Object-Oriented Real-Time Concurrency

Peter A. Buhr, Ashif S. Harji, Philipp E. Lim, and Jiongxiong Chen
University of Waterloo
Waterloo, Ontario, CANADA, N2L 3G1

pabuhr,asharji,j7chen@plg.uwaterloo.ca

ABSTRACT

The primary goal of a real-time system is predictability.
Achieving this goal requires all levels of the system to work
in concert to provide fixed worst-case execution-times. Un-
fortunately, many real-time systems are overly restrictive,
providing only ad-hoc scheduling facilities and basic con-
current functionality. Ad-hoc scheduling makes develop-
ing, verifying, and maintaining a real-time system extremely
difficult and time consuming. Basic concurrent functional-
ity forces programmers to develop complex concurrent pro-
grams without the aid of high-level concurrency features.

Encouraging the use of sophisticated real-time theory and
methodology, in conjunction with high-level concurrency fea-
tures, requires flexibility and extensibility. Giving real-time
programmers access to the underlying system data-structures
makes it possible to interact with the system to incorporate
new ideas and fine-tune specific applications. This paper
explores this approach by examining its effect on a selec-
tion of crucial real-time issues: real-time monitors, timeouts,
dynamic-priority scheduling and basic priority inheritance.
The approach is implemented in pC++-.

1. INTRODUCTION

A real-time system is characterized by its ability to meet
specified timing constraints. In order to achieve this goal,
all aspects of the system must be predictable. The cri-
teria to achieve this predictability ranges from language
mechanisms to specify concurrency and time-dependent
operations, through fixed worst-case execution-time data-
structures within the runtime system, to scheduling tasks
using a well-defined algorithm. Predictability cannot be
achieved solely through task scheduling. Like concurrency,
real-time has a pervasive effect throughout a system, requir-
ing many internal components to know and react differently
to achieve predictability [5, 33]. In addition to predictabil-
ity, a real-time system should be flexible and extensible in
order for it to be suitable for a diverse set of applications and
to take advantage of new techniques and algorithms. The
ability to program different real-time applications and ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to

redistribute to lists, require prior specific permission and/or fee.

OOPSLA '00 10/00 Minneapolis, MN, USA

© 2000 ACM ISBN 1-58113-200-X/00/0010...$5.00

ACM SIPLAN Notices 35(10):29-46, Oct. 2000

proaches with the same system discourages multiple ad-hoc
systems and encourages the exploitation of new ideas.

The primary motivation of this work is the construction of
a flexible real-time system in pC++ [10, 20, 27]. uC++ is a
translator and runtime kernel for C4+ supporting lightweight
concurrency using a shared-memory model. The translator
transforms the pC++ language constructs into C++; the run-
time kernel supports both uniprocessor and multiprocessor
architectures. Extensions to puC++ for real-time, exception
handling, debugging and profiling are ongoing.

Four specific real-time issues related to constructing a pre-
dictable object-oriented real-time system are presented; each
issue represents a fundamental component of any real-time
system. As well, the interaction of these components are
examined where appropriate. Specific versions of these com-
ponents are then implemented as real-time extensions to
pCH+. The first component discusses how high-level object-
oriented constructs, e.g., monitors, can be extended for a
real-time system. Both mutual exclusion and synchroniza-
tion are discussed. The second component discusses a time-
out mechanism for accept statements. The third component
discusses priority-based scheduling; specifically, a method
for assigning dynamic priorities and a particular constant-
time priority-queue data-structure is proposed. The fourth
component, discusses basic priority inheritance and its im-
plementation. All four components are relevant to both real-
time language and system developers.

2. CONCURRENCY CONSTRUCTS

A simple lock construct, e.g., a semaphore, is necessary and
sufficient for concurrent programming. While a lock may be
an object, it is low-level, error-prone, and not integrated into
the object model. Furthermore, unless locks are made part
of the programming language, the resulting concurrency is
either unsound and/or inefficient [8]. Therefore, only high-
level object-integrated constructs are examined. The moni-
tor construct is used as the basis for discussion, but multiple
issues are covered to include other object-integrated concur-
rent constructs, such as the Ada [23] task.

Preliminary work on the monitor was done by Hansen [7]
and Hoare [21], and it is essentially the first high-level object-
integrated concurrency-construct. The monitor is normally
based on the class construct, with the addition of integrating
mutual exclusion, with respect to the monitor instance, into
method call; serialized methods are called mutex methods.
Internally, monitors provide an explicit scheduling mecha-

(M; = called | () M,
mutex method 1)
@ M,

entry queue

condition signalled
A queue

signal’/

shared variables

/OO

‘____yjqit @ sz’grfa’l/,
contgtlon exit signaller
queue

O owner (waiter/signaller) O blocked task

Figure 1: Internal Scheduling

nism for synchronization, via special statements in the mu-
tex methods to block and unblock task execution, e.g., sig-
nal and wait. As well, a monitor has an implicit scheduling
mechanism to keep the monitor active, which varies depend-
ing on the kind of monitor [9]. A monitor instance is used
for indirect task synchronization and communication.

Much of the theoretical work on real-time scheduling deals
with CPU scheduling and mutual exclusion of resources pro-
tected with semaphores, with the suggestion that monitors
follow directly [32, p. 16]. However, this suggestion is only
correct for mutual exclusion; for synchronization scheduling,
most theoretical work does not apply. Since all schedul-
ing is fundamental to real-time systems, it is important to
analyse monitor scheduling to understand its effect on real-
time behaviour. The following discussion generalizes im-
plicit scheduling in objects providing mutual exclusion and
synchronization through the internal data-structures used
for scheduling. The manipulation of these data structures
during implicit scheduling defines monitor semantics. How-
ever, real-time scheduling must interact with these objects
through these data structures. Therefore, understanding im-
plicit scheduling is necessary to know what can and cannot
be done with respect to real-time interactions.

2.1 Scheduling

Basic monitor semantics are presented using the general
form in Figure 1. A task enters a monitor by calling one
of its mutex methods. When a task is executing inside the
monitor, the monitor is active and this task is designated the
monitor owner; otherwise, the monitor is inactive. When a
task calls a mutex method of an active monitor, it blocks on
the entry queue; such tasks are entry blocked. If no explicit
scheduling 1s performed in the monitor, implicit scheduling
usually processes the entry-blocked tasks in first-in first-out
(FIFO) order. An alternative approach is to have a separate
queue for each mutex method, called a muter queue, and to
choose arbitrarily among these queues.

2.1.1 Internal Scheduling

When the monitor owner synchronizes with tasks blocked
on monitor condition-queues, it is called internal schedul-

ing. This form of synchronization is achieved using condi-
tion variables and wait/signal statements. (Ada offers similar
functionality through the requeue statement.) In Figure 1,
if owner task x performs statement wait B, x blocks on con-
dition B, the monitor becomes inactive, and another task
is implicitly scheduled into the monitor from the entry, sig-
nalled, or signaller queues. Alternatively, if task x performs
statement signal A, it blocks on the implicit signaller queue;
task y is removed from condition A and placed on the im-
plicit signalled queue. The monitor becomes inactive and
another task is implicitly scheduled into the monitor from
one of the entry, signalled, or signaller queues.

Thus, there are three ways an active monitor becomes in-
active: the owner exits the monitor, blocks on a condition
variable, or signals a non-empty condition variable. When
the monitor becomes inactive, there are three queues from
which a task can potentially be selected to become the new
monitor owner: entry, signalled or signaller queues. The sig-
nalled and signaller queues are referred to as internal queues,
whereas the entry queue is referred to as an external queue.
Note, condition queues are ineligible for implicit schedul-
ing as the tasks on these queues are blocked. The order
these three queues are considered during implicit schedul-
ing determines the kind of monitor, where a queue can have
priority less than, equal to, or greater than another queue.
This semantics describes explicit and implicit scheduling in
all extant monitors [9]. For example, in Java [18], the sig-
naller queue has highest priority, and the signalled and en-
try queues have equal priority so the choice is arbitrary. For
equal priority queues, the implementation may merge these
queues, providing FIFO order across them. Not all order-
ings for selecting among the queues result in useful monitors.
Any ordering in which the entry queue has highest priority
can result in starvation and synchronization difficulties with
tasks blocked inside the monitor. The key point is that the
implicit selection order is fixed for a particular kind of mon-
itor, and a programmer develops a monitor based on this
guaranteed behaviour.

Finally, while three implicit queues exist from a theoretical
point of view, typically at most two queues are needed to
implement a monitor. For certain kinds of monitors, either
the signaller or the signalled queue is eliminated because the
task that blocks on it is immediately unblocked, as for the
signaller task in Java. Thus, the queue is eliminated and any
task that would have been placed on this queue immediately
becomes the monitor owner.

2.1.2 External Scheduling

An alternative to internal scheduling is ezternal scheduling.
A common implementation of external scheduling is with an
accept statement, but other implementations are protected
entries in Ada, operation avoidance in Sylph [14] and path
expressions [1]. While external scheduling is often associated
with rendezvous among task objects, it is equally applicable
to the monitor, where the monitor owner synchronizes with
tasks on the entry queue (or mutex queues). This form of
synchronization is typically achieved by the monitor owner
specifying which calls to mutex methods are eligible. Only a
task calling an eligible mutex-method is permitted to enter
the monitor when the monitor becomes inactive and a se-
lection decision is made. In Figure 2, if task x performs the

(2) M,

-
I entry queue
| O M>
|
|
| shared variables
|
Lo 10O
g _ -
accept accept acceptor
. stack
exit

Q owner (acceptor) O blocked task
Figure 2: External Scheduling

statement accept(M;,M3), it blocks on the implicit acceptor
stack; task z 1s removed from the entry queue and becomes
the monitor owner. In general, the acceptor task waits for
the calling task to exit the monitor before continuing, i.e.,
the rendezvous, allowing the calling task to satisfy whatever
conditions the acceptor may require to continue. Nested ac-
cepts are possible, e.g., task z executes an accept statement,
and in order to maintain the described semantics, accept-
blocked tasks unblock in last-in first-out (LIFO) order. The
key point is that the LIFO selection order is fixed for exter-
nal scheduling, and a programmer develops a monitor based
on this guaranteed behaviour.

