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Preface

The goal of this work is to introduce concurrency into theealbjoriented language C+8{r97. To achieve this goal a

set of important programming language abstractions weaiptad to C+-, producing a new dialect cal|ggi+. These
abstractions were derived from a set of design requirenmamdscombinations of elementary execution properties,
different combinations of which categorized existing peagming language abstractions and suggested new ones.
The set of important abstractions contains those needecptess concurrency, as well as some that are not directly
related to concurrency. Therefore, while the focus of thiskais on concurrency, all the abstractions produced from
the elementary properties are discussed. While the akistta@re presented as extensions to C+, the requirements
and elementary properties are generally applicable ta othiect-oriented languages.

This manual does not discuss how to use the new constructsltbdomplex concurrent systems. An in-depth
discussion of these issues, with respegu@+, is available in “Understanding Control Flow with Conent Pro-
gramming usinguC+". This manual is strictly a reference manual f@+. A reader should have an intermediate
knowledge of control flow and concurrency issues to undedstae ideas presented in this manual as well as some
experience programming in C+.

This manual contains annotations set off from the normaludision in the following way:

O Annotation discussion is quoted with quads. O

An annotation provides rationale for design decisions ditamhal implementation information. Also a chapter or
section may end with a commentary section, which contairjemdéscussion about design alternatives and/or imple-
mentation issues.

Each chapter of the manual dasst begin with an insightful quotation. Feel free to add your own
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Chapter 1

UCH Extensions

uC+H [BD92] extends the C+ programming languad&trp in somewhat the same way that C+ extends the C
programming language. The extensions introduce new abijleat augment the existing set of control flow facilities
and provide for lightweight concurrency on uniprocessat parallel execution on multiprocessor computers running
the UNIX operating system. The following discussion is tatanale for the particular extensions that were chosen.

1.1 Design Requirements
The following requirements directed this work:

e Any linguistic feature that affects code generationstbecome part of the language. In other words, if the com-
piler can generate code that invalidates the correctneadibfary package implementing a particular feature,
either the library feature cannot be implemented safelydditenal capabilities must be added to the program-
ming language to support the feature. Concurrency is a ggteature affected by code generation, and hence,
must be added to the programming languageh93. In the case of C+, the concurrency extensions are best
added through new kinds of objects.

e All communication among the new kinds of objects must becsthy type checkable because static type check-
ing is essential for early detection of errors and efficietecgeneration. (As well, this requirementis consistent
with the fact that C+ is a statically typed programming laage.)

e Interaction among the different kinds of objects should bssjble, and in particular, interaction among con-
current objects, called tasks, should be possible. Thigiregent allows a programmer to choose the kind of
object best suited to the particular problem without havingope with communication restrictions.

In contrast, some approaches have restrictions on intena@mong concurrent objects, such as tasks can only
interact indirectly through another non-task object. Bareple, many programming languages that support
monitors Bri75, MMS79, Hol92] require that all communication among tasks be done intyrébrough a
monitor; similarly, the Linda systenCjG89 requires that all communication take place through oneossibly

a small number of tuple spaces. This restriction increasestimber of objects in the system; more objects
consume more system resources, which slows the system. Wscaemunication among tasks is slowed
because of additional synchronization and data transfi¢hstiae intermediate object.

e All communication among objects is performed using routinls; data is transmitted by passing arguments
to parameters and results are returned as the value of thimeg@all. It is confusing to have multiple forms of
communication in a language, such as message passing,ga@gsaues, or communication ports, as well as
normal routine call.

e Any of the new kinds of objects should have the same dectaratiopes and lifetimes as existing objects. That
is, any object can be declared at program startup, duringneand block activation, and on demand during
execution, using aew operator.

e All mutual exclusion must be implicit in the programming¢arage constructs and all synchronization should be
limited in scope. Requiring users to build mutual exclusiohof locks often leads to incorrect programs. Also,
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reducing the scope in which synchronization can be usednbgmsulating it as part of language constructs,
further reduces errors in concurrent programs.

e Both synchronous and asynchronous communication are deéede concurrent system. However, the best
way to support this is to provide synchronous communicati®nhe fundamental mechanism; asynchronous
mechanisms, such as buffering or future&lBs, can then be built using synchronous mechanisms. Building
synchronous communication out of asynchronous mechamesmsres a protocol for the caller to subsequently
detect completion, which is error prone because the calbyr not obey the protocol (e.g., never retrieve a
result). Furthermore, asynchronous requests requirgdéia¢ion of implicit queues of outstanding requests, each
of which must contain a copy of the arguments of the requédss implementation requirement creates a storage
management problem because different requests requiieeatiif amounts of storage in the queue. Therefore,
asynchronous communication is too complicated and expeasnechanism to be hidden in a system.

e An object that is accessed concurrently must have someata@vier which requester it services next. There are
two distinct approaches: control can be based on the kindafast, for example, selecting a requester from
the set formed by calls to a particular entry point; or contem be based on the identity of the requester. In
the former case, it must be possible to give priorities tosits of requesters. This requirement is essential for
high-priority requests, such as a time out or a terminateuest. (This priority is to be differentiated from
execution priority.) In the latter case, selection conisalery precise as the next request must only come from
the specified requester. In general, the former case islysudficient and simpler to express.

e There must be flexibility in the order that requests are cetepl. That is, a task can accept a request and
subsequently postpone it for an unspecified time, whileinairtg to accept new requests. Without this ability,
certain kinds of concurrency problems are quite difficulitplement, e.g., disk scheduling, and the amount of
concurrency is inhibited as tasks are needlessly blocket§1.

All of these requirements are satisfiedu@+ except the first, which requires compiler support. EvenughuC+
lacks compiler support, its design assumes compiler stigpdhe extensions are easily added to any C+ compiler.

1.2 Elementary Execution Properties

Extensions to the object concept were developed based dalliheing execution properties:

thread — is execution of code that occurs independently of and plyssoncurrently with other execution; the exe-

cution resulting from a thread is sequential. A thread’sfion is to advance execution by changing execution
state. Multiple threads provide concurrent execution. dgpamming language must provide constructs that
permit the creation of new threads and specify how threaglsised to accomplish computation. Furthermore,
there must be programming language constructs whose éxecatuses threads to block and subsequently be
made ready for execution. A thread is either blocked or nugor ready. A thread islockedwhen it is waiting

for some event to occur. A threadrignning when it is executing on an actual processor. A threagdsly
when it is eligible for execution but not being executed.

execution state— is the state information needed to permit independentigicgrt An execution state is eithactive
or inactive, depending on whether or not it is currently being used byreatth. In practice, an execution state
consists of the data items created by an object, includinlgdal data, local block and routine activations, and
a current execution location, which is initialized to a stey point. The local block and routine activations
are often maintained in a contiguous stack, which constttite bulk of an execution state and is dynamic in
size, and is the area where the local variables and exedotation are preserved when an execution state is
inactive. A programming language determines what coriestan execution state, and therefore, execution state
is an elementary property of the semantics of a language.nWbatrol transfers from one execution state to
another, it is called aontext switch

mutual exclusion — is the mechanism that permits an action to be performed esaurce without interruption by
other actions on the resource. In a concurrent system, inexakusion is required to guarantee consistent gen-
eration of results, and cannot be trivially or efficientlyglemented without appropriate programming language
constructs.
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The first two properties represent the minimum needed tooparexecution, and seem to be fundamental in that
they are not expressible in machine-independent or largiratependent ways. For example, creating a new thread
requires creation of system runtime control informatiord emanipulation of execution states requires machine peci
operations (modifying stack and frame pointers). The lasperty, while expressible in terms of simple language
statements, can only be done by algorithms that are ermrepand inefficient, e.g., Dekker-like algorithms, and
therefore, mutual exclusion must also be provided as anezitary execution property, usually through special atomic
hardware instructions.

1.3 High-level Execution Constructs

A programming language designer could attempt to providedlB execution properties as basic abstractions in a
programming languag®[.L88], allowing users to construct higher-level constructsfthem. However, some com-
binations might be inappropriate or potentially dangerdinerefore, all combinations are examined, analyzing lhic
ones make sense and are appropriate as higher-level pnogmgrnianguage constructs. What is interesting is that
enumerating all combination of these elementary execytioperties produces many existing high-level abstrastion
and suggests new ones.

The three execution properties are properties of objedieréfore, an object may or may not have a thread, may
or may not have an execution state, and may or may not haveairextclusion. Different combinations of these three
properties produce different kinds of objects. If an objes mutual exclusion, this means that execution of certain
member routines are mutually exclusive of one another. @unlember routine is called_a nuati-exclusion member
(mutex membel). In the situation where an object does not have the minimiopgrties required for execution, i.e.,
thread and execution state, those of its caller are used.

Tablel.1shows the different abstractions possible when an objestqsses different execution properties:

object properties object’s member routine properties
thread| execution statg| no mutual exclusiod mutual exclusion
no no 1 class object 2 monitor
no yes 3 coroutine 4 coroutine monitor
yes no 5 (rejected) 6 (rejected)
yes yes 7 (rejected) 8 task

Table 1.1: Fundamental Abstractions

Case 1 is an object, such a$rae routine (a routine not a member of an object) or an object with memabetimes
neither of which has the necessary execution propertiélgdcaclass object In this case, the caller’s thread and
execution state are used to perform execution. Since this & object provides no mutual exclusion, it is normally
accessed only by a single thread. If such an object is aaté&gsseveral threads, explicit locking may be required,
which violates a design requirement. Case 2 is like Case ddals with the concurrent-access problem by implicitly
ensuring mutual exclusion for the duration of each compurtaty a member routine. This abstraction isnani-
tor [Hoa74. Case 3 is an object that has its own execution state butreadh Such an object uses its caller’s thread
to advance its own execution state and usually, but not @wayurns the thread back to the caller. This abstraction
is acoroutine [Mar8(. Case 4 is like Case 3 but deals with the concurrent-acaeddgm by implicitly ensuring
mutual exclusion; the nanmroutine monitor has been adopted for this case. Cases 5 and 6 are objectsthidae
but no execution state. Both cases are rejected becaudeadael tannot be used to provide additional concurrency.
First, the object’s thread cannot execute on its own sindeds not have an execution state, so it cannot perform any
independent actions. Second, if the caller’'s executiote $saused, assuming the caller’s thread can be blocked to
ensure mutual exclusion of the execution state, the eféetct have two threads successively executing portions of a
single computation, which does not seem useful. Case 7 ibjagtdhat has its own thread and execution state. Be-
cause it has both a thread and execution state it is capaékeofiting on its own; however, it lacks mutual exclusion.
Without mutual exclusion, access to the object’s data igimsherefore, servicing of requests would, in general,
require explicit locking, which violates a design requisth Furthermore, there is no performance advantage over
case 8. For these reasons, this case is rejected. Case@@&alde 7 but deals with the concurrent-access problem by
implicitly ensuring mutual exclusion, callediask.

The abstractions suggested by this categorization come fisandamental properties of execution and not ad hoc
decisions of a programming language designer. While it ssiibe to simplify the programming language design by
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only supporting the task abstractioBBG'90], which provides all the elementary execution propertikis would
unnecessarily complicate and make inefficient solutionseigain problems. As will be shown, each of the non-
rejected abstractions produced by this categorizatiorahlgsticular set of problems it can solve, and thereforeh eac
has a place in a programming language. If one of these atistradgs not present, a programmer may be forced to
contrive a solution for some problems that violates abstaor is inefficient.



Chapter 2

UCH Translator

TheuC+ translatof reads a program containing language extensions and tramséach extension into one or more
C+ statements, which are then compiled by an appropriatec@npiler and linked with a concurrency runtime
library. BecausqiC+ is only a translator and not a compiler, some restristiapply that would be unnecessary if
the extensions were part of the C+ programming languagmileé8j but less extensive translators have been built:
MC [RH87 and Concurrent CHGR89.

2.1 Extending C+

Operations irqUC+ are expressed explicitly, i.e., the abstractions @erivom the elementary properties are used to
structure a program into a set of objects that interact,iplyssoncurrently, to complete a computation. This sitoati

is to be distinguished from implicit schemes, such as thbag attempt tadiscoverconcurrency in an otherwise
sequential program, e.g., by parallelizing loops and act®data structures. While both schemes are complementary,
and hence, can appear together in a single programmingdgegumplicit schemes are limited in their capacity
to discoverconcurrency, and therefore, the explicit scheme is esder@urrently,uC+ only supports the explicit
approach, but nothing in its design precludes the additiadheoimplicit approach.

The abstractions in Table.1, p. 5are expressed ipC+ using two new type specifiersCoroutine and_Task,
which are extensions of th#ass construct, and hence, define new types. In this manual, adgfieed by thelass
construct and the new constructs are catiedss type monitor type, coroutine type, coroutine-monitor type and
task type, respectively. The termsass object monitor, coroutine, coroutine monitor andtask refer to the objects
created from such types. The tewhject is the generic term for any instance created from any typé.objects
can be declared externally, in a block, or using ke operator. Two new type qualifiersMutex and_Nomutex ,
are also introduced to specify the presence or absence afaimexclusion on the member routines of a type (see
Table2.1). The default qualification values have been chosen bas#tea@xpected frequency of use of the new types.
Several new statements are added to the language; eacttitousect control in objects created by the new types.
AppendixA, p. 143shows the grammar for all th€C+ extensions.

object properties object’s member routine properties
thread| execution state no mutual exclusion | mutual exclusion
no no [ _Nomutex ]t class _Mutex class
no yes [ _Nomutex ] _Coroutine | _Mutex _Coroutine
yes yes N/A [ _Mutex] _Task

T[] implies default qualification if not specified

Table 2.1: New Type Specifiers

UCH executes on uniprocessor and multiprocessor sharembrgeeomputers. On a uniprocessor, concurrency is
achieved by interleaving execution to give the appearahpamllel execution. On a multiprocessor computer, con-

1 The term “translator” is used rather than preprocessoruseqaC+ programs are partially parsed and symbol tables aretrooiesd. A
preprocessor, such agp, normally only manipulates strings.



8 CHAPTER 2. pyC+ TRANSLATOR

currency is accomplished by a combination of interleavestetion and true parallel execution. Furthermq@t-

uses ashared-memory model This single memory may be the address space of a single UNiéegs or a memory
shared among a set of kernel threads. A memory is populatediiine activations, class objects, coroutines, moni-
tors, coroutine monitors and concurrently executing taskef which have the same addressing scheme for accessing
the memory. Because these entities use the same memoryaméglghtweight, so there is a low execution cost for
creating, maintaining and communicating among them. Thys@ach has its advantages as well as its disadvantages.
Communicating objects do not have to send large data steschack and forth, but can simply pass pointers to data
structures. However, this technique does not lend itsadfdstributed environment with separate address spaces.

O Approaches taken by distributed shared-memaory systemspnoayde the necessary implementation
mechanisms to make the distributed memory case similaetstiared-memaory case. O

2.2 Compile Time Structure of apC+ Program

A pC+ program is constructed exactly like a normal C+ progreith one exception: the main (starting) routine
is a member of an initial task calladvain, which has the following structure (Secti@l1, p. 28details the task
construct):

_Task uMain {
private :
int argc; /I number of arguments on the shell command line
char xxargv; /I pointers to tokens on the shell command line
int &uRetCode; /Il return value to the shell
void main(); /I user provides body for this routine
public :

uMain( int argc, char xargv[] ) : argc(argc), argv(argv) {}
h
A uC+ program must define the body for timain member routine of this initial task, e.g.:
... /I normal C++ declarations and routines

void uMain::main() { /I body for initial task uMain
.s;/\./itch (argc) { /I use argc from uMain
case 2:

no = atoi(argv[l]); // use argv from uMain

.u.FlaetCode =0; /I use uRetCode from uMain
}
pCH supplies the free routineain to initialize thepCH runtime environment and creates the taskin, of which
routineuMain::main is a member. Membamain::main has available, as local variables, the same two argumeatts th
are passed to the free routimain: argc, andargv. To return a value back to the shell, set the variai®etCode and
return fromuMain::main; uRetCode is initialized to zero.

2.3 pCH Runtime Structure

The dynamic structure of an executipG+ program is significantly more complex than a normal Cegpam. In
addition to the five kinds of objects introduced by the eletagnpropertiespC+ has two more runtime entities that
are used to control concurrent execution.

2.3.1 Cluster

A cluster is a collection of tasks and virtual processorsdaiésed next) that execute the tasks. The purpose of arcluste
is to control the amount of parallelism that is possible agiasks, wher@arallelism is defined as execution which
occurs simultaneously. Parallelism can only occur whertiplalprocessors are presef@oncurrency is execution
that, over a period of time, appears to be parallel. For examprogram written with multiple tasks has the potential
to take advantage of parallelism but it can execute on a aogssor, where it magippearto execute in parallel
because of the rapid speed of context switching.

Normally, a cluster uses a single-queue multi-server guguaodel for scheduling its tasks on its processors (see
Chapterl0, p. 125or other kinds of schedulers). This simple schedulingltesn automatic load balancing of tasks
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on processors. Figu2lillustrates the runtime structure ofpeC+ program. An executing task is illustrated by its
containmentin a processor. Because of appropriate defaultlusters, it is possible to begin writipg+ programs
after learning about coroutines or tasks. More complex aomeacy work may require the use of clusters. If several
clusters exist, both tasks and virtual processors, can pléecily migrated from one cluster to another. No automatic
load balancing among clusters is performeqigy+.

OOO

System Cluster User Cluster Other Cluster(s)

.
oo .
.

—

Ready Tasks N Q N

o Blocked Tasks [, O o

ocoroutine () task > monitor D processor « . cluster
L J

Figure 2.1: Runtime Structure offgC+ Program

When apC+ program begins execution, it creates two clusters: tesysluster and a user cluster. The system
cluster contains a processor that does not execute user taskead, the system cluster handles system-related-oper
tions, such as catching errors that occur on the user ciygtenting appropriate error information, and shuttingvdo
UC+H-. A user cluster is created to contain the user tasks;$tedsk created in the user clusteuaigain, which begins
executing the member routin®lain::main. Having all tasks execute on the one cluster often maximigésation of
processors, which minimizes runtime. However, becausendgitions of the underlying operating system or because
of special hardware requirements, it is sometimes necets&iave more than one cluster. Partitioning into clusters
must be used with care as it has the potential to inhibit fisth when used indiscriminately. However, in some situ-
ations partitioning is essential, e.g., on some systemsuroent UNIX I/O operations are only possible by exploiting
the clustering mechanism.

2.3.2 Virtual Processor

A UC+ virtual processor is a “software processor” that exesthireads. A virtual processor is implemented by ker-
nel thread (normally created through a UNIX process) thauissequently scheduled for execution on a hardware
processor by the underlying operating system. On a muttgssor, kernel threads are usually distributed across the
hardware processors and so some virtual processors areoatecute in paralleluC+ uses virtual processors in-
stead of hardware processors so that programs do not gcallaltate and hold hardware processors. Programs can
be written to run using a number of virtual processors andueeon a machine with a smaller number of hardware
processors. Thus, the way in whipE+ accesses the parallelism of the underlying hardwate@igh an interme-
diate resource, the kernel thread. In this wa@4++ is kept portable across uniprocessor and differentiprattessor
hardware designs.

When a virtual processor is executing;+ controls scheduling of tasks on it. Thus, when UNIX schesl a
virtual processor for a runtime perigdC+ may further subdivide that period by executing one orartasks. When
multiple virtual processors are used to execute taskg@e scheduling may automatically distribute tasks among
virtual processors, and thus, indirectly among hardwaosegssors. In this way, parallel execution occurs.
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2.4 PCH Kernel

After a uC+ program is translated and compiled, a runtime concuayréhrary is linked in with the resulting pro-
gram, called thei.C+ kernel. There are two versions of th€+ kernel: the unikernel, which is designed to use a
single processor (in effect, there is only one virtual pesce); and the multikernel, which is designed to use several
processors. Thus, the unikernel is sensibly used on systéims: single hardware processor or when kernel threads
are unavailable; the multikernel is sensibly used on systiat have multiple hardware processors and when kernel
threads are available. Tal?e? shows the situations where each kernel can be used. Therneiloean be used in a
system with multiple hardware processors and kernel tisrbatidoes not take advantage of either of these capabili-
ties. The multikernel can be used on a system with a singléweae processor and kernel threads but performs less
efficiently than the unikernel because it uses multiprometghniques unnecessarily.

| no kernel threads kernel threads
single unikernel, yes unikernel, yes
processor|| multikernel, no | multikernel, yes, but inefficient
multiple unikernel, yes | unikernel, yes, but no parallelism
processorg| multikernel, no multikernel, yes

Table 2.2: When to Use the Unikernel and Multikernel

Each of theuC+ kernels has a debugging version, which performs a numfbemtime checks. For example,
the uC+ kernel provides no support for automatic growth of stegéice for coroutines and tasks because this would
require compiler support. The debugging version checkstimk overflow whenever context switches occur among
coroutines and tasks, which catches many stack overflowsever, stack overflow can still occur if insufficient
stack area is provided, which can cause an immediate ertanexplainable results. Many other runtime checks are

performed in the debugging version. After a program is dgledgthe non-debugging version can be used to increase
performance.

2.4.1 Compiling apC+ Program

Theu++ command is used to compilgi&+ program. This command works just like the G&+ [Tie9( command
for compiling C+ programs, e.g.:

u++ [C+ options] yourprogram.C [assembler and loader files]
The following additional options are available for tlre+ command:

- debug The program is linked with the debugging version of the umkéor multikernel. The debug version
performs runtime checks to help during the debugging phBa@G+ program, but substantially slows the ex-

ecution of the program. The runtime checks should only beoxemh after the program is completely debugged.
This option is the default.

-nodebug The program is linked with the non-debugging version of thikernel or multikernel, so the execution
of the program is fasterdowever, no runtime checks oasserts are performed so errors usually result in
abnormal program termination.

-yield When a program is translated, a random number of contextisestoccur at the beginning of each mem-
ber routine so that during execution on a uniprocessor tisemebetter simulation of parallelism. (This non-
determinism in execution is in addition to random contextaling due to pre-emptive scheduling, see Sec-
tion 8.4.1, p. 11). The extra yields of execution can help during the debugigimase of uC+ program, but
substantially slows the execution of the program.

- noyield Additional context switches are not inserted in memberinast This option is the default.

- verify When a program is translated, a check to verify that the staskot overflowed occurs at the beginning of
each member routine. (This checking is in addition to ch@ckeach context switch provided by theéebug

option.) Verifying the stack has not overflowed is importdating the debugging phase ojug+ program,
but slows the execution of the program.

- noverify Stack-overflow checking is not inserted in member routifiéés option is the default.
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-multi The programis linked with the multikernel.

-nomulti The program is linked with the unikerndlhis option is the default.

- quiet ThepuC+ compilation message is not printed at the beginning @mapilation.

- noquiet The uCH compilation message is printed at the beginning of a datigm. This option is the default.

- U++ Only the C preprocessor and thé+ translator steps are performed and the transformedaoroig written
to standard output, which makes it possible to examine the generated by theC+ translator.

- compiler path-nameThe path-name of the compiler used to compilgat+ program(s). The default is the com-
piler used to compile theC+ runtime library. It is unsafe to use a different compilatess the generated code
is binary compatible. (See Sectitd.3, p. 140For supported compilers.)

When multiple conflicting options appear on the command ling.,- debug followed by - nodebug, the last option
takes precedence.

2.4.2 Preprocessor Variables

When programs are compiled usiag+, the following preprocessor variables are available:

—_U_CPLUSPLUS__ is always available during preprocessing and its valuedsthirent major version number
of uC+ 2

__U_CPLUSPLUS_MINOR__ is always available during preprocessing and its valueagthrent minor version
number ofuC+-.

__U_CPLUSPLUS_PATCH__ is always available during preprocessing and its valueasthrent patch version
number ofuC+-.

__U_DEBUG__ is available during preprocessing if théebug compilation option is specified.
__U_YIELD__ is available during preprocessing if thgield compilation option is specified.
__U_VERIFY__ is available during preprocessing if theerify compilation option is specified.
__U_MULTI__ is available during preprocessing if themulti compilation option is specified.

These preprocessor variables allow conditional compitedif programs that must work differently in these situa-
tions. For example, to allow a normal C/C+ program to be dtedpsinguC+, the following is necessary:
#ifdef __U_CPLUSPLUS__
void uMain::main() {
#else
int main( int argc, char =argv[] ) {
#endif
/l body of main routine
}

which conditionally includes the correct definition farin if the program is compiled usingy++.

2.5 Labelled Break/Continue

While C+ providesreak andcontinue statements for altering control flow, both are restrictedrte level of nesting
for a particular control structure. Unfortunately, thistréction forces programmers to ugeto to achieve the equiv-
alent for more than one level of nesting. To prevent havingaie this switchuC+ extends théreak andcontinue
with a target label to support static multi-level ex®h85 GJSBO0(. For the labelledreak, it is possible to specify
which control structure is the target for exit, e.g.:

2 The C preprocessor allows only integer values in a prepsocesriable so a value like “6.1.0” is not allowed. Hence, tieed to have three
variables for the major, minor and patch version number.
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C+ pCH
for (...){ L1: for (...){
for (...){ L2: for (...) {
for (...){ L3: for (...){
... goto L1; ... ... break L1; ...
... goto L2; ... ... break L2; ...
... goto L3; .../l or break ... break L3; ... // or break
} L3, }
} L2 }
J }

The innermost loop has three exit points, which cause teatioin of one or more of the three nested loops, respectively.
For the labelledontinue , it is possible to specify which control structure is they&trfor the next loop iteration, e.g.:

CH+ pPCH
for (...){ L1: for (...) {
for (...){ L2: for (...){
for (...){ L3: for (...) {
... goto L1; ... ... continue L1, ...
... goto L2; ... ... continue L2; ...
... goto L3; .../l or continue ... continue L3; ... // or continue
L3:; } }
L2:; } }
L1} }

The innermost loop has three restart points, which causedkidoop iteration to begin, respectively. For bothak
andcontinue , the target label must be directly associated witbrawhile or do statement; fobreak, the target label
can also be associated withlsaitch or compound{}) statement, e.g.:

L1: {
... declarations ...
L2: switch (...){
L3: for (...){
... break L1; ... /] exit compound statement
... break L2; ... /I exit switch
... break L3; .../ exit loop
}
}
}

Bothbreak andcontinue with target labels are simplygoto restricted in the following ways:

e They cannot be used to create a loop. This means that onlpdpénly construct can be used to create a loop.
This restriction is important since all situations that cesult in repeated execution of statements in a program
are clearly delineated.

e Since they always transfer out of containing control stitet, they cannot be used to branch into a control
structure.

The advantage of the labelleckak /continue is that it allows static multi-level exits without havinguse theyoto
statement and ties control flow to the target control stmectather than an arbitrary point in a program. Furthermore,
the location of the label at tHeeginningof the target control structure informs the reader that desnpontrol flow is
occurring in the body of the control structure. Wiftro , the label at the end of the control structure fails to corfey
important clue early enough to the reader. Finally, using>iicit target for the transfer instead of an implicit targ
allows new nested loop @mwitch constructs to be added or removed without affecting othesitacts. The implicit

targets of the currertreak andcontinue , i.e., the closest enclosing loop switch , change as certain constructs are
added or removed.
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2.6 Coroutine

A coroutine is an object with its own execution state, soxsocation can be suspended and resumed. Execution of a
coroutine is suspended as control leaves it, only to carrfyam that point when control returns at some later time.
This property means a coroutine is not restarted at the bamjion each activation and its local variables are preserve
Hence, a coroutine solves the class of problems associdtieinite-state machines and push-down automata, which
are logically characterized by the ability to retain stagdéw@en invocations. In contrast, a free routine or member
routine always executes to completion before returningssimcal variables only persist for a particular invocation

A coroutine executes serially, and hence there is no coacayrimplied by the coroutine construct.
However, the ability of a coroutine to suspend its execustate and later have it resumed is the precursor
to true tasks but without concurrency problems; hence, autime is also useful to have in a programming
language for teaching purposes because it allows increidetelopment of these propertié&ep91.

A coroutine type has all the properties oflass . The general form of the coroutine type is the following:
[ _Nomutex ] _Coroutine coroutine-name {

private :
/I these members are not visible externally
protected :
/I these members are visible to descendants
void main(); /I starting member

public :
I3

The coroutine type has one distinguished member, nanzd this distinguished member is called theroutine
main. Instead of allowing direct interaction witinain, its visibility is normally private or protected ; therefore,
a coroutine can only be activated indirectly by one of theoatine’s member routines. The decision to make the
coroutine mairprivate or protected depends solely on whether derived classes can reuse thgioermain or must
supply their own. Hence, a user interacts with a coroutinéréttly through its member routines. This approach
allows a coroutine type to have multiple public member moegito service different kinds of requests that are stétical
type checked. A coroutine main cannot have parametersumratresult, but the same effect can be accomplished
indirectly by passing values through the coroutine’s glofzaiables, calleccommunication variables which are
accessible from both the coroutine’s member miath routines.

A coroutine can suspend its execution at any point by aatigainother coroutine, which is done in two ways.
First, a coroutine can implicitly reactivate the coroutthat previously activated it via membsuspend. Second, a
coroutine can explicitly invoke a member of another comveitiwhich causes activation of that coroutine via member
resume. These two forms result in two different styles of coroutimatrol flow. Afull coroutine is part of a resume
cycle, while asemi-coroutine[Mar8Q, p. 4, 37] is not part of a resume cycle. A full coroutine canfq@en semi-
coroutine operations because it subsumes the notion ofetinéoroutine; i.e., a full coroutine can use suspend to

activate the member routine that activated it or resumestdfjtbut it must always form a resume cycle with other
coroutines.

/I these members are visible externally

O Simulating a coroutine with a subroutine requires retajrdiata in variables with global scope or
variables withstatic storage-class between invocations. However, retainatg $ these ways violates
the principle of abstraction and does not generalize toipielinstances, since there is only one copy of
the storage in both cases. Also, without a separate execsii#de, activation points must be managed
explicitly, requiring the execution logic to be written aseries of cases, each ending by recording the
next case to be executed on re-entry. However, explicit g@mant of activation points is complex and
error-prone, for more than a small number of activation {®in

Simulating a coroutine with a class solves the problem ofrab8on and does generalize to multiple
instances, but does not handle the explicit managementightion points. Simulating a coroutine with a
task, which also has an execution state to handle activatios, is non-trivial because the organizational
structure of a coroutine and task are different. Furtheemsimulating full coroutines, which form a
cyclic call-graph, may be impossible with tasks becausetask's mutual-exclusion, which could cause
deadlock (not a problem inC+ because multiple entry is allowed by the same threadjallyj a task
is inefficient for this purpose because of the higher costitiching both a thread and execution state as
opposed to just an execution state. In this implementati@¢ost of communication with a coroutine is,
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in general, less than half the cost of communication withs&,tanless the communication is dominated
by transferring large amounts of data. O
2.6.1 Coroutine Creation and Destruction

A coroutine is the same as a class object with respect toieneatd destruction, e.qg.:
_Coroutine C {

void main() ... /I coroutine main
public :

void r(...) ...

I3

C xcp; /I pointer to a C coroutine

{ /I start a new block
C ¢, ca[3]; /I local creation
cp = new C; /I dynamic creation
cr(...); /I call a member routine that activates the coroutine
ca[1].r( ... ); /I call a member routine that activates the coroutine
cp->r( ... ); /I call a member routine that activates the coroutine

I c lca[O], ca[l] and ca[2] are deallocated

delete cp; // cp’ s instance is deallocated

When a coroutine is created, the appropriate coroutinetiearier and any base-class constructors are executed in the
normal order. The coroutine’s execution-state is createbthe starting point (activation point) is initialized toet
coroutine’smain routine visible by the inheritance scope rules from the atin@ type; however, th@ain routine does

not start execution until the coroutine is activated by ohi&somember routines, which includes constructors. The
location of a coroutine’s variables—in the coroutine’sadatea or in member routimeain—depends on whether the
variables must be accessed by member routines othenthian Oncemain is activated, it executes until it activates
another coroutine or terminates. The coroutine’s pointasf hctivation may be outside of thein routine because
main may have called another routine; the routine called could&a to the coroutine or in another coroutine.

A coroutine terminates when itsain routine returns. When a coroutine terminates, it activdtescoroutine or
task that causenhain to start execution. This choice ensures the starting sequence égaiie., there are no cycles.
A thread can move in a cycle among a group of coroutines botitation always proceeds back along the branches
of the starting tree. This choice of activation does impasain requirements on the starting order of coroutines,
but it is essential to ensure that cycles can be broken airtation. Activating a terminated coroutine is an error.

A coroutine’s destructor is invoked by the deallocatingeit when the block containing the coroutine declaration
terminates or by an explicttelete statement for a dynamically allocated coroutine. If theocdine is not terminated
when it is deallocated, termination is forcbdfore executing the destructor, which unwinds the coroutineslst
executing any destructors for objects on the stack. A caresgze of this semantics is that the destructor may not
resume a coroutine, so it is asymmetric with the coroutioefsstructor.

Like a class object, a coroutine may be deleted at any &wen if the coroutine’snain routine is started but
not terminatedi.e., the coroutine is still suspended intgin routine. Before the coroutine’s destructor is run, the
coroutine’s stack is unwound via the cancellation mechar{isee Sectio®, p. 89, to ensure cleanup of resources
allocated on the coroutine’s stack. This unwinding invelae implicitresume of the coroutine being deleted.

Like a routine or class, a coroutine can access all the eafteamniables of a C+ program and the heap area. Also,
any static member variables declared within a coroutine are sharedgralh instances of that coroutine type. If a
coroutine makes global references or kasic variables and is instantiated by different tasks, therdésgeneral
problem of concurrent access to these shared variablegefbhe, it is suggested that these kinds of references be
used with extreme caution.

2.6.2 Inherited Members

Each coroutine type, if not derived from some other corautype, is implicitly derived from the coroutine type
uBaseCoroutine, €.9.:
_Coroutine coroutine-name : public uBaseCoroutine { // implicit inheritance

k
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where the interface for the base-clagaseCoroutine is:

_Coroutine uBaseCoroutine {

protected :
void resume();
void suspend();

public :
uBaseCoroutine();
uBaseCoroutine( unsigned int stackSize );
uBaseCoroutine( void xstorage, unsigned int storageSize );

void stackPointer() const ; /I stack info
unsigned int stackSize() const;

void «stackStorage() const ;

ptrdiff_t stackFree() const ;

ptrdiff_t stackUsed() const ;

void verify();

const char ssetName( const char xname ); // coroutine info
const char xgetName() const ;

enum State { Halt, Active, Inactive };

State getState() const ;

uBaseCoroutine &starter() const ;

uBaseCoroutine &resumer() const ;

static int asyncpoll(); /I asynchronous exceptions

enum CancellationState { CancelEnabled, CancelDisabled };
void cancel(); /I cancellation
bool cancelled();

bool cancellnProgress();

_Event Failure; /I exceptions
_Event UnhandledException;

I3
The member routinegsume andsuspend are discussed in Sectié6.3, p. 17
The overloaded constructor routinBaseCoroutine has the following forms:

uBaseCoroutine() — creates a coroutine on the current cluster with the clgsdefault stack size.

uBaseCoroutine( unsigned int stackSize ) — creates a coroutine on the current cluster with the spdaifii@i-
mumstack size (in bytes). The amount of storage for the coreigtistack is always greater than this stack
size, as extra information is stored on the stack.

uBaseCoroutine( void sstorage, unsigned int storageSize ) — creates a coroutine on the current cluster using
the specified storage amdaximunstorage size (in bytes) for the coroutine’s stack. The armofustorage for
the coroutine’s stack is always less than actual storage aiextra information is stored on the stackis
storage is NOT freed at coroutine deallocatioff the specified storage address is zeNULL), the storage
size becomes a stack size, as in the previous constructor.

A coroutine type can be designed to allow declarations toipthe stack storage and size by doing the following:

_Coroutine C {
public :
C() : uBaseCoroutine( 8192 ) {}; /I default 8K stack
C( unsigned int s ) : uBaseCoroutine( s ) {}; // user specified stack size
C( void =st, unsigned int s ) : uBaseCoroutine( st,s ) // user specified stack storage and size

I
C x, y( 16384 ), z( area, 32768 ); [/l x => 8K stack, y => 16K stack, z => stack < 32K at “area”

The member routingtackPointer returns the address of the stack pointer. If a coroutines ¢hlk routine, its
current stack pointer is returned. If a coroutine calls tbigtine for another coroutine, the stack pointer savedet th
last context switch of the other coroutine is returned; thé&y not be the current stack pointer value for that coroutine
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The member routinstackSize returns the maximum amount of stack space that is allocatetthis coroutine. A
coroutine cannot exceed this value during its executiore miamber routinetackStorage returns the address of the
stack storage for this coroutine. On most computers, thek gfeows down (high address) towards the stack-storage
address (low address). If a coroutine is created with spestifick storage, the address of that storage is returned;
otherwise, the address of th€+ created stack storage is returned.

The member routinstackFree returns the amount of free stack space. If a coroutine dagoutine, its current
free stack space is returned. If a coroutine calls this neutor another coroutine, the free stack space at the last
context switch of the other coroutine is returned; this maiybe the current free stack space for that coroutine.

The member routinstackUsed returns the amount of used stack space. If a coroutine tadlsdutine, its current
used stack space is returned. if a coroutine calls thismeudtr another coroutine, the used stack space at the last
context switch of the other coroutine is returned; this mat/be the current used stack space for that coroutine.

The member routingerify checks whether the current coroutine has overflowed itk stddt has, the program
terminates. To completely ensure the stack size is neveregbed, a call teerify must be included after each set of
declarations, as in the following:

void main() {
/I declarations

;/Ie.rify(); Il check for stack overflow
/I code

}
Thus, after a coroutine has allocated its local variablebegk is made that its stack has not overflowed. Clearly, this
technique is not ideal and requires additional work for thegpammer, but it does handle complex cases where the
stack depth is difficult to determine and can be used to hddpglpossible stack overflow situations.

O When the- verify option is used, calls teerify are automatically inserted at the beginning of each
member routine, but not after each set of declarations. O

The member routineetName associates a name with a coroutine and returns the prevéus.nrhe name is not
copied so its storage must persist for the duration of theutore. The member routingetName returns the string
name associated with a coroutine. If a coroutine has not @aegigned a namegetName returns the type name of the
coroutine.uC+ uses the name when printing any error message, whictggihim debugging.

The member routingetState returns the current state of a coroutine’s execution, wii@ne of the enumerated
valuesHalt, Active or Inactive.

The member routinetarter returns the coroutine’s starter, i.e., the coroutine tlefggmed the first resume of
this coroutine (see Sectidh6.1, p. 14. The member routineesumer returns the coroutine’s last resumer, i.e., the
coroutine that performed the last resume of this corousee Gectio2.6.3.

The member routineasyncpoll returns the number of asynchronous exceptions propagatetthi® call to
poll. asyncpoll is a static member-routine that always polls the callingedldfs asynchronous event-queue; use
uBaseCoroutine::asyncpoll() for a call outside of a coroutine or task type. Sectiof.2, p. 70discusses propagation
control in detail.

The member routineancel marks the coroutine/task for cancellation. The membeilimewgtncelled returns true
if the coroutine/task is marked for cancellation, and falfeerwise. The member routimancelinProgress returns
true if cancellation is started for the coroutine/task.t®ed, p. 89discusses cancellation in detail.

The type_Event is defined in Sectiob.3, p. 68

The free routine:

uBaseCoroutine &uThisCoroutine();

is used to determine the identity of the coroutine executmg routine. Because it returns a reference to the base
coroutine typeuBaseCoroutine, this reference can only be used to access the public reuintgpeuBaseCoroutine.
For example, a free routine can check whether the allocatfats local variables has overflowed the stack of a
coroutine that called it by performing the following:
int freeRtn( ... ) {
/I declarations

.u.1.'hisCoroutine().verify(); Il check for stack overflow
/I code

}

As well, printing a coroutine’s address for debugging peexois done like this:
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Consumer Producer
_Coroutine Cons { _Coroutine Prod {
int pl, p2, status; // communication Cons &cons; /I communication
bool done; int N;
void main() { void main() {
/I 1st resume starts here /I 1st resume starts here
int money = 1; int i, pl, p2, status;
for (;;){ for (i=1;i<=N;i+=1)/{
cout << "cons receives: " << pl = rand() % 100;
pl << ", " << p2; p2 = rand() % 100;
if ( done ) break; cout << "prod delivers: " <<
status += 1; pl <<", " << p2 << endl;
cout << " and pays $" << status = cons.delivery( p1, p2 );
money << endl; cout << "prod status: " <<
suspend(); // restart delivery & stop status << endl;
money += 1,
} cout << "prod stops" << endl;
cout << "cons stops" << endl; cons.stop();
}
public : public :
Cons() : status(0), done(false) {} Prod( Cons &c ) : cons(c) {}
int delivery( int pl, int p2) { void start( int N ) {
Cons::pl = pi,; Prod::N = N;
Cons::p2 = p2; resume(); /I restart main
resume(); /I restart main
return status; }; /I Prod
void stop() { void uMain::main() {
done = true; Cons cons; /I create consumer
resume(); /I restart main Prod prod(cons); /I create producer
} prod.start(5); /I start producer
}; /I Cons }

Figure 2.2: Semi-Coroutine Producer-Consumer

cout << "coroutine:" << &uThisCoroutine() << endl; // notice the ampersand (&)

2.6.3 Coroutine Control and Communication

Control flow among coroutines is specified by the protectethbersresume andsuspend. A call to resume may
appear in any member of the coroutine, but normally it is usdg in the public members. A call teuspend may
appear in any member of the coroutine, but normally it is ws#din the coroutine main or non-public members called
directly or indirectly from the coroutine main. Membeesume andsuspend are composed of two parts. The first
part inactivates the coroutine that calls the member andebend part reactivates another coroutine; the difference
is which coroutine is reactivated. Memhesume activates the current coroutine object, i.e., the coreusipecified

by the implicitthis variable. Membesuspend activates the coroutine that previously executed a catt¢ome for

the coroutine executing theispend, ignoring any resumes of a coroutine to itselin effect, these special members
cause control flow to transfer among execution states, whidives context switches.

It is important to understand that calling a coroutine’s rhemby another coroutine does not cause a switch to the
other coroutine. A switch only occurs whemeaume is executed in the other coroutine’s member. Thereforatipg
&uThisCoroutine() in the other coroutine’s member always prints tladling coroutine’s address; printingis in the
other coroutine’s member always prints ttedled coroutine’s address (which is the coroutine tleatuime switches
to). Hence, there is a difference between who is executidgndrere execution is occurring.

Figure2.2shows a semi-coroutine producer and consumer coroutiden dniver routine. Notice the explicit call
from Prod’s main routine todelivery and then the return back whemlivery completes.delivery always activates its
coroutine, which subsequently activatgivery.

Figure2.3shows a full-coroutine producer and consumer corouting gadriver routine. Notice the calls to mem-
berresume in routinespayment anddelivery. The resume in routingayment activates the execution state associated
with Prod::main and that execution state continues in routuas::delivery. Similarly, the resume in routingelivery
activates the execution state associated Withs::main and that execution state continuesGons::main initially
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and subsequently in routirrod::payment. This cyclic control flow and the termination control flow Ikistrated in
Figure2.4.

Consumer Producer
_Coroutine Cons { _Coroutine Prod {
Prod &prod; /I communication Cons *cons; /I communication
int pl, p2, status; int N, money, receipt;
bool done; void main() {
void main() { /I 1st resume starts here
/I 1st resume starts here int i, pl, p2, status;
int money = 1, receipt; for (i=1;i<=N;i+=1){
for (;;){ pl = rand() % 100;
cout << "cons receives: " << p2 = rand() % 100;
pl << ", " << p2; cout << "prod del ivers: " <<
if ( done ) break; pl <<", " << p2 << endl;
status += 1; status = cons- >delivery( p1, p2);
cout << " and pays $" << cout << "prod status: " <<
money << endl; status << endl;
receipt = prod.payment( money ); }
cout << "cons recei pt #' << cout << "prod stops" << endl;
receipt << endl; cons- >stop();
money += 1; }
} public :
cout << "cons stops" << endl; Prod() : receipt(0) {}
} int payment( int money ) {
public : Prod::money = money;
Cons( Prod &p ) : prod(p) { cout << "prod paynent of $" <<
done = false; money << endl;
status = 0; resume(); /I restart prod
} receipt += 1; /I 'in Cons::delivery
int delivery( int pl, int p2) { return receipt;
Cons::pl = pl; /I restart cons in
Cons::p2 = p2; // Cons::main 1st time void start( int N, Cons &c ) {
resume(); /I and afterwards cons Prod::N = N;
return status; // in Prod::;payment cons = &c;
} resume();
void stop() {
done = true; }; /1 Prod

resume();
} void uMain::main() {
}; /I Cons Prod prod;
Cons cons( prod );
prod.start( 5, cons );

}

Figure 2.3: Full-Coroutine Producer-Consumer

2.7 Mutex Type

A mutex type consists of a set of variables and a set of mutenbees that operate on the variablésmutex type
has at least one mutex membe®bjects instantiated from mutex types have the propertyrthaex members are
executed with mutual exclusion; that is, only one task atn@ ttan be executing in the mutex members. Similar to an
execution state, a mutex object is either active or inactiepending on whether or not a task is executing a mutex
member (versus a task executing the coroutine main). Met@lision is enforced bipcking the mutex object when
execution of a mutex member begins andocking it when the active task voluntarily gives up control of thetexu
object by waiting in or exiting from the monitor. If anothersk invokes a mutex member while a mutex object is
locked, the task is blocked until the mutex object becomdsaked. An active task may call other mutex members
either directly from within the mutex type or indirectly byatling another object, which subsequently calls back
into the mutex object.If an active task enters multiple mutex objects, it owns theex locks for these objects and
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Start/Terminate Sequence Thread Movement
uMain::main uMain::main j
Prod::start
prod v j
(context switch)Z—
cons Prod::main
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- Prod::p*ayment termination
) sequence
(context switch)

Cons::delivery

normal Prod: maln f‘
execution Cons: dellver j
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Figure 2.4: Cyclic Control Flow in Full Coroutine

can enter anyone of them again without having to reacquéi tbcks. If an active task releases control of one of

these mutex objects by waiting within it, which implicitlynlocks that objectihe task does not unlock any other

mutex objects it currently ownslf an active task releases control of one of these mutexctdbjey exiting from it,

which implicitly unlocks that objectthe task must do so in strict nested ordere., Last-h first-Out (LIFO) order

of mutex-object acquisition (see Sectidr2.3.3, p. 10} This LIFO restriction results solely because there da#s n

seem to be any useful examples for non-LIFO locking, andaftisn an indication of an error in a program.
When_Mutex or _Nomutex qualifies a type, e.g.:

_Mutex class M {

private :
char z( ... ); /I default nomutex
public :
M(); /I default nomutex
~M(); /I default mutex
int x(...); /I default mutex
float y(...); /I default mutex

it defines the default form of mutual exclusion alh public member routines, except the constructor, which \&ne
mutex, and the destructor, which is always mutex for a mutpg.t Hence, public member routineandy of mutex
type M are mutex members executing mutually exclusively of ongtero Member routines that apeotected and
private arealwaysimplicitly _Nomutex , except for the destructor of a mutex type, which is alwaystex regardless
of its visibility. Because the destructor of a mutex type is always executed wititual exclusion, the call to the
destructor may block, either at termination of a block coriténg a mutex object or when deleting a dynamically
allocated mutex objectlf a mutex qualifier is specified on a forward declaration,:e.g

_Mutex class M; /I forward declaration

_Mutex class M {...} /I actual declaration

it must match with the actual declaration. In general, itdstbot to put a mutex qualifier on a forward declaration so
the default can be changed on the actual declaration witteing to change the forward declaration.
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Figure 2.5:uC+ Mutex Object

A mutex qualifier may be needed fprotected andprivate member routines in mutex types, e.g.:

_Mutex class M {
private :
_Mutex char z( ...); /I explicitly qualified member routine

2

because another task may need access to these membersoktinexample, whenfdend task calls grotected or
private member routine, these calls may need to provide mutual siciu

A public member of a mutex type can be explicitly qualifiediwitNomutex . In general, a Nomutex routine
is error-prone because the lack of mutual exclusion percoiteurrent updating to object variables. However, there
are two situations where a nomutex public member are usgfst; for read-only member routines where execution
speed is of critical importance; and second, to encapsalagguence of calls to several mutex members to establish
a protocol, which ensures that a user cannot violate th@pobsince it is part of the type’s definition.

The general structure of a mutex object is shown in Figuge All the implicit and explicit data structures
associated with a mutex object are discussed in the follpwections. Notice each mutex member has a queue
associated with it on which calling tasks wait if the mutejeabis locked. A nomutex member has no queue.

2.8 Scheduling

For many purposes, the mutual exclusion that is providegaatically by mutex members is all that is needed, e.g.,
an atomic counter:

_Mutex class atomicounter {

int cnt;
public :
atomicounter() { cnt = 0; }
inc) {cnt += 1; } /I atomically increment counter

However, it is sometimes necessary to synchronize withstaaling or executing within the mutex object forming
different scheduling patterns. For this purpose, a tasknitex object can block until a particular external or in&rn
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event occurs. At some point after a task has blocked, it meistactivated either implicitly by the implicit scheduler
(discussed next) or explicitly by another (active) task.

2.8.1 Implicit Scheduling

Implicit scheduling occurs when a mutex object becomesakeld because the active task blocks in or exits from a
mutex member. The next task to use the mutex object is thesechivom one of a number of lists associated with
the mutex object. Figur2.5 shows a mutex object with a set of tasks using or waiting toiusg&/hen a calling
task finds the mutex object locked, it is added to bothrtheéex queueof the member routine it called and the
entry queue otherwise it enters the mutex object and locks it. The eqtrgue is a list of all the calling tasks in
chronological order of arrival, which is important for setieg a task when there is no active task in a mutex object.
When a task in the mutex object is blocked implicitly (seet®@?.8.9 or is reactivated by another (active) task (see
Section2.8.3, p. 24, it is added to the top of thecceptor/signalled stack

When a mutex object becomes unlocked, the next task to exexselected by amplicit scheduler. For some
of the following scheduling statements, the implicit sohled is directed to select from a specific set of queues;
hence, there is no choice with regard to which queues areiegdmFor other scheduling statements, the implicit
scheduler may make a choice among the queues. When a chgigssible, the implicit scheduler fpuC+H makes
selections based on the results presenteBRCOY to give the user the greatest possible control and prodficeeat
performance. These selection rules are:

1. Select tasks that have entered the mutex object, bloeketinow need to continue execution over tasks that
have called and are waiting to enter.

2. When one task reactivates a task that was previously étbickthe mutex object, the restarting task always con-
tinues execution and the reactivated task continues toundltit is selected for execution by rule JsignalBlock
is an exception to this rule, see paife)

All other tasks must wait until the mutex object is again wkied. Therefore, when selection is done implicitly, the
next task to resume is not under direct user control, butiéctsd by the implicit scheduler.

2.8.2 External Scheduling

External scheduling controls state changes to a mutex oisyescheduling calls to specified mutex members, which
indirectly schedules tasks calling fromutsidethe mutex object. This technique takes advantage of thg go&ue to
block tasks unconditionally when the mutex object is active, block outside) and the acceptor stack to block tasks
conditionally that have entered the monitor (i.e., blodidie). Much of the scheduling that occurs and the programmer
thinks about is the outside scheduling from the entry quatteer than the internal scheduling on the acceptor stack,
which occurs implicitly. External scheduling is accompésl with the accept statement.

