Data Structure Enhancements

In a pCH++ mutex object, there are four significant data structures: the entry queue,
the mutex queues, a set of flags indicating which calls to the mutex object are
immediately acceptable, and a variable indicating which mutex routine was invoked
by the current owner of the monitor. A mutex queue and a flag variable is associated
with each mutex routine.

The extensions needed for the timeout facilities only require an additional flag
variable to indicate if a timeout call is acceptable. The same variable indicating

which mutex routine was invoked by the current owner of the monitor can also

72 CHAPTER 3. TIMEOUTS

indicate if the fictitious timeout routine is invoked. Furthermore, as timeouts must
be accepted immediately or discarded, no queueing of timeout calls is possible;
therefore, no mutex queue is required.

The fact that logically a monitor can only be blocked on one accept statement
at a time means that it is only necessary to allow for one outstanding timeout
node / event per mutex object. This policy is strictly enforced by always removing
the timeout node at the start of every accept statement using a uTimeout clause.
Unfortunately, it is impossible to only perform the remove if the timeout clause is
actually activated because it is impossible to determine in advance if the timeout
is needed, i.e., no accept clause will be immediately acceptable. Furthermore, a
call to remove the timeout node must always occur if the timeout facility is used
because it is impossible to statically (at compile time) determine if there is an
outstanding timeout event. As well, attempting to remove the timeout node after
the processing of the actual accept statement has begun, i.e., after determining
that no accept clause is immediately acceptable, can result in a potential livelock
situation (as spinlocks do not block).

This potential livelock arises because the accept statement is processed with
the mutex entry lock acquired, as the entry and mutex queues need to be accessed.
If the timeout node is removed after the entry lock is acquired, there is a window
between acquiring the mutex entry lock and acquiring the event queue lock, in order
to access the event queue, in which an outstanding timeout event could expire. If
the timeout expires, the kernel acquires the event lock and then spins waiting to

acquire the entry lock so it can process the timeout. But, the acceptor has already

3.5. IMPLEMENTATION 73

acquired the entry lock and subsequently spins waiting for the event lock (see
Figure 3.6).

This potential for livelock cannot be resolved by having the acceptor release
the entry lock before trying to remove the timeout node. If the entry lock is
released, then entry calls are allowed to proceed. If entry calls are set uncallable
during the time the entry lock is temporarily released, then all calls block and
the accept clauses need to be reprocessed, after the timeout has been removed,
to detect if a subsequent valid call has occurred before the acceptor is allowed to
block (see Figure 3.7). On the other hand, a valid entry call cannot be allowed
to proceed, while the entry lock is temporarily released, as the acceptor has not
finished processing the accept statement.

The most reasonable solution is to always attempt to remove the timeout node,
if a uTimeout clause is present, before acquiring the mutex entry lock to process an
accept statement. With this semantics, the additional overhead is not only small
and fixed, but the potential for livelock is avoided. Furthermore, this overhead is
only incurred by accept statements using the timeout facility. The only drawback
is the occasional attempt to remove an unused timeout node, which does nothing
(idempotent).

As well, to prevent an expensive and potentially blocking dynamic storage al-
location, a timeout node is statically allocated inside every mutex object. As the
design guarantees that there is at most one outstanding timeout event associated
with a particular mutex object, it is possible to use the same timeout node for every

accept statement in the object. Statically allocating the timeout node also elim-

74 CHAPTER 3. TIMEOUTS

Kernel Acceptor Caller

Start| Accept

Acquiire Entry Lock
Acquire Event Lock
Process Expired Event

: L Spin Waiting For
Spin Waiting For Event Lock

Entry Lock

Mutex Object

---- Blocked

— Running

\/\ Livelock

Figure 3.6: Livelock occurs if the timeout is removed after processing of accept
statement.

3.5. IMPLEMENTATION

Kernel

Start A
Acquire Entry

Release Entry

Acquire Event
Remove Tin
Release Event
Acquire Entry
Block on A

Mutex Object

---- Blocked

— Running

Acceptor

ccept

Lock

Lock
Lock

neout
Lock
Lock

ccept

Caller

Call Acceptor

Figure 3.7: Entry calls can be missed if entry lock is released.

75

76 CHAPTER 3. TIMEOUTS

inates problems relating to scoping and allocation / deallocation associated with
dynamic storage. Furthermore, statically allocating the node is not only more at-
tractive from a real-time perspective, but it also has the advantage that it makes the
remove operation idempotent. The drawback is that non-real-time mutex objects

waste about 32 bytes of storage, which seems like an acceptable tradeoft.

3.5.3 Scenarios to Consider

In general, there are four scenarios that need to be dealt with when a task blocks on
an accept statement with a timeout. These scenarios can be classified by considering
which of the two events successtully calls into the monitor first. This classification
is complete as both a timeout and an entry call must enter the monitor. Though
a race can exist between a valid entry call and a timeout, access to the monitor is
serialized because of the entry lock. Thus, any race must result in one of the last
two cases (see scenarios 3 and 4 below), depending on which event gains control of

the monitor first.

1. A call to a valid member routine occurs before the timeout expires.
2. The timeout occurs before a call to a valid member routine.
3. The timeout expires while a valid entry call is being processed.

4. A valid entry call occurs while the timeout is being processed.

Note that it is also possible to have nested accept statements. An example of

a nested accept statement appears in Figure 3.8. For this example, the acceptor

3.5. IMPLEMENTATION 77
uAccept(M1)
uAccept(M2)
X,
uOr uTimeout(T1)
Y
uOr uTimeout(T2)
uAccept(M3)
Z,

Figure 3.8: Nested Accept Statement

blocks for time T2 waiting for a call to routine M1. If a call to M1 occurs, the
acceptor blocks again, this time for time T1, waiting for a call to routine M2. If
the call to M1 does not occur within time T2, the outer accept statement times out
and then the acceptor blocks waiting for a call to routine M3. This nesting can be
arbitrarily deep with any or all levels using the timeout facility. The implication
of this nesting is that one accept statement may not be entirely completed before
another begins.

As well, a calling task may also block on an accept statement with a timeout
after entering a mutex routine. In this case, both the original acceptor and the
calling task are accept blocked. As the original acceptor has already received a
valid call, however, its timeout is no longer in effect. As discussed in chapter 2,
accept blocked tasks are processed in LIFO order, so the calling task is restarted
before the original acceptor. These two situations make it impossible to rely on the

fact that the acceptor is restarted before another accept with a timeout occurs.

78 CHAPTER 3. TIMEOUTS

3.5.4 Implementation Details

The implementation can be divided into three parts, i.e., the acceptor, the call-
ing and the timeout. Each part is considered individually and then the possible

interactions are considered.

Acceptor:
Consider a sample pC4++ accept statement:

uAccept(M1)
X,
uOr uAccept(M2)

y:
uOr uTimeout(T1)

Z,

As puCH+ 1s a tramslator, this accept statement is expanded into CH++ code
(see Figure 3.9). The accept statement begins by creating an instance of
uProtectAcceptStatement. The constructor for this class performs the setup re-
quired to begin processing the actual accept statement. An object is created so
that its destructor can reset the object if an exception is thrown while processing
the accept statement. The version of the constructor used for the timeout case (see
Figure 3.10) begins with the acceptor attempting to remove the timeout node from

the event queue by calling uRemoveEvent (see Figure 3.11) from uRemoveTimeout:

3.5. IMPLEMENTATION 79

void uSerial::uRemoveTimeout() {

if (uEvents !'= NULL) { /I make idempotent
uEvents->uRemoveEvent(uTimeoutEvent, *uProc);
Y I if

} // uSerial::uRemoveTimeout

This step is bypassed if a timeout clause is not present in the accept statement
by generating a different constructor without a call to uRemoveTimeout. Using a
different constructor avoids additional runtime overhead that would be incurred by
using a conditional expression. These constructors are distinguished by including
an additional boolean parameter for the timeout case.
The constructor for uProtectAcceptStatement finishes by calling uAcceptStart (see
Figure 3.10):
void uSerial::uAcceptStart(unsigned int &uMutexMaskPosn) {
lock.uAcquire();
uMask.zero(); /I set all mutex routines uncallable

uMutexMaskPosn = uSerial::uMutexMaskPosn;
} // uSerial::uAcceptStart

to begin processing the accept statement. This processing begins with the acceptor
acquiring the monitor entry lock and setting all mutex routines uncallable. The
next step is to determine if any of the uAccept clauses are immediately acceptable
(see Figure 3.9). The routine uAcceptTry is used to determine if any outstanding
calls exist for a given mutex routine, and if no outstanding calls exist, to set the
given mutex routine as callable. If no mutex member is immediately acceptable,
then the timeout clause is processed by calling uAcceptPause (see Figure 3.12) with

the associated timeout value. uAcceptPause calls uAddEvent:

80 CHAPTER 3. TIMEOUTS

void uEventList::uAddEvent(uEventNode &newAlarm, uProcessor &proc) {
uAcquireEventLock();
/I insert into sorted list, return queue position

if (uL.ulnsert(&newAlarm) ==0) { /I insert at the front ?
proc.uSetTimer(newAlarm->timerT); /l reset system timer
Yt

uReleaseEventLock();
} // uEventList::uAddEvent

to add the timeout node to the event queue and then atomically blocks and releases
the entry lock (see Figure 3.12).

When the acceptor is restarted, it finishes execution of uAcceptPause by calling
uRemoveEvent (see Figure 3.11) to remove the timeout node from the event queue.
The call to uRemoveEvent is idempotent, so it does not matter if the acceptor
1s restarted due to the timeout expiring or a valid entry call occurring. When
uAcceptPause is completed, the block of code associated with the accepted clause
is executed and this completes the accept statement (see Figure 3.9) by determining
which mutex member was called and transferring to the associated code block for

the uAccept clause.

Caller:

In pCH++, every mutex routine in a monitor is expanded by adding a variable of

type uSerialMember:

void mem () {
uSerialMember uSerialMemberinstance (uSeriallnst , uMutex05 , 0x05) ; {
... I/l user code

}
}

3.5. IMPLEMENTATION 81

1w CH+ Statement

C++ Expansion

uAccept(M1)
X,
uOr uAccept(M2)

Y

uOr uTimeout(T1)

{

uSerial::uProtectAcceptStmt uPASInst (uSeriallnst , true) ;
if (uSeriallnst.uAcceptTry (uMutex02 , 0x02)) {
u0001 :
X,
} else {
if (uSeriallnst.uAcceptTry (uMutex03 , 0x03)) {
u0002 :
Yy
} else {
{
uSeriallnst.uAcceptTry () ;
uSeriallnst.uAcceptPause ((T1)) ;
}
switch (uSeriallnst.uMutexMaskPosn) {
case 0x03 :
goto u0002 ;
case 0x02 :
goto u0001 ;
} // switch
z,
Yt
Y It

} Il accept

Figure 3.9: Expansion of Accept Statement

uSerial::uProtectAcceptStmt::uProtectAcceptStmt(uSerial &s, bool) : s(s) {

s.uRemoveTimeout();

s.uAcceptStart(uMutexMaskPosn);
} // uSerial::uProtectAcceptStmt::uProtectAcceptStmt

Figure 3.10: uProtectAcceptStatement

82 CHAPTER 3. TIMEOUTS

void uEventList::uRemoveEvent(uEventNode &oldNode, uProcessor &proc) {
uAcquireEventLock();

uEventNode *headNode;

if (! oldNode.uListed()) { /I node already removed ?
uReleaseEventLock();
return;

Yt

// remember current list head and then remove node
headNode = uL.uHead();
uL.uRemove(&oldNode);

if (headNode == &oldNode) { /I removing at head ? reset alarm
headNode = uL.uHead();
if (! headNode) { /I list empty ?

/I cancel alarm
proc.uSetTimer(uDuration(OL, OL));
} else {
I/l reset alarm
proc.uSetTimer(headNode->timerT);
Yt
Yt
uReleaseEventLock();
} // uEventList::uRemoveEvent

Figure 3.11: uRemoveEvent

3.5. IMPLEMENTATION 83

void uSerial::uAcceptPause(uTime time) {
// handler to wake up blocking task
uTimeoutHndIr handler(uThisTask(), *this);

/I initialize node for timeout event
uTimeoutEvent.uExecuteLocked = true;
uTimeoutEvent.timerT = time;
uTimeoutEvent.uWho = &uThisTask();
uTimeoutEvent.SigHandler = &handler;

/I add timeout to event list

uProc = &uThisProcessor();

uEvents = uProc->uEvents;
uEvents->uAddEvent(uTimeoutEvent, *uProc);

/l'lock is acquired at beginning of accept statement
uBaseTask &uCallingTask = uThisTask(); /I optimization

/I save acceptor thread of a rendezvous
uLastAcceptor = &uCallingTask;

/I suspend current task on top of accept/signalled stack
uAcceptSignalled.uAdd(&(uCallingTask.uMutexRef));

/I unnecessary to set uMutexOwner to NULL because mask is open
/I find someone else to execute; release lock on kernel stack
uActiveProcessorKernel->uSchedule(&lock);

/l remove timeout
uEvents->uRemoveEvent(uTimeoutEvent, *uProc);

/I accepted entry is suspended if true
if (uCallingTask.uAcceptedCall) {
/I acceptor resumes
uCallingTask.uAcceptedCall->uAcceptorSuspended = false;
uCallingTask.uAcceptedCall = NULL,;
Yt
} I/ uSerial::uAcceptPause

Figure 3.12: uAcceptPause

84 CHAPTER 3. TIMEOUTS

An object is used so the destructor can reset on exceptions. The constructor of

uSerialMember:

uSerialMember::uSerialMember(uSerial &s, uBasePrioritySeq &e, int m) :
s(s)){
/I perform monitor entry code
s.uEnter(mutexRecursion, e, m);

acceptor = s.uLastAcceptor,
uAcceptorSuspended = acceptor != NULL,;
if (uAcceptorSuspended) {
acceptor->uAcceptedCall = this;
Y it
/I avoid messing up subsequent mutex method invocation
s.uLastAcceptor = NULL,
} // uSerialMember::uSerialMember

begins with a call to UEnter (see Figure 3.13) with a variable, mutexID, identifying
which mutex routine the task called. uEnter begins by acquiring the monitor entry
lock. If the called mutex member is callable, then the calling task sets all mutex
member routines as uncallable, becomes the new monitor owner and releases the
entry lock. Otherwise, the calling task adds itself to the entry queue and to the
mutex queue for the called member routine and then it atomically blocks and
releases the entry lock. When a blocked task is eventually restarted, it finishes
execution of uEnter by making itself the monitor owner, and returns to perform the
actual member routine code.

Once the mutex routine finishes, the tasks exits the monitor by invoking the
destructor for uSerialMember, which calls uLeave (see Figure 3.14). uLeave first
tries to hand ownership of the monitor to a task blocked inside the monitor. If no

tasks are blocked inside the monitor, then the entry lock is acquired, the task at

3.5. IMPLEMENTATION 85

the front of the entry queue is removed and made the new owner of the monitor
and the entry lock is released. On the other hand, if there are no tasks blocked on
the entry queue, then every mutex member routine is set as callable (except the

special timeout entry) and the entry lock is released.

Timeout:

When the timer expires, the kernel task processes every expired node on the event
queue by repeated calls to the iterator operator>> (see Figure 3.16) routine for the
event list. This routine begins by acquiring the event lock. If the first event has
expired, then this event node is removed from the event queue and its associated
handler routine is invoked; otherwise the alarm is spurious and ignored. In general,
the handler routine is invoked after the event lock is released, but for a timeout

node, the timeout handler:

void uTimeoutHndIr::uHandler() {
userial.uEnterTimeout();
} // uTimeoutHndIr::uHandler

is called with the event lock acquired. The uExecuteLocked variable in the actual
node determines whether the handler for a specific node should be invoked with or
without the event lock acquired.

The timeout handler calls uEnterTimeout (see Figure 3.15), the specialized entry
routine discussed in section 3.4, for the associated monitor. uEnterTimeout begins by
acquiring the entry lock. If the timeout call is too late, i.e., a call to an appropriate

mutex routine has already occurred, then the entry lock is released and the handler

86 CHAPTER 3. TIMEOUTS

void uSerial::uEnter(uBasePrioritySeq &entry, int mutexID) {
lock.uAcquire();

uBaseTask &ucCallingTask = uThisTask(); /I optimization

if (uMask.isSet(mutexID)) { /I member acceptable ?
uMask.zero(); /I clear all member valid flags
mr = uCallingTask.uMutexRecursion; /I save previous recursive count
uMutexOwner = &uCallingTask; /I set the current mutex owner
lock.uRelease();

} else if (uMutexOwner == &uCallingTask) { /I already hold mutex ?