2.1.3 Internal and External Scheduling

Unifying internal and external scheduling is possible for both
monitor and task types providing scheduling. Supporting
both scheduling mechanisms is important because each pro-
vides unique capabilities. (The Ada approach using requeue
is not as powerful as having internal scheduling.) Where ap-
propriate, external scheduling seems easier to use and under-
stand than internal scheduling [11, p. 235]. However, exter-
nal scheduling cannot deal adequately with mutex-method
parameters or breaking a rendezvous, which necessitates in-
ternal scheduling. Combining internal and external schedul-
ing results in a monitor (or task) having either the implicit
signalled or signaller queue (only one is usually necessary),
and the acceptor stack (see Figure 3). When a monitor
becomes inactive, the kind of monitor dictates a particular
selection while rendezvous dictates another, resulting in a
potential conflict. Without a careful understanding of the
scheduling interactions, both starvation and undesirable se-
mantics can result.

For external scheduling, not only must the calling task have
highest selection priority, but the acceptor must be the next
task to execute after the calling task exits the monitor to pre-
serve rendezvous semantics, which means selecting the ac-
ceptor ahead of tasks on internal scheduling queues. There-
fore, if an accepted task signals a condition variable, it is
moved to the signaller queue and the signalled task to the
signalled queue, but the acceptor unblocks next from the ac-
ceptor stack rather than either of these tasks. This schedul-
ing decision can result in starvation, making the internal
scheduling facility useless. Basically, having both signal and
acceptor queues is the problem. The most reasonable seman-
tics is obtained when these queues are merged, but there are
constraints in adopting this approach.

@M?,

entry queue
O m,
signal
queue
condition
A

shared variables / O

O ®\ ®

O

acceptor
stack

exit

Q owner

Figure 3: Internal/External Scheduling

O blocked task

First, acceptors must be processed in LIFO order but tasks
involved in internal scheduling are usually processed in FIFO
order. If external scheduling must be LIFO, can internal
scheduling be changed to LIFO and still preserve the kind
of monitor? When a task signals at most one task, the kind
of monitor is preserved because there is only one task on
the signal queue, so the queue order is immaterial. Only
when a task signals multiple tasks do those tasks now reen-
ter the monitor in LIFO as opposed to FIFO order. How-
ever, this semantics does not invalidate the kind of monitor
because the implicit queues are still selected in the appro-
priate order, and often the order multiple tasks unblock is
unimportant when signalled as a group, furthermore, it is
impossible to guarantee an external view of FIFO exiting
with preemption. If multiple tasks are signalled and FIFO
release order is essential, it can be achieved using an explicit
technique called daisy-chain signalling, where each task sig-
nals the next task in a sequence rather than having a single
task signal a group of tasks. Therefore, if a programmer is
aware of the LIFO order and FIFO unblocking is important,
it is possible to mimic this semantics given a particular kind
of monitor.

Second, the acceptor/calling task order must be preserved
even when intervening internal scheduling occurs, e.g., by an
accepted task. Essentially, signalled (or signaller) tasks are
pushed on the stack above the acceptor, and are processed
as part of the rendezvous before the acceptor is unblocked.
Clearly, the acceptor is free to use internal scheduling before
or after the rendezvous without problems.

Finally, it is possible for an accepted task to block on a con-
dition variable before a rendezvous is complete. For exam-
ple, the action the acceptor is waiting for from an accepted
task could not be satisfied at this time, and hence, the ren-
dezvous is broken. The next task to be selected now depends
on the kind of monitor, and it is possible for the acceptor to
be unblocked even though an accepted task has not finished
execution. Basically, if a rendezvous can fail, a programmer
has to be ready to deal with it.

The crucial point is that certain monitor actions cannot be
changed without invalidating the monitor’s semantics, and a
programmer relies on these semantics for correct execution

behaviour. Maintaining the semantic behaviour of a monitor
is equally crucial in the real-time domain.

2.2 Real-Time Considerations

The most important criteria for a real-time system is that a
task meet its deadlines. Since monitor access is serialized,
it is possible for a high-priority task to call into a monitor
but have to wait for a low-priority task to exit the monitor,
called priority inversion, when FIFO order is used for the en-
try queue. Priority inversion can result in unacceptable de-
lays, resulting in missed deadlines. Therefore, high-priority
tasks should be given preference over lower-priority tasks
when scheduling tasks into a monitor. How can a monitor’s
behaviour be modified to suit this real-time requirement?

Real-time monitor modifications are restricted by the re-
quirement to preserve semantic behaviour, otherwise pro-
gramming becomes difficult and reuse impossible. Since the
monitor semantics largely dictates selection among queues,
real-time changes are limited to the ordering of the tasks
within a particular queue. A naive approach is to simply
prioritize the various queues in the monitor; however, this is
not always reasonable. For internal scheduling, it is reason-
able to prioritize the entry, signaller and signalled queues
to expedite entry of high-priority tasks into the monitor.
However, for the signaller and signalled queues, deviating
from FIFO order is like switching to LIFO: daisy-chain sig-
nalling may need to be used to control scheduling order if
tasks are processed in priority order for multiple signalling.
As well, using priority order for the entry queue is incorrect
for applications like the readers/writer problem, resulting in
stale information if tasks are not processed in FIFO order.
For external scheduling, it is reasonable to prioritize among
tasks calling eligible mutex methods. However, the acceptor
stack cannot be prioritized; LIFO order is required to re-
tain rendezvous semantics. For internal/external scheduling
with an acceptor/signal stack, it is possible to prioritize the
entry queue and prioritize among tasks calling eligible mu-
tex methods for external scheduling, but the acceptor stack
cannot be prioritized for the same reason as above.

It also seems reasonable to allow prioritizing tasks on con-
dition queues; unfortunately, this presents problems. First,
starvation of tasks waiting on the condition variable becomes
an issue, as a low-priority task may be delayed indefinitely
while higher-priority tasks are removed from the condition
queue. Second, there is an implementation issue if task pri-
orities change over time, called dynamic priorities, where a
task’s priority can change at any time, even if it is blocked.
Changing priorities present a queue maintenance problem as
condition queues are usually only modifiable by the monitor
owner, as they are considered internal data structures (as is
the acceptor/signal stack). Dynamic priorities may require
a condition queue to be occasionally reordered by a task
outside of the monitor, which requires locking the condition
queue. Rather than forcing all users to pay for locking on
condition variables, it is reasonable to ask the programmer
to explicitly code a prioritized condition queue if needed,
requiring priority values to be accessible at the user-level.

These problems, as well as the desire to use schemes to deal
with priority inversion and perform dynamic scheduling, re-
quire a certain flexibility in monitor implementation and
extending that flexibility to the real-time programmer.

mutex queues @

M,y M:
(b}
(a)

@ entry queue

@ @

condition

A

shared variables

O\ @ O

acceptor/signal
exit stack

Q owner O blocked task @ duplicate

Figure 4: ;C4++ Monitor

2.3 uCx Monitor Design & Implementation

In pCH+, monitors are integrated into C4++ classes through
mutex methods, and have all the capabilities of a C4+ class
(including inheritance); objects generated from these types
can be created in any storage class. (Coroutines and tasks
are also integrated into C4+ classes with mutex methods,
and the following discussion also applies to these type gen-
erators.) Mutex methods are created implicitly or explicitly
by qualifying class with uMutex, which implicitly makes all
public methods into mutex methods, or explicitly by qual-
ifying individual methods (public/protected/private) with
uMutex or uNoMutex, e.g.:

uMutex class M { /I => public methods implicitly mutex

private:

uMutex int m1(); /I => explicit mutex method

int m2(); /I => implicit no mutex method
public:

int m3(); /I => implicit mutex method

uNoMutex int m4(); /I => explicit no mutex method

h
The destructor of a monitor is always a mutex method.

p#C+ monitors differ from the basic Hoare monitor in sev-
eral ways (see Figure 4). First, the kind of monitor in uC++
is priority non-blocking [9], with a combined acceptor/signal
stack. For internal scheduling, priority non-blocking means
the signaller queue is selected first (and so it is eliminated),
then the acceptor/signal stack, and finally, the entry queue.
Having the signaller remain the monitor owner seems intu-
itive for many programmers. It is also more efficient because
most signal statements occur immediately before a task exits,
allowing the signaller to exit immediately versus waiting for
the signalled task, which eliminates a context switch and
increases concurrency. Selecting from the acceptor/signal
stack next means tasks scheduled in the monitor are ser-
viced before tasks entering the monitor, which eliminates
inefficient busy waiting (e.g., loops around wait statements,
as in Java) because calling tasks cannot barge into the mon-
itor. Second, pC++ monitors support both internal (con-
dition/signal/wait) and external scheduling (accept state-
ment) as both are essential capabilities. When a calling
task blocks because the monitor is active, it is placed on
both the entry queue and the mutex queue associated with
the method it called. The entry queue is needed to main-

tain FIFO ordering of callers for implicit scheduling. The
mutex queues are solely an optimization to allow an accept
statement to check each queue for callers in O(1) time, elim-
inating an O(n) search of the entry queue. Finally, uC+
monitors support recursive entry, i.e., a monitor owner can
call back into the monitor, either directly or indirectly, elim-
inating a common source of deadlock. While it is possible
to restructure a monitor to prevent this deadlock, it is un-
necessarily complex.

A potential drawback of these enhancements is requiring
programmers to learn additional semantics and adopt a cod-
ing style that differs slightly from that used with the Hoare
monitor. However, experience with these enhancements sug-
gests they make monitors easier to use and more intuitive.

Augmenting monitors (or tasks) for real-time is often done
using techniques like attributes to mutex-locks/condition
variables (POSIX [12]) or language pragmas (Ada) or sub-
classing (Java [5]). Often there are a fixed set of real-time
capabilities supported, with no provision for user extensions.
However, considering the restrictions discussed above, there
are only a few modifications possible when moving to real-
time monitors, i.e., the order tasks are processed on the
entry, mutex and condition queues. As suggested in the
previous section, the condition queues are best left as FIFO
and the programmer is responsible for different scheduling
schemes within the monitor. As well, tasks may need to per-
form additional actions when entering or leaving a monitor.
These actions can be achieved by providing hooks that are
invoked in the monitor entry and exit code and the remain-
ing changes can be encapsulated within the functionality of
the various queues.