2.8.2.1 Accept Statement

An _Accept statement dynamically chooses the mutex member(s) thatigeenext, which indirectly controls the
next accepted caller, i.e., the next caller to the acceptgdximember(s). The simple form of théccept statement
is:

_When ( conditional-expression ) /I optional guard
_Accept ( mutex-member-name-list );

with the restriction that constructoragw, delete, and _Nomutex members are excluded from being accepted.
The first three member routines are excluded because thaae® are essentially part of the implicit memory-
management runtime support. That is, the object does nst entil after thenew routine is completed and a con-
structor starts; similarly, the object does not exist whelate is called. In all these cases, member routines cannot be
called, and hence accepted, because the object does rtadreisiiot initialized. _Nomutex members are excluded
because they contain no code affecting the caller or acceyittorespect to mutual exclusion.

The syntax for accepting a mutex operator member, such aatope, is:

_Accept ( operator =);
Currently, there is no way to accept a particular overloasedhber. Instead, when an overloaded member name
appears in anAccept statement, calls to any member with that name are accepted.
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O A consequence of this design decision is that once one mafia set of overloaded routines becomes
mutex, all the overloaded routines in that set become mutnibers. The rationale is that members with
the same name should perform essentially the same funetiaitherefore, they all should be eligible to

accept a call. |

A _When guard is considered true if it is omitted or if itonditional-expressioevaluates to non-zero. The
conditional-expressionf a _When may call a routinebut the routine must not block or context switchlhe guard
must be true and an outstanding call to the specified mutextbrags) must exist for a call to be accepted. A list of
mutex members can be specified in_atcept clause, e.g.:

_Accept ( insert, remove );
If there are several mutex members that can be acceptedtiselpriority is established by the left-to-right placemhe
of the mutex members in theAccept clause of the statement. Hence, the order of the mutex meritbére_Accept
clause indicates their relative priority for selectiortiéte are several outstanding calls. If the guard is truelzsr@ tis
no outstanding call to the specified member(s), the accepdamcept-blocked until a call to the appropriate member(s)
is made. If the guard is false, execution continues withoaépting any call; in this case, the guard is the same as an
if statement, e.g.:

_When ( count == 0) _Accept( mem ); = if ( count == 0 ) _Accept( mem );
Note, an accept statement with a true guard accepts onlyalheegardless of the number of mutex members listed
in the _Accept clause.

When an_Accept statement is executed, the acceptor is blocked and push#tedop of the implicit accep-
tor/signalled stack and the mutex object is unlocked. Therimal scheduler then schedules a task from the specified
mutex-member queue(s), possibly waiting until an appedprtall occurs. The accepted member is then executed like
a member routine of a conventional class by the caller'sattirdf the caller is expecting a return value, this value
is returned using theeturn statement in the member routine. When the caller’s thre#d #he mutex member (or
waits, as is discussed shortly), the mutex object is unldcBecause the internal scheduler gives priority to tasks on
the acceptor/signalled stack of the mutex object overrmatiisks, the acceptor is popped from the acceptor/sighalle
stack and made ready. When the acceptor becomes activs,aékblusive access to the object. Hence, the execution
order between acceptor and caller is stack order, as fodditnaal routine call.

The extended form of theAccept statement conditionally accepts one of a group of mutex neesnénd then
allows a specific action to be performafier the mutex member is called, e.qg.:

_When ( conditional-expression ) /I optional guard
_Accept ( mutex-member-name-list )
statement /I action
or _When ( conditional-expression ) /I optional guard
_Accept ( mutex-member-name-list )
statement /I action
or
_When ( conditional-expression ) /I optional guard
_Else /I optional terminating clause
statement

Before an_Accept clause is executed, its guard must be true and an outstaadlirtg its corresponding member(s)
must exist. If there are several mutex members that can leptext, selection priority is established by the left-tghti
then top-to-bottom placement of the mutex members in thezept clauses of the statement. If some accept guards
are true and there are no outstanding calls to these mentbergsk is accept-blocked until a call to one of these
members is made. If all the accept guards are false, tharstatedoes nothing, unless there is a terminatiBtpe
clause with a true guard, which is executed instead. Hehedetminating_Else clause allows a conditional attempt
to accept a call without the acceptor blocking. Again, a grofi_Accept clauses is not the same as a groufif of
statements, e.g.:

if (C1) _Accept( meml); _When ( C1) _Accept( meml );

else if ( C2 ) _Accept ( mem2 ); or _When ( C2 ) _Accept ( mem2);
The left example accepts ontyem1 if C1 is true or onlymem2 if C2 is true. The right example accepts eith@am1
or mem2 if C1 andC2 are true. Once the accepted call has completethe caller waits the statement after the
accepting_Accept clause is executed and the accept statement is complete.
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O Generalizing the previous example from 2 to 3 accept clangbonditionals results in the following

expansion:
if (C1 && C2 && C3) _Accept ( meml, mem2, mem3 );
else if (Cl && C2) _Accept ( meml, mem2 );
else if (Cl && C3) _Accept ( meml, mem3);
else if (C2 && C3 ) _Accept ( mem2, mem3 );
else if (C1) _Accept( meml);

else if (C2) _Accept( mem2);

else if ( C3) _Accept ( mem3);
This form is necessary to ensure that for every true conwitioonly the corresponding members are
accepted. The general pattern fbconditionals is:

N N NY) N N
(N) + (N - 1) +...+ (1) =(14+1)" -1 from the binomial theorem

Having to write an exponential number of statements, i®+2, to handle this case is clearly unsat-
isfactory, both from a textual and performance standpoirite exponential number of statements are
eliminated because thevhen and the_Accept clauses are checkeimultaneouslyluring execution of
the accept statement instead of having to first check theittomals and then perform the appropriate
accept clauses in an accept statement. O

O Note, the syntax of theAccept statement precludes the caller’s argument values fronglagioessed
in the conditional-expressionf a _When. However, this deficiency is handled by the ability of a task t
postpone requests (see Secthd.3.2, p. 2k O

O WARNING: Beware of the following difference between ttveconnector and the terminatingise
clause:

_Accept ( meml ); _Accept ( meml );
or _Accept ( mem2 ); _Else _Accept ( mem2);

The left example accepts a call to either memfaem1 or mem2. The right example accepts a call to
membememd, if one is currently available; otherwise it accepts a aalitembemem?2. The syntactic
difference is subtle, and yet, the execution is signifigadifferent (see also Sectid0.2.2, p. 128 O

2.8.2.2 Breaking a Rendezvous

The accept statement formsendezvousbetween the acceptor and the accepted tasks, where a rendéza point
in time at which both tasks wait for a section of code to exetafore continuing.

Task Task

| - |

rendezvous

The start of the rendezvous begins when the accepted mutebendegins execution and ends when the acceptor task
restarts execution, either because the accepted taskefiresiecuting of the mutex memlmrthe accepted task waits

In the latter case, correctness implies sufficient code &an bxecuted in the mutex member before the wait occurs for
the acceptor to continue successfully. Finally, for therdtidin of rendezvous, it does not matter which task executes
the rendezvous, but ipC+, it is the accepted task that executes it. It can be drteieorrectness that the acceptor
know if the accepted task does not complete the rendezvales otherwise the acceptor task continues under the
incorrect assumption that the rendezvous action has amtufo this end, a concurrent exception is implicitly raised
at the acceptor task if the accepted member terminates miaiipi(see Sectiob.11.3, p. 85
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2.8.2.3 Accepting the Destructor

Accepting the destructor in amAccept Statement is used to terminate a mutex object when it isat=td (like the
terminate clause of theselect statement in Adal)ni83, Sections 9.4, 9.7.1]). The destructor is accepted in theesa
way as a mutex member, e.g.:

for (5;){
_Accept ( ~DiskScheduler ) { /I request to terminate DiskScheduler
break;
} or _Accept ( WorkRequest ) { /I request from disk
} or _Accept ( DiskRequest ) { /I request from clients
} Il _Accept

/I cleanup code
However, the semantics for accepting a destructor arerdiftérom accepting a normal mutex member. When the call
to the destructor occurs, the caller blocks immediatelyabee a mutex object’s storage cannot be deallocated if it is
being used by a thread. When the destructor is acceptedaliee is blocked and pushed onto the acceptor/signalled
stack instead of the acceptor. Therefore, control restdrthe accept statementthout executing the destructor
member, which allows a mutex object to cleanup before it tieates. (This semantics is the samesamal, see
page26.) Only when the caller to the destructor is popped off theeptr/signalled stack by the internal scheduler
can the destructor execute. The destructor can reactimgtblacked tasks on the acceptor/signalled stack; at this
point, the task behaves like a monitor because its threaaltisch

O While a mutex object can always be setup so that the destrdoes all the cleanup, this can force
variables that logically belong in member routines intortheex object. Furthermore, the fact that control
would not return to the Accept statement when the destructor is accepted seemed morescanfhan
having special semantics for accepting the destructor. O

Accepting the destructor can be used by a mutex object to kmoen to stop without having to accept a special
call. For example, by allocating tasks in a specific way, aesgask for a number of clients can know when the clients
are finished and terminate without having to be explicitidie.g.:

DiskScheduler ds; /I start DiskScheduler task

Clients c1(ds), c2(ds), c3(ds); /I start clients, which communicate with ds
} /I wait for clients to terminate
} /I implicit call to DiskScheduler’ s destructor

2.8.2.4 Commentary

In contrastto Ada, anAccept statement iuC+ places the code to be executed in a mutex member; theispiecified
separately from theAccept statement. An Ada-style accept specifies the accept bodgrasfithe accept statement,
requiring the accept statement to provide parameters aadtme body. Since we have found that having more than
one accept statement per member is rather rare, our appyo@shessentially the same capabilities as Ada. As well,
accepting member routines also allows virtual routine fiad®n, which is impossible with accept bodies. Finally,
an accept statement with parameters and a routine body dbé&swith the design of C+ because it is like a nested
routine definition, and since routines cannot be nested-int8ere is no precedent for such a facility. It is important
to note that anything that can be done in Ada-style accef@ratnts can be done within member routines, possibly
with some additional code. If members need to communicatetive block containing theAccept statements, it can
be done by leaving “memos” in the mutex-type’s variablesdses where there would be several different Ada-style
accept statements for the same entry, accept members wavddid start with switching logic to determine which
case applies. While neither of these solutions is partiuégppealing, the need to use them seems to arise only rarely

2.8.3 Internal Scheduling

A complementary approach to external scheduling is intesclaeduling. Instead of scheduling tasks from outside
the mutex object from the entry queue (the entry queue isngtilessary), most of the scheduling occurs inside the
monitor. To do schedulingpsidethe monitor requires additional queuasidethe monitor on which tasks can block
and subsequently be unblocked by other tasks. For that peypondition variables are provided, with an associated
wait and signal statement.
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2.8.3.1 Condition Variables and Wait/Signal Statements

The typeuCondition creates a queue object on which tasks can be blocked antva¢@dtin first-in first-out order, and
is defined:

class uCondition {

public :
void wait(); /I wait on condition
void wait( uintptr_t info ); /I wait on condition with information
void signal(); /I signal condition
void signalBlock(); /I signal condition

bool empty() const ;
long int front() const;

_Event WaitingFailure;

u'Condition DiskNotldle;

A condition variable is owned by the mutex object that perfsthe first wait on it; subsequently, only the owner can
wait and signal that condition variable.

O Itis common to associate with each condition variable aaréiss about the state of the mutex object.
For example, in a disk-head scheduler, a condition variatight be associated with the assertion “the
disk head is idle”. Waiting on that condition variable woualgrrespond to waiting until the condition is
satisfied, that is, until the disk head is idle. Correspoglgirthe active task would reactivate tasks waiting
on that condition variable only when the disk head becanee iflhe association between assertions and
condition variables is implicit and not part of the language O

To block a task on a condition queue, the active task in a maltgect calls membewait, e.g.,
DiskNotldle.wait();

This statement causes the active task to block on condiskNotldle, which unlocks the mutex object and invokes
the internal scheduler. Internal scheduling first attertp{sop a task from the acceptor/signalled stack. If there are
no tasks on the acceptor/signalled stack, the internabsdbieselects a task from the entry queue or waits until a call
occurs if there are no tasks; hence, the next task to entee isrte blocked the longest. If the internal scheduling did
not accept a call at this point, deadlock would occur.

When waiting, it is possible to optionally store an integer gointer) value with a waiting task on a condition
gueue by passing an argumentait, e.g.:

DiskNotldle.wait( integer-expression );

If no value is specified in a call teait, the value for that blocked task is undefined. The value caacbessed by
other tasks through th&Condition member routinéront. This value can be used to provide more precise information
about a waiting task than can be inferred from its presence marticular condition variable. For example, the value
of the front blocked task on a condition can be examined bygedier to help make a decision about which condition
variable it should signal next. This capability is usefaly €xample, in a problem like the readers and writer. (See
AppendixD.1, p. 153%or an example program using this feature, but only aftedireaSectior2.9, p. 27on monitors.)

In that case, reader and writer tasks wait on the same condjtieue to preserverkt-In Frst-Out (FIFO) order and
each waiting task is marked with a value for reader or writespectively. A task that is signalling can first check
if the awaiting task at the head of a condition queue is a readeriter task by examining the stored value before
signalling.

O The value stored with a waiting task and examined by a signsifiould not be construed as a message
between tasks. The information stored with the waiting iaskot meant for a particular task nor is it
received by a particular task. Any task in the monitor camgre it. Also, the value stored with each
task isnota priority for use in the subsequent selection of a task whemtonitor is unlocked.

If this capability did not exist, it can be mimicked by creatiand managing an explicit queue in the
monitor that contains the values. Nodes would have to bedaddd removed from the explicit queue
as tasks are blocked and restarted. Since there is alreamhydétion queue and its nodes are added and
removed at the correct times, it seemed reasonable to alews Wo store some additional data with the
blocked tasks. |
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To unblock a task from a condition variable, the active taskaimutex object calls either memb&gnal or

signalBlock. For membesignal, e.g.:

DiskNotldle.signal();
the effect is to remove one task from the specified conditemiable and push it onto the acceptor/signalled stack.
The signaller continues execution and the signalled tas&hisduled by the internal scheduler when the mutex object
is next unlocked. This semanticsd#fferentfrom the _Accept statement, which always blocks the acceptbe
signaller does not block fatignal. For membesignalBlock, e.g.:

DiskNotldle.signalBlock();
the effect is to remove one task from the specified conditariable and make it the active task, and push the signaller
onto the acceptor/signalled stack. The signalled taskimees execution and the signaller is scheduled by the iatern
scheduler when the mutex object is next unlocked. This stosaslike the _Accept statement, which always blocks
the acceptor. For either kind of signal, signalling an engatydition just continues executions, i.e., it does nothing

O The _Accept, wait, signal andsignalBlock can be executed by any routine of a mutex type. Even
though these statements block the current task, they calioled in any member routine because mem-
ber routines are executed by the caller, not the task the memtlefined in. This capability is to be
contrasted to Ada where waiting in an accept body would cthestask to deadlock. O

The member routinempty returnsfalse if there are tasks blocked on the queue and otherwise. The member
routinefront returns an integer value stored with the waiting task at thitfof the condition queue. It is an error to
examine the front of an empty condition queue; thereforeralition must be checked to verify that there is a blocked
task, e.g.:

if (! DiskNotldle.empty() && DiskNotldle.front() == 1) ...
(This capability is discussed in detail shortly.)

Itis notmeaningful to read or to assign to a condition variable, @yacondition variable (e.g., pass it as a value

parameter), or use a condition variable if not its owner.

2.8.3.2 Commentary

The ability to postpone a request is an essential requireofea programming language’s concurrency facilities.
Postponement may occur multiple times during the serviofragrequest while still allowing a mutex object to accept
new requests.

In simple cases, thewhen construct can be used to accept only requests that can bdatethwithout postpone-
ment. However, when the selection criteria become comglgx, when the parameters of the request are needed to
do the selection or information is needed from multiple gt is simpler to unconditionally accept a request and
subsequently postpone it if it does not meet the selectitgrier. This approach avoids complex selection expression
and possibly their repeated evaluation. In addition, a@lribrmal programming language constructs and data struc-
tures can be used in the process of making a decision to pusgpequest, instead of some fixed selection mechanism
provided in the programming language, as in 8®C*88] and Concurrent CHGR89.

Regardless of the power of a selection facility, none cahwi#athe need to postpone a request after it is accepted.
In a complex concurrent system, a task may have to make reqfoesther tasks as part of servicing a request. Any
of these further requests can indicate that the currenes@annot be completed at this time and must be postponed.
Thus, it is essential that a request be postponable evaritataccepted because of any number of reasons during the
servicing of the request. Condition variables seem esddntsupport this facility.

An alternative approach to condition variables is to seeddiguest to be postponed to another (usually non-public)
mutex member of the object (like Ada 95squeue statement). This action re-blocks the request on that mutex
member’s entry queue, which can be subsequently accepted thie request can be restarted. However, there are
problems with this approach. First, the postponed requagtmot be able to be sent directly from a mutex member to
another mutex member because deadlock occurs due to syiecisroommunication. (Asynchronous communication
solves this problem, but as stated earlier, imposes a suladtsystem complexity and overhead.) The only altereativ
is to use a nomutex member, which calls a mutex member taktaréquest and checks its return code to determine if
the request must be postponed. If the request is to be pastpanother mutex member is invoked to block the current
request until it can be continued. Unfortunately, struoithe code in this fashion becomes complex for non-trivial
cases and there is little control over the order that requaerst processed. In fact, the structuring problem is similar
to the one when simulating a coroutine using a class or stibmuvhere the programmer must explicitly handle
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the different execution states. Second, any mutex membé@csey a request may accumulate temporary results. If
the request must be postponed, the temporary results mustiraed and bundled with the initial request that are
forwarded to the mutex member that handles the next stepegfrthcessing; alternatively, the temporary results can
be re-computed at the next step if that is possible. In ceptvaiting on a condition variable automatically saves the
execution location and any partially computed state.

2.9 Monitor

A monitor is an object with mutual exclusion and so it can beeased simultaneously by multiple tasks. A mon-
itor provides a mechanism for indirect communication amtasis and is particularly useful for managing shared
resources. A monitor type has all the properties cdhas . The general form of the monitor type is the following:

_Mutex class monitor-name {

private :
. /I these members are not visible externally
protected :
/I these members are visible to descendants
public :
. /I these members are visible externally
b

The macro nameMonitor is defined to be “Mutex class ”.

2.9.1 Monitor Creation and Destruction

A monitor is the same as a class object with respect to creatid destruction, e.g.:
_Mutex class M {

public :
void r(...) ... /I mutex member
I3
M «mp; /I pointer to a M
{ Il start a new block
M m, ma[3]; /I local creation
mp = new M; /I dynamic creation

} /I wait for m, ma[0], ma[l] and ma[2] to terminate and then deallocate

delete mp; // wait for mp’ s instance to terminate and then deallocate

Because a monitor is a mutex object, the execution of itsdestr waits until it can gain access to the monitor, just
like the other mutex members of a monitor, which can delayehmination of the block containing a monitor or the
deletion of a dynamically allocated monitor.

2.9.2 Monitor Control and Communication

In uC+, both internal and external scheduling are provideder@hmost traditional monitors provide only internal
scheduling. Figure.6 compares the traditional internal scheduling style usixgjieit condition variables to the
external scheduling style using accept statements. Theerds the exchange of values (telephone numbers) between
two kinds of tasks (girls and boys). (WhileAccept allows the removal of all condition variables in this cases is

not always possible.)

2.10 Coroutine Monitor

The coroutine monitor is a coroutine with mutual exclusimaking it safely accessible by multiple tasks. A coroutine-
monitor type has a combination of the properties of a coneudind a monitor, and can be used where a combination
of these properties are needed, such as a finite-state neablainis used by multiple tasks. A coroutine-monitor type
has all the properties ofdass . The general form of the coroutine-monitor type is the foiloy:
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Internal Scheduling External Scheduling
_Monitor DatingService { _Monitor DatingService {
int GirlPhoneNo, BoyPhoneNo; int GirlPhoneNo, BoyPhoneNo;
uCondition GirlWaiting, BoyWaiting; public :
public : DatingService() {
int Girl( int PhoneNo ) { GirlPhoneNo = BoyPhoneNo = - 1;
if ( BoyWaiting.empty() ) { } /I DatingService
GirlWaiting.wait(); int Girl( int PhoneNo ) {
GirlPhoneNo = PhoneNo; GirlPhoneNo = PhoneNo;
} else { if ( BoyPhoneNo ==-1) {
GirlPhoneNo = PhoneNo; _Accept ( Boy );
BoyWaiting.signalBlock(); }
} int temp = BoyPhoneNo;
return BoyPhoneNo; BoyPhoneNo = -1;
} 11 Girl return temp;
int Boy( int PhoneNo ) { } 11 Girl
if ( GirlWaiting.empty() ) { int Boy( int PhoneNo ) {
BoyWaiting.wait(); BoyPhoneNo = PhoneNo;
BoyPhoneNo = PhoneNo; if ( GirlPhoneNo ==-1) {
} else { _Accept ( Girl );
BoyPhoneNo = PhoneNo; }
GirlWaiting.signalBlock(); int temp = GirlPhoneNo;
GirlPhoneNo = - 1;
return GirlPhoneNo; return temp;
} /I Boy } /I Boy
}; /I DatingService }; /I DatingService

Figure 2.6: Internal versus External Scheduling

_Mutex _Coroutine coroutine-name {

private :
/I these members are not visible externally
protected :
/I these members are visible to descendants
void main(); /I starting member
public :
/I these members are visible externally
I3

The macro nameCormonitor is defined to be “Mutex _Coroutine ”.

2.10.1 Coroutine-Monitor Creation and Destruction

A coroutine monitor is the same as a monitor with respecteation and destruction.

2.10.2 Coroutine-Monitor Control and Communication

A coroutine monitor can make usesfspend, resume, _Accept anduCondition variablesyvait, signal andsignalBlock

to move a task among execution states and to block and ressliet that enter it. When creating a cyclic call-graph
using a coroutine monitor, it is the programmer’s respadiiitio ensure that at least one of the members in the cycle
is a_Nomutex member or deadlock occurs because of the mutual exclusion.

2.11 Task

A task is an object with its own thread of control and exeaqustate, and whose public member routines provide
mutual exclusion. A task type has all the properties cifias . The general form of the task type is the following:
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_Task task-name {

private :
/I these members are not visible externally
protected :
/I these members are visible to descendants
void main(); /I starting member
public :
/I these members are visible externally
I3

The task type has one distinguished member, nanadd in which the new thread starts execution; this distingeish
member is called theask main. Instead of allowing direct interaction witiain, its visibility is normally private

or protected . The decision to make the task mairivate or protected depends solely on whether derived classes
can reuse the task main or must supply their own. Hence, ainteeacts with a task indirectly through its member
routines. This approach allows a task type to have multipllelip member routines to service different kinds of
requests that are statically type checked. A task main ddrave parameters or return a result, but the same effect can
be accomplished indirectly by passing values through thlesaylobal variables, calledommunication variables
which are accessible from both the task’s memberraaid routines.

2.11.1 Task Creation and Destruction
A task is the same as a class object with respect to creattdestruction, e.g.:

_Task T {

void main() ... /I task main
public :

void r(...) ...

I

T «tp; /l pointer to a T task

{ /I start a new block
T t, ta[3]; /I local creation
tp = new T; /I dynamic creation
tr(...); /I call a member routine that must be accepted
ta[1].r( ... ); /I call a member routine that must be accepted
tp->r( ... ); /I call a member routine that must be accepted

} /1 wait for t, ta[0], ta[1] and ta[2] to terminate and then deallocate

delete tp; // wait for tp’ s instance to terminate and then deallocate

When a task is created, the appropriate task constructoaaythase-class constructors are executed in the normal
order by the creating thread. The task’s execution-statdétaead are created and the starting point for the new thread
(activation point) is initialized to the task’sain routine visible by the inheritance scope rules from the tggk. After

this point, the creating task executes concurrently wighrtew task. The location of a task’s variables—in the task’s
data area or in member routinein—depends on whether the variables must be accessed by mesabires other
thanmain. main executes until its thread blocks or terminates.

A task terminates when itgain routine terminates. When a task terminates, so does ths taskad of control.

At this point, the task becomes a monitor and can still be usebat form. A task’s destructor is invoked by the
deallocating thread when the block containing the taskadatibn terminates or by an explicitlete statement for a
dynamically allocated task. Because a task is a mutex qlgdabck cannot terminate until all tasks declared in the
block terminate. Similarly, deleting a task on the heap nalsgi wait until the task being deleted has terminated.

While a task that creates another task is conceptually thenpand the created task its childZ+ makes no
implicit use of this relationship nor does it provide anyilities based on this relationship. Once a task is decldred i
has no special relationship with its declarer other thantwdegults from the normal scope rules.

Like a coroutine, a task can access all the external vagatflea C+ program and the heap area. Also, any
static member variables declared within a task are shared amongstdinces of that task type. If a task makes
global references or hasatic variables, there is the general problem of concurrent adeethese shared variables.
Therefore, it is suggested that these kinds of referencasédxwith extreme caution.

O A coroutine is not owned by the task that creates it; it can mes8ed” to another task. However,
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to ensure that only one thread is executing a coroutine at@, the passing around of a coroutine must
involve a protocol among its users, which is the same sortatbpol required when multiple tasks share
a data structure. O

2.11.2 Inherited Members

Each task type, if not derived from some other task type, @iaitly derived from the task typeBaseTask, e.g.:
_Task task-name : public uBaseTask {

I3
where the interface for the base clagaseTask is:
_Task uBaseTask : public uBaseCoroutine { // inherits from coroutine base type
public :

uBaseTask();
uBaseTask( unsigned int stackSize );
uBaseTask( void =xstorage, unsigned int storageSize );
uBaseTask( uCluster &cluster );
uBaseTask( uCluster &cluster, unsigned int stackSize );
uBaseTask( uCluster &cluster, void xstorage, unsigned int storageSize );

static void yield( unsigned int times = 1);
static uCluster &migrate( uCluster &cluster );

uCluster &getCluster() const ;
uBaseCoroutine &getCoroutine() const ;

enum State { Start, Ready, Running, Blocked, Terminate };
State getState() const ;

int getActivePriority();
int getBasePriority();

I3
The public member routines aBaseCoroutine are inherited and have the same functionality (see Se2t@@, p. 14.
The overloaded constructor routinBaseTask has the following forms:

uBaseTask() — creates a task on the current cluster with the clusterautiestack size (seeBaseCoroutine()
p.53).

uBaseTask( unsigned int stackSize ) — creates a task on the current cluster with the specifisdmumstack
size (in bytes) (seeBaseCoroutine( int stackSize ) p. 15).

uBaseTask( void sstorage, unsigned int storageSize ) — creates a task on the current cluster using the specified

storage andnaximunstorage size (in bytes) for the task’s stack
(seeuBaseCoroutine( void sstorage, unsigned int storageSize ) p. 15).

uBaseTask( uCluster &cluster ) — creates a task on the specified cluster with that clustefaudt stack size.

uBaseTask( uCluster &cluster, unsigned int stackSize ) — creates a task on the specified cluster with the speci-

fied stack size (in bytes).

uBaseTask( uCluster &cluster, void sstorage, unsigned int storageSize ) — creates a task on the specified clus-

ter using the specified storage amdximunstorage size (in bytes) for the task’s stack.

A task type can be designed to allow declarations to speu#ytuster on which creation occurs and the stack size by

doing the following:
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_Task T {
public :
T() : uBaseTask( 8192 ) {}; /I current cluster, default 8K stack
T( unsigned int s ) : uBaseTask( s ) {}; /I current cluster and user specified stack size
T( void =st, unsigned int s ) : uBaseCoroutine( st,s ) // current cluster and user stack storage & size
T( uCluster &c ) : uBaseTask( c ) {}; /I user cluster

T( uCluster &c, unsigned int s) : uBaseTask( ¢, s ) {}; // user cluster and stack size
T( uCluster &c, void =st, unsigned int s) : uBaseTask( c, st, s ) {}; // user cluster, stack storage & size

uCluster c; /I create a new cluster

T X, y( 16384 ), z( areal, 32768 ); /Il x => 8K stack, y => 16K stack, z => stack < 32K at “areal”
Taqg(c), r(c, 16384 ); /I q => cluster ¢ & 8K stack, r => cluster ¢ & 16K stack
T s( ¢, area2, 32768 ); /l's => cluster c, stack < 32K at “area2”

The member routingield gives up control of the virtual processor to another read the specified number of
times.yield is a static member-routine that always yields the callimgdh’s virtual processor; us8aseTask::yield(.. .)
for a call outside of a task type. For example, the gield(5) immediately returns control to the&C+ kernel and the
next 4 times the task is scheduled for execution. If therenarether ready tasks, the yielding task is simply stopped
and restarted 5 times (i.e., 5 context switches from itseifself). yield allows a task to relinquish control when it has
no current work to do or when it wants other ready tasks to @eduefore it performs more work. An example of the
former situation is when a task is polling for an event, such dardware event. After the polling task has determined
the event has not occurred, it can relinquish control to laeroteady task, e.gyjeld(1). An example of the latter
situation is when a task is creating many other tasks. Thediogetask may not want to create a large number of tasks
before the created tasks have a chance to begin executask ¢feation occurs so quickly that it is possible to create
100-1000 tasks before pre-emptive scheduling occursf)elf the creation of several tasks the creator yields cgntro
some created tasks have an opportunity to begin executfordtbe next group of tasks is created. This facility is not
a mechanism to control the exact order of execution of taslkesemptive scheduling and/or multiple processors make
this impossible.

O When the yield option is used, calls tgield( rand() % 3 ) are automatically inserted at the beginning
of each member routine. O

The member routinmigrate allows a task to move itself from one cluster to another sbitltan access resources
dedicated to that cluster’s processor(s), e.g.:

from-cluster-reference = migrate( to-cluster-reference )

migrate iS a static member-routine that always moves itself from doster to another; useBaseTask::migrate(...)
for a call outside of a task type.

The member routingetCluster returns the current cluster a task is executing on. The merab&negetCoroutine
returns the current coroutine being executed by a task dagheitself if it is not executing a coroutine.

The member routineyetState returns the current state of a task, which is one of the enategrvalues
uBaseTask::Start, uBaseTask::Ready, uBaseTask::Running, uBaseTask::Blocked or uBaseTask:: Terminate.

Two member routines are used in real-time programming (bepterl0, p. 125. The member routingetActivePriority
returns the current active priority of a task, which is aregdr value between 0 and 31. The member routine
getBasePriority returns the current base priority of a task, which is an iateglue between 0 and 31.

The free routine:

uBaseTask &uThisTask();

is used to determine the identity of the task executing thisine. Because it returns a reference to the base task type,
uBaseTask, for the current task, this reference can only be used tosadbe public routines of typeBaseCoroutine
anduBaseTask. For example, a free routine can obtain the executing taskise or which coroutine a task is executing
by performing the following:

uThisTask().getName();

uThisTask().getCoroutine();
As well, printing a task’s address for debugging purposeéei like this:

cout << "task:" << &uThisTask() << endl; // notice the ampersand (&)
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2.11.3 Task Control and Communication

A task can make use afaccept anduCondition variablesywait, signal andsignalBlock to block and unblock tasks that
enter it. AppendiD.3, p. 159%hows the archetypical disk scheduler implemented as dtaskiust process requests
in an order other than first-in first-out to achieve efficietiltzation of the disk.

2.12 Commentary

Initially, every attempt was made to add the ng#+ types and statements by creating a librarglads definitions
that were used through inheritance and preprocessor madrois approach has been used by others to provide
coroutine facilities $ho87 Lab9(Q and simple parallel facilities)G87, BLL88]. However, after discovering many
limitations with all library approaches, it was abandoneéhvour of language extensions.

The most significant problem with all library approaches emaurrency is the lack of soundness and/or effi-
ciency Buh93. A compiler and/or assembler may perform valid sequemdimizations that invalidate a correct
concurrent program. Code movement, dead code removal,aoyihg values into registers are just some examples
of optimizations that can invalidate a concurrent prograrg,, moving code into or out of a critical section, remov-
ing a timing loop, or copying a shared variable into a registaking it invisible to other processors. To preserve
soundness, it is necessary to identify and selectively aéfroptimizations for those concurrent sections of codé tha
might cause problems. However, a programmer may not be avfavben or where a compiler/assembler is using
an optimization that affects concurrency; only the comfalesembler writer has that knowledge. Furthermore, snles
the type of a variable/parameter conveys concurrent usaifber the compiler nor the assembler can generate sound
code for separately compiled programs and libraries. The¥ewhen using a concurrent library, a programmer can at
best turn off all optimizations in an attempt to ensure sa@sg, which can have a significant performance impact on
the remaining execution of the program, which is composddrge sections of sequential code that can benefit from
the optimizations.

Even if a programmer can deal with the soundness/efficienmlylem, there are other significant problems with
attempting to implement concurrency via the library apploaln general, a library approach involves defining an
abstract classiask, which implements the task abstraction. New task typesraaed by inheritance froffask, and
tasks are instances of these types.

On this approach, thread creation must be arranged so thaask body does not start execution until all of
the task’s initialization code has finished. One approacfuires the task body (the code that appears pCat
task’smain) to be placed at the end of the new class’s constructor, vaitle ¢o start a new thread ifask::Task().

One thread then continues normally, returning froask::Task() to complete execution of the constructors, while
the other thread returns directly to the point where the t@a& declared. This forking of control is accomplished
in the library approach by having one thread “diddle” witte tstack to find the return address of the constructor
called at the declaration. However, this scheme preventis€fuinheritance; it is impossible to derive a type from a
task type if the new type requires a constructor, since the aenstructor would be executed ordfter the parent
constructor containing the task body. It also seems imptesgd write stack-diddling code that causes one thread to
return directly to the declaration point if the exact numbigievels of inheritance is unknown. Another approach that
does not rely on stack diddling while still allowing inheuitce is to determine when all initialization is completed so
that the new thread can be started. However, it is impossgibig~+ (and most other object-oriented programming
languages) for a constructor to determine if it is the lasistuctor executed in an inheritance chain. A mechanism
like Simula’s [Sta87 inner could be used to ensure that all initialization had been dwafere the task’s thread is
started. However, it is not obvious hamner would work in a programming language with multiple inhenmita.

PRESTO (and now Jav&pPSB0Q) solved this problem by providingstart() member routine in clasgsk, which
must be called after the creation of a ta3ksk::Task() would set up the new thread, batart() would set it running.
However, this two-step initialization introduces a newrussponsibility: to invoketart before invoking any member
routines or accessing any member variables.

A similar two-thread problem occurs during deletion wheneatductor is called. The destructor of a task can
be invoked while the task body is executing, but clean-upeaodst not execute until the task body has terminated.
Therefore, the code needed to wait for a thread’s terminatannot simply be placed ifask::~Task(), because it
would be executed after all the derived class destructors bgecuted. Task designers could be required to put the
termination code in the new task type’s destructor, but pnevents further inheritanc&ask could provide &inish()
routine, analogous tstart(), which must be called before task deletion, but that is gorone because a user may fail
to callfinish appropriately, for example, before the end of a block coinagia local task.
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Communication among tasks also presents difficulties. draty-based schemes, it is often done via message
gueues. However, a single queue per task is inadequate uthee’s message type inevitably becomes a union of
several “real” message types, and static type checkingngpoomised. (One could use inheritance fromessage
class, instead of a union, but the task would still have tdoper type tests on messages before accessing them.)
If multiple queues are used, some analogue of the getlect statement is needed to allow a task to block on more
than one queue. Furthermore, there is no statically endbteavay to ensure that only one task is entitled to receive
messages from any particular queue. Hence the implememtatist handle the case of several tasks that are waiting
to receive messages from overlapping sets of queues. Fompdea

class TaskType : Task {

public :
MsgQueueType A; /I queue associated with each instance of the task
static MsgQueueType B; /I queue shared among all instances of the task type
protected :

void main() {

_Accept i = A.front(); /I accept from either message queue
or _Accept i = B.front();

}

I

TaskType T1, T2;
TasksT1 andT2 are simultaneously accepting from two different queuesil&\ihis straightforward to check for the
existence of data in the queues, if there is no data, DothndT2 block waiting for data to appear on either queue.
To implement this, tasks have to be associated with bothegiantil data arrives, given data when it arrives, and
then removed from both queues. Implementing this operéierpensive since the addition or removal of a message
to/from a queue must be an atomic operation across all quev@sed in a waiting task’s accept statement to ensure
that only one data item from the accepted set of queues is ¢ivne accepting task.

If the more natural routine-call mechanism is to be used éonmunication among tasks, each public member
routine would have to have special code at the start and lgpsat the exits of each public member, which the
programmerwould have to provide. Other object-orientegpamming languages that support inheritance of routines,
such as LOGLAN’88 CKL"88] and Beta MMPN93], or wrapper routines, as in GNU C+Fip8§, might be able to
provide automatically any special member code. Furtheemnwe could not find any convenient way to provide an
Ada-like select statement without extending the language.

In the end, we found the library approach to be completelatisfactory. We decided that language extensions
would better suit our goals by providing soundness and effmi, greater flexibility and consistency with existing
language features, and static checking.

2.13 Inheritance

C+ provides two forms of inheritanceairivate and protected inheritance, which provide code reuse, gnudblic
inheritance, which provides reuse and subtyping (a proofibehavioural compatibility). (These terms must not be
confused with C+ visibility terms with the same names.)

In C+, class definitions can inherit from one another usiathlsingle and multiple inheritance. UC+, there

are multiple kinds of types, e.g., class, mutex, coroutamel task, so the situation is more complex. The problem is
that mutex, coroutine and task types provide implicit fumaality that cannot be arbitrarily mixed. While there are
some implementation difficulties with certain combinatipthe main reason is a fundamental one. Types are written
as a class, mutex, coroutine or task, and the coding stylsinseach cannot, in general, be arbitrarily mixed. For
example, an object produced by a class that inherits fronskatigoe appears to be a non-concurrent object but its
behaviour is concurrent. While object behaviour is a usgrdsthere is a significantly greater chance of problems if
users casually combine types of different kinds. Téb8shows the forms of inheritance allowed}iG+.

First, the case ofingle private/protected/public inheritance among homogen&mgs of type, i.e., the kinds of
the base and derived type are the same, is supportgein(major diagonal in Tabl2.3), e.g.:
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base NO multiple inheritance
derived struct/class| coroutine| monitor | coroutine monitor| task
struct/class vV X X X X
coroutine Vv vV X X X
monitor N X N X X
coroutine monitor, vV vV vV vV X
task N X N X N

Table 2.3: Inheritance among Type Generators

_Coroutine Cbase {};

_Coroutine Cderived . private Cbase {}; /I homogeneous private inheritance
_Monitor Mbase {};

_Monitor Mderived : protected Mbase {}; // homogeneous protected inheritance
_Cormonitor CMbase {};

_Cormonitor CMderived : public CMbase {}; /I homogeneous public inheritance
_Task Tbase {};

_Task Tderived : protected Thase {}; // homogeneous protected inheritance

In this situation, all implicit functionality matches beden base and derived types, and therefore, there are no prob-
lems.

Second, the case singleprivate/protected/public inheritance among heteroges&mds of type, i.e., the kinds
of the base and derived type are different, is supportgeCirr only if the derived kind is more specific than the base
kind with respect to the elementary execution properties &ectiorl.2, p. 4, e.g.:

class chase {};

_Coroutine Cderived . public cbase {}; /I heterogeneous public inheritance
_Monitor Mderived : public cbase {}; /I heterogeneous public inheritance
_Cormonitor CMderivedl : private cbase {}; /I heterogeneous private inheritance
_Cormonitor CMderived2 : protected Cbase {}; // heterogeneous protected inheritance
_Cormonitor CMderived3 : public Mbase {}; /I heterogeneous public inheritance
_Task Tderivedl : protected cbase {}; // heterogeneous protected inheritance
_Task Tderived2 : public Mbase {}; /I heterogeneous public inheritance

For example, a coroutine monitor can inherit from a classoaitar, or a coroutine because the coroutine monitor has
the elementary execution properties of each of these kifitige: The only exception to this rule is between a task
and coroutine because the logical usenafn is completely different between these kinds of type. It seemlikely
that a task could inherit theain routine from a coroutine and have the coroutimeén perform any reasonable action
with respect to the task’s thread and mutex members.

Heterogeneous inheritance is useful for generating coentitypes from existing non-concurrent types, e.g., to
define a mutex queue by deriving from a simple queue, or forwile container classes requiring additional link
fields. For example, to change a simple queue to a mutex gequées a monitor to inherit from the cla@seue and
redefine all of the class’s member routines so mutual exatusccurs when they are invoked, e.g.:

class Queue { /I sequential queue
public :
void insert( ... ) ...
virtual void remove( ... ) ...

_Mutex class MutexQueue : public Queue { // concurrent queue
virtual void insert( ...) ...
virtual void remove( ... ) ...

I3

Queue xqp = new MutexQueue; // subtyping allows assignment

gp- >insert( ... ); /I call to a non- virtual member routine, statically bound
gp- >remove( ... ); /I call to a virtual member routine, dynamically bound

However, there is a fundamental problem with non-virtualmbers in C+, which can cause significant confu-
sion because non-virtual routine calls are statically bufor example, routineQueue::insert andQueue::remove
do not provide mutual exclusion because they are memberseotlass, while routineslutexQueue::insert and
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MutexQueue::remove do provide mutual exclusion because they are members of exntyjte. Because the pointer
variableqgp is of typeQueue, the callgp- >insert calls Queue::insert even thoughnsert is redefined invutexQueue;
S0 no mutual exclusion occurs. In contrast, the catketoove is dynamically bound, so the redefined routine in the
monitor is invoked and appropriate synchronization occiiise unexpected lack of mutual exclusion would cause
errors. In object-oriented programming languages tha¢ loaNy virtual member routines, this is not a problem. The
problem does not occur with private or protected inherigabecause no subtype relationship is created, and hence,
the assignment tgp would be invalid.

Multiple inheritance is allowed, with the restriction tltmost one of the immediate base classes may be a mutex,
coroutine, or task type, e.g.:

_Coroutine Cderived : public Cbase, public cbase {};
_Monitor Mderived : public Mbase, public cbase {};
_Cormonitor CMderived . protected Cbase, public cbase {};
_Task Tderived . public Mbase, protected cbase {};

Some of the reasons for this restriction are technical antbselate to the coding styles of the different kinds of type.
Multiple inheritance is conceivable for the mutex propgbotyt technically it is difficult to ensure a single root olijex
manage the mutual exclusion. Multiple inheritance of theceion-state property is technically difficult for the sam
reason, i.e., to ensure a single root object. As well, thetlea problem of selecting the correctin to execute on the
execution state, e.g., if the most derived class does notfg@emain member, there could be multipteain members

to choose from in the hierarchy. Multiple inheritance of theead property is technically difficult because only one
thread must be started regardless of the complexity of ta@tdhy. In general, multiple inheritance is not as useful a
mechanism as it initially seeme@&roq.

2.14 Explicit Mutual Exclusion and Synchronization

The following locks are low-level mechanisms for providmgtual exclusion of critical sections and synchronization
among tasks. In general, explicit locks are unnecessaryitd highly concurrent systems; the mutual exclusion
provided by monitors, coroutine monitors and tasks, andimehronization provided byAccept , wait, signal and
signalBlock are sufficient. Nevertheless, several low-level lock magras are provided for teaching purposes and for
special situations.

2.14.1 Counting Semaphore

A semaphore ipC+ is implemented as a counting semaphore as describegksgraiDij65]. A counting semaphore
has two parts: a counter and a list of waiting tasks. Both thenter and the list of waiting tasks is managed by the
semaphore. The typeSemaphore defines a semaphore:

class uSemaphore {
public :

uSemaphore( int count = 1 );
void P();
bool P( uDuration duration );
bool P( uTime time );
void P( uSemaphore &s );
bool P( uSemaphore &s, uDuration duration );
bool P( uSemaphore &s, uTime time );
bool TryP();
void V( int times = 1);
int counter() const;
bool empty() const;

I3

uSemaphore x, y(1), *z;

z = new uSemaphore(4);

The declarations create three semaphore variables aradizeis them to the value 1, 0, and 4, respectively.
The constructor routineSemaphore has the following form:

uSemaphore( int count ) — this form specifies an initialization value for the semaghoounter. Appropriate
values are> 0. The default countis 1.
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The member routine® andV are used to perform the classical counting semaphore apesa® decrements the
semaphore counter if the value of the semaphore countezagagrthan zero and continues; if the semaphore counter is
equal to zero, the calling task blocks Ais passed a semaphore, that semaphoredsbeforePing on the semaphore
object; the two operations occur atomicallyPIfs passed a duration or time value, the waiting task is uikeldafter
that period or when the specified time is exceeded even ifale has not beevied; this form ofP returnstrue if
the waiting task i&/ed andfalse otherwise (meaning timeout occurred). (See Sectidd, p. 125or information on
typesuDuration anduTime.) The member routin@yP attempts to acquire the semaphore but does not blogk.
returnstrue if the semaphore is acquired afatke otherwiseV wakes up the task blocked for the longest time if there
are tasks blocked on the semaphore and increments the seraaplunter. It/ is passed a positive integer value, the
semaphore i¥ed that many times. The member routtoenter returns the value of the semaphore couritemvhich
can be negative, zero, or positive: negative mean\gtiagks are blocked waiting to acquire the semaphore, and the
semaphore is locked; zero means no tasks are waiting toradfjeisemaphore, and the semaphore is locked; positive
means the semaphore is unlocked and allblntasks to acquire the semaphore. The member roetimpy returns
false if there are threads blocked on the semaphoretimedotherwise.

It is not meaningful to read or to assign to a semaphore variable,r asemaphore variable (e.g., pass it as a
value parameter).

To use counting semaphores ip@+ program, include the file:

#include <uSemaphore.h>

2.14.1.1 Commentary

Thewait andsignal operations on conditions are very similar to thandV operations on counting semaphores. The
wait statement can block a task’s execution whilsignal statement can cause resumption of another task. There
are, however, differences between them. Pheperation does not necessarily block a task, since the deamap
counter may be greater than zero. Wt statement, however, always blocks a task. dibeal statement can make
ready (unblock) a blocked task on a condition just &saperation makes ready a blocked task on a semaphore. The
difference is that & operation always increments the semaphore counter; thaffdtting a subsequeRtoperation.

A signal statement on an empty condition does not affect a subsega@rstatement, and therefore, is lost. Another
difference is that multiple tasks blocked on a semaphoreesume execution without delay if enougloperations

are performed. In the mutex-type case, multiggal statements do unblock multiple tasks, but only one of these
tasks is able to execute because of the mutual-exclusigrepsoof the mutex type.

2.14.2 Lock

Alock is either closed (0) or opened (1), and tasks compededaire the lock after it is released. Unlike a semaphore,
which blocks tasks that cannot continue execution immebjiaa lock may allow tasks to loop (spin) attempting to
acquire the lock (busy wait). Locks do not ensure that taskspeting to acquire it are served in any particular order;
in theory, starvation can occur, in practice, it is usuatly @ problem.
The typeuLock defines a lock:
class uLock {
public :
uLock( unsigned int value = 1);
void acquire();
bool tryacquire();
void release();
hLock X, Y, *Z;
z = new uLock( 0);
The declarations create three lock variables and inigalthe first two to open and the last to closed.
The constructor routineLock has the following form:

uLock( int value ) — this form specifies an initialization value for the lock. gxppriate values are 0 and 1. The
default value is 1.

The member routinescquire andrelease are used to atomically acquire and release the lock, cl@sidgpening
it, respectively.acquire acquires the lock if it is open, otherwise the calling taskspvaiting until it can acquire
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the lock. The member routineyacquire makes one attempt to try to acquire the lock, i.e., it doesspwt waiting.
tryacquire returnstrue if the lock is acquired anthlse otherwiserelease releases the lock, which allows any waiting
tasks to compete to acquire the lock. Any number of releasede performed on a lock as a release simply sets the
lock to opened (1).

Itis notmeaningful to read or to assign to a lock variable, or copyk @riable (e.g., pass it as a value parameter).

2.14.3 Owner Lock

An owner lock is owned by the task that acquires it; all otlsks attempting to acquire the lock block until the owner
releases it. The owner of an owner lock can acquire the lodkipteitimes, but a matching number of releases must
occur or the lock remains in the owner’s possession and tdis&s cannot acquire it. (Owner locks are used in the
implementation of the non-blocking 1/0 stream library, Ssetion4.2, p. 59. As a result, an owner lock camly be
used for mutual exclusion, because synchronization regtiire locking task to be different from the unlocking one.
The typeuOwnerLock defines an owner lock:
class uOwnerLock {
public :

uOwnerLock();

unsigned int times() const ;

uBaseTask »owner() const ;

void acquire();

bool tryacquire();

void release();

LOWnerLock X, Y, *Z;
z = new uOwnerlLock;
The declarations create three owner-lock variables atidlines them to open.

The member routingmes returns the number of times the lock has been acquired bytheolwner. The member
routineowner returns the task owning the lock or NULL if there is no owneneTmember routinecquire acquires the
lock if it is open, otherwise the calling task blocks untité&n acquire the lock. The member routingacquire makes
one attempt to try to acquire the lock, i.e., it does not bjtle& valuetrue is returned if the lock is acquired afalse
otherwise. The member routinelease releases the lock, and if there are waiting tasks, one iantest; waiting tasks
are released in FIFO order.

It is not meaningful to read or to assign to an owner lock variable opy@n owner lock variable (e.g., pass it as
a value parameter).

2.14.4 Condition Lock

The condition lock is like a condition variable (see Sect®@.3.1, p. 2] creating a queue object on which tasks
block and unblock; however, there is no monitor construdinaplify and ensure correct usage of condition locks.
Instead, a condition lock is dependent on the owner lockiédunctionality, and collectively these two kinds of locks
can be used to build a monitor, providing both synchronimasind mutual exclusion. As for a condition variable, a
condition lock caronly be used for synchronization, because the wait operatioaysllwlocks. The typeCondLock
defines a condition lock:
class uCondLock {
public :

uCondLock();

bool empty();

void wait( uOwnerLock &lock );

bool wait( uOwnerLock &lock, uDuration duration );

bool wait( uOwnerLock &lock, uTime time );

void signal();

void broadcast();

uCondLock x, y, *z;
z = new uCondLock;
The declarations create three condition locks and ireéalithem to closed (i.e., always block).
The member routinempty returnsfalse if there are tasks blocked on the queue and otherwise. The routines
wait andsignal are used to block a thread on and unblock a thread from theegofeas condition, respectively. The
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wait routine atomically blocks the calling task and releasesattygiment owner-lock; in addition, theait routine
re-acquires its argument owner-lock before returningwdit is passed a duration or time value, the waiting task is
unblocked after that period or when the specified time is eated even if the task has not been signalled; this form of
wait returnstrue if the task is signalled anfdise otherwise (meaning timeout occurred). (See Sectidd, p. 125or
information on typesiDuration anduTime.) Thesignal routine checks if there is a waiting task, and if so, unblazks
waiting task from the queue of the condition lock; waitingkta are released in FIFO order. Tdignal routine can be
safely called without acquiring any owner lock associatéth tasks waiting on the condition. Tlwoadcast routine
is the same as thsignal routine, except all waiting tasks are unblocked.

Itis notmeaningful to read or to assign to a lock variable, or copyki@riable (e.g., pass it as a value parameter).