/I another recursive call at the mutex object level
uCallingTask.uMutexRecursion += 1;
lock.uRelease();

} else { /I otherwise block calling task
/l add to end of mutex queue
entry.uAdd(&(uCallingTask.uMutexRef));

/I remember which entry was called
uCallingTask.uCalledEntryMem = &entry;

/I add mutex object to end of general entry deque
uEntryList.uAdd(&(uCallingTask.uEntryRef));

/I find someone else to execute; release lock on kernel stack
uActiveProcessorKernel->uSchedule(&lock);

mr = uCallingTask.uMutexRecursion; /I save previous recursive count
uCallingTask.uMutexRecursion = 0; /l reset recursive count

} I if

uMutexID = mutexID; /I set active mutex member

} // uSerial::uEnter

Figure 3.13: uEnter

3.5. IMPLEMENTATION 87

void uSerial::uLeave() {
uBaseTask &uCallingTask = uThisTask(); /I optimization

/I recursively hold mutex ?

if (uCallingTask.uMutexRecursion != 0) {
uCallingTask.uMutexRecursion -= 1;
return;

Yt

/I no tasks waiting re-entry to mutex object ?
if (uAcceptSignalled.uEmpty()) {
lock.uAcquire();

/I no tasks waiting entry to mutex object ?
if (uEntryList.uEmpty()) {

uMask.one(); /I accept all members
uMutexOwner = (uBaseTask *)0; /I reset no task in mutex object
lock.uRelease();

} else { /I tasks waiting entry to mutex object

/I next task to gain control of the mutex object
uMutexOwner = &(UEntryList.uDrop()->uGet());

/I remove member from front of entry queue
uMutexOwner->uCalledEntryMem->uDrop();
lock.uRelease();

/I wake up next task to use this mutex object
uMutexOwner->uWake();
Yt
} else { /I tasks waiting re-entry to mutex object
/I next task to gain control of the mutex object
uMutexOwner = &(uAcceptSignalled.uDrop()->uGet());

/I wake up next task to use this mutex object
uMutexOwner->uWake();
it

uCallingTask.uMutexRecursion = mr; /I restore previous recursive count
} // uSerial::uLeave

Figure 3.14: uLeave

88 CHAPTER 3. TIMEOUTS

void uSerial::uEnterTimeout() {
lock.uAcquire();

if (uMask.isSet(timeoutMutexID)) { /I timeout member acceptable?
uMask.zero(); /I clear all member valid flags
uMutexID = timeoutMutexID; /I set timeout mutex member

/I next task to gain control of the mutex object
uMutexOwner = &(uAcceptSignalled.uDrop()->uGet());
/I wake up next task to use this mutex object
uMutexOwner->uWake();

Yt

lock.uRelease();
} // uSerial::uEnterTimeout

Figure 3.15: uEnterTimeout

routine is complete. Otherwise, the timeout is accepted and the acceptor must be
restarted. To begin, every mutex member routine is set as uncallable, similar to
a call to any other callable mutex routine. Then the timeout is set as the calling
routine and the acceptor is restarted as the owner of the monitor. The handler
finishes execution by releasing the entry lock. Once the handler is finished, control
returns to the operator>> routine (see Figure 3.16) and this routine completes by

releasing the event lock.

3.5.5 Interaction Detalils

The four scenarios in Section 3.5.3 are now considered in detail with respect to a task
blocking on an accept statement with a timeout, and this particular implementation

approach.

1. A call to a valid member routine occurs before the timeout expires. In this

3.5. IMPLEMENTATION

bool uEventListPop::operator>>(uEventNode *&node) {
UEL->uAcquireEventLock();

/I get event at the start of the list with the shortest time delay
node = uEL->uL.uHead();

if (! node){ /I no events ?
UEL->uReleaseEventLock();
return false;

Yt

/I event time delay greater than the start time for the iteration ?
if (uCheckTime(node->timerT)) {
UEL->uReleaseEventLock();
return false;
Yt

UEL->uL.uRemove(node);

if (node->SigHandler ==
(uSignalHandler *)(uThisProcessor().uContextSwitchHandler)) {
/l remember the context switch event
uCxtSwHandler = node->SigHandler;
UEL->uReleaseEventLock();

} else { /I not a ContextSwitch event
if (node->uExecuteLocked) { /I invoke handler with lock ?
node->SigHandler->uHandler(); /I invoke the handler for event
UEL->uReleaseEventLock();
} else {
UEL->uReleaseEventLock();
node->SigHandler->uHandler(); /I invoke the handler for event
Yt
Yt

return true;
} // uEventListPop::operator>>

Figure 3.16: operator>>

90

CHAPTER 3. TIMEOUTS

case, the outstanding timeout must be removed. As the timeout has not ex-
pired, the timeout is either removed when the acceptor is restarted at the end
of the accept statement (this includes nesting by the acceptor (see Figure 3.8))
or by a subsequent accept statement with a timeout clause that occurs before
the acceptor is restarted (this includes nesting that occurs when a calling task
performs an accept). In the first case, the outstanding timeout is removed
when the acceptor wakes up and finishes uAcceptPause (see Figure 3.12). In
the second case, if a subsequent accept statement with a timeout clause occurs
before the acceptor is restarted, then a call is made to remove the timeout
node before the new accept statement is processed in uProtectAcceptStatement
(see Figure 3.10). This call to remove the timeout before starting the new
accept statement allows the same timeout node to be reused for all accept
statements in the monitor and prevents old timeouts from affecting subse-
quent accept statements. In this case, however, the timeout node has already
been removed by the acceptor associated with the subsequent accept state-
ment. The fact that the initial acceptor still tries to perform the remove does

not present a problem because the remove operation is idempotent.

. The timeout occurs before a call to a valid member routine. As no entry

call has occurred, the timeout acquires the entry lock and determines that
it is a valid call (see uEnterTimeout, Figure 3.15). The timeout entry then
makes all other mutex routines uncallable and sets the acceptor as the owner
of the monitor. The timeout finishes by atomically waking up the acceptor

and releasing the entry lock. When the acceptor unblocks, it tries to remove

3.5.

IMPLEMENTATION 91

the timeout event at the end of the accept statement (see uAcceptPause,
Figure 3.12), but it is already removed. This extraneous remove is not a
problem as the remove is idempotent. As well, all calls into the monitor are

no longer acceptable and block.

The timeout expires while a valid entry call is being processed. The calling
task begins UEnter (see Figure 3.13) by acquiring the entry lock and blocking
calls to all mutex member routines. If a subsequent timeout occurs, it calls
uEnterTimeout (see Figure 3.15) and must first spin until it can acquire the
entry lock. When the timeout finally acquires the entry lock, the timeout
call is already marked uncallable, so the timeout releases the entry lock and
exits. If the owner of the monitor, either the acceptor or another task, tries
to remove the timeout node it must wait for the kernel to release the event
lock. As the timeout handler does not release the event lock until it is finished
executing, in this scenario, the remove can only continue after the kernel has
removed the timeout event and the handler is finished executing. At this
point in time, the timeout node is no longer active and can be reused. Again,
any extraneous removes at the end of accept statements are not a problem as

the remove is idempotent.

Furthermore, the only way for the timeout call to be made valid again is
to execute another accept statement with a timeout clause. As this accept
statement always begins with a call to remove the timeout, it is guaranteed

that an old timeout is cancelled before timeout calls become valid again.

There is no potential for deadlock when the monitor owner tries to remove the

92

CHAPTER 3. TIMEOUTS

timeout node while the timeout is being processed because only the timeout
handler is allowed to own both the event lock and the entry lock simulta-
neously. This rule is maintained for all tasks, including the owner of the
monitor. This results in the timeout handler owning the event lock while
trying to acquire the entry lock and the monitor owner owning the monitor
and trying to acquire the event lock. As the only common lock is the event
lock, no potential for deadlock is introduced into the system. It is impor-
tant to note that owning the monitor does not require the entry lock to be
acquired. In fact, only tasks calling the monitor need the entry lock to guar-
antee mutually exclusive access to the various entry data structures. Thus,
the entry lock is only acquired when these entry data structures are being

read or manipulated.

. A valid entry call occurs while a timeout is being processed. In this case,

the timeout begins UEnterTimeout (see Figure 3.15) by acquiring the entry
lock. The timeout marks all mutex routines uncallable and then makes the
acceptor the owner of the monitor and releases the entry lock. During this
time, any entry calls spin trying to acquire the entry lock. When an entry
call does finally acquire the entry lock, either the mutex routine is marked as
uncallable and the call blocks, or a new accept statement may have occurred,
resulting in the mutex routine being made callable, and the call is allowed to
proceed. In either case, the calling task cannot enter or even block waiting

for entry until the timeout finishes, so no potential for deadlock is possible.

The acceptor still removes the timeout node once it is woken up at the end

3.5. IMPLEMENTATION 93

of the accept statement. This extraneous remove is fine because the remove
is idempotent, and because the timeout handler is finished and in the process
of releasing all the locks it owns. Thus, the event lock is eventually available

for the acceptor when it calls remove.

Finally, the notion of nested accept statements with timeouts (see Figure 3.8)
needs to be considered. In order to proceed to the next level of nesting, regardless
of whether a valid call occurs or the accept statement times out, the acceptor
must be restarted before the next accept statement can be executed. When the
acceptor is restarted, if the timeout facilities are used, the acceptor always begins
by removing the timeout node from the event queue (see Figure 3.12). Thus, it
is impossible for the timeout to affect accept statements in subsequent levels of
nesting. Furthermore, the timeout node is now available for use by any subsequent
accept statements.

This design, however, does not require a call to remove when the acceptor is
restarted. The call to remove the timeout node when the acceptor is restarted
is solely a convenience used to reduce overhead, i.e., an extra call to remove the
timeout node is less expensive than processing an interrupt associated with an
expired timeout. When the acceptor is restarted, all mutex routines are uncallable
because the monitor is currently active. Thus, if a timeout occurs, it is discarded.
The only way for the timeout call to become valid again is for the monitor owner
to block on an accept statement with a timeout. But, a call to remove the timeout
node (Figure 3.10) always occurs before the actual accept statement is processed.

Again, this prevents the timeout from affecting accept statements in subsequent

94 CHAPTER 3. TIMEOUTS

levels of nesting.

3.5.6 Analysis

The following considers the pC++ implementation of a timeout facility for accept
statement with respect to the stated goals.

First, by carefully controlling the locking order no potential for deadlock (or
livelock) is introduced into the system. Crucial to this idea is that the remove
operation occurs before the entry lock is acquired by the monitor. Thus, an out-
standing timeout request is removed before it expires or none of the locks required
to process the timeout are held by the monitor owner until the kernel task has
finished processing the timeout.

Unfortunately, the timeout facility does incur some costs regardless of whether
it is actually used. Not only does every mutex object require the implicit definition
of a specialized entry routine and a flag indicating when calls to the timeout are
acceptable, but the fixed number of mutex routines supported by mutex objects in
puCH+ is further reduced by one (from 128 possible mutex routines to 127). As well,
every mutex object contains a node used for timeouts.

These costs are reasonable, however, and have the added advantage that the
timeout facilities are appropriate for use in a real-time system as no expensive
dynamic allocations are required. The only parts of the timeout facility that are
not fixed cost is adding a node to the event queue in timeout order and starvation
problems related to the use of spinlocks. The costs associated with the event

queue are not fixed as they depend on the number of nodes on the event queue.

3.6. SUMMARY 95

The number of these outstanding events are application dependent, however, and
can be limited at the user level, and incorporated into the schedulability analysis
of the system. As the need for spinlocks with a multiprocessor implementation is
unavoidable, this is a general issue and not specific to the timeout facility. However,
several approaches to bounding the execution time relating to spinlocks have been
proposed [13, 65].

Finally, the changes made to the system to support the timeout facility are small.
By modelling the timeouts like a mutex member routine of an accept statement,
much of the complexity needed to process timeouts is handled by the existing
implementation of accept statements. Furthermore, any changes relating to how
events are handled in the system should be applicable to extending other operations

in pC++ with a timeout facility.

3.6 Summary

In order to use synchronization and communication operations in a real-time sys-
tem, it must be possible to specify their worst-case execution time. One method
to accomplish this goal is to extend these operations with a timeout facility. This
timeout facility provides a method to terminate an operation if it does not progress
to a certain point within a specified amount of time.

To this end, an extension to accept statements to include a timeout facility is
proposed. This extension works by modelling the timeout after a call to a valid entry
routine. This technique has the advantage of integrating the timeout facility more

naturally with existing accept statement semantics and making the implementation

96 CHAPTER 3. TIMEOUTS

simpler as the existing accept statement functionality can be used.

The basic idea is to use a specialized entry routine to handle timeouts. So, if
an accept statement has a timeout clause but no mutex routines are immediately
acceptable, then a timeout request is made to the kernel task. After the specified
time has elapsed, the kernel task calls this specialized mutex routine in order to
restart the acceptor. If a valid call occurs before the timeout expires, then the
timeout request needs to be short-circuited before the timeout call becomes valid
again, i.e., a subsequent accept statement with a timeout clause occurs for the
object.

The only remaining problem is to handle timeout requests that expire in the
window between a valid call occurring and the timeout being short-circuited. By
guaranteeing that the timeout request is short-circuited before a subsequent use of
the timeout facilities in the object, the calls generated by a timeout expiring in this
window can be discarded if they are not immediately valid. It is also interesting to
note that these semantics are sufficient to allow the use of nested accept statements.

This timeout facility was implemented for accept statements in pC++. The ac-
tual modifications required to implement this timeout facility are reasonable and fit
well into the existing pC++ implementation of accept statements. While this 1im-
plementation does meet many of the required goals, some interesting issues remain
outstanding. These issues include bounding spinlocks and limiting the execution
time relating to ordered insertion on the event queue, which is a data structure

1ssue.

Chapter 4

Practical Scheduling

Considerations

Scheduling is generally considered the most important aspect of a real-time system.
The goal of scheduling is to determine whether a set of tasks can meet their specified
timing requirements. Any useful scheduling algorithm must not only determine if a
feasible schedule exists, but must also provide an ordering of the tasks that satisfies
the specified constraints.

One common approach to ordering a set of tasks is referred to as priority-based
scheduling. The basic idea behind this scheduling technique is to assign each task
a priority value. In many cases, the assigned priority value has little relevance to
the actual importance of the task. A task’s priority is typically a function of its
relative timing characteristics. Then, at any point in time when the system needs
to make a scheduling decision, the ready task with the highest priority is selected.

This chapter considers some of the practical issues a system must deal with in order

97

98 CHAPTER 4. PRACTICAL SCHEDULING CONSIDERATIONS

to dispatch a set of tasks using priority-based scheduling.

4.1 Background

Priority based scheduling is an important part of real-time scheduling theory. While
more sophisticated scheduling techniques are an increasingly important part of real-
time research, priority-based scheduling is still an important research area as most
commercial real-time systems are based on priority scheduling. Not only is priority-
based scheduling much simpler to implement, but it is flexible enough to support a
variety of static and dynamic scheduling algorithms. This section provides a brief
introduction to priority-based scheduling algorithms, but for a thorough discussion
of priority based scheduling algorithms for real-time systems refer to [12, 38, 47, 57].

Scheduling algorithms are typically categorized as either static or dynamic.
With static scheduling, decisions are based on the entire task set, while with dy-
namic scheduling, decisions are based only on the current task set.

In most cases, the differences between static and dynamic algorithms lie in their
ability to handle aperiodic tasks. Many real-time tasks tend to repeat the same set
of actions with a specific frequency, for example, reading a set of sensors once every
minute. These kinds of tasks are referred to as periodic tasks and lend themselves
well to static analysis and scheduling. Aperiodic tasks, on the other hand, may still
have timing constraints but tend to be more dynamic with unpredictable arrival
times. Aperiodic tasks can have hard or soft deadlines. A deadline is considered
hard if the consequences of missing the deadline is severe. A soft deadline serves as

an indication of desired response time, so missing a soft deadline is not disastrous.

4.1. BACKGROUND 99

Ideally, a dynamic system should never miss any hard deadlines but still provide
efficient service to tasks with soft deadlines.

A separate criteria that is often confused with static and dynamic scheduling
is off-line and online scheduling [57]. According to Stankovic, et. al. [57], all
scheduling algorithms have an off-line component that can range from producing
a fixed schedule a prior: with static scheduling to calculating appropriate task
scheduling parameters for dynamic scheduling. As well, all scheduling algorithms
have an on-line component that can range from dispatching the tasks according to a
fixed schedule with static scheduling to determining if a new task can be scheduled
with dynamic scheduling.

Scheduling decisions can be based on a variety of constraints and criteria. These

criteria can include:

1. Period: The inter-arrival time between successive occurrences of the same

task.

2. Computation Time: The worst-case execution time for an instance of the

task.
3. Deadline: The time by which an instance of the task must be completed.
4. Importance: A value indicating the relative importance of the task.

5. Start Time: The time at which the task must begin execution.

A common class of scheduling algorithms are referred to as priority-based schedul-
ing algorithms. These algorithms can be classified as either fized priority or dy-

namic priority scheduling algorithms. This classification is independent of whether

100 CHAPTER 4. PRACTICAL SCHEDULING CONSIDERATIONS

a priority-based scheduling algorithm is used statically or dynamically, as defined
above. With a fixed priority scheduling algorithm a task’s priority is fixed during
run-time, where as with a dynamic priority scheduling algorithm a task’s priority
can change as a task executes. These definitions are somewhat misleading because
in practice a task’s priority can change in an online fixed priority scheduling al-
gorithm, as tasks are added and removed from the system. If this algorithm is
clairvoyant these changes can be accounted for and each task can be assigned a
fixed priority value. However, even with a clairvoyant dynamic priority scheduling
algorithm, a task’s priority typically changes during its execution for other reasons

(see Section 4.1.2).

4.1.1 Fixed Priority Scheduling

One of the first fixed priority scheduling algorithms is the rate monotonic algorithm
proposed by Lui and Layland [36]. For tasks to be scheduled by the rate monotonic
scheduling algorithm, several conditions must be satisfied. First, each task must be
periodic with its deadline equal to the end of its period. Furthermore, the tasks must
be independent, i.e., no communication or synchronization, and preemptable. The
rate monotonic algorithm assigns higher priorities to tasks with shorter periods.
Lui and Layland proved that a set of n tasks are schedulable if Y7, C;/T; <
n(2(1/?) —1), where C; is the computation time of task i and T} is the period of task
1. However, tasks not satisfying this condition may still be schedulable. An exact
characterization of the rate monotonic algorithm is provided in [30].

The deadline monotonic algorithm [34] can be used to schedule tasks with dead-

4.1. BACKGROUND 101

lines less than their period. With this algorithm, tasks with shorter deadlines are
assigned higher priorities. Several schedulability tests are available for the deadline
monotonic algorithm [3]. Again, tasks not satisfying these tests may be schedulable.
Exact characterization is available by using an algorithm [4].