The pC4+ monitor is extended to allow the type of the en-
try and mutex queues to be specified on the class uMutex/-
uNoMutex qualifier, using template-like syntax:

uMutex<EntryQueueType, MutexQueueType> class M { ...
These types must be derived from the class uBasePrioritySeq:

class uBasePrioritySeq {
public:
virtual bool UEmpty() const;
virtual uBaseTaskDL *uHead() const;
virtual int uAdd(uBaseTaskDL *n, uBaseTask *0, uSerial *s);
virtual uBaseTaskDL *uDrop();
virtual void uRemove(uBaseTaskDL *n);
virtual void uOnAcquire(uBaseTask &owner, uSerial *s);
virtual void uOnRelease(uBaseTask &oldowner, uSerial *s);

b

Differentiating entry and mutex queue types allows, e.g.,
the entry queue to be a FIFO doubly-linked list and the
mutex queues to be FIFO singly-linked lists, which is the
default if no queues are specified. In this case, nodes can
be removed from anywhere in the entry queue in O(1) time
during external scheduling with accept statements, and re-
moved in O(1) time from the front of a mutex queue. The
methods UEmpty, uHead, uAdd, uDrop and uRemove provide a
generalized interface to a queue. The methods uOnAcquire
and uOnRelease provide hooks that are called after/before
a task acquires/releases control of a monitor. No hook is
needed when a task blocks on the entry queue because the
UAdd method is already invoked to add it to the entry queue.

These hooks allow advanced schemes such as priority inher-
itance (see Section 5.4) to be implemented. The basic idea
is to give a task about to entry block on a monitor the abil-
ity to influence the active task in the monitor, e.g., raise its
priority. Also, when a task exits the monitor, it can reeval-
uate any modifications it underwent while in the monitor.
Finally, the monitor extensions work with C4+ templates:

template<class EQ,class MQ> uMutex<EQ,MQ> class M { ...

This monitor template can be instantiated with various types
of queues to get different kinds of monitors, e.g., for both
normal and real-time applications.

Note, this extensibility is beyond the polymorphism in the
base language, i.e., template in C44+. Normal polymorphism
is between user/user code, while the extension is between
user/system code. Alternative approaches usually involve
“magic” type names for inheritance or templates, which vi-
olates good language design. The key point is that extensi-
bility is crucial because real-time knowledge is growing and
applications require wvery specific solutions.

3. TIMEOUT

A fundamental part of real-time programming is the ability
to specify timing constraints for tasks. These constraints are
necessary to create both predictable and schedulable sys-
tems. To satisfy these conditions, it must be possible to
specify the worst-case execution-time of a task. Thus, it is
inappropriate to use potentially unbounded operations in a
real-time system. For certain operations, it is reasonable for
the programmer to address the potential for unboundedness
by bounding loop iterations and recursion depth. However,
for operations like task synchronization and communication
or 1/0, this expectation may be unreasonable. For example,
it is unrealistic to eliminate synchronization and communi-
cation, by requiring all tasks to be independent, or perform
no I/0. Therefore, a technique to bound these operations
is required. The real problem with these operations is not
unbounded execution, but rather, unbounded blocking.

To address unbounded blocking, it is necessary to implement
a timeout mechanism that temporally limits an operation
by aborting it if no progress has occurred within a specified
time. Clearly, the amount of progress varies depending on
the type of operation. For operations that might block for a
potentially unbounded time, as opposed to operations that
might execute for an unbounded time, the requirement is
usually that the operation begins executing within a speci-
fied time. This degree of progression is reasonable because
once the operation actually starts, it is possible for a pro-
grammer to limit the worst-case execution-time.

For task synchronization and communication it is possible,
though largely impractical, to limit the blocking time at the
user level. The problem is that the completion of these oper-
ations is dependent on other tasks in the system, making it
difficult to characterize exact task behaviour. Not only must
transient overloads and error conditions be considered, but
also an extremely large number of execution paths, if pre-
emption is allowed. For example, one user-level approach is
for a task, T, to create a timeout task, before it blocks. The
timeout task blocks for the specified amount of time using
a time delay, e.g., sleep(t), and then tries to wake up 77. If

an eligible call occurs before the timeout expires, the time-
out must be shori-circuited to prevent the wake up from
the timeout task, requiring a mechanism to immediately
unblock the timeout task. While possible, this approach
is reasonably complex, requiring setup and coordination on
the part of the programmer, and it incurs the overhead of
creating and managing timeout tasks. As suggested, a more
reasonable approach for preventing unbounded blocking is
to implement a timeout mechanism, placing the onus on the
programmer to use it where appropriate. For 1/O, unless the
operating system provides an explicit mechanism to abort
an operation before it completes, it is impossible to limit the
blocking time of these operations at the user level.

Therefore, in designing a timeout facility, several issues and
conditions are important. In terms of syntax and seman-
tics, the facilities should be easy to use and provide a natu-
ral extension to the existing syntax. As well, the details of
the implementation should be transparent to the user. The
implementation must have: minimal impact when not em-
ployed, not introduce any additional potential for deadlock
into the system, and incur a small, fixed overhead. Finally,
for maintenance reasons it is also important for the imple-
mentation to have limited complexity.

A timeout capability was added to the pC4+ synchronization
and I/O operations to cancel the operation after a specified
delay. For synchronization, only external scheduling (ac-
cept statement) is augmented. Providing timeout for inter-
nal scheduling (condition/wait/signal) is problematic, and
the reasons are presented below. Only the synchronization
timeout capability is discussed; the I/O timeouts are em-
bedded in the I/O library but employ the facilities used by
the synchronization timeout.

3.1 uCw Accept Timeout

The accept statement in pC4+ is similar to that in Ada and
Concurrent C [16]:

accept:
whenqp: UAccept (name-list) statement
whenop; UAccept (name-list) statement uOr accept
whenop: UAccept (name-list) statement uElse statement
timeout

when:
uWhen (ezpression)

timeout:
whengp: uTimeout (time-value) statement

The optional uWhen clause is referred to as a guard and
consists of a conditional expression. If the guard evaluates
to true or is omitted, the accept clause is referred to as open,
otherwise it is referred to as closed. The evaluation of an
accept statement begins by determining if an open uAccept
clause is immediately acceptable, i.e., if an outstanding call
to the method associated with the open accept clause exists.
If multiple immediately acceptable clauses exist, the first one
in textual order is chosen, as opposed to a non-deterministic
selection. The uElse clause or an open timeout-clause is
referred to as an alternative.

If there is no immediately acceptable clause and no alter-
native exists, the acceptor blocks until a call to one of the
open accept clauses occurs. When a call occurs to an eli-

gible mutex-method, the monitor becomes active with the
calling task until it exits, at which time the acceptor is typ-
ically unblocked (unless the caller uses internal scheduling).
When the acceptor unblocks, it executes the statement fol-
lowing the accept clause for the called method. If there is
no immediately acceptable clause but an alternative clause
exists, the alternative is executed. For the uElse clause, the
acceptor does not block, making it possible to poll for out-
standing calls. For the uTimeout clause, the acceptor blocks
no longer than the specified delay for a call to one of the
open accept clauses. Note, uTimeout is also used for simple
time delay, e.g., uTimeout(1) delays a task for one second.

In 4C+4+, only one uElse or uTimeout clause is allowed and
it must appear as the last clause in an accept statement.
These restrictions are reasonable because only one alterna-
tive can be selected even if several could exist, and forcing
these clauses to appear last fits logically with the selection
order of clauses in an accept statement. The equivalent of
multiple timeout clauses is possible using assignment in the
timeout expression and checking inside the following state-
ment of the timeout clause, e.g.:

uAccept(...) ...

uOr uTimeout(T = selectTime(...)) // select a timeout delay
f(T==...)... /l choice 1
elseif (T==...)... Il choice 2

The semantics of the uC4+ accept statement differ from that
in Ada and Concurrent C. For Ada and Concurrent C, mul-
tiple alternative clauses can be specified, and for multiple
timeouts, the smallest time value is selected. As well, the
selection policy among open accept clauses depends on the
entry queueing policy, where the default policy is arbitrary
selection. Both consider all open clauses before selecting a
task, which is advantageous in a real-time system to select
the highest-priority calling task, but incurs more overhead
as all open clauses must be examined before a choice can
be made. However, an accept statement is only necessary
when a subset of the mutex methods are specified; hence,
its use implies a controlled potential for priority-inversion.
In pCH+, this control is carried further to the textual order
of accept clauses. Complete determinism seems appropriate
for most non-real-time programming, and we are evaluating
its advantages/disadvantages for real-time programming.

3.2 uCy Timeout Design & Implementation

In order to implement a timeout facility, the system must
provide a notion of time, such as a clock with time values,
and a timer operation, which generates an interrupt after
a specified time or delay. While a timer operation can be
constructed using a loop and an operation to get the current
time, this method is inefficient and inaccurate.

There are many different ways to design a timeout facil-
ity. One key consideration is that the facility fit naturally
into the semantics of the operation being augmented, mak-
ing the facility easier to understand and allowing the oper-
ations to be terminated in a graceful manner. For puCH+,
modelling the timeout after a call to a mutex method (time-
out method) has the advantage of integrating the timeout
facility more naturally with existing accept-statement se-
mantics and making the implementation simpler as existing
accept-statement functionality can be used. This approach

resulted in a specialized, implicit timeout-method, simpler
than a normal mutex-method, which is invoked when a time-
out expires. The timeout method unblocks the acceptor if
an eligible call has not arrived.

The problem with this approach is the need for a thread to
call the timeout method. As mentioned, creating a timeout
task is rejected. The approach taken in pCH+ is to share the
timeout processing among the executing tasks. When the
timer expires, the interrupted task makes any timeout calls,
where such a delay has to be factored into the execution
time for tasks. The timeout calls are made directly from
the interrupt routine before resetting the timer, so the calls
execute at the equivalent of highest priority.