2.14.5 Barrier

A barrier allowsN tasks to synchronize, possible multiple times, duringrtlifei time. Barriers are used to repeatedly
coordinate a group of tasks performing a concurrent opmrdtillowed by a sequential operation. i+, a barrier
iS a mutex coroutine, i.e_,Cormonitor , to provide the necessary mutual exclusion and to allow ¢odse easily
executed both before and after theéasks synchronize on the barrier. The ty@arrier defines a barrier:

_Mutex _Coroutine uBarrier {

protected :
void main() {

for (5i){
suspend();
}
}

public :
uBarrier( unsigned int total );
_Nomutex unsigned int total() const;
_Nomutex unsigned int waiters() const ;
void reset( unsigned int total );
virtual void block();
virtual void last() {
resume();
}

tBarrier X(10), =y;
y = new uBarrier( 20 );
The declarations create two barrier variables and iregalithe first to work with 10 tasks and the second to work with
20 tasks.
The constructor routineBarrier has the following form:

uBarrier( unsigned int total ) — this form specifies the total number of tasks participaitinipe synchronization.
Appropriate values are 0.

The member routinastal andwaiters return the total number of tasks participating in the syonofmration and the
total number of tasks currently waiting at the barrier, ezdjpyely. The member routineset changes the total number
of tasks participating in the synchronization; no tasks fayvaiting in the barrier when the total is changeldck is
called to synchronize witlN tasks; tasks block until any tasks have calletllock. The virtual member routinkast
is called by the last task to synchronize at the barrier. iitloa replaced by subclassing frarBarrier to provide a
specific action to be executed when synchronization is cetapiThis capability is often used to reset a computation
before releasing the tasks from the barrier to start the c@xiputation. The default code farst is to resume the
coroutine main.

The coroutine main is usually replaced by subclassing tplgupe code to be executed before and after tasks
synchronize. The general form for a barnedin routine is:

void main() {

for (5;){
/I code executed before synchronization (initialization)
suspend();
/I code executed after synchronization (termination)
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Normally, the last action of the constructor for the subglssresuming, which switches to the coroutine main to
prime the barrier’s initialization. Whemain suspends back to the constructor, the barrier is initidlemed ready to
synchronize the first set of tasks.

It is not meaningful to read or to assign to a barrier variable, or cofparrier variable (e.g., pass it as a value
parameter).

To use barriers in gC+ program, include the file:

#include <uBarrier.h>

2.15 User Specified Context

The following facilities allow users to specify additior@droutine and task context to be saved and restored during a
context switch. This facility should only be used to save sasiore processor specific data, for example, coprocessor
or graphics hardware data that is specific to each processatution. This facility doesotallow a shared resource,

like a single graphics device, to be accessed mutually sixaly by multiple tasks in a multiprocessor environment. |

a multiprocessing environment, tasks executing in pdredigupt the shared resource because their context switche
overlap. To share a resource in a multiprocessor envirohraguires proper mutual exclusion, for example, by using a
server task. In a uniprocessor environment, this facibity be used to guarantee mutual exclusion to a shared resource
because only one task is executing at a time so the contex¢ shtared resource is saved and restored on each context
switch. Westronglydiscourage using this facility for mutual exclusion of a Fmocessor-specific resource because it
does not scale to the multiprocessor environment.

The user-context facility has two parts: the definition obatext save-area, containing the storage for the context
and routines to save and restore the context, and the deéateaad initialization of a context save-area. The associa
tion of the additional context with a coroutine or task deggean which execution state is active when the declaration
of the context save-area occurs.

A context areanustbe derived from the abstract clagSontext:

class uContext {
public :
uContext();
uContext( void xkey );
virtual void save() = 0;

virtual void restore() = 0;
}; /1 uContext

The overloaded constructor routin€ontext has the following forms:
uContext() — creates a context with a unique search key (discussedyghort
uContext( void xkey ) — creates a context with the user supplied search key.

Multiple context areas can be declared, and hence, assdaiath a coroutine or task. However, a context is only
associated with an execution state if its search key is @nigihis requirement prevents the same context from being
associated multiple times with a particular coroutine skta

Figure2.7 shows how the context of a hardware coprocessor can be sadagstored as part of the context of
taskworker. A unique search-key for all instances@jProcessorCxt is created via the address of the static variable,
uUniqueKey, because the address of a static variable is unique withirogrgm. Therefore, the value assigned to
uUniqueKey is irrelevant, but a value must be assigned in one translatiot for linking purposes. This address is
implicitly stored in each instance @bProcessorCxt. When a context is added to a task, a search is performedyor an
context with the same key. If a context with the same key isifhthe new context is not added; otherwise it is added
to the list of user contexts for the task.

O WARNING: Putno code into routinesave andrestore that results in a context switch, e.g., printing
usingcout or cerr (usewrite if necessary). These routines are called during a contdidtsvand a context
switch cannot be recursively invoked. |
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class CoProcessorCxt : public uContext {

static int uUniqueKey; /I unique address across all instances

int reg[3]; /I coprocessor has 3 integer registers
public :

CoProcessorCxt() : uContext( &uUniqueKey ) {};

void save();

void restore();

I8
int CoProcessorCxt::uUniqueKey; // must be defined in only one translation unit

void CoProcessor::save() {
/| assembler code to save coprocessor registers into context area

void CoProcessor::restore() {
/I assembler code to restore coprocessor registers from context area
}

_Task worker {

void main() {
CoProcessorCxt cpcext; /I associate additional context with task

Figure 2.7: Saving Co-processor Context

2.15.1 Predefined Floating-Point Context

In most operating systems, the entire state of the actuakgsor is saved during a context switch between execution
states because there is no way to determine if a particujactib using only a subset of the actual processor state. All
programs use the fixed-point registers, while only some hus@dating-point registers. Because there is a significant
execution cost in saving and restoring the floating-poigisters, they are not saved automatically. If a coroutine or
task performs floating-point operations, saving the flagpoint registers must become part of the context-switghin
action for the execution state of that coroutine or task.

To save and restore the float-point registers on a contextlswdeclare a single instance of the predefined type
uFloatingPointContextin the scope of the floating-point computations, such aseélgaining of the coroutine’s or task’s
main member, e.g.:

_Coroutine C {
void main() {

uFloatingPointContext fpcxt; // the name of the variable is insignificant
. /I floating- point computations can be performed safely in this scope

h
Oncemain starts, both the fixed-point and floating-point registeesrastored or saved during a context switch to or
from instances of coroutine.

O WARNING: The member routines of a coroutine or task are executed tiggngxecution state of the
caller. Therefore, if floating-point operations occur in amber routine, including the constructor, the
caller must also save the floating-point registers. Onlyrautine’s or task’snain routine and the routines
called bymain use the coroutine’s or task’s execution state, and thexeéaly these routines can safely
perform floating-point operations. O

O WARNING: Some processors, like the SPARC, implicitly save both fixed #ioating-point reg-
isters, which means it is unnecessary to create instanceBladtingPointContext in tasks performing
floating-point operations. However, leaving aiftloatingPointContext is dangerous because the pro-
gram is not portable to other processors. Therefore, it goitant to always include an instance of
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uFloatingPointContext in tasks performing floating-point operations. For prooesdike the SPARC,
uFloatingPointContext does nothing, so there is no cost. O

Additional context can be associated with a coroutine deitas free routine, member routine, or as part of a class
object to temporarily save a particular context. For examble floating-point registers are saved when an instance of
the following class is declared:

class ¢ {
private :
uFloatingPointContext fpcxt;
public :
void func() {
/I perform floating- point computations
}

I3
When a coroutine or task declares an instance, dfs context switching is augmented to save the floatingvpoi
registers for the duration of the instance. This capaldlitgws the implementor af to ensure that the integrity of its
floating-point calculations are not violated by anothermetine or task performing floating-point operations. lals
frees the user from having to know that the floating-pointstegs must be saved when using clasikemember, if
the floating-point registers are already being saved, tdéiadal association is ignored because of the unique bearc
key.

2.16 Implementation Restrictions

The following restrictions are an artifact of this implent&ion. In some cases the restriction results from the Featt t
UC+H is only a translator and not a compiler. In all other caties restrictions exist simply because time limitations
on this project have prevented it from being implemented.

e While uC+ has extended C+ with concurrency constructs, it is remrapiler. Therefore, it suffers from the
soundness/efficiency problem related to all concurrerraty approaches (see Sect@i 2, p. 32. However,
every attempt is made to ensy@+ does generate sound code.

e Some runtime member routines are publicly visible when gteyuld not be; thereforeC+ programs should
not contain variable names that start with a “u” followed bgapital letter. This problem is an artifact p€+
being a translator.

e By default, uC+ allows at most 128 mutex members because a 128-bit maséei to test for accepted
member routines. WhepC+- is compiled, this value can be modified by setting the megssor variable
__U_MAXENTRYBITS__.

Unfortunately, bit masks, in general, do not extend to suppaltiple inheritance. We believe the performance
degradation required to support multiple inheritance izaseptable.

e When defining a derived type from a base type that is a taskroutioe and the base type has default parameters
in its constructor, the default arguments must be explislecified if the base constructor is an initializer in the
definition of the constructor of the derived type, e.g.:

_Coroutine Base {
public :
Base( int i, float f = 3.0, char c ='¢C" );

h
_Coroutine Derived : public Base {
public :
Derived( int i) : Base( i, 3.0, "¢’ ); /l values 3.0 and ' ¢’ must be specified
h

All other uses of the constructor f@&ase are not required to specify the default values. This problem is an
artifact of plC+ being a translator.
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e Anonymous coroutine and task types are not supported, e.g.:

_Task /x no name «/ { /I must have a name
} i, 12, 13;

Both a coroutine and a task must have a constructor and de&strwhich can only be created using the name
of the type constructor. Having the translator generatalddn unique name is problematic because the order
of include files may cause the generation of a different namdifferent compilations, which plays havoc with
linking because of name mangling.

e There is no discrimination mechanism in theccept statement to differentiate among overloaded mutex mem-
ber routines. When time permits, a scheme using a formaadedin the_Accept statement to disambiguate
overloaded member routines will be implemented, e.g.:

_Accept ( mem(int) );
or _Accept ( mem(float) );

Here, the overloaded member routimesm are completely disambiguated by the type of their pararadter
cause C+ overload resolution does not use the return type.

e A try block surrounding a constructor body is not supported,; e.g.

class T2 : public T1 {
const int i;
public :
T2(); /I constructor

b
T2:T2() try : T1(3), i(27) {
/I body of constructor
} catch {
/I handle exceptions from initialization constructors (e.g., T1)
}

This problem is an artifact giC+ being a translator.
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Asynchronous Communication

Parallelism occurs when multiple threads execute simetiasly to decrease a program’s execution, i.e., the program
takes less real (wall-clock) time to complete a computafidre computation must be divided along some dimension(s)
and these subdivisions are executed asynchronously byitkeds. The decrease in execution time is limited by the
number of these subdivisions that can be executed simuoltashe(Amdahl’s law P]).

Every practical concurrent program involves some comnatiin among threads. One thread may communicate
with another in order to provide inputs (arguments), antb/oeceive the output (results) produced by the other thread
If the thread providing the inputs is the same thread that laceives the output, then the communication pattern is
analogous to a sequential routine call, where one routioeiges arguments to another and receives the result. A call
by one thread to aMutex member of a task is an example of this communication patt8uch a call is known as
asynchronous callbecause the two tasks must synchronize in order to passghmants from caller to callee, and
because the caller remains blocked until the callee rethmgesult.

While a synchronous call is simple and useful, it may limitglielism because the caller task is forced to block
until the result is returned. In some cases there is a suolivdf the computation that the caller task can perform
while the callee task is computing the caller’s result. Inlsa case, it is more appropriate to useaagpnchronous
call. An asynchronous call can be thought of as two synchrondlss oae to provide the inputs and a second one to
receive the output, e.g.:

callee.start( arg ); /I provide arguments
/I caller performs other work asynchronously
result = callee.finish(); /I obtain result

Here, the call tatart returns as soon as the arguments are transferred fromtcatleliee. Computation then proceeds
for both the caller and callee, concurrently. In an asynebus call, the caller and callee are known asdient and
server, respectively. Note, the client may still have to block (oflpat the call tofinish, if the server has not yet
finished the client’'s computation. The amount of paralieltbat can be obtained in this way depends on the amount
of concurrent computation that can be done by the client amnes If there is little concurrency possible, then the
overhead of two synchronous calls and creating the sentereaghs the benefits gained by any potential parallelism,
and a single synchronous call is sufficient.

A client may also have to block when calling thiart method to transmit arguments, if the server is performing
some other operation at the time of the call. If the servey daindles one outstanding asynchronous call at a time
from one client task it should always be ready to receive asgand to thetart method immediately, minimizing
blocking time for the client. Depending on the applicatibmay be necessary to have a more complicated server, one
that can manage multiple outstanding asynchronous cals finultiple clients simultaneously. Constructing a server
that can handle calls efficiently while minimizing blockitime for clients generally requires additional bufferirfg o
arguments and results. Different designs for servers aged in Sectiod.3, p. 50

3.1 Futures

The major problem with the above approach for asynchronallsscthe two-step protocol: start the call with argu-
ments and finish the call to collect a result. In general,qurols are error prone because the caller may not obey them

43
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(e.g., never retrieve a result, try to retrieve the restittéwetc.)! A future is an abstraction that attempts to hide some
of the details involved in an asynchronous call, in pariciduffering and retrieving the return value. The previous
two synchronous calls are transformed into a single exgicichronous call and an implicit second synchronous call
when the future is accessed:

future = callee.work( arg ); /I provide arguments and get future result
/I perform other work asynchronously
i = future() + .. /I obtain actual result, may block if result not ready

In general, a future is generic in the type of the return valo@ acts as a surrogate for this value. Instead of making
two calls to send arguments and then retrieve the resulfiggescall is made and a future representing the result is
returned immediately. The client continues execution dsdfcall had returned an actual result. The future is filled
in at some later time (in the “future”), after the server cédtes the result. If the client tries to use the future befor
a result is inserted, the client implicitly blocks and is sepuently unblocked by the server after it insertions altresu
in the future. Hence, there is no explicit protocol betwelnt and server to retrieve a result; the protocol is implic
within the future.

UCH provides two forms of futures, which differ in their sdge-management interface. The explicit-storage-
management future=(ture_ESM) must be allocated and deallocated explicitly by the cli€fite implicit-storage-
management future~(ture_ISM) automatically allocates required storage and autonitifraes the storage when
the future is no longer in use. The advantagewfire_ESM is that it allows the programmer to choose the method of
allocation, whether on the heap, on the stack, or statiaahjch can result in more predictable and efficient allamati
compared tdruture_ISM, which always allocates storage on the heap. The disadyaof&uture_ESM is that the
client must ensure that the future is deallocated, but nfotrbéhe server thread has inserted the result (or the aperat
has been cancelled).

There is a basic set of common operations available on bpt#stgf futures. These consist of client operations,
used by a client task to retrieve the return value, and seperations, used by a server task to fill in the value.

3.1.1 Client Operations
The future operations available to a client are:

available — returnstrue if the asynchronous call has completed #aise otherwise. Note, the call can complete
because a result is available, because the server has tgharaexception, or because the call has been
cancelled (through theancel method, below).

operator () — (function call) returns a copy of the future result. Theiatiblocks if the future result is currently
unavailable. If an exception is returned by the server,ékagption is thrown. A future result can be retrieved
multiple times by any task until the future is reset or degth

operator T — (conversion to type T) returns a copy of the future restiltis kind of access must be performed
only after a blocking access, or after a call tavailable returns true. This operation is a low-cost way of
accessing a future resudfter the result is known to have been delivered. As wdflerator (), if the server
returns an exception, that exception is thrown.

cancelled — returngrue if the future is cancelled andise otherwise.

cancel — attempts to cancel the asynchronous call associatedégtfuture. All clients waiting for the result are
unblocked, and an exception of typeture_ESM::Cancellation is thrown at any client attempting to access the
result. Depending on the server, this operation may alse theveffect of preventing the requested computation
from starting, or it may interrupt the computation in pregge

3.1.2 Server Operations
The future operations available to a server are:
delivery( T result ) — copy the server-generated result into the future, unlohgciny clients that are waiting for

the result. This result is the value returned to the cliergtuRstrue if the result is copied anthlse if the
asynchronous call has already completed.

1 Approaches for asynchronous call involving tickets andédlbacks both require an explicit protocol to retrieve suie
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template <typename T, typename ServerData> _Monitor Future_ESM {
public :
Future_ESM();

/I used by client

_Nomutex bool available(); /I future result available ?

T operator ()(); /I access result, possibly having to wait
_Nomutex operator T(); /I cheap access of result after waiting
_Event Cancellation {}; /I raised if future cancelled

_Nomutex bool cancelled(); /I future result cancelled ?

void cancel(); /I cancel future result

/I used by server

ServerData serverData; /I information needed by server

bool delivery( T result ); /I make result available in the future
void reset(); /I mark future as empty (for reuse)

bool exception( uBaseEvent xex ); /I make exception available in the future

Figure 3.1: Future : Explicit Storage Management

reset —mark the future as empty so it can be reused, after whichutremt future value is no longer available.

exception( uBaseEvent xcause ) — copy a server-generated exception into the future. Adint§ waiting for the
result are unblocked, and the exceptwaise is thrown at any client attempting to access the result. lRestu
true if the exception is copied arfdise if the asynchronous call has already completed.

_Event E {};
Future_ISM<int> result;
result.exception( new E ); // exception deleted by future

exception deleted breset or when future deleted

A server may require storage to buffer call arguments andraflata needed for cancellation of futures. This
storage is allocated as part of the future; hence, the futaiealso be generic in the type of server-management data.
A server exports this type information for use with a futiseq Sectio.3, p. 50.

Future cancellation affects the server computing the &swalue. Depending on the server, cancellation may
prevent the requested computation from starting, or it mégriupt the computation in progress. In both cases, the
server does not insert a result into the future. If the secwarputation cannot be interrupted, the server may deliver a
result even though the future has been cancelled.

An ESM future’scancel member cannot return until it is known that the server no ésmgferences the cancelled
future because the future’s storage may be deallocatedefne, the server must inform the future if it will or will
not not deliver a value, by supplying a member in SeeverData type with the following interface:

bool cancel();

It returnstrue if the result of the asynchronous call will not be deliverettte future, and hence the server computation
has been interrupted, afadse otherwise.

An ISM future allows server-specific data to be included ia fature through a special constructor parameter,
which must implement a similarancel member. However, no action need be taken by the ISM servere si is
always safe for the client to delete its copy of the futurethis case, theancel method is purely advisory, allowing
the server to avoid unnecessary computation.

3.1.3 Explicit Storage Management

The explicit storage-management (ESM) future (see Figubemakes the client responsible for storage management
by preallocating the future and passing it as an argumehgtasynchronous call.

This kind of future isnot copyable, i.e., no assignment or pass-by-value is allovgedh client and server must
operate on the same future, since the future is the buffeatirwhich the result is returned. To copy the future would
be to create two buffers; a client could wait for a value to bkvered to one buffer, whereas the server could deliver
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template <typename T> class Future_ISM {
public :
Future_ISM();
Future_ISM( ServerData *serverData );

/I used by client

bool available(); /I future result available ?

T operator ()(); /I access result, possibly having to wait
operator T(); /I cheap access of result after waiting
_Event Cancellation {}; /I raised if future cancelled

bool cancelled(); /I future result cancelled ?

void cancel(); /I cancel future result

bool equals( const Future_ISM<T> &other ); // equality of reference

/I used by server

bool delivery( T result ); /I make result available in the future
void reset(); /I mark future as empty (for reuse)
bool exception( uBaseEvent xex ); /I make exception available in the future

Figure 3.2: Future : Implicit Storage Management

the future to the other buffer. As a result it is necessaryassyhe future by pointer or by reference. It is possible for
many threads to wait on the same future, so long as each uséstarpr reference.

Itis the client’s responsibility to ensure a future cont@isio exist after a call as long as it is possible for the server
to deliver a return value or exception. It is safe to deleteftiture afteroperator () returns, wheravailable returns
true, or aftercancel returns. Note that because of this guarantee providechhgel, it may be the case thatncel
blocks until the server task acknowledges the cancellation

3.1.4 Example

This example illustrates how a client uses a number of fgtto@ommunicate asynchronously with a server:

Server server; /I server thread to process async call
Future_ESM<int, Server::IMsg> f[10]; /I created on the stack
for (inti=0;i<10;i+=1){ /I start a number of calls
server.mem( f[i], i, "¢’ ); /I async call
}
/I work asynchronously while server processes requests
for (inti=0;i<10;i+=1){ /I retrieve async results
osacquire( cout ) << f[ij() << " " << /I may block on first attempt to retrieve value
fli] << endl; /I use value again (cheap access)
}

The client creates an array bif futures forint values. In general, these futures can appear in any corg@euirmg
anint value and are used to makeasynchronous calls to the server. For each calkteer.mem, a future is passed,
in which the server returns a result, along with appropréatgiments, which are used by the server to perform the
computation. The client then proceeds asynchronouslytivéiserver to perform other work, possibly in parallel with
the server (if running multiprocessor). Finally, the clieatrieves the results from the server by first performing a
blocking access to each future. After that future is re&tb\it can be retrieved again using the cheap nonblocking-
form (or the expensive blocking-form, but there is no pomsynchronizing more than once for each asynchronous
call.)

The key point for explicit futures is that the client preakides the future storage so the server does not perform any
dynamic memory-allocation for the futures, which can pded a substantial performance benefit. In the example, the
clientis able to use low-cost stack storage for the futusesied to interact with the server.

3.1.5 Implicit Storage Management

The implicit storage-management (ISM) future (see FiguBesimplifies the future interface relative Fature_ESM
by automatically managing the storage required for the @aymous call.
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Unlike the ESM future, an ISM futuris copyable, i.e., both assignment and pass-by-value angedloThe ISM
future functions as a “handle” or smart pointé&ig¢01] that refers to the result value. Any copy of an ISM future
refers to the same result value as the original. Although f8Mres may be allocated on the stack, on the heap,
or statically, the underlying storage for the result valaed possibly for server-management data as well) is always
implicitly allocated on the heap. This storage is freed wakfutures referring to that value are destroyed.

Server-specific data (see Secti®i.2, p. 44 can be passed to an ISM future via its constructor.

Occasionally it is useful to know whether two futures referttie result of the same asynchronous call. For
this reasonFuture_ISM has one member not found Future_ESM. The member routinequals returnstrue if the
argument future refers to the same asynchronous call afutbie andfalse otherwise.

3.1.6 Example
This example uses ISM futures in the same way the previousgieaused ESM futures:

Server server; /I server thread to process async call
Future_ISM<int> f[10]; /I created on the stack, but also uses heap
for (int i=0;i<10;i+=1){ /I start a number of calls

fli] = server.mem( i, ' ¢’ ); /I async call

/I work asynchronously while server processes requests

for (int i=0;i<10;i+=1){ /I retrieve async results
osacquire( cout ) << f[ij() << " " << /I may block on first attempt to retrieve value
fli] << endl; /I use value again (cheap access)
}

Note that the asynchronous call to the server has the futiits aeturn value, resembling a traditional return call,
unlike the ESM future. Also, an ISM future allows the intdre@rver-management data to be hidden from the client.

3.2 Future Access

After a client has created a future, passed it to a servertterdcontinued asynchronously, it normally accesses the
future to retrieve its value. The simplest way to accessaréus to call itsoperator () member. If the client's com-
putation is reasonably structured, this approach may geogood asynchrony, with only occasional short-blocking
because the future’s value is unavailable. However, aggmgtcan be curtailed if the client accesses a future tog earl
and blocks when it could do other work. A more complicated wegccessing a future is to check, using éheilable
method, whether the future is accessible before perforaingtentially blocking access operation.

When a client creates multiple futures, and correspongdimgkes multiple asynchronous calls using these futures,
neither of previous approaches may be satisfactory. Thatalay only be able to proceed when some combination of
the future results are available, or it may be able to progeddferent ways depending on the order in which results
become available. Although it is possible to usedtmtlable method to check for accessibility of a set of futures, it is
impossible to usavailable to wait on a future set without polling the futures (busy wagj). Hence, a more complex
future-selection mechanism is necessary. This mecharasnbe divided into two basic forms: heterogeneous and
homogeneous.

heterogeneous:In this case, there are a number of futures that may haverelifféypes. Complicated selection
conditions are constructed by naming individual futuresxpressions. This style of selection provides great
flexibility, but does not scale to large numbers of futures.

homogeneous:In this case, there are a number of futures of related typhs.s€t of futures are stored together in
a data structure like a container or array, and hence, must$@me notion of common type. Two common
selection operations on the futures within the data streciwe wait-for-any and wait-for-all, i.e., wait for the
first future in the set to becomes available, or wait for allifes in the set to become available. This style of
selection is practical for large numbers of futures, buksabe flexibility of heterogeneous selection.

3.2.1 Select Statement

UC+H provides a select statement to handle heterogeneaus iglection by waiting for one or more available futures
based on a logical selection-criteria. The simplest forrthefselect statement has a sing&lect clause, e.qg.:

_Select( selector-expression );
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The selector-expression must be satisfied before execatintinues. When the selector-expression consists of a
reference to a single future, the expression is satisfieadfamly if the future is available. For example, in:
_Select(f1);, = f1();

the selector becomes select blocked Umtilvailable() is true, which is equivalent to calling the blocking futuceass-
operator. More interesting is when multiple futures appea compound selector-expression, where the futures are
related using logical operatorsand&& to specify a compound selection criteria, e.g.:

_Select(f1 || f2 && 13 );

Normal operator precedence applies so the expression Igitlyparenthesized ag: f1 || ( f2 && 3 ) ). Execution
waits until either futurel is available or both future® andf3 are available. Hence, for any selector-expression
containing arj | operator, some futures in the expression may be unavagdtelethe selector-expression is satisfied.
For example, in the above selection expression, if futulEcomes available, neither, one or botli2odindf3 may be
available.

A _Select clause may be guarded with a logical expression, e.g.:

_When ( conditional-expression ) _Select( f1 ); = if ( conditional-expression ) _Select( f1 );

The selector task is select blocked while the guard is trdelare is no available future. Avhen guard is considered
true if it is omitted or if itsconditional-expressiorvaluates to non-zero. If the guard is false, executionicoes
without waiting for any future to become available; for teisample, the guard is the same asfatatement. Note, a
simple select-statement always waits until at least oneéis available unless its guard is false.
The complex form of the select statement conditionally etes a specific actioafter each selector-expression
evaluates to true (see select-statement grammar in Chiagted 43for complete syntax), e.g.:
_Select( selector-expression )
statement /I action
After the selector-expression is satisfied, the actiorestant is executed; in this case, the action could simplg\oll
the select statement. However, the complex form of the sstatement allows relating multipleSelect clauses
using keywordsor andand, each with a separate action statement. dhandand keywords relate the Select
clauses in exactly the same way operajpend&& relate futures in a select-expression, including the sgoeeator
precedence; parentheses may be used to specify evaluatien &or example, the previous select statement with a
compound selector-expression can be rewritten into its/atfnt complex form with actions executed for each future
that becomes available (superfluous parentheses showdpremeof evaluation):

/I superfluous parentheses

_Select( f1)
statement-1 /I action
or ( /I superfluous parentheses
_Select(f2) /I optional guard
statement-2 /I action
and _Select( f3) /I optional guard
statement-3 /I action
) I/ and

) /I or

The original selector-expression is now three connecteelect clauses, where eaclSelect clause has its own
action. During execution of the statement, eaSklect-clause action is executed when its sub-selector-exome&si
satisfied, i.e., when each future becomes available; haweoatrol does not continue until the selector-expression
associated with the entire statement is satisfied. For ebearifig2 becomes available, statement-2 is executed but
the selector-expression associated with the entire stateis not satisfied so control blocks again. When either
f3 become available, statement-1 or 3 is executed, and thet@etxpression associated with the entire statement is
satisfied so control continues. For this example, withingbon statement, it is possible to access the future using
the non-blocking access-operator since the future is kriovioe available.

An action statement is triggered only once for its seleetqsression, even if the selector-expression is compound.
For example, in:

_Select(f1 || f2)
statement-1

and _Select( f3)
statement-2

statement-1 is only executed once even though both fufarasdf2 may become available while waiting for the
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selector-expression associated with the entire statetméecome satisfied. Also, in statement-1, it is unknown tvhic
of futuresfl or 2 satisfied the sub-selector-expression and caused the actie triggered; hence, it is necessary to
check which of the two futures is available.
Note, a complex select-statement wittwhen guards is not the same as a group of connei¢tstdtements, e.g.:
if (C1) _Select(fl); _When ( C1l) _Select( f1);
else if ( C2) _Select( f2); or _When ( C2 ) _Select( f2);
The left example waits for only futurgl if C1 is true or onlyf2 if C1 is false andC2 is true. The right example
waits for eitherfl or f2 if C1 andC2 are true. Like the Accept statement, it takes"2— 1 if statements to simulate a
compound_Select statement witiN _When guards (see [23).
Finally, a select statement can be made non-blocking usiegv@nating_Else clause, e.g.:
_Select( selector-expression )

statement /I action
_When ( conditional-expression ) _Else // optional guard & terminating clause
statement /I action

The _Else clausemustbe the last clause of a select statement. If its guard is troentited and the select statement is
not immediately true, then the action for thElse clause is executed and control continues. If the guardsefdhe
select statement blocks as if thElse clause is not present. (See Sectldh?2.3, p. 129or timeout with_Select.)

3.2.2 Wait Queue

uUC+H provides two data structures to handle homogeneoussfstlection. As with the two future types, they have
similar behaviour but different approaches to storage mameent.

ESM ISM
template < typename Selectee > template < typename Selectee >
class uWaitQueue_ESM { class uWaitQueue_ISM {
public : public :
uWaitQueue_ESM(); uWaitQueue_ISM();
template < typename lIterator > template < typename lIterator >
uWaitQueue_ESM( Iterator begin, Iterator end ); uWaitQueue_ISM( Iterator begin, Iterator end );
bool empty() const ; bool empty() const;
void add( Selectee «n ); void add( Selectee n);
template < typename lterator > template < typename lterator >
void add( Iterator begin, Iterator end ); void add( Iterator begin, Iterator end );
void remove( Selectee n); void remove( Selectee n);
Selectee xdrop(); Selectee drop();
h h

To useuWaitQueue_ISM, futures are added to the queue at construction or usirgithmethods, and are removed
using thedrop method as each becomes availalbiaitQueue_ESM is similar, except it operates on future pointers.
For uwaitQueue_ESM, the client must ensure added futures remain valid, i.eir 8torage persists, as long as they
are in auWaitQueue_ESM. ForuWaitQueue_ISM, the added futures must be copyable, so ISM futures can luk use
but not ESM futuresyWaitQueue_ESM is the only queue that can be used with ESM futures.

The operations available on both kinds of queue are:

uWaitQueue_ISM() / uwaitQueue_ESM() — constructs an empty queue.

uWaitQueue_ISM( Iterator begin, Iterator end ) / uWaitQueue_ESM( lterator begin, Iterator end ) — constructs
a queue, adding all of the futures in the range referenceléidratordegin andend (inclusive ofbegin, but
exclusive ofend). For the ESM queue, it is pointers to the futures that areddad the queue.

empty — returns true if there are no futures in the queue, falsewibe.
add( Selectee n ) —adds a single future to the queue (ISM).
add( Selectee «n ) —adds a single pointer to a future to the queue (ESM).

add( lterator begin, lterator end ) —adds all futures in the range given by the iterat@gin andend (inclusive of
begin, but exclusive oknd). For the ESM queue, it is pointers to the futures that areddd the queue.
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remove( Selectee n ) —removes any futures in the queue that refer to the same lamymaus call as (ISM).
remove( Selectee n ) —removes any occurrence of the future poimténom the queue (ESM).

drop — returns an available future from the queue, removing inftbe queue. The client blocks if there is no
available future. If multiple futures are available, oneh®sen arbitrarily to return; other available futures can
be obtained by further calls tvop. Calling drop on an empty ISM queue is an error; calling droan empty
ESM queue returns§ULL.

Thedrop method is an example of “wait-any” semantics in homogeneselextion: execution blocks until at least
one future is available. To provide “wait-all” semantic)eve execution only continues when all futures are availabl
a simple loop suffices:

uWaitQueue_ISM<Future_ISM<int> > queue; // or ESM
/I add futures to queue

while (! queue.empty() ) { /I wait for all futures to become available
queue.drop();

Other semantics, such as “wait{block until nfutures are available), can be obtained using more completxal
logic. Indeed, it is possible to use wait queues to simulateesforms of the_Select statement:

uWaitQueue_ISM<Future_ISM<int> > queue;
queue.add( f1 ); queue.add( f2 ); queue.add( f3 );
for () {
queue.drop();
_Select( f1) if ( fl.available()) {
statement-1 statement-1; break;
or _Select( f2 && f3) } else if ( f2.available() && f3.available() ) {
statement-2 statement-2; break;
}
}

However, for more complex selection, the complexity of timeudation grows faster than the complexity of the equiv-
alent_Select statement. Furthermore, th8elect statement allows for different types of futures (includoath ESM
and ISM futures) to be mixed in a single selection, whereasutures in aiwaitQueue must all have the same type.

3.3 Servers

A server performs a computation on behalf of a client allantime client to execute asynchronously until it needs the
result of the computation. FiguB3 shows three basic organizational structures for servens) §imple to complex
(top to bottom). The top structure is the simplest, wherenglsiclient uses a direct asynchronous call to pass a
future to the server for computation and retrieves the tesulhis computation from the future before passing another
future (one-to-one relationship between client and sgrvEhis structure ensures the single client cannot block on
the asynchronous call because it synchronizes with thesesdven it accesses the future, so the server should always
be available to receive arguments for the next call. Howe¥és structure may result in the server spending most
of its time blocked if the single client does significant aadial computation (such as processing the future result)
before making the next call. Note, attempting to increasestitver’'s work by sending multiple futures produces no
additional asynchrony because the server cannot accega tadls while it is working nor does it have any place to
store the additional arguments for subsequent processing.

To mitigate server blocking, a server must be restructwedipport multiple asynchronous calls while it is work-
ing. This approach allows one or more clients (many-to-@hationship between clients and server) to make one
or more asynchronous calls, supplying the server with mayekwo keep it from blocking. Two key changes are
required. First, a server must provide a request bufferdmestirguments for multiple asynchronous calls. Second,
the server must poll periodically for new asynchronoussoatile it is working, otherwise clients block attempting to
insert requests into the buffer until their call is accept&lis latter requirement is necessary because the bufter is
shared resource that requires mutual exclusion, i.entsliadd to the buffer and the server removes from the buffer.
However, polling can obscure server code and polling fraqués always an issue. The only way to remove polling
is to separate the buffer's mutual-exclusion from the stsve



3.3. SERVERS 51

r-——=—=-=-= -
call | @ i
! | Server
return |
single future Lo 4
multiple futures Fo- T oo oo 7

Figure 3.3: Basic Server Structures

The middle structure in Figur@3handles multiple asynchronous calls by transforming thecticommunication
between client and server into indirect communication bygosing the server as one of more worker tasks to perform
computations and a monitor buffering future requests fregmahronous calls between client(s) and worker(s). A
client places arguments into the input buffer along with trfel to return a result, and then continues. A worker
removes arguments from the input buffer for computation plades the result of the computation into the supplied
future; inserting the result implicitly unblocks any watgi client(s) attempting access to the future. Clients magkbl
if there is contention on accessing the buffer or the bufféuli; workers may block if there is contention on accessing
the buffer or the buffer is empty. Any buffer management isgrened by the client and/or worker when manipulating
the buffer(s).

The bottom structure in Figur@.3 transforms the monitor into a task, called a administra@er8]1, and its
thread is used to perform complex coordination operatia@is/den clients and workers. Notice, the administrator
task still needs internal buffers to hold multiple argunsquassed asynchronously by clients. Note, this approach now
shares the buffer mutual-exclusion with the task; howekeradministrator task can mitigate this issue by not making
blocking calls and only performing simple administratioonk, so it is mostly ready to accept asynchronous calls
from clients. In this case, the administrator may spend mibiss time blocked waiting for client and/or worker calls,
but this behaviour is often a reasonable tradeoff to allowredizing of administrative duties when managing complex
requests and interactions.

Figure3.4illustrates a server composed of a monitor buffer and wask (middle structure in Figui@3). Both
an ESM and ISM version of the server are presented, wherdffeestices are storage management and cancellation
of a future. Each server has server-specific da¢ayerData, created in each future for use in cancellation. When
a client cancels a future associated with this server, mesdrgerData::cancel is called, and both servers mark the
position in the request queue to indicate that future is efexdt. The worker-task typé&putWorker, and an instance of
it, is, are local to the server for abstraction and encapsulagiasansinputWorker reads an< integerstring > tuple
and communicates the tuple to the server via a synchrondius ¢ae private mutex-membamput, which checks if
a future exists with a matching integer key, and if so, plabesstring into that future as its result value. The ESM
server conditionally inserts the string into the future bgcks if the future at positiovalue is NULL indicating it has
been cancelled. The ISM server does not conditionally trikerstring because an empty future is inserted at position
value to hold the string if the original future is cancelled. Asyinanous calls from clients are made by calling mutex
memberequest, specifying an integer key and a future to return the assatistring read by the input worker. The
ESM server resets the future passed to it as it is about tausedeand the ISM server creates a new future. If the new
request is greater than the vector size, the vector sizeisased. The future is then buffered in vectauests until
the input worker subsequently fills it in with a value, andveerspecific data is filled into the future in case the client
cancels the future.
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ISM

_Monitor InputServer {
struct ServerData {
InputServer sserver;
int requested;

bool cancel() {
server- >requests[requested] = NULL;
return true ;
} /I ServerData::cancel
ServerData() {}
}, Il ServerData

_Task InputWorker {
InputServer &is;

void main() {
int id;
string text;

while (cin >>id ) {
getline( cin, text );
is.input( id, text );

} // main
public :
InputWorker( InputServer &is ) : is( is ) {}
}; /I InputWorker
public :
typedef Future_ESM< string,
ServerData > FutureType;
private :
InputWorker iw;
vector< FutureType » > requests;

_Mutex void input( int value, string text ) {
if ( requests.size() > value ) {
if ( requests|value] != NULL ) {
requests[value]- >delivery( text );

}
} /I input
public :
InputServer() : iw( «this ) {}

void request( FutureType «f, int requested ) {
f- >reset();
if ( requests.size() <= requested ) {
requests.resize( requested + 1 );

requests[requested] = f;

f- >serverData.server = this;

f- >serverData.requested = requested;
} I request

}, Il InputServer

_Monitor InputServer {

struct ServerData : public Future_ISM< string >::ServerData {
InputServer sserver;
int requested;

bool cancel() {
server- >requests[requested] = Future_ISM< string >();

return true ;
} /I ServerData::cancel
ServerData(InputServer xs, int r) : server(s), requested(r) {}

}, /I ServerData

_Task InputWorker {
InputServer &is;

void main() {
int id;
string text;

while ( cin >>id ) {
getline( cin, text );
is.input( id, text );
} /1 while
} // main
public :
InputWorker( InputServer &is ) : is(is ) {}
}; /I InputWorker

public :
typedef Future_ISM< string > FutureType;

private :
InputWorker iw;
vector< FutureType > requests;

_Mutex void input( int value, string text ) {
if ( requests.size() > value ) {

requests[value].delivery( text );

}
} /I input
public :
InputServer() : iw( «this ) {}

FutureType request( int requested ) {
FutureType f( new ServerData( this, requested ) );
if ( requests.size() <= requested ) {
requests.resize( requested + 1 );

requests[requested] = f;
return f;

} /I request
}, Il InputServer

Figure 3.4: Example Server
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#include <uFuture.h>
#include <iostream>
using namespace std;

int routine() {
/I preform work
return 3;

struct Functor { /I closure: allows arguments to work
double x;
double operator ()() { /I function- call operator
/I preform work
return X;

}
Functor( double x ) : x( x) {}

} functor( 4.5 );

void uMain::main() {
uExecutor executor;
Future_ISM<int> fi[10];
Future_ISM<double > fd[10];
for (inti=0;i<10;i+=1){
executor.submit( fi[i], routine ); /I think: fi[i] = executor.submit( routine )
executor.submit( fd[i], functor ); /I think: fd[i] = executor.submit( functor )

}
for (inti=0;i<10;i+=1){
cout << fi[ij) << " " << fd[i]() << " *; Il wait for results

cout << endl;

Figure 3.5: Executor Example

3.3.1 Executors

An executor is a predefined, generic server with a fixed-som# pf worker threads performing submitted units of
work, where work is formed by a routine or functor.
class uExecutor {
public :
uExecutor( unsigned int nworkers = 4 );
template <typename Return, typename Func> void submit( Future_ISM<Return> &result, Func action );
2

The constructor routine has the following form:

uExecutor( unsigned int nworkers = 4 ) — creates an executor containing a work queueMmabrker threads,
which are created on the current cluster with the clustesfault stack size.

The member routineubmit queues a unit of workction on a FIFO buffer in the executor to executed by on the
N worker threads. The future to contain the result of the werkgecified as an output parameter rather than being
returned directly.

Figure3.5shows an example where work is submitted to an executor ifotheof a routine and functor, and then
different types of valuesdr(t, double ) are returned.

2 This syntax is necessary to allow both routines and funasnsnits of work.
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Chapter 4

Input/Output

A major problem with concurrency and the file system is thiag, the compiler, the file system is unaware if a program
is concurrent (see Sectiénl2, p. 32. To ensure multiple tasks are not performing 1/0O operatsimultaneously on
the same file descriptor, eaplE+ file is implemented as a monitor that provides mutualusioh on 1/O operations.
However, there are more complex issues relating to /O djp@isin a concurrent system.

4.1 Nonblocking I/O

For a sequential program performing an I/O operation thahotproceed immediately, the normal action for the file
system is to block the program until the operation can coetirFor example, when a program needs input from the
keyboard, the file system blocks the program until data isredt This action is correct for a sequential program
because there is no other work for it to do until the new datujplied by the user. However, this action may be
incorrect for a concurrent program because there may be wiiré to do even without the user data. Therefore, the
normal action by the file system, called heavy blocking (se&ti6n8.4.3, p. 118 is usually inappropriate for a con-
current program because it inhibits concurrency. Theegfld® operations must be transformed from heavy blocking
to light blocking so that execution of other tasks can carinThis transformation is achieved by nonblocking 1/O.
To simplify the complexity of nonblocking I/QUCH supplies a honblocking 1/O library.

While I/0O operations can be made nonblocking, this requepesial action as the nonblocking I/0O operations may
not restart automatically when the operation completesehd, it may be necessary to poll for /O completions, which
is done through theelect operation in UNIX, while other tasks execute. Only whenadlkis on a cluster are directly
or indirectly (light-) blocked, waiting for 1/0O operatioris complete, can the virtual processor be heavy blocked.

This scenario is implemented automatically i@+ choosing a task performing 1/O to poll for completion of
any I/O operation, called theoller task; all other tasks performing 1/0 are light blocked. When & tperation
completes (e.g., eead or write), the task waiting for that operation is unblocked by thelgrdlask. If the poller’s
I/O completes, it unblocks one of the I/O blocked tasks amd thask becomes the 1/0 poller. Only when the poller
detects that no 1/0 operations have completed and thereoasesks on the cluster to execute (i.e., the cluster’s ready
gueue is empty) does the poller perform a heavy block. Thisrse allows other tasks to progress with only a slight
degradation in performance due to the polling task.

4.2 C+ Stream /O

Because a stream may be shared by multiple tasks, chargeteesated by the insertion operatex) and/or the
extraction operatos> in different tasks may be intermixed. For example, if twdksasxecute the following:

tasky : cout << "abc " << "def " << endl;
taskz : cout << "uvw" << "xyz " << endl;

some of the different outputs that can appear are:

abc def
uvw xyz

uvw abc def
Xyz

abuvwe dexf
yz

abc uvw xyz
def

uvw abc xyz def

In fact, concurrent operations can even corrupt the intestage of the stream, resulting in failure. As a result, some
form of mutual exclusion is required for concurrent streawess. A coarse-grained solution is to perform all stream
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operations (e.g., I/0) via a single task or within a moniprgviding the necessary mutual exclusion for the stream.
A fine-grained solution is to have a lock for each stream, tvisacquired and released around stream operations by
each task.

HUC+H provides a fine-grained solution where an owner lock égaiaed and released indirectly by instantiating a
type that is specific to the kind of stream: tyjecquire for input streams and typesacquire for output streams
located in namespacstid. For the duration of objects of these types on an appropsta¢am, that stream’s owner
lock is held so 1/O for that stream occurs with mutual exaasivithin and across 1/0 operations performed on the
stream. The lock acquire is performed in the object’s coesdr and the release is performed in the destructor. The
most common usage is to create an anonymous object to loskr#fen during a single cascaded I/O expression, e.g.:

tasky : osacquire( cout ) << "abc " << "def " << endl; // anonymous locking object
tasky : osacquire( cout ) << "uvw" << "xyz " << endl; // anonymous locking object

constraining the output to two different lines in any order:

abc def | uvw xyz
uvw xyz | abc def

The anonymous locking object is only deallocated after titeecascaded 1/0O expression is completed, and it then
implicitly releases the stream’s owner lock in its destounct
Because of the properties of an owner lock, a task can a#lauaitiple locking objects for a specified stream,
and the stream’s owner lock is only released when the toplocdising object is deallocated. Therefore, multiple 1/0
statements can be protected atomically using normal blivaktsire, e.g.:
{ /I acquire the lock for stream cout for block duration
osacquire acq( cout ); // named stream locker
cout << "abc";
osacquire( cout ) << "uvw" << "xyz " << endl; / ok to acquire and release again
cout << "def";
} I/ implicitly release the lock when “acq” is deallocated

For anfstream, which can perform both input and output, bat¢hcquire and osacquire can be used. The only
restriction is that the kind of stream locker has to matclmind of 1/O operation, e.g.:

fstream file( "abc" );
osacquire( file ) << ... // output operations

isacquire( file ) >> ... // input operations

For protecting multiple I/O statements on fatream, eitherisacquire or osacquire can be used to acquire the stream
lock, e.g.:

fstream file( "abc" );

{ /I acquire the lock for stream file for block duration

osacquire acq( file ); // or isacquire acq( file )
file >> ... // input operations

1.‘i.lé << ... // output operations
} I/ implicitly release the lock when “acq” is deallocated
WARNING: Deadlock can occur if routines are called in an 1/0 sequematnight block, e.g.:
osacquire( cout ) << "data:" << Monitor.rtn(...) << endl;
The problem occurs if the task executing the 1/0 sequenacekblm the monitor when it is holding the I/O lock for
streamcout. Any other task that attempts to write enut blocks until the task holding the lock is unblocked and
releases it. This scenario can lead to deadlock if the taskitlgoing to unblock the task waiting in the monitor first
writes tocout. One simple precaution is to factor the call to the monitattiree out of the I/O sequence, e.g.:
int data = Monitor.rtn(...);
osacquire( cout ) << "data:" << data << endl;
WARNING: A stream may bé&ed to another output stream, so when the first stream perforgng@nthe second
stream is implicitly flushed first. For examptgn is tied tocout, so in:

cout << "Enter nunber:"; /I prompt for data
cin >> number; Il read data
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the prompt is guaranteed to be flushed before the data islfezid andcout were not tied, the read may occur without
the prompt message because the messagecisuiis output buffer. While tieing streams is an important calitgbh
it can cause a race condition between tasks using the tieanss. For example, if one task is reading freimand
another is writing tacout, an implicit flush can occur toout from the first task at the same time as an explicit write
from the second task. Having to lock in this situation is motoHtive because the stream operations seem disjoint, e.g
Task1 Tasko
{

osacquire( cout ) << .../l acquire cout osacquire lock( cout ); // acquire cout due to tie
cin >> number;
}

Task must lockcout even though it may be the only task writing to it; Taskust also lockcout even though it is
reading fromcin. In general, it is rare for separate tasks to be promptingeading in this manner; normally, these
steps are performed by a single task. However, it is reasefaidifferent tasks to be usingn andcout but not need
implicit flushing. In this case, the best solution is to remdve tie betweenin andcout, e.g.:

cin.tie( NULL ); /I set tie partner to NULL

eliminating the implicit flushing and the race conditiond®xamples in Sectiori3.5.1, p. 165andD.5.3, p. 168.
WARNING: printf, scanf and their derivatives are unsafe when used with user-laveating, as inC+. These
stream routines use kernel-thread lockifugek), which block kernel threads, to prevent interleaving &f.IHowever,
the following simple example illustrates how a deadlock oaour (other complex scenarios are possible). Assume
a single kernel thread and two user-level threads capigf. One user-level thread acquires the 1/0 lock and is
time-sliced while performingrintf. The other user-level thread then starts execution, palig, and blocks the only
kernel thread because it cannot acquire the I/O lock. It daédelp if the kernel lock is multiple acquisition, i.e.,
the lock owner can acquire it multiple times, because it tfesults in two user threads in tipeintf critical section,
corrupting the stream.

4.3 UNIX File I/O

A UNIX file is a passive object that has information writtetidrand read from it by tasks; therefore, a file is like a
monitor, which provides indirect communication among saskhe difference between a file and a monitor is that the
file is on secondary storage, and hence, is not directly ailitledy the computer’s processors; a file must be made
explicitly accessible before it can be used in a programthieaumore, a file may have multiple accessors—althoughitis
up to UNIX to interpret the meaning of these potentially aament accessors—so there is a many-to-one relationship
between a file and its accessors. This relationship is reptegd in auC+ program by a declaration for a file and
subsequent declarations for each accessor.

Traditionally, access to a file is explicit and is achievedgedurally by a call to “open” and a subsequent call
to “close” to terminate the access. [ig+, the declaration of a speciatcess objecperforms the equivalent of the
traditional open and its deallocation performs the eqeivedf the traditional close. In many cases, the accesstobjec
is a local variable so that the duration of access is tiedaaltiration of its containing block. However, by dynamically
allocating an access object and passing its pointer to btbeks, the equivalent access duration provided by timukii
“open” and “close” can be achieved.

In uC+, a connection to a UNIX file is made by declaration of-#e object, e.g.:

uFile infile( "abc" ), outfile( "xyz" );

which creates two connection variablésfjle and outfile, connected to UNIX filesabc andxyz, respectively. The
operations available on a file object are listed in Figlfe

There are no parameters for the first constructonfile and it is used withsetName. The parameter for the
second constructors aFile are as follows. Th@ame parameter is the UNIX name of the file, which is connected to
the program. The destructor ofile checks if there are any registered accessors using therfileasses the exception
TerminateFailure if there are.

It is notmeaningful to read or to assign taiBile object, or copy aiFile object (e.g., pass it as a value parameter).

The member routineetName associates a string name with a file (usually for subsequeett)o The member
routinegetName returns the string name associated with a file.

The parameter for member routisgtus is explained in the UNIX manual entry fatat. (The first parameter to
the UNIX stat routine is unnecessary, as it is provided implicitly by tile object.) Because a file object is still
inaccessible after a connection is made, there are no meolttares to access its contents.
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class uFile {
public :
uFile();
uFile( const char xname );
~uFile();

class FileAccess {
public :
FileAccess();
FileAccess( uFile &f, int flags, int mode = 0644 );
FileAccess( const char xname, int flags, int mode = 0644 );
~FileAccess();

int read( char xbuf, int len, uDuration stimeout = NULL );

int readv( const struct iovec xiov, int iovcnt, uDuration stimeout = NULL );
_Mutex int write( const char «buf, int len, uDuration stimeout = NULL );
int writev( const struct iovec xiov, int iovcnt, uDuration stimeout = NULL );
void open( uFile &f, int flags, int mode = 0644 );

off_t Iseek( off_t offset, int whence );

int fsync();

void status( struct stat &buf );

int fd();

_Event Failure;
_Event OpenFailure;
_Event CloseFailure;
_Event SeekFailure;
_Event SyncFailure;
_Event ReadFailure;
_Event ReadTimeout;
_Event WriteFailure;
_Event WriteTimeout;
}; Il FileAccess

const char xsetName( char *name );
const char xgetName() const ;
void status( struct stat &buf );

_Event Failure;
_Event TerminateFailure;
_Event StatusFailure;

}, Il uFile

Figure 4.1:uFile Interface

To use the interface, include the file:
#include <uFile.h>

at the beginning of each source filéEile.h also includes the following UNIX system filefcntl.h>

4.3.1 File Access

Once a connection is made to a UNIX file, its contents can besset by declaration offileAccess object, e.g.:
uFile::FileAccess input( infile, O_RDONLY ), output( outfile, O_CREAT | O_WRONLY );

which creates one access object to read from the conneotfde &bc and one object to write to the connection made
to file xyz.