Unfortunately, these scheduling algorithms do not consider aperiodic tasks. Sev-
eral approaches have been proposed to deal with these kinds of tasks. Two common
approaches are aperiodic servers and slack stealing algorithms. An aperiodic server
is a periodic task, but its execution time is used to service aperiodic tasks. Various
types of servers exist, including the deferrable server [32, 58], the priority exchange
server [32] and the sporadic server [53]. Slack stealing algorithms [18, 31, 33, 61, 62]
try to find time to execute aperiodic tasks by delaying the execution of periodic
tasks as long as possible, without causing any periodic task to miss its deadline,

and using the recovered time for aperiodic tasks.

4.1.2 Dynamic Priority Scheduling

The most common dynamic priority algorithm is the earliest deadline first (EDF)
algorithm, also proposed by Lui and Layland [36]. This algorithm can be used to
schedule a set of independent periodic or hard aperiodic tasks. With this algorithm,
the task with the closest deadline at any given point in time is assigned the highest
priority. The EDF algorithm has been shown to be optimal in the uniprocessor
case [36]. Furthermore, a set of tasks is schedulable under the EDF algorithm if
the total processor utilization is at most one, ie., >0, C;/T; < 1.

The least slack time algorithm is another common dynamic scheduling algo-

102 CHAPTER 4. PRACTICAL SCHEDULING CONSIDERATIONS

rithm. Slack time is the measure of the amount of time a task can be delayed
before it misses its deadline. With this algorithm, the task with the smallest slack
time is executed first. This algorithm is also optimal in the uniprocessor case.

The problem with these algorithms is that under transient overload conditions,
unpredictable behaviour can occur, resulting in a potential cascade of missed dead-
lines.

Unfortunately, most practical real-time scheduling problems tend to be NP [40,
57]. These problems include tasks with arbitrary precedence constraints, multi-
processor scheduling, etc. In order to use dynamic priority scheduling under these
circumstances, priorities are assigned using heuristics. Common heuristics used to
assign priorities are given in [28]. These heuristics can include EDF, minimum
processing time first, etc.

While the algorithms described above are appropriate for servicing periodic and
hard aperiodic tasks, they tend to be too restrictive when dealing with soft aperiodic
tasks. Various techniques have been proposed to allow these algorithms to provide
efficient service to aperiodic tasks with soft deadlines while still meeting all hard
deadlines [21, 26, 54, 55, 62]. Again, aperiodic servers and slack stealing algorithms
are used to service these types of tasks but because the active task set may change,

these algorithms must be more flexible and adjust as new tasks enter the system.

4.2 Implementing Priority Based Scheduling

Aside from the theoretical limitations imposed by the various priority scheduling

algorithms, many practical issues also exist. The overriding criteria needed for a

4.2. IMPLEMENTING PRIORITY BASED SCHEDULING 103

real-time system is predictability. To achieve this predictability, it is important that
all online scheduling operations are bounded by a fixed, worst-case execution time.
Fixed, worst-case execution is typically achieved by bounding the number of tasks,
the number of priority levels, or some other parameter of the scheduling algorithm.
Bounding the system overheads incurred by scheduling allows these costs to be in-
cluded in the feasibility analysis of the system and to enhance predictability. While
achieving predictability is reasonable for fixed priority scheduling, the overheads

incurred for dynamic scheduling are much greater.

4.2.1 Implementing Fixed Priority Scheduling

Consider how fixed priority scheduling is typically supported in a real-time system.
As the scheduling analysis takes place a priori, each task is assigned a static priority
value from a fixed range. While it is possible to use an arbitrary range, typically the
tasks are sorted using the appropriate criteria for the selected scheduling algorithm
and assigned priorities consecutively starting at one. The number of priority values
supported by the system is usually limited: 64 and 256 are common values. In order
for the system to efficiently schedule an eligible task with the highest priority, the
eligible tasks are placed on a priority queue. As the number of priorities is typically
limited to a small number, it is possible to use an array based priority queue. Each
element of the array is the head of a FIFO queue for the priority value corresponding
to the index value of the array. Tasks of a particular priority value are placed on
the appropriate FIFO queue (see Figure 4.1).

The advantage of this type of priority queue is that it offers efficient, constant

104 CHAPTER 4. PRACTICAL SCHEDULING CONSIDERATIONS

1 == Tl == Tyl

2 == Ty:2

3 == Ty:3=—= T3

X:Y = Task:Priority

Figure 4.1: Example of an array based priority queue.

time operations. The desirable operations the priority queue needs to support
are Empty, Insert, Delete, and Max/Min. With Max/Min, the actual operation
required is dependent on the implementation of the priorities, i.e., if smaller num-
bers represent higher priorities then Min is required, otherwise Max is necessary.
The Empty operation can be implemented in constant time by simply searching
each level of the array for a non-empty priority queue. The cost for this search
is bounded by the size of the array, which corresponds to the number of priorities
supported. Using a doubly-linked list allows the insert and delete operations to
be supported in constant time. For the delete operation, the task being removed
from the queue needs to maintain a reference to its associated node, otherwise a
search is required. Finally, the Max/Min operation, to locate the highest priority
task, can also be supported in constant time. Similar to the idea behind the Empty
operation, linearly searching the array for the non-empty queue of highest priority
is a constant time operation. While more efficient implementations are possible for

these operations, the point is that all the operations are constant time.

4.2. IMPLEMENTING PRIORITY BASED SCHEDULING 105

4.2.2 Implementing Dynamic Priority Scheduling

With a dynamic priority scheduling algorithm, however, scheduling decisions are
typically based on the currently active task set. In this case, sorting the tasks and
assigning priority values consecutively starting at one is impractical. First, new
tasks entering the system may need to be inserted between existing tasks. If the
priorities are assigned consecutively, then the priorities of the existing tasks need to
be re-shuffled to accommodate this new task. Furthermore, with algorithms such
as EDF, priorities need to be continually updated as tasks finish their execution
for a particular period.

In addition to the overhead imposed by requiring the priorities of the tasks to
be recalculated, there is also a queue synchronization problem, i.e., the various pri-
ority queue data structures required to schedule these tasks must also be updated.
Priority queue data structures are associated with the ready queue, as well as other
high-level constructs, like monitors and semaphores, that are modified in a real-time
environment to expedite the entry of higher priority tasks (see chapter 2). Updat-
ing these priority queues as task priorities change can be very expensive because of
the blocking that may occur as the appropriate locks are acquired. As well, some of
these high-level constructs may have internal priority queues that cannot be modi-
fied without further changes to the construct, for example, condition queues inside
monitors. This problem is further exacerbated because the worst-case execution
time for modifying task priorities and updating the required priority queues, which
can be implicit and hidden, must be incorporated into the execution time analy-

sis of the system. Accounting for these overheads can lead to overly pessimistic

106 CHAPTER 4. PRACTICAL SCHEDULING CONSIDERATIONS

worst-case execution times, reducing the schedulability of potential task sets.

The update problem associated with the priority queues can be eliminated by
not using an array based priority queue. Consider how the priority values in a
dynamic system might change. If a task is removed from the system, the priority
values might be adjusted to remove the gap in priorities but the ordering of the
remaining tasks is unchanged. Similarly, if a task is added to the system, while
the priorities of the current tasks may need to shift in order to accommodate this
new priority, the relative ordering of the current task set remains unchanged. Also,
as the added task has not begun executing, it has not yet been placed on any
priority queues. In both of these cases, the relative ordering of the tasks on the
various priority queues remain unchanged. A priority queue data structure that
allows the actual key values to change relative to one another without requiring the
data structure to be updated is more appropriate for dynamic priority scheduling,
for example, the heap appearing in Figure 4.2. In this example, despite the fact
the actual priority values associated with the tasks change, their ordering remains
consistent, 1.e., Ty, Ty, T3, Ty, Ts, Tg, and T7. Hence, the ordering of these tasks
on the heap also remains consistent. While using a priority queue that allows
the actual values of the keys to change without requiring an update may resolve
the queue synchronization problem, it does not address the problem that the task
priority values may be continually changing.

One possible solution to the shifting priorities problem is to assign priority
values that do not need to change when new tasks enter the system. The easiest

solution is to simply space out the priorities of the tasks currently in the system.

4.2. IMPLEMENTING PRIORITY BASED SCHEDULING 107

jjI:1 Tlil

T2:2 Tg:-?) Tz:?) T3:4

Ty:4 T5:5 T5:6 T7:7 Ty:7 T5:8 Ts:11 T7:20

X:Y = task:priority

Figure 4.2: Example of relative ordering in a heap.

For example, rather than assigning priorities consecutively, such as 1, 2, 3, etc., they
are spaced out over the entire range, such as 5, 10, 15, etc. This spacing allows tasks
entering the system to be assigned priority values between currently existing tasks
without needing to re-shuffle the existing task priorities. Unfortunately, spacing
out the priority values cannot completely eliminate the need to re-shuffle priorities
because the spaces between the tasks may eventually become full. Furthermore,
this solution does not address the problem of tasks priorities shifting as part of the
scheduling algorithm.

Another solution is to assign task priority values based on the actual charac-
teristics used to order the task set. For example, if EDF scheduling is used, then
rather than sorting the tasks according to their deadlines and then assigning an
artificial number based on this ordering, assign the actual deadline value as the
priority of the task, e.g., if task 7} has deadline 13 and task T3 has deadline 27,
then T} is assigned priority 13 and 75 is assigned priority 27. It is still desirable to
limit the number of different priority values assigned to a value like 256, but the
actual priorities can range over a much larger set of values. Typically, with this

type of scheme, the number of priorities assigned is sparse compared to the size of

108 CHAPTER 4. PRACTICAL SCHEDULING CONSIDERATIONS

the range.

With the EDF scheduling algorithm, as a task’s deadline is independent of other
tasks in the system, new tasks entering the system could be assigned priorities
without affecting the priorities of the existing tasks. This independence is typical
of the task parameters used to make scheduling decisions. Furthermore, when a task
does require its priority to be updated, this update can be performed independently
of the other tasks in the system. For example, with the EDF scheduling algorithm,
a task’s priority can be changed to reflect its new deadline after it completes its
execution for the current period without affecting the deadlines, and in turn the
priorities, of any other tasks in the system, e.g., if task 7} and task T3 from above
are periodic then at time 0 their priority is (13, 27), at time 13 their priority is (26,
27), at time 26 their priority is (39, 27), at time 27 their priority is (39, 54), etc.
While the implicit priority, i.e., the relative ordering, of the remaining tasks may
increase when the highest priority task finishes its execution, the actual priority
values for these tasks remain constant.

The problem with this scheme is that there is a possibility of overflow if the ac-
tual priority values tend to become larger over time. This problem can be mitigated
either by periodically reducing all task priorities by an equal amount or by using a
large enough number of bytes to make this problem infeasible. For example, with
EDF if the deadlines are specified in microseconds, then a 64 bit value is sufficient
(and practical with newer hardware) as only positive priority values are needed.

However, the simple, constant time array based priority queue is impractical for

any of these schemes. The space requirements for the array based priority queue

4.2. IMPLEMENTING PRIORITY BASED SCHEDULING 109

over a large range are impractical, especially because these priority queues can be
associated with various high-level constructs.

A priority queue data structure that supports constant time operations and
can take advantage of the sparse nature of the priorities used under this scheme
is more appropriate. Maheshwari [37] performed a thorough evaluation of priority
queue data structures to determine which algorithms are appropriate for a real-
time environment. His results indicate that rings, heaps, D-trees and bit vectors
are most suitable for a real-time environment. These algorithms are considered for

their applicability to the priority scheme described above.

Rings

A ring based priority queue, is a circular list of priority ordered nodes. While this
list can be implemented with either arrays or pointers, for better performance it
should be doubly linked. Unfortunately, despite the fact that Max/Min is constant
time, i.e., the first element in the list, insert and delete have O(n) worst-case exe-
cution time, where n is the number of nodes. This performance is not acceptable

for reasonable sized queues.

Heaps

A binary heap [67] based priority queue is a complete binary tree satisfying the
property that every parent node has higher priority than its children. A heap is
typically implemented using an array, with the root of the tree as the first element
of the array. With a heap, Max/Min is constant time, i.e., the first element of

the array, and insert and delete have O(lg n) worst-case execution time. Efficient

110 CHAPTER 4. PRACTICAL SCHEDULING CONSIDERATIONS

implementations yielding reasonably good performance exist for heaps.

D-trees

A D-tree [37] can be viewed as an extension of a heap. A D-tree is also a complete
binary tree, but the leaves are the elements of the priority queue and the interior
nodes form a binary decision tree. In a D-tree, every parent node is assigned the
higher value of its two children. A D-tree can also be implemented as an array with
the root of the tree as the first element of the array. As elements are inserted and
deleted from the leaves of the D-tree, these changes are propagated up the tree.
Again, Max/Min is constant time, i.e., the first element of the array, and insert
and delete have O(lg n) worst-case execution time. According to Maheshwari [37],
the performance of D-trees are similar to the performance of heaps, but somewhat
faster. However, D-trees require about twice as much storage as heaps and are

somewhat more complicated to implement.

Bit-vectors

Various type of bit vectors exist. They can range from a simple bit map to a Van
Emde Boas [64] priority queue. The simple bitmap usually consists of a separate bit
vector representing the queue for each priority level and each task being assigned
a particular bit in each bit vector. With bit-vector algorithms, at least one bit is

allocated for each element in the range.

The subsequent analysis varies slightly from the analysis given in Mahesh-

wari [37]. The biggest change is that the elements of the priority queues presented

4.2. IMPLEMENTING PRIORITY BASED SCHEDULING 111

T125 Tz:

ot
ot

T T=—>=T5:7T==| 7 9| =——="Ty:9

X:Y=task:priority

Figure 4.3: Using FIFO queues as elements of the heap.

in Maheshwari [37] are nodes representing the actual tasks. The problem with this
approach is that the bounds presented for the algorithms are based on n, where n
is the number of tasks. Allowing the system to support an arbitrary, or at least a
large number of tasks, can result in large worst-case execution times.

My approach is based on an idea similar to that presented for the array based
priority queue. Rather than using the elements in the priority queue to represent
tasks, they represent FIFO queues for a particular priority level. Thus, there is ex-
actly one node in the priority queue for each priority level, and tasks are added and
removed from the appropriate FIFO queue (see Figure 4.3). The advantage of this
approach is that the worst-case execution times for the priority queue operations
are based on the number of priorities and not on the number of tasks. Typically, a
system supports a small fixed number of priorities but can support a large number
of tasks. The worst-case execution time, in this case, is a small, fixed value and
much better suited for a real-time system.

In the cases where the scheduling algorithm requires each task to have a unique
priority, using the FIFO queues as the nodes on the priority queue is slightly more
expensive than using the actual tasks. If tasks do not have unique priority values,

this method also has the advantage that it is stable, i.e., all the tasks for a particular

112 CHAPTER 4. PRACTICAL SCHEDULING CONSIDERATIONS

priority value are processed in FIFO order. When the actual tasks are used as the
elements of the priority queue, then many of the priority queue algorithms are not
stable.

In terms of the priority queue data structures described above, not all of them
are appropriate for use with the described priority scheme. First, the O(n) worst-
case execution time for rings eliminates this data structure from consideration when
more than a small number of priorities are supported. As well, the sparse usage
of the large priority ranges associated with this scheduling technique make bit
vectors impractical because at least one bit must be allocated for every value in
the range. Therefore, bit vectors are also eliminated from consideration due to the
large memory requirements of these algorithms. Thus, it would seem that heaps or

D-trees are the best choices for implementing the described scheduling technique.

4.3 puCH Implementation Details

For the pC4+ implementation, heap based priority queue data structures were cho-
sen. Even though it has been shown that D-trees have slightly better performance,
heaps are simpler to implement, have half the memory requirements and have exe-
cution time graphs similar to D-trees [37].

While the heap may support O(lg n) insertion and deletion, these operations
require a reference to the actual node in the heap. As the heap does not support an
efficient find operation, i.e., it has O(n) worst-case execution time, a faster method
of finding a particular heap node is required. This operation is not only needed

for inserting and deleting elements in the heap but also for tasks to access their

4.3. pC4++ IMPLEMENTATION DETAILS 113

associated FIFO queue. Unfortunately, it is impossible for each task to maintain a
reference to the heap node containing their associated FIFO queue because, as the
heap is modified, it is expensive to keep these references in the tasks updated.

In order to minimize this update problem, two array data structures are used
(see Figure 4.4). The first array is the actual heap, but the elements of the heap
point to the nodes in the second array. Each element of the second array consists
of a FIFO queue and a reference back to its associated node in the first array. Each
FIFO queue in this array is assigned to a particular priority value. Then, as the
heap is updated, only the references in the second array need to be maintained.
For any element that is on the heap, its reference into the second array is fixed
while it is on the heap, so no updating is required, i.e., the FIFO queue used for
a particular priority level does not change while tasks for that particular priority
value still exist. Tasks in the system then only have to maintain a reference to the
node in the second array associated with their priority value. Through this node,
tasks can access both their associated FIFO queue and their node on the heap in
constant time. Similar to the reasoning explaining why the elements in the first
array do not need to be updated, these references in the task also do not need to
be updated.