In detail, when an acceptor task begins an accept state-
ment with a timeout clause and no immediately-acceptable
mutex-methods, a time delay is registered. The pC+ ker-
nel provides support for registering timer events through the
use of an event queue and interrupts. The notion of time
is provided by an operating-system timer, e.g., setitimer, and
interrupt, e.g., SIGARLM. The event queue is a time-ordered
list of events protected by the eveni-lock spinlock; differ-
ent event types include time slice and timeout events. Each
event specifies the expiry time, an event-specific handler rou-
tine to be invoked at that time, and a flag indicating whether
the handler routine is executed with the event-queue locked
or unlocked. Events are added to the list in increasing or-
der by time; the timer is set to expire at the time indicated
by the first event. When the timer expires, the currently
executing task is interrupted and this task processes the
event queue. The interrupted task begins by acquiring the
event-queue lock, removing an expired event, and invoking
its handler routine; the event lock is released before or after
the handler routine depending on the event flag. This pro-
cessing is repeated for all expired nodes on the event queue,
as there could be more than one. Releasing and re-acquiring
the event lock between the processing of each node allows
other tasks to manipulate the event queue without waiting
for all expired nodes to be processed, minimizing blocking
time for high-priority tasks.

The timeout method, called indirectly by the handler rou-
tine, acquires the monitor eniry-lock spinlock, which pro-
tects the entry /mutex queues and other entry data-structures.
If the timeout method is ineligible, it means an eligible call
has occurred, and the timeout is discarded; otherwise, the
acceptor is unblocked. The entry lock is then released.

If an eligible call is accepted, the outstanding timeout must
be short-circuited before executing another accept statement
with a timeout clause by the calling or acceptor task. One
approach is for the calling task to check for and short-circuit
any outstanding timeout before beginning execution of the
mutex method. However, this incurs a penalty for all calling
tasks because it is impossible for the calling task to know if
the timeout facility is being used and so it must always check
if the timeout needs to be short-circuited. For example, if
a mutex method appears in an accept statement with and
without a timeout, the check must be inserted in the mutex
method even though it is unnecessary in certain cases. This
violates the objective of limiting the impact of the timeout
facility when it is not being used.

The approach taken in pCH+ is to delay cancelling an out-
standing timeout until the acceptor unblocks, which is not
a problem as the timeout call is discarded if it arrives after
an eligible call begins. However, this approach fails if the
caller performs an accept with a timeout clause, e.g., in the
mutex method, because another timeout is registered before
control returns to the original acceptor to cancel the current
one. To deal with this problem, each accept statement with
a timeout clause begins by checking for and short-circuiting
an outstanding timeout. This approach means removing the
timeout node must be idempotent so additional attempts to
remove it do not cause an error. The cost of an idempotent
remove is negligible and all idempotent removes are isolated
to accept statements using the timeout facilities, so there is
no additional cost when timeouts are not used.

Care must be taken when locking the event and entry locks
to prevent deadlock. Deadlock can only occur when two
tasks acquire at least two locks in alternate order. There is
only one case where this occurs: when a caller executes an
accept statement with a timeout clause and the outstanding
timeout call associated with its acceptor expires:

timeout call
acquire event lock to re-
move event node
call timeout method with
event lock acquired
acquire entry lock to ex-
amine monitor
release entry & event lock

caller at accept statement
1.| acquire and release event
lock to remove timeout

2. acquire entry lock to pro-
cess accept statement

3.| acquire and release event
lock to register timeout

4.| release entry lock

Before processing the accept statement, the caller acquires
the event lock and removes the timeout, which delays the
processing of expiring events until the node is removed. If
the timeout call arrives, it arrives with the event lock ac-
quired, which delays the caller at the start of the accept
statement until the node is removed. By ensuring there is
never an outstanding timeout before an accept statement
with a timeout, there is no potential for deadlock.

To prevent an expensive and potentially blocking dynamic
storage allocation, a timeout node is statically allocated in-
side every monitor. As the design guarantees there is at most
one outstanding timeout event associated with a particular
monitor, it is possible to use the same timeout node for ev-
ery accept statement with a timeout clause in the object.
Furthermore, statically allocating the node makes the re-
move operation trivially idempotent. The drawback is that
a non-real-time monitor requires 32/64 bytes of additional
storage, which seems like an acceptable tradeoff.

The only non-fixed costs of the timeout facility are adding
a node to the event queue in temporal order and starvation
problems related to the use of spinlocks. The costs asso-
ciated with the event queue are not fixed as they depend
on the number of nodes on the event queue. The number
of these outstanding events are application dependent, and
can be limited at the user level and incorporated into the
schedulability analysis. As the need for spinlocks with a
multiprocessor implementation is unavoidable, this is a gen-
eral issue and not specific to the timeout facility. However,
several approaches to bound the execution time relating to
spinlocks have been proposed [39]. Finally, by modelling the

timeout after a call to a mutex method, the changes required
to support the timeout facility are small.

Timeouts for tasks waiting on condition variables, as in
Java, are problematic because multiple timeouts can arrive
at any time, unrelated to the active monitor task. Therefore,
timeout for conditions normally requires locking the condi-
tion queues and acceptor/signal stack to safely deliver the
timeout, which inhibits efficiency and concurrency when the
timeout facility is not used. For an accept statement, only
one timeout exists at a time and there are only three tasks
involved: acceptor, caller, and the task making the timeout
call. As well, the monitor is inactive during the accept.

4. SCHEDULING CONSIDERATIONS

Scheduling is generally considered the most important as-
pect of a real-time system. The goal of scheduling is to
determine whether a set of tasks can meet their specified
timing requirements. Any useful scheduling algorithm must
determine if a feasible schedule exists and provide an order-
ing of the tasks that satisfies the specified constraints.

One common approach to ordering a set of tasks is referred
to as priority-based scheduling, where each task is assigned
a priority value. In many cases, the assigned priority value
has little relevance to the actual importance of the task. A
task’s priority is typically a function of its relative timing
characteristics. Then, when the system needs to make a
scheduling decision, the ready task with the highest priority
is always selected. While new non-priority-based scheduling-
techniques are an increasingly important part of real-time
research, priority-based scheduling is still an important re-
search area as most commercial real-time systems are based
on priority scheduling. This section considers some of the
practical issues a system must deal with in order to dispatch
a set of tasks using priority-based scheduling.

Not only is priority-based scheduling simple to implement,
but it is flexible enough to support a variety of static and
dynamic scheduling algorithms (for details see [11, 24, 36]).
With static scheduling, decisions are based on the entire
task set, while with dynamic scheduling, decisions are based
only on the current task set. In most cases, the differences
between static and dynamic algorithms lie in the ability to
handle aperiodic tasks. Many real-time tasks tend to re-
peat the same set of actions with a specific frequency, e.g.,
reading a set of sensors once every minute. These periodic
tasks lend themselves well to static analysis and schedul-
ing. Aperiodic tasks may still have timing constraints but
tend to have unpredictable (dynamic) arrival times. A real-
time task has a hard deadline if the consequences of missing
the deadline are severe, and a soft deadline if missing the
deadline is not disastrous. Ideally, a static scheduler should
miss no deadlines; a dynamic scheduler should miss no hard
deadlines but still provide efficient service for soft deadlines.

Static and dynamic scheduling algorithms usually have an
off-line and online component. The off-line component
ranges from producing a fixed schedule a priori for static
scheduling to calculating appropriate task scheduling pa-
rameters for dynamic scheduling. The on-line component
ranges from dispatching the tasks according to a fixed sched-
ule with static scheduling to determining if a new task can

be scheduled with dynamic scheduling [36].

Scheduling decisions are based on a variety of constraints
and criteria, e.g.: 1) period: inter-arrival time between suc-
cessive occurrences of the same task, 2) computation: worst-
case execution-time for an instance of the task, 3) deadline:
time by which an instance of the task must be completed, 4)
importance: value indicating the relative importance of the
task, 5) start: time at which the task must begin execution.

Priority-based scheduling algorithms are classified as either
fized-priority or dynamic-priority scheduling algorithms.
This classification is independent of whether the algorithm
is used statically or dynamically. With a fixed-priority
scheduling algorithm a task’s priority is fixed during run-
time, whereas a task’s priority can change as it executes
with a dynamic-priority scheduling algorithm. These defini-
tions are somewhat misleading, because in practice, a task’s
priority can change in an online fixed-priority scheduling al-
gorithm as tasks are added and removed from the system.
However, if this algorithm is clairvoyant, these changes can
be accounted for and each task could be assigned a fixed
priority value. Even with a clairvoyant dynamic-priority
scheduling algorithm, a task’s priority typically changes dur-
ing its execution for other reasons (see Section 4.2).

4.1 Fixed-Priority Scheduling

One of the first fixed-priority scheduling algorithms is the
rate-monotonic algorithm [28]. The three primary require-
ments for a task to be scheduled by the rate-monotonic
scheduling algorithm are: 1) periodic with the deadline
equal to the end of the period, 2) independent, i.e., no
communication or synchronization, 3) preemptable. The
rate-monotonic algorithm assigns higher priorities to tasks
with shorter periods. Schedulability tests are available for
the rate-monotonic algorithm, but tasks not satisfying these
tests may still be schedulable.

The deadline-monotonic algorithm [26] can be used to sched-
ule a task with a deadline less than its period. With this
algorithm, tasks with shorter deadlines are assigned higher
priorities. Several schedulability tests are available for the
deadline-monotonic algorithm [2], but tasks not satisfying
these tests may still be schedulable.

Unfortunately, these scheduling algorithms do not consider
aperiodic tasks. Several approaches have been proposed to
deal with these kinds of tasks. Two common approaches are
aperiodic servers and slack stealing algorithms. An aperi-
odic server is a periodic task, but its execution time is used
to service aperiodic tasks. Various types of servers exist,
including the deferrable server [25], the priority exchange
server [25] and the sporadic server [35]. Slack stealing al-
gorithms [15] try to find time to execute aperiodic tasks by
delaying the execution of periodic tasks as long as possible,
without causing any periodic task to miss its deadline, and
using the recovered time for aperiodic tasks.

4.2 Dynamic-Priority Scheduling

The most common dynamic-priority algorithm is the earliest
deadline first (EDF) algorithm [28]. This algorithm can be
used to schedule a set of independent periodic or hard ape-
riodic tasks. With this algorithm, the task with the closest
deadline at any given point in time is assigned the highest
priority. The EDF algorithm has been shown to be optimal
in the uniprocessor case [28].