There are no parameters for the first constructarriAccess and it is used witlopen. The parameters for the
second constructdtileAccess are as follows. Théparameter is aFile object to be opened for access. Tlags and
mode parameters are explained in the UNIX manual entryofgm. The destructor ofileAccess terminates access to
the file and deregisters with the associaiEie object.

The parameters for the third construckileAccess are as follows. Th@ame parameter is the UNIX name of the
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file, which is connected to the program. In this case, an ititpliFile object is created to represent the file; hence,
there is a one-to-one relationship for this access with pleeified file. Thelags andmode parameters are explained
in the UNIX manual entry fobpen.

It is notmeaningful to read or to assign td-deAccess object, or copy &ileAccess object (e.g., pass it as a value
parameter).

The parameters and return value for member routissss readv, write, writev, open, Iseek andfsync are explained
in their corresponding UNIX manual entries. The first partan® these UNIX routines is unnecessary (exo@ph),
asitis provided implicitly by th&ileAccess object. The only exception is the optional paramétesout, which points
to a maximum waiting time for completion of the 1/0O operatlmefore aborting the operation by raising an exception
(see Sectior10.2.4, p. 130 (The typeuDuration is defined in Sectiori0.1, p. 125 AppendixD.4, p. 163shows
reading and writing to UNIX files.

The member routing&l returns the file descriptor for the open UNIX file.

4.4 BSD Sockets

A socket is an end point for communicating among tasks irekffit processes, possibly on different computers. A
socket endpoint is accessed in one of two ways:

1. as aclient, which is one-to-many for connectionless communicatiothwwiultiple server socket-endpoints, or
one to one for peer-connection communication with a ses\arteptor socket-endpoint.

2. as aserver, which is one-to-many for connectionless communicatiatmwwmultiple client socket-endpoints, or
one to one for peer-connection communication with a sesaeceptorsocket-endpoint.

The relationship between connectionless and peer-caonemtmmunication is shown in Figurds2 and4.3. For
connectionless communication (see Figdrd®, any of the client socket-endpoints can communicate withaf the
server socket-endpoints, and vice versa, as long as theso#ilelress is known. This flexibility is possible because
each communicated message contains the address of the seraeteiver; the network then routes the message to this
address. For convenience, when a message arrives at aeretleé/sender’s address replaces the receiver’s address,
so the receiver can reply back. For peer-connection congation (see Figurd.3), a client socket-endpoint can
only communicate with the server socket-endpoint it has comdeitt, and vice versa. The dashed lines show the
connection of the client and server. The dotted lines shevetbation of an acceptor to service the connection for peer
communication. The solid lines show the bidirectional caimiation among the client and server’s acceptor. Since
a specific connection is established between a client anegrssocket-endpoints, messages do not contain sender
and receive addresses, as these addresses are implicitiyikhrough the connection. Notice there are fewer socket
endpoints in the peer-connection communication versusdheectionless communication, but more acceptors. For
connectionless communication, a single socket-endpempentially handles both the connection and the transfer
of data for each message. For peer-connection commumgcatisingle socket-endpoint handles connections and an
acceptor transfers data in parallel. In general, peer-®ctiion communication is more expensive (unless large atsoun
of data are transferred) but more reliable than conne&gstommunication.

A server socket has a name, either a character string for Uids or port-number/machine-address for an INET
address, that clients must know to communicate. For cormmess communication, the server usually has a reader
task that receives messages containing the client’s agldfes message can be processed by the reader task or given to
a worker task to process, which subsequently returns a ushg the client’'s address present in the received message.
For peer-connection communication, the server usuallyohagask in a loop accepting connections from clients, and
each acceptance creates an acceptor task. The acceptmrdaisles messages from only one client socket-endpoint,
processes the message and subsequently returns a repayalfelpwith accepting clients. Since the acceptor and
client are connected, communicated messages do not catiemihaddresses. These relationships are represented in
auC+ program by declarations of client, server and accepiots, respectively.

The pC+ socket interface provides a convenience feature fonectionless communication to help manage the
addresses where messages are sent. It is often the caselteat anly sends messages from its client socket-endpoint
to a single server socket-endpoint or sends a large numimeesgages to a particular server socket-endpoint. In these
cases, the address of the server remains constant for a éoingl pf time. To mitigate having to specify the server
address on each call for a message send, the client sodketiatbrememberghe last server address it receives a
message from, and there is a short form of send that useethemmbered address. The initial remembered (default)
address can be set when the client socket-endpoint is dreatet/reset at any time during its life-time. A similar
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clienty
process @ serveg
Server process
client, servep servep
proces process

serveg

@ socket endpoint

Figure 4.2: Client/Server Connectionless
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Figure 4.3: Client/Server Peer Connected

convenience feature exists for the server socket-endpeirdre the last client address it receives a message from is
remembered and can be implicitly used to send a messagd#yllsack to that client.

To use the interface inj@C+ program, include the file:
#include <uSocket.h>

at the beginning of each source fileuSocket.h also includes the following UNIX system filesssys/fcntl.h>,
<sysl/types.h>, <sys/socket.h>,<sys/un.h>, <netdb.h>.
The following helper routines are available for convertififerent forms of Internet address to an ip address used
by a client or a server. These routines are static withinythe dSocket:
in_addr uSocket::gethostbyname( const char xname );

in_addr uSocket::gethostbyip( const char =«ip );
in_addr uSocket::itoip( in_addr_t ip );

gethostbyname takes a machine name, e.glg.uwaterloo.ca, and returns the 4-byte ip address for this machine.
gethostbyip takes a character string ip address, €.§23. 123. 123. 123", and returns the 4-byte ip address equiva-
lent. itoip takes an integer containing an ip address and returims_addr object containing this integer ip value. If
routinesgethostbyname or gethostbyip fail to lookup a machine name or convert the string ip addriégsexception
uSocket::IPConvertFailure is raised.
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_Monitor uSocketClient {

public :

/I AF_UNIX
uSocketClient( const char xname, int type = SOCK_STREAM, int protocol = 0 );
uSocketClient( const char xname, uDuration stimeout, int type = SOCK_STREAM, int protocol = 0 );
/I AF_INET, local host
uSocketClient( unsigned short port, int type = SOCK_STREAM, int protocol = 0 );
uSocketClient( unsigned short port, uDuration «timeout, int type = SOCK_STREAM, int protocol = 0 );
/I AF_INET, other host
uSocketClient( unsigned short port, in_addr ip, int type = SOCK_STREAM, int protocol = 0 );
uSocketClient( unsigned short port, in_addr ip, uDuration stimeout, int type = SOCK_STREAM,
int protocol = 0 );
~uSocketClient();

void setServer( struct sockaddr saddr, socklen_t len );
void getServer( struct sockaddr xaddr, socklen_t «len );

const struct sockaddr xgetsockaddr();  // must cast result to sockaddr_in or sockaddr_un
int getsockname( struct sockaddr sname, socklen_t «len );
int getpeername( struct sockaddr sname, socklen_t slen );

int read( char *buf, int len, uDuration stimeout = NULL );

int readv( const struct iovec xiov, int iovcnt, uDuration «xtimeout = NULL );

_Mutex int write( const char «buf, int len, uDuration «timeout = NULL );

int writev( const struct iovec xiov, int iovcnt, uDuration xtimeout = NULL );

int send( char buf, int len, int flags = 0, uDuration «timeout = NULL );

int sendto( char sbuf, int len, int flags = 0, uDuration stimeout = NULL );

int sendto( char xbuf, int len, struct sockaddr «to, socklen_t tolen, int flags = 0, uDuration xtimeout = NULL );

int sendmsg( const struct msghdr *msg, int flags = 0, uDuration stimeout = NULL );

int recv( char «buf, int len, int flags = 0, uDuration stimeout = NULL );

int recvfrom( char «buf, int len, int flags = 0, uDuration «timeout = NULL );

int recvfrom( char «buf, int len, struct sockaddr sfrom, socklen_t s«fromlen, int flags = 0,
uDuration stimeout = NULL );

int recvmsg( struct msghdr *msg, int flags = 0, uDuration xtimeout = NULL );

ssize_t sendfile( FileAccess &file, off_t «off, size_t len, uDuration stimeout = NULL );

int fd();

_Event Failure;

_Event OpenFailure;
_Event OpenTimeout;
_Event CloseFailure;
_Event ReadFailure;
_Event ReadTimeout;
_Event WriteFailure;
_Event WriteTimeout;
_Event SendfileFailure;
_Event SendfileTimeout;

Figure 4.4:uSocketClient Interface

4.4.1 Client

In uC+, a client, its socket endpoint, and possibly a conned¢ti@ server are created by declaration oSacketClient
object, e.g.:

uSocketClient client( " abc" );

which creates a client variablelient, connected to the UNIX server socketyc. The operations provided by
uSocketClient are listed in Figurd.4:

The first two constructors afSocketClient are for use with the UNIX address family. The parameters lier t

constructors are as follows. Thame parameter is the name of an existing UNIX stream that thetiéeconnecting
to. Thename parameter can beULL for typeSOCK_DGRAM, if there is no initial server address. The optional default
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type andprotocol parameters are explained in the UNIX manual entrystaket. Only typesSOCK_STREAM and
SOCK_DGRAM communication can be specified, and any protocol apprapidathe specified communication type
(usually 0). The optionalmeout parameter is a pointer to a maximum waiting time for comptetf a connection for
typeSOCK_STREAM before aborting the operation by raising an exception (set@10.2.4, p. 13} this parameter
is only applicable for peer-connectic®QCK_STREAM, communication.

The next two constructors afSocketClient are for use with the INET address family on a local host. Thaipa
eters for the constructors are as follows. Tdoet parameter is the port number of an INET port on the local host
machine. The optional defaulipe andprotocol parameters are explained in the UNIX manual entrystaket. Only
typesSOCK_STREAM and SOCK_DGRAM communication can be specified, and any protocol apprepftatthe
specified communication type (usually 0). The optional petertimeout is a pointer to a maximum waiting time
for completion of a connection for tyf®OCK_STREAM before aborting the operation by raising an exception; this
parameter is only applicable for peer-connect®@CK_STREAM, communication.

The last two constructors aSocketClient are for specifying a specific ip address with the INET addfassly on
a nonlocal host. All parameters are the same as for the losadase, except the specific nonlocal address is specified
by theip parameter.

The destructor ofiSocketClient terminates the socket (close) and removes any temporasycfiEated implicitly
for SOCK_STREAM andSOCK_DGRAM communication.

It is notmeaningful to read or to assign ta8ocketClient object, or copy aiSocketClient object (e.g., pass it as a
value parameter).

The member routingetServer changes the address of the default server for the short fofrsesdto andrecvfrom.

The member routingetServer returns the address of the default server.

The parameters and return value for the I/O members areiegglan their corresponding UNIX manual entries,

with the following exceptions:

e getpeername is only applicable for connected sockets.

e The first parameter to these UNIX routines is unnecessari, iaprovided implicitly by theuSocketClient
object.

e The lack of address for the overloaded member routiaadto andrecvfrom.

The client implicitly remembers the address of the initiahnection and eactecvfrom call. Therefore, no
address needs to be specified in seedto, as the data is sent directly back to the last address receive
a client needs to communicate with multiple servers, ekpiddresses can be specified in betindto and
recvfrom.

This capability eliminates the need to connect datagrarkedsdo use the short communication forsesnd
andrecv, using the connected address. In general, connected datapckets have the same efficiency as
unconnected ones, but preclude specific addressingevidto andrecvfrom. The above scheme provides the
effect of a connected socket while still allowing specifideabsing if required.

e The optional parametaimeout, which points to a maximum waiting time for completion of @ operation
before aborting the operation by raising an exception (set@&10.2.4, p. 13

The member routing&l returns the file descriptor for the client socket.

AppendixD.5.1, p. 165hows a client communicating with a server using a UNIX sbeke datagram messages.
AppendixD.5.3, p. 168shows a client connecting to a server using an INET sockesatrrdm communication with
an acceptor.

4.4.2 Server

In pC+, a server, its socket endpoint, and possibly a connetdia client are created by declaration ofSocketServer
object, e.g.:
uSocketServer server( "abc" );

which creates a server variablsgrver, and a UNIX server socket endpoirdbc. The operations provided by
uSocketServer are listed in Figuré.5.

The first constructor aiSocketServer is for use with the UNIX address family. The parameters ferdabnstructors
are as follows. Theame parameter is the name of a new UNIX server socket that thesirereating. The optional
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_Monitor uSocketServer {
public :

/I AF_UNIX
uSocketServer( const char xname, int type = SOCK_STREAM, int protocol = 0, int backlog = 10 );
/I AF_INET, local host
uSocketServer( unsigned short port, int type = SOCK_STREAM, int protocol = 0, int backlog = 10 );
uSocketServer( unsigned short *port, int type = SOCK_STREAM, int protocol = 0, int backlog = 10 );
uSocketServer( unsigned short port, in_addr ip, int type = SOCK_STREAM, int protocol = 0, int backlog = 10 );
uSocketServer( unsigned short *port, in_addr ip, int type = SOCK_STREAM, int protocol = 0, int backlog = 10 );
~uSocketServer();

void setClient( struct sockaddr =addr, socklen_t len );
void getClient( struct sockaddr xaddr, socklen_t «len );

const struct sockaddr xgetsockaddr();  // must cast result to sockaddr_in or sockaddr_un
int getsockname( struct sockaddr sname, socklen_t «len );
int getpeername( struct sockaddr sname, socklen_t slen );

int read( char *buf, int len, uDuration stimeout = NULL );

int readv( const struct iovec xiov, int iovcnt, uDuration xtimeout = NULL );

_Mutex int write( const char «buf, int len, uDuration «timeout = NULL );

int writev( const struct iovec xiov, int iovcnt, uDuration xtimeout = NULL );

int send( char «buf, int len, int flags = 0, uDuration stimeout = NULL );

int sendto( char sbuf, int len, int flags = 0, uDuration stimeout = NULL );

int sendto( char xbuf, int len, struct sockaddr «to, socklen_t tolen, int flags = 0, uDuration xtimeout = NULL );

int sendmsg( const struct msghdr *msg, int flags = 0, uDuration stimeout = NULL );

int recv( char «buf, int len, int flags = 0, uDuration stimeout = NULL );

int recvfrom( char «buf, int len, int flags = 0, uDuration «timeout = NULL );

int recvfrom( char «buf, int len, struct sockaddr sfrom, socklen_t s«fromlen, int flags = 0,
uDuration stimeout = NULL );

int recvmsg( struct msghdr *msg, int flags = 0, uDuration xtimeout = NULL );

ssize_t sendfile( FileAccess &file, off_t «off, size_t len, uDuration stimeout = NULL );

int fd();

_Event Failure;

_Event OpenFailure;
_Event CloseFailure;
_Event ReadFailure;
_Event ReadTimeout;
_Event WriteFailure;
_Event WriteTimeout;
_Event SendfileFailure;
_Event SendfileTimeout

Figure 4.5:uSocketServer Interface

defaulttype andprotocol parameters are explained in the UNIX manual entryséaket. Only typesSOCK_STREAM
andSOCK_DGRAM communication can be specified, and any protocol apprepitatthe specified communication
type (usually 0). The optional defalicklog parameters is explained in the UNIX manual entryiien; it specifies a
limit on the number of incoming connections from clients &inly applicable for peer-connecti@QCK_STREAM,
communication.

The next two constructors efSocketServer are for use with the INET address family on a local host. The pa
rameters for the constructors are as follows. pbe parameter is the port number of an INET port on the local host
machine, or a pointer to a location where a free port numiedzcted by the UNIX system, is placed. The optional
defaulttype andprotocol parameters are explained in the UNIX manual entryséaket. Only typesSOCK_STREAM
and SOCK_DGRAM communication can be specified, and any protocol apprepfatthe specified communica-
tion type (usually 0). The optional defaulacklog parameters is explained in the UNIX manual entry feten;
it specifies a limit on the number of incoming connectionsrfrdients and is only applicable for peer-connection,
SOCK_STREAM, communication.

The last two constructors efSocketServer are for specifying a specific ip address with the INET addfassly
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on the local host. All parameters are the same as for the lasdlcase, except the specific local address is specified
by theip parameter.

The destructor ofiSocketServer terminates the socket (close) and checks if there are ansteegd accessors
using the server, and raises the excep@trseFailure if there are.

Itis not meaningful to read or to assign tai8ocketServer object, or copy aiSocketServer object (e.g., pass it as
a value parameter).

The member routinsetClient changes the address of the default client for the short fofresndto andrecvfrom.
The member routingetClient returns the address of the default client.

The parameters and return value for the I/O members areiagglén their corresponding UNIX manual entries,
with the following exceptions:

e getpeername is only applicable for connected sockets.

e The first parameter to these UNIX routines is unnecessarny,igprovided implicitly by theuSocketServer
object.

e The lack of address for the overloaded member routiaadto andrecvfrom.

The server implicitly remembers the address of the init@rection and eactecvfrom call. Therefore, no
address needs to be specified in $khadto, as the data is sent directly back to the last address reteifa
server needs to communicate with multiple clients withesponding back immediately to each request, explicit
addresses can be specified in bsghdto andrecvfrom.

This capability eliminates the need to connect datagrarketedo use the short communication forgesd
andrecv, using the connected address. In general, connected datagickets have the same efficiency as
unconnected ones, but preclude specific addressingevitto andrecvfrom. The above scheme provides the
effect of a connected socket while still allowing specifideabsing if required.

e The optional parameteimeout, which points to a maximum waiting time for completion of @ operation
before aborting the operation by raising an exception (set@&10.2.4, p. 13

The member routing&l returns the file descriptor for the server socket.

AppendixD.5.2, p. 167shows a server communicating with multiple clients usingNiXJsocket and datagram
messages. AppendR2.5.4, p. 170shows a server communicating with multiple clients usingMBT socket and
stream communication with an acceptor.

4.4.3 Server Acceptor

After a server socket is created for peer-connection conigatian, it is possible to accept connections from clients
by declaration of aSocketAccept object, e.g.:
uSocketAccept acceptor( server );

which creates an acceptor objestceptor, that blocks until a client connects to the UNIX socksts, represented by
server objecserver. The operations provided lmSocketAccept are listed in Figurd.6.

The parameters for the constructorsuSbcketAccept are as follows. The parameter is aSocketServer object
through which a connection to a client is made. The optioefhdtadr andlen parameters, are explained in the
UNIX manual entry foraccept, and are used to determine information about the client ttetor is connected
to. The optionatimeout parameter is a pointer to a maximum waiting time for completf the connection before
aborting the operation by raising an exception (see Sedtibd.4, p. 130 The optionaldoAccept parameter is a
boolean where true means do an initial accept during imtibn of the acceptor and false means do not do an initial
accept. If thedoAccept parameter is not specified, its value is true.

The destructor oluSocketAccept terminates access to the socket (close) and deregistdnsthat associated
uSocketServer object.

Itis notmeaningful to read or to assign tai8ocketAccept object, or copy aiSocketAccept object (e.g., pass it as
a value parameter).

The member routinaccept closes any existing connection to a client, and accepts ananection with a client.
This routine uses the default valuadr, len andtimeout as specified to theSocketAccept constructor for the new
connection, unless the optionaheout parameter is specified, which is used for the current acagpteplaces the
defaulttimeout for subsequent accepts. The member routioge closes any existing connection to a client.
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_Monitor uSocketAccept {

public :

uSocketAccept( uSocketServer &s, struct sockaddr xadr = NULL, socklen_t slen = NULL );

uSocketAccept( uSocketServer &s, uDuration xtimeout, struct sockaddr *adr = NULL, socklen_t «len = NULL );

uSocketAccept( uSocketServer &s, bool doAccept, struct sockaddr xadr = NULL, socklen_t slen = NULL );

uSocketAccept( uSocketServer &s, uDuration stimeout, bool doAccept, struct sockaddr *adr = NULL,
socklen_t «len = NULL );

~uSocketAccept();

void accept();
void accept( uDuration stimeout );
void close();

_Mutex const struct sockaddr sgetsockaddr(); // must cast result to sockaddr_in or sockaddr_un
_Mutex int getsockname( struct sockaddr xname, socklen_t len );
_Mutex int getpeername( struct sockaddr sname, socklen_t «len );

int read( char sbuf, int len, uDuration stimeout = NULL );

int readv( const struct iovec xiov, int iovcnt, uDuration «timeout = NULL );

_Mutex int write( const char «buf, int len, uDuration «timeout = NULL );

int writev( const struct iovec =iov, int iovcnt, uDuration stimeout = NULL );

int send( char «buf, int len, int flags = 0, uDuration xtimeout = NULL );

int sendto( char xbuf, int len, int flags = 0, uDuration stimeout = NULL );

int sendto( char sbuf, int len, struct sockaddr «to, socklen_t tolen, int flags = 0, uDuration stimeout = NULL );

int sendmsg( const struct msghdr *msg, int flags = 0, uDuration stimeout = NULL );

int recv( char «buf, int len, int flags = 0, uDuration «timeout = NULL );

int recvfrom( char xbuf, int len, int flags = 0, uDuration stimeout = NULL );

int recvfrom( char «buf, int len, struct sockaddr sfrom, socklen_t «fromlen, int flags = O,
uDuration stimeout = NULL );

int recvmsg( struct msghdr xmsg, int flags = 0, uDuration stimeout = NULL );

ssize_t sendfile( FileAccess &file, off_t «off, size_t len, uDuration stimeout = NULL );

int fd();

_Event Failure;

_Event OpenFailure;
_Event OpenTimeout;
_Event CloseFailure;
_Event ReadFailure;
_Event ReadTimeout;
_Event WriteFailure;
_Event WriteTimeout;
_Event SendfileFailure;
_Event SendfileTimeout;

Figure 4.6:uSocketAccept Interface

The parameters and return value for the 1/O members areiegglan their corresponding UNIX manual entries,

with the following exceptions:

e The first parameter to these UNIX routines is unnecessary,iagprovided implicitly by theuSocketAccept
object.

e The optional parameteimeout, which points to a maximum waiting time for completion of @ operation
before aborting the operation by raising an exception (e2#i&110.2.4, p. 13D

The member routin&l returns the file descriptor for the accepted socket.

O pC+H doesnot support out-of-band data on sockets. Out-of-band datanegthe ability to install a
signal handler (see Sectidnl, p. 55. Currently, there is no facility to do this. O
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Chapter 5

Exceptions

C+ has an exception handling mechanism (EHM) based on thgoand catching in sequential programs; however,
this mechanism does not extend to a complex execution@mwient. The reason is that the C+ EHM only deals
with a single raise-mechanism and a simple execution-enmient, i.e., throwing and one stack. Ti@&H execution
environment is more complex, and hence, it provides additicaising-mechanisms and handles multiple execution-
states (multiple stacks). These enhancements requiréaddilanguage semantics and constructs; therefore, the
EHM in uC+ is a superset of that in C+, providing more advanced iae semantics. As well, with hindsight,
some of the poorer features of C+’'s EHM are replaced by betézhanisms.

5.1 EHM

An exceptional eventis an event that is (usually) known to exist but whichaiscillary to an algorithm, i.e., an
exceptional event usually occurs with low frequency. Sorergles of exceptional events are division by zero, I/O
failure, end of file, pop from an empty stack, inverse of a slagmatrix. Often an exceptional event occurs when an
operation cannot perform its desired computation (Egfabtion of contract failureNley92, p. 395]). While errors
occur infrequently, and hence, are often considered arpéroal event, it is incorrect to associate exceptionslgole
with errors; exceptions can be a standard part of a regugarigim.

An exceptional event is often represented in a programnaingdage by a type name, calledeaeption type
An exceptionis an instance of an exception type, which is used in a spep&ation, calledaising, indicating an
ancillary (exceptional) situation. Raising results inexceptionathange of control flow in the normal computation
of an operation, i.e., control propagates immediately tym@achically specifiechandler. To be useful, the handler
location must be dynamically determined, as opposed twaligtdetermined; otherwise, the same action and context
for that action is executed for every exceptional change.

Two actions can sensibly be taken for an exceptional event:

1. The operation can fail requirirtgrmination of the expression, statement or block from which the openat
invoked. In this case, if the handler completes, control tontinuesafter the handler, and the handler acts as
an alternative computation for the incomplete operation.

2. The operation can fail requiring a corrective action befesumption of the expression, statement or block
from which the operation is invoked. In this case, if the Handompletes, control floweturnsto the operation,
and the handler acts as a corrective computation for theriptete operation.

Both kinds of actions are supportedi@+. Thus, there are two possible outcomes of an operatammal completion
possibly with a correction action, or failure with changeantrol flow and alternate computation.

O Even with the availability of modern EHMs, the common pragnaing techniques often used to
handle exceptional events are return codes and statusdlifiysugh this is slowly changing). Theturn
codetechnique requires each routine to return a correctness wal completion, where different values
indicate a normal or exceptional result during a routingisogition. Alternatively, or in conjunction with
return codes, is thetatus flagtechnique requiring each routine to set a shared variableoompletion,
where different values indicate a normal or exceptionallteiiring a routine’s execution, e.gxrmo in
UNIX systems. The status value remains as long as it is natwiteen by another routine. O

67
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5.2 uC+ EHM
The following features characterize the+ EHM, and differentiate it from the C+ EHM:

e UCH exceptions are generated from a specific kind of typeclvban be thrown and/or resumed. All exception
types are also grouped into a hierarchy by publicly inhegitmong the exception typgsC+ extends the C+
set of predefined exception-tygesoveringuC+ exceptional runtime and 1/0 events.

e LCH+- restricts raising of exceptions to the specific exceptipes; C+ allows any instantiable type to be raised.

e UCH supports two forms of raising, throwing (terminatingdaresuming; C+ only supports throwing. All
uUC+H exception-types can be either thrown or resumech+ adopts a marking scheme to eliminate recursive
resuming (see Sectioh.5.3.1, p. 7h Essentially,uC+ follows a common rule for throwing and resuming:
between a raise and its handler, each handler is eligiblearde.

e UCH supports two kinds of handlers, termination and resionpivhich match with the kind of raise; C+ only
supports termination handlers. Unfortunately, resunmptiandlers have some restrictions because of the lack
of nested routines in C+.

e UC+H supports raising of nonlocal and concurrent exceptganthat exceptions can be used to affect control
flow amongcoroutines and tasks. Aonlocal exceptionoccurs when the raising and handling execution-states
are different, and control flow is sequential, i.e., the éldreaising the exception is also the thread handling the
exception. Aconcurrent exceptionalso has different raising and handling execution-stdtesde, concurrent
exceptions are also nonlocal), but control flow is concuriien, the thread raising the exception is different from
the thread handling the exception. Ta@+ kernel implicitly polls for both kinds of exceptions &t soonest
possible opportunity. It is also possible to (hierarcHigaddlock these kinds of exceptions when delivery would
be inappropriate or erroneous.

5.3 Exception Type

While C+ allows any type to be used as an exception ty@et restricts exception types to those defined Byent,
which has all the properties ofctass :
_Event exception-type name {

I3
As well, every exception type must have a public default aylconstructor.

O Because C+ allows any type to be used as an exception tygeerits to provide additional generality,
i.e., there is no special exception type in the language. évevw in practice, this generality is almost
never used. First, using a builtin type like as an exception type is dangerous because the type has no
inherent meaning for any exceptional event. Thatis, omatjbroutine can raisiat to mean one thing and
another routine can raise& to mean another; a handler catchingmay have no idea about the meaning

of the exception. To prevent this ambiguity, programmeesiter specific types describing the exception,
e.g.,overflow, underflow, etc. Second, these specific exception types can very raeelised in normal
computations, so the sole purpose of these types is fongaisiambiguous exceptions. In essence, C+
programmers ignore the generality available in the languagl follow a convention of creating explicit
exception-types. This practice is codifiedu@+. O

5.3.1 Creation and Destruction

An exception is the same as a class object with respect ttiamesnd destruction:

_Event E{... };

E e; /I local exception

_Resume e;

E +ep = new E; /I dynamic exception
_Resume «ep;

delete ep;

_Throw E(); /I temporary local exception

1std::bad_alloc, std::bad_cast, std::bad_typeid, std::bad_exception, std::basic_ios::failure, etc.
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However, an exception object declarectasst , as in:
const E ce;
cannotbe used to raise @gC+ exception (see Secti@n6, p. 78.

5.3.2 Inherited Members

Each exception type, if not derived from another exceptypeis implicitly derived from the event typBaseEvent,
e.g.:

_Event exception-type name : public uBaseEvent ...
where the interface for the base-clagaseEvent is:

class uBaseEvent {
protected :
uBaseEvent( const char «const msg ="" );
void setMsg( const char xconst msg );
public :
enum RaiseKind { ThrowRaise, ResumeRaise };

const char xconst message() const ;
const uBaseCoroutine &source() const ;
const char xconst sourceName() const ;
RaiseKind getRaiseKind();

void reraise() const ;

virtual uBaseEvent xduplicate() const ;
virtual void defaultTerminate();

virtual void defaultResume();

I3
The constructor routineBaseEvent has the following form:

nn

uBaseEvent( const char :const msg = "" ) — creates an exception with specified message, which isegrint
an error message if the exception is not handled. The messagpied when an exception is created so it is
safe to use within an exception even if the context of theermisleleted.

The member routinsetMsg is an alternate way to associate a message with an exception.

The member routinmessage returns the string message associated with an excepti@m&mber routinsource
returns the coroutine/task that raised the exceptiongitttteption has been raised locally, the valueL is returned.
In some cases, the coroutine or task may be deleted whendkpten is caught so this reference may be undefined.
The member routinsourceName returns the name of the coroutine/task that raised the ¢rceff the exception has
been raised locally, the valde unknown+" is returned. This name is copied from the raising corout@s&/when an
exception is created so it is safe to use even if the corataisieis deleted. The member routigeRaiseKind returns
whether the exception is throwm{rowRaise) or resumedResumeRaise) at the raise. The member routir@aise
either rethrows or reresumes the exception depending orth@exception was originally raised. The member routine
duplicate returns a copy of the raised exception, which can be usedde tfae same exception in a different context
after it has been caught; the copy is allocated on the hedfassbe responsibility of the caller to delete the exceptio

The member routindefaultTerminate is implicitly called if an exception is thrown but not handjehe default
action is to calluAbort to terminate the program with the supplied message. The rerbtinedefaultResume is
implicitly called if an exception is resumed but not handlie default action is to throw the exception, which begins
the search for a termination handler from the point of theéahiesume. In both cases, a user-defined default action
may be implemented by overriding the appropriate virtuaier.

5.4 Raising
There are two raising mechanisms: throwing and resuminghdumore, raising can be done locally, nonlocally or
concurrently. The kind of raising for an exception is specifby the raise statements:

_Throw [ exception-type] ;

_Resume [ exception-type ][ _At uBaseCoroutine-id] ;

If _Throw has noexception-typgit is arethrow, meaning the currently thrown exception continues propagalf
there is no current thrown exception but there is a curreaeymed exception, that exception is thrown. Otherwise,
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the rethrow results in a runtime error. 1Resume has noexception-typeit is a reresume meaning the currently
resumed exception continues propagation. If there is neentiresumed exception but there is a currently thrown
exception, that exception is resumed. Otherwise, the waregesults in a runtime error. The optionait clause
allows the specified exception or the currently propagagxaeption (reresume) to be raised at another coroutine or
task. Nonlocal and concurrent raise is restricted to resiampecause the raising execution-state is often unaware o
the current state for the handling execution-state. Retomallows the handler the greatest flexibility in this sition
because it can process the exception as a resumption oowetihe exception for termination (which is the default
behaviour, see Sectidn3.2.

Exceptions iruC+ are propagated differently from C+. In C+, theow statement initializes a temporary object,
the type of which is determined from the static type of therapd, and propagates the temporary objectu@t,
the _Throw and_Resume statements throw an exception that is the type of the obgéetenced by the operand. For
example:

CH pPCH

class B {}; _Event B {};
class D : public B {}; | _Event D : public B {};
void f( B &t) { void f( B &t) {

throw t; _Throw t;
} }
D m; D m;
f(m); f(m);

in the C+ program, routinis passed an object of derived typéut throws an object of base typebecause the static
type of the operand for throw, is of typeB. However, in thuC+ program, routinéis passed an object of derived
type D and throws the original object of tyge. This change makes a significant difference in the orgainizaf
handlers for dealing with exceptions by allowing handlersdtch the specific rather than the general exception-type.

O Note, when subclassing is used, it is better to catch an &ecepy reference for termination and re-

sumption handlers. Otherwise, the exception is truncaied its dynamic type to the static type specified
at the handler, and cannot be down-cast to the dynamic typiiceé\ catching truncation is different from

raising truncation, which does not occunig+. O

5.4.1 Nonlocal Propagation

A nonlocal exception can be used to affect control flow witbpext tosequentiakxecutionamongcoroutines. That

is, a source execution raises an exception at a faultinguéiee¢ propagation occurs in the faulting execution. The
faulting execution polls at certain points to check for pegdhonlocal-exceptions; when nonlocal exceptions are
present, the oldest matching exception is propagated (BH#t@ce) as if it had been raised locally at the point of the
poll. Nonlocal exceptions among coroutines are possibtalise each coroutine has its own execution-state (stack).
For example, in Figuré.1 coroutinec loops until a nonlocabone exception is raised at it byMain. Since coroutine
control-flow is sequential, the exception typene is not propagated immediately. In fact, the exception cdg on
be propagated the next time coroutinbecomes active. HenceMain must make a call tea.mem somem resumes

c and the pending exception is propagated. If multiple naallexceptions are raised at a coroutine, the exceptions
are delivered serially but only when the coroutine beconségea Note,nonlocal exceptions are initially turned off

for a coroutine, so handlers can be set bpforeany nonlocal exception can be propagated. Propagationnddoal
exceptions is turned on via thé&nable statement (see Secti®y.2).

5.4.2 Enabling/Disabling Propagation

pC+ allows dynamic enabling and disabling of nonlocal exioeppropagation. The constructs for controlling prop-
agation of nonlocal exceptions are thenable and the_Disable blocks, e.g.:

_Enable <E1> <E2> ... { _Disable <E1> <E2> ...{
/I code in enable block /I code in disable block

} }
The arguments in angle brackets for ttenable or _Disable block specify the exception types allowed to be prop-
agated or postponed, respectively. Specifying no excetipes is shorthand for specifying all exception types.
Though a nonlocal exception being propagated may matchmatie than one exception type specified in tiaable
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_Event Done {};

_Coroutine C {
void main() {

try {
_Enable { /I allow nonlocal exceptions

for () {

. suspend(); ...

}
} catch( Done ) { ... }

public :
void mem() { resume(); }
2
void uMain::main() {
Cg
for (inti=0;i<5;i+=1) c.mem();
_Resume Done() _At c; /I deliver nonlocal exception
c.mem(); /I trigger pending exception
}

Figure 5.1: Nonlocal Propagation

or _Disable block due to exception inheritance (see Sect®i3s2, p. 6%and5.8, p. 8), it is unnecessary to define a
precise matching scheme because the exception type is eithbled or disabled regardless of which exception type
it matches with.

_Enable and_Disable blocks can be nested, turning propagation on/off on entdyraastablishing the delivery
state to its prior value on exit. Upon entry of &nable block, exceptions of the specified types can be propagated,
even if the exception types were previously disabled. Siryil upon entry to a Disable block, exceptions of the
specified types become disabled, even if the exception tyjees previously enabled. Upon exiting_&nable or
_Disable block, the propagation of exceptions of the specified types@stored to their state prior to entering the
block.

Initially, nonlocal propagation is disabled for all exception typesarcoroutine or taskso handlers can be set up
before any nonlocal exceptions can be propagated, regiitie followinguC+- idiom in a coroutine or task main:

void main() {
/I initialization, nonlocal exceptions disabled

try { /I setup handlers for nonlocal exceptions
_Enable { /I enable propagation of all nonlocal exception- types
/I rest of the code for this coroutine or task
} /I disable all nonlocal exception- types
} catch ... /I catch nonlocal exceptions occurring in enable block

/I finalization, nonlocal exceptions disabled
}
Several of the predefined kernel exception-types are iitiglienabled in certain contexts to ensure their prompt
delivery (see Sectioh.11.1, p. 83
TheuC+ kernel polls implicitly for nonlocal exceptions (anchcallation, see Sectidd p. 89 when the following
occur:

after a call touBaseTask::yield,

when an_Enable statement is encountered,

when auEnableCancel object is instantiated (see Sectiér2, p. 90
after a task migrates to another cluster,

after a task unblocks if it blocked when trying to enter a nbami
after a task unblocks if it blocked on accept statement,

after a task unblocks if it blocked when acquiringlabck,

after a task unblocks if it blocked when trying to perform /O
the first time a coroutine/task’sain routine is executed,
afteruBaseCoroutine::suspend/uBaseCoroutine::resume return.
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If this level of polling is insufficient, explicit polling ipossible by calling:
int uBaseCoroutine::asyncpoll();

which returns the number of exceptions propagated by thiisogaoll. In general, explicit polling is only necessary if
pre-emption is disabled, a large number of nonlocal exoagiypes are arriving, or timely propagation is important.

5.4.3 Concurrent Propagation

A local exception within a task is the same as for an exceptidimn a routine or class. An exception raised and not
handled inside a task performs the C+ default action ofngalérminate, which must abort (see SectiérB.1, p. 82.

As mentioned, a nonlocal exception between a task and atoeas the same as between coroutines (sequential). A
concurrent exception between tasks is more complex duetmthitiple threads.

Concurrent exceptions provide an additional kind of comivation over a normal member call. Thatis, a concur-
rent exception can be used to force a communication wheneguégn state might otherwise be computing instead
of accepting calls. For example, two tasks may begin seagdor a key in different sets; the first task to find the key
needs to inform the other task to stop searching, e.g.:

_Task searcher {

searcher &partner; /I other searching task
void main() {

try {
_Enable {

/I implicit or explicit polling is occurring
if (key==...)
_Resume stop() _At partner; // inform partner search is finished

} cat}ch(stop Y{...}
Without this control-flow mechanism, both tasks have to furla call from the other task at regular intervals to know
if the other task found the key. Concurrent exceptions hetids case and others.

When a task performs a concurrent raise, it blocks only loraugh to deliver the exception to the specified task
and then continues. Hence, the communication is asynchspmdiereas member-call communication is synchronous.
Once an exception is delivered to a task, the runtime systempagates it at the soonest possible opportunity. If
multiple concurrent-exceptions are raised at a task, thepgions are delivered serially.

5.5 Handler

A handler catches a propagated exception and attempts ttavitleahe exceptional event. Each handler is associated
with a particular block of code, called @uarded block. puC+ supports two kinds of handlers, termination and

resumption, which match with the kind of raise. An unhandbeckption is dealt with by an exception default-member
(see Sectio’.3.2, p. 69.

5.5.1 Termination

A termination handler is a corrective actioafter throwing an exception during execution of a guarded blockeW

a termination handler begins execution, the stack from dietf the throw up to and including the guarded block
is unwound; hence, all block and routine activations on tlaeksat or below the guarded block are deallocated,
including all objects contained in these activations. A&tdermination handler completes, i.e., it does not perform
another throw, control continues after the guarded bloék @ssociated with. A termination handler often only has
approximate knowledge of where an exceptional event oedurrthe guarded block (e.g., a failure in library code),
and hence, any partial results of the guarded-block cortipntare suspect. InC+-, a termination handler is specified
identically to that in C+catch clause of ary statement. (The details of termination handlers can bedaua C+
textbook.) Figuré.2shows how C+ anfC+ throws an exception to a termination handler. The difiees are using
_Throw instead ofthrow , throwing the dynamic type instead of the static type, agdiring a special exception type
for all exceptions.

5.5.2 Resumption

A resumption handler is an intervention actioafter resuming an exception during execution of a guarded block.
When a resumption handler begins execution, the stanktisnwound; hence, all block and routine activations on
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CH pPCH
class E { _Event E {
public : public :

int i; int i;

E(inti):i(i){} E(inti):i(i){}

void f() { void f() {

throw E( 3); _Throw E( 3);

}
int main() { void uMain::main() {
try { try {
f0; f0;

}catch( E e){ }catch(E e) {
cout << e.i << endl; cout << e.i << endl;
throw ; _Throw;

I try Y I try
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Figure 5.2: C+ versugC+ Terminating Propagation

the stack at or below the guarded block are retained, inctudil objects contained in these activations. After a
resumption handler completes, i.e., it does not perform@sthcontrol returns after the raise statement initiatimg t
propagation. To obtain precise knowledge of the exceptievent, information about the event and variables at the
resumption raise are passed to the handler so it can effdwrage before returning. Alternatively, the resumption
handler may determine a correction is impossible and thmowxaeption, effectively changing the original resume
into a throw. Unlike normal routine calls, the call to a reqtion handler is dynamically bound rather than statically
bound, so different corrections can occur for the samecstatitext.

To provide resumptiornyC+ extends they block to include resumption handlers, where the resumjtandler
is denoted by a CatchResume clause at the end oftey block:

try {

} _CatchResume (E1 & ) { ...} /I must appear before catch clauses
/l more _CatchResume clauses
_CatchResume (... ){ ...} /I must be last _CatchResume clause
catch(E2 & ) { ...} /I must appear after _CatchResume clauses
/I more catch clauses

catch(...){...} /I must be last catch clause

Any number of resumption handlers can be associated with lalock. All _CatchResume handlers must precede
anycatch handlers in ary statement. Likeatch (...) (catch-any),_ CatchResume (...) must appear at the end of the
list of the resumption handlers. A resumption handler igffact, a nested routine called from the raise site when an
exception is propagated with resumption; when the resumgtandler completes, control returns back to the point
of the raise. Values at the raise site can be modified diractlye handler if variables are visible in both contexts, or
indirectly through reference or pointer variables in thegta exception:
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_Event E {
public :
int &r; /I reference to something
E(int & ) :r(r) {}

void f() {
int x;
... _Resume E(x); ... /I set exception reference to point to x

}
void g() {
try {
f0);
} _CatchResume ( E &e ) {
.er=3; ... /I change x at raise via reference r
}

}

Unfortunately, C+ has no notion of nested routines, scethee restrictions on accessing local types/variables and
member variables in containing scopes from a resumptiodlbarFirst, types defined within a routine/member (local
class) cannot be used in a resumption handler. Second, éssatmcal and member variables in containing lexical
scopes, the type and name of each local/member variableserteust be specified after the exception type:

try {

} _CatchResume ( exception-declaration ) ( catchresume-argument-list) {

}

Figure5.3illustrates all the accessible and inaccessible lexiga¢sjvariables in a resumption handler, and how to
use thecatchresume-argument-ligh access local/member variables in containing scopes.rdsomption handlers
in member routines, it is often simplest to pass in an exlha pointer rather than listing all the accessed member
variables, especially for called member routines.
class C {
int x, vy, z;
void rtnl() {...}
void rtn2() {
C «This = this; /I create explicit object pointer
try {

} _CatchResume ( R &r ) ( C «This ) { // pass object to resumption handler
This->rtn1(); This- >rtn2(); /I use “This” to access object members
cout << This- >x << This- >y << This- >z << endl;

I3
In the example, membessy, z, rtnl, andrtn2 would have to be explicitly passed to the resumption harizBeause
all are used within the handler. Creating the local memiagiableThis, initializing it to this, and passinghis to

the handler allows the containing object to be accessiltl@mihe handler, but requires explicit qualification of eac
member withThis- >.

5.5.3 Termination/Resumption

The form of the raise dictates the set of handlers examingdglpropagation:

e terminating propagation Throw ) only examines termination handlerta{ch),
e resuming propagation Resume) only examines resumption handlersCatchResume ). However, the stan-
dard default resumption handler converts resuming intoiteating propagation (see Sectibrg.2, p. 69.

Often the set of exception types for termination and resionfitandlers are disjoint because each exception type has
a specific action. However, it is possible for the set of exioegypes in each handler set to overlap. For example, the
exception typeR appears in both the termination and resumption handler-set
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_Event R {};

struct GlobalType {};
int globalvar;

class C {
struct ClassType {};
int membervar;

void rtn() {
struct RtnType {}; // local class
int rtnvar;

try {

} _CatchResume ( R &r ) (int membervar, intrtnvar ) { // catchresume arguments
GlobalType gv;
ClassType cv;
RtnType rv; /I 'local class DOES NOT work in resumption handler
globalvar = 3;
membervar = 3; // must be specified in containing scope list
rtnvar = 3; /I must be specified in containing scope list

Figure 5.3: Syntax/Restrictions for Resumption Handlers

_Event E {};
void rtn() {

try {
_Resume E();

}  _CatchResume (E & ) { _Throw E(); } // H1
catch(E &) {...} Il H2

}

The body of thary block resumes exception-tygewhich is caught by resumption-handletatchResume ( E ) and
handlerH1 is invoked. The blocks on the call stack are now (stack groms fleft to right):

rtn — try _CatchResume ( E ),catch( E ) — H1

HandlerH1 throwsE and the stack is unwound until the exception is caught byitextion-handlecatch ( E ) and
handle2 is invoked. The termination handler is available becauseméng did not unwind the stack.

5.5.3.1 Recursive Resuming

Resuming does not unwind the stack. As result, handlersatefimprevious scopes continue to be present during
resuming propagation. In terminating propagation, thedleas in previous scopes disappear as the stack is unwound.
In some languages with a resuming propagatidad77, BMZ92, Geh92, the presence of resumption handlers in
previous scopes can cause a situation calkedrsive resuming The simplest situation where recursive resuming
can occur is when a handler for a resuming exception-typemes the same exception, e.g.:

_Event R {};

void rtn() {

try {
_Resume R();

} _CatchResume (R ) {... _Resume R(); ...} // H1
}

Routinertn sets up a try block for resuming exception-typ&ith resumption-handlerCatchResume ( R ), respec-
tively. HandlerH1 is invoked by the resume in the body of ting block, and the blocks on the call stack are:
rtn — try _CatchResume (R ) — H1

Then handleH1 resumes an exception of tygeagain, which finds the handler just above it @atchResume ( R )
and invoked1 again; these steps continue until the runtime stack ovesfl®ecursive resuming is similar to infinite
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recursion, and is difficult to discover both at compile tinmelat runtime because of the dynamic choice of a han-
dler. Concurrent resuming compounds the difficulty becatusan cause recursive resuming where it is impossible
otherwise because the concurrent exception can be delia¢any time.

O An implicit form of recursive resuming can occunyield or asyncpoll is called from within the re-
sumption handler. Each of these operations results in akdoeclelivered exceptions, which can then
resultin a call to another resumption handler. As a redwdtstack can grow, possibly exceeding the task’s
stack size. In general, this error is rare because theraialysufficient stack space and the number of
delivered resuming exceptions is small. Neverthelesg, waust be taken when callinggld or asyncpoll
directly or indirectly from a resumption handler. O

5.5.3.2 Preventing Recursive Resuming

Recursive resuming is probably the only legitimate cisticiagainst resuming propagation. However, not all excep-
tions handled by a resumption handler cause recursive irguven if a resumption handler resumes the exception it
handles, which guarantees activating the same resumgiwdidr again, (infinite) recursive resuming may not happen
because the handler can take a different execution pathessith of a modified execution state. Because the resuming
propagation suggested previously searches for a handgnmiply going down the runtime stack one stack frame at a
time, it has the recursive resuming problen@C+ has a modified propagation mechanism that provides dolo

the recursive resuming problem. Furthermore, the mechrisiextended to cover concurrent exceptions.

The modified propagation mechanism goes down the executhok sne level at a time as it does normally to
find a handler capable of handling the exception being pratealy However, during propagation all the resumption
handlers at each guarded block being “visited” are markeligile (denoted by italics), whether or not a handler is
found. The mark is cleared only if the exception is handléaeziby a termination or resumption handler.

How does this new propagation mechanism make a differenceh @e previous runtime stack:

rtn — try _CatchResume(R) — H1

the handler_CatchResume ( R ) is marked ineligible (italics) wheR is caught at thery block andH1 is called.
Hence, the exception cannot be handled BatchResume ( R ), and the recursion is avoided and the default action
occurs forR. EssentiallypC+ follows a common rule for terminating and resuming pggigon: between a raise and
its handler, each handler is eligible only once.
In handling exceptions, it is common for routines to creatdittonal guarded blocks. For example, if the above
example is augmented to:
void f() {

try {
_Resume R();

} _CatchResume (R ) { ... } Il H2

}
void rtn() {

try {
_Resume R();

} _CatchResume ( R ) { f(); } /I H1
}
wheref creates an additional resumption handler, the call stagktended to the following:
rtn — try _CatchResume(R) — H1 — f — try _CatchResume (R ) — H2

andH2 is selected as it is unmarked. Using this technique, it Ismissible to construct infinite recursions with
respect to propagation; i.iC+ resuming propagation does not preclude all infinite rgous, e.g.:

_Event R {};

void rtn() {

try {
_Resume R();

} _CatchResume (R ) {rtn(); } // H1
}

Here each call totn creates a newy block to handle the next recursion, resulting in an infinibenber of handlers:
rtn — try _CatchResume(R) — rtn — try _CatchResume (R ) — ...

As aresult, there is always an eligible handler to catch ¢ exception in the recursion. This situation is considere
a programming error with respect to recursion not propagati
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There is one interesting interaction between marking aeddfaultResume member (see Sectidn3.2, p. 69:
_Event R {};
void rtn() {

try {
_Resume R(); // resume not throw

}catch(R &) { ...}
}
which results in the following call stack:

rtn — try catch ( R ) — defaultResume

WhenR is resumed, there is no eligible handler (or there is a hatuieit is marked ineligible). However, when the
base of the stack is reache@faultResume is called, and its default action is to thr@&v Terminating propagation then
unwinds the stack until there is a match with tlagch clause in thery block, so the behaviour is same as the example
in Section5.5.3, p. 74 Hence, by examining the code, it is non-intuitive thatd¢heh handler can be invoked.

Finally, all handlers are considered unmarked when prapagaonlocal exceptions because the exception is
unrelated to any existing propagation. Therefore, the @gafion mechanism searches every handler on the runtime
stack. Hence, a handler ineligible to handle a local exoeptan be chosen to handle a delivered nonlocal exception,
reflecting the fact that a new propagation has started.

5.5.3.3 Commentary

Of the few languages with resumption, the language M8 $79] is probably the only one that also solved the
recursive resuming problem. The Mesa scheme preventssieeuesuming by not reusing a handler clause bound
to a specific invoked block, i.e., once a handler is used asgbdrandling an exception, it is not used again. The
propagation mechanism always starts from the top of th& $tafind an unmarked handler for a resume exception.
However, this unambiguous semantics is often describedrasising.