Unfortunately, this technique does not eliminate the find problem. When a task
enters the system, it is assigned a priority value. After being assigned a priority
value, this task needs to determine which FIFO queue its priority is associated
with. A task can make this determination by performing a linear search through

the assigned nodes in the second array. If a node associated with the required

114 CHAPTER 4. PRACTICAL SCHEDULING CONSIDERATIONS

5:2
7:3 9:1 heap
5:2 | 73] 9:1 1%¢ array - heap implementation
D) N 7
2R\ A\
9:3 | 5:1 | 7:2 274 array - details for each priority level
T, Ts T
T Ty X:Y = priority:array reference

Figure 4.4: 2 array FIFO queue heap.

priority value is not found, then the next free node in the second array is selected
and associated with the task’s priority value. All subsequent tasks with the same
priority value use this node as well. While this search is O(n), where n is the number
of priorities, it usually only needs to be performed when a task is first created or
when a task’s priority value changes. Therefore, even though this technique does
not eliminate the find and reference problems, they are both reduced to reasonable
levels, in apparently nonessential situations. Furthermore, the expected search cost
can be reduced by using techniques like hashing to associate priorities to nodes in
the second array.

As tasks have a reference to the node associated with their priority level in

the second array, the associated node in the heap can also be accessed without

4.3. pC4++ IMPLEMENTATION DETAILS 115

searching. While the ability to directly reference the heap node has no advantages
when a task is inserted into the priority queue, it can have advantages during
deletion. When a task is inserted into the priority queue, first, the task is placed
on the FIFO queue associated with its priority value. If this FIFO queue is empty,
then a node for this priority value must also be added to the heap. Similarly, when a
task is deleted from the priority queue, first, the task is removed from its associated
FIFO queue. If this FIFO queue is now empty, then the node for this priority level
must also be removed from the heap. As the task can access the heap node directly,
removing the node from the heap is an O(lg n) operation. Maintaining the heap in
this manner, still allows it to return the non-empty FIFO queue of highest priority
in constant time. Of course, if this FIFO queue of highest priority is empty after a
task is removed, then an O(lg n) delete operation must be performed on the heap.

The problem that arises in many systems is that several priority queue data
structures exist. A priority queue is associated with the ready queue, as well as
with real-time mutex objects, e.g., monitors and semaphores. It is infeasible for
a task to remember the index associated with its priority level for all the possible
priority queues in the system. Interestingly enough, it is possible for every task in
the system to simply use the same index value regardless of the priority queue. If
this ordering is consistent for one priority queue, then as long as the same tasks and
priority levels are used for all other queues, then this ordering is consistent for all
priority queues. This technique also eliminates the extra search required the first
time a task is placed on a priority queue. Note that the initial search when a task

is created or its priority value is changed must still occur in order for the task to

116 CHAPTER 4. PRACTICAL SCHEDULING CONSIDERATIONS

determine the appropriate queue value.

4.4 Summary

Priority based scheduling is an important part of real-time programming. Tech-
niques exists to schedule both periodic and aperiodic tasks with both hard and soft
deadlines. These algorithms can be classified as either fixed priority or dynamic
priority scheduling algorithms. While implementing fixed priority scheduling is
straightforward, dynamic priority scheduling is significantly more complicated.

As dynamic priority scheduling is typically only based on the active task set,
tasks entering the system may change the ordering of this task set. Furthermore,
with dynamic priority scheduling, the priorities of the tasks change during exe-
cution. While these situations may change the implicit priority of the tasks, the
relative ordering of the remaining tasks stays unchanged. By using the actual
scheduling parameters, such as deadline, as the actual priority value of a task, a
task’s actual priority value is independent of the other tasks in the system. There-
fore, a task’s priority can be modified or tasks can be added to or removed from
the system without affecting the priority value of other tasks in the system.

Unfortunately, the problem with this scheme is that the range of priorities that
need to be handled is much larger, thus the array based priority queues used for the
implementation of fixed priority scheduling are no longer appropriate. A priority
queue data structure that is independent of the range of acceptable priority values
is more appropriate, such as heaps or D-trees. As well, by using FIFO queues for

each priority level as elements of the priority queue, rather than using the actual

4.4. SUMMARY 117

tasks, a small, fixed worst-case execution time is obtained for all the priority queue
operations. Using FIFO queues as elements of the priority queue also has the added
advantage that heap and D-tree based priority queues become stable.

This scheduling technique is implemented in pC+4+ using heap based priority
queues. However, the problem with using a heap is that the find operation has O(n)
worst-case execution time. In order to minimize the impact of an expensive find
operation, a second array is used for the FIFO queues. Then, both the heap and
the tasks reference this second array to access the appropriate FIFO queue for a
particular priority value. As the FIFO queues do not shift within this second array,
the update problem is reduced to keeping the second array synchronized with the
heap.

Using this second array means that tasks only needs to perform an expensive
find when they are first created or when their priority changes. In all subsequent
references to the priority queue, the appropriate nodes can be accessed directly. As
well, forcing the tasks to use the same index value for the priority queues associ-
ated with other mutex objects allows these priority queues to be accessed without

incurring any additional overhead.

Chapter 5

Priority Inheritance

Many priority-based scheduling algorithms assume the tasks being scheduled are
independent; however, this assumption is typically unrealistic. In order to maintain
the integrity of task interactions, critical sections are used to serialize access to
shared resources, for example, data. The problem that occurs with critical sections
is that a low priority task, using a shared resource, can delay the execution of a high
priority task trying to access this same resource. As mentioned in chapter 2, this
situation is referred to as priority inversion. While, in general, it is impossible to
eliminate priority inversion, it is important to bound the duration of this inversion.
Unbounded priority inversion is a serious problem making it impossible to guarantee
the schedulability of a system.

Consider the following example: Two tasks share a resource, a low priority task
Ty, and high priority task Tpy. Ty tries to acquire the resource but it is already held
by T%7. In this situation, Ty must block until 77, releases the resource. However,

as Ty, executes at a low priority, its execution can be indefinitely delayed by tasks

119

120 CHAPTER 5. PRIORITY INHERITANCE

executing at intermediate priorities. In this situation, the blocking time experienced
by Ty is potentially unbounded.

A technique to bound the length of this inversion is priority inheritance. The
idea behind priority inheritance is to temporarily raise the priority of a task owning
a resource in order to expedite its usage of the resource and to limit the duration
of priority inversion. The details regarding when a task’s priority is raised and by
how much vary depending on the actual priority inheritance protocol chosen.

This chapter discusses the basic priority inheritance protocol. This protocol is
chosen for the following reasons. First, the basic priority inheritance protocol forms
the base of other more complicated protocols. Second, the implementation of this

basic protocol in not as straightforward as it might first appear.

5.1 Background

In order to address the problem of unbounded priority inversion, Rajkumar [50, 51]
proposed several priority inheritance protocols. This notion of priority inheritance
has been expanded and extended in various ways [5, 6, 15, 16, 44]. This section

provides a brief introduction to a selection of these protocols (uniprocessor only).

5.1.1 Basic Priority Inheritance Protocol

The idea behind the basic priority inheritance protocol [44, 50, 51] is that if a
low priority task is delaying the execution of higher priority tasks due to priority
inversion, the priority of the low priority task is temporarily raised to the priority

of the highest priority task it is blocking. Raising the priority of the lower priority

5.1. BACKGROUND 121

task expedites its usage of a resource by letting it execute when the blocked higher
priority task would be scheduled. This technique bounds the length of any priority
inversion and allows the worst-case execution time of a task to be specified. In fact,
Rajkumar [44, 50, 51] provides sufficient conditions to allow a non-independent task
set to be scheduled using the rate monotonic scheduling algorithm.

Consider the task set in Table 5.1. Each row of this table consists of the name
and priority (1 is the highest priority) of a task in the system, as well as, the
resources used by that task. Assume execution begins at time ¢q with both resources
available and that these resources support the basic priority inheritance protocol.
Suppose the sequence of events in Figure 5.1 occurs. Figure 5.2 shows the state of
the resources at each of the listed events. At time ¢y, execution begins and both
resources are available. At time ¢, task 75 successfully acquires resource Ry. At
time to, task T, successfully acquires resource Ry. At time t3, task T blocks trying
to acquire resource Ry as it is already acquired by task T5. When T blocks, task
T3’s priority is increased to the priority of Tj. At time ¢4, task T3 blocks trying to
acquire R, as it 1s already acquired by task T,. When T35 blocks, task T3’s priority
is increased to T3’s current priority, i.e., the prioirity of 7. When task T, releases
resource Ry at time t5, its priority is lowered back to its original priority and task
T5 is able to acquire R;. When task T3 releases resources Ry and R, at time T,
its priority is lowered back to its original priority and task 7} is able to acquire R;.
Finally, at time t7, task T} releases R;.

Intuitively, this technique works because intermediate priority tasks can no

longer preempt the execution of lower priority tasks if these lower priority tasks

122

CHAPTER 5. PRIORITY INHERITANCE

Task ‘ Priority ‘ Resources

T, 1 R,
T, 2 R,
T3 3 Rl) RZ

Table 5.1: Sample task set.

. At time t;, T3 tries to acquire resource R;.

At time t5, Ty tries to acquire resource R;.

At time t3, T} tries to acquire resource Rj.

. At time t4, T3 tries to acquire resource Rj.

At time t5, T, releases resource R,.
At time tg, T3 releases resources Ry and R;.

At time t7, T} releases resource Rj.

Figure 5.1: Sample run sequence.

5.1. BACKGROUND

to

tq

to

t3

Ry

R,

R,

Tgi.

R,

Ry

Tgi.

R,

inheritance

Ry

TZ:.

T3:

1

R,

?

T1:

1

T2:

tq

ts

te

t7

X:Y = task:priority

inheritance

Rl RZ

T3 01 T2 01

T1 01 — T3 01

R1 RZ

T3 01 T3 01

T1 01

Rl RZ

T1 01

Rl RZ

Figure 5.2: Basic Priority Inheritance Example.

123

124 CHAPTER 5. PRIORITY INHERITANCE

are preventing the execution of higher priority tasks due to priority inversion. Fur-
thermore, this scheme does not affect the execution of non-blocked high priority
tasks. Priority inheritance is also transitive, so the inherited priority value of a task
is the highest priority of all the tasks directly and indirectly blocked by this task.
A task T4 is indirectly blocked by a task T if there is a chain of blocked tasks
leading from T'g to T'4. For example, if T4 is blocked by task T and T¢ 1s blocked
by T, then T4 is directly blocked by T and indirectly blocked by T.

However, deficiencies exist with the protocol. First, despite the fact that this
protocol bounds the length of priority inversion, the actual blocking time experi-
enced by tasks can be long because this protocol does not prevent multiple blocking.
Multiple blocking refers to the fact that a task may need to block each time it re-
quires another resource because the resource is already acquired by a lower priority
task. Ideally, all the resources a task requires should be available after the first time
a task blocks. Second, this protocol does not avoid deadlock, an interesting side ef-
fect provided by some of the more sophisticated priority inheritance protocols. The
biggest advantage of this protocol, however, is that it can be implemented with-
out requiring any additional system information. Thus, it works well with online

scheduling.

5.1.2 Priority Ceiling Protocol

With the priority ceiling protocol [44, 50, 51|, every shared resource is assigned a
value referred to as a priority ceiling. This priority ceiling value is the priority of

the highest priority task that can access this resource. The priority ceiling protocol

5.1. BACKGROUND 125

extends the basic priority inheritance protocol by specifying when a task is allowed
to acquire a resource. A task is only allowed to acquire a resource if the resource is
available and the task’s priority is higher than the priority ceiling of all resources
held by all the other tasks in the system. This guarantees that the priority of the
task acquiring a resource is higher than the potential inherited priority of all other
tasks currently holding critical sections that it might preempt. If a resource is free
but a task is forced to block because its priority is not high enough to acquire the
resource, then this task is considered to be blocked by the task owning the resource
with the highest priority ceiling. Given this modification to the notion of blocking,
task priorities are then modified according to the method described in the basic
priority inheritance protocol.

Counsider the sequence of events in Figure 5.3 with the resources supporting the
priority ceiling protocol. The priority ceiling values for each resource is given in
Table 5.2. Figure 5.4 shows the state of the resources at each of the listed events.
At time tg, execution begins and both resources are available. At time ¢;, task
T3 successfully acquires resource Ry. At time t,, task T, blocks trying to acquire
resource Ry as its priority is less than the ceiling value of Ry. T, is considered
blocked by T3, and hence, T3’s priority is raised to the priority of T,. At time t3,
task T} blocks trying to acquire resource R as it is already acquired by task T5.
When Ti blocks, task 73’s priority is increased to the priority of 77. At time t,4,
task T3 acquires resource Ry. Note that unlike basic priority inheritance, T3 is not
required to block before it can acquire R;. When task T3 releases resources R

and R, at time ts5, its priority is lowered back to its original priority and task 77 is

126 CHAPTER 5. PRIORITY INHERITANCE

Resource ‘ Ceiling
Ry 1
Ry 2

Table 5.2: Ceiling Values.

1. At time t;, T3 tries to acquire resource Rj.
2. At time ty, Ty tries to acquire resource R;.
3. At time t3, T} tries to acquire resource Rj.
4. At time t4, T3 tries to acquire resource Rj.
5. At time t5, T3 releases resources Ry and R,.
6. At time tg, T} releases resource Rj.

7. At time t7, T, releases resource Rj.

Figure 5.3: Sample run sequence.

able to acquire Ry. T still cannot acquire R, as its priority is less than the priority
ceiling of Ry, so it is now considered blocked by task T;. At time t¢, task T} releases
R; and T, can acquire R,. Finally, at time t;, task T, releases R;.

The priority ceiling protocol addresses the shortcomings discussed above for
the basic priority inheritance protocol. First, this protocol eliminates multiple
blocking because a task can only be blocked for the duration of at most one critical
section. As well, the restrictions determining when a task can acquire a resource
also provide sufficient conditions to avoid deadlock. Rajkumar [44, 50, 51] also
provides sufficient conditions to allow a non-independent task set to be scheduled
using the rate monotonic scheduling algorithm with the priority ceiling protocol.

This analysis is extended to EDF scheduling by Chen [16].

5.1. BACKGROUND

to

tq

to

t3

R,

Ry

inheritance

Ry

T322

inheritance

Ry

T321

Tlil

Figure 5.4: Priority Ceiling Example.

R,

R,

R,

T22

R,

!

Tg:

2

tq

ts

te

X:Y = task:priority

Ry

Tg:l

127

Rs

Tlil
R,

Tg:l

T222
Ry

R,

T222

Ry

R,

T222

Ry

128 CHAPTER 5. PRIORITY INHERITANCE

However, several drawbacks exist with this protocol. First, the priority ceiling
protocol not only incurs more run-time overhead than the basic priority inheritance
protocol, but it also requires more static analysis. In addition to the task informa-
tion required by the scheduling algorithm, the appropriate priority ceiling value for
each resource must be determined. Calculating this ceiling value requires complete
information about all resources used by each task. However, as a task’s run-time
behaviour is dynamic, statically determining the set of resources actually accessed
by a task is impossible. Instead, a pessimistic approach is typically employed; every
resource that a task could potentially access is included in the set.

Second, this protocol is a pessimistic approach because the resource needs
change during run-time, therefore this protocol can be unnecessarily restrictive,
as well as, difficult to use with an online algorithm. For example, in Figure 5.4
task T3 1s prevented from executing despite the fact that task 77 does not require
R, during this time. This problem occurs because this protocol provides sufficient
conditions to prevent multiple blocking and deadlock, but does not provide suffi-
cient and necessary conditions. While the semaphore control protocol [45, 44] does
provide sufficient and necessary conditions to meet these goals, the trade off is that
it requires detailed resource information for each task. To avoid being overly re-
strictive, in addition to the information required by the priority ceiling protocol,
extended resource information for each critical section is also required. Thus, a
request for an available resource is only blocked when granting the resource would

cause a higher priority task to block.

5.1. BACKGROUND 129

5.1.3 Immediate Ceiling Priority Protocol

The immediate ceiling priority protocol [5, 6, 51] is a simplification of the priority
ceiling protocol. In this case, every resource is again assigned a priority value
corresponding to the priority of the highest priority task that can use the resource.
But when a task acquires a resource, its priority is immediately raised to this ceiling
value while the task is using the resource, rather than the priority of the highest
priority blocked task. This simplification removes much of the complexity and
overhead involved with the first two inheritance protocols, but leads to its own
form of priority inversion, i.e., intermediate priority tasks can be preempted by
a low priority task using a resource with a high priority ceiling even if this low
priority task is not blocking a high priority task. For example, in Figure 5.5 task
T3’s priority is increased to the ceiling value of R; at time ¢; even though it is not
blocking the execution of any higher priority tasks. In this case, priority inversion
occurs because task T3 is preempting the execution of higher priority tasks.
Consider the sequence of events in Figure 5.3 with the resources supporting the
immediate ceiling priority protocol. The priority ceiling values for each resource is
given in Table 5.2. Figure 5.5 shows the state of the resources at each of the listed
events. At time tg, execution begins and both resources are available. At time ¢,
task T3 successfully acquires resource R;. Its priority is raised to the ceiling value
for Ry. Ideally, at time t,, task T3 would like to acquire resource R,. However,
as task T3 is executing at higher priority than T3, T5 is not scheduled and thus
must wait to acquire resource Ry. At time t3, task 77 blocks trying to acquire

resource Ry as it is already acquired by task 73. No further priority inheritance

130 CHAPTER 5. PRIORITY INHERITANCE

is necessary when T or any other task blocks on a resource. At time t4, task T3
acquires resource Ry. Again note that unlike basic prioirity inheritance, 75 is not
required to block before it can acquire resource Ry. When task T3 releases resources
R, and R; at time t5, its priority is lowered back to its original priority and task T}
is able to acquire R;. Task T} is scheduled to execute when T3 releases R; because
its priority is higher than T5. Note that the decision to allow T} to proceed is not
affected by the fact that Ry has a higher ceiling value than Rj, because neither
task has acquired Ry or R; at the time the decision is made. T}’s priority remains
unchanged as it is already executing at the ceiling value for Ry. At time t4, task
T, releases Ry and task T, can acquire resource Ry (assuming that Tj relinquishes
the processor). Finally, at time 7, task T3 releases Rs.