The least slack time algorithm [30] is another common dy-
namic scheduling algorithm. Slack time is the measure of
the amount of time a task can be delayed before it misses
its deadline. With this algorithm, the task with the smallest
slack time is executed first. This algorithm is also optimal
in the uniprocessor case.

The problem with these dynamic algorithms is that under
transient overload conditions, unpredictable behaviour can
occur, resulting in a potential cascade of missed deadlines.
Furthermore, most practical real-time scheduling problems
are NP-hard [30, 36], such as tasks with arbitrary precedence
constraints, multiprocessor scheduling, etc. In order to use
dynamic-priority scheduling under these circumstances, pri-
orities are assigned using heuristics. Common heuristics
used to assign priorities are given in [24], e.g., EDF, mini-
mum processing time first, etc.

While the algorithms described above are appropriate for
servicing periodic and hard aperiodic tasks, they tend to
be too restrictive when dealing with soft aperiodic tasks.
Various techniques have been proposed to allow these algo-
rithms to provide efficient service to aperiodic tasks with
soft deadlines while still meeting all hard deadlines [17, 22].
Again, aperiodic servers and slack stealing algorithms are
used to service these types of tasks but because the active
task set may change, these algorithms must be more flexible
and adjust as new tasks enter the system.

4.3 Implementing Priority-Based Scheduling

Aside from the theoretical limitations imposed by the var-
ious priority-scheduling algorithms, many practical issues
exist. To achieve predictability, all online scheduling op-
erations must be bounded by a fixed, worst-case execution-
time. Fixed, worst-case execution is typically achieved by
bounding the number of tasks, the number of priority lev-
els, or some other parameter of the scheduling algorithm.
Bounding the system overheads incurred by scheduling al-
lows these costs to be included in the feasibility analysis of
the system and to enhance predictability. While achieving
predictability is reasonable for fixed-priority scheduling, the
runtime overheads incurred for dynamic-priority scheduling
are much greater, making them problematic.

4.3.1 Implementing Fixed-Priority Scheduling

For fixed-priority scheduling, scheduling analysis takes place
a priori so each task can be assigned a static priority value
from a fixed range. Typically, the priorities are sorted us-
ing the appropriate criteria for the scheduling algorithm and
tasks assigned priorities consecutively starting at one. The
number of priority values supported by the system is usu-
ally limited; 32 and 256 are common ranges. To efficiently
schedule an eligible task with the highest priority, tasks are
placed on a priority queue. As the number of priorities is
typically small, it is possible to use an array-based priority
queue. Fach element of the array is the head of a FIFO
queue for the priority value corresponding to the element’s
array index. Tasks of a particular priority value are placed
on the appropriate FIFO queue.

The basic array-based priority queue offers efficient, con-
stant time operations, where the necessary operations are:
Empty, Insert, Delete, and Max/Min. The Empty opera-
tion searches the array for a non-empty priority queue in

constant time, O(p), where p is a fixed number of priorities.
Using a doubly-linked list for the FIFO queues allows the
cost of Insert to be O(1), and the same for Delete if the task
being removed from the queue maintains a reference to its
associated node, otherwise a search of the FIFO queue is re-
quired. Finally, the Max/Min operation searches the array
for the highest-priority non-empty FIFO queue in constant
time, and the cost is O(p).

4.3.2 Implementing Dynamic-Priority Scheduling

With a dynamic-priority scheduling algorithm, scheduling
decisions are typically based on the current task-set. When
a new task enters the system, its calculated priority may
be between existing task priorities. If priorities are assigned
consecutively, existing task priorities must be re-shuffled.
Furthermore, with algorithms such as EDF, priorities are
updated after each task’s period ends. Constantly sorting
the task priorities and assigning new values is impractical.

There is also a priority-queue synchronization problem, i.e.,
the various priority-queue data-structures required to sched-
ule these tasks must also be updated. Priority-queue data-
structures occur in the ready queue, as well as other concur-
rency constructs, like semaphores and monitors, to expedite
entry of high-priority tasks. Finding these priority queues
can be difficult and updating is expensive. As well, some
high-level constructs may have internal priority queues that
cannot be modified without changes to the construct, e.g.,
monitor condition queues. This problem is further exac-
erbated because the worst-case execution-time for modify-
ing task priorities and updating the required priority queues
must be incorporated into the execution-time analysis of the
system. Accounting for these overheads can lead to overly
pessimistic worst-case execution-times, reducing the schedu-
lability of potential task sets. Interestingly, the update prob-
lem associated with the priority queues can be eliminated by
not using an array-based priority queue.

Consider how the priority values in a dynamic system change.
If a task is removed from the system, the priority values
might be adjusted to remove the gap in priorities but the
ordering of the remaining tasks is unchanged. Similarly, if
a task is added to the system, the priorities of the current
tasks may need to shift in order to accommodate a new
priority, but the relative ordering of the current task set re-
mains unchanged. Also, as the added task has not begun
executing, it has not yet been placed on any priority queues.
In both of these cases, the relative order of the tasks on
the various priority queues remains unchanged. Therefore,
a priority-queue data-structure that allows the actual key
values to change relative to one another without requiring
the data structure to be updated is most appropriate for
dynamic-priority scheduling, e.g., a heap [40]. While such a
data structure may resolve the priority-queue synchroniza-
tion problem, it does not address the problem that the task
priority values may be continually changing.

One scheme to solve the shifting priorities problem is to as-
sign priority values that do not need to change when new
tasks enter the system. One way to accomplish this is to
space out the task priorities, e.g., rather than assign priori-
ties consecutively, gaps are left throughout the entire range.
This spacing allows tasks entering the system to be as-
signed priority values between currently existing tasks with-

out needing to re-shuffle the existing task priorities. Unfor-
tunately, spacing out the priority values cannot completely
eliminate the need to re-shuffle priorities because the spaces
between the tasks eventually fill. While this approach works
well for a small number of tasks entering and leaving a sys-
tem, it fails quickly when task priorities shift as part of the
scheduling algorithm, e.g., EDF.

Another scheme is to assign task priority values based on
the actual characteristics used to order the task set. For
example, with EDF, assign the actual deadline value as a
task’s priority rather than sorting the deadline values and
assigning an artificial number. It is still desirable to limit
the number of different priority values, but allow the actual
priorities to range over a much larger set of values, e.g., 256
values out of 2°2. Hence, the number of priorities assigned
is sparse compared to the size of the range.

With this approach, a task’s deadline is independent of other
tasks in the system as new tasks entering the system can be
assigned priorities without affecting the priorities of existing
tasks. Furthermore, when a task’s priority is updated, the
update can be performed independently of the other tasks in
the system. For example, with EDF, while the implicit pri-
ority, i.e., the relative order, of the tasks may increase when
the highest-priority task finishes its execution, the actual
priority values for these tasks remain unchanged.

The problem with this scheme is the possibility of overflow as
the actual priority values can become large over time. This
problem can be mitigated either by periodically reducing all
task priorities by an equal amount or by using a large range
to make this extremely unlikely. For example, if deadlines
are specified in microseconds, a 64 bit value is often sufficient
and practical with newer hardware.

Both schemes require a priority-queue data-structure that
supports constant-time operations and takes advantage
of the sparse nature of the priorities. ~Maheshwari [29]
performed a thorough evaluation of priority-queue data-
structures to determine which algorithms are appropriate
for a real-time environment. The results indicate that rings,
heaps, D-trees and bit vectors are most suitable for a real-
time environment. These data structures are considered for
their applicability to the priority scheme described above:

Ring is a circular list of priority ordered nodes. While this
list can be implemented with arrays, for best performance it
should be a doubly linked-list. While Max/Min is constant
time, insert and delete have O(n) worst-case execution-time,
where n is the number of nodes, which is unacceptable for
reasonably sized queues.

Heap is a complete binary tree such that every parent node
has higher priority than its children [40]. A heap is typically
implemented using an array, with the root of the tree as the
first element of the array. Max/Min is constant time, and
insert and delete have O(lgn) worst-case execution-time.
Efficient implementations yielding reasonably good perfor-
mance exist for heaps.

D-tree is an extension of a heap [29]. It is a complete bi-
nary tree, but the leaves are the elements of the priority
queue and the interior nodes form a binary decision tree;
hence, every parent node is assigned the higher value of its
two children. A D-tree can also be implemented using an ar-

ray, with the root of the tree as the first element of the array.
As elements are inserted and deleted from the leaves of the
D-tree, these changes are propagated up the tree. Max/Min
is constant time, and insert and delete have O(lgn) worst-
case execution-time. According to Maheshwari, D-tree per-
formance is somewhat faster than a heap, but requires about
twice the storage and is more complicated to implement.

Bit-vector can range from a simple bit map to a Van Emde
Boas [38] priority queue. The simple bitmap usually consists
of a separate bit vector representing the queue for each pri-
ority level and each task being assigned a particular bit in
each bit vector. With bit-vector algorithms, at least one bit
is allocated for each element in the range, which is unac-
ceptable for a large, sparse range.

In Maheshwari’s work, the elements of the priority queues
are nodes representing tasks, making the algorithm bounds
dependent on the number of tasks in the system. If the
system supports a large or arbitrary number of tasks, this
results in large worst-case execution-times.

The approach presented here is based on an idea similar to
that presented for the array-based priority queue, where the
elements in the priority queue represent FIFO queues for
a particular priority level rather than tasks. Thus, there is
exactly one node in the priority queue for each priority level,
and tasks are added and removed from the appropriate FIFO
queue. The advantage of this approach is that the worst-
case execution-times for the priority-queue operations are
based on the number of priorities and not on the number
of tasks. Typically, a system supports a small fixed number
of priorities but can support a large number of tasks. The
worst-case execution-time, in this case, is a small, fixed value
and much better suited for a real-time system.

In the cases where the scheduling algorithm requires each
task to have a unique priority, using the FIFO queues as the
nodes on the priority queue is slightly more expensive than
using the actual tasks. If tasks do not have unique priority
values, this method has the advantage that it is stable, i.e.,
all the tasks with a particular priority value are processed in
FIFO order. When the actual tasks are used as the elements
of the priority queue, many of the priority queue algorithms
are unstable.