The following more complex program demonstrates @ and Mesa solve recursive resuming, but with dif-
ferent solutions:

_Event R1 {};
_Event R2 {};

void rtn() {

try {
try {

try {
_Resume R1();

} _CatchResume ( R2 ) { _Resume R1(); } // H1 -- cycle between handler H2 & H1
_CatchResume ( R1 ) { _Resume R2(); } Il H2
_CatchResume (R2 ) { ...} /Il H3

}

The following stack is generated at the point when handeis invoked by the raise of an exception of typein the
inner-mostry block:

rtn — try _CatchResume ( R2 ) — try _CatchResume ( R1 ) — try _CatchResume ( R2 ) — H2

HandlerH2 now raises an exception of tyg&2. The potential infinite recursion occurs because there igllea
_CatchResume ( R2 ), which resumes an exception of type, while handler_CatchResume ( R1 ) is still on the
stack. Hence, handlet2 invokesH1 and vice versa with no base-case to stop the recursion.

UC+H propagation prevents the infinite recursion by markiathvisited resumption handlers as ineligible before
invoking handleH2, e.g.:

rtn — try _CatchResume ( R2 ) — try _CatchResume(R1) — try _CatchResume(R2) — H2

Therefore, when handlet2 resumes an exception of tyge the next eligible handler is the one associated with H3.
Mesa propagation prevents the infinite recursion by onlykingran unhandled handler, i.e., a handler that has not
returned, as ineligible, resulting in:

rtn — try _CatchResume ( R2 ) — try _CatchResume(R1) — try _CatchResume ( R2 ) — H2
Hence, when handleét2 resumes an exception of type the next eligible handler is the one associated Wwith As

a resultH1 resumes an exception of typa and there is no infinite recursion. However, the confusiah Wie Mesa
semantics is that there is no longer any handleRfbdue to its marking, even though the nestgdblocks appear to
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properly deal with this situation. In fact, looking at thatit structure, a programmer might assume there is an @finit

recursion between handlers 1 and 2, as they resume one anftlese confusions results in a reticence by language
designers to incorporate resuming facilities in new lamggsa However, agC+H shows, there are reasonable solutions

to these issues, and hence, there is no reason to precluneingsacilities.

5.6 const Exceptions

Raisingconst exceptions iluC+- is disallowed for the following reason. For terminati@m exception is used to
communicate information from the raise to the handler. fimgaaconst exception containing information for the
handler, as in:

_Event E{... } /I members contain information for handler
const E e(...); /I initialize members at declaration (write once, read- only)

prevents its modification after initialization (modutmtable members). When excepti@nis raised:
_Throw e; /I “e” is copied into non- const object

a (conceptual) copy is made because the stack is unwouretfoination and the terminating blocks may destroy the
raised exception. The type of the copy is the original exoefs type minus all top-level qualifiers (such emst ).
Since top-level qualifiers are removed, a handler matchlgsaonexception’s basic-type, e.g.:

try {
} caféﬁ( E & ) {...} /I matches both E and const E exceptions

Therefore, qualifying the type of the exception-declanatbbjecte with const does not affect matching, rather it
restricts assignment to the object within the handler bddignce, for this case, creatingcanst exception is only
useful at the raise point to prevent modification of the exoepprior to the raise or if the exception is a member in
aconst object or passed ascanst parameter. However, such pre-raise storage or manipalafian exception is
unusual; i.e., an exception is not usually part of a compriabut rather created close to the raise for communicating
information from the raise to the handler, and possibly badke raise. For nonlocal resumption, an exception is also
used to communicate information from the raise to the handléen exceptior is raised:

_Resume e _At t; /I “e” is copied into non- const object

a (conceptual) copy is made because control continues inategdafter the exception is delivered, but before the
exception is propagated inand the continuing execution may destroy the raised edarephgain, storing or manip-
ulating the exception before or after the nonlocal resuomg unusual.

For local resumption, control returns back to the raiser &ffte handler devises a correction that is communicated
back to the raise within the exception or through pointethéexception that reference state at the raise point. Becau
the stack is not unwound, an exception copy is unnecessance in the case of local resumption, the previous notion
of removing all top-level qualifiers for the raised exceptied not apply, sconst could conceivably be relevant for
handler matching, e.qg.:

try {

} _CatchResume (E e ) { ... /I can distinguish between these two types
} _CatchResume (const Ee ) {...

}

However, the ability to distinguish between these two tyipes anomaly with respect to the cases where the exception
is copied. Furthermore, theonst handler-clause cannot have the correction inserted withimplying indirection
through pointers must be used; hence divest handler-clause is highly restrictive in the form of the gxoen object

for local resumption.

Therefore, precluding exception objects from beingst does not appear to cause significant programming prob-
lems at the raise site because exceptions are largely Indakaporary, nor does it cause problems at the catch site
with respect to matching or the way the exception objectésluBut most importantly, this restriction precludes con-
ceptual mistakes by programmers that createnat exception only to have a nasenst copy created (in many cases)
and then mistakenly believe tleenst property is useful in handler matching, or that perform aleesumption and
wonder why the noreonst handler does not match but does match for non-local resompiith the same exception.
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5.7 Bound Exceptions

To allow for additional control over the handling of excepis,uC+ supports the notion dfound exceptionsThis
conceptbindsthe object raising an exception with the raised exceptiorefarence to the object can be used in a
handler clause for finer-grain matching, which is more cstesit with the object-oriented design of a program.

5.7.1 C+ Exception-Handling Deficiencies

In C+, only the exception type of the raised exception islushen matchingatch clauses; the object raising the
exception does not participate in the matching. In manys;aisis important to know which object raised the exception
type for proper handling. For example, when reading fromeedilject, the exception-typ©Error may be raised:

file Datafile, Logfile;

try {
... Datafile.read(); ...

... Logfile.read(); ...
} catch ( IOError ) {

/I handle exception from which object ?
}

The try block provides a handler faDError exceptions generated while reading file objeligafile and Logfile.
However, if either read raise®Error, it is impossible for the handler to know which object failedring reading.
The handler can only infer the exception originates in somstaince of thédile class. If other classes thra®Error,
the handler knows even less. Even if the handler can only texexhby calls tdatafile.read() andLogfile.read(), it

is unlikely the handler can perform a meaningful action withknowing which file raised the exception. Finally, it
would be inconvenient to protect each individual read withyablock to differentiate between them, as this would
largely mimic checking return-codes after each cateta.

Similar to package-specific exceptions in Adiat99], it is beneficial to provide object-specific handlers, e.g.

try {
... Datafile.read(); ...

... Logfile.read(); ...
} catch ( Datafile.lOError ) {
/I handle Datafile IOError
} catch ( Logfile.IOError ) {
/I handle Logfile IOError
} catch ( IOError ) {
/I handler I0Error from other objects
}

The first twocatch clauses qualify the exception type with an object to speaahe matching. That is, only if the
exception is generated by the specified object does the roatalr. It is now possible to differentiate between the
specified files and still use the unqualified form to handlestimae exception type generated by any other objects.

O Bound exceptions cannot be trivially mimicked by other netbms. Deriving a new exception type
for each file object (e.gLodfile_IOError from IOError) results in an explosion in the total number of
exception types, and cannot handle dynamically allocatgetts, which have no static name. Passing the
associated object as an argument to the handler and chetiiegargument is the bound object, as in:

catch ( IOError e ) { /I pass file- object address at raise
if (e.obj==&f) ... /I deal only with f
else throw /I reraise exception

requires programmers to follow a coding convention of ngj the exception if the bound object is
inappropriate BMZ92]. Such a coding convention is unreliable, significantlyueidg robustness. In
addition, mimicking becomes infeasible for derived exmaptypes using the termination model, as in:
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class B{...} /I base exception- type
class D : public B {...}; /I derived exception- type

try {
... throw D(this); /I pass object address /I bound form
}catch(D e) { } catch(01.D) {
if (e.o==&o01) ... /I deal only with ol
else throw I reraise exception
}catch(B e){ } catch( 02.B) {
if (e.0==&02) ... /I deal only with 02
else throw /I reraise exception

When exception typp is raised, the problem occurs when the first handler cattteeddrived exception-
type and reraises it if the object is inappropriate. Theiserammediately terminates the current guarded
block, which precludes the handler for the base excepiipe-in that guarded block from being con-
sidered. The bound form (on the right) matches the handtehfobase exception-type. Therefore, the
“catch first, then reraise” approach is an incomplete stilistfor bound exceptions. O

5.7.2 Object Binding

In pC+, every exception derived from the three basic exceptipes can potentially be bound. Binding occurs
implicitly when usinguC+’s raising statements, i.e.Resume and_Throw . In the case of a local raise, the binding
is to the object in whose member routine the raise occurshdrptevious example, an exception raised in a call to
Datafile.read() is bound toDatafile; an exception raised in a call Lkogfile.read() is bound ta_ogfile. If the raise occurs
inside a static member routine or in a free routine, ther@mibinding. In the case of a non-local raise, the binding is
to the coroutine/task executing the raise.

5.7.3 Bound Handlers

Bound handlers provide an object-specific handler for a Haxteption. Matching is specified by prepending the
binding expression to the exception type using ttidield-selection operator; the “catch-any” handler, does not
have a bound form.

5.7.3.1 Matching

A bound handler matches when the binding at the handlerelaudentical to the binding associated with the currently
propagated exceptioand the exception type in the handler clause is identical to oasektype of the currently
propagated exception type.

Bound handler clauses can be mixed with normal (unboundjlees) the standard rules of lexical precedence
determine which handler matches if multiple are eligibley&xpression that evaluates tolaalueis a valid binding
for a handler, but in practice, it only makes sense to spegifpbject that has a member function capable of raising
an exception. Such a binding expression may or may not be@eal during matching, and in the case of multiple
bound-handler clauses, in undefined order. Hence, carebratiaken when specifying binding expressions containing
side-effects.

5.7.3.2 Termination

Bound termination handlers appear in the €4tch clause:
catch ( raising-object . exception-declaration ) { ...}

In the previous exampleatch ( Logfile.IOError ) is a catch clause specifying a bound handler with bindisggile and
exception-typeOError.

5.7.3.3 Resumption

Bound resumption handlers appear in i3+ _CatchResume clause (see Sectidn5.2, p. 7%
_CatchResume ( raising-object . exception-declaration ) { ... }
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5.8 Inheritance

Table5.1 shows the forms of inheritance allowed among C+ typesieBiat exception-types. First, the casesoigle
public inheritance among homogeneous kinds of exceptipa,tie., base and derived type are the hdthent, is
supported inuC+ (major diagonal), e.g.:

_Event Ebase {};

_Event Ederived : public Ebase {}; // homogeneous public inheritance
In this situation, all implicit functionality matches beden base and derived types, and therefore, there are no prob-
lems. Public derivation of exception types is for buildidge texception-type hierarchy, and restricting public in-
heritance to only exception types enhances the distintt@ween the class and exception hierarchies. Single pri-
vate/protected inheritance among homogeneous kinds epéra types is not supported, e.g.:

_Event Ederived : private Ebase {}; /I homogeneous private inheritance, not allowed

_Event Ederived : protected Ebase {}; // homogeneous protected inheritance, not allowed
because each exception type must appear in the exceppertgrarchy, and hence must be a subtype of another
exception type. Neithgrivate norprotected inheritance establishes a subtyping relationship.

base public only/ NO multiple inheritance
derived struct/class event
struct/class| Vv X
event N N

Table 5.1: Inheritance among Exception Types

Second, the case sfngleprivate/protected/public inheritance among heteroges&mds of type, i.e., base and
derived type of different kind, is supportedii@+ only if the base kind is an ordinary class, e.qg.:

class Chase {}; /I only struct/class allowed

_Event Ederived : public Cbase {}; // heterogeneous public inheritance
An example for using such inheritance is different exceptigpes using a common logging class. The ordinary class
implements the logging functionality and can be reused antioa different exception types.
Heterogeneous inheritance from exception types by otmeiskof class, exception type, coroutine, mutex or task,
is not allowed, e.g.:
_Event Ebase {};

struct StructDerived . public Ebase {}; // not allowed
class ClassDerived . public Ebase {}; // not allowed
_Coroutine CorDerived . public Ebase {}; // not allowed
_Monitor MonitorDerived  : public Ebase {}; // not allowed
_Task TaskDerived . public Ebase {}; // not allowed

A structure/class cannot inherit from an exception typeabee operations defined for exception types may cause
problems when accessed through a class object. This testriioes not mean exception types and non-exception-
types cannot share code. Rather, shared code must be thotdras an ordinary class and then inherited by exception
types and non-exception-types, e.g.:

class CommonBase {...};

class ClassDerived . public CommonBase {};

_Event Ederived : public CommonBase {};
Technically, it is possible for exception types to inheriirh mutex, coroutine, and task types, but logically there
does not appear to be a need. Exception types do not needlraxtlizsion because a new exception is generated
at each throw, so the exception is not a shared resource. xaarpde, arithmetic overflow can be encountered by
different executions but each arithmetic overflow is indefmnt. Hence, there is no race condition for exception
types. Finally, exception types do not need context swiglor a thread to carry out computation. Consequently, any
form of inheritance from a mutex, coroutine or task by an etiom type is rejected.

Multiple inheritance is allowed for private/protectediia inheritance of exception types frostruct /class for

the same reason as single inheritance.
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5.9 Predefined Exception Routines

C+ supplies severaluiltin routines to provide information and deal with problems dggropagation. The semantics
of these builtin routines changes in a concurrent envirarime

5.9.1 terminate /set_terminate

The terminate routine is called implicitly in a number of different sitimbs when a problem prevents successful
propagation (see a C+ reference manual for a completef fsbpagation problems). The most common propagation
problem is failing to locate a matching handler. Tieminate routine provides an indirect mechanism to call a
terminate-handler, which is a routine of tyfeeminate_handler:

typedef void (xterminate_handler)();

and is set using the builtin routiret_terminate, which has type:
terminate_handler set_terminate( terminate_handler handler) throw ();

The previously set terminate-handler is returned when ahmvdler is set. The default terminate-handler aborts the
program; a user-defined terminate-handler must also tetmthe program, i.e., it may not return or raise an exception
but it can perform some action before terminating, e.g.:

void new_handler() {

/I write out message
/I terminate execution (abort/exit)

%erminate_handler old_handler = set_terminate( new_handler );
In a sequential program, there is only one terminate-harali¢he entire program, which can be set and restored as
needed during execution.

In a concurrent program, having a single terminate-harfdleall tasks does not work because the value set by
one task can be changed by another task at any time. In otheswmo task can ensure that the terminate-handler
it sets is the one that is used during a propagation probleherefore, inuC+, each task has its own terminate-
handler, set using thset_terminate routine. Hence, each task can perform some specific acti@nahproblem
occurs during propagation, but the terminate-handler tilsterminate the program, i.e., no terminate-handley ma
return (see Section.2.2, p. 9J. The default terminate-handler for each task aborts tbgnam.

Notice, the terminate-handler is associated with a tasuges coroutine. The reason for this semantics is that the
coroutine is essentially subordinate to the task becawesedioutine is executed by the task’s thread. While propaga-
tion problems can occur while executing on the coroutirtasks these problems are best dealt with by the task execut-
ing the coroutine because the program must terminate gioins. In fact, for the propagation problem of failing to lo-
cate a matching handler, the coroutine implicitly raisesttedefined exceptiarBaseCoroutine::UnhandledException
in its last resumer coroutine (see Sectib@.3.1, p. 9, which ultimately transfers back to a task that either hesd
this exception or has its terminate-handler invoked.

5.9.2 unexpected /set_unexpected

Theunexpected routine is called implicitly for the specific propagatioroptem of raising an exception that does not
appear in a routine’s exception specificationdw list), e.g.:

int rtn(...) throw (Ex1) { /I exception specification
... throw Ex2; ... /I EX2 not in exception specification
}

The unexpected routine provides an indirect mechanism to call an unexpebtndler, which is a routine of type
unexpected_handler:

typedef void (xunexpected_handler)();
and is set using the builtin routiret_unexpected, which has type:
unexpected_handler set_unexpected( unexpected_handler handler) throw ();

The previously set unexpected-handler is returned whewdaadler is set. The default unexpected-handler calls the
terminate routine; like a terminate-handler, a user-defined unexgukehaindler may not return, but it can perform some
action and either terminate raise an exception, e.g.:
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void new_handler() {
/I write out message
/Il raise new exception

unexpected_handler old_handler = set_unexpected( new_handler );

In a sequential program, there is only one unexpected-kafatlthe entire program, which can be set and restored as
needed during execution.

In auC+ program, having a single unexpected-handler for athgtimes/tasks does not work for the same reason
as for the terminate-handler, i.e., the value can changeyatime. Because it is possible to handle this specific
propagation-problem programmatically (e.g., raise arepion) versus terminating the program, a coroutine can
install a handler and deal with this problem during propigedn its stack. Therefore, jnC+, each coroutine (and
hence, task) has its own unexpected-handler, set usingethenexpected routine. The default unexpected-handler
for each coroutine/task calls theminate routine.

5.9.3 uncaught _exception

Theuncaught_exception routine returns true if propagation is in progress. Ca+ program, the result of this routine
is specific to the coroutine/task that raises the exceptitamce, the occurrence of propagation in one coroutine/task
is independent of that occurring in any other coroutin&/t&r example, a destructor may not raise a new exception
if it is invoked during propagation; if it does, therminate routine is called. It is possible to usacaught_exception
to check for this case and handle it differently from normedtductor execution, e.g.:
~T() { /I destructor
if (...&& ! uncaught_exception() ) { /I prevent propagation problem
/I raise an exception because cleanup problem
} else {
/I cleanup as best as possible
}

5.10 Programming with Exceptions

Like many other programming features, an EHM aims to mak&ireprogramming tasks easier and improve the
overall quality of a program. Indeed, choosing to use the EbiMdr other available flow control mechanisms is a
tradeoff. For example, a programmer may decide to use ercspiver some conditional statement for clarity. This
decision may sacrifice runtime efficiency and memory spaceother words, universal, crisp criteria for making a
decision do not exist. Nevertheless, some important ginielekre given to encourage good use of exceptions.

First, use exceptions to indicate exceptional event iratipicode to ensure a library user cannot ignoring the
event, as is possible with return codes and status valuesd;exceptions improve safety and robustness, while still
allowing a library user to explicitly catch and do nothingraban exception. Second, use exceptions to improve clarity
and maintainability over techniques like status returugaland status flags where normal and exceptional control-
flow are mixed together within a block. Using exceptions miy@eparates the normal flow in a guarded block from
the exceptional flow in handlers, but also avoids mixing relrmaturn-values with exceptional return-values. This
separation makes subsequent changes easier. Third, egsiers to indicate conditions that happen rarely at ruatim
for the following reasons:

e The normal flow of the program should represent what shoypghéa most of the time, allowing programmers
to easily understand the common functionality of a code ssgnirhe exceptional flow then represents subtle
details to handle rare situations, such as boundary conditi

e Because the propagation mechanism requires a search foauicker, it is usually expensive. Part of the cost is
a result of the dynamic choice of a handler. Furthermors,dignamic choice can be less understandable than
a normal routine call. Hence, there is a potential for higitirae cost with exceptions and control flow can be
more difficult to understand. Nevertheless, the net conityléx reduced using exceptions compared to other
approaches.
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5.10.1 Terminating Propagation

Typical use of terminating propagation is for graceful teration of an operation, coroutine, task or program. Ter-
mination is graceful if it triggers a sequence of cleanupoastin the execution context. Examples of abrupt (or
non-graceful) termination include th@bort routine @bort in C) and thekill - 9 command in UNIX. Graceful termi-
nation is more important in a concurrent environment bezang execution can terminate while others continue. The
terminating operation must be given a chance to releasetared resources it has acquired (the cleanup action) in
order to maintain the integrity of the execution environt&or example, deadlock is potentially a rare condition and
a thrown exception can force graceful termination of an api@n, consequently leading to the release of some shared
resources and breaking of the deadlock.

5.10.2 Resuming Propagation

Typical use of resuming propagation is to do additional cotation, in the form of a resumption handler, for an
exceptional event or as a form of polymorphism, where aroads left unspecified (e.g., in a library routine) and
specified by a user using dynamic lookup (similar to a virnaaitine in a class). The additional computation may
modify the state of the execution, which can be useful fasra@covery. Alternatively, it may cause information about
the execution to be gathered and saved as a side-effectuwviffectively modifying the execution’s computation.

5.10.3 Terminating/Resuming Propagation

Any exception type can be both thrown or resumed. When flgstbs best to initially resume an exception-type to
avoid loss of local information. If no resumption handlentiles the exception, the same exception-type can be thrown
(default action). For example, in a real-time applicatimigsing a real-time constraint, say an execution cannatfini
before a deadline, is considered an exceptional event. dfoe applications, the constraint violation can result in
termination. Other applications can modify internal pagtens to increase execution by sacrificing the quality of the
solution or by acquiring more computing resources to spgedecution.

5.11 Predefined Exception-Types

pCH provides a number of predefined exception-types, whielstauctured into the hierarchy in Figused, divided

into two major groups: kernel and 1/0. The kernel exceptigres are raised by the€C+ runtime kernel when prob-
lems arise using thgC+ concurrency extensions. The 1/O exception-types asedady theuC+ 1/O library when
errors arise performing network and file 1/0. Only the kemateption-types are discussed, as the 1/0 exception-types
are OS specific.

5.11.1 Implicitly Enabled Exception-Types

Certain of the predefined kernel exception-types are intlglienabled in certain contexts to ensure prompt delivery
for nonlocal exceptions. The predefined exception-tyBaseCoroutine::Failure is implicitly enabled and polling

is performed when a coroutine restarts after a suspend omeas The predefined exception-typutexFailure is
implicitly enabled and polling is performed when a task aestfrom blocking on entry to a mutex member. This
situation also occurs when a task restarts after being btbok an_Accept or await. The predefined exception-type
uMutexFailure::RendezvousFailure is implicitly enabled and polling is performed when an adoepask restarts after
blocking for a rendezvous to finish.

5.11.2 Unhandled Exception in Coroutine

An exception raised and not handled inside a coroutine tetes it and implicitly resumes a nonlocal exception of
type uBaseCoroutine::UnhandledException at the coroutine’s last resumer rather than performing #faudt action
(which may abort the program). For example, in:



5.11. PREDEFINED EXCEPTION-TYPES

uBaseEvent
uKernelFailure
uMutexFailure
uMutexFailure::EntryFailure
uMutexFailure::RendezvousFailure
uCondition::WaitingFailure
uBaseCoroutine::Failure
uBaseCoroutine::UnhandledException
uPthreadable::Failure
uPthreadable::CreationFailure
ulOFailure
uFile::Failure
uFile::TerminateFailure
uFile::StatusFailure
uFile::FileAccess::Failure
uFile::FileAccess::OpenFailure
uFile::FileAccess::CloseFailure
uFile::FileAccess::SeekFailure
uFile::FileAccess::SyncFailure
uFile::FileAccess::ReadFailure
uFile::FileAccess::ReadTimeout
uFile::FileAccess::WriteFailure
uFile::FileAccess::WriteTimeout
uSocket::IPConvertFailure
uSocket::Failure
uSocket::OpenFailure
uSocket::CloseFailure
uSocketServer::Failure
uSocketServer::OpenFailure
uSocketServer::CloseFailure
uSocketServer::ReadFailure
uSocketServer::ReadTimeout
uSocketServer::WriteFailure
uSocketServer::WriteTimeout
uSocketServer::SendfileFailure
uSocketServer::SendfileTimeout
uSocketAccept::Failure
uSocketAccept::OpenFailure
uSocketAccept::OpenTimeout
uSocketAccept::CloseFailure
uSocketAccept::ReadFailure
uSocketAccept::ReadTimeout
uSocketAccept::WriteFailure
uSocketAccept::WriteTimeout
uSocketAccept::SendfileFailure
uSocketAccept::SendfileTimeout
uSocketClient::Failure
uSocketClient::OpenFailure
uSocketClient::OpenTimeout
uSocketClient::CloseFailure
uSocketClient::ReadFailure
uSocketClient::ReadTimeout
uSocketClient::WriteFailure
uSocketClient::WriteTimeout
uSocketClient::SendfileFailure
uSocketClient::SendfileTimeout
uBaseFuture<T>::Cancellation

Figure 5.4:uC+ Predefined Exception-Type Hierarchy
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_Event E {};

_Coroutine C {
void main() { _Throw E(); }
public :
void mem() { resume(); }

2
void uMain::main() {
Cc;
try {
c.mem();
} catch ( uBaseCoroutine::UnhandledException ) {
}
}

the call toc.mem resumes coroutine, and then inside.main an exception is raised that is not handled locally by
c. When the exception of type reaches the top af's stack without finding an appropriate handler, coroutirie
terminated and the nonlocal exception of tyaseCoroutine::UnhandledException is implicitly raised atc’s last
resumeruMain, rather tharc's starter. (This action replaces the normal calligdaultTerminate/defaultResume (see
Section5.3.2, p. 69 because the exception has been caught and transformesl Bélftaviour reflects the fact that the
last resumer is most capable of understanding and reactafatlure of the operation it just invoked. Furthermore, th
last resumer (coroutine or task) is guaranteed to be rabtarbecause it became inactive when it did the last resume.
Finally, when the last resumer is restarted, the impligigiiged nonlocal exception is immediately delivered beeaus
the context switch back to inplicitly enablesiBaseCoroutine::UnhandledException, which triggers the propagation

of the exception.

In many cases, the resumer of a coroutine is unaware of thenegs coroutine’s implementation, and hence,
cannot respond directly to unhandled exceptions forwafd®d the resumed coroutine, which is why the general
uBaseCoroutine::UnhandledException exception is raised at the resumer rather than the specifitiioe exception.
To provide for the case where a resumer does know about ésnspiiat may be forwarded from a resumed coroutine,
the exceptiomBaseCoroutine::UnhandledException contains a copy of the initial exception not caught in theinesd
coroutine. When handling@BaseCoroutine::UnhandledException, a resumer can trigger the copied exception in the
handler using member routimdéggerCause. For example, in:

... asabove ...
void uMain::main() {
Cc;

try {
c.mem(); /I first call fails

} catch ( uBaseCoroutine::UnhandledException &ex ) {
ex.triggerCause(); // trigger copied exception

}

the call to c.mem indirectly _Resumes a nonlocal exception of typ@BaseCoroutine::UnhandledException,
becausec.main does not handle exceptions of type. uMain:main has no resumption handler for
uBaseCoroutine::UnhandledException; hence, its default handlerThrow s the exception (see Secti@n3.2, p. 69,
which is caught. The handler triggers a copy of the initiaegption of typeE, which is raised in exactly the same way
as the raise in the resumed coroutine (i.e., matchifigow or _Resume). In this way, the resumer coroutine can use
all exception matching mechanisms providedi&#+ to identify the initial exception.

5.11.3 Breaking a Rendezvous

As mentioned in SectioR.8.2.2, p. 23the accept statement forms a rendezvous between the acargithe accepted
tasks, where a rendezvous is a point in time at which botlstasit for a section of code to execute before continuing.
It can be crucial to correctness that the acceptor know ifatteepted task does not complete the rendezvous code,
otherwise the acceptor task continues under the incorestinaption that the rendezvous action has occurred. To
this end, an exception of typaMutexFailure::RendezvousFailure is raised at the acceptor task if the accepted member
terminates abnormally. It may also be necessary for a mutxlmer to know if the acceptor has restarted, and
hence, the rendezvous has ended. This situation can happemiutex member calls a private member, which may
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conditionally wait, which ends the rendezvous. The ma&endezvousAcceptor can be used only inside mutex types
to determine if a rendezvous has ended:

uBaseCoroutine xuRendezvousAcceptor();
It returnsNULL if the rendezvous is ended; otherwise it returns the addfebe rendezvous partner. In addition, call-

ing uRendezvousAcceptor has the side effect of cancelling the implicit resumeiigfitexFailure::RendezvousFailure
at the acceptor. This capability allows a mutex member toitgate with an exception without informing the acceptor.
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Chapter 6

Cancellation

Cancellationis a mechanism to safely terminate the execution of a carewti task. Any coroutine/task may cancel
itself or another coroutine/task by callingaseCoroutine::cancel() (see Sectior2.6.2, p. 14. The deletion of a non-
terminated coroutine (see pagk4) implicitly forces its cancellation. Cancelling a coroutine/task does not result
in immediate cancellation of the object; cancellation dmgins when the coroutine/task encountecsiacellation
checkpoint, such assyncpoll() or uBaseTask::yield() (see pag&1for a complete list), which starts the cancellation for
the cancelled object. Note, all cancellation points aréimmppoints for asynchronous exceptions and vice-versa. Th
more frequently cancellation checkpoints are encountehedtimelier the cancellation starts. There is no provisio
to “uncancel” a coroutine/task once it is cancelled. Howeités possible for the cancelled coroutine/task to cdntro
if and where cancellation starts (see Sec8a?).

Once cancellation starts, the stack of the coroutine/tsisknivound, which executes the destructors of objects
allocated on the stacks well as catch-any exception handle(se., catch (...)). Executing this additional code
during unwinding allows safe cleanup of any objects dedi@mea cancelled coroutine/task via their destructors, and
supports the common C+- idiom of using catch-any handlepetéorm cleanup actions during exceptional control-
flow and then reraising the exception. The C+ idiom followani the fact that a catch-any handler has no specific
information about an exception, and hence, cannot properhgle it; therefore, it only makes sense to execute local
cleanup in the catch-any handler and continue propagatiaeiaising the exception so a specific handler can be
found.

There are two scenarios in which a catch-any handler mayfiiisthe first scenario, all exceptions raised directly
or indirectly from a guarded block are handled by a commoimacwith normal program execution continuing after
it. However, using a catch-any handler to specify the comauion is considered poor style. If a group of exceptions
has a common handling action, it is highly likely all its megndare logically related, and hence, should be structured
into an exception hierarchy (see Sectto8, p. 8) allowing all the group members to be caught by the hierdsaiopt
rather than a catch-any. In the second scenario, all exgepdire caught at a high level (often the top-most level) in a
task in order to prevent the program’s termination due torazaught exception. In this case, code after the handler is
often finalization/restart code to be performed uncondélty before ending or restarting the task.

Unlike a nonlocal exception (see Sectiod, p. 69, cancellation cannot be caught or stopped unless theugbean
code aborts the program, which is the ultimate terminatioallccoroutines/tasks. Therefore, if a catch-any handler
finishes during cancellation, i.e., without throwing orhmetwing, the only logical behaviour is for stack unwindieg t
continue. This behaviour is different from normal compatof a catch-any handler, which continues after the han-
dler. The correctness of a program relying on executiontdicoe after a catch-any handler for convenience (scenario
1) or restart (scenario 2) reasons is unaffected since batice ultimately terminates the task, and hence, normal e
ecution/restart cannot be expected. However, the coesstaf programs relying on execution to continue after a
catch-any handler for finalization reasons (scenario 2pmparomised by cancellation. Such programs are incom-
patible with cancellation as control cannot logically doog after the handler. In this situation, the program mest b
restructured to check for cancellation and invoke the faadibn code within the handler. Itis possible to progranimat
cally check for an ongoing cancellation by calling routirBaseCoroutine::cancelinProgress (see Sectio2.6.2, p. 14
during cleanup (catch-any handler or destructor), whi@nelogous to usingtd::uncaught_exception.

Cancellation does not work if aewexception is thrown inside a catch-any handler becausedick anwinding
due to termination cannot be altered, e.g.:
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catch (...) {
... _Throw anotherException(); ...
}

The resulting program behaviour is undefined, and such earistmust be avoided if cancellation is to be used. Again,
routine uBaseCoroutine::cancelinProgress (see Sectior?2.6.2, p. 14 can be used to check for this situation, so the
throw can be conditional. Alternatively, ensuring a conoe’s main routine terminates prevents implicit cancellation.

6.1 Using Cancellation

Cancellation is used in situations where the work of a tashkoisrequired any more and its resources should be
freed. Figures.1shows a generic example in which a solution space is dividdsiub-domains and worker tasks are
dispatched to search their respective sub-domain for atdaisolution. For this particular problem class, any djeci
solution is sufficient. In the program, afteMain creates the tasks, it waits for a solution to be found by anjpef
Worker tasks. If aworker task finds a solution, it stores it in thesult monitor and restartsMain (if appropriate).
Since a solution has been found, the other worker solutiomsi@t required and allowing these workers to proceed
is a waste of resources. Henegjain marks them all for cancellation and uses the result. Afterrgsult has been
processedyMain deletes the worker tasks, which allows for execution oyedfresult processing with the worker
tasks detecting, starting, and finishing cancellationelatively,uMain can delete the workers right away, with the
consequence that it may have to wait for the worker tasks igshfitancellation before processing the result.

6.2 Enabling/Disabling Cancellation

A cancellee may not stop cancellation once in progresst bahicontrol when the cancellation starts. The ability to de
fer the start of cancellation can be used to ensure a blocid# s completely executed, similar to enabling/disabling
propagation (see Secti@u.2, p. 7).

By default, cancellation is implicitly enabled for a corma/task (which is the opposite of nonlocal excep-
tions). Explicitly enabling/disabling cancellation isrtomolled by declaring an instance of one of the followingegp
uEnableCancel or uDisableCancel. The object’s constructor saves the current cancellatite ¢enabled or disabled)
and sets the state appropriately; the object’s destruesats the cancellation state to the previous state, e.g.:

uDisableCancel cancelDisable; // save current state, set to disable (variable name unimportant)

uEnableCancel cancelEnable; // save current state, set to enable (variable name unimportant) and
/I implicit poll/cancellation checkpoint
} /I revert back to disabled

} Il revert back to previous cancellation status

Note, creating an instance ofnableCancel is a cancellation checkpoint, which polls for both cand&llaand asyn-
chronous exceptions.

6.3 Commentary

Despite their similarities, cancellation and nonlocaleptons are fundamentally different mechanismg@a+. As a
result, the approach of usingenable /_Disable with a specialiCancellation type to control cancellation delivery was
rejected, e.qg.:

_Enable <uCancellation> <...> /x asynchronous exceptions «/ {

}
This approach is rejected because it suggests canceliagiant of the exception handling mechanism represented by
the exception typ@Cancellation, which is not the case. There is no way to raise or catch a H#atioa as there is
with exceptions. In addition, the blankeEnable /_Disable , which applies to all nonlocal exceptions, does not affect
cancellation.
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const int  NumOfWorkers = 16;
const unsigned int  Domain = Oxffffffff;

_Monitor Result {
int res;
uCondition c;
public :

Result() : res(0) {}

int getResult() {
if (res ==0) c.wait(); /I wait if no result has been found so far
return res;

void finish( int r) {

res =r; /I store result
c.signal(); /I wake up uMain
}
h
_Task Worker {
Result &r;
int subdomain;
public :
Worker( int sub, Result &res ) : subdomain( sub ), r( res ) {}
void main() {
int finalresult;
/I perform calculations with embedded cancellation checkpoints
r.finish( finalresult ); /I if result is found, store it in Result
}
b

void uMain::main () {
Worker »w[NumOfWorkers];
Result r;
for (int i = 0; i < NumOfWorkers; i +=1) {
w[i] = new Worker( i » Domain / NumOfWorkers, r ); /I create worker tasks
}

int result = r.getResult();
for (int i = 0; i < NumOfWorkers; i +=1) {
w[i]- >cancel(); /I mark workers for cancellation

/I do something with the result

for (int i = 0; i < NumOfWorkers; i +=1) {
delete wili]; /I only block if cancellation has not terminated worker
}

Figure 6.1: Cancellation Example
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Chapter 7

Errors

The following are examples of the static/dynamic warniagsfs that can occur during the compilation/execution of
auC+ program.

7.1 Static (Compile-time) Warnings/Errors

These static warnings/errors are generated by@ie translator not by the underlying C+ compiler. Theserwar
ings/errors are specific to usage problems withig@e+ concurrency extensions. The following examples shdw di
ferent situations, the message generated and an explaoétive message. While not all warning/error situations are
enumerated, the list covers the common one present inp@3stprograms.
The following program:
_Task T {
public :
void mem() {}
private :
void main() {
fini:
for (inti=0;i<10;i+=1){
_Accept ( mem ) {
break fini;
} _Else;

h
generates these warnings when using-tall compiler flag (actually generated by the C+ compilerpi©tt):

test.cc:17: warning: label ‘_U_C_fini’ defined but not used
test.cc:11: warning: label ‘_U_L0O00001’ defined but not used
test.cc:8: warning: label ‘fini’ defined but not used

These warning messages appear due to thep@ay generates code. Labels are generated in a number ofplate
are not always used depending on what happens later in tlee ltasitoo difficult to detect all these cases and remove
the labels that are unnecessary. All of these kinds of wgenian be suppressed by adding the extra flag:
- Wall - Wno- unused- label
The following program:

_Task T {
void main() {
_Accept ( mem );
}

public :
void mem() {}

generates this error:
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test.cc:4: uC++ Translator error: accept on a nomutex member "mem”, possibly caused by accept state-
ment appearing before mutex-member definition.

because the accept of memlesm appeardeforethe definition of membemem, and hence, theC+ translator
encounters the identifienem before it knows it is a mutex member. CH requires definitiefiobe use in most
circumstances.
The following program:
_Task T {
public :
void mem() {}
private :
void main() {
_Accept ( mem );
or _Accept ( mem );
}
I3
generates this error:

test.cc:8: uC++ Translator error: multiple accepts of mutex member "mem”.

because the accept statement specifies the same membeitwice. The second specification is superfluous.
The following program:
_Task T1 {};
_Task T2 {
private :
void main() {
_Accept ( ~T1);

}

h

generates this error:

test.cc:6: uC++ Translator error: accepting an invalid destructor; destructor name must be the same as the
containing class "T2".

because the accept statement specifies the destructor fldferant classT1, within classT2.
The following program:
_Mutex class M {};
_Coroutine C : public M {};
_Task T1 : public C {};
_Task T2 : public M, public C {};

generates these errors:

test.cc:3: uC++ Translator error: derived type "C” of kind "COROUTINE” is incompatible with the base type
"M” of kind "MONITOR?”; inheritance ignored.

test.cc:4: uC++ Translator error: derived type "T1” of kind "TASK” is incompatible with the base type "C” of
kind "COROUTINE”; inheritance ignored.

test.cc:5: uC++ Translator error: multiple inheritance disallowed between base type "M” of kind "MONITOR”
and base type "C” of kind "COROUTINE?”; inheritance ignored.

because of inheritance restrictions among kinds of typg€in (see Sectiod.13, p. 33.
Similarly, the following program:
_Event T1 {};

_Event T2 : private T1 {};
_Event T3 : public T1, public T2 {};

generates these errors:

test.cc:3: uC++ Translator error: non-public inheritance disallowed between the derived type "T2” of kind
"EVENT” and the base type "T1" of kind "EVENT"; inheritance ignored.

test.cc:4: uC++ Translator error: multiple inheritance disallowed between base type "T1” of kind "EVENT”
and base type "T2" of kind "EVENT”; inheritance ignored.
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because of inheritance restrictions among exception tiypgS+ (see Sectiob.8, p. 8).
The following program:

_Task T; /I prototype
_Coroutine T {}; /I definition

generates this error:
test.cc:3: uC++ Translator error: "T” redeclared with different kind.

because the kind of type for the prototyp&ask, does not match the kind of type for the definitiaigoroutine .
The following program:

_Mutex class M1 {};
_Mutex class M2 {};
_Mutex class M3 : public M1, public M2 {}; // multiple inheritance

generates this error:

test.cc:4: uC++ Translator error: multiple inheritance disallowed between base type "M1” of kind "MONI-
TOR” and base type "M2” of kind "MONITOR?”; inheritance ignored.

because only one base type can be a mutex type when inheriting
The following program:

_Task T {
public :
_Nomutex void mem();
b

_Mutex void T::mem() {}
generates this error:

test.cc:6: uC++ Translator error: mutex attribute of "T::mem” conflicts with previously declared nomutex
attribute.

because the kind of mutual exclusianfomutex , for the prototype ofmem, does not match the kind of mutual
exclusion, _Mutex, for the definition.
The following program:

_Task T {
public :

_Nomutex T() {} /Il must be mutex
_Mutex void +operator new ( size_t ) {} /I must be nomutex
_Mutex void operator delete ( void =) {} /I must be nomutex
_Mutex static void mem() {} /Il must be nomutex
_Nomutex ~T() {} /l must be mutex

I3

generates these errors:

test.cc:4: uC++ Translator error: constructor must be mutex, nomutex attribute ignored.

test.cc:5: uC++ Translator error: "new” operator must be nomutex, mutex attribute ignored.

test.cc:6: uC++ Translator error: "delete” operator must be nomutex, mutex attribute ignored.
test.cc:7: uC++ Translator error: static member "mem” must be nomutex, mutex attribute ignored.
test.cc:9: uC++ Translator error: destructor must be mutex for mutex type, nomutex attribute ignored.

because certain members may or may not have the mutex prépeany mutex typeThe constructor(s) of a mutex
type must be mutex because the thread of the constructikgstastive in the object. Operatonsw anddelete of
a mutex type must be nomutex because it is superfluous to rhake inutex when the constructor and destructor
already ensure the correct form of mutual exclusion. Sthic member(s) of a mutex type must be nomutex because
it has no direct access to the object’s mutex propertiesthere is nahis variable in astatic member to control the
mutex object. Finally, a destructor must be mutex if it is amber of a mutex type because deletion requires mutual
exclusion.

The following program:
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_Mutex class T1;

class T1 {}; /I conflict between forward and actual qualifier
class T2 {};

_Mutex class T2; /I conflict between forward and actual qualifier
_Mutex class T3; /I conflicting forward declaration qualifiers

_Nomutex class T3; /I ignore both forward declaration qualifiers

_Mutex class T4 {
void mem( int ); /I default nomutex
public :
void mem(int, int); // default mutex
h

generates these errors:

test.cc:3: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Ignoring
previous declaration.

test.cc:6: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Ignoring
this declaration.

test.cc:9: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Assuming
default attribute.

test.cc:14: uC++ Translator error: mutex attribute of "T4::mem” conflicts with previously declared nomutex
attribute.

because there are conflicts between mutex qualifiers. Femmtyghe mutex qualifier for the forward declaration does
not match with the actual declaration because the defaalifggn for aclass is _Nomutex . For typeT2, the mutex
qualifier for the later forward declaration does not matcthvie actual declaration for the same reason. For type
T3, the mutex qualifiers for the two forward declarations aneflicting so they are ignored at the actual declaration.
For mutex typer4, the default mutex qualifiers for the overloaded memberimeytnem, are conflicting because one
is private, default_.Nomutex , the other is public, defaultMutex, anduC+ requires overloaded members to have
identical mutex properties (see Secti@8.2.1, p. 25and2.16, p. 4).

The following program:

_Task /«+ no name «/ {};

generates this error:

test.cc:2: uC++ Translator error: cannot create anonymous coroutine or task because of the need for
named constructors and destructors.

because a type without a name cannot have constructors touctess since both are named after the type, and the
pUC+H- translator needs to generate constructors and demtsuichot present for certain kinds of types.

7.2 Dynamic (Runtime) Warnings/Errors

These dynamic warnings/errors are generated byu@ie runtime system not by the C+ runtime system. These
warnings/errors are specific to usage problems withut concurrency extensions. The following examples show
different situations, the message generated and an exjolawd the message. While not all warning/error situations
are enumerated, the list covers the common one present inu@#eisprograms.

7.2.1 Assertions
Assertions define runtime checks that must be true or the bigirithm is incorrect; if the assertion is false, a messag
is printed and the program is aborted. Assertions are wmritging the macrassert:
assert( boolean-expression );
Asserts can be turned off by defining the preprocessor VandbEBUG before includingassert.h.
To use assertions in@C+ program, include the file:
#include <assert.h>
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7.2.2 Termination

A uC+ program can be terminated due to a failure using the UNXineabort, which stops all thread execution and
generates a core file for subsequent debugging (assumisfpéidimits allow a core file to written). To terminate a
program, generate a core fiemdprint an error message, use i@+ free routinaiAbort:

void uAbort( char sformat ="", ...)
format is a string containing text to be printed apdntf style format codes describing how to print the following
variable number of arguments. The number of elements in dn@hle argument list must match with the number
of format codes, as fagrintf. In addition to printing the user specified message, whiaimadly describes the error,

routineuAbort prints the name of the currently executing task type, pdsadming the type of the currently executing
coroutine if the task’s thread is not executing on its owrceien state at the time of the call.

A pC+ program can be terminated using the UNIX routési, which stops all thread execution and returns a
status code to the invoking shell:

void exit( int status );

Note, whenexit is used to terminate a program, all global destructors alteegsecuted. Any tasks, clusters, or
processors not deleted by this pagmé not flagged with an errgrunlike normal program termination.

O Because routinexit eliminates some error checking, it should not be used tai#tath::main to pass
back a return code to the shell, e.g.:

void uMain::main() {

exit( EXIT_SUCCESS );
}

Use the variable@RetCode from uMain::main instead (see Sectich2, p. 9. O

7.2.3 Messages

The following examples show different error situation® #rror message generated and an explanation of the error.
While not all error situations are enumerated, the list cetlee common errors present in mp&t+ programs. Finally,
most of these errors are generated only when usingdbieug compilation flag (see Sectiéh4.1, p. 10.

7.2.3.1 Default Actions

The following examples show the default actions taken whatain exceptions are not caught and handled by the
program (see Sectidn3.2, p. 69. For coroutines the default action raises another exaeptithe coroutine’s resumer,
while for tasks the default action prints an appropriateremessage and terminates the program. While not all default
actions are enumerated, the list covers the common prolgessent in manyC+ programs.

The following program:

void f() throw () { // throw no exceptions
throw 1;

void uMain::main() {

1

generates this error:

uC++ Runtime error (UNIX pid:20242) Exception propagated through a function whose exception-specification
does not permit exceptions of that type. Type of last active exception: int Error occurred while executing
task uMain (0xffbef828).

because routinkdefines it raises no exceptions and then an exception irfxim@ within it.
The following program:
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_Event E {};

_Coroutine C {
void main() { _Throw E(); }
public :
void mem() { resume(); }

h
void uMain::main() {
Cc;
c.mem(); /I first call fails

generates this error:

uC++ Runtime error (UNIX pid:23979) (uBaseCoroutine &)0xffbef008 : Unhandled exception in coroutine
uMain raised non-locally from resumed coroutine C (0x82970), which was terminated due to an unhandled
exception of type E. Error occurred while executing task uMain (0xffbef008).

because the call tamem resumes coroutineand then coroutinethrows an exception it does not handle. As a result,
when the top ot’s stack is reached, an exception of tyy@aseCoroutine::UnhandledException is raised atiMain,
since it last resumee A more complex version of this situation occurs when thei@riesume chain and no coroutine
along the chain handles the exception. The following praogra

_Event E {};

_Coroutine C2 {
void main() { _Throw E(); }
public :
void mem() { resume(); }

_Coroutine C1 {
void main() {

C2 c2;
c2.mem();

}
public :
void mem() { resume(); }

void uMain::main() {
C1 c1;
cl.mem(); /I first call fails

generates this error:

uC++ Runtime error (UNIX pid:24080) (uBaseCoroutine &)0xffbef008 : Unhandled exception in coroutine
uMain raised non-locally from coroutine C1 (0x82ec0), which was terminated due to a series of unhandled
exceptions — originally an unhandled exception of type E inside coroutine C2 (0x8acc0). Error occurred
while executing task uMain (0xffbef008).

because the call tal.mem resumes coroutinel, which creates coroutin2 and call toc2.mem to resume it, and then
coroutinec2 throws an exception it does not handle. As a result, wheroghefic2’s stack is reached, an exception of
typeuBaseCoroutine::UnhandledException is raised atiMain, since it last resumed
The following program:
void uMain::main() {
throw 1;
}

generates this error:

uC++ Runtime error (UNIX pid:13901) Propagation failed to find a matching handler. Possible cause is
a missing try block with appropriate catch clause for specified or derived exception type, or throwing an
exception from within a destructor while propagating an exception. Type of last active exception: int Error
occurred while executing task uMain (0xffbef000).
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because nay statement with an appropriatatch clause is in effect for taskMain so propagation fails to locate a
matching handler.
The following program:

void uMain::main() {
throw ; /I rethrow
}

generates this error:

uC++ Runtime error (UNIX pid:13291) Attempt to rethrow/reresume but no active exception. Possible
cause is a rethrow/reresume not directly or indirectly performed from a catch clause. Error occurred while
executing task uMain (0xffbef000).

because a rethrow must occur in a context with an activeg@jreaised) exception so that exception can be raised
again.
The following program:
_Monitor M {
public :
void mem() {}

void uMain::main() {
M «m = new M,;
delete m; /I delete storage
m- >mem(); /I make call to mutex member

}

generates this error:

uC++ Runtime error (UNIX pid:4258) (uSerial &)0x670c00 : Entry failure while executing mutex destructor:
mutex object has been destroyed. Error occurred while executing task uMain (Oxffbef000).

because taskMain deletes the monitan and then calls the member routimem through the deleted pointer. As a
result, taskuMain finds the mutex object has been destroyed.
The following program:

_Task T1{
uCondition w;
public :
void mem() { w.wait(); }
private :
void main() {
_Accept (mem ); // let T2 in so it can wait
w.signal(); /I put T2 on acceptor/signalled stack
_Accept ( ~T1); /I uMain is calling the destructor

}

ETask T2 {
T1 &tl;
void main() { tL.mem(); }
public :
T2(T1 &t1) : t1(t1) {¢

void uMain::main() {
T1 «t1 = new T1;
T2 #t2 = new T2( «t1);
delete t1; /I delete in same order as creation
delete t2;
}

generates this error:

uC++ Runtime error (UNIX pid:23337) (uSerial &)0x84470 : Entry failure while executing mutex destructor:
task uMain (0xffbef008) found blocked on acceptor/signalled stack. Error occurred while executing task T2
(0x8d550).
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because tasi? is allowed to wait on condition variablein t1.mem, and then taskl signals conditionv, which moves
taskt2 to the acceptor/signalled stack, and accepts its destruksaa result, when taskMain attempts to delete task
t1, it finds taske2 still blocked on the acceptor/signalled stack. Similathg following program:
_Task T1{
public :
void mem() {}

private :
void main() { _Accept ( ~T1); }

}_Task T2 {
T1 &t1;
public :
T2(T1 &t1) : t1(t1) §
private :
void main() { tL.mem(); }

void uMain::main() {
T1 «t1 = new T1;
T2 +t2 = new T2( «t1);
delete t1;
delete t2;

}

generates this error:

uC++ Runtime error (UNIX pid:23425) (uSerial &)0x84230 : Entry failure while executing mutex destructor:
task uMain (0xffbef008) found blocked on entry queue. Error occurred while executing task T2 (0x8d310).

because tasi happens to block on the call tb.mem, and then taskl accepts its destructor. As a result, when task
uMain attempts to delete task, it finds taskt2 still blocked on the entry queue df.
The following program:
_Event E {};

_Task T {
uBaseTask &t;
public :
T( uBaseTask &t ) : t(t) {}
void mem() {
I uRendezvousAcceptor();
_Throw E();

private :
void main() {
_Accept ( mem );
}

void uMain::main() {
T t( uThisTask() );

try {
t.mem();

}catch( E &e ) {

}
}

generates this error:

uC++ Runtime error (UNIX pid:23512) (uSerial &)0x83120 : Rendezvous failure in accepted call from task
uMain (0xffbef008) to mutex member of task T (0x82ff0). Error occurred while executing task T (0x82ff0).

because in the call tomem from taskuMain, the rendezvous terminates abnormally by raising an ekaepf type
E. As a resultuMain implicitly resumes an exception of typ@utexFailure::RendezvousFailure concurrently at task
t so it knows the call did not complete and can take appropciatesctive action (see Sectidnll.3, p. 85 If the
call uRendezvousAcceptor() is uncommented, an exception of tyidutexFailure::RendezvousFailure is not resumed
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at taskt, and task restarts as if the rendezvous completed. A more complexoreds this situation occurs when a
blocked call is aborted, i.e., before the call even begihe fdllowing program:
_Event E {};

_Task T {
uBaseTask &t;
public :
T( uBaseTask &t ) : t(t) {}
void mem() {}
private :
void main() {
_Resume E() _At t;
_Accept ( mem );

%/;oid uMain::main() {
T t( uThisTask() );

}
}catch( E &e ) {
}
}

generates this error:

uC++ Runtime error (UNIX pid:23656) (uSerial &)0x83260 : Rendezvous failure in accepted call from task
uMain (0xffbef008) to mutex member of task T (0x83130). Error occurred while executing task T (0x83130).

because the blocked call tonem from taskuMain is interrupted by the concurrent exception of typeWhen the
blocked call fromuMain is acceptedyMain immediately detects the concurrent exception and doegattse call.
As a resultuMain implicitly resumes an exception of typ@lutexFailure::RendezvousFailure concurrently at taskso
it knows the call did not occur and can take appropriate ctiveaction (see Sectidn11.3, p. 8%
The following program:
_Task T1{
uCondition w;
public :
void mem() { w.wait(); }
private :
void main() { _Accept ( mem ); }

ETask T2 {

T1 &t1;

void main() { tl.mem(); }

public :

T2(T1 &t1) : t1(t1) §§
void uMain::main() {

T1 «t1 = new T1;

T2 «t2 = new T2( «t1);

delete ti;
delete t2;

}

generates this error:

uC++ Runtime error (UNIX pid:23856) (uCondition &)0x84410 : Waiting failure as task uMain (0xffbef008)
found blocked task T2 (0x8d470) on condition variable during deletion. Error occurred while executing task
T2 (0x8d470).

because the call ta.mem blocks task2 on condition queua and then taskl implicitly accepts its destructor when
its main terminates. As a result, when tagiain attempts to delete task; it finds task still blocked on the condition
queue.
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7.2.3.2 Coroutine

Neither resuming to nor suspending from a terminated coresis allowed; a coroutine is terminated whemitsn
routine returns. The following program:
_Coroutine C {
void main() {}
public :
void mem() { resume(); }

\;oid uMain::main() {

Cc;
c.mem(); /I first call works
c.mem(); /I second call fails

}
generates this error:

uC++ Runtime error (UNIX pid:24169) Attempt by coroutine uMain (Oxffbef008) to resume terminated
coroutine C (0x823a0). Possible cause is terminated coroutine’s main routine has already returned. Error
occurred while executing task uMain (0xffbef008).

because the first call tamem resumes coroutineand then coroutine terminates. As a result, wheiain attempts
the second call to.mem, it finds coroutine terminated. A similar situation can be constructed usimpend, but is
significantly more complex to generate, hence it is not dised in detail.
Membersuspend resumes the last resumer, and therefore, there must beragdmfore a suspend can execute
(see SectioR.6.3, p. 1. The following program:
_Coroutine C {
void main() {}
public :
void mem() {
suspend(); /I suspend before any resume
}
I3

void uMain::main() {
C ¢
c.mem();

generates this error:

uC++ Runtime error (UNIX pid:24258) Attempt to suspend coroutine C (0x82390) that has never been
resumed. Possible cause is a suspend executed in a member called by a coroutine user rather than by the
coroutine main. Error occurred while executing task uMain (Oxffbef008).

because the call t6::mem executes a suspend before the corouting®; member is started, and hence, there is no
resumer to reactivate. In general, mem&spend is only called within the coroutine main or non-public memshe
called directly or indirectly from the coroutine main, notpublic members called by other coroutines.