It is interesting to note that both the priority ceiling protocol and the immediate
ceiling protocol prevent task T, from acquiring resource R, at time 9, and hence,
prevent multiple blocking. The difference is that with the priority ceiling protocol,
T, is considered blocked by T3, resulting in T3’s priority being increased. With
the immediate ceiling priority protocol, however, as T3’s priority is raised to the
resource’s ceiling value on entry, there is no advantage to defining 75 as being
blocked by T5. However, preventing T, from executing even before it tries to acquire
R,, with the immediate ceiling protocol, results in the kind of priority inversion
described above.

Like the priority ceiling protocol, this protocol also prevents multiple blocking,
however, it only avoids deadlock under certain conditions, i.e., if tasks do not

3

suspend while holding a resource. While this protocol does not suffer from the run-

5.1. BACKGROUND

to

tq

to

t3

R,

inheritance

Ry

T321

Ry

Tgil

Ry

Tgil

?

T1:1

Figure 5.5: Immediate Ceiling Example.

R,

R,

R,

R,

tq

ts

te

tr

X:Y = task:priority

R,

Tg:

Ry

T1:

R,

T3:

T1:

Ry

R,

Ry

R,

Tz:

Ry

131

132 CHAPTER 5. PRIORITY INHERITANCE

time overheads associated with the priority ceiling protocol, it does suffer from the
disadvantages associated with (statically) calculating ceiling values. As well, the
priority inversion resulting from increasing a task’s priority directly to a resource’s
ceiling value is comparable to the overly restrictive behaviour of the priority ceiling
protocol. In both cases, a higher priority task is prevented from executing despite
the fact that a high priority task is not blocked waiting to use the resource. In
fact, by raising a task’s priority directly to a resource’s ceiling value, the immediate
ceiling protocol is worse than the priority ceiling protocol because tasks not using
any resources can also be prevented from executing.

The biggest advantage of this protocol, however, is that it is simple to imple-
ment, yet provides benefits similar to the priority ceiling protocol. For certain
specialized situations, it may provide exactly the desired semantics. Thus, despite
the drawbacks, this protocol is supported by many real-time systems, for example,

it is included in the Ada Real-Time Annex [59] and it is an optional feature in

POSIX threads [1, 29].

5.2 Implementing Basic Priority Inheritance

The first step in implementing priority inheritance is to extend the notion of a
task’s priority. Typically, two priority values are associated with each task, i.e.,
a base priority and an active priority. A task’s base priority is the priority value
assigned by the scheduling algorithm and a task executes at this priority value
when no priority inheritance is occurring. A task’s active priority, however, is the

highest value among a task’s base priority and the priorities of all the tasks that it

5.2. IMPLEMENTING BASIC PRIORITY INHERITANCE 133

is blocking. A task is always executed at its current active priority.

While the basic priority inheritance protocol provides a simple technique to
bound the priority inversion experienced by non-independent tasks, allowing them
to be scheduled, implementing this protocol is difficult. Two problems must be
addressed in any complete implementation, i.e., transitivity and priority disinheri-

tance [42].

5.2.1 Transitivity

With priority inheritance, when a task blocks because a shared resource is unavail-
able the primary goal is to raise the priority of this task’s wltimate blocker, i.e.,
the final task in the task’s blocking chain. For all the tasks in Figure 5.6, task 77
is the ultimate blocker. However, a secondary goal is to keep the active priority
of other tasks in the blocking chain updated. This extra updating is useful not
only for priority disinheritance (see below), but also to manage the priority queues
that these other tasks are typically blocked on. Without this updating, scheduling
decisions are expensive because stale information in these priority queues needs to
be reevaluated. For example, if a high priority task 77 blocks on R; in Figure 5.6
(see Figure 5.7), not only must the priority of T7 be raised, but the priority of T
and its position on the entry queue of R3 must also be updated.

In the straightforward approach to implementing priority inheritance, each task
must be able to determine which task is its direct blocker. This information can be
used to follow a chain of blocked tasks to a task’s ultimate blocker. For example,

in Figure 5.6, task T3’s direct blocker is Ty, task Ty’s direct blocker is 77 and as

134 CHAPTER 5. PRIORITY INHERITANCE

Ry R, Rs
\./
= Tg 3 Tg : 3 T7 2 é,,‘ """"
| ﬁ ﬁ ﬁ ! -== Direct Blocker
LT Ty 3 Ts:5 Ty :2 P = Ultimate Blocker
ﬁ ﬂ\ Lo X:Y = task:active priority
Te : 6 =Ty :3 o2

Figure 5.6: Example of Transitivity.

R1 R, Rj
Tg: 1 Tg: 1 T7: 1
T :1 T5:5 —=Tz:1
/P ¢ /P X:Y = task:active priority
T3 13 T6 : 6 T2 12

Figure 5.7: Priority queues need updating when a task blocks on a resource.

R, R, Rs
Ts: 1 Ts: 1 Ts: 1
T1 01 T5 :H T2 12
/P ¢ X:Y = task:active priority
T3 13 T6 : 6

Figure 5.8: The ultimate blocker changes as tasks block on or release resources.

5.2. IMPLEMENTING BASIC PRIORITY INHERITANCE 135

T is not blocked, T7 is T5’s (and T3’s) ultimate blocker. Then, when a task blocks
while trying to acquire a resource, it can use this information to update the active
priority of the tasks in its blocking chain until a task with a higher active priority
or the ultimate blocker is reached. As the active priority of each blocked task is
updated, they must also be shifted on each priority waiting queue.

Techniques that allow a task to immediately access its ultimate blocker suffer
from two problems. First, the tasks on the blocking chain associated with a blocking
task must be updated when its ultimate blocker changes. In order to update these
tasks, the blocking chain must be traversed. For example, in Figure 5.7 suppose
that T releases Rs and Ty acquires this resource (see Figure 5.8). In this case, Ty
must be able to find all the tasks blocked on Ry, R; and R3 to update their ultimate
blocker from 7% to Tk.

Second, maintaining a task’s ultimate blocker is much more expensive than
maintaining a task’s direct blocker. For example, when T releases Rs, only the
direct blocker of T3 and Ty changes, as opposed to the ultimate blocker for all the
tasks. Furthermore, a task can determine its direct blocker by simply remembering
the owner of the resource it is trying to acquire. If the resource maintains its current
owner and the identity of this resource remains fixed while a task is blocked, no
updating is required regardless of whether the task owning the resource changes.
However, as both the ultimate blocker and the resource associated with the ultimate
blocker can change as the ultimate blocker acquires and releases resources, there is

no fixed way to locate a task’s ultimate blocker.

136 CHAPTER 5. PRIORITY INHERITANCE

5.2.2 Priority Disinheritance

The other major problem with implementing basic priority inheritance is referred
to as the priority disinheritance problem, i.e., determining a task’s priority when
it releases a resource. If a task is inheriting its active priority from a task blocked
on the resource it is releasing, it must determine its new active priority based on
tasks blocked on the resources it still owns. This section discusses two common
techniques for solving the priority disinheritance problem.

In the first technique, each task stores its old priority value when it acquires a
resource. Then when a task exits a resource, its priority is restored to this stored
value. This creates a stack of values that can be used to restore a tasks priority as
it exits each resource it owns. Problems exist with this idea, however.

First, the use of a stack implies that resource usages are nested, i.e., it is impossi-
ble to release resources in arbitrary order. For example, overlapping critical sections
using semaphores are not permitted with this approach, e.g., acquiring semaphore
S followed by semaphore Sy and then releasing S; followed by S;. The reason for
this restriction is that if a resource is removed from the middle of the stack, then
restoring the task’s active priority to the stored value associated with this resource
is inappropriate because resources higher on the stack are still affecting the task’s
active priority. For example, consider the situation in Figure 5.9. If Ty releases
resource R3 before releasing R; and Rj, then resetting Tg’s active priority to 8 is
incorrect because Ty is still entitled to inherit priority 4 from T4. Furthermore,
this removal can also invalidate the stored priority values associated with resources

higher on the stack because these stored values incorporate inheritance resulting

5.2. IMPLEMENTING BASIC PRIORITY INHERITANCE 137

Rs Ry B Ts:4
Ts: 4 Ts: 4 Ty : 4 R, —6 (top)
Ry—6 inheritance
stack
|] Ro—s
T6 16 T4 14

X:Y = task:active priority

Figure 5.9: Disinheritance using a stack.

from the removed resource. Continuing the supposition that Ty releases R3 before
releasing Ry and Ry, the priority value stored for resource Ry needs to change to 8
because Tg 1s no longer entitled to inherit priority 6 from Tg.

Another problem with this technique is that the stored priority values can be-
come stale, for example, if a task already owning several resources subsequently
experiences priority inheritance from a resource lower down on the stack. In this
situation, a task’s active priority is subsequently reset to a stale value after it
releases a resource. To solve this problem, if the highest priority blocked task as-
sociated with a resource changes, then the priority value associated with the next
resource on the stack needs to be updated, and this update needs to propagate up
the stack until a higher priority value occurs or the top of the stack is encountered.
For example, if task T5 with active priority 5 blocks trying to acquire resource Rj
(see Figure 5.10), then the stored priority values for Ry and R; must be updated.

In general, managing this stack approach is inefficient. First, even if a task’s
active priority does not change, a significant portion of the stack may need to be

updated so that a task’s priority is correctly reset as it releases resources. Second,

138 CHAPTER 5. PRIORITY INHERITANCE

Rs Ry B Ts:4
Ts: 4 Ts: 4 Ty : 4 Ri—=5 (top)
Ry —5 inheritance
stack
i i Ro— s
TS) T4 14
T6 : 6

X:Y = task:active priority

Figure 5.10: Updating stale information on a stack.

this update is dependent on the number of resources that are directly or indirectly
blocked by the ultimate blocker, as opposed to the usually smaller blocking path
defined by a chain of direct blocker tasks. The task blocking chain is usually smaller
than the resource blocking chain because each direct blocker task can own several
resources. Another problem occurs if resources are recursive, i.e., a task is allowed
to call back into a resource it already owns. Note that this recursive call can occur
after a task has acquired and released other resources. In this case, multiple values
may need to be stored for each resource, eliminating the possibility of statically
allocating space to store the current priority of the owner task inside the resource.

The second technique requires a task to maintain a list of resources that it
owns (see Figure 5.11). Then, when a task releases a resource, this resource is
removed from this list, and the blocked task with the highest active priority among
the remaining resources needs to be located. The running task can then set its
new active priority to be the higher of this priority and its own base priority.

Some optimizations are available, however, such as a task only needs to find a

5.2. IMPLEMENTING BASIC PRIORITY INHERITANCE 139

R3 Ry R,
Ts : 4 Ts : 4 Ts: 4
T6 : 6 T4 04
Tg 14
Ri—4 Rs—6 Ry —8 owned resources

X:Y = task:active priority

Figure 5.11: Disinheritance using a list.

new inherited priority if the task’s old inherited priority is equal to the priority of
the highest priority task blocked on the resource it is releasing. This optimization
is possible because if the priority of the highest priority task associated with the
resource a task is releasing is not equal to the task’s active priority, then the task
is inheriting its priority from a resource it still owns, and hence, no adjustment is
required. Additionally, each node on the list can explicitly store the priority of the
highest priority task associated with the resource and the list can be implemented
as a priority queue.

Using this technique has several advantages. First, if a task’s direct blocker al-
ready has a higher active priority no additional overhead is incurred as the resources
owned by a task are updated independently. For example, if task T5 with active
priority 5 blocks trying to acquire resource Rj (see Figure 5.12), then only the node
assoclated with R; must be updated. If the list is implemented as a priority queue,

then the priority queue also needs updating. As well, only the direct blocker tasks

140 CHAPTER 5. PRIORITY INHERITANCE

Rs Ry R,
Ts : 4 Ts : 4 Ts: 4
T5 1) T4 04
T6 : 6
Tg 24
Ry —4 Rs—5 Ry —8 owned resources

X:Y = task:active priority

Figure 5.12: Resources in a list are independent.

need to be updated if priority inheritance occurs. Finally, resources that support
recursive calls can be handled with variables statically declared in the resource be-
cause the list node is the same for every entry into a resource. Thus, only one node
needs to actually appear on the list. The only additional complexity is that the list
node should only be removed when the task finally releases the resource and not on
one of the interim exits, i.e., the exit associated with the initial call that acquired

the resource but not an exit associated with a recursive call into the resource.

5.3 Related Work

Several implementations have been proposed for basic priority inheritance. Unfor-
tunately, the efficient solutions rely on simplifying assumptions that are unreason-

able or do not implement the correct semantics of basic priority inheritance. This

5.3. RELATED WORK 141

section discusses some of these approaches.

Borger and Rajkumar [7] describe an implementation of the basic priority in-
heritance protocol for task rendezvous in Ada 83 [63]. The solution to transitivity
is similar to the method described above, i.e., each task follows its blocking chain
updating tasks as required. As the implementation only supports task rendezvous,
tasks call each other directly rather than interacting through a separate resource.
Limiting the implementation to task rendezvous simplifies the priority disinheri-
tance problem because the supported resources are limited to tasks. As well, with
the Ada 83 rendezvous, the entry operations are executed by the called task, i.e.,
the task that declared the entry. Thus, each task owns exactly one resource, i.e.,
itself, and a task’s active priority, after disinheritance, is simply the highest priority
among the tasks blocked on any of its entry queues and its own base priority.

Two interesting implementations of basic priority inheritance are described by
Moylan, Betz and Middleton [42]. Their first implementation provides a general
solution to basic priority inheritance. With this solution, each task maintains a
count of the number of tasks it is directly blocking at each priority level. These
counts form a priority queue containing all the tasks directly blocked by a particular
task. This task’s active priority is then equal to the highest priority level with a
non-zero count. For example, the priority queue for task Ty from Figure 5.12 is
given in Figure 5.13.

The problem with this technique is that when a task exits a resource, the counts
associated with all the tasks blocked on that resource must be decremented for

the exiting task and incremented for the new owner of the resource. While this

142 CHAPTER 5. PRIORITY INHERITANCE

T3
1 2 3 4 5 6 7 8
0 0] O 1] 1} 1y 0/ 1

Figure 5.13: Example priority queue for counting technique.

represents a significant overhead, simplifications are possible if assumptions are
made as to the order in which blocked tasks are scheduled. The most interesting
feature of this implementation is that it allows the tasks blocked on a resource
to be restarted in arbitrary order, e.g., FIFO or priority order. This arbitrary
ordering is possible because the counts for each priority level contain information
relating to all directly blocked tasks. Thus, regardless of the order that the tasks
are actually scheduled, the priority queue associated with each task determines its
active priority.

Another interesting implementation is also suggested. However, this imple-
mentation assumes that tasks only block because of priority inversion. With this
assumption, any running task must be running at the priority of the highest pri-
ority task in the system. This assertion is true because either the highest priority
task is running or it is blocked and so its ultimate blocker is running at this highest
priority value. With this implementation, the disinheritance problem is eliminated
because the running task is always executing at this highest priority value. This
technique, however, creates a scheduling problem as the active priority of a task is
not stored. This problem is overcome by simply scheduling the highest priority task
or if this task is blocked, following the blocking chain of the highest priority task

and executing this task’s ultimate blocker. This overhead is not excessive, how-

54. pC4++ IMPLEMENTATION 143

ever, because even in the general case, a task’s blocking chain is typically traversed
when it blocks on a resource. The blocking restriction imposed by this algorithm,
however, is too limiting, as tasks cannot block on delays, accept statements, etc.
Hence, this algorithm is inappropriate as a general solution to priority inheritance.
Unfortunately, removing this blocking restriction incurs too much overhead.

Two implementations are also described by Takada and Sakamura [60]. While
the details on the general implementation are sketchy, the general implementation
maintains a list of resources acquired by each task, similar to the idea discussed
in the previous section. The details regarding how this list is used for priority
inheritance are not provided.

An interesting implementation is described, however, for situations where a task
releases all the resources its owns at once. In this implementation, the disinheritance
problem is solved by resetting a task’s active priority back to its base priority when
it releases a resource. In this case, as a task releases all these resources it owns at
once, its active priority must equal its base priority at this time, as no inheritance
is occurring. While this method may be appropriate for specific kinds of programs,
for example, if it reasonable for a task to release all the semaphores it owns at once,

it is inappropriate when the kinds of resources are arbitrary.

5.4 pCH+ Implementation

This section describes an implementation of basic priority inheritance for mutex
objects in pC+. In this implementation, only tasks blocked on the entry queue are

eligible to donate their priority, and therefore, the entry queue is implemented as a

144 CHAPTER 5. PRIORITY INHERITANCE

priority queue. Priority inheritance for mutex objects in C++ is implemented using
hooks that are invoked in the mutex entry and exit code. In order to implement
priority inheritance, there are three significant times when additional work must
be done, i.e., when a task acquires a mutex object, when a task releases a mutex
object and when a task blocks on an entry call because it cannot acquire the mutex
object.

To begin, each task maintains a priority queue, uPlQ, containing the priority
inheritance information for each mutex object (resource) it owns. This information
consists of the priority of the highest priority task associated with each mutex
object. As in Chapter 4, only one node for each required priority level appears in
a task’s UPIQ. This node then references a node in a second array that contains
the details for that particular priority level. In this case, however, rather than
maintaining a FIFO queue of blocked tasks for a particular priority level, only a
count of the number of tasks and the queue number associated with the priority
level (see Section 4.3) is maintained. Figure 5.14 contains an example of the uPIQ
for Ty from Figure 5.12. In this example, the lower number in the second array
is a count of the number of tasks at a particular priority level and “?” represents
an unused value. Note that the example UPIQ must support (at least) the four
different priorities occurring in Figure 5.12, despite the fact that task T of priority
5 1s not included on the queue.