Of the priority-queue data-structures described above, not
all of them are appropriate for use with the suggested ap-
proach. First, the O(n) worst-case execution-time for rings
eliminates it from consideration when more than a small
number of priorities are supported. As well, the sparse us-
age of the large priority range associated with the suggested
approach makes bit vectors impractical because at least one
bit must be allocated for every value in the range. Thus, it
seems heaps or D-trees are the best choices for implementing
the suggested scheduling technique.

4.4 ,Cw Scheduling Implementation

To provide a general mechanism for scheduling, pC++ pro-
vides an administrative grouping mechanism, called a clus-
ter, to restrict the execution of a task set to a number of
processors. A cluster is generalized with a scheduler to se-
lect tasks from the task set to execute on the processors;
the default scheduler for non-real-time execution is round-
robin. The runtime environment can be composed of multi-

1%* array
heap implementation

blocked tasks T4 15 Ti

Vo

X :Y = priority : array index T: Ts

heap

274 array

each priority level

Figure 5: 2 array FIFO queue heap.

ple clusters, and tasks and processors can migrated among
clusters dynamically. In general, migrating real-time tasks
is problematic when priority dependence schemes are used
(see Section 5).

For real-time applications, the scheduler is easily replaced,
and several schedulers are available in the pC++ scheduler
library. For off-line scheduling, we are building an analysis
tool (not discussed in this paper) to help select from dif-
ferent scheduling techniques to satisfy the requirements of
a task set. The resulting scheduler is often very simple be-
cause the cost of off-line analysis can be large and the task
set is static, which covers many hard real-time problems.
For on-line scheduling, we are building a class of schedulers
for soft real-time problems, which are becoming more com-
mon, dealing with quality-of-service issues like Internet au-
dio/video. These schedulers are characterized by the ability
to quickly schedule tasks entering and dispatch tasks within
the task set, and can be generalized by the data structures
used in the implementation.

This section discusses off-line schedulers by examining a par-
ticular heap-based priority-queue data-structure we devel-
oped for dynamic schedulers, like deadline rate-monotonic.
While the heap may support O(lgn) insertion and deletion,
these operations require a reference to the actual node in
the heap. As the heap does not support an efficient find op-
eration, i.e., it has O(n) worst-case execution-time, a faster
method of finding a particular heap node is required. This
operation is needed for inserting and deleting elements in
the heap, and to allow a task to access its associated FIFO
queue. Unfortunately, it is unreasonable for each task to
maintain a reference to the heap node containing their as-
sociated FIFO queue because, as the heap is modified, up-
dating these references is expensive.

In order to minimize this update problem, two array data
structures are used (see Figure 5). The first array is the
actual heap, but the elements of the heap index the nodes
in the second array. Each element of the second array con-
sists of a FIFO queue and an index back to its associated
position in the first array. Each FIFO queue in this array
is assigned to a particular priority value. Then, as the heap
is updated, only the indexes in the second array need to be
maintained. For any element on the heap, its index into the
second array is fixed while on the heap, so no updating is
required, i.e., the FIFO queue used for a particular priority
level does not change while tasks for that particular prior-
ity value still exist. Thus, a task only has to maintain an

index to the node in the second array associated with its
priority value. Through this node, the task can access both
its associated FIFO queue and its node on the heap in O(1)
time. Similar to the reasoning explaining why the elements
in the first array do not need to be updated, the indexes in
the tasks also do not need to be updated.

Unfortunately, this technique does not eliminate the find
problem. When a task enters the system, it is assigned a
priority value. After being assigned a priority value, this
task needs to determine which FIFO queue its priority is
associated with. A task can make this determination by
performing a linear search through the assigned nodes in
the second array. If a node associated with the required
priority value is not found, then the next free node in the
second array is selected and associated with the task’s pri-
ority value. All subsequent tasks with the same priority
value use this node as well. While this search is O(p), where
p 1s the number of priorities, it is usually only necessary
when a task is created or its priority changes. Therefore,
even though this technique does not eliminate the find and
reference problems, both are reduced to reasonable levels,
in relatively nonessential situations. Furthermore, the ex-
pected search cost can be reduced by using techniques like
hashing to associate priorities to nodes in the second array.

As a task has a reference to the node associated with its
priority level in the second array, the associated node in
the heap can also be accessed without searching. While the
ability to directly reference the heap node has no advantages
when a task is inserted into the priority queue, it can have
advantages during deletion. When a task is inserted into
the priority queue, first, the task is placed on the FIFO
queue associated with its priority value. If this FIFO queue
is empty, then a node for this priority value must also be
added to the heap. Similarly, when a task is deleted from the
priority queue, first, the task is removed from its associated
FIFO queue. If this FIFO queue is now empty, then the node
for this priority level must also be removed from the heap.
As the task can access the heap node directly, removing the
node from the heap is an O(lgp) operation. Maintaining
the heap in this manner, still allows it to return the non-
empty FIFO queue of highest priority in constant time. Of
course, if this FIFO queue of highest priority is empty after
a task is removed, then an O(lg p) delete operation must be
performed on the heap.

The problem in many systems is that several priority-queue
data-structures exist. A priority queue is associated with
the ready queue, as well as with real-time mutex objects,
e.g., semaphores, monitors and tasks. It is infeasible for a
task to remember the index associated with its priority level
for all the possible priority queues in the system. Interest-
ingly, it is possible for every task in the system to simply
use the same index value regardless of the priority queue.
If this ordering is consistent for one priority queue, then as
long as the same tasks and priority levels are used for all
other queues, then this ordering is consistent for all prior-
ity queues. This technique also eliminates the extra search
required the first time a task is placed on another priority
queue. Note that the initial search when a task is created
or its priority value is changed must still occur in order for
the task to determine the appropriate queue value.

In summary, pC4++ provides the ability to replace the sched-
uler of a cluster for both non-real-time and real-time concur-
rency. The previous example illustrates a dynamic sched-
uler, which is one of the most complex kinds of scheduler
available in the puC4+ scheduler library; other schedulers
are also provided. The key point in developing any real-
time scheduler is maintaining fixed worst-case performance,
and ensuring correct interaction with other priority queues
in the system.

5. PRIORITY INHERITANCE

Many priority-based scheduling algorithms assume tasks are
independent; however, this assumption is typically unreal-
istic. Shared resources are common in concurrent systems
and form critical sections that must be protected with mu-
tual exclusion. As mentioned in Section 2.2, critical sections
result in priority inversion when a low-priority task in the
critical section delays a high-priority task attempting entry.
While, in general, it is impossible to eliminate priority inver-
sion, it is important to bound the duration of an inversion.
Unbounded priority inversion occurs if a low-priority task is
preventing a high-priority task from executing but cannot
execute itself because a medium-priority task is executing.
Hence, the high-priority task waiting for the critical section
may never make progress. Unbounded priority inversion is
a serious problem, making it impossible to guarantee the
schedulability of a system.

A technique to bound the length of this inversion is prior-
ity inheritance. The idea behind priority inheritance is to
temporarily raise the priority of a task owning a resource
in order to expedite its usage of the resource, thereby limit-
ing the duration of priority inversion. The details regarding
when a task’s priority is raised and by how much vary de-
pending on the particular priority inheritance protocol.

5.1 Priority Inheritance Protocols

To address the problem of unbounded priority inversion, sev-
eral priority inheritance protocols have been proposed [34],
and subsequently expanded and extended in various ways [3,
13, 32]. The idea behind the basic priority-inheritance pro-
tocol is that if a low-priority task is delaying the execution of
higher-priority tasks due to priority inversion, the priority of
the low-priority task is temporarily raised to the priority of
the highest-priority task it is blocking. Raising the priority
of the lower-priority task expedites its usage of a resource
by letting it execute when the blocked higher-priority task
would normally be scheduled. This technique bounds the
length of any priority inversion and allows the worst-case
execution-time of a task to be specified. Sufficient condi-
tions have been found to allow a non-independent task set
to be scheduled using the rate-monotonic scheduling algo-
rithm using basic priority inheritance [32, 34]. Intuitively,
this technique works because a medium-priority task can no
longer preempt the execution of a lower-priority task if the
lower-priority task is preventing the execution of a higher-
priority task due to priority inversion. Furthermore, this
scheme does not affect the execution of non-blocked high-
priority tasks. Priority inheritance is also transitive, so the
inherited priority value of a task is the highest priority of all
the tasks directly and indirectly blocked by this task.

However, deficiencies exist with the basic protocol. First,

despite the fact this protocol bounds the length of priority
inversion, the actual blocking time experienced by tasks can
be long because multiple blocking is not prevented. Multiple
blocking occurs if a task needs to block each time it requires
another resource because the resource is already acquired
by a lower-priority task. Ideally, all the resources a task re-
quires to perform an operation (transaction) should be avail-
able after waiting for any one of these resources. Second, this
protocol does not avoid deadlock, an interesting side effect
provided by some of the more sophisticated priority inheri-
tance protocols (at the cost of reducing concurrency). The
biggest advantage of the basic protocol, however, is that it
can be implemented without requiring any additional system
information. Thus, it works well with online scheduling.

The priority ceiling [32, 34] and immediate priority ceiling [4,
32] protocols deal with some of these deficiencies, but also
introduce others. In particular, priority ceiling is difficult
and costly to implement, while immediate ceiling is simple
to implement but still has a form of priority inversion. Es-
sentially, there is no perfect protocol for all situations and
a programmer has to select the one that best suits the ap-
plication. Real-time systems often provide basic and/or im-
mediate ceiling protocols (e.g., Ada, POSIX, JavaRT), and

a programmer selects them for use in an application.

5.2 Implementing Basic Priority Inheritance

The basic priority inheritance protocol is examined for the
following reasons. First, it forms the base for most of the
more complicated protocols. Second, a complete implemen-
tation is not straightforward.

The first step in implementing priority inheritance is to ex-
tend the notion of a task’s priority. Typically, two priority
values are associated with each task: a base priority and an
active priority. A task’s base priority is the priority value
assigned by the scheduling algorithm and a task executes at
this priority value when no priority inheritance is occurring.
A task’s active priority is the maximum of a task’s base pri-
ority and the priorities of all the tasks it is blocking. A task
is always executed at its active priority. The second step, in
any complete implementation, is to address transitivity and
priority disinheritance.