Two tasks cannot simultaneously execute the same corootiheone task can use the coroutine’s execution at a

time. The following program:

_Coroutine C {
void main() {
uBaseTask::yield();
}

public :
void mem() {
resume();
}
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_Task T {
C &c;
void main() {
c.mem();
}

public :
T(C&c):c(c){}
2

void uMain::main() {
Cc;
Ttl(c), t2(c);

generates this error:

uC++ Runtime error (UNIX pid:24393) Attempt by task T (0x82ea0) to resume coroutine C (0x831e0) cur-
rently being executed by task T (0x83040). Possible cause is two tasks attempting simultaneous execution
of the same coroutine. Error occurred while executing task T (0x82ea0).

becausel’s thread first calls routin€::mem and then resumes coroutinewhere it yields the processae’s threads
now calls routineC::mem and attempts to resume coroutinbuttl is currently using’s execution-state (stack). This
same error occurs if the coroutine is changed to a coroutorator and taskl waits in coroutine after resuming it:
_Cormonitor CM {
uCondition w;

void main() {
w.wait();
}

public :
void mem() {
resume();
}

}_Task T{
CM &cm;
void main() {
cm.mem();
}

public :
T(CM &cm ) : cm( cm ) {}
I3

void uMain::main() {
CM cm;
Ttl(cm ), t2(cm);

When a coroutine (or task) is created, there must be suffimiemory to allocate its execution state. The following
program:

unsigned int uMainStackSize() {
return 1000000000; /I very large stack size for uMain
}

void uMain::main() {
}
generates this error:

uC++ Runtime error (UNIX pid:24848) Attempt to allocate 1000000000 bytes of storage for coroutine or
task execution-state but insufficient memory available. Error occurred while executing task uBootTask
(0x4d6b0).

because the declarationwa¥lain by theuBootTask fails due to the request for a 1000000000-byte stackiftzin.

As mentioned in SectioB.4, p. 10 the uC+ kernel provides no support for automatic growth of stsgéce for
coroutines and tasks. Several checks are made to mitigattéepns resulting from lack of dynamic stack growth. The
following program:
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void uMain::main() {
char x[uThisCluster().getStackSize()]; /I array larger than stack space

verify();

generates this error:

uC++ Runtime error (UNIX pid:24917) Stack overflow detected: stack pointer 0x7a650 below limit 0x7a820.
Possible cause is allocation of large stack frame(s) and/or deep call stack. Error occurred while executing
task uMain (0xffbef008).

because the declaration of the arrayimain uses more than the current stack space.
The following program:
void uMain::main() {

{
char x[uThisCluster().getStackSize()]; /I array larger than stack space
for (int i = 0; i < uThisCluster().getStackSize(); i += 1) {
X[i]="a; /I write outside stack space

} /I delete array
verify();

generates this error:

uC++ Runtime error (UNIX pid:24968) Stack corruption detected. Possible cause is corrupted stack frame
via overwriting memory. Error occurred while executing task uMain (0xffbef008).

because the declaration of the arrayiiain uses more than the current stack space, and by writing ietarttay, the
current stack space is corrupted (and possibly anothek,staavell).
7.2.3.3 Mutex Type

It is a restriction that a task must acquire and release nmultgects in nested (LIFO) order (see Sectiid, p. 1§.
The following program:

_Task T; _Task T {
CM &cm;
_Cormonitor CM { void main() {
T «t; cm.mem( this ); // call coroutine monitor
void main(); }
public : public :
void mem( T «t ) { // task owns mutex object T(CM &cm ) : cm( cm ) {}
CM:t =1t void mem() {
resume(); /I begin coroutine main resume(); /I restart task in CM::mem
} }
I3 I3
void CM::main() {
t- >mem(); /I call back into task
void uMain::main() {
CM cm;
Tt(cm);
}

generates this error:

uC++ Runtime error (UNIX pid:25043) Attempt to perform a non-nested entry and exit from multiple ac-
cessed mutex objects. Error occurred while executing task T (0x835f0).

becausés thread first calls mutex routir@i::mem (and now owns coroutine monitom) and then resumes coroutine
cm, which now calls the mutex routirfe:mem (t already owns itself). The coroutiren resumesfrom within T::mem,
which restarts inCM::mem (full coroutining) and exits before completing the nestedl to mutex routineT::mem
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(wherecm is suspended). Therefore, the calls to these mutex roudim@®t terminate in LIFO order. The following
program is identical to the previous one, generating theesamor, but the coroutine monitor has been separated into

a coroutine and monitor:

_Monitor M;
_Task T;

_Coroutine C {
M «m;
void main();
public :
void mem( M +m ) {
C:im=m;

resume(); /I begin coroutine main

h
_Monitor M {
C &c;
T «t;
public :
M(C&c):c(c){}
void meml1( T st ) { // task owns mutex object
M:t = t;
c.mem( this );

void mem2();

void C::main() {
m- >mem2();

}
_Task T {
M &m;
C &c;
void main() {
m.mem1( this ); // call monitor
}

public :
T(M&m, C&c):m(m), c(c){}
void mem() {

resume(); /I restart task in C::mem
}
2
void M::mem2() {
t- >mem(); /I call back into task
}
void uMain::main() {
Cg
M m(c);
Tt(m, c);

Ownership of a mutex object by a task applies through anyutore executed by the task. The following program:

_Task T; _Task T { void C::main() {
C &c; t- >mem();
_Coroutine C { void main() { }
T #t; c.mem( this ); void uMain::main() {
void main(); yield(); Cc;
public : } Ttl(c), t2(c);
void mem( T #t ) { public :
Cit=t T(C&c):c(c){}
resume(); void mem() {
} resume();
2 } }

generates this error:

uC++ Runtime error (UNIX pid:25216) Attempt by task T (0x83050) to activate coroutine C (0x833c0) cur-
rently executing in a mutex object owned by task T (0x83208). Possible cause is task attempting to logically
change ownership of a mutex object via a coroutine. Error occurred while executing task T (0x83050).

becausel’s thread first calls routin€::mem and then resumes coroutiaenvhich now calls the mutex routine:mem.

t1 restarts inC::mem and returns back t0::main and yields the processae’s threads now calls routin@::mem and
attempts to resume coroutiegewhich would restart2 via c in T::mem. However, this resumption would result in a
logical change in ownership becaugéas not acquired ownershipaf This same error can occur if the coroutine is
changed to a coroutine monitor and taskvaits in coroutine after resuming it:
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_Task T; _Task T { void C::main() {
uCondition w; t- >mem();
_Coroutine C { C &c;
T #t; void main() { void uMain::main() {
void main(); c.mem( this ); Cc;
public : w.wait(); Ttl(c), t2(c);
void mem( T #t ) { }
Cit =1t public :
resume(); T(C&c):c(c){}
} void mem() {
I resume();
}
3

Itis incorrect storage managementto delete any objecatitthre outstanding nested calls to the object’s members.
UC+H detects this case only for mutex objects. The followinggpam:

class T;
_Monitor M {
public :
void mem( T xt );
c'Iass T{
M «m;
public :
void mem1() {
m = new M; /I allocate object

m->mem( this );  // call into object

void mem2() {

delete m; /I delete object with pending call
}
I3
void M:mem( T #t ) {
t- >mem2(); /I call back to caller

void uMain::main() {
Tt
t.mem1();

generates this error:

uC++ Runtime error (UNIX pid:25337) Attempt by task uMain (Oxffbef008) to call the destructor for uSerial
0x83278, but this task has outstanding nested calls to this mutex object. Possible cause is deleting a
mutex object with outstanding nested calls to one of its members. Error occurred while executing task
uMain (Oxffbef008).

It is incorrect to perform more than one delete on a mutexaipjehich can happen if multiple tasks attempt
to perform simultaneous deletes on the same objaCt+ detects this case only for mutex objects. The following
program:

_Monitor M {
uCondition w;
public :
~M() {

w.wait(); /I force deleting task to wait
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_Task T {
M =m;
void main() {
delete m; /I delete mutex object
}

public :
T(M+m ) : m(m) {}

%/;oid uMain::main() {

M +m = new M; /I create mutex object
Tt(m); /I create task
delete m; /I also delete mutex object

}
generates this error:

uC++ Runtime error (UNIX pid:25431) Attempt by task T (0x82cd0) to call the destructor for uSerial
0x83a48, but this destructor was already called by task uMain (Oxffbef008). Possible cause is multiple
tasks simultaneously deleting a mutex object. Error occurred while executing task T (0x82cd0).

7.2.3.4 Task

The destructor of a task cannot execute if the thread of #skt has not finished (halted) because the destructor
deallocates the environment in which the task’s threadesting. The following program:

_Task T {
uCondition w;
void main() {
_Accept ( ~T); /I uMain invokes destructor
w.wait(); /I T continues but blocks, which restarts uMain
}
void uMain::main() {
Tt

} /I implicitly invoke T::~T
generates this error:

uC++ Runtime error (UNIX pid:25719) Attempt to delete task T (0x82900) that is not halted. Possible cause
is task blocked on a condition queue. Error occurred while executing task uMain (Oxffbef008).

because the call to the destructor restarts the acceptsatésee Section.8.2.3, p. 2% and the thread afblocks on
conditionw, which restarts the destructor. However, the destructamatcleanup without invalidating any subsequent
execution of task.

7.2.3.5 Condition Variable

Only the owner of a condition variable can wait and signaltqeée Sectio2.8.3.1, p. 2h The following program:

_Task T {
uCondition &w;
void main() {

w.wait();
}

public :
T( uCondition &w ) : w( w ) {}
void uMain:main() {
uCondition w;
Tt(w),
w.wait();

generates this error:

uC++ Runtime error (UNIX pid:6605) Attempt to wait on a condition variable for a mutex object not locked
by this task. Possible cause is accessing the condition variable outside of a mutex member for the mutex
object owning the variable. Error occurred while executing task T (0x826c¢8).
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because the condition variables passed fronaMain to t, and then there is a race to wait on the condition. The error
message shows thatain waited first so it became the condition owner, and tteattempt to wait fails. Changing
wait in T::main to signal generates a similar message with respect to signalling dittmmnot owned by mutex object
t. Itis possible for one mutex object to create a conditionf@as it to another, as long as the creator does not wait on
it before passing it.
The same situation can occur if a wait or signal is incoryggihced in a nomutex member of a mutex type. The
following program:
_Task T {
uCondition w;
void main() { w.wait(); }
public :
_Nomutex void mem() {
w.signal();
}

5
void uMain::main() {
Tt

yield();
t.mem();

generates this error:

uC++ Runtime error (UNIX pid:6502) Attempt to signal a condition variable for a mutex object not locked
by this task. Possible cause is accessing the condition variable outside of a mutex member for the mutex
object owning the variable. Error occurred while executing task uMain (Oxffbef008).

because taskis first to wait on condition variabler due to theyield in uMain::main, and theruMain does not lock
mutex-object when callingmem as it is nomutex. Only itiMain hast locked can it access any condition variable
owned byt. Changingsignal in T::mem to wait generates a similar message with respect to waiting on atemmdot
locked by mutex objeaiMain.
A condition variable must be non-empty before examiningddtred with the front task blocked on the queue
(see Sectio2.8.3.1, p. 2% The following program:
void uMain::main() {
uCondition w;
int i = w.front();

}

generates this error:

uC++ Runtime error (UNIX pid:2411) Attempt to access user data on an empty condition. Possible cause
is not checking if the condition is empty before reading stored data. Error occurred while executing task
uMain (0xffbef870).

because the condition variables empty so there is no data to return.

7.2.3.6 Accept Statement

An _Accept accept statement can only appear in a mutex member. The/fotigprogram:

_Monitor M {
public :
void meml() {}
_Nomutex void mem2() {
_Accept ( meml ); // not allowed in nomutex member

J5

void uMain::main() {
M m;
m.mem2();

generates this error:
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uC++ Runtime error (UNIX pid:2159) Attempt to accept in a mutex object not locked by this task. Possible
cause is accepting in a nomutex member routine. Error occurred while executing task uMain (0xffbef008).

7.2.3.7 Calendar

When creating an absolute time value usifigne (see Sectiod0.2.1, p. 128 the value must be in the range 00:00:00
UTC, January 1, 1970 to 03:14:07 UTC, January 19, 2038, wilsitihe UNIX start and end epochs. The following
program:

void uMain::main() {
uTime t( - 17 );
}

generates this error:

uC++ Runtime error (UNIX pid:2243) Attempt to create uTime( year=1970, month=0, day=0, hour=0,
min=0, sec=-17, nsec=0 ), which exceeds range 00:00:00 UTC, January 1, 1970 to 03:14:07 UTC, January
19, 2038. Error occurred while executing task uMain (Oxffbef008).

7.2.3.8 Locks

The argument for thaLock constructor (see Sectich14.2, p. 3pmust be 0 or 1. The following program:

void uMain::main() {
uLock I(3);

generates this error:

uC++ Runtime error (UNIX pid:2328) Attempt to initialize uLock 0x91030 to 3 that exceeds range 0-1. Error
occurred while executing task uMain (0xffbef008).

because the value 3 passed to the constructaradk is outside the range 0-1.

7.2.3.9 Cluster

A cluster cannot be deleted with a task still on it, regarsltdfavhat state the task is in (i.e., blocked, ready or running
The following program:

_Task T {
void main() {}

h

void uMain::main() {
T st = new T;

}

generates this error:

uC++ Runtime error (UNIX pid:2404) Attempt to delete cluster userCluster (0x82260) with task T (0x92770)
still on it. Possible cause is the task has not been deleted. Error occurred while executing task uBootTask
(0x5d6f0).

because theBootTask happens to delete the user cluster (see Se8ti®mp. 113 afteruMain::main terminates before
the dynamically allocated tagkhas terminated. Deleting the task associated wiihforeuMain::main terminates
solves the problem.

Similarly, a cluster cannot be deleted with a processdrigtiated on it, regardless of what state the processor is
in (i.e., running or idle). The following program:

void uMain::main() {
uProcessor &p = xnew uProcessor( uThisCluster() );
}

generates this error:

uC++ Runtime error (UNIX pid:2488) Attempt to delete cluster userCluster (0x81770) with processor
0x91c80 still on it. Possible cause is the processor has not been deleted. Error occurred while execut-
ing task uBootTask (0x5cc00).
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because theBootTask deletes the user cluster (see Sec®80B, p. 113 afteruMain::main terminates but the dynam-
ically allocated processaris still on the user cluster. Deleting the processor assetiaith p beforeuMain::main
terminates solves the problem.

7.2.3.10 Heap

MC+ provides its own concurrent dynamic memory allocatiautines. Unlike most C/C+ dynamic memory alloca-
tion routinespuC+ does extra checking to ensure that some aspects of dymaenory usage are done correctly. The
following program:
void uMain::main() {
int «ip = (int )1; /I invalid pointer address
delete ip;
}

generates this error:

uC++ Runtime error (UNIX pid:2535) Attempt to free storage Ox1 outside the current heap range:0x5e468
to 0x91b78. Possible cause is invalid pointer. Error occurred while executing task uMain (0xffbef008).

because the value of pointieris not within the heap storage area, and therefore, canni¢leéed.
The following program:
void uMain::main() {
int «sip = new int [10];
delete &ip[5]; /I not the start of the array
}

generates this error:

uC++ Runtime error (UNIX pid:2607) Attempt to free storage 0x91c14 with corrupted header. Possible
cause is duplicate free on same block or overwriting of header information. Error occurred while executing
task uMain (0xffbef008).

because the pointer passedittete must always be the same as the pointer returned fram In this case, the value
passed talelete is in the middle of the array instead of the start.
The following program:
_Task T {
void main() {}
public :
void mem() {}
I3

void uMain::main() {
T xt = new T;
delete t;
t- >mem(); /I use deleted storage

generates this error:

uC++ Runtime error (UNIX pid:2670) (uSpinLock &)0x92a50.acquire() : internal error, attempt to multiply
acquire spin lock by same task. Error occurred while executing task uMain (0xffbef008).

because an attempt is made to use the storage for disk it is deleted, which is always incorrect. This storaggy
have been reallocated to another task and now contains etghptifferent information. The problem is detected
inside of thepC+ kernel, where there are assertion checks for invalidq@rpost-conditions. In this case, the invalid
storage happened to trigger a check for a task acquiringralegk twice, which is never suppose to happen. Using
storage incorrectly can trigger other “internal errorgirfrthepC+ kernel.

As well, a warning message is issued at the end of a progralivstbaage is not freed.

uC++ Runtime warning (UNIX pid:3914) : program terminating with 32(0x20) bytes of storage allocated
but not freed. Possible cause is unfreed storage allocated by the program or system/library routines called
from the program.
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This is not an error; it is a warning. While this message indicates unfreed storage, it does rlyithe storage is
allocated by the user’s code. Many system (e.g., exceptartslibrary (e.g.string type and socket 1/0) operations
allocate storage (such as buffers) for the duration of tbggam, and therefore, there is little reason to free thegtr
at program termination. (Why cleanup and then terminatef?rd is nothing that can be done about this unfreed
storage. Therefore, the value printed is only a guide inrdg@teng if all of a user’s storage is freed.

What use is this message? Any sudden increase of unfreedstivom some base value may be a strong indication
of unfreed storage in the user’s program. A quick check ofireamic allocation can be performed to verify all user
storage is being freed.

7.2.3.11 1/0

There are many different 1/O errors; only those related éqi+ kernel are discussed. The following program:

void uMain::main() {
uThisCluster().select( - 1, 0, NULL );
}

generates this error:

uC++ Runtime error (UNIX pid:2962) Attempt to select on file descriptor -1 that exceeds range 0-1023.
Error occurred while executing task uMain (Oxffbef008).

The following program:

void uMain::main() {
uThisCluster().select( - 1, NULL, NULL, NULL, NULL );
}

generates this error:

uC++ Runtime error (UNIX pid:3008) Attempt to select with a file descriptor set size of -1 that exceeds
range 0-1024. Error occurred while executing task uMain (Oxffbef008).

7.2.3.12 Processor

The following program:
#include <uSemaphore.h>
void uMain::main() {
uSemaphore s(0);
s.P(); /I block only thread => synchronization deadlock

}

generates this error:

uC++ Runtime error (UNIX pid:3110) No ready or pending tasks. Possible cause is tasks are in a synchro-
nization or mutual exclusion deadlock. Error occurred while executing task uProcessorTask (0x82740).

because the only thread blocks so there are no other taskec¢ate, resulting in a synchronization deadlock. This
message also appears for the more complex form of deadlsakirgy from mutual exclusion.

7.2.3.13 UNIX

There are many UNIX related errors, of which only a small stilbse handled specially mC+-.
A common error in CH programs is to generate and use an éthgalnter. This situation can arise because of an
incorrect pointer calculation, such as an invalid subscfiipe following program:
void uMain::main() {
int «ip = NULL; /I set address to O
#p += 1; /I use the bad address

}
generates this error:

uC++ Runtime error (UNIX pid:3241) Attempt to address location 0x0. Possible cause is reading out-
side the address space or writing to a protected area within the address space with an invalid pointer or
subscript. Error occurred while executing task uMain (Oxffbef008).
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because the value of pointieris probably within the executable code, which is read-doly,an attempt to write is
occurring.

If a pCH program is looping for some reason, it may be necessatgrioinate its execution. Termination is
accomplished using a shéill command, sending sign@IGTERM to the UNIX processuC+ receives the termination
signal and attempts to shutdown the application, which irtant in multikernel mode with multiple processors. The
following program:

#include <unistd.h> /I getpid prototype
void uMain::main() {
kill( getpid(), SIGTERM );  // send SIGTERM signal to program

generates this error:

uC++ Runtime error (UNIX pid:3315) Application interrupted by a termination signal. Error occurred while
executing task uMain (0xffbef008).

because thaC+ program sent itself a terminatioBIGTERM) signal.



Chapter 8

UCH Kernel

TheuC+- kernel is a library of classes and routines that provagelevel lightweight concurrency support on unipro-
cessor and multiprocessor computers running the UNIX dimgraystem. On uniprocessors, parallelism is simulated
by rapid context switching at non-deterministic points goregrammer cannot rely on order or speed of execution.
Some of the following facilities only have an effect on mpiticessor computers but can be called on a uniprocessor
so that a program can be seamlessly transported betweemdlaedhitectures.

The uC+ kernel does not call the UNIX kernel to perform a contexitch or to schedule tasks, and uses shared
memory for communication. As a result, performance for akea of and communication among large numbers of
tasks is significantly increased over UNIX processes. Thamam number of tasks that can exist is restricted only by
the amount of memory available in a program. The minimumkssaze for an execution state is machine dependent,
but can be as small as 256 bytes. The storage managemenp@falbbjects and the scheduling of tasks on virtual
processors is performed by th€+ kernel.

8.1 Pre-emptive Scheduling and Critical Sections

Care must be taken when writing threaded programs callirtgicedJNIX library routines that areotthread-safe. For
example, the UNIX random number generataoid maintains an internal state between successive calls anglitino
mutual exclusion on this internal state. Hence, one tas&ugigy the random number generator can be pre-empted and
the generator state can be modified by another task, whichr@sayt in problems with the generated random values
or errors. Therefore, when writingC+ programs, always use the thread-safe versions of UNE&Hy routines, such
asrand_r to generate random numbers.

For some non-thread-safe UNIX library-routin@§+ provides a thread-safe equivalent, sucta@st/uAbort,
exit (see Sectio.2.2, p. 97, sleep, usleep, and theuC+ I/O library (see Chaptet, p. 55.

8.2 Memory Management

In uC+, all user data is located in memory that is accessiblditkeeel threads started yC+. In order to make
memory management operations safe, the C+ memory manageperatorsew anddelete are indirectly redefined
through the C routinemalloc and free to allocate and free memory correctly by multiple tasks. Sehenemory
management operations provide identical functionalittheoC+ and C equivalent ones.

8.3 Cluster

As mentioned in Sectio2.3.1, p. 8 a cluster is a collection ofiC+ tasks and processors; it provides a runtime
environment for execution. This environment controls thant of parallelism and contains variables to affect how
coroutines and tasks behave on a cluster. Environmentlesiare used implicitly, unless overridden, when creating
an execution state on a cluster:

stack sizeis the default stack size, in bytes, used when coroutinesstistare created on a cluster.

The variable(s) is either explicitly set or implicitly ageied guC+ default value when the cluster is created. A cluster
is used in operations like task or processor creation toifsptbe cluster on which the task or processor is associated.

113
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After a cluster is created, it is the user’s responsibilityassociate at least one processor with the cluster so it can
execute tasks.
The cluster interface is the following:
class uCluster {
public :

uCluster( unsigned int stackSize = uDefaultStackSize(), const char xname = "+unnameds+" );

uCluster( const char xname );

uCluster( uBaseSchedule<uBaseTaskDL> &ReadyQueue,

unsigned int stackSize = uDefaultStackSize(), const char sname = "*unnaned*" );
uCluster( uBaseSchedule<uBaseTaskDL> &ReadyQueue, const char sname = "xunnaneds" );

const char ssetName( const char *hame );

const char xgetName() const ;

unsigned int setStackSize( unsigned int stackSize );
unsigned int getStackSize() const ;

enum { ReadSelect = 1, WriteSelect = 2, ExceptSelect = 4 };

int select( int fd, int rwe, timeval «timeout = NULL );
int select( int nfds, fd_set «rfd, fd_set «wfd, fd_set xefd, timeval stimeout = NULL );

const uBaseTaskSeq &getTasksOnCluster();
unsigned int getProcessors() const ;
const uProcessorSeq &getProcessorsOnCluster();

h
uCluster clus( 8196, "cl us" ) // 8K default stack size, cluster name is “clus”
The overloaded constructor routin€luster has the following forms:

Il

uCluster( unsigned int stackSize = uDefaultStackSize(), const char :name = "xunnaneds" ) —this form uses
the user specified stack size and cluster name (see Sédtibnp. 13%or the first default value).

uCluster( const char «name ) — this form uses the user specified name for the cluster andutiient cluster’s
default stack size.

When a cluster terminates, it must have no tasks executinggamd all processors associated with it must be freed.
It is the user’s responsibility to ensure no tasks are exaguwin a cluster when it terminates; therefore, a cluster can
only be deallocated by a task on another cluster.

The member routingetName associates a name with a cluster and returns the previous.ridre member routine
getName returns the string name associated with a cluster.

The member routinsetStackSize is used to set the default stack size value for the stackquoofi each execution
state allocated on a cluster and returns the previous defimck size. The new stack size is specified in bytes. For
example, the caltlus.setStackSize(8000) sets the default stack size to 8000 bytes.

The member routingetStackSize is used to read the value of the default stack size for a cluste example, the
statement = clus.getStackSize() setsi to the value 8000.

The overloaded member routieelect works like the UNIXselect routine, but on a per-task basis per cluster. That
is, all I/O performed on a cluster is managed by a poller taskifat cluster (see Sectidnl, p. 59. In generalselect
is used only in esoteric situations, e.g., whu file objects are mixed with standard UNIX file objects oa $ame
cluster. These members return the total number of file detses set in all file descriptor masks, and each routine has
the following form:

select( int fd, int rwe, timeval stimeout = NULL ) —this form is a shorthand select for a single file descrigibe
mask,rwe, is composed of logically “or’ing flagReadSelect, WriteSelect, andExceptSelect. The timeout
value points to a maximum delay value, specified @meval, to wait for the 1/0 to complete. If the timeout
pointer is null, the select blocks until the 1/0 operatiomgaetes or fails. This form is more efficient than the
next forms with complete file descriptor sets, but handldg asingle file.

select( int nfds, fd_set srfd, fd_set swfd, fd_set «efd, timeval stimeout = NULL ) — this form examines the first
nfds 1/O file descriptors in the sets pointed to Hy, wfd, andefd, respectively, to see if any of their file
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descriptors are ready for reading, or writing, or have etioapl conditions pending. The timeout value points
to a maximum delay value, specified atngeval, to wait for an 1/0 to complete. If the timeout pointer is null
the select blocks until one of the 1/0O operations completdaits.

There does not seem to be any standard semantics action wiigplerkernel threads access the same file de-
scriptor inselect. Some systems wake all kernel threads waiting for the sameédiscriptor; others wake the kernel
threads in FIFO order of their request for the common file dpswr. uC+ adopts the former semantic and wakes all
tasks waiting for the same file descriptor. In general, thisat a problem becausd uC+ file routines retry their 1/0
operation, and only one succeeds in obtaining data (whietionon-deterministic).

Finally, it is impossible to precisely deliveselect errors to the task that caused it. For example, if one task
in waiting for 1/0 on a file descriptor and another task clogesfile descriptor, the UNIX select fails but with no
information about which file descriptor caused the erroreréfore uC+ wakes up all tasks waiting on tkelect at
the time of the error and the tasks must retry their I/O opematigain,all pC+ file routines retry their I/O operations
after waiting onselect.

O Unfortunately, UNIX does not provide adequate facilitiesensure that signals sent to wake up a
blocked UNIX process or kernel thread is always deliverdter€ is a window between sending a signal
and blocking using a UNDselect operation that cannot be closed. Therefore, the pollerttasko wake
up once a second to deal with the rare event that a signalseraie it up is missed. This problem only
occurs when a task is migrating from one cluster to anothestet on which 1/0 is being performed.0

The member routingetTasksOnCluster returns a list of all the tasks currently on the cluster. Thearher routine
getProcessors returns the number of processors currently on the cluster.miember routingetProcessorsOnCluster
returns a list of all the processors currently on the clusfidrese routines are useful for profiling and debugging
programs.

The free routine:

uCluster &uThisCluster();

is used to determine the identity of the current cluster ltasides on.

8.4 Processors

As mentioned in SectioB.3.2, p. 9 auC+ virtual processor is a “software processor”; it progderuntime environ-
ment for parallel thread execution. This environment cimistaariables to affect how thread execution is performed
on a processor. Environment variables are used implicitiiess overridden, when executing threads on a processor:

pre-emption timeis the default time, in milliseconds, to the next implicield of the currently executing task to
simulate non-deterministic execution (see Sec8ehl, p. 11Y.

spin amountis the default number times the cluster’s ready queue is&tsfor an available task to execute before
the processor blocks (see Sectid.2, p. 11Y.

processorsis the default number of processors created implicitly ofuater.

The variables are either explicitly set or implicitly asségl auC+ default value when the processor is created.

In uC+, a virtual processor is implemented as a kernel threasis{ply via a UNIX process) that is subsequently
scheduled for execution on a hardware processor by the lyirdgoperating system. On a multiprocessor, kernel
threads are usually distributed across the hardware poreand so some execute in parallel. The maximum number
of virtual processors that can be created is indirectlytiohby the number of kernel/processes the operating system
allows a program to create, as the sum of the virtual processoall clusters cannot exceed this limit.

As stated previously, there are two versions of i+ kernel: the unikernel, which is designed to use a single
processor; and the multikernel, which is designed to useraéprocessors. The interfaces to the unikernel and
multikernel are identical; the only difference is that thakernel has only one virtual processor. In particular, in
the unikernel, operations to increase or decrease the muwhbgtual processors are ignored. The uniform interface
allows almost all concurrent applications to be designetitasted on the unikernel, and then run on the multikernel
after re-linking.

The processor interface is the following:
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class uProcessor {
public :

uProcessor( unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin() );

uProcessor( bool detached, unsigned int ms = uDefaultPreemption(),
unsigned int spin = uDefaultSpin() );

uProcessor( uCluster &cluster, unsigned int ms = uDefaultPreemption(),
unsigned int spin = uDefaultSpin() );

uProcessor( uCluster &cluster, bool detached, unsigned int ms = uDefaultPreemption(),
unsigned int spin = uDefaultSpin() );

uClock &getClock() const ;

uPid_t getPid() const;

uCluster &setCluster( uCluster &cluster );
uCluster &getCluster() const ;

uBaseTask &getTask() const ;

bool getDetach() const ;

unsigned int setPreemption( unsigned int ms );
unsigned int getPreemption() const ;
unsigned int setSpin( unsigned int spin );
unsigned int getSpin() const ;

bool idle() const;

h

uProcessor proc( clus ); // processor is attached to cluster clus

A processor can be non-detached or detached with respéastassiociated cluster. A non-detached processor is auto-
matically/dynamically allocated and its storage is managethe programmer. A detached processor is dynamically
allocated and its storage is managed by its associateceglust., the processor is automatically deleted when its
cluster is deleted.

The overloaded constructor routinerocessor has the following forms:

uProcessor( unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin() ) — creates a non-
detached processor on the current cluster with the useffiggettme-slice and processor-spin duration (see
Sectionl1.1, p. 139or the default values).

uProcessor( bool detached, unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin() )
— creates a detached/non-detached processor on the cdlustdr with the user specified time-slice and
processor-spin duration (see Sectidnl, p. 139or the default values). The indicator for detachmerilise
for non-detached andue for detached.

uProcessor( uCluster &cluster, unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin() )
— creates a non-detached processor on the specified clsstgrthe user specified time-slice and processor-
spin duration.

uProcessor( uCluster &cluster, bool detached, unsigned int ms = uDefaultPreemption(), unsigned int spin =
uDefaultSpin() ) — creates a detached/non-detached processor on the spekifter using the user specified
time-slice and processor-spin duration. The indicatordi@gachment igalse for non-detached angue for
detached.

The member routingetClock) returns the clock used to control timing on this processee (Sectioi0.3, p. 13).

The member routingetPid returns the current UNIX process id that the processor iscéested with.

The member routineetCluster moves a processor from its current cluster to another ¢lasté returns the cur-
rent cluster. The member routigetCluster returns the current cluster the processor is associatdy ariid hence,
executing tasks for.

The member routingetTask returns the current task that the processor is executing.

The member routingetDetach returns if the processor is non-detachiatsé ) or detachedtfue).

The member routingetPreemption is used to set the default pre-emption duration for a prace&ee Sec-
tion 8.4.1 and returns the previous default pre-emption duratiore fiftne duration between interrupts is specified
in milliseconds. For example, the calloc.setPreemption(50) sets the default pre-emption time to 0.05 seconds for
a processor. To turn pre-emption off, cplbc.setPreemption(0). The member routingetPreemption is used to read
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the current default pre-emption time for a processor. Fangle, the statement proc.getPreemption() setsi to the
value 50.

The member routineetSpin is used to set the default spin-duration for a processorgse&on8.4.29 and returns
the previous default spin-duration. The spin duration ecéfed as the number of times the cluster’s ready queue is
checked for an available task to execute before the procbkstks. For example, the caltoc.setSpin(500) sets the
default spin-duration to 500 checks for a processor. To $pinning off, callproc.setSpin(0). The member routine
getSpin is used to read the current default spin-duration for a peme For example, the stateméent proc.getSpin()
setsi to the value 500.

The member routinglle indicates if this processor is currently idle, i.e., the MNirocess has blocked because
there were no tasks to execute on the cluster it is associatied

The free routine:

uBaseProcessor &uThisProcessor();

is used to determine the identity of the current processaslkis executing on.

The following are points to consider when deciding how margcpssors to create for a cluster. First, there is
no advantage in creating significantly more processorstt@average number of simultaneously active tasks on the
cluster. For example, if on average three tasks are elifpblemultaneous execution, creating significantly moemth
three processors does not achieve any execution speedwgaatels resources. Second, the processors of a cluster
are really virtual processors for the hardware processnisthere is usually a performance penalty in creating more
virtual processors than hardware processors. Having mdreabprocessors than hardware processors can result
in extra context switching of the underlying kernel threadoperating system processes (see Se@idr3 used
to implement a virtual processor, which is runtime expessiVhis same problem can occur among clusters. If a
computational problem is broken into multiple clusters #redtotal number of virtual processors exceeds the number
of hardware processors, extra context switching occuiseabperating system level. Finallyp&+ program usually
shares the hardware processors with other user progranesefdhe, the overall operating system load affects how
many processors should be allocated to avoid unnecessagxtswitching at the operating system level.

O Changing the number of processors is expensive, since aseigumade to the operating system to
allocate or deallocate kernel threads or processes. Thiatipn often takes at least an order of magnitude
more time than task creation. Furthermore, there is oftemallsnaximum number of kernel threads
and/or processes (e.g., 20—40) that can be created in aapnodherefore, processors should be created
judiciously, normally at the beginning of a program. O

8.4.1 Implicit Task Scheduling

Pre-emptive scheduling is enabled by default on both uné&eand multikernel. Each processor is periodically inter-
rupted in order to schedule another task to be executed. tNaténterrupts are not associated with a task but with a
processor; hence, a task does not receive a time-slice amalyibe interrupted immediately after starting execution
because the processor’s pre-emptive scheduling occuraraster task is scheduled. A task is pre-empted at a non-
deterministic location in its execution when the procesgmre-emptive scheduling occurs. Processors on a cluster
may have different pre-emption times. The default processte-slice is machine dependent but is approximately
0.1 seconds on most machines. The effect of this pre-emgattveduling is to simulate parallelism. This simulation is
usually accurate enough to detect most situations on aagepsor where a program might be dependent on order or
speed of execution of tasks.

O On many systems the minimum pre-emption time may be 10 exditiads (0.01 of a second). Setting
the duration to an amount less than this simply sets theruietime interval to this minimum value. O

O The overhead of pre-emptive scheduling depends on thedreyuwof the interrupts. Furthermore,
because interrupts involve entering the UNIX kernel, theyralatively expensive if they occur frequently.
An interrupt interval of 0.05 to 0.1 seconds gives adequategrrency and increases execution cost by
less than 1% for most programs. |

8.4.2 Idle Virtual Processors

When there are no ready tasks for a virtual processor to éxgate idle virtual processor has to spin in a loop or block
or both. In theuC+ kernel, an idle virtual processor spins for a user-gethumber of checks of the cluster’s ready
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gueue before it blocks. During the spinning, the virtualgessor is constantly checking for ready tasks, which would
be made ready by other virtual processors. An idle virtuatpssor is ultimately blocked so that machine resources
are not wasted. The reason that the idle virtual processns $p because the block/unblock time can be large in
comparison to the execution of tasks in a particular apidina If an idle virtual processor is blocked immediately
upon finding no ready tasks, the next executable task hasitdovaompletion of an operating system call to restart
the virtual processor. If the idle processor spins for a tsheriod of time, any task that becomes ready during the
spin duration is processed immediately. Selecting a spimuaitris application dependent and it can have a significant
effect on performance.

8.4.3 Blocking Virtual Processors

To ensure maximum parallelism, it is desirable that a tagkemecute an operation that causes the processor it is
executing on to block. It is also essential that all processoa cluster be interchangeable, since task execution may
be performed by any of the processors of a cluster. When tasgsocessors cannot satisfy these conditions, it is
essential that they be grouped into appropriate clustepsder to avoid adversely affecting other tasks or guarantee
correct execution. Each of these points is examined.

There are two forms of blocking that can occur:

heavy blocking which is done by the operating system on a virtual processear r@sult of certain system requests
(e.g., I/O operations).

light blocking which is done by theiC+ kernel on a task as a result of certp®+ operations (e.g.,Accept , wait
and calls to a mutex routine).

The problem with heavy blocking is that it removes a virtuagessor from use until the operation is completed; for
each virtual processor that blocks, the potential for palisin decreases on that cluster. In those situations where
maintaining a constant number of virtual processors formatation is desirable, tasks should block lightly rather
than heavily, which is accomplished by keeping the numbeasis that block heavily to a minimum and relegated
to a separate cluster. This can be accomplished in two wasst, tasks that would otherwise block heavily instead
make requests to a task on a separate cluster which therstieekily. Second, tasks migrate to the separate cluster
and perform the operation that blocks heavily. This mairga@ constant number of virtual processors for concurrent
computation in a computational cluster, such as the usstesiu

On some multiprocessor computers not all hardware processe equal. For example, not all of the hardware
processors may have the same floating-point units; somemal be faster than others. Therefore, it may be necessary
to create a cluster whose processors are attached to thexsicspardware processors. (The mechanism for attaching
virtual processors to hardware processors is operatirtgrayspecific and not part @iC+. For example, the Dynix
operating system from Sequent provides a routime_affinity to lock a UNIX process on a processor.) All tasks that
need to perform high-speed floating-point operations camdsgted/placed on this cluster. This segregation st
tasks that do only fixed-point calculations to continue oather cluster, potentially increasing parallelism, but no
interfering with the floating-point calculations.

O uCH tasks are not implemented with kernel threads or opeyaystem processes for two reasons.
First, kernel threads have a high runtime cost for creatimh @ntext switching. Second, an operating
system process is normally allocated as a separate adgass @r perhaps several) and if the system
does not allow memory sharing among address spaces, tagk®lmmmunicate using pipes and sockets.
Pipes and sockets are runtime expensive. If shared mememgikble, there is still the overhead of
entering the operating system, page table creation, andgeament of the address space of each process.
Therefore, kernel threads and processes are chbedyweightbecause of the high runtime cost and
space overhead in creating a separate address space foeaqrand the possible restrictions on the forms
of communication among themuC+ provides access to kernel threads only indirectly tghouirtual
processors (see Secti@m.2, p. 9. A user is not prohibited from creating kernel threads arcpsses
explicitly, but such threads are not administrated bypt@e+ runtime environment. O
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POSIX Threads (pthreads)

Posix threadqpthreads) is a relatively low-level C-language thredddary providing two basic concurrency mech-
anisms: threads and locks. As pthreads is designed for @rrtan C+, pthreads does not take advantage of any
high-level features of C+. A thread is started (forked) ioatine, possibly passing a single type-unsafe argumedt, a
another thread can wait for this thread’s termination {jopossibly returning a single type-unsafe value. Two kinds
of locks are available: for synchronizatignhread_cond, which is like pgC+'s uCondLock (see Sectio2.14.4, p. 37,

and for mutual exclusiomthread_mutex, which is likepC+H's uOwnerLock (see Sectio2.14.3, p. 3). See a pthreads
reference-manualBut97] for complete details on the syntax and semantics of usiisdibitary to construct concurrent
programs.

9.1 Combining Pthreads withuC+

Pthreads is the threading standard for POSIX-compliariésysand has become the de-facto standard for concurrent
programming in C; hence, there exists a significant numbeappfications and libraries built using pthreads. To help
concurrent programmers leverage this existing resourbdewstill writing high-level concurrent programs in C+,
pUCH provides a subset of the most commonly used pthreadmesufsee Figur®.1). Thus, apC+ programmer

can use high-level concurrent featurespig+, along with existing C/C+ source code or pre-compiledecthat
uses pthreads functionality. It is also possible to taketav@@threads programs and — with only minor changes —
convert it to auC+ program usingiC+'s pthreads support. In this way, programmers can inergaily transform

and extend pthreads applications to use higher-level Gatoaghes, starting with a combination of low-level pthiead
threads/locks and high-levgC+ capabilities, and ultimately moving to all high-leveéaihanisms. There are three
basic ways in whicluC+ can be used in conjunction with pthreads:

e linking against pre-compiled binaries using pthreads,

e recompilation of separate translation units using pthsead
e recompilation of entire pthreads programs.

9.1.1 Linking pC+ and Pthreads Binaries

In most cases, existing object files using pthreads routiarde directly linked with @C+ program. For example, a
MC+H programprogram.cc, is compiled and linked with a pthreads-dependent objéxtefib.o, by:

u++ [C+ options] program.cc plib.o
Note, the standard pthreads libraligpthread, mustnot be linked with this program (i.eIpthreads) as only the
pthreads routines provided IpdC+H work. However, this approach failspfib.o uses routines not provided pC+
(see Figuré.1), the object file defines the entry point into the program,(r@utinemain), or if plib.o calls pthreads
routines inside global constructors or destructors. Thers# and third cases can be corrected if the sourcpglitoo
can be changed and recompiled (described next).

9.1.2 Recompiling Pthreads Modules

If a translation unit declares global objects with condioigand destructors calling pthreads routines @efore/after
the initial starting routine), the translation unit mustreeompiled with thei++ command (see Sectich4.1, p. 10.
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[ IR Creation #HHHHTHIHIHTHIHIHTHITHITHIHIH I

int  pthread_create( pthread_t snew_thread_id, const pthread_attr_t «attr, void « (xstart_func)( void =), void xarg );
int  pthread_attr_init( pthread_attr_t »attr );

int  pthread_attr_destroy( pthread_attr_t «attr );

int  pthread_attr_setscope( pthread_attr_t «attr, int contentionscope );

int  pthread_attr_getscope( const pthread_attr_t «attr, int *contentionscope );

int  pthread_attr_setdetachstate( pthread_attr_t «attr, int detachstate );

int  pthread_attr_getdetachstate( const pthread_attr_t sattr, int «detachstate );

int  pthread_attr_setstacksize( pthread_attr_t xattr, size_t stacksize );

int  pthread_attr_getstacksize( const pthread_attr_t »attr, size_t sstacksize );

int  pthread_getattr_np( pthread_t threadID, pthread_attr_t sattr ); // GNU extension
int  pthread_yield( void ); // GNU extension

b L, B S R e

void pthread_exit( void =xstatus );

int  pthread_join( pthread_t threadID, void =status );

int  pthread_tryjoin_np( pthread_t threadID, void =xstatus ); // GNU extension

int  pthread_timedjoin_np( pthread_t threadID, void ssStatus, const struct timespec =abstime ); // GNU extension
int  pthread_detach( pthread_t threadID );

| A Parallelism #A#HHHEHHHHTHHEHH HETHEH

int  pthread_getconcurrency( void ); /I XOPEN extension

int  pthread_setconcurrency( int new_level ); // XOPEN extension

| HHEHEHEHE A Thread Specific Data ##HH B HEHIHEHEHIHIHE
void pthread_deletespecific_( void «pthreadData ); // see uMachContext::invokeTask
int  pthread_key_create( pthread_key_t skey, void (xdestructor)( void ) );

int  pthread_key_delete( pthread_key_t key );

int  pthread_setspecific( pthread_key_t key, const void svalue );

void xpthread_getspecific( pthread_key_t key );

b A e D SR e

pthread_t pthread_self( void );

int  pthread_once( pthread_once_t xonce_control, void (xinit_routine)( void ) );

| HHHE I A Cancellation S HHIHHIHIHEHHHHHIHE

int  pthread_cancel( pthread_t threadID );

int  pthread_setcancelstate( int state, int xoldstate );

int  pthread_setcanceltype( int type, int xoldtype );

void pthread_testcancel( void );

void pthread_cleanup_pop( int ex );

void pthread_cleanup_push( void (sroutine) (void x), void =args );
[T MUteX SHEHHIHEHHTHE T

int  pthread_mutex_init( pthread_mutex_t »mutex, const pthread_mutexattr_t sattr );
int  pthread_mutex_destroy( pthread_mutex_t smutex );

int  pthread_mutex_lock( pthread_mutex_t »mutex );

int  pthread_mutex_trylock( pthread_mutex_t ~mutex );

int  pthread_mutex_unlock( pthread_mutex_t xmutex );

[ A Condition #HEHHHITHIHTHITHEHTHEHITHITHIHE ]

int  pthread_cond_init( pthread_cond_t «cond, const pthread_condattr_t «attr );

int  pthread_cond_destroy( pthread_cond_t xcond );

int  pthread_cond_wait( pthread_cond_t cond, pthread_mutex_t »mutex );

int  pthread_cond_timedwait( pthread_cond_t xcond, pthread_mutex_t smutex, const struct timespec sabstime );
int  pthread_cond_signal( pthread_cond_t scond );

int  pthread_cond_broadcast( pthread_cond_t xcond );

Figure 9.1: Implemented Pthreads Routines
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As well, the pthreads module containing the initial entrinpmain must be converted to th&&+ membeuMain::main
(see Sectior2.2, p. §. This change can be made conditionally uskiigefs (see Sectio2.4.2, p. 1} to allow a
pthreads program to conditionally switch between runniative pthreads or simulated pthreadsu®+ depending
on whether the program is compiled wik+ or u++, e.g.:

#ifdef __U_CPLUSPLUS__

void uMain::main() { /I only change starting routine if compiled with u++

#else

int main( int argc, char =argv[] ) {

#endif

/I body of pthreads main routine
}

With these changes, the entire program can be compiledgwithor another compatible C+ compiler, to use native
pthreads and linked with the pthreadtpthread) library. Alternatively, the program can be complied with+, using
the pthreads simulation provided pgZ+.

9.2 uC+H Task as a Pthreads Thread

In order to ease the co-operation with pthreads code, argilgppselp transition from low-level pthreads concurrency
to high-leveluC+ concurrency, aC+ task can become a quasi-pthreads thread by inheriting/fPthreadable:

_Task uPthreadable { /I abstract class (inheritance only)
protected :
void sjoinval; /I pthreads return value
pthread_attr_t pthread_attr; /I pthread attributes

uPthreadable( const pthread_attr_t attr_ );

uPthreadable( uCluster &cluster, const pthread_attr_t sattr_ );

uPthreadable(); /I same constructors as for uBaseTask
uPthreadable( unsigned int stackSize );

uPthreadable( uCluster &cluster );

uPthreadable( uCluster &cluster, unsigned int stackSize );

public :
_Nomutex pthread_t pthreadld(); /I returns a pthread id for a uC++ task
_Event Failure; /I exceptions
_Event CreationFailure;
2
_Task T : public uPthreadable { /I 'inherit so uC++ task can mimic pthreads task
public :
T(...) : uPthreadable(...) {} /I initialize uPthreadable as for uBaseTask
I8

It is best to think of auPthreadable task as giC+ task that can mimic a pthreads thread by providing sommeeptls
properties and capabilities. (Note, typrthreadable is an abstract class for inheritance only; it cannot be imitsed
directly.) The duality of aiPthreadable task allows it to use all the high-level featuresp@+ concurrency and yet
interact with existing pthreads code, which is helpful itnations where pthreads ap@+ are mixed, and provides a
path to transition from pthreads &+ concurrency.

A derived class of typaPthreadable has direct access to variablemval andpthread_attr. Variablejoinval must be
assigned by the derived class to return a value fstmead_join. Variablepthread_attr is the task’s pthreads attributes,
which can be read and written by appropriate pthreads attritoutines.