No explicit reference to the highest priority task associated with each resource is
required as these tasks are neither accessed nor scheduled using the uPIQ. In fact,

the only relevant information is the priority and associated queue value, so a task’s

54. pC4++ IMPLEMENTATION 145

4:2
heap
6:4 8:1
4:2 | 6:4 | 81 | 727 1%¢ array - heap implementation
-~ \\\ o
. . 2 .
8:3 | 41| 5:7 | 6:2 274 array - details for each priority level

X:Y = priority:array reference

Figure 5.14: Example uPIQ.

active priority can be calculated. The count value is used to determine when nodes
should be removed from the uPIQ. In this case, a zero count value corresponds
to an empty FIFO queue from Chapter 4 and indicates that the associated node
should be removed from the uPIQ because a task is no longer eligible to inherit
that particular priority value. This priority queue solves the priority disinheritance
problem because a task’s active priority is the highest priority node currently on the
queue. Therefore, when a task releases a mutex object, its current active priority
is determined by the highest priority node remaining on the queue after its uPIQ

has been updated for the released object.

146 CHAPTER 5. PRIORITY INHERITANCE

5.4.1 Mutex Object Acquire

The hook uOnAcquire is invoked when a task acquires a mutex object (see line 13
in Figure 5.15). In this implementation, the task acquiring the mutex object must
adjust its UPIQ (see Figure 5.16). A copy of the priority and corresponding queue
information are stored in the entry queue to allow the uPIQ to be correctly updated
during the remove operation, the uPIQ is updated, and then the uAfterEntry routine
(see Figures 5.17 and 5.18) is invoked to perform priority inheritance from the entry
queue.

The uAfterEntry routine performs priority inheritance for the mutex object based
on the entry queue and the owner of the mutex object. As this routine references
the entry queue and the stored priority inheritance information for the mutex object
it must be executed with the entry lock acquired. This lock is already acquired,
however, because uAfterEntry is invoked as part of the monitor entry code (see line
32 of Figure 5.15), i.e., at the end of the uAdd routine for the entry queue (see
Figure 5.19), or from one of the hooks.

In the following discussion, the task performing the inheritance is referred to
as the updating task and the owner of the current mutex object being referenced
is referred to as the mutex owner. Note that it is possible for the updating task
and the mutex owner to refer to the same task only when the priority inheritance
is invoked by a task that acquires the mutex object without entry blocking. In this
situation, the mutex owner is invoking uAfterEntry to determine the highest priority
task associated with the mutex object it is acquiring, and to subsequently update

its active priority if necessary. In all other situations, the updating task and the

54. pC4++ IMPLEMENTATION 147

void uSerial::uEnter(uBasePrioritySeq &entry, int mutexID) {
lock.uAcquire();

uBaseTask &ucCallingTask = uThisTask(); /I optimization

© 00 N o 0o A~ W N PP

B oW W W W wwwwwwNNNNDNRNRNLNRNDNNRNERIERRIERRRR R P
S © ® N o 00N NP O © ©®N0 0 R~ ONPO O ® N O N~ WN P O

if (uMask.isSet(mutexID)) { /I member acceptable ?
uMask.zero(); /I clear all member valid flags
mr = uCallingTask.uMutexRecursion; /I save previous recursive count
uCallingTask.uMutexRecursion = 0; /l reset recursive count
uMutexOwner = &uCallingTask; /I set the current mutex owner

/I execute priority inheritance hook ?

if (uEntryList.uExecuteHooks) {
uEntryList.uOnAcquire(*uMutexOwner, this);

Yt

lock.uRelease();

} else if (uMutexOwner == &uCallingTask) { /I already hold mutex ?

/I another recursive call at the mutex object level
uCallingTask.uMutexRecursion += 1,

/I do not execute priority inheritance hook as task already holds mutex

lock.uRelease();

} else { /I otherwise block calling task

/l add to end of mutex queue
entry.uAdd(&(uCallingTask.uMutexRef), uMutexOwner, this);

/l remember which entry was called
uCallingTask.uCalledEntryMem = &entry;

/I add mutex object to end of general entry deque
/I perform priority inheritance in uAdd routine
uEntryList.uAdd(&(uCallingTask.uEntryRef), uMutexOwner, this);

/I find someone else to execute; release lock on kernel stack
uActiveProcessorKernel->uSchedule(&lock);

mr = uCallingTask.uMutexRecursion; /I save previous recursive count
uCallingTask.uMutexRecursion = 0; /l reset recursive count

Y I if

uMutexID = mutexID; /I set active mutex member

} // uSerial::uEnter

Figure 5.15: uEnter

148 CHAPTER 5. PRIORITY INHERITANCE

void uPriorityQ::uOnAcquire(uBaseTask &uOwner, uSerial *s) {
/I check if mutex owner’s priority needs to be updated
if(uOwner.uPIQ.uHead2() < uGetActivePriorityValue(uOwner)) {
uThisCluster().uTaskSetPriority(uOwner, uOwner);
Yt

/l remember current priority value, update task’s uPIQ
uCurrPriority = uOwner.uGetBasePriority();
uCurrQueueNum = uOwner.uGetBaseQueue();
uOwner.uPI1Q.uAdd(uCurrPriority, uCurrQueueNum);

/I perform priority inheritance
uAfterEntry(&uOwner, s);
} /1 uPriorityQ::uOnAcquire

Figure 5.16: uOnAcquire

mutex owner refer to different tasks.

The uAfterEntry routine begins by determining if priority inheritance is possible
for the mutex object in question. In order for the mutex object to experience priority
inheritance, it must have an owner, as well as at least one entry blocked task. Note
that both checks are necessary because it is possible for an entry blocked task to
exist, but for there to be no mutex owner during external scheduling, i.e., if the
acceptor blocks because there are no outstanding calls to any acceptable member
routines. As well, it is possible for a mutex owner to exist but for no tasks to be
blocked on the entry queue when uAfterEntry is invoked by a new mutex owner.

The next step is to update the mutex owner based on the highest priority
task blocked on the entry queue. If the mutex owner is already up to date, then
no further inheritance is necessary and the operation is finished. Otherwise, the
mutex owner’s UPIQ is updated to reflect the highest priority task associated with

the current mutex object (for subsequent disinheritance). This update may also

54. pC4++ IMPLEMENTATION 149

int uPriorityQ::uAfterEntry(uBaseTask *uOwner, uSerial *s) {
/I assume entry lock acquired
int uRelPrevLock = uLockAcquired;

/I if entry queue empty (called by owner) or no owner, then no inheritance
if (UEmpty() || uOwner == NULL) {

return uRelPrevLock;
Yt

uBaseTask &uCalling = uHead()->uGet(); // can't be NULL as not empty

// does node need to be updated?

if (uCalling.uGetActivePriorityValue() < uCurrPriority) {
/I only task with entry lock can be modifying this mutex’s node
/I remove node
uOwner->uPI1Q.uRemove(uCurrPriority, uCurrQueueNum);

/I reset priority value for monitor
uCurrPriority = uCalling.uGetActivePriorityValue();
uCurrQueueNum = uCalling.uGetActiveQueueValue();

/l update mutex owner’s uPIQ for new priority
uOwner->uPI1Q.uAdd(uCurrPriority, uCurrQueueNum) ;

/I does inheritance occur ?
if (uCurrPriority < uOwner->uGetActivePriorityValue()) {
uSerial *uRemSerial = s->uMutexOwner->uCurrentSerial;
/I if task is blocked on entry queue, adjust and perform transitivity
if (uOwner->ukntryRef.uListed()) {
uRemSerial->lock.uAcquire();

/I if owner’s mutex object changes, then it fixes its own active priority
/I Recheck if inheritance is necessary as only owner can lower its priority
if (uURemSerial != s->uMutexOwner->uCurrentSerial | |
luOwner->uEntryRef.uListed() ||
uOwner->uPlQ.uHead2() >= uOwner->uGetActivePriorityValue()) {
/I As owner restarted, end of the blocking chain has been reached.
uRemSerial->lock.uRelease();
return uRelPrevLock;
Yt

Figure 5.17: uAfterEntry, Part I

150 CHAPTER 5. PRIORITY INHERITANCE

/I Can release previous entry lock as new entry lock is correct
s->lock.uRelease();
uRelPrevLock = ulLockReleased;

/I proceed with transitivity

/I remove from entry queue and mutex queue
uRemSerial->uEntryList.uRemove(&(uOwner->uEntryRef));
uOwner->uCalledEntryMem->uRemove(&(uOwner->uMutexRef));

/I call cluster routine to adjust ready queue and active priority
/I as owner is not on entry queue, it can be updated based on its uPIQ
uThisCluster().uTaskSetPriority(*uOwner, *uOwner);

/l add to mutex queue
uOwner->uCalledEntryMem->uAdd(&(uOwner->uMutexRef),
uRemSerial->uMutexOwner, uRemSerial);

/l add to entry queue, automatically does transitivity

if (uURemSerial->uEntryList.uAdd(&(uOwner->ukEntryRef),
uRemSerial->uMutexOwner, uRemSerial) == uLockAcquired) {
/I only last call does not release lock, so reacquire first entry lock
uThisTask().uCurrentSerial->lock.uAcquire();
uRemSerial->lock.uRelease();

it

} else {
/I call cluster routine to adjust ready queue and active priority
/I Note: can only raise priority to at most uCalling, otherwise updating
/I uOwner’s priority can conflict with the uOwner blocking on an entry
/I queue at a particular priority level.
/I Furthermore, uCalling’s priority is fixed while the entry lock of
/l where it is blocked (s->lock) is acquired, but uThisTask()’s priority
/I can change as entry lock’s are released along inheritance chain.
uThisCluster().uTaskSetPriority(*uOwner, uCalling);

Y It

} I if
} I if
return uRelPrevLock;
} /1 uPriorityQ::uAfterEntry

Figure 5.18: uAfterEntry, Part II

54. pC4++ IMPLEMENTATION 151

int uPriorityQ::uAdd(uBaseTaskDL *node, uBaseTask *uOwner,
uSerial *s) {
/I check if mutex owner’s priority needs to be updated
if (node->uGet().uPIQ.uHead2() <
uGetActivePriorityValue(node->uGet())) {
uThisCluster().uTaskSetPriority(node->uGet(), node->uGet());
Yt

// Add node to entry queue

/I perform any priority inheritance
return uAfterEntry(uOwner, s);
} // uPriorityQ::uAdd

Figure 5.19: uAdd

require the mutex owner’s active priority to be increased (for current inheritance).
Changing a task’s active priority, however, is not an isolated operation. In ad-
dition to changing a task’s stored priority value, this change can require priority
queues to be updated, as well as, causing further inheritance. Typically, the mini-
mum requirement for pCH+ is that the ready queue and all entry/mutex queues be
updated. This approach is used for the implementation presented in Figures 5.17
and 5.18. As suggested in Section 2.2, updates to support the correct functioning of
other application specific queues are probably best handled at the user level, rather
than being included as part of the inheritance routine, e.g., condition queues.
However, a problem exists because in a concurrent (real-time) system, the mutex
owner can continue to execute while its active priority is being updated. The only
situation where it is possible for the mutex owner to be executing (not as the
updating task) while its active priority is being updated occurs during the priority

inheritance resulting from the updating task blocking on an entry queue. In all

152 CHAPTER 5. PRIORITY INHERITANCE

other situations, the mutex owner is in the process of acquiring the mutex object
in question and so it is also the updating task or it remains blocked while priority
inheritance is invoked on its behalf (see below). In either case, the mutex owner’s
active priority can be safely updated.

The problem with allowing the mutex owner to execute while its priority is being
updated is that the mutex owner can change mutex objects during the update. Note
that regardless of the number of mutex objects a task owns, it can only be executing
in one mutex object at any given time, i.e., in the task’s last unfinished mutex call.
For example, task T (see Figure 5.8 on page 134) is currently executing in mutex
object R3 (assuming that Ry, Ry and Rs are mutex objects). However, the mutex
object that Ty is executing in can change if Ty exits its current mutex object (see
Figure 5.20), acquires another mutex object (see Figure 5.21), or blocks trying to
acquire another mutex object (see Figure 5.22).

In order for the updating task to successfully update the mutex owner’s active
priority, it must be able to determine the mutex object in which the mutex owner
is either currently executing or entry blocked. However, the dynamic behaviour
exhibited by the mutex owner can result in the updating task chasing the mutex
owner from mutex object to mutex object while trying to perform this update.

The obvious solution to this dynamic behaviour is to employ a mechanism to
prevent the mutex owner from changing the mutex object in which it is currently
executing while its active priority is being updated. Unfortunately, implementing
such a mechanism is difficult without excessive locking, which tends to increase

overhead and reduce concurrency.

54. pC4++ IMPLEMENTATION 153

R1 R, R3

Ts: 1 Tg : 1 T5:2

T1 01 T5 :H

T5:3 Ts : 6 X:Y = task:active priority

Figure 5.20: Ty’s current mutex changes to Rj.

R1 Rz R3 R4

Tg:l ;Tg:l Tg:l Tg:l
T :1 T5:5 Ty:2

Ty :3 Te: 6 X:Y = task:active priority

Figure 5.21: Ty’s current mutex changes to Ry.

R1 R2 R3 R4

Tg: 1 | Tg:1 Tg: 1 T7: 1
T1:1 T5!5 T222 %Tgil
T3:3 Ts: 6 X:Y = task:active priority

Figure 5.22: Ty’s current mutex changes to Ry.

154 CHAPTER 5. PRIORITY INHERITANCE

A better solution is obtained by making the following observation. If the mutex
owner’s current mutex object is changing, then the mutex owner is running, and
therefore, represents the end of the blocking chain. In this situation, updating
the mutex owner’s active priority is the last step of the updating task’s priority
inheritance operation, i.e., no further inheritance is possible because the mutex
owner is not blocked. In this situation, the responsibility for performing the last
part of the inheritance operation, i.e., updating the mutex owner’s active priority,
is transferred to the mutex owner. By forcing the mutex owner to adjust its own
active priority as its current mutex object changes, the updating task no longer
has to deal with the potentially dynamic behaviour of the mutex owner. The only
requirement is for the updating task to detect this volatility with respect to the
mutex owner’s current mutex object, so it knows when it has reached the end of its
inheritance chain.

The other advantage of this approach is that having the mutex owner update
its own active priority is much simpler and less expensive than if it is done by
the updating task. This advantage arises because the mutex owner is running,
and hence, not blocked on the entry/mutex queues or ready queue so these queues
require no adjustment. Furthermore, the mutex owner’s current mutex object is
fixed while it is updating its own priority.

This solution can be broken down into two parts. First, if the updating task
recognizes that the mutex owner’s current mutex object is changing, then it has
reached the end of the inheritance chain and can stop. Second, if the mutex owner

changes mutex objects, it must complete the last part of any inheritance by updat-

54. pC4++ IMPLEMENTATION 135

ing its own active priority.

Specifically, the fact that the mutex owner’s current mutex object is changing is
not the actual problem. The situations that present the real problems are those that
involve the entry/mutex queue because the entry lock is required for the update,
but the required entry lock can change as the mutex owner moves. This problem
results in two scenarios, i.e., an entry blocked mutex owner is scheduled by a task
blocking in or exiting a mutex object or a running mutex owner executes an entry
call that blocks on another mutex object. Unfortunately, as tasks are executing
concurrently, it is impossible to recognize these exact situations. The updating
task can simply determine the mutex owner’s current mutex object and whether
the mutex owner is currently entry blocked at a particular instant and then decide
how to proceed.

If the updating task acquires the entry lock for the mutex object where it believes
the mutex owner is currently executing and determines that the mutex owner is
not entry blocked, then the updating task is simply required to update the mutex
owner’s active priority. The problem that occurs is that the mutex owner can make
an entry call to another mutex object that blocks while this is occurring. However,
it is now the case that the mutex owner must recalculate its own active priority
before it is queued as a result of a blocking entry call. As its active priority is
calculated using the uPIQ (note, the mutex owner’s UPIQ is always updated before
its active priority is updated), this guarantees that it is executing at its correct
priority before it is placed on the entry queue. Therefore, no further updating is

required.

156 CHAPTER 5. PRIORITY INHERITANCE

However, the updating task cannot increase the mutex owner’s active priority
based on the mutex owner’s uPIQ; it can only increase the mutex owner’s priority
to at most the value it used to update the mutex owner’s uPlQ. Without this
restriction, it is possible for the mutex owner to be blocked on an entry queue at a
priority different from its active priority because the mutex owner is only guaranteed
to have seen the changes made to its uPIQ by the current updating task when it
entry blocks. Thus, if the updating task increases the mutex owner’s active priority
to an even higher value (based on the latest information in the mutex owner’s uPIQ),
then the updating task could change the mutex owner’s active priority but not its
position on the entry queue.

For example, in Figure 5.23 task T5 entry blocks trying to acquire R;. As
inheritance is required, T5 begins by updating 7%’s uPIQ and notices that Ty is
not currently entry blocked. However, before T5 can update Ty’s active priority,
two things happen (see Figure 5.24). First, Ty entry blocks on R4 and updates its
own active priority to 5 based on its current uPIQ. Second, Ty entry blocks on Ry,
updates Ty’s UPIQ and detects that Ty is entry blocked. Now, T5 cannot update
Ts based on Tg’s uPIQ because this would cause Tg’s active priority to be increased
without updating its position on the entry queue. As well, Ty’s active priority and
position on the entry queue will eventually be updated by T}.

Note that a call by the updating task to increase the mutex owner’s active
priority has no effect if the mutex owner’s priority is already higher than this update
value. Furthermore, if the mutex owner entry blocks, then it has already increased

its own active priority as discussed above. If, however, the mutex owner’s active

5.4.

wC+ IMPLEMENTATION 157

R4 R, R3 R4
Tg : 8 Tg : 8 Tg : 8 T7: 7
T525

Tg’s (simplified) uPIQ heap

X:Y = task:active priority

Figure 5.23: Ts updates Tg’s UPIQ but not its active priority.