5.2.1 Transitivity

With priority inheritance, when a task blocks because a
shared resource is unavailable the primary goal is to raise
the priority of this task’s ultimate blocker, i.e., the final task
in the task’s blocking chain. For all the tasks in Figure 6,
task 77 is the ultimate blocker. However, a secondary goal
is to keep the active priority of other tasks in the blocking
chain updated. This extra updating is useful not only for
priority disinheritance (see below), but also to manage the
priority queues these other tasks are blocked on. Without
this updating, scheduling decisions are expensive because
stale information in these priority queues needs to be reeval-
uated. For example, if a high-priority task 7; : 1 blocks on
Ry in Figure 6, not only must the priority of 7% be raised to
1, but also the priority of Tz and its position on the entry
queue of Rs must be updated, i.e., moved to the front.

The straightforward approach to implementing transitivity
has each task point to its direct blocker, so it is possible to
follow a chain of blocked tasks to a task’s ultimate blocker.

R R» R3

=1 Tg : 3 Ty : 3 T7 2=

AT 3] {3} | T2l

| |
—= Call LN Tyi3 Tyis | Thi2
== Direct Blocker ? ? !
""" > Ultimate Blocker Lot
X : Y = task : active priority Te : 6 Ty :3 .

Figure 6: Transitivity

For example, in Figure 6, task T3’s direct blocker is Tz, task
Ts’s direct blocker is 77, and 77 is not blocked; T7 is T3’s
and Tz’s ultimate blocker. Then, when a task blocks while
trying to acquire a resource, it can use this information to
update the active priority of the tasks in its blocking chain
until a task with a higher active priority or the ultimate
blocker is reached. As the active priority of a blocked task
is updated, its position on the priority waiting queue must
also be updated. If the resource maintains a reference to
its current owner, a task can indirectly determine its direct
blocker by simply remembering the resource it is trying to
acquire. Aslong as the identity of this resource remains fixed
while a task is blocked, no updating is required regardless
of whether the task owning the resource changes.

Alternatively, a task points to its ultimate blocker; however,
this approach suffers from two problems. First, when a task
blocks on a resource, the ultimate blocker for all the tasks on
its blocking chain must be updated from the blocking task to
the ultimate blocker associated with this resource. In order
to update these tasks, the blocking chain must be traversed.
For example, in Figure 6, suppose 717 releases Rs and Ty
acquires this resource (1remembelr7 T} 1s now blocked on R;)
In this case, Ty must be able to find all the tasks blocked on
Ri, R2 and R3 to update their ultimate blocker from 77 to
Ts. Second, maintaining a task’s ultimate blocker is much
more expensive than maintaining a task’s direct blocker. For
example, when 77 releases Rs, only the direct blocker of T5
and Ty changes, as opposed to the ultimate blocker for all
the tasks. Essentially, the ultimate blocker and the resource
associated with the ultimate blocker can change as the ulti-
mate blocker acquires and releases resources, so there is no
fixed way to locate a task’s ultimate blocker.

5.2.2 Priority Disinheritance

Priority disinheritance is determining a task’s priority when
it releases a resource [31]. If a task is inheriting its active
priority from a task blocked on the resource it is releasing,
it must determine its new active priority based on tasks
blocked on the resources it still owns. This section discusses
two common techniques for solving priority disinheritance.

In the first technique, each task stores its old priority value
when it acquires a resource. When a task exits a resource,
its priority is restored to this stored value. This creates a
stack of values for restoring a task’s priority as it exits each
resource. Problems exist with this idea, however. First, the
use of a stack implies resource usages are nested, making it
difficult to release resources in arbitrary order. For example,
overlapping critical sections using semaphores may not be
permitted with this approach, e.g., acquiring semaphore S}
followed by semaphore S> and then releasing S; followed by

S2. The reason is that if a resource is removed from the mid-
dle of the stack, then restoring the task’s active priority to
the stored value associated with this resource is inappropri-
ate because resources higher on the stack are still affecting
the task’s active priority. Second, the stored priority values
can become stale, e.g., a task already owning several re-
sources subsequently experiences priority inheritance from
a resource lower down on the stack. In this case, a task’s
active priority is subsequently reset to a stale value after it
releases a resource. To solve this problem, when the highest
priority blocked task associated with a resource changes, the
priority value associated with the next resource on the stack
needs to be updated, and this update needs to propagate up
the stack until a higher priority value occurs or the top of
the stack is encountered. Finally, the stack approach is in-
efficient. Even if a task’s active priority does not change,
a significant portion of the stack may need to be updated
so that a task’s priority is correctly reset as it releases re-
sources. As well, this update is dependent on the number
of resources directly or indirectly blocked by the ultimate
blocker, as opposed to the usually smaller blocking path de-
fined by a chain of direct blocker tasks. The task blocking
chain is usually smaller than the resource blocking chain
because each direct blocker task can own several resources.
Another problem occurs if resources support recursive entry,
i.e., a task is allowed to call back into a resource it already
owns, where this recursive call can occur after a task has
acquired and released other resources. In this case, multiple
values may need to be stored for each entry, eliminating the
possibility of statically allocating space to store the current
priority of the owner task inside the resource.

The second technique requires a task to maintain a list of re-
sources that it owns. Then, when a task releases a resource,
this resource is removed from the list, and the blocked task
with the highest active priority among the remaining re-
sources needs to be located. The running task can then
set 1ts new active priority to be the higher of this priority
and its base priority. Some optimizations are available, such
as a task only needs to find a new inherited priority if the
task’s old inherited priority is equal to the priority of the
highest-priority task blocked on the resource it is releasing.
This optimization is possible because if the priority of the
highest-priority task associated with the resource a task is
releasing 1s not equal to the task’s active priority, then the
task is inheriting its priority from a resource it still owns, and
hence, no adjustment is required. Additionally, each node
on the list can explicitly store the priority of the highest-
priority task associated with the resource and the list can
be implemented as a priority queue. Using this technique
has several advantages. First, if a task’s direct blocker al-
ready has a higher active priority, no priority propagation
is required as the resources owned by a task are updated
independently. However, if the list is implemented as a pri-
ority queue, it also needs updating. As well, only the direct
blocker tasks need to be updated if priority inheritance oc-
curs. Finally, resources that support recursive calls can be
handled with variables statically declared in the resource
because the list node is the same for every entry into a re-
source; thus, only one node needs to actually appear on the
list. The only additional complexity is that the list node
should only be removed when the task finally releases the
resource and not on one of the interim exits.

5.3 Related Work

Several implementations have been proposed for basic prior-
ity inheritance. Unfortunately, the efficient solutions rely on
simplifying assumptions that are unreasonable or do not im-
plement the correct semantics of basic priority inheritance.
This section discusses some of these approaches.

Borger and Rajkumar [6] describe an implementation of
the basic priority inheritance protocol for task rendezvous
in Ada’83. Their solution to transitivity is similar to the
method described above, i.e., each task follows its blocking
chain updating tasks as required. However, the implementa-
tion only supports task rendezvous, which simplifies priority
disinheritance because each task owns exactly one resource,
i.e., itself. Therefore, its active priority after disinheritance
is simply the highest priority of the tasks blocked on any of
its entry queues and its own base priority.

Two interesting implementations of basic priority inheri-
tance are described by Moylan, Betz and Middleton [31].
The first implementation provides a general solution to ba-
sic priority inheritance. In this solution, each task maintains
a count of the number of tasks it is directly blocking at each
priority level. These counts form a priority queue contain-
ing all the tasks directly blocked by a particular task. This
task’s active priority is then equal to the highest priority
level with a non-zero count. However, when a task exits a
resource, the counts associated with all the tasks blocked
on that resource must be decremented for the exiting task
and incremented for the new owner of the resource. While
this represents a significant overhead, some simplifications
are possible if assumptions are made about the order blocked
tasks are scheduled. The most interesting feature of this im-
plementation is that it allows the tasks blocked on a resource
to be unblocked in arbitrary order, e.g., FIFO or priority or-
der. This arbitrary ordering is possible because the counts
for each priority level contain information relating to all di-
rectly blocked tasks. Thus, regardless of the order tasks are
actually scheduled, the priority queue associated with each
task determines its active priority.

The second implementation by Moylan, Betz and Middle-
ton assumes tasks block only because of priority inversion.
With this assumption, any running task must be running at
the priority of the highest-priority task in the system. This
assertion is true because either the highest-priority task is
running or it is blocked and so its ultimate blocker is running
at this highest priority value. With this implementation,
the disinheritance problem is eliminated because the run-
ning task is always executing at this highest priority value.
However, it creates a scheduling problem as the active pri-
ority of a task is not stored. This problem is overcome by
simply scheduling the highest-priority task or if this task is
blocked, following the blocking chain of the highest-priority
task and executing this task’s ultimate blocker. This over-
head is not excessive because, even in the general case, a
task’s blocking chain is typically traversed when it blocks
on a resource. The blocking restriction imposed by this al-
gorithm, however, is too limiting, as tasks cannot block on
delays, accept statements, etc. Hence, this algorithm is in-
appropriate as a general solution to priority inheritance.

Takada and Sakamura [37] present a restricted and general
implementation of priority inheritance. The restricted form

assumes a task releases all its resource at once, which 1s too
restrictive for most applications. The general form has a list
of resources acquired by each task, similar to the approach
in the previous section. However, the details regarding how
this list is used for priority inheritance are not provided.

5.4 uCy Priority Inheritance Implementation

Most systems provide only two or three predefined inheritance-
protocol mechanisms. To support extant and new inheri-
tance protocols, a general mechanism is needed. First, it is
necessary to have specialized real-time tasks. In addition to
the basic task type-generator, pC4+ supplies three kinds of
real-time tasks integrated into C++ classes: periodic, aperi-
odic, sporadic.

uTask task { ... };
uPeriodicTask ptask { ... };
uAperiodicTask atask { ... };
uSpordicTask stask { ... };

/I basic task type
/l real-time task types

The constructors for these real-time tasks take period and
deadline information, which is implicitly communicated to
the scheduler. For periodic tasks, the periodic behaviour is
performed implicitly by the scheduler. Implementing peri-
odicity at the user level is neither sound nor appropriate for
certain schedulers (e.g., slacking-stealing schedulers). Sec-
ond, a real-time task points to a priority queue, called the
PIQ, containing the priority inheritance information for each
mutex object (resource) it owns. The PIQ type can be passed
to a real-time task type like the entry and mutex queues for
a monitor:

uMutex<EQ,MQ> uPeriodicTask<PIQType> ptask { ...