The overloaded constructor routinBthreadable has the following forms:

uPthreadable( const pthread_attr_t «attr_ ) — creates a task on the current cluster with the specifieceatisr
attributes. Currently, only the stack-size attribute iseived by theiPthreadable task. The other values are
stored, but are otherwise ignored by tirthreadable task.

uPthreadable( uCluster &cluster, const pthread_attr_t attr_ ) — creates a task on the specified cluster with the
specified pthreads attributes.



122 CHAPTER 9. POSIX THREADS (PTHREADS)

uPthreadable(...) are the same as foBaseTask (see Sectio2.11.2, p. 3).

An exception of typeiPthreadable::CreationFailure is thrown during task instantiation if a pthread identifiannot be
created.

The member routinpthreadld returns a unique pthreads identifier for the task. This pitisedentifier, which is
also returned when @Pthreadable task callspthread_self, can be passed to any pthreads routine takipthiead_t
type, includingpthread_join andpthread_cancel. As a result, pthreads threads can join with or caneghreadable
tasks with correct pthreads cleanup functionality. Nate)iegistering a cleanup handler usgtigread_cleanup_push/-
pop can be performed by any kind of thread but only when execuimg pthreads arPthreadable task’s stack; the
cleanup handler is associated with the stack frame on tkis tstack where the (de)registration occurs.

It is important to note that aPthreadable task followsuC+ semantics rather than pthreads semantics and is not
considered a pthreads thread, which is defined as a taslkedregpthread_create. In particular, the life time of a
uPthreadable task is the same as an ordinga@+ task, and it becomes a monitor aftemitsin routine ends. The task
uMain is auPthreadable task.

9.3 Semantic Inconsistencies between Pthreads ap@+
The combination of pthreads ap@+ creates some conflicts, which are resolved in the folgwvays:

9.3.1 Termination of main

When the startingnain routine ends, pthreads semantics cause immediate teromraftthe program and any out-
standing threads, wherep&+ semantics require that all threads be programmatitsifginated. This inconsistency
is resolved dynamically in favour of pthreads if any pthiettdeads are running whemain::main ends. In this case,
the application is shut-down causing all threads (pthreadsiC+) to be terminated abruptly, i.e., no finalization code
is executed for any of these threads. Recall tiralhreadable tasks are not considered pthreads threads.

9.3.2 Cleanup Semantics

The ability to perform cleanup is important in writing robesncurrent programs. Pthreads generalized the notion of
cleanup to thread termination (exit or cancellation) bpwihg cleanup routines to be registered/de-registeretjusi
pthread_cleanup_push andpthread_cleanup_pop. An equivalent capability is provided in C+ using classtdegors
andcatch clauses. When pC+ program has a combination of both C+ and pthreads ctearachanisms, both are
invoked during thread termination.

Cleanup routines are executed in the reverse order of ratiist (LIFO). However, within a routine, the ordering
between C+ and pthreads cleanups is undefined, e.g., ifjanta® declared before a call tohread_cleanup_push
in the same routine, its destructor may be executed beferpttiveads cleanup. Note, among themselves, C+ and
pthreads cleanups always execute in proper order.

As part of a pthreads thread termination, all C+’s catchtaamdlers €atch (.. .)) are also executed, which is the
same behaviour as fuC+ cancellation (see Sectidi p. 89. When all C+ and pthreads cleanups have been exe-
cuted, the thread terminates. The reason for executing-@atg handlers is the same as [+ cancellation, which
is to support the common C+ idiom of using catch-any hasdeperform cleanup actions. Lik&€&+ cancellation,
if a catch-any handler finishes, control does not resumethigry-block it guards, but instead, termination conéisiu
with its associated stack unwinding. This behaviour d#ffEom some pthreads implementations that mix C+ and
pthreads cleanup. In these implementations, the progradged if a catch-any handler finishes during pthreads
cleanup. The rationale for aborting is that the normal seiv&iof resuming execution after the handler’s try-block
is incompatible with the termination semantics for a thredldwever, such a design is inconsistent with+ can-
cellation (see Sectiof, p. 89for the rationale). As well, if the catch-any handler throaveew exception during
cancellation, the program’s behaviour is undefined, ag@# cancellation.

9.4 Commentary

The pthreads simulation jC+ also provides implicit compatibility and safety for grams calling POSIX-compliant
library routines in UNIX:

All functions defined by this volume of IEEE Std 1003.1-200al§ be thread-safe, except that the fol-
lowing functions need not be thread-safe.
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... small subset of POSIX functions
Implementations shall provide internal synchronizatimuitual exclusions necessary in order to satisfy
this requirement. FOS08 pp. 507-508]

The most common mechanism to provide mutual exclusion withich library routines is to use pthreads locks. As
well, some POSIX compliant routines rely on thread-spedcifita provided by pthreads. Once pthreads calls are
embedded into standard UNIX implementations, it is diffidol use other thread designs due to the problems of
interaction between thread libraries. For example, a adrdlicurs if a language/library concurrency system (e.g.,
uUC+) does not use pthreads for its underlying concurreney, the language/library implements the whole concur-
rency system directly using atomic instructions and ketimedads. The reason a language/library may build its own
concurrency runtime is to achieve specialized behavicafrighdifferent from pthreads (e.g., unblocking order, task
scheduling, priorities, thread model, etc.). However, waéanguage/library thread calls a POSIX routine, the nauti
may call a pthreads routine for thread safety resulting mdvfferent concurrency systems’ attempting to manage the
same thread. For example, a pthreads lock in a POSIX routayeatiempt to block the executing thread, but if the
thread is created and managed by a different concurrentgrsythis operation is logically inconsistent and is likely
to fail. ThepC+ pthreads simulation handles this problem by intergpgpthreads routines so they are called from
within the POSIX-compliant library routines. The simutatiroutines correctly interact with the&€+ runtime system,
while still providing thread-safe access to POSIX librapytines. As a result, pC+ program is portable among
POSIX-compliant systems and provides access to most lgghoyads code.
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Chapter 10

Real-Time

Real-time programming is defined by the correctness of arproglepending on both the accuracy of the resott
when the resultis produced. The latter criterion is not@mnés normal programming. Without programming language
facilities to specify timing constraints, real-time pragrs are usually built in ad-hoc ways (e.g., cyclic exec)tized

the likelihood of encountering timing errors increase®tiyh manual calculations. The introduction of real-time
constructs is a necessity for accurately expressing tirhaweur, as well as providing a means for the runtime system
to evaluate whether any timing constraints have been brokemthermore, explicit time-constraint constructs can
drastically minimize coding complexity as well as analysdiarious programming language constructs for real-time
environments are discussed B)92 Mar78 LN88, KS86, KK91, ITM90, HM92, GR9], CD95 Rip9d.

10.1 Duration and Time

The convenient manipulation éfme is an essential characteristic in any time-constrained@mment. Manipulating
time, in turn, yields another metric that expresses a spatu@tion of time. uDuration is a class whose instances
represent a span of time, e.g., subtracting two time vakesdgts in a difference that is a time duration (2:00:30 =
30 minute duration). The creation and manipulatiombfiration values are performed through the member routines
of classuDuration (see Figurel0.1).

The overloaded constructor routingBuration provide a choice of specifying a duration value. The paranset
have the following meanings:

sec —a number of seconds.
nsec —a number of seconds and nanoseconds.

timeval / timespec — a UNIX timeval or timespec, which is converted to aDuration value.

A UNIX timeval andtimespec value can be used to initialize or assign toCaration value, and aiDuration value
can be cast into #imeval or timespec value, e.g.:

timeval d1 = {1, 0 }; /I (seconds / microseconds)

uDuration d2 = d1, d3; /I convert from timeval to uDuration (initialization)

timespec d4 = d2; /I convert from uDuration to timespec (seconds / nanoseconds) (implicit cast)
dl = (timeval)d2; /I convert from uDuration to timeval (cast)

d3 = di; /I convert from timeval to uDuration (assignment)

dl = d3; /I convert from uDuration to timeval (implicit cast)

Conversion is guaranteed to be exact. The member roudimeseconds returns the duration value as a 64 bit number
in nanoseconds.

Arithmetic operations may be performed oburation values, e.g.:
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class uDuration {
public :
uDuration();
uDuration( long int sec );
uDuration( long int sec, long int nsec );
uDuration( const timeval &t );
uDuration( const timespec &t );

uDuration &operator =( const timeval &t ) {
uDuration &operator =( const timespec &t ) {
operator timeval() const ;

operator timespec() const ;

long long int nanoseconds() const ;

uDuration &operator - =( uDuration op );

uDuration &operator +=( uDuration op );

uDuration &operator »=( long long int op );

uDuration &operator /=( long long int op );
}; 1/ uDuration

uDuration operator - ( uDuration op );

uDuration operator - ( uDuration opl, uDuration op2 );
uDuration operator +( uDuration op );

uDuration operator +( uDuration opl, uDuration op2 );
uDuration operator «( uDuration opl, long long int op2 );
uDuration operator ( long long int opl, uDuration op2 );
uDuration operator /( uDuration opl, long long int op2 );
long long int operator /( uDuration opl, uDuration op2 );
bool operator >( uDuration opl, uDuration op2 );

bool operator <( uDuration opl, uDuration op2 );

bool operator >=( uDuration opl, uDuration op2 );

bool operator <=( uDuration opl, uDuration op2 );

bool operator ==( uDuration opl, uDuration op2 );

bool operator !=( uDuration opl, uDuration op2 );
ostream &operator <<( ostream &o0s, const uDuration op );

Figure 10.1: Duration Class

uDuration x, vy, z;

int n;

X +=1; /I implicitly create a uDuration of length 1 second
X=y+z /I add two uDurations producing a uDuration
X=Yy- Z /I subtract two uDurations producing a uDuration
X =y * DN /I multiply a uDuration n times

X=nzxYy,; /I multiply a uDuration n times

Xx=vyln; /I divide a uDuration by n

In addition, relational comparison operators are definedburation objects.

uTime is a class, whose instance represents an absolute time. céimbe specified using some combination of
year, month, day, hour, minute, second, and nanosecond @ UTs important to note that a time value must be
in the range 00:00:00 UTC, January 1, 1970 to 03:14:07 UTQuaky 19, 2038, which is the UNIX start and end
epochs. The creation and manipulatiorudfme values are performed through the member routines of ci@isse
(see Figurdl0.2.

The overloaded constructor routingEime provide a choice of specifying a time value. The parametave lthe
following meanings:

year —a year greater than or equal to 1970 and less than or equaB® 2

month — a number between 0 and 11 inclusive, where 0 representarjaand 11 represents December. The
default value for a constructor without this argument is 0.

day —a number between 0 and 30 inclusive, where 0 representsshedy of the month and 30 the last day. The
default value for a constructor without this argument is 0.
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class uTime {
public :
uTime();
uTime( long int sec );
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uTime( long int sec, long int nsec );

uTime( int min, int sec, long int nsec );

uTime( int hour, int min, int sec, long int nsec );

uTime( int day, int hour, int min, int sec, long int nsec );

uTime( int month, int day, int hour, int min, int sec, long int nsec );

uTime( int year, int month, int day, int hour, int min, int sec, long int nsec );
uTime( const timeval &t );

uTime( const timespec &t );

uTime &operator =( const timeval &t );
uTime &operator =( const timespec &t );
operator timeval() const ;

operator timespec() const ;

long long int nanoseconds() const ;

uTime &operator - =( uDuration op );
uTime &operator +=( uDuration op );

} /1 uTime

uDuration operator - ( uTime opl, uTime op2 );
uTime operator - ( uTime opl, uDuration op2 );
uTime operator +( uTime opl, uDuration op2 );
uTime operator +( uDuration opl, uTime op2 );
bool operator >( uTime opl, uTime op2 );
bool operator <( uTime opl, uTime op2 );
bool operator >=( uTime opl, uTime op2 );
bool operator <=( uTime opl, uTime op2 );
bool operator ==( uTime opl, uTime op2 );
bool operator !'=( uTime opl, uTime op2 );
ostream &operator <<( ostream &0s, const uTime op );

Figure 10.2: Time Class

hour —a number between 0 and 23 inclusive, where 0 represent8ar:and 23 represents 11:00pm. The default
value for a constructor without this argumentis 0.

min — a number between 0 and 59 inclusive, where 0 is the first miofithe hour and 59 the last. The default
value for a constructor without this argumentis 0.

sec —a number between 0 and 59 inclusive, where 0 is the first sleafothe minute and 59 the last.

nsec —a number between 0 and 999999999 inclusive, where 0 is ghadinosecond of the second and 999999999

the last.

timeval / timespec —a UNIX timeval or timespec, which is converted to aTime value.

It is permissible teexceedhe logical ranges for the time components; any excess isagative, e.g., the following

declarations are valid:

uTime t1( 0,48,0,60,1000000000 ); // 1970 Jan 3 0:01:01:000000000 (GMT)

uTime t2( 818227413, 0 );

/I 1995 Dec 6 05:23:33:000000000 (GMT)

A UNIX timeval andtimespec value can be used to initialize or assign twléme value, and aTime value may be
cast into aimeval or timespec value, e.g.:

timeval t1;

gettimeofday( &t1, NULL );
uTime t2 = t1, t3;
timespec t4 = t2;

t3 = t1;
tl = (timeval)t2;
t1 = t3;

/I current time (seconds / microseconds)

/I convert from timeval to uTime (initialization)

/I convert from uTime to timespec (seconds / nanoseconds) (implicit cast)
/I convert from timeval to uTime (assignment)

/I convert from uTime to timeval (cast)

/I convert from uTime to timeval (implicit cast)
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Conversion is guaranteed to be exact. The member rooéineseconds returns the absolute time value as a 64 bit
number in nanoseconds from the start of the UNIX epoch.

As for uDuration values, arithmetic and relational operations may be peréoronuTime values. As well, mixed
mode operations are possible involving durations and titnduration may be added to or subtracted from a time to
yield a new time; two times can be subtracted from each otteetyzing a duration.

10.2 Timeout Operations

Itis sometimes necessary to delay a task’s execution fdativeduration or until an absolute time. Itis also necgssa
to prevent certain operations from blocking indefinitelywolsuch common operations are waiting for an accepted call
to occur and waiting for I/O to completpC+ provides mechanisms to delay execution for a time ialewterminate

an operation after a time interval.

10.2.1 Time Delay

In uC+, a time delay is expressed by either of the following ttedesnents:

_Timeout ( duration ); /I parenthesis required

_Timeout ( time ); /I parenthesis required
With a duration value,_ Timeout specifies a delay time relative to the start of execution efgstatement (i.e., a
duration). That is, a task blocks for at least the span of timd&ated by the duration value; the task does not consume
any resources during this period, nor does it respond to eguyests. With a time value;Timeout specifies a delay
to an absolute time in the future. That is, a task blocks attiast the specified absolute time has occurred. If the
duration value be less than or equal to zero, the task doddak. Similarly, if the time value has already occurred,
the task does not block. The UNIX routinglsep andusleep can also be used to sleep for a duration of seconds and
microseconds, respectively.

The extended form of theTimeout statement is:
_When ( conditional-expression ) /I optional guard
_Timeout ( duration or time ) /I optional timeout clause

A _When guard is considered true if it is omitted or if it®nditional-expressiorvaluates to non-zero. Before the
_Timeout statement is executed, the guard must be true. In this desguard is the same asi@istatement, e.g.:

_When (count == 0) _Timeout (... ); = if (count==0) _Timeout (... );

10.2.2 Accept Statement

The extended form of theAccept statement may specify a timeout value througiTaneout clause, e.g.:

_When ( conditional-expression ) /I optional guard
_Accept ( mutex-member-name-list )
statement-1 /I action
or
or _When ( conditional-expression ) /I optional guard
_Timeout ( duration or time ) /I optional timeout clause
statement-2 /I action

The _Timeout clause must be the last clause in_atcept statement, or the second last if followed by a terminating
_Else clause (see Sectich8.2.1, p. 21 When a_Timeout clause and a terminatingtlse clause appear in the same
_Accept statement, the pairing is only meaningful if the termingtirElse clause is conditional, i.e., has &hen
guard; otherwise, theElse clause always overrides th&imeout . If there is no guard on a timeout or the guard is
true, but a call is accepted before the timeout intervalrespithe statement behaves exactly like a normakept
statement. If there is no guard on a timeout or the guard & fnd no call is accepted before the timeout interval
expires, the acceptor is removed from the acceptor/sigghatack, restarts, and executes the statement associtted w
the _Timeout clause.

O WARNING: Beware of the following possible syntactic confusion whie timeout clause:

_Accept ( mem ); _Accept ( mem );
or _Timeout ( uDuration( 1) ); _Timeout ( uDuration( 1) );
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The left example accepts a call to membem or times out in 1 second. The right example accepts a
call to membemem and then delays for 1 second. The left example is a singlepastatement, while
the right example is an accept statement and a timeout satem O

O WARNING: Beware of the following possible syntactic confusion whie timeout clause:

_Accept ( mem ); _Accept ( mem );
or _Timeout ( uDuration( 1) ); _When( C1) _Else
_When( C1) _Else _Timeout ( uDuration( 1) );

The left example accepts a call to memhbem or times out in 1 second or performs the terminating
_Else, depending on the value of its guard. The right example @s@egall to membenem or performs
the terminating Else, depending on the value of its guard,; if the terminatifidse is performed, it then
delays for 1 second. The left example is a single acceptstait while the right example is an accept
statement and a timeout statement, bracketed as follows.

_Accept ( mem );

_When( C1) _Else {

_Timeout ( uDuration( 1) );
}

10.2.3 Select Statement

The extended form of theSelect statement may specify a timeout value througiTaneout clause, e.g.:

_When ( conditional-expression ) /I optional guard
_Select( selector-expression )
statement-1 /I action
and/or
or _When ( conditional-expression ) /I optional guard
_Timeout ( duration or time ) /I optional timeout clause
statement-n /I action

The _Timeout clause must be the last clause in%elect statement, or the second last if followed by a terminating
_Else clause (see Sectidh2.1, p. 47. When a_Timeout clause and a terminatingtlse clause appear in the same
_Select statement, the pairing is only meaningful if the termingtirklse clause is conditional, i.e., has_ &hen
guard; otherwise, theElse clause always overrides th&imeout . If there is no guard on a timeout or the guard
is true, but the selector-expression associated with tlieeestatement becomes satisfied before the timeout ifterva
expires, the statement behaves exactly like a norrBalect statement. If there is no guard on a timeout or the guard
is true, and the selector-expression associated with ttiee estatement fails to become satisfied before the timeout
interval expires, the selector task restarts and exechéstatement associated with th&meout clause. One or
more of the actions for select clauses composing the sdkeisent may have already triggered when a timeout
occurs.

O WARNING: Beware of the following possible syntactic confusion whie timeout clause:

_Select( f1); _Select( f1);

or _Timeout ( uDuration( 1) ); _Timeout ( uDuration( 1) );
The left example waits for futurl to becomes available or times out in 1 second. The right el@amp
waits for futurefl to becomes available and then delays for 1 second. The lafhebe is a single select
statement, while the right example is a select statemenaainteout statement. O

O WARNING: Beware of the following possible syntactic confusion whie timeout clause:

_Select( f1); _Select( f1);
or _Timeout ( uDuration( 1) ); _When( C1) _Else
_When( C1) _Else _Timeout ( uDuration( 1) );

The left example waits for futurtl to becomes available or times out in 1 second or performsethe t
minating_Else, depending on the value of its guard. The right example wWaitéuture f1 to becomes
available or performs the terminatinglse, depending on the value of its guard; if the terminatifdse
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is performed, it then delays for 1 second. The left examplesmngle select statement, while the right
example is a select statement and a timeout statement gbealcks follows.
_Select( mem );

_When( C1) _Else {
_Timeout ( uDuration( 1) );
}

10.24 /O

Similarly, timeouts can be set for certain 1/0 operatioret thlock waiting for an event to occur (see details in Ap-
pendixD.5.2, p. 167. Only a duration is allowed as a timeout because a reldtiprizetween absolute time and 1/0
seems unlikely. A pointer to the duration value is used sopbissible to distinguish between no timeout value (NULL
pointer) and a zero-timeout value. The former usually méangait until the event occurs (i.e., no timeout), while
the latter can be used to poll by trying the operation and'n@tg immediately if the event has not occurred. The I/O
operations that can set timeouts eed, readv, write, writev, send, sendto, sendmsg, recv, recvfrom andreadmsg. If
the specified I/O operation has not completed when the defgiyes, the 1/0 operation fails by throwing an exception.
The exception types aReadTimeout for read, readv, recv, recvfrom andreadmsg, andWriteTimeout for write, writev,
send, sendto andsendmsg, respectively. For example, in:
try {
uDuration d( 3, 0 ); /I 3 second duration
fa.read( buf, 512, &d );
/I handle successful read
} catch ( uFilelO::ReadTimeout ) {
/I handle read failure
}

the read operation expires after 3 seconds if no data hagaurri

As well, a timeout can be set for the constructor aBacketAccept anduSocketClient object, which implies that if
the acceptor or client has not made a connection when thg efdres, the declaration of the object fails by throwing
an exception (see details in Appen@6.4, p. 170. For example, in:

try {
uDuration d( 60, 0 ); /I 60 second duration

uSocketAccept acceptor( sockserver, &d );  // accept a connection from a client
/I handle successful accept

} catch ( uSocketAccept::OpenTimeout ) {
/I handle accept failure

Y try

See, also, the server examples in Apperidli&, p. 165

10.3 Clock

A clock defines an absolute time and is used for interrogatiagurrent time. Multiple clocks can exist; each one can
be set to a different time. In theory, all clocks tick togetaethe lowest clock resolution available on the computer.
The typeuClock creates a clock object, and is defined:

class uClock {
public :
uClock();
uClock( uTime adj );
void resetClock();
void resetClock( uTime adj );
uTime getTime();
void getTime( int &year, int &month, int &day, int &hour, int &minutes,
int &seconds, long int &nsec );
static void convertTime( uTime time, int &year, int &month, int &day, int &hour, int &minutes,
int &seconds, long int &nsec );
}; /1 uClock

The overloaded constructor routin€lock has the following forms:
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uClock() — creates a clock as a real-time clock running at the sameatintiee underlying virtual process.
uClock( uTime adj ) — creates a clock as a virtual clock starting at tamg

The overloaded member routiresetClock resets the kind of clock between real-time and virtual, awheoutine
has the following form:

resetClock() — this form sets the clock to a real-time clock, so it retutres¢urrent time of the underlying virtual
processor.

resetClock( uTime adj ) — this form sets the clock to a virtual clock starting at tiagg
The overloaded member routigetTime returns the current time, and each routine has the follofarnm:

getTime() — this form returns the current time asi@me value, i.e., in nanoseconds from the start of the UNIX
epoch.

getTime( int &year, int &month, int &day, int &hour, int &minutes, int &seconds, long int &nsec ) —thisform
returns the current time broken up into the traditional figad radix units of time.

The static member routineonvertTime converts the specified time in nanoseconds from the statteofUNIX
epoch into a traditional non-fixed radix units of time.

As mentioned, each virtual processor has its own real-tilmekc The current time is available from a virtual
processor via the caliThisProcessor().getClock().getTime(); hence, it is unnecessary to create a clock to get the
current time.

10.4 Periodic Task

Without a programming language construct to specify péeityd and without programming language facilities to
express time, it is almost impossible to accurately expiessspecifications within a program. Specifying a periodic
task in a language without proper time constructs can initeaatastrophic inaccuracies. For example, in:

1 for () {

2 /I periodic work

3 uDuration DelayTime = NextTime - CurrentTime();

4 _Timeout ( DelayTime );

5}
if the task is context-switched after executing line 3 (ontext-switched after the call turrentTime in line 3), the
DelayTime would be inaccurate. As a result, the blocking time of thegpan is erroneous.

The above problem can be eliminated by specifying an alesdiuie to_Timeout (specifyingNextTime as the
parameter ta Timeout ). However, with this form of periodic task specificationisiinfeasible to specify other forms
of deadlines. Ada only supports the periodic task specifinatsing delays, and the system guarantees a periodic task
delays for a minimum time specified ielayTime, but makes no guarantee as to when the periodic task acgetly
to executeBP9]. As a result, a task can request to block for 10 seconds (a@ladgarantees it blocks for at least 10
seconds), but end up executing 20 seconds later.

To circumvent this problemC+ provides a periodic task. The general form of the peciddsk type is the
following:

_PeriodicTask task-name {

private :
/I these members are not visible externally
protected :
/I these members are visible to descendants
void main(); /I starting member

public :
b
Like a task, a periodic task type has one distinguished mgmbamednain, in which the new thread starts execution.

If not derived from some other periodic task type, each mcitask type is implicitly derived from the task type
uPeriodicBaseTask, €.9.:

/I these members are visible externally
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_Task task-name : public uPeriodicBaseTask {

J5
where the interface for the base cla®eriodicBaseTask is:

_Task uPeriodicBaseTask {
protected :
uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;
uDuration period;
public :
uPeriodicBaseTask( uDuration period, uCluster &cluster = uThisCluster() );
uPeriodicBaseTask( uDuration period, uTime firstActivateTask, uTime endTime,
uDuration deadline, uCluster &cluster = uThisCluster() );
uPeriodicBaseTask( uDuration period, uEvent firstActivateEvent, uTime endTime,
uDuration deadline, uCluster &cluster = uThisCluster() );
uPeriodicBaseTask( uDuration period, uTime firstActivateTask, uEvent firstActivateEvent,
uTime endTime, uDuration deadline, uCluster &cluster = uThisCluster() );
uDuration getPeriod() const ;
uDuration setPeriod( uDuration period );

A periodic task starts by one of two mechanisms. The first isgBcifying a start timeFirstActivateT, at which
the periodic task begins execution. The second is by spegifn eventfirstActivateE (an interrupt), upon receipt the
event the periodic task begins execution. If both start time: event are specified, the task starts either on receipt of a
event or when the specified time arrives, whichever comasfiirseither time nor event are specified, the periodic task
starts immediately. An end tim&ndTime, may also be specified. When the specified end time occurgethedic
task halts after execution of the current period. A deadleadline, may also be specified. A deadline is expressed
as the duration from the beginning of a task’s period by whisttomputation must be finished. A zero argument
for any of the parameters indicates the task is free from dimstcaints represented by the parameter (the exception is
Period, which cannot have a zero argument). For example, iFttseActivate parameter is zero, the task is scheduled
for initial execution at the next available time it can be@oenodated. Finally, theluster parameter specifies which
cluster the task should be created in. Should this pararhetemitted, the task is created on the current cluster.

An example of a periodic task declaration that starts at aipe time and executes indefinitely (without any
deadline constraints) is:

_PeriodicTask task-name {
void main() { periodic task body }
public :
task-name( uDuration period, uTime time ) : uPeriodicBaseTask( period, time, 0, 0 ) { };
2

The task body, i.e., routin@ain, is implicitly surrounded with a loop that performs the témidy periodically. As a
result, terminating the task body requireseaurn (or the use of an end time); falling off the end of thain routine
does not terminate a periodic task.

10.5 Sporadic Task

A sporadic task is similar to a periodic task, except thera minimum duration between executions instead of a
fixed period. In the declaration of a sporadic task, this munn duration is specified asfeame. It is the user’s
responsibility to ensure the execution does not exceedpéeified minimum duration (i.e., frame); otherwise, the
scheduler cannot ensure correct execution. The reasorclieelder cannot automate this process, as it does for
periodic tasks, is because of the unpredictable naturesahtlr-arrival time of sporadic tasks.

In uC+, a sporadic task is similar to a periodic task. #poradicTask task type, if not derived from some other
sporadic task type, is implicitly derived from the task tyj8poradicBaseTask, e.9.:
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_Task uSporadicBaseTask {
protected :
uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;
uDuration frame;
public :
uSporadicBaseTask( uDuration frame, uCluster &cluster = uThisCluster() );
uSporadicBaseTask( uDuration frame, uTime firstActivateTask, uTime endTime,
uDuration deadline, uCluster &cluster = uThisCluster() );
uSporadicBaseTask( uDuration frame, uEvent firstActivateEvent, uTime endTime,
uDuration deadline, uCluster &cluster = uThisCluster() );
uSporadicBaseTask( uDuration frame, uTime firstActivateTask, uEvent firstActivateEvent,
uTime endTime, uDuration deadline, uCluster &cluster = uThisCluster() );
uDuration getFrame() const ;
uDuration setFrame( uDuration frame );

10.6 Aperiodic Task

An aperiodic task has a non-deterministic start patterra fesult, aperiodic tasks should only be used in soft rez-ti
applications.
In uC+, an aperiodic task is similar to a periodic task. RealTimeTask task type, if not derived from some other
aperiodic task type, is implicitly derived from the task éyfRealTimeTask , e.g.:
_Task uRealTimeBaseTask {
protected :
uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;
public :
uRealTimeBaseTask( uCluster &cluster = uThisCluster() );
uRealTimeBaseTask( uTime firstActivateTask, uTime endTime, uDuration deadline,
uCluster &cluster = uThisCluster() );
uRealTimeBaseTask( uEvent firstActivateEvent, uTime endTime, uDuration deadline,
uCluster &cluster = uThisCluster() );
uRealTimeBaseTask( uTime firstActivateTask, uEvent firstActivateEvent, uTime endTime,
uDuration deadline, uCluster &cluster = uThisCluster() );
uDuration getDeadline() const ;
uDuration setDeadline( uDuration deadline );

10.7 Priority Inheritance Protocol

The priority-inheritance protocol attacks the problem of priority inversion, where a highegty task waits while
lower-priority tasks prevent it from executing. Rajkumaojposed thévasic priority-inheritance protocol [RSL88
SRL9Q Raj97], which puts a bound on the occurrence of priority inversibine solution is to execute a critical section
at the priority of the highest blocked task waiting to entefTihe basic priority-inheritance protocol bounds the time
priority inversion occurs: should there héower-priority tasks in the system, and théower-priority tasks access
distinct critical sections, a task can be blocked by at muoatn, m) critical sections. Despite this bound, the blocking
duration for a task can still be significant, however. Sugpigimety, a low-priority taskt, arrives and locks monitor
Mp. At time t;, a medium priority tasky arrives, pre-empts,, and locks monitoM;. At time tp, a high-priority
task 1g arrives, needing to sequentially access both monitysand M;. Since both monitors are locked by two
lower-priority tasksyo must wait for the duration of two critical sections (till; is released by;, then,Mg is released
by 12). This problem is known ashain blocking. Finally, this priority-inheritance protocol does not death the
problem of deadlock.

In uC+, tasks wait for entry into a mutex object on a prioritizstry queue. More specifically, each of the mutex
object’s member routines have an associated prioritizeédreuueue. When the mutex object becomes unlocked, the
next task that enters is the one with the highest priority rgrall the entry queues. Should a mutex object be locked
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and a higher-priority task arrives, the current task exagunside the mutex object “inherits” the priority of the
highest-priority task awaiting entry. This semantics easthe task inside the mutex object can only be interrupted b

a higher-priority task, allowing the task in the mutex objeccomplete and leave as soon as possible, which speeds
entry of a waiting higher-priority task.

Condition variables and their associated queues of wattislgs are also a fundamental part of mutex objects.
Signalling a condition variable makes the highest-pryotésk on the queue eligible to run. uC+, the signaller
continues execution after signalling, at the priority o thighest-priority task awaiting entry to the mutex objec.
well, the signalled task is given preference over otherdaskaiting entry to the mutex object. Therefore, the siguhll
task is the next to execute in the mutex object, regardleafiether there are higher-priority tasks waiting in the entr
gueues. This behaviour, in turn, creates the possibilityrifrity inversion. Should a high-priority task be awagin
entry to the mutex object, and a lower-priority task exaayin the mutex object signals a condition queue whose
most eligible task has a lower priority than a task awaitinfjyeto the mutex object, priority inversion results. Hence
the semantics giC+ mutex objects increases the original algorithm’s bolamgbriority inversion by the amount it
takes to complete the execution of all the tasks in the sigthatack.

Finally, in pC+, tasks running inside a mutex object have the additioaphbility of specifically accepting any
one of the mutex member routines. This capability also Isretgput the possibility of bypassing higher-priority tasks
waiting on other entry queues. When a member routine is éedethe acceptor is moved to the signalled stack,
thus causing the acceptor to block; the highest-priorisk taaiting on the accepted member routine then executes.
When a task leaves a mutex object, the next task that exeswgekected first from the signalled stack not the entry
gueues. Thus, the amount of time when priority inversionteste place when accepting specific member routines is
unbounded, since tasks can continually arrive on a memhb#ines entry queue, and tasks executing in the mutex
object can continually accept the same specific membemmuti

10.8 Real-Time Scheduling

The notion of priority becomes a crucial tool for implemeugtivarious forms of scheduling paradigndsgMK94,
BWO9O0, Gol94. In general, the ternpriority has no single meaning. The priority of a task may signify dtgidal
importance to a programmer, or may simply be a property deterd by its periodic characteristics, as is the case
with certain scheduling algorithms.

In uC+, the notion of priority simply determines the order byietha set of tasks executes. As far as the real-time
system is concerned, the ready task with the highest pritithe most eligible task to execute, with little or no
regard for the possible starvation of lower-priority reaasks. This form of scheduling is referred to gs@ritized
pre-emptive scheduling

Each task’s priority can be redefined and queried by thenmestprovided from the following abstract class (dis-
cussed further in the next section):

template <typename Node> class uBaseSchedule {

protected :

uBaseTask &getinheritTask( uBaseTask &task ) const;
int getActivePriority( uBaseTask &task ) const ;
int setActivePriority( uBaseTask &taskl, uBaseTask &task?2 );
int getBasePriority( uBaseTask &task ) const ;
int setBasePriority( uBaseTask &task, int priority );

}; /I uBaseScheduleFriend

Scheduler objects inherit fromBaseSchedule to use these routines, not replace them. These routinegprsuffi-
cient information about the dynamic behaviour of tasks oluster to schedule them in various ways.

To provide the facilities for implementing various prigrithanging scheduling algorithms (such as priority in-
heritance), quIC+ task has two priorities associated with itbase priority and anactive priority . It is up to the
scheduler implementor or programmer to set the approppiatety values, or to determine whether the base priority
or the active priority is the priority utilized in scheduljnasks, if used at al.

The member routingetinheritTask returns the task that this task inherited its current agtn@rity from or NULL.
The member routinegetActivePriority and setActivePriority read and write a task’s active priority, respectively. The
member routinegetBasePriority andsetBasePriority read and write a task’s base priority, respectively.

A task’s priority can be used for more than just determinirfgolr task executes next; priorities can also dic-
tate the behaviour of various synchronization primitivestsas semaphores and monitd8$\J90]. pC+ monitors

1uC+ sets the base and the active priority of a task to a uniftefault value, if no other priority is specified.
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have been extended so that entry queues (see Se&xBah p. 2] are prioritized® The highest-priority task that
calls into a monitor always enters the monitor first, unlegmadicular entry queue is explicitly accepted (see Sec-
tion 2.8.2.1, p. 2}, in which case, the highest-priority task in the particidatry queue executes. Condition queues
(see Sectior2.8.3.1, p. 2pwithin a monitor are also prioritized: signaling a conalitiqueue schedules the highest-
priority task waiting on the queue. Thus, both the monitdryequeues and the condition queues are prioritized, with
FIFO used within each priority level. The current implenagitn provides 32 priority levels. Support for more or less
priority levels can be implemented (see Sectlénd.

If an application is not real-time, all tasks are assignee@unal, default priority level. Thus, all tasks have one
active priority, and the scheduling is FIFO.

10.9 User-Supplied Scheduler

One of the goals of real-time ipC+ is to provide a flexible system, capable of being adapiedtious real-time
environments and applications. The wide availability ofimas real-time scheduling algorithms, coupled with each
algorithm’s suitability for different forms of real-timepalications, makes it essential that the language andmenti
system provide as few restrictions as possible on whichrigos may be utilized and implemented.

Scheduling is the mechanism by which the next task to run éseh from a set of runnable tasks. However,
this selection mechanism is closely tied to the data straatepresenting the set of runnable tasks. In fact, the data
structure containing the set of runnable tasks is oftergdesi with a particular scheduling algorithm in mind.

To provide a flexible scheduler, the ready “quelis’packaged as an independent entity — readily accessiblle an
replaceable by a scheduler designer. Consequently, tee amd mechanisms by which insertion and removal take
place from the ready data-structure is completely up tortiggeémentor.

A ready data-structure is generic in the type of nodes stordéke structure and must inherit from the abstract
class:

template <typename Node> class uBaseSchedule {
public :

virtual void add( Node *node ) = 0;
virtual Node xpop() = O;
virtual bool empty() const = 0;
virtual bool checkPriority( Node &owner, Node &calling ) = O;
virtual void resetPriority( Node &owner, Node &calling ) = 0;
virtual void addlInitialize( uSequence<uBaseTaskDL> &taskList ) = 0;
virtual void removelnitialize( uSequence<uBaseTaskDL> &taskList ) = 0;
virtual void rescheduleTask( uBaseTaskDL staskNode, uBaseTaskSeq &taskList ) = O;

I3
The uC+ kernel uses the routines provideduBaseSchedule to interact with the user-defined ready quéuk user
can construct different scheduling algorithms by modifytine behaviour of member routinadd andpop, which add
and remove tasks from the ready queue, respectively. Toeimght a dynamic scheduling algorithm, an analysis of
the set of runnable tasks is performed for each cadldband/orpop by the kernel; these routines alter the priorities
of the tasks accordingly. The member routémapty returns true if the ready queue is empty and false otherwise.
member routineheckPriority provides a mechanism to determine if a calling task has aehighority than another
task, which is used to compare priorities in priority changgprotocols, such as priority inheritance. Its companion
routineresetPriority performs the same check, but also raises the priority of Wreeotask to that of the calling task
if necessaryaddinitialize is called by the kernel whenever a task is added to the c|ustdremovelnitialize is called
by the kernel whenever a task is deleted from the cluster.oth bases, a pointer to the ready queue for the cluster
is passed as an argument so it can be reorganized if nece3$artypeuSequence<uBaseTaskDL> is the type of
a system ready queue (see Appendiyp. 147for information about th&Sequence collection). The list node type,
uBaseTaskDL, stores a reference to a task, and this reference can bevestivith member routin@sk:

A task’s active priority is utilized by @aC+ monitor to determine a task’s priority value

3The term “ready queue” is no longer appropriate becauseatsestructure may not be a queue.

4Operating systems such as AmoebaRRvSt90], Chorus RAA*88], and Apertos Yok92] employ a similar mechanism by which the kernel
utilizes external modules to modify its behaviour.
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Figure 10.3: Deadline Monotonic Ready-Queue

class uBaseTaskDL : public uSeqable {
public :
uBaseTaskDL( uBaseTask &_task );
uBaseTask &task() const ;
}; /1 uBaseTaskDL
Note, adding (or deleting) tasks to (or from) a cluster isthetsame as adding or popping tasks from the ready queue.
With a static scheduling algorithm, for example, task-setlgsis is only performed upon task creation, making the
addinitialize function an ideal place to specify such analysis code. Thelnee routinerescheduleTask is used to
recalculate the priorities of the tasks on a cluster basetherfiact that a given taskaskNode, may have changed
some of its scheduling attributes.

10.10 Real-Time Cluster

A real-time cluster behaves just like a normafC+ cluster, except a real-time cluster can have a spe@édyrdata-
structure associated with it (the ready data-structuréyrin, has a scheduling or task-dispatching policy assediat
with it). The ready data-structure must inherit from tigaseSchedule class, however, and passed as an argument
when creating a real-time cluster. A real-time cluster hasfollowing constructors:
class uRealTimeCluster : public uCluster {
public :
uRealTimeCluster( uBaseSchedule<uBaseTaskDL> &rq, int size = uDefaultStackSize(),
const char sname ="" );
uRealTimeCluster( uBaseSchedule<uBaseTaskDL> &rq, const char xname );
~uRealTimeCluster() {};

k

10.10.1 Deadline Monotonic Scheduler

The deadline monotonicscheduling algorithm is an example of a task-dispatchirgpoequiring a special ready
data-structure, which can be plugged into a real-time etusthe underlying ready data-structure for the deadline
monotonic implementation is a prioritized ready-queughwiupport for 32 priority levels. Thadd routine adds a
task to the ready-queue in a FIFO manner within a prioritglehepop routine returns the most eligible task with
the highest priority from the ready-queue. Batid andpop utilize a constant-time algorithm for the location of the
highest-priority task. Figur0.3illustrates this prioritized ready-queue.

The addInitialize routine contains the heart of the deadline monotonic algari In addinitialize, each task in the
ready-queue is examined, and tasks are ordered in incgeasiier by deadline. Priorities are, in turn, assigned to
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#include <uDeadlineMonotonic.h>

_PeriodicTask PeriodicTaskl {
public :
PeriodicTask1( uDuration period, uTime endtime, uDuration deadline, uCluster &cluster ) :
uPeriodicBaseTask( period, uTime(0), endtime, deadline, cluster ) {

void main() {
/I periodic task body
}

h

_PeriodicTask PeriodicTask2 {
public :
PeriodicTask2( uDuration period, uTime endtime, uDuration deadline, uCluster &cluster ) :
uPeriodicBaseTask( period, uTime(0), endtime, deadline, cluster ) {

void main() {
/I periodic task body
}

k

void uMain::main() {
uDeadlineMonotonic dm; I create real-time scheduler
uRealTimeCluster RTClust( dm ); /I create real- time cluster with scheduler
uProcessor xprocessor;

{

/I These tasks are created, but they do not begin execution until a
/I processor is created on the “RTClust” cluster. This is ideal, as
/I “addInitialize” is called as each task is added to the cluster.

uTime currTime = uThisProcessor().getClock().getTime();

PeriodicTaskl t1( 15, currTime+90, 5, RTClust ); /I 15 sec period, 5 sec deadline
PeriodicTask2 t2( 30, currTime+90, 10, RTClust ); /I 30 sec period, 5 sec deadline
PeriodicTaskl t3( 60, currTime+90, 20, RTClust ); /I 60 sec period, 20 sec deadline

/I Only when all tasks are on the cluster, and the scheduling algorithm
/I as ordered the tasks, is a processor associated with cluster
/I “RTClust” to execute the tasks on the cluster.

processor = new uProcessor( RTClust );
} 1/ wait for t1, t2, and t3 to finish
delete processor;

Figure 10.4: Sample Real-Time Program

every task. With the newly assigned priorities, the readyuguis re-evaluated, to ensure it is in a consistent state. As
indicated in Sectiod0.9, p. 135this routine is usually called only by the kernel. If a taskemoved from the cluster,
the relative order of the remaining tasks is unchanged;dyehe task is simply deleted without a need to re-schedule.

A sample real-time program is illustrated in Figur@.4 To utilize the deadline-monotonic algorithm include
header fileuDeadlineMonotonic.h. In the example, the creation of the real-time scheduler @uster is done at
the beginning oliMain::main. Note, the argument passed to the constructarRefalTimeCluster is an instance of
uDeadlineMonotonic, which is a ready data-structure derived fraBaseSchedule.

The technique used to ensure that the tasks start at a ldntance is not to associate a processor with the cluster
until after all tasks are createohd scheduledn the cluster. As each task is added to the clustémitialize is called,
and cluster’s task-set is analyzed and task prioritiesra)agsigned. After priority assignment, the task is addehle
ready queue, and made eligible to execute. Only when alstask created is a processor finally associated with the
real-time cluster. This approach ensures that when thepsoc is put in place, the task priorities are fully deteedin
and the critical instant is ensured.
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Chapter 11

Miscellaneous

11.1 Default Values

MCH has a number of environment variables set to reasonabéd values for a basic concurrent program. However,
some concurrent programs may need to adjust these valudsam @orrect execution or enhanced performance.
Currently, these variables affect tasks, processors,tenlddap.

A default value is specified indirectly via a default routimeéhich returns the specific default value. A routine
allows an arbitrary computation to generate an appropveltee. Each default routine can be replaced by defining a
routine with the same name and signature in an applicatign, e

unsigned int uDefaultStackSize() {
return 64 » 1024; /I 64K default stack size
}

If the value of a global variable is used in the computatiba,dpplication can change the default value dynamically by
changing this global variable; hence, actions performedifidrent times are initialized with different default vas
(unless overridden locally). However, the global variahblest be statically initializethecause its value may be used
to initialize objects at the start of th&&+ runtime, i.e., before the application’s code startcaken.

11.1.1 Task

The following default routines directly or indirectly affetasks:

unsigned int uDefaultStackSize();  // cluster coroutine/task stack size (bytes)

unsigned int uMainStackSize(); /I uMain task stack size (bytes)

unsigned int uDefaultPreemption(); // processor scheduling pre- emption duration (milliseconds)
RoutineuDefaultStackSize returns a stack siz® initialize a cluster’s default stack-sifeersus being used directly to
initialize a coroutine/task stack-size). A coroutinetaseated on a cluster without an explicit stack size isatited
to the cluster’s default stack-size; hence, there is a lef/@idirection between this default routine and its use for
initializing a stack size. As well, a cluster’s default dtegize can be explicitly changed after the cluster is cibate
(see SectiorB.3, p. 113. RoutineuMainStackSize is used directly to provide a stack size for the implicitlyctiged
initial task of typeuMain (see Sectio2.2, p. §. Since this initial task is defined and createdi+, it has a separate
default routine so it can be adjusted differently from thplagation tasks. RoutineDefaultPreemption returns a time
in millisecondsto initialize a virtual processor’s default pre-emptiome (versus being used directly to initialize a
task’s pre-emption time). A task executing on a processssheduled after no more than this amount of time (see
Section8.4, p. 115.

11.1.2 Processor

The following default routines directly affect processors
unsigned int uDefaultSpin(); /I processor spin amount before becoming idle
unsigned int uDefaultProcessors(); // number of processors created on the user cluster

RoutineuDefaultSpin returns the maximum number of times the cluster’s ready gugwhecked for an available
task to execute before the processor blocks. As well, a psocis default spin can be explicitly changed after the
processor is created (see Sect®4, p. 11%. RoutineuDefaultProcessors returns the number of implicitly created
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virtual processors on the user cluster (see Se@i8t2, p. 9. When the user cluster is created, at least this many
processors are implicitly created to execute tasks coantiyr

11.1.3 Heap

The following default routine directly affects the heap:

unsigned int uDefaultHeapExpansion(); // heap expansion size (bytes)
unsigned int uDefaultMmapStart(); // division point (bytes)

RoutineuDefaultHeapExpansion returns the amount to extend the heap size once all the ¢stage in the heap is
allocated (see Section2.3.10, p. 11D RoutineuDefaultMmapStart returns the division point after which allocation
requests are separately mmapped rather than being atidcarte the heap area.

11.2 Symbolic Debugging

The symbolic debugging tools (e.gibx, gdb) do not work perfectly withuC+, because each coroutine and task
has its own stack, and the debugger does not know about ttedes.s When a program terminates with an error,
only the stack of the coroutine or task in execution at theetwhthe error is understood by the debugger. During
execution, the debugger cannot step through a contextrstaiteither a coroutine or task. Therefore, it is necessary
to put break points after the suspend/resume or signalfevaitquire control, and just continue execution through the
context switch. Once the breakpoint is reached, it is ptessibnext/step through the lines of the coroutine/taskl unti
the next context switch. For debuggers that handle mulkiptael threads (correspondingiiG+- virtual processors),
it is possible to examine the active task running on eachdt¢nnead.

(gdb) info threads  # list all kernel threads

(gdb) thread 2 # switch to kernel thread 2
Finally, it is necessary to tell the debugger th&t+ is handling UNIX signalSIGALRM andSIGUSR1 to perform
pre-emptive scheduling. For gdb, the following debuggeni@nds allows the application program to handle signal
SIGALRM andSIGUSR1:

(gdb) handle SIGALRM nostop noprint pass
(gdb) handle SIGUSR1 nostop noprint pass

11.3 Installation Requirements
uUC+H comes configured to run on any of the following platforsiagle and multiple processor):

e solaris-sparc : Solaris 9/10, SPARC

e linux-x86 : Linux 2.4.x or greater, Intel IA-32

e linux-ia64 : Linux 2.4.x or greater, Intel IA-64 (Itanium)
e linux-x86.32 : Linux 2.4.x or greater, AMD 32

e linux-x86.64 : Linux 2.4.x or greater, AMD 64

MCH requires at least GNUe9q g++-4.0.3 or greater for Linux and g++-4.2.1 or greater3ofaris. These com-
pilers can be obtained free of chargeC+ does not work with g++-4.3.0 on Solaris, due to a bug inekeeption
handling runtimepuC+ does NOT compile using other compilers or operating syss.

11.4 Installation

The current version giC+ can be obtained fro@ithub Execute the following command to install:

$ git clone https://github.com/pabuhr/uCPP.git
$ cd uCPP
$ sudo sh install.sh

or from:
http: //plg.uwaterloo.ca/~usystem/pub/uSystem/u++-6.1.0.sh

Execute the following command to install:
$ sudo sh u++-6.1.0.sh


https://github.com/pabuhr/uCPP
http://plg.uwaterloo.ca/~usystem/pub/uSystem/u++-6.1.0.sh
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11.5 Reporting Problems

If you have problems or questions or suggestions, send Etanaiystem@plg.uwaterloo.ca or mail to:

pSystem Project

c/o Peter A. Buhr

School of Computer Science
University of Waterloo
Waterloo, Ontario

N2L 3G1

CANADA

As well, visit thepSystem web site atittp: //plg.uwaterloo.ca//~usystem

11.6 Contributors

While many people have made numerous suggestions, th&figeople were instrumental in turning this project
from an idea into reality. The original design work, Versibi®, was done by Peter Buhr, Glen Ditchfield and Bob
Zarnke BDZ89], with additional help from Jan Pachl on the train to Weng&nian Younger built Version 1.0 by
modifying the AT&T 1.2.1 C+ compilerYou91. Version 2.0 was designed by Peter Buhr, Glen Ditchfiel&kRi
Stroobosscher and Bob Zarnke)S"92). Version 3.0 was designed by Peter Buhr, Rick Stroobossazhe Bob
Zarnke. Rick Stroobosscher built both Version 2.0 and &0diator and kernel. Peter Buhr wrote the documentation
and built the non-blocking I/O library as well as doing otlseindry coding. Version 4.0 kernel was designed and
implemented by Peter Buhr. Nikita Borisov and Peter Buhrdigeveral problems in the translator. Amir Michall
started the real-time work and built a working prototypeilipp Lim and Peter Buhr designed the first version of
the real-time support and Philipp did most of the implemgoitawith occasional help from Peter Buhr. Ashif Harji
and Peter Buhr designed the second version of the real-tipygost and Ashif did most of the implementation with
occasional help from Peter Buhr. Russell Mok and Peter Bebigthed the first version of the extended exception
handling and Russell did most of the implementation withasia@nal help from Peter Buhr. Roy Krischer and Peter
Buhr designed the second version of the extended excepdiodling and Roy did most of the implementation with
occasional help from Peter Buhr. Version 5.0 kernel wasgihesl and implemented by Richard Bilson and Ashif
Harji, with occasional help from Peter Buhr. Tom, Sasha, ;TBaj, and Martin, the “gizmo guys”, all helped Peter
Buhr and Ashif Harji with the gizmo port. Finally, the manyrtdgbutions made by all the students in CS342/CS343
(Waterloo) and CSC372 (Toronto), who struggled with eaxérsions ofuC+, is recognized.