R4 Ry R3 R4
Tg:d | _1Tg:5 Tg : b T7:5
T4:4 T5:5 %Tg:5

Tg’s (simplified) uPIQ heap

4

X:Y = task:active priority

Figure 5.24: Ty cannot use Tg’s UPIQ to update its active priority.

158 CHAPTER 5. PRIORITY INHERITANCE

priority does need to be increased based on its UPIQ, then the task responsible for
this change adjusts the mutex owner’s active priority and position on the entry
queue as required. The current updating task is only responsible for adjusting the
mutex owner’s active priority based on its own changes to the mutex owner’s uPIQ.
As well, if the mutex owner’s entry call does not block, then no problem arises as
the mutex owner is not blocked on an entry/mutex queue and so only its active
priority needs to be updated, which is exactly the behaviour that occurs.

On the other hand, if the updating task detects that the mutex owner is en-
try blocked, then both the mutex owner’s active priority and its position on the
entry queue must be updated. Therefore, the updating task begins by acquiring
the appropriate entry lock. However, by the time the updating task successfully
acquires the entry lock, the entry blocked mutex owner may have been scheduled
and be running, or moved to another mutex object and blocked, or returned from
the current mutex object. Thus, when a task, in this case the mutex owner, ac-
tually acquires a mutex object it must recalculate its own active priority. In this
situation, the updating task only needs to detect that either the mutex owner is no
longer entry blocked or that its current mutex object has changed. Furthermore,
as the updating task has the entry lock for what it believes is the mutex owner’s
last mutex object, any calls by the mutex owner to this mutex object are prevented
from continuing as all entry calls begin by acquiring the entry lock. Therefore,
it is impossible for the mutex owner to still be in the process of blocking on this
mutex object, i.e, either the mutex owner has finished blocking or it has already

been scheduled. Thus, if the updating task detects the mutex owner is no longer

54. pC4++ IMPLEMENTATION 159

entry blocked on the mutex object it believes the mutex owner is blocked on, then
the mutex owner has updated its own active priority and the inheritance operation
is complete.

Finally, if the mutex owner is still blocked on the appropriate mutex object, then
the mutex owner remains blocked as it cannot be scheduled while the updating
task has the entry lock. In this situation, the updating task can update both
the entry queue and the active priority of the mutex owner without difficulty as
the state of the mutex owner is fixed. In fact, this situation is the only one in
which the mutex owner has not been detected as running. Therefore, the priority
inheritance operation must advance to the next element in the inheritance chain.
This advancement occurs with the call to uAdd when the mutex owner is being
adjusted on the entry queue. The call to uAdd calls uAfterEntry for the new mutex
object resulting in transitivity (see Figure 5.19).

In order to maximize concurrency, however, it is possible to proceed with in-
heritance without maintaining the entry lock of every previous mutex object in the
chain. In fact, the ultimate blocker is the only task in an inheritance chain that can
execute. So, every other mutex owner in the chain is essentially blocked waiting for
the ultimate blocker to release them. However, an interesting feature of the entry
lock is that it also prevents tasks from releasing mutex objects. Thus, acquiring
a particular entry lock prevents tasks from backing up past that mutex object in
the inheritance chain and effectively fixes the back portion of an inheritance chain.
Therefore, entry locks associated with mutex objects earlier in the chain can be

released without causing a problem. The advantage of this approach is that it al-

160 CHAPTER 5. PRIORITY INHERITANCE

lows tasks to still block on the entry queues of those mutex objects during priority
inheritance. In order to maintain this locking as a task proceeds along the inheri-
tance chain, the next entry lock must be acquired before the current entry lock is
released.

The entry lock of the mutex object associated with the updating task, i.e., the
first entry lock acquired, is a special case. While releasing this lock is fine because
the updating task cannot be scheduled as long an entry lock further down the
chain is acquired, this entry lock must be reacquired before the last entry lock is
released. Reacquiring this entry lock is necessary to prevent the task performing
the inheritance from being scheduled before it blocks. Otherwise, as soon as the
last entry lock is released, the back portion of the inheritance chain is no longer
fixed and so it is possible for the updating task to be scheduled before it can block.
Reacquiring the first entry lock before releasing the back portion of the inheritance
chain allows this task to atomically block and release the lock as required.

Releasing the first entry lock also allows the active priority of the updating task
to increase while it is walking the inheritance chain. To maintain consistency, it is
important not to switch to this updated value in the middle of the inheritance chain.
The potential problem that occurs is that a mutex owner’s UPIQ can be updated
using one value and its active priority can be updated using a higher value. This
discrepancy can lead to the mutex owner being blocked on the entry queue at a
priority value different from its active priority.

As mutex objects in pC+ allow recursive calls, the uOnAcquire hook is only

invoked when a task initially acquires the mutex object (see line 13 in Figure 5.15).

54. pC4++ IMPLEMENTATION 161

A check for priority inheritance does not need to occur on subsequent entries (see
line 20 in Figure 5.15) because the priority information for the highest priority task
associated with the resource is already on the task’s uPIQ. Furthermore, even if a
task’s active priority on re-entry is higher than the priority information stored for
the mutex object on the task’s UPIQ because of further priority inheritance from
other resources, this priority information still does not need to be updated because
the priority information for a resource only needs to reflect the highest priority
value among a task’s base priority value and the active priority of all the tasks

directly blocked on the mutex.

5.4.2 Mutex Object Release

The hook uOnRelease is invoked when a task releases a mutex object. In this
implementation, the task must remove the inheritance information associated with
the mutex object it is releasing from its UPIQ and calculate its new active priority
(see Figure 5.25). If the task’s priority inheritance priority queue is empty after
this inheritance information is removed, then the active priority of the task is set
to its base priority. Despite the fact pC4++4 mutex objects are recursive, this hook is
only invoked when a task exiting a mutex finally relinquishes control of the mutex
(see lines 14, 23 and 34 in Figure 5.26). As a task’s uPIQ is not updated on re-entry
into a resource is already owns, it does not need to be reset on an interim exit (see
line 5 in Figure 5.26).

In the situation where a task releasing a mutex wakes up the next task to

execute inside this mutex, the uOnAcquire routine is invoked by the releasing task

162 CHAPTER 5. PRIORITY INHERITANCE

void uPriorityQ::uOnRelease(uBaseTask &uOldOwner, uSerial *s) {
/I update task’s uPIQ, reset stored values
uOldOwner.uP1Q.uRemove(uCurrPriority, uCurrQueueNum);
uCurrPriority = -1;
uCurrQueueNum = -1;

I reset active priority if necessary
I/l only case where priority can decrease
if (uOldOwner.uPIQ.uEmpty() ||
uOldOwner.uPI1Q.uHead2() > uGetActivePriorityValue(uOldOwner)) {
uThisCluster().uTaskSetPriority(uOldOwner, uOldOwner);
Yt
} /1 uPriorityQ::uOnRelease

Figure 5.25: uOnRelease

on behalf of this new owner (see lines 24 and 35 in Figure 5.26). It is impossible to
allow the new mutex owner to execute this routine after it is scheduled because its
priority must be raised to its proper value before it is scheduled, so it is scheduled
at the appropriate time. Otherwise, this task can experience uncontrolled priority

inversion while it waits to be scheduled so it can updates its active priority.

5.4.3 Entry Blocking on a Mutex Object

When a task blocks on the entry queue of a mutex object, it may need to raise
the priority of the current owner of the mutex object. Rather than providing an
explicit hook for this circumstance, it is possible to add any additional code to the
end of the routine to add a task to the entry queue. In this implementation, the
routine uAfterEntry (see Figure 5.17) is invoked after a calling task has been added
to the entry queue (see Figure 5.19). This routine performs the required priority

inheritance as described above.

© 0N O OB~ WN PP

A DS DA DD DWW WWWWWWWWNDNNDNDNDNDNDMNNDNNNRERERRERPRRERREREPRPRPPR
O b WOWNPFP O OO NO OO WNPOOOOLONOOGRMWDNEOOOOONOOOGMWNDNDLELO

54. pC4++ IMPLEMENTATION 163

void uSerial::uLeave() {
uBaseTask &uCallingTask = uThisTask(); /I optimization
if (uCallingTask.uMutexRecursion != 0) { // recursively hold mutex ?
uCallingTask.uMutexRecursion -= 1;
/I do not execute priority inheritance hook as task still holds mutex
return;
Y Iif

if (uAcceptSignalled.uEmpty()) { // no tasks waiting re-entry to mutex object ?
lock.uAcquire();
if (uEntryList.uEmpty()) { /I no tasks waiting entry to mutex object ?
uMask.one(); /I accept all members
uMutexOwner = (uBaseTask *)0; /I reset no task in mutex object
if (uEntryList.uExecuteHooks) { /I execute priority inheritance hook ?
uEntryList.uOnRelease(uCallingTask, this);
Y f
lock.uRelease();
} else { /I tasks waiting entry to mutex object
/I next task to gain control of the mutex object
uMutexOwner = &(uEntryList.uDrop()->uGet());
/I also remove task from mutex queue
uMutexOwner->uCalledEntryMem->uRemove(&(uMutexOwner->uMutexRef));
if (uEntryList.uExecuteHooks) { /I execute priority inheritance hook ?
uEntryList.uOnRelease(uCallingTask, this);
uEntryList.uOnAcquire(*uMutexOwner, this);
Y f
lock.uRelease();
uMutexOwner->uWake(); // wake up next task to use this mutex object
Y f
} else { /I tasks waiting re-entry to mutex object
/I next task to gain control of the mutex object
if (uEntryList.uExecuteHooks) { /I execute priority inheritance hook ?
lock.uAcquire(); /I entry lock prevents inversion during transfer
uMutexOwner = &(uAcceptSignalled.uDrop()->uGet());
uEntryList.uOnRelease(uCallingTask, this);
uEntryList.uOnAcquire(*uMutexOwner, this);
uMutexOwner->uWake();
lock.uRelease();
} else {
uMutexOwner = &(uAcceptSignalled.uDrop()->uGet());
uMutexOwner->uWake();
Y f
Y if
uCallingTask.uMutexRecursion = mr; I restore previous recursive count
} // uSerial::uLeave

Figure 5.26: uLeave

164 CHAPTER 5. PRIORITY INHERITANCE

5.4.4 Blocking Inside a Mutex Object

The hooks described above are also invoked when a task acquires or releases a mutex
object resulting from blocking inside a mutex or being scheduled from an internal
mutex queue, for example, blocking on and restarting from an accept statement.
The problem is that normally (i.e., non-real-time) when a task from an internal
mutex queue is scheduled, the entry lock is not acquired.

When selecting a task to run from the entry queue, the entry lock is acquired
and then control of the mutex is transferred to that task. While holding the entry
lock, the releasing task can adjust its active priority and the active priority of the
new owner, which is still blocked (see lines 23-24 in Figure 5.26).

However, when selecting a task from an internal mutex queue, the entry lock
does not normally need to be acquired. In this situation, it is possible for a task
to be interrupted after it executes the uOnRelease hook but before it restarts the
blocked task. The potential problem in this window is that a task’s active priority
may have been lowered, but it has not restarted the next mutex owner. Thus, the
next mutex owner can experience uncontrolled priority inversion as it cannot be
restarted until the old owner is scheduled again. Unfortunately, the old owner is
no longer experiencing priority inheritance from the mutex object it is releasing.
Furthermore, as the releasing task may be attempting to block on an internal mutex
queue, 1t is impossible to wait until the new task is restarted before the priority of
the releasing task is lowered because in this situation the releasing task atomically
blocks and wakes up the new owner. Thus, this task does not have the opportunity

to lower its priority after the new owner is restarted.

54. pC4++ IMPLEMENTATION 165

This situation is resolved by forcing the entry lock to be acquired whenever
the mutex hooks are invoked. As well, whenever a task that is releasing a mutex
also restarts the next mutex owner, the entry lock remains acquired while the task
executes both the uOnRelease hook for itself and the uOnAcquire hook on behalf
of the new mutex owner (see lines 32-37 in Figure 5.26). In fact, the entry lock
is not released until the new mutex owner is restarted. Thus, the releasing task is

uninterruptable during this time and the priority inversion window is eliminated.

5.4.5 Analysis

The algorithm described above is actually equivalent to the general case version
of the basic priority inheritance algorithm described by Moylan, Betz and Middle-
ton [42]. In this case, as the entry queues are prioritized, only the task with the
highest active priority needs to be counted. Other than that, a priority queue is
maintained for each task. This priority queue is used to determine a task’s active
priority at any given time.

The additional complexity in the pC++ implementation exists because it is
tailored to the dynamic priority scheduling described in chapter 4. In this case, a
task must also remember the queue number corresponding to a particular priority
and not just the priority value as this array index is needed to access the scheduling
queue associated with a particular priority. However, if a fixed priority array based
scheduling technique is used, then only the counts are necessary.

Priority inheritance for pC+4+ objects is implemented using the three routines

discussed above, i.e., uOnAcquire, uOnRelease and uAfterEntry. As the priority

166 CHAPTER 5. PRIORITY INHERITANCE

inheritance queue (UPIQ), and the entry and the mutex queues are implemented
based on the discussion of priority queues in Chapter 4, all the associated operations
are O(1). As well, adjusting a task’s priority is also an O(1) operation. Therefore,
the complexity of uAfterEntry is O(k), for k tasks in a blocking chain, and the
complexity of uOnAcquire and uOnRelease is O(1). uOnAcquire retains complexity
O(1) despite the fact that it calls uAfterEntry, because it is executed by the mutex

owner, so the blocking chain has size at most one.

5.5 Summary

When tasks share resources, access to these resources are protected using critical
sections. However, serializing access to shared resources can result in a situation
referred to as priority inversion. In general, it may be impossible to eliminate
priority inversion from a system, so it is important to bound the length of this
inversion. Priority inheritance protocols are a method to bound this inversion.
While several priority inheritance protocols exist, a common protocol is the ba-
sic priority inheritance protocol. This protocol provides a reasonable solution to
uncontrolled priority inversion and forms the base for more sophisticated protocols.
More sophisticated algorithms, like the priority ceiling protocol, have the advantage
of preventing multiple blocking and deadlock, but require additional static informa-
tion, incur more runtime overhead, and tend to be overly restrictive. Therefore, the
basic priority inheritance protocol is a good choice for dynamic systems or where
the potential for excessive multiple blocking is small. However, in situations where

static analysis is possible and multiple blocking is a problem, it is reasonable to

5.5. SUMMARY 167

pay the costs of a more sophisticated algorithm.

The most difficult parts of implementing basic priority inheritance are dealing
with transitivity and priority disinheritance. For transitivity, the straightforward
solution is most appropriate. This solution involves following a task’s blocking
chain when it cannot acquire a resource, and updating the priority of tasks on this
blocking chain as required. This technique has the added advantage of eliminating
stale information associated with blocked tasks.

With priority disinheritance, however, a variety of solutions are possible. Un-
fortunately, the efficient solutions can only be applied in cases where simplifying
assumptions are appropriate. In the general solution, a list of tasks acquired by
a resource is maintained and then a task can determine its new active priority by
finding the highest priority among its own base priority and the active priority of
tasks blocked on these resources.

The implementation of priority inheritance for mutex objects in pC+4+ is similar
to an algorithm described by Moylan, Betz and Middleton [42]. The basic idea is
to maintain a priority queue in each task containing information about the highest
priority task associated with each mutex object the task owns. Thus, a task’s active
priority is the highest priority value on this priority queue.

The problem in the pC4+ implementation is that extra blocking is required
when the next task acquiring the mutex is selected from an internal mutex queue.
In this case, a window exists in which uncontrolled priority inversion can occur. This
situation is dealt with by making the mutex object uninterruptable by acquiring the

entry lock while control is passed to the next task. The problem with this approach,

168 CHAPTER 5. PRIORITY INHERITANCE

however, is that the low overhead usually associated with internal scheduling is lost
(but only for real-time mutex types). As well, concurrency is reduced because tasks
are also prevented from adding themselves to the entry queue during this window.
Unfortunately, as the priority inheritance data structures need to be modified by
tasks blocking on the monitor, it is natural to associate them with the entry data

structures, and hence, require the use of the entry lock for mutual exclusion.

Chapter 6

Conclusion

The goal of this thesis is to discuss the creation of a predictable real-time system
that is also extensible and flexible. The creation of an extensible real-time system
is important to both encourage the use of new theory and to discourage the use of
ad-hoc systems.

Ad-hoc systems exist because current commercial real-time systems are neither
flexible nor allow access to the data structures used by the system. Allowing ac-
cess to these data structures provides two important advantages to the real-time
programmer. First, the system is extensible, allowing new ideas and theory to be
tested and incorporated into the system. Second, it allows the programmer to fine
tune the system specifically for an application. This point is important because
the kind of real-time application can have a significant impact on the types of data
structures that are appropriate.

For example, allowing the user to control the priorities of the tasks in a system

without allowing access to the ready queue data structure would eliminate the

169

170 CHAPTER 6. CONCLUSION

possibility of using the scheduling technique described in Chapter 4.

The approach taken in yC++ is that rather than limit the user to a fixed set of
alternatives, the user is given the ability to plug in additional functionality. This
approach allows the user a richer set of possibilities. As well, standard functionality
is provided by including a predefined library of data structures with the system.
This approach is demonstrated in Chapter 5 by creating a priority inheritance
mechanism based on the dynamic scheduling technique described in Chapter 4.

However, there are several drawbacks to this approach. First, the user is respon-
sible for guaranteeing that any functionality that is added has a fixed worst-case
execution time. Furthermore, the user is also responsible for maintaining the co-
herence of the system. Therefore, the goals of creating an efficient and predictable
system tend to conflict with the goals of allowing the system to be flexible and ex-
tensible. In a real-time system, this tradeoff is acceptable because the user already
bears a significant amount of responsibility for guaranteeing the predictability and
timing constraints of user code. Thus, it is reasonable to allow the user more control

over the system code.

6.1 Future Work

6.1.1 uC+t

There are a number of extensions that would increase the real-time functionality of

pCH.

Adding timeouts to accept statements is just the first step. Other operations

6.1. FUTURE WORK 171

would benefit from a timeout mechanism, including entry calls and calls to block
on a condition variable. In addition to adding timeout mechanisms to specific
operations, a timeout mechanism that can be applied to an arbitrary block of code
would also be useful. In order to implement such a mechanism, the exception
handling facilities in puC++ [41] must also be modified for a real-time environment.
These changes would require that the costs of exception handling have a fixed
worst-case execution time.

Including more scheduling and inheritance algorithms [15, 16, 44] with pCH+
would also be useful for users, as well as, to test the extensibility of the mecha-
nism. Additional inheritance algorithms include priority ceiling and dynamic pri-
ority ceiling. Furthermore, inheritance can also be expanded to include spinlocks
and semaphores [65].

In addition to further extending the real-time features of mutex objects and
other language constructs in pCH4, it is also necessary to calculate the overheads
and costs associated with these mechanisms. Moreover, it would also be interesting
to determine the impact of allowing users to access certain system data structures
with respect to debugging and to explore the learning curve involved in actually
implementing a new inheritance protocol.

As well, another interesting area is to extend KDB, pyC44’s concurrent debug-
ger, to handle real-time programs [49]. Typical debugging methods for real-time
programs include deadline monitoring to determine if any task timing constraints
are being violated and time distortion to maintain correct time values to compen-

sate for the overhead and interference of debugging [43].

172 CHAPTER 6. CONCLUSION

Finally, it is important to separate the scheduler and dispatcher in uC++. Typ-
ically, the job of the scheduler is to determine if new tasks can be added to the
schedule and to create a feasible schedule as tasks are added and removed. The dis-
patcher, on the other hand, is required to execute this schedule by selecting which
task 1s entitled to run at any given time. At the moment, the scheduler and the
dispatcher are together, resulting in dispatching delays as the schedule is modified.
An interesting approach is to treat the scheduler as a periodic task and to allow
the schedule only to be modified during its execution time. This allows the costs
of scheduling to be worked into the schedule and enhances the predictability of the

system. The drawback is that new tasks would suffer from slower response times.

6.1.2 Scheduling

Currently many real-time systems are priority-based. However, it is difficult to
encapsulate all the relevant scheduling information into a single priority value.
Instead, a promising area of real-time scheduling is time-based scheduling using
heuristic and planning approaches from AT [28, 46, 52, 56, 66]. These algorithms
are generally dynamic and try to guarantee that all the resources and interactions
that a task requires are available as per the task’s request. These types of ap-
proaches provide end-to-end scheduling that is important for use with soft real-time

applications such as multimedia and Internet video.

6.1. FUTURE WORK 173

6.1.3 Lock Free Systems

Another interesting area to explore is the notion of a lock free kernel. In concur-
rent systems, locks are generally used to prevent multiple access to queues that
govern entry to critical sections. However, the use of instructions that allow tasks
to atomically add and remove themselves from queues eliminates the need for lock-
ing [23, 39, 48]. Eliminating locking from the system tends to increase concurrency
and reduce response time. Both important goals for a real-time system.

Finally, the notion of an interruptible critical section [27] can also be used to
reduce the need for locking and queuing in the system. In this case, priority inver-
sion is eliminated because a higher priority task can always preempt the execution

of a lower priority task even if the lower priority task is in a critical section.

Bibliography

1]

Portable Operating System Interface (POSIX) — Part 1: System Application
Program Interface (API) [C' Language]. Information technology—Portable Op-
erating System Interface (POSIX). IEEE Computer Society, 345 E. 47th St,
New York, NY 10017, USA, 1996.

ANDREWS, G. R., AND SCHNEIDER, F. B. Concepts and notations for

concurrent programming. ACM Comput. Surv. 15,1 (Mar. 1983), 3-43.

AUDSLEY, N. C. Deadline monotonic scheduling. Tech. rep., University of

York, 1990. YCS 146.

AUDSLEY, N. C., BURNS, A., RICHARDSON, M. F., AND WELLINGS, A. J.
Hard Real-Time Scheduling: The Deadline Monotonic Approach. In Pro-
ceedings 8th IEEE Workshop on Real-Time Operating Systems and Software

(Atalanta, May 1991).

BAKER, T. P. A stack-based resource allocation policy for realtime processes.

In Proceedings of the Real-Time Systems Symposium - 1990 (Lake Buena Vista,

175

176

[10]

[11]

[12]

BIBLIOGRAPHY

Florida, USA, Dec. 1990), I. C. S. Press, Ed., IEEE Computer Society Press,
pp- 191-200.

BAKER, T. P. Stack-based scheduling of realtime processes. Journal of Real-

Time Systems 3, 1 (Mar. 1991), 67-99.

BORGER, M. W., AND RAJKUMAR, R. Implementing priority inheritance al-
gorithms in an ada runtime system. Tech. Rep. CMU/SEI-89-TR-15, Carnegie
Mellon, 1989.

BRrRINCH HANSEN, P. Operating System Principles. Prentice-Hall, 1973.

BuHRr, P. A. Understanding control flow: with concurrent programming
using pC++. Textbook in preparation. Available via ftp from plg.uwaterloo.ca in

pub/uSystem /uC++book.ps.gz, 1999.

BuHr, P. A., FORrTIER, M., AND COFFIN, M. H. Monitor classification.

ACM Comput. Surv. 27, 1 (Mar. 1995), 63-107.

BUHR, P. A., AND STROOBOSSCHER, R. A. yC++ annotated reference man-

ual, version 4.7. Tech. rep., Department of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada, N2L 3G1, Feb. 1999. Available via ftp

from plg.uwaterloo.ca in pub/uSystem/uC++.ps.gz.

BURNs, A., AND WELLINGS, A. Real-Time Systems and Programming Lan-

guages. Addison-Wesley, 1997.

BIBLIOGRAPHY 177

[13]

[14]

[16]

[17]

18]

BURNS, J. E. Mutual exclusion with linear waiting using binary shared vari-
ables. SIGACTN: SIGACT News (ACM Special Interest Group on Automata
and Computability Theory) 10, 2 (1978), 42-47.

CARDELLI, L. A language with distributed scope. In Conference record of
POPL 795, 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages: papers presented at the Symposium: San Francisco, Cal-
ifornia, January 22-25, 1995 (New York, NY, USA, 1995), ACM, Ed., ACM
Press, pp. 286-297.

CHEN, C.-M., AND TRIPATHI, S. K. Multiprocessor priority ceiling based
protocols. Technical Report CS-TR-3252, University of Maryland, College
Park, Apr. 7, 1994.

CHEN, M., AND LiN, K. J. Dynamic priority ceilings: A concurrency control
protocol for real-time systems. Journal of Real-Time Systems 2, 4 (Nov. 1990),
325-346.

CLARKE, C. L. A. Language and compiler support for synchronous mes-

sage passing architectures. Master’s thesis, University of Waterloo, Waterloo,

Ontario, Canada, N2L 3G1, 1990.

Davis, R. I., TINDELL, K. W., AND BURNS, A. Scheduling slack time in
fixed priority preemptive systems. In Proceedings of the Real-Time Systems
Symposium (Raleigh-Durham, NC, Dec. 1993), S. Davidson and I. Lee, Eds.,

IEEE Computer Society Press, pp. 222-231.

178

[19]

[22]

23]

[24]

BIBLIOGRAPHY

GEHANI, N., AND RAMAMRITHAM, K. Real-time Concurrent C: A language

for programming dynamic real-time systems. Journal of Real-Time Systems 3,

4 (Dec. 1991), 377-405.

GEHANI, N., AND ROOME, W. The Concurrent C' Programming Language.

Silicon Press, 1989.

GHAzALIE, T. M., AND BAKER, T. P. Aperiodic servers in a deadline

scheduling environment. Journal of Real-Time Systems 9, 1 (July 1995), 31—
68.

GOSLING, J., Joy, B., AND STEELE, G. The Java Language Specification.

Addison-Wesley, Reading, Massachusetts, 1996.

HERLIHY, M. Wait-free synchronization. ACM Transactions on Programming

Languages and Systems 13,1 (Jan. 1991), 124-149.

Hoarg, C. A. R. Monitors: An operating system structuring concept. Com-

mun. ACM 17,10 (Oct. 1974), 549-557.

Hour, R. C. Turing Reference Manual, third ed. Holt Software Associates

Inc., 1992.

HoMAYOUN, N., AND RAMANATHAN, P. Dynamic priority scheduling of

aperiodic tasks in hard real-time systems. Journal of Real-Time Systems 6, 2

(March 1994), 207-232.

JOHNSON, T. Interruptible critical sections for real-time systems. Technical

Report 93-017, University of Florida, 1993.

BIBLIOGRAPHY 179

28]

[29]

[30]

[31]

32]

[34]

JosePH, M., Ed. Real-time Systems, Specifications, Verification and Analysis.

Prentice Hall, 1996.

KLEIMAN, S., SHAH, D., AND SMAALDERS, B. Programming With Threads.

SunSoft Press, Mountainview, CA, USA, 1995.

LEnoczky, J., SHA, L., AND DING, Y. The rate monotonic scheduling

algorithm: exact characterization and average case behavior. In Proc. IEEE

10th Real-Time Systems Symp. (Dec. 1989), pp. 166-171.

LEHOCZKY, J. P., AND RAMOS-THUEL, S. An optimal algorithm for schedul-
ing soft-aperiodic tasks in fixed-priority preemptive systems. In Proceedings
of the Real-Time Systems Symposium - 1992 (Phoenix, Arizona, USA, Dec.

1992), R. Werner, Ed., IEEE Computer Society Press, pp. 110-124.

LEHOCZKY, J. P., SHA, L., AND STROSNIDER, J. K. Enhanced aperiodic

responsiveness in hard real-time environments. In Proc. IEEE Real-Time Sys-

tems Symposium (Dec. 1987), pp. 261-270.

LEHOCZKY, J. P., AND THUEL, S. R. Algorithms for scheduling hard aperi-
odic tasks in fixed-priority systems using slack stealing. In Proceedings of the
Real-Time Systems Symposium - 1994 (Dec. 1994), IEEE Computer Society

Press, pp. 22-33.

LEUNG, J. Y. T., AND WHITEHEAD, J. On the complexity of fixed-priority

scheduling of periodic, real-time tasks. Performance Evaluation North Holland

2 (1982), 237-250.

180

[35]

[36]

[37]

[38]

[39]

[41]

[42]

BIBLIOGRAPHY

Lim, P. E. Real-time in a concurrent, object-oriented programming environ-

ment. Master’s thesis, University of Waterloo, 1996.

Liu, C. L., AND LAYLAND, J. W. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM 20, 1 (Jan. 1973),

46-61.

MAHESHWARI, R. An empirical evaluation of priority queue algorithms for

real-time applications. Master’s thesis, Florida State University, 1990.

MERCER, C. W. An Introduction to Real-Time Operating Systems:
Scheduling Theory, 1992. Unpublished manuscript. Available via http from

http://www.cs.cmu.edu/afs/cs/project /rtmach/public/papers/surl.review.ps.

MicHAEL, M. M., AND ScotrT, M. L. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. Technical Report
TR600, University of Rochester, Computer Science Department, December
1995. Available via ftp from ftp://ftp.cs.rochester.edu/pub/papers/systems/

95.tr600.Nonblocking_and_blocking_concurrent_queue_algorithms.ps.gz.

Mok, A. K. Fundamental design problems of distributed systems for the hard

real-time environment. PhD thesis, MIT, 1983.

Mok, W. Y. R. Concurrent abnormal event handling mechanisms. Master’s

thesis, University of Waterloo, 1997.

MoyrLaN, P., BETz, R., AND MIDDLETON, R. The priority disinheritance

problem. Tech. Rep. EE9345, The University of Newcastle, 1993.

BIBLIOGRAPHY 181

[43]

[44]

[45]

[49]

MUELLER, F., AND WHALLEY, D. On debugging real-time applications.
In ACM SIGPLAN Workshop on Language, Compiler, and Tool Support for
Real-Time Systems (June 1994).

RAIJKUMAR, R. Synchronization in Real-Time Systems: A Priority Inheri-

tance Approach. Kluwer Academic Publishers, 1991.

RAJKUMAR, R., SHA, L., LEHOCZKY, J., AND RAMAMRITHAM, K. Prin-
ciples of Real-Time Systems. Prentice-Hall, 1994, ch. An optimal priority

inheritance protocol for real-time synchronization, pp. 249-271. Sang Son, Ed.

RamamrIiTHAM, K., SHiAH, P.-F., AND StANKOVIC, J. A. Efficient

scheduling algorithms for real-time multiprocessor systems. IEEE Transac-

tions on Parallel and Distributed Systems 1, 2 (April 1990), 184-195.

RAMAMRITHAM, K., AND STANKOVIC, J. Scheduling algorithms and operat-
ing systems support for real-time systems. In Proceedings of IEEE (Jan 1994),

pp. 55-67. Invited paper.

RAMAMURTHY, S., MOIR, M., AND ANDERSON, J. H. Real-time object
sharing with minimal system support (extended abstract). In Proceedings of the
15th Annual ACM Symposium on Principles of Distributed Computing (PODC
'96) (New York, USA, May 1996), ACM, pp. 233-242.

SCHUSTER, O. Replay of shared memory programs. Master’s thesis, University

of Mannheim, 1999.

182

[50]

[51]

[52]

[55]

[56]

[57]

BIBLIOGRAPHY

Sua, L., RAJKUMAR, R., AND LEHOCZKY, J. P. Priority inheritance pro-

tocols. Tech. Rep. CMU-CS-87-181, Carnegie Mellon, 1987.

SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P. Priority inheritance proto-

cols: An approach to real-time synchronization. IEEE Transactions on Com-

puters 39, 9 (Sept. 1990), 1175-1185.

SHEN, C. An Integrated Approach to Dynamic Task and Resource Management
wn Multiprocessor Real-Time Systems. PhD thesis, University of Massachusetts,

Ambherst, Computer Science, 1992.

SPRUNT, B., SHA, L., AND LEHOCZKY, J. Aperiodic task scheduling for hard

real-time systems. Journal of Real-Time Systems 1, 1 (June 1989), 27-60.

Spuri, M., AND BuTTAZzO, G. Efficient aperiodic service under earliest

deadline scheduling. In Proceedings of the Real-Time Systems Symposium -
1994 (Dec. 1994), IEEE Computer Society Press, pp. 2-11.

SpuRrl, M., AND BuTTAZZO, G. Scheduling aperiodic tasks in dynamic pri-

ority systems. Journal of Real-Time Systems 10, 2 (March 1996), 179-210.

Stankovic, J. A., AND RAMAMRITHAM, K. The spring kernel: a new

paradigm for real-time systems. IEEE Software 8, 3 (May 1991), 62-72.

Stankovic, J. A., Spuri, M., Di NATALE, M., AND ButTAZZO, G. C.

Implications of classical scheduling results for real-time systems. Computer 28,

6 (June 1995), 16-25.

BIBLIOGRAPHY 183

[58]

[59]

[62]

[63]

STROSNIDER, J. K., LEHOCZKY, J. P., AND SHA, L. The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time environ-

ments. IEEE Transactions on Computers 44, 1 (January 1995).

TarT, S. T., AND Durr, R. A. Ada 95 reference manual: lan-
guage and standard libraries, vol. 1246 of Lecture Notes in Computer
Science. Springer-Verlag Inc., New York, NY, USA. 1997. In-
ternational standard ISO/IEC 8652:1995(E). Available via http from

http://www.adaic.org/standards/95lrm /LRMps/rm.ps.

TAKADA, H., AND SAKAMURA, K. Experimental implementations of priority
inheritance semaphore on itron-specification kernel. In Proceedings of 11th
TRON Project International Symposium (Dec 1994), IEEE Computer Society

Press, pp. 106-113.

THOMADAKIS, M., AND LiU, J.-C. On the efficient scheduling of non-periodic
tasks in hard real-time systems. Technical Report TR99-012, Texas A&M

University, May 10, 1999.

Tia, T. S. Utilizing Slack Time For Aperiodic and Sporadic Requests Schedul-
ing in Real-Time Systems. PhD thesis, University of Illinois at Urbana-
Champaign, 1995.

UNITED STATES. DEPT. OF DEFENSE, AND AMERICAN NATIONAL STAN-
DARDS INSTITUTE. Reference manual for the Ada programming language:
ANSI/MIL-STD-1815A-1983. Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., 1983. Approved February 17, 1983.

184 BIBLIOGRAPHY

[64] vaN EMDE Boas, P., Kaas, R., AND ZIJLSTRA, E. Design and implemen-
tation of an efficient priority queue. Mathematical Systems Theory 10 (1977),

99-127.

[65] WANG, C.-D., TAKADA, H., AND SAKAMURA, K. Priority inheritance spin
locks for multiprocessor real-time systems. In Proceedings of the 1996 Inter-
national Symposium on Parallel Architecture, Algorithms and Networks (IS-
PAN’96) (June 1996), pp. 70-76.

[66] WANG, F. Issues related to dynamic scheduling in real-time systems. PhD

thesis, University of Massachusetts, 1993.

[67] WiLLiaMS, J. W. J. Algorithm 232: Heapsort. Communications of the ACM
7 (1964), 347-348.