The indirect contributers are Richard Stallman for pravitimacs andgmake so that we could accomplish useful
work in UNIX, Michael D. Tiemann and Doug Lea for providingetinitial version of GNU C+ and Dennis Vadura
for providingdmake (used beforgmake).


http://plg.uwaterloo.ca/~usystem
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Appendix A

UCH Grammar

The grammar fopC+ is an extension of the grammar for C+ givenlint98, Annex A]. The ellipsis in the following
rules represent the productions elided from the C+ grammar

function-specifier :

mutex-specifier
mutex-specifier :

_Mutex queue-types:

_Nomutex queue-types

queue-types:
< class-name
< class-nameclass-name

class-key :
mutex-specifigfy class

mutex-specifiglp: —Coroutine
mutex-specifig: —Task queue-types
_RealTimeTask queue-typas:
_PeriodicTask queue-typas:
_SporadicTask queue-types

_Event

statement :

accept-statement
_AcceptWait ( (mutex-)identifier-lisj expression
_AcceptWait ( (mutex-)identifier-lisj expression With expression
_AcceptReturn ( (mutex-)identifier-lisj expressiopyt ;
select-statement
_Disable (exception-)identifier-ligl: statement
_Enable (exception-)identifier-lig statement
exception-list :
< class-name exception-lisgpt
jump-statement :
break identifiefypt ;
continue identifieryp ;

accept-statement :
or-accept
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or-accept timeout-clause
or-accept else-clause
or-accept timeout-clause else-clause

or-accept :
accept-clause
or-acceptor accept-clause

accept-clause :
when-clausgp —Accept ( (mutex-)identifier-lisy statement

select-statement :
or-select
or-select timeout-clause
or-select else-clause
or-select timeout-clause else-clause

or-select :
and-select
or-selector and-select

and-select :
select-clause
and-selectind select-clause

select-clause :
when-clausgy ( or-select)
when-clausgy —Select ( (selector-)expressionstatement

when-clause :
_When ( expressior)

else-clause :
when-clausgy _Else statement

timeout-clause :
or when-clausgp —Timeout ( (time-)expressionstatement

try-block :
try compound-statement handler-seq

handler :

APPENDIX A. uC+ GRAMMAR

_CatchResume ( exception-declaration catchresume-declaratigg: compound-statement
_CatchResume ( lvalue. exception-declaratiof catchresume-declaratigg: compound-statement

catch ( exception-declaratior) compound-statement

catch ( Ivalue. exception-declaratior) compound-statement

catchresume-declaration :
( catchresume-argument-ligt

catchresume-argument-list :
variable-declaration
catchresume-argument-lisvariable-declaration

variable-declaration :
decl-specifier-seq declarator
decl-specifier-seq

throw-expression :

_Throw assignment-expressign
_Resume assignment-expressigg at-expressiogy:

at-expression :
_At assignment-expression



Appendix B

Heap Allocator

uUC+ has its own heap allocator. The heap is a binning alloedtere object requests are rounded up to a bin size, and
it uses a lock per bin. This approach tries to reduce comeiy using fine-grain locking for different request sizes.
The bin sizes are closer together for smaller sizes andduapart for larger sizes. A free list is maintained for each
bin size. The free list for the corresponding bin size is klyichecked for a free object of the correct size. If there
are no free objects to reuse, a new object is allocated froallacation buffer. An adjustable-sized allocation-buffe
is allocated usingbrk, and it uses a single lock to protect expansion. Each obgxhheader at the start. At an
adjustable point, the allocator switches from binning ia tieap area to usingmap for allocations; these allocations
are returned to the operating system immediately aftedatzdlon. This approach avoids external fragmentation if
large-object requests are infrequent.

TheuC+- allocator has the standard heap-operations:

malloc( size ) allocatesize bytes and return a pointer to the allocated memory; memaryiistialized.

calloc( N, size ) allocateN elements okize bytes (\ x size bytes) and return a pointer to the allocated memory;
memory is zero filled.

realloc( ptr, size ) change the size of the memory referencegtoyo size bytes and return a pointer to the allocated
memory; if the size change requires new storage (small@rget), as much data as possible it copied from the
old storage and the old storage is freed. Any uncopied memdhe new storage is uninitialized.

posix _memalign( alignment, size ) allocatesize bytes and return a pointer to the allocated memory; the addre
returned is a multiple adlignment and memory is uninitialized.

free( ptr ) deallocate memory referenced fy, which must have been allocated by a calirtalloc, calloc or realloc.
The following extended routines (not defined by POSIX) agpsuted:

memalign( alignment, size ) allocatesize bytes and return a pointer to the allocated memory; the addegurned
is a multiple ofalignment and memory is uninitialized.

mallopt( parameter, value ) adjust parameters of the memory allocator for a specificiegidn. Supported param-
eters are (see also Sectibh.1.3, p. 14D

M_TOP_PAD sets the amount to extend the heap size once all the curceagstin the heap is allocated.

M_MMAP_THRESHOLD sets the division point after which allocation requestssagarately memory mapped
rather than being allocated from the heap area.

malloc _usable _size( ptr ) returns the usable size of the memory referencepkiby

calloc zero fills storage up tmalloc_usable_size.
malloc _stats() print memory-allocation statistics on standard error &fadlt).

malloc _stats _fd( int fd ) set file-descriptor number for memory-allocation statsprinting (1= standard out).
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Finally, the heap interface is further extended acrossdheWing properties: zero fill and alignment.
minimum | specified
alignment| alignment

no zero fill malloc memalign
zero fill calloc cmemalign

Note the missing interface to allocate aligned storageistmro filled; therefore, the interface is extended to catepl
the table with routine:

cmemalign( alignment, size )  allocatesize bytes and return a pointer to the allocated memory; the addaeturned
is a multiple ofalignment and memory is zero filled.

This routine completes programmer expectation with resfgeaccessing the allocation properties. As well, current
heap semantics do not preserve zero fill and alignment piiepavith respect to re-allocation. For example, when
memory is allocated byalloc, memalign or cmemalign with zero fill and/or alignment properties, that memory can b
given torealloc to change its size. Ifealloc needs to allocate new storage to satisfy a size change, P@&3hot
requirethe new storage to preserve any initial properties; theeefubsequent use of the new storage freatioc
may cause inefficient execution or errors due to lack of zdrorfialignment. This silent generation of a problem
is unintuitive to programmers and difficult to locate beaitds transient. Therefore, the semanticaedlloc are
augmented and some additional query routines are added:

realloc( ptr, size ) same semantics as before with the addition that zero fill &gdraent properties are preserved if
a new allocation is made.

malloc _alignment( ptr ) returns the alignment of the memory referencedtyy If ptr is NULL, the minimal align-
ment for any allocation is returned, e.g., multiple of 8.

malloc _zero _fill( ptr ) returns a boolean result indicating if memory referencegtbyvas allocated with zero fill
(i.e., bycalloc/cmemalign).



Appendix C

Data Structure Library (DSL)

pCH makes use of several basic data structures to managetobjeits runtime environment: stack, queue and
sequence. Since these data structures are needed at ctmpileecause of inlining, it is possible to use them in a
uUC+H application program. When appropriate, reusing codarbgpplication programmer can save significant time
and effort. However, be forewarned that fi@+ DSL is only as extensive as needed to implem#t; it is not
meant to be a complete data structure library (such as LEDAeSTL).

A data structure is defined to be a group of nodes, contairéeg data, organized into a particular format, with
specific operations peculiar to that format. For all datacgtires in this library, it is the user’s responsibility teate
and delete all nodes. Because a node’s existence is indepenfctthe data structure that organizes it, all nodes are
manipulated by address not value; hence, all data struciutmes take and return pointers to nodes and not the nodes
themselves.

Nodes are divided into two kinds: those with one link field jettform a collection, and those with two link fields,
which form a sequence.

collection node sequence node

data -~

data

uStack anduQueue are collections andSequence is a sequence. To get the appropriate link fields associatacaw
user node, it must be a public descendani@jlable or uSegable, respectively, e.g.:

class stacknode : public uColable { ...}
class queuenode : public uColable { ...}
class seqgnode : public uSeqable { ...}

A node inheriting fromuSegable can be putin a collection data structure but not vice versand\with providing the
appropriate link fields, the typesolable anduSeqable also provide one member routine:

bool listed() const ;

which returngrue if the node is an element of any collection or sequencefasel otherwise.
Finally, no header files are necessary to accesp@he DSL.
SomeuC+ DSL restrictions are:

e None of the member routines are virtual in any of the datacsires for efficiency reasons. Therefore, pointers
to data structures must be used with care or incorrect merob&nes may be invoked.

C.1 Stack

A uStack is a collection that defines an ordering among the nodes:swa@ereturned byop in the reverse order that
they are added byush.
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stack

top —™ 0

data data data

template <typename T> class uStack {
public :

uStack();
bool empty() const;
T xhead() const
T «top() const ;
void addHead( T *n );
void add( T n );
void push( T «n );
T «drop();
T «pop();

I3

T must be a public descendantugolable.

The member routinempty returnstrue if the stack has no nodes afadse otherwise. The member routihead
returns a pointer to the top node of the stack without rengpitior NULL if the stack has no nodes. The member
routinetop is a synonym fohead. The member routinaddHead adds a node to the top of the stack. The member
routineadd is a synonym folmddHead. The member routinpush is a synonym fomddHead. The member routine
drop removes a node from the top of the stack and returns a pomtiérot NULL if the stack has no nodes. The
member routingop is a synonym fodrop.

C.1.1 lterator

The iteratouStacklter<T> generates a stream of the elements af&ack<T>.
template <typename T> class uStacklter {
public :
uStacklter();
uStacklter( const uStack<T> &s );
void over( const uStack<T> &s );
bool operator >>( T «&tp );

I3
Itis used to iterate over the nodes of a stack from the topeéthck to the bottom.
The overloaded constructor routinstackiter has the following forms:

uStacklter() — creates an iterator without associating it with a paréicstack; the association must be done sub-
sequently with membaeaver.

uStacklter( const uStack<T> &s ) — creates an iterator and associates it the specified staelassociation can
be changed subsequently with membesr.

The member routinever resets the iterator to the top of the specified stack. The reenolitine>> attempts to
move the iterator’s internal cursor to the next node. If thttdim (end) of the stack has not been reached, the argument
is set to the address of the next node ane is returned; otherwise the argument is sefitd L andfalse is returned.

FigureC.lillustrates creating and using a stack and stack iterator.

C.2 Queue

A uQueue is a collection that defines an ordering among the nodes:sna@ereturned bgrop in the same order that
they are added bydd.

queue

head 0 = talil

data data data
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struct stackNode : public uColable {
int v;
stackNode( int v ) : v(v) {}

J5

void uMain::main() {
uStack<stackNode> stack;
uStacklter<stackNode> stackiter;
stackNode xsp;
int i;

for (i=0;i<10;i+=1){ /1 fill stack
stack.push( new stackNode( 2 = i) );
}

for ( stackiter.over(stack); stackiter >> sp; ) { /I print stack
cout << sp->v << " "

cout << endl:

for (i=0;i<10;i+=1){ /I empty stack
sp = stack.pop();
delete sp;

Figure C.1: DSL Stack

template <typename T> class uQueue {
public :
uQueue();
bool empty() const ;
T xhead() const
T «tail() const ;
T xsucc( T #n ) const ;
void addHead( T xn );
void addTail( T =n );
void add( T =n );
T »dropHead();
T *drop();
T *dropTail();
void remove( T #n );
void transfer( uQueue<T> &from );

h
T must be a public descendantuiolable.

The member routinempty returnstrue if the queue has no nodes afatke otherwise. The member routihead
returns a pointer to the head or first node of the queue witteaabving it orNULL if the queue has no nodes. The
member routingail returns a pointer to the tail or last node of the queue withemoving it. The member routirseicc
returns a pointer to the successor node after the specifigel oward the tail) oNULL if the specified node is the
last node in the sequence. The member rouifiHead adds a node to the head or front of the queue. The member
routineaddTail adds a node to the tail or end of the queue. The member rcadihes a synonym foladdTail. The
member routinelropHead removes a node from the head or front of the queue and retysameer to it orNULL if
the queue has no nodes. The member routing is a synonym fodropHead. The member routingropTail removes
a node from the tail or end of the queue and returns a pointi€otoNULL if the queue has no nodes. The member
routineremove removes the specified node from the queue (any location).nfdraber routineransfer transfers all
nodes from the “from” list to the tail or end of the specifiecege; the “from” list is empty after the transfer.

C.2.1 lterator

The iteratouQueuelter<T> generates a stream of the elements oQaeue<T>.
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struct queueNode : public uColable {
int v;
queueNode(int v) :v(v) {}

I3

void uMain::main() {
uQueue<queueNode> queue;
uQueuelter<queueNode> queueiter;
queueNode *qp;
int i;
for (i=0;i<10;i+=1){ /I fill queue

queue.add( new queueNode( 2 x i) );

}

for ( queueiter.over(queue); queueiter >> gp; ) { /I print queue

non

cout << gp->v <<

cout << endl;

for (i=0;i<10;i+=1){ /I empty queue
gp = queue.drop();
delete qp;

Figure C.2: DSL Queue

template <typename T> class uQueuelter {
public :
uQueuelter();
uQueuelter( const uQueue<T> &q );
void over( const uQueue<T> &q );
bool operator >>( T «&tp );

I3
Itis used to iterate over the nodes of a queue from the hedtkafueue to the tail.
The overloaded constructor routin@ueuelter has the following forms:

uQueuelter() — creates an iterator without associating it with a particgjueue; the association must be done
subsequently with memberver.

uQueuelter( const uQueue<T> &g ) — creates an iterator and associates it the specified gqusei@ssociation
can be changed subsequently with mendver.

The member routinever resets the iterator to the head of the specified queue. Théaraoutine>> attempts to
move the iterator’s internal cursor to the next node. If #il(end) of the queue has not been reached, the argument is
set to the address of the next node &nd is returned; otherwise the argument is setitéi L andfalse is returned.

FigureC.2illustrates creating and using a queue and queue iterator.

C.3 Sequence

A uSequence is a collection that defines a bidirectional ordering amdregrtodes: nodes can be added and removed
from either end of the collection; furthermore, nodes camberted and removed anywhere in the collection.

sequence

head— 0 ~ tall

data data data




C.3. SEQUENCE 151

template <typename T> class uSequence {
public :
uSequence();
bool empty() const;
T xhead() const
T «tail() const ;
T xsucc( T #n ) const;
T spred( T n ) const;
void insertBef( T «n, T «bef );
void insertAft( T «aft, T xn );
void addHead( Tx n );
void addTail( T+ n);
void add( T+ n);
T «dropHead();
T *drop();
T *dropTail();
void remove( T *n );
void transfer( uSequence<T> &from );
2
T must be a public descendantusfeqable.

The member routinempty returnstrue if the sequence has no nodes dalde otherwise. The member routine
head returns a pointer to the head or first node of the sequenceutitemoving it orNULL if the sequence has no
nodes. The member routimal returns a pointer to the tail or last node of the sequenceowittemoving it oNULL if
the sequence has no nodes. The member rosticeereturns a pointer to the successor node after the specifigel no
(toward the tail) oNULL if the specified node is the last node in the sequence. The erembtinepred returns a
pointer to the predecessor node before the specified nodarftdhe head) oKULL if the specified node is the first
node in the sequence. The member rouiisertBef adds a node before the specified node or at the end (tadj i§
NULL. The member routiniasertAft adds a node after the specified node or at the beginning (Hesftis NULL. The
member routineddHead adds a node to the head or front of the sequence. The memligreradd Tail adds a node
to the tail or end of the sequence. The member routihieis a synonym fomddTail. The member routindropHead
removes a node from the head or front of the sequence andsetynointer to it oNULL if the sequence has no nodes.
The member routindrop is a synonym fodropHead. The member routingropTail removes a node from the tail or
end of the sequence and returns a pointer to NOLL if the sequence has no nodes. The member routimeve
removes the specified node from the sequence (any locafldi®). member routineansfer transfers all nodes from
the “from” list to the tail or end of the specified sequence; ttiom” list is empty after the transfer.

A sequence behaves like a queue when mendaeranddrop are used. The example program in Secfio, p. 159
makes use of a sequence and modifies it so that nodes are imedhitaorder.

C.3.1 lIterator

The iteratouSeqlter<T> generates a stream of the elements o$equence<T>.

template <typename T> class uSeqlter {
public :

uSeqlter();
uSeqlter( const uSequence<T> &s );
void over( const uSequence<T> &s );
bool operator >>( T *&tp );

h

Itis used to iterate over the nodes of a sequence from thedfahd sequence to the tail.
The iteratouSeqlterRev<T> generates a stream of the elements a$aquence<T>.

template <typename T> class uSeglterRev {
public :
uSeqlterRev();
uSeqlterRev( const uSequence<T> &s );
void over( const uSequence<T> &s );
bool operator >>( T *&tp );
I8

Itis used to iterate over the nodes of a sequence from theftdik sequence to the head.
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struct seqNode : public uSeqable {
int v;
segNode(int v):v(v){}

I3

void uMain::main() {
uSequence<segNode> seq;
uSeqlter<seqNode> seqiter;
segNode xsp;

int i;

for (i=0;i<10;i+=1){ /I fill sequence
seq.add( new seqNode( 2 i) );

}

for ( seqiter.over(seq); seqiter >> sp; ) { /I print sequence forward
cout << sp->v << " "

cout << endl:

for ( uSeqglterRev<segNode> seqiterrev(seq); seqiterrev >> sp; ) { // print sequence reverse

non

cout << sp- >V << ;

cout << endl,

for ( seqiter.over(seq); seqiter >> sp; ) { /I empty sequence
seq.remove( sp ); /I can remove nodes during iteration
delete sp;

}

Figure C.3: DSL Sequence

The overloaded constructor routinBeqiter has the following forms:

uSeqlter() — creates an iterator without associating it with a paréicslequence; the association must be done
subsequently with membever.

uSeqlter( const uSeq<T> &q ) — creates an iterator and associates it the specified segjutbrcassociation can
be changed subsequently with membar.

The member routinever resets the iterator to the head or tail of the specified sempugepending on which iterator
is used. The member routine attempts to move the iterator’s internal cursor to the nexfen If the head (front) or
tail (end) of the sequence has not been reached dependinhioh iterator is used, the argument is set to the address
of the next node andlue is returned; otherwise the argument is setitd L andfalse is returned.

FigureC.3illustrates creating and using a sequence and sequera®iter
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Example Programs

D.1 Readers And Writer

The readers and writer problem deals with controlling astes resource that can be shared by multiple readers, but
only one writer can use it at a time (e.g., a sequential filehil®\there are many possible solutions to this problem,
each solution must deal with unbounded waiting of readefamwdriter tasks if a continuous stream of one kind of
task is arriving at the monitor. For example, if readers ameently using the resource, a continuous stream of reader
tasks should not make an arriving writer task wait foreventiftermore, a solution to the readers and writer problem
should provide FIFO execution of the tasks so that a readshaguested after a write does not execute before the
write, thus reading old information. This phenomenon idechthestale readersproblem. Hoare gave a monitor
solution in Hoa74 that has a bounded on waiting but non-FIFO execution.

1 - % Mode: C++ - »-
1

/I uC++ Version 6.1.0, Copyright (C) Peter A. Buhr 1994
1

/I RWEx1.cc - - Readers and Writer Problem

1

/I Author . Peter A. Buhr

/I Created On : Thu Aug 2 11:51:34 1990
/I Last Modified By : Peter A. Buhr

/I Last Modified On : Fri Apr 29 12:10:06 2011
/I Update Count : 102

1

#include <iostream>
using std::cout;
using std::osacquire;
using std::endl;

_Monitor ReadersWriter {
int rcnt, went;
uCondition RWers;
enum RW { READER, WRITER }
public :
ReadersWriter() : rcnt(0), went(0) {}

void startRead() {

if (went =0 [| ! RWers.empty() ) RWers.wait( READER );

rent += 1,

if (! RWers.empty() && RWers.front() == READER ) RWers.signal();
} /I ReadersWriter::startRead

void endRead() {
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rent -= 1;
if (rent == 0 ) RWers.signal();
} /I ReadersWriter::endRead

void startWrite() {
if (went!=0 || rent !=0 ) RWers.wait( WRITER );
went = 1;

} /I ReadersWriter::startWrite

void endWrite() {
went = 0;
RWers.signal();
} /I ReadersWriter::endWrite
}; /I ReadersWriter

volatile int SharedVar = 0; /I shared variable to test readers and writers

_Task Worker {
ReadersWriter &rw;

void main() {
yield( rand() % 100 ); /I don’ t all start at the same time
if (rand() % 100 < 70 ) { /I decide to be a reader or writer

rw.startRead();
osacquire( cout ) << "Reader:" << this <<
yield( 3 );
rw.endRead();
} else {
rw.startWrite();
SharedVar += 1,
osacquire( cout ) << "Witer:" << this << ", wote:" << SharedVar << endl;
yield( 1);
rw.endWrite();
YIif
} /I Worker::main
public :
Worker( ReadersWriter &rw ) : rw( rw ) {
} /I Worker::Worker
}; /I Worker

, shared:" << SharedVvar << endl;

void uMain::main() {
enum { MaxTask = 50 };
ReadersWriter rw;
Worker sworkers[MaxTask];

for (int i =0; i< MaxTask; i += 1) {
workers[i] = new Worker( rw );

} 11 for

for (int i =0; i< MaxTask; i += 1) {
delete workers][i];

} 11 for

osacquire( cout ) << "successful conpletion" << endl;
} // uMain::main

/I Local Variables: //
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/I tab- width: 4 //
/I compile- command: “u++ RWEx1l.cc” //
/I End: /I

D.2 Bounded Buffer

Two processes communicate through a unidirectional quEfiite length.

D.2.1 Using Monitor Accept

1 -+ Mode: C++ - +-

1

/I uC++ Version 6.1.0, Copyright (C) Peter A. Buhr 1994
1

/I MonAcceptBB.cc - - Generic bounded buffer problem using a monitor and uAccept
1

/I Author . Peter A. Buhr

/I Created On : Thu Aug 2 11:35:05 1990

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Wed Nov 30 08:41:30 2005

/I Update Count 1124

1

template <typename ELEMTYPE> _Monitor BoundedBuffer {

const int size; /I number of buffer elements
int front, back; /I position of front and back of queue
int count; /I number of used elements in the queue
ELEMTYPE xElements;
public :

BoundedBuffer( const int size = 10 ) : size( size ) {
front = back = count = 0O;
Elements = new ELEMTYPE][size];

} /1 BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete [] Elements;
} // BoundedBuffer::~BoundedBuffer

_Nomutex int query() {
return count;
} /I BoundedBuffer::query

void insert( ELEMTYPE elem );
ELEMTYPE remove();
}; /I BoundedBuffer

template <typename ELEMTYPE> inline void BoundedBuffer<ELEMTYPE>::insert( ELEMTYPE elem ) {
if ( count == size ) { /I buffer full ?
_Accept ( remove ); /I only allow removals
Y if

Elements[back] = elem;
back = ( back + 1) % size;
count += 1;

} // BoundedBuffer::insert

template <typename ELEMTYPE> inline ELEMTYPE BoundedBuffer<ELEMTYPE>::remove() {
ELEMTYPE elem;
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if (count==20){ /I buffer empty ?
_Accept ( insert ); /I only allow insertions
Y if

elem = Elements][front];
front = (front + 1) % size;
count -=1;

return elem;
} // BoundedBuffer::remove

#include "ProdConsDriver.i"

/I Local Variables: //

/I tab- width: 4 //

/I compile- command: “u++ MonAcceptBB.cc” //
/I End: /I

D.2.2 Using Monitor Condition

1 - % Mode: C++ - »-

1

/I uC++ Version 6.1.0, Copyright (C) Peter A. Buhr 1994
1

/I MonConditionBB.cc - - Generic bounded buffer problem using a monitor and condition variables
1

/I Author . Peter A. Buhr

/I Created On : Thu Aug 2 11:35:05 1990

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Wed Nov 30 08:41:43 2005

/I Update Count 1 57

1

template <typename ELEMTYPE> _Monitor BoundedBuffer {

const int size; /I number of buffer elements
int front, back; /I position of front and back of queue
int count; /I number of used elements in the queue

ELEMTYPE xElements;
uCondition BufFull, BufEmpty;
public :
BoundedBuffer( const int size = 10 ) : size( size ) {
front = back = count = 0O;
Elements = new ELEMTYPE[size];
} /1 BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete [] Elements;
} // BoundedBuffer::~BoundedBuffer

_Nomutex int query() {
return count;
} /I BoundedBuffer::query

void insert( ELEMTYPE elem ) {
if ( count == size ) {
BufFull.wait();
Y if
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Elements[back] = elem;
back = ( back + 1) % size;
count += 1,

BufEmpty.signal();
}; /1 BoundedBuffer::insert

ELEMTYPE remove() {
ELEMTYPE elem;

if (count==10){
BufEmpty.wait();
Y if

elem = Elements[front];
front = ( front + 1) % size;
count - = 1,

BufFull.signal();
return elem;
}; /1 BoundedBuffer::remove
}; /I BoundedBuffer

#include "ProdConsDriver.i"

/I Local Variables: //

/I tab- width: 4 //

/I compile- command: “u++ MonConditionBB.cc” //
/I End: /I

D.2.3 Using Task

1 - % Mode: C++ - »-

1

/I uC++ Version 6.1.0, Copyright (C) Peter A. Buhr 1994
1

/I TaskAcceptBB.cc - - Generic bounded buffer using a task
I

/I Author . Peter A. Buhr

/I Created On : Sun Sep 15 20:24:44 1991

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Sun Jul 31 18:50:16 2005

/I Update Count 174

1

template <typename ELEMTYPE> _Task BoundedBuffer {

const int size;

int front, back;

int count;

ELEMTYPE xElements;

public :

BoundedBuffer( const int size = 10 ) : size( size ) {
front = back = count = 0;
Elements = new ELEMTYPE][size];

} /I BoundedBuffer::BoundedBuffer

~BoundedBuffer() {

/I number of buffer elements
/I position of front and back of queue
/I number of used elements in the queue
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delete [] Elements;
} // BoundedBuffer::~BoundedBuffer

_Nomutex int query() {
return count;
} // BoundedBuffer::query

void insert( ELEMTYPE elem ) {
Elements[back] = elem;
} /I BoundedBuffer::insert

ELEMTYPE remove() {
return Elements][front];
} // BoundedBuffer::remove

protected :
void main() {
for (i) {
_Accept ( ~BoundedBuffer )
break;
or _When ( count != size ) _Accept ( insert ) {
back = ( back + 1) % size;
count += 1,
} or _When ( count != 0 ) _Accept ( remove ) {
front = ( front + 1) % size;
count -=1;
} /I _Accept
} 11 for

} /1 BoundedBuffer::main
}; /I BoundedBuffer

#include "ProdConsDriver.i"

/I Local Variables: //

/I tab- width: 4 //

/I compile- command: “u++ TaskAcceptBB.cc” //
/I End: /I

D.2.4 Using P/V

1 - %
1

/I uC++ Version 6.1.0, Copyright (C) Peter A. Buhr 1994
1

/I SemaphoreBB.cc - -

1

/I Author . Peter A. Buhr

/I Created On : Thu Aug 15 16:42:42 1991

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Sun Jul 31 18:48:08 2005

/I Update Count 1 54

1

Mode: C++ - -

#include <uSemaphore.h>

template <typename ELEMTYPE> class BoundedBuffer {
const int size;
int front, back;
uSemaphore full, empty;
uSemaphore ilock, rlock;

APPENDIX D. EXAMPLE PROGRAMS

/I number of buffer elements

/I position of front and back of queue

/I synchronize for full and empty BoundedBuffer
/I 'insertion and removal locks
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ELEMTYPE xElements;

BoundedBuffer( BoundedBuffer & ); /I no copy
BoundedBuffer &operator =( BoundedBuffer & ); /I no assignment
public :

BoundedBuffer( const int size = 10 ) : size( size ), full( 0 ), empty( size ) {
front = back = 0;
Elements = new ELEMTYPE][size];

} /I BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete Elements;
} /I BoundedBuffer::~BoundedBuffer

void insert( ELEMTYPE elem ) {
empty.P(); /I wait if queue is full

ilock.P(); /I serialize insertion
Elements[back] = elem;

back = ( back + 1) % size;

illock.V();

full.V(); /I signal a full queue space
} /I BoundedBuffer::insert

ELEMTYPE remove() {
ELEMTYPE elem;

full.P(); /I wait if queue is empty

rlock.P(); /I serialize removal
elem = Elements[front];

front = ( front + 1) % size;

rlock.V();

empty.V(); /I signal empty queue space
return elem;
} // BoundedBuffer::remove
}; /I BoundedBuffer

#include "ProdConsDriver.i"

/I Local Variables: //

/I tab- width: 4 //

/I compile- command: “u++ SemaphoreBB.cc” //
/I End: /I

D.3 Disk Scheduler

The following example illustrates a fully implemented dstheduler. The disk scheduling algorithm is the elevator
algorithm, which services all the requests in one directind then reverses direction. A linked list is used to store
incoming requests while the disk is busy servicing a padictequest. The nodes of the list are stored on the stack of
the calling processes so that suspending a request doesirsatroe resources. The list is maintained in sorted order
by track number and there is a pointer which scans backwatfoaward through the list. New requests can be added
both before and after the scan pointer while the disk is blisiew requests are added before the scan pointer in the
direction of travel, they are serviced on that scan.

The disk calls the scheduler to get the next request thatvices. This call does two things: it passes to the
scheduler the status of the just completed disk requesthnaikithen returned from scheduler to disk user, and it
returns the information for the next disk operation. Wherseris request is accepted, the parameter values from the
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request are copied into a list node, which is linked in soaiter into the list of pending requests. The disk removes
work from the list of requests and stores the current requésperforming inCurrentRequest. When the disk has
completed a request, the request’s status is placed i€dhentRequest node and the user corresponding to this
request is reactivated.

1 - % Mode: C++ - »-

1

/I uC++ Version 6.1.0, Copyright (C) Peter A. Buhr 1994

1

/I LOOK.cc -- Look Disk Scheduling Algorithm

1

/I The LOOK disk scheduling algorithm causes the disk arm to sweep bidirectionally across the disk surface until there
/I are no more requests in that particular direction, servicing all requests in its path.
1

/I Author . Peter A. Buhr

/I Created On : Thu Aug 29 21:46:11 1991

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Sun Jul 18 11:06:04 2010

/I Update Count 1281

1

#include <iostream>
using std::cout;
using std::osacquire;
using std::endl;

typedef char Buffer[50]; /I dummy data buffer

const int  NoOfCylinders = 100;
enum I0Status { IO_COMPLETE, I0O_ERROR }

class IORequest {
public :

int track;

int sector,;

Buffer «bufadr;

IORequest() {}

IORequest( int track, int sector, Buffer sbufadr ) {
IORequest::track = track;
IORequest::sector = sector;
IORequest::bufadr = bufadr;

} /1 IORequest::IORequest

}; /I IORequest

class WaitingRequest : public uSegable { /I element for a waiting request list
WaitingRequest( WaitingRequest & ); /I no copy
WaitingRequest &operator =( WaitingRequest & ); /I no assignment
public :

uCondition block;
IOStatus status;
IORequest req;
WaitingRequest( IORequest req ) {
WaitingRequest::req = req;
}
}; /I WaitingRequest

class Elevator : public uSequence<WaitingRequest> {
int Direction;
WaitingRequest «Current;
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Elevator( Elevator & );
Elevator &operator =( Elevator & );
public :
Elevator() {
Direction = 1;
} /I Elevator::Elevator

void orderedinsert( WaitingRequest +np ) {

WaitingRequest «Ip;
for (Ip = head();

Ip = 0 && Ip->req.track < np- >req.track;

Ip = succ(lp) );
if ( empty() ) Current = np;
insertBef( np, Ip );
} /I Elevator::orderedinsert

WaitingRequest sremove() {

WaitingRequest stemp = Current;
Current = Direction ? succ( Current ) : pred( Current );
uSequence<WaitingRequest>::remove( temp );

if (Current ==0) {

osacquire( cout ) << "Turning" << endl;

Direction = !Direction;

Current = Direction ? head() : tail();

Y Iif
return temp;
} /I Elevator::remove
}; /I Elevator

_Task DiskScheduler;

_Task Disk {
DiskScheduler &scheduler;
void main();
public :

Disk( DiskScheduler &scheduler ) : scheduler( scheduler ) {

} /I Disk
}; I/ Disk

_Task DiskScheduler {
Elevator PendingClients;
uCondition DiskWaiting;
WaitingRequest «CurrentRequest;
Disk disk;
IORequest req;
WaitingRequest diskterm;

void main();
public :

/I no copy
/I no assignment

/I 'insert in ascending order by track number

/I 1st client, so set Current

/I advance to next waiting client
/I remove request

/I reverse direction ?

/I ordered list of client requests
/I disk waits here if no work

/I request being serviced by disk
/I start the disk

/I preallocate disk termination request

DiskScheduler() : disk( this ), req( -1, 0, 0 ), diskterm( req ) {

} /I DiskScheduler

IORequest WorkRequest( |OStatus );
IOStatus DiskRequest( IORequest & );

}; /I DiskScheduler

_Task DiskClient {
DiskScheduler &scheduler;
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void main();
public :

APPENDIX D. EXAMPLE PROGRAMS

DiskClient( DiskScheduler &scheduler ) : scheduler( scheduler ) {

} /1 DiskClient
}; /I DiskClient

void Disk::main() {
IOStatus status;
IORequest work;

status = IO_COMPLETE;
for ()4
work = scheduler.WorkRequest( status );
if ( work.track == -1) break;

osacquire( cout ) << "Di sk main, track:" <<

yield( 100 );
status = IO_COMPLETE;
} 11 for
} /1 Disk::main

void DiskScheduler::main() {
uSeqlter<WaitingRequest> iter;

CurrentRequest = NULL;

for ()1
_Accept ( ~DiskScheduler ) {

break;

} or _Accept ( WorkRequest ) {
} or _Accept ( DiskRequest ) {
} /I _Accept

} 1l for

/I two alternatives for terminating scheduling server

#if 0
for ( ;! PendingClients.empty(); ) {
_Accept ( WorkRequest );
} 1l for
#else
WaitingRequest xclient;

for ( iter.over(PendingClients); iter >> client; ) {
PendingClients.remove();
client- >status = IO_ERROR,;
client- >block.signal();
} 1l for
#endif
/I pending client list is now empty

/I stop disk
PendingClients.orderedInsert( &diskterm );

if (! DiskWaiting.empty() ) {
DiskWaiting.signal();
} else {
_Accept ( WorkRequest );
Y if
} /1 DiskScheduler::main

I0Status DiskScheduler::DiskRequest( IORequest &req ) {

work.track << endl;

/I pretend to perform an 1/O operation

/I declared here because of gcc compiler bug
/I no current request at start
/I request from system

/I request from disk
/I request from clients

/I service pending disk requests before terminating

/I cancel pending disk requests before terminating

/I remove each client from the list
/I set failure status
/I restart client

/I insert disk terminate request on list

/I disk free ?
/I wake up disk to deal with termination request

/I wait for current disk operation to complete
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WaitingRequest np( req ); /I preallocate waiting list element
PendingClients.orderedInsert( &np ); /I insert in ascending order by track number
if (! DiskWaiting.empty() ) { /I disk free ?

DiskWaiting.signal(); /I reactivate disk
Y if
np.block.wait(); /I wait until request is serviced
return np.status; /I return status of disk request

} I/ DiskScheduler::DiskRequest

IORequest DiskScheduler::WorkRequest( |OStatus status ) {

if ( CurrentRequest != NULL ) { /I client waiting for request to complete ?
CurrentRequest- >status = status; /I set request status
CurrentRequest- >block.ignal(); /I reactivate waiting client

Y if

if ( PendingClients.empty() ) { /I any clients waiting ?
DiskWaiting.wait(); /I wait for client to arrive

Y if

CurrentRequest = PendingClients.remove(); /I remove next client’ s request

return CurrentRequest- >req; /I return work for disk

} /I DiskScheduler::WorkRequest

void DiskClient::main() {
IOStatus status;
IORequest req( rand() % NoOfCylinders, 0, 0 );

yield( rand() % 100 ); /I don’ t all start at the same time

osacquire( cout ) << “enter Di skdient main seeking:" << req.track << endl;

status = scheduler.DiskRequest( req );

osacquire( cout ) << "enter Diskdient main seeked to:
} // DiskClient::main

<< reqg.track << endl;

void uMain::main() {
const int NoOfTests = 20;

DiskScheduler scheduler; /I start the disk scheduler

DiskClient xp;

srand( getpid() ); /I initialize random number generator
p = new DiskClient[NoOfTests]( scheduler ); /I start the clients

delete [] p; /I wait for clients to complete

cout << "successful conpletion” << endl;
} /I uMain::main

/I Local Variables: //

/I tab- width: 4 //

/I compile- command: “u++ LOOK.cc” //
/I End: 1/

D.4 UNIXFile /O

The following example program reads in a file and copies @ ariother file.

1l - % Mode: C++ - -
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1

/I uC++ Version 6.1.0, Copyright (C) Peter A. Buhr 1994

1

/I File.cc -- Print multiple copies of the same file to standard output
1

/I Author . Peter A. Buhr

/I Created On : Tue Jan 7 08:44:56 1992

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Thu Dec 8 17:43:07 2011
/I Update Count D44

1

#include <uFile.h>
#include <iostream>
using std::cout;
using std::cerr;
using std::endl;

_Task Copier {
uFile &input;

void main() {
uFile::FileAccess in( input, O_RDONLY );
int count;
char buf[1];

for (inti=0;i+=1)¢{ /I copy in-file to out- file
count = in.read( buf, sizeof ( buf ) );
if (count == 0 ) break; /I eof ?

cout << buf[0];
if (1% 20 ==0) yield();
} 1l for
} /I Copier::main
public :
Copier( uFile &in ) : input( in) {
} /I Copier::Copier
}; /I Copier

void uMain::main() {
switch ( argc ) {
case 2:
break;
default :
cerr << "Usage: " << argv[0] <<
exit( EXIT_FAILURE );
} /1 switch

input-file" << std:endl;

uFile input( argv[1] ); /I connect with UNIX files
{

Copier c1( input ), c2( input );
}

} /I uMain::main

/I Local Variables: //

/I tab- width: 4 //

/I compile- command: “u++ File.cc” //
/I End: /I
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D.5 UNIX Socket I/0

The following example illustrates bidirectional commuation between a client and server socket. A client starts a
task to read from standard input and write the data to a sepeket. The server or its acceptor for that client, reads
the data from the client and writes it directly back to thewti The client also starts a task that reads the data coming
back from the server or its acceptor and writes it onto stehdatput. Hence, a file is read from standard input and
written onto standard output after having made a loop thin@usgrver. The server can deal with multiple simultaneous
clients.

D.5.1 Client - UNIX/Datagram

1 -+~ Mode: C++ - *-

1

/I uC++ Version 6.1.0, Copyright (C) Peter A. Buhr 1999

1

/I ClientUNIXDGRAM.cc - - Client for UNIX/datagram socket test. Client reads from standard input, writes the data to the
1 server, reads the data from the server, and writes that data to standard output.
1

/I Author . Peter A. Buhr

/I Created On : Thu Apr 29 16:05:12 1999

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Sat Nov 24 15:44:15 2012

/I Update Count 149

1

#include <uSemaphore.h>
#include <uSocket.h>
#include <iostream>
using std::cin;

using std:cout;

using std::cerr;

using std::osacquire;
using std::endl;

/I minimum buffer size is 2, 1 character and string terminator, ' \0’
enum { BufferSize = 65 };

const char EOD ='\377";

unsigned int rcnt = 0, went = 0;

/I Datagram sockets are lossy (i.e., drop packets). To prevent clients from flooding the server with packets, resulting

/I 'in dropped packets, a semaphore is used to synchronize the reader and writer tasks so at most N writes occur before a
/I read. As well, if the buffer size is increased substantially, it may be necessary to decrease N to ensure the server

/I buffer does not fill.

enum { MaxWriteBeforeRead = 5 };
uSemaphore readSync( MaxWriteBeforeRead );

_Task Reader {
uSocketClient &client;

void main() {
uDuration timeout( 20, 0 ); /I timeout for read
char buf[BufferSize];
int len;
/Istruct sockaddr_un from;
/Isocklen_t fromlen = sizeof( from );

try {
for (;;){
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len = client.recvfrom( buf, sizeof (buf), 0, &timeout );
/llen = client.recvfrom( buf, sizeof(buf), (sockaddr x)&from, &fromlen, O, &timeout );
readSync.V();
/I osacquire( cerr ) << “reader read len:” << len << endl;

if (len ==0) uAbort( "client %l : EOF ecountered wi thout ECD", getpid() );
rent += len;
/I The EOD character can be piggy- backed onto the end of the message.

if (‘bufflen - 1] == EOD ) {

rent - = 1; /I do not count the EOD
cout.write( buf, len - 1); /I do not write the EOD
break;

} Il exit

cout.write( buf, len );

} 11 for
} catch ( uSocketServer::ReadTimeout ) {
cout << "Warning: client timeout, possible cause | ost data on datagramsocket" << endl;
Y try
} /I Reader::main
public :
Reader( uSocketClient &client ) : client ( client ) {
} /I Reader::Reader
}; /I Reader

_Task Writer {
uSocketClient &client;

void main() {
char buf[BufferSize];
/Istruct sockaddr_un to;
/Isocklen_t tolen = sizeof( to );

/[client.getServer( (sockaddr x)&to, &tolen );
for ()¢
cin.get( buf, sizeof (buf), "'\ 0" ); /I leave room for string terminator
int len = strlen( buf );
/I osacquire( cerr ) << “writer read len:” << len << endl;
if (bufl0] =="'\0" ) break;
went += len;
readSync.P();
client.sendto( buf, len );
/[client.sendto( buf, len, (sockaddr x)&to, tolen );
} 1l for
readSync.P();
client.sendto( const _cast<char *>(&EOD), sizeof (EOD) );
/client.sendto( const_cast<char «>(&EOD), sizeof(EOD), (sockaddr )&to, tolen );
} /I Writer::main
public :
Writer( uSocketClient &client ) : client( client ) {
} /I Writer::Writer
}; /I Writer

void uMain::main() {
switch ( argc ) {
case 2:
break;
default :
cerr << "Usage: " << argv[0] << " socket - nane" << endl;
exit( EXIT_FAILURE );
} /1 switch
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/I remove tie due to race between cin flush and cout write by writer and reader tasks
cin.tie( NULL );

uSocketClient client( argv[1], SOCK_DGRAM ); /I connection to server
{
Reader rd( client ); /I emit worker to read from server and write to output
Writer wr( client ); /I emit worker to read from input and write to server
}

if (went!=rent) {
uAbort( "Error: client not all datatransfered, went: %l rcnt: %", went, rent );
Y if
} // uMain::main

/I Local Variables: //

/I tab- width: 4 //

/I compile- command: “u++- work ClientUNIXDGRAM.cc - o Client” //
/I End: /]

D.5.2 Server - UNIX/Datagram

1 -+~ Mode: C++ - *-

1

/I uC++ Version 6.1.0, Copyright (C) Peter A. Buhr 1999
1

/I ServerUNIXDGRAM.cc -- Server for UNIX/datagram socket test. Server reads data from multiple clients. The server reads
1 the data from the client and writes it back.

I
/I Author . Peter A. Buhr
/I Created On : Fri Apr 30 16:36:18 1999

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Sat Nov 24 14:24:34 2012
/I Update Count 144

1

#include <uSocket.h>

#include <iostream>

#include <unistd.h> /I unlink
using std::cerr;

using std::osacquire;

using std::endl;

enum { BufferSize = 8 x 1024 },

_Task Reader {
uSocketServer &server;

void main() {
uDuration timeout( 20, 0 ); /I timeout for read
char buf[BufferSize];
int len;
/Istruct sockaddr_un to;
/Isocklen_t tolen = sizeof( to );

try {
for ()1
len = server.recvfrom( buf, sizeof (buf), 0, &timeout );
/llen = server.recvfrom( buf, sizeof(buf), (sockaddr «)&to, &tolen, 0, &timeout );
/I osacquire( cerr ) << “reader read len:” << len << endl;
if (len == 0 ) uAbort( "server %l : EOF ecountered before tineout", getpid() );
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server.sendto( buf, len ); /I write byte back to client
/Iserver.sendto( buf, len, (sockaddr x)&to, tolen ); // write byte back to client
} 11 for
} catch ( uSocketServer::ReadTimeout ) {
Y try
} // Reader::main

public :
Reader( uSocketServer &server ) : server( server ) {
} I/ Reader::Reader
}; /I Reader

void uMain::main() {
switch ( argc ) {
case 2:
break;
default :
cerr << "Usage: " << argv[0] <<
exit( EXIT_FAILURE );

socket - nanme" << endl;

} /1 switch
uSocketServer server( argv[1l], SOCK_DGRAM ); /I create and bind a server socket
{ Reader rd( server ); /I execute until reader times out
u}nlink( argv[1] ); /I remove socket file
} // uMain

/I Local Variables: //

/I tab- width: 4 //

/I compile- command: “u++- work ServerUNIXDGRAM.cc - o Server” //
/I End: /I

D.5.3 Client - INET/Stream

1 -+ Mode: C++ - +-

1

/I uC++ Version 6.1.0, Copyright (C) Peter A. Buhr 1994

1

/I ClientINETSTREAM.cc - - Client for INET/stream socket test. Client reads from standard input, writes the data to the
I server, reads the data from the server, and writes that data to standard output.
1

/I Author . Peter A. Buhr

/I Created On : Tue Jan 7 08:42:32 1992

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Thu Dec 8 17:41:00 2011

/I Update Count : 158

1

#include <uSocket.h>
#include <iostream>
using std::cin;
using std::cout;
using std::cerr;
using std::osacquire;
using std::endl;

/I minimum buffer size is 2, 1 character and string terminator, ' \0'
enum { BufferSize = 65 };
const char EOD = '\377";
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const char EOT ="\376';
unsigned int rcnt = 0, went = 0;

_Task Reader {
uSocketClient &client;

void main() {
char buf[BufferSize];
int len;

for (;;) {
len = client.read( buf, sizeof (buf) );
/I osacquire( cerr ) << “reader read len:” << len << endl;

if (len ==0) uAbort( "client % : ECF ecountered without EOD', getpid() );

rcnt += len;
/I The EOD character can be piggy- backed onto the end of the message.
if (buffllen - 1] == EOD ) {
rent - = 1; /I do not count the EOD
cout.write( buf, len - 1); /I do not write the EOD
client.write( &EOT, sizeof (EOT) ); /I 'indicate EOD received
break;
} 1 exit
cout.write( buf, len );
} 11 for
} /I Reader::main
public :
Reader( uSocketClient &client ) : client ( client ) {
} /I Reader::Reader
}; /I Reader

_Task Writer {
uSocketClient &client;

void main() {
char buf[BufferSize];

for (i) {

cin.get( buf, sizeof (buf), '\ 0" ); /I leave room for string terminator

if (bufl0] =="'\0" ) break;
int len = strlen( buf );
/I osacquire( cerr ) << “writer read len:” << len << endl;

went += len;
client.write( buf, len );
} 1l for

client.write( &EOD, sizeof (EOD) );
} /I Writer::main
public :
Writer( uSocketClient &client ) : client( client ) {
} /I Writer::Writer
}; /I Writer

void uMain::main() {
switch ( argc ) {
case 2:
break;
default :
cerr << "Usage: " << argv[0] << " port-nunber" << endl;
exit( EXIT_FAILURE );
} /1 switch
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/I remove tie due to race between cin flush and cout write by writer and reader tasks
cin.tie( NULL );

uSocketClient client( atoi( argv[1] ) ); /I connection to server
{
Reader rd( client ); /I emit worker to read from server and write to output
Writer wr( client ); /I emit worker to read from input and write to server
}

if (went!=rent) {
uAbort( "Error: client not all datatransfered, went: %l rcnt: %", went, rent );
Y if
} // uMain::main

/I Local Variables: //

/I tab- width: 4 //

/I compile- command: “u++- work ClientINETSTREAM.cc - o Client” //
/I End: /]

D.5.4 Server - INET/Stream

1 -+~ Mode: C++ - *-

1

/I uC++ Version 6.1.0, Copyright (C) Peter A. Buhr 1994

1

/I ServerINETSTREAM.cc - - Server for INET/stream socket test. Server accepts multiple connections from clients. Each
1 client then communicates with an acceptor. The acceptor reads the data from the client and writes it back.
I

/I Author . Peter A. Buhr

/I Created On : Tue Jan 7 08:40:22 1992

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Thu Dec 8 17:48:55 2011

/I Update Count : 190

I

#include <uSocket.h>
#include <iostream>
using std::cout;
using std::cerr;
using std::osacquire;
using std::endl;

enum { BufferSize = 8 x 1024 },
const char EOD = '\377";
const char EOT ="'\376";

_Task Server; /I forward declaration

_Task Acceptor {
uSocketServer &sockserver;
Server &server;

void main();
public :
Acceptor( uSocketServer &socks, Server &server ) : sockserver( socks ), server( server ) {
} /I Acceptor::Acceptor
}; /I Acceptor

_Task Server {
uSocketServer &sockserver;
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Acceptor sterminate;

int acceptorCnt;

bool timeout;
public :

Server( uSocketServer &socks ) : sockserver( socks ), acceptorCnt( 1 ), timeout( false ) {

} /I Server::Server

void connection() {
} /I Server::connection

void complete( Acceptor sterminate, bool timeout ) {
Server::terminate = terminate;
Server::itimeout = timeout;
} /I Server::complete
private :
void main() {
new Acceptor( sockserver, xthis );
for (5i){
_Accept ( connection ) {
new Acceptor( sockserver, xthis );
acceptorCnt += 1;
} or _Accept ( complete ) {
delete terminate;
acceptorCnt - = 1;
if (‘acceptorCnt == 0 ) break;
if (timeout ) {
new Acceptor( sockserver, this );
acceptorCnt += 1;
Y if
} /I _Accept
} 11 for
} /I Server::main
}; 1l Server

void Acceptor::main() {
try {
uDuration timeout( 20, 0 );
uSocketAccept acceptor( sockserver, &timeout );
char buf[BufferSize];
int len;

server.connection();

for (i) {4

len = acceptor.read( buf, sizeof (buf) );

/I create initial acceptor

/I create new acceptor after a connection

/I acceptor has completed with client
/I delete must appear here or deadlock

/I'if no outstanding connections, stop

/I create new acceptor after a timeout

/I timeout for accept
/I accept a connection from a client

/I tell server about client connection

/I read byte from client

/I osacquire( cerr ) << “Server::acceptor read len:” << len << endl;
if (len == 0) uAbort( "server %l : ECF ecountered without EQD", getpid() );

acceptor.write( buf, len );

/I write byte back to client

/I The EOD character can be piggy- backed onto the end of the message.

if (bufflen - 1] == EOD ) break;
} 1l for
len = acceptor.read( buf, sizeof (buf) );
if (len!=1 && buf[0] = EOT ) {

/I end of data ?

/I read EOT from client

uAbort( "server %l : failed toread EOT", getpid() );

Y Iif
server.complete( this, false );
} catch ( uSocketAccept::OpenTimeout ) {
server.complete( this, true );
Y try
} /I Acceptor::main

/I terminate

/I terminate
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void uMain::main() {
switch ( argc ) {
case 1:
break;
default :
cerr << "Usage: " << argv[0] << endl;
exit( EXIT_FAILURE );
} /1 switch

short unsigned int  port;

uSocketServer sockserver( &port ); /I create and bind a server socket to free port
cout << port << endl; /I print out free port for clients
{
Server s( sockserver ); /I execute until acceptor times out
}
} // uMain

/I Local Variables: //

/I tab- width: 4 //

/I compile- command: “u++- work ServerINETSTREAM.cc - o Server” //
/I End: /]
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