Here, type ptask is passed all three queues, and these three
queues work in concert to provide real-time and inheritance
capabilities. If no PIQ type is specified, the default is a
modification of the heap priority-queue from Section 4.4,
and the default EQ and MQ are heap-based priority-queues.
The following discussion assumes these default values. (Be
forewarned that the following discussion is complex because
the problem is complex.)

The default PIQ information consists of the maximum of a
task’s base-priority and the priority of the highest-priority
task blocked on each mutex object owned by a task. As with
the scheduling heap, only one node for each required priority
level appears in a task’s PIQ, and this node references a node
in a second array containing the details for that particular
priority level (see Figure 5). However, the FIFO queues of
blocked tasks in the second array are replaced by a count of
the number of tasks and the queue number associated with
the priority level, e.g.:

ond array | 9:3|5:1|7:2
each priority level 1] 2| 2 ~— counts

No explicit reference to the highest-priority task associated
with each resource is required as these tasks are neither ac-
cessed nor scheduled using the PIQ. The only relevant in-
formation is the priority and associated queue value (as per
Section 4.4) so a task’s active priority can be calculated. The

count value determines when a node can be removed from
the PIQ. A zero count value corresponds to an empty FIFO

queue and indicates the node is to be removed from the PIQ
because a task is no longer eligible to inherit that particular
priority value. This priority queue solves the priority dis-
inheritance problem because after a task releases a mutex
object and updates its PIQ, its active priority becomes the
highest priority remaining on its PIQ. Finally, a task is not
the sole updater of its PIQ; other tasks may need to update
another task’s PIQ during priority inheritance. Therefore,
access to a PIQ needs a lock to provide mutual exclusion.

As mentioned in Section 2.3, priority inheritance for mutex
objects in uC++ is implemented using hooks invoked when
a task: acquires a mutex object, blocks on an entry call,
and releases a mutex object. In the following discussion,
the task performing inheritance is called the updater, while
the task in the mutex object is called the owner. Note, the
updater and the owner are the same when a task acquires
the mutex object without having to block, i.e., the mutex
object is inactive. In all other cases, the updater and the
owner refer to different tasks. Lastly, each mutex object
maintains a pointer to its current owner task.

5.4.1 Mutex Object Acquire

A task acquires a mutex object when it enters an inactive
object or is unblocked from the entry queue after the cur-
rent owner exits from or blocks in the object. In both cases,
the new owner acquires the mutex-object entry-lock to ac-
cess the entry variables, and executes the uOnAcquire hook
(this action changes in Section 5.4.3), which acquires the PIQ
lock, adds the new resource, and then releases the PIQ lock.
Finally, the entry lock is released.

5.4.2 Entry Blocking on a Mutex Object

A calling task blocks on a mutex method when the mutex
object is active or the mutex method is ineligible. In this
case, the blocking task becomes an updater and may need
to raise the priority of the current mutex owner. Rather
than providing an explicit hook for this circumstance, any
necessary code can be added to the end of the uAdd routine,
which adds the calling task to the entry queue.

The updater, having acquired the entry lock to determine
it must block, places itself on the entry/mutex queues in
priority order. If its priority is greater than the maximum
of the mutex-owner’s base-priority and the active priority
of the entry blocked tasks, it must perform priority inheri-
tance. In this case, the updater acquires the PIQ lock of the
owner to augment its PIQ (needed for disinheritance) and
possibly performs priority inheritance on the owner. Aug-
menting the PIQ means decrementing the current priority
level of the mutex object and incrementing the new prior-
ity level. After updating the PIQ, the updater releases the
owner’s PIQ lock. If the change to the PIQ results in a new
Max/Min inheritance value, the owner’s active priority must
also be increased. Changing a task’s active priority requires
the ready-queue lock. If the owner is on the ready queue,
its position may have to be updated; otherwise, the owner
is running and its priority is just changed as it cannot block
on the ready queue while the ready-queue lock is acquired.
The ready-queue lock is then released. Note, attempting
to increase the owner’s active priority has no effect if the
owner’s priority is already higher than the update value. If
the owner is entry blocked waiting to enter another mutex

object, both the owner’s active priority and its position on
the entry queue must be updated, which requires the ready
queue and entry locks, respectively. Changing the entry
queue of this new mutex object can result in further prior-
ity inheritance on its owner (transitivity). (Releasing entry
locks during transitivity is discussed in Section 5.4.6.) Fi-
nally, the updater atomically releases the entry lock for the
initial mutex object and blocks.

5.4.3 Mutex Object Release

An owner task releases a mutex object when it exits. It
acquires the entry lock to update the entry variables and
possibly to schedule the next mutex owner. It then executes
the uOnRelease hook, which acquires the task’s PIQ lock to
decrement the counter for the priority level associated with
the current mutex object, removing the node if zero, and
releases the PIQ lock. The exiting task then sets its active
priority to the current PIQ Max/Min (disinheritance). If its
priority has to change, the operation is simple because it
is running. If the task’s PIQ is empty after the removal,
it sets its active priority to its base priority. Finally, the
entry lock is released for the mutex object it is exiting. In
the case where the exiting task schedules the next mutex
owner, it must execute the uOnAcquire hook on behalf of
the new owner. The new owner cannot execute uOnAcquire
after it is scheduled because its priority must be raised to its
proper value before it is scheduled, so it is scheduled at the
appropriate time. Otherwise, the new owner can experience
uncontrolled priority inversion while it waits to be scheduled
so it can update its active priority.

Recursive entries and exits to/from a mutex object by a task
are handled as special cases. On recursive entry, a task’s
PIQ is not updated nor is priority inheritance necessary as
these operations are performed on entry and maintained by
inheritance. What if a task calls another mutex object, re-
ceives further priority inheritance, and calls back again with
higher priority? Still, no update is needed because the prior-
ity information for a mutex object only needs to reflect the
highest priority value among a task’s base priority value and
the active priority of all the tasks directly blocked on that
object (see Section 5.2.2). By the same reasoning, on recur-
sive exit, the uOnRelease hook is not called; the uOnRelease
hook is only called on the final exit.

5.4.4 Blocking within a Mutex Object

Unfortunately, priority inheritance affects internal schedul-
ing. When a task unblocks from a condition variable or the
acceptor/signal stack, the mutex object’s owner must be re-
set so an updating task can correctly perform inheritance on
the owner’s PIQ. To safely update this variable, the entry
lock must be acquired, which has a performance impact on
internal scheduling and a concurrency impact on external
scheduling. We could find no way around this problem.

In addition, when a task blocks in a mutex object (wait or
accept), its priority is no longer applicable to the mutex ob-
Jject because it is unscheduled. Therefore, priority disinheri-
tance must be performed after a task blocks to deal with this
issue, which is accomplished by calling the uOnRelease hook.
Similarly, when a task is unblocked from the acceptor/signal
stack, the priority of the mutex object must be recalculated
as well as the PIQ of the new owner. As for mutex-object

release, this recalculation must be performed by the exiting
or blocking owner task by executing the uOnAcquire hook on
behalf of the new owner to prevent the same priority inver-
sion problem.

5.45 Problems

Since updater and owner can execute concurrently, an inter-
esting problem occurs when the updater has to increase the
owner’s priority: the owner can change states, from blocked
to running or vice versa, and change the current mutex ob-
Ject it owns by exiting this object or calling a new one. The
obvious solution is to employ a mechanism to prevent the
owner from changing state or mutex object while its pri-
ority is being updated. Unfortunately, implementing such
a mechanism is difficult without excessive locking, which
tends to increase overhead and reduce concurrency. A fur-
ther problem is determining which mutex object the owner
is currently using, as it may be different from the one the
updater is blocking on.

An elegant solution to these problems is obtained by intro-
ducing cooperation between the updater and owner. First,
each task maintains the address of the current mutex-object
it is accessing, which may be NULL. Second, the updater re-
tains responsibility for changing the owner’s PIQ and active
priority, but the owner is occasionally responsible for adjust-
ing its own active priority. The owner is required to check
and possibly adjust its active priority only when it enters
or leaves a mutex object by checking its PIQ, which requires
the PIQ lock. Indeed, having the owner update its active pri-
ority, in these situations, is simpler and less expensive than
having the updater do it. The reason is that the owner is
running, and hence, no queues require adjustment. Further-
more, the owner’s current mutex-object is fixed while it is
updating its own priority.

The cooperation is used in the following ways to solve the
problems. As before, the updater begins by updating the
owner’s PIQ. It then acquires the entry lock for the owner’s
current mutex object, but this information can be stale be-
cause the owner may have exited this object or called a new
one. The updater can check if the owner is blocked on the
entry queue of this mutex object as it has the entry lock. If
the owner is blocked, 1t cannot be scheduled as unblocking it
requires the entry lock; hence, the updater can safely change
the owner’s active priority and the position of the owner on
the object’s entry queue, and these changes may result in
further priority inheritance (transitivity). If the owner is
not blocked on the entry queue, it is either in the mutex ob-
ject (i.e., its owner), exited or called out. In all three cases,
the update proceeds by updating the owner’s active priority,
and then releasing the entry lock, completing its portion of
the inheritance operation. If the owner has exited or called
out, the new cooperation ensures the owner has updated its
own active priority from the already updated PIQ. Thus,
the owner has updated its own active priority, and if nec-
essary, continues the inheritance operation should it entry
block on a subsequent call. While extraneous updating of
the owner’s active-priority is idempotent, it does require the
ready queue lock, which reduces concurrency. Notice, the
priority inheritance being applied by the updater is always
relevant because the updater is still holding the entry lock
for the object it is blocking on, preventing the owner from

backing up past this mutex object in the inheritance chain.

Finally, an updater must only attempt to increase an owner’s
active priority to the value it added to the owner’s PIQ, even
though this value may be stale because of concurrent up-
daters. This anomaly results from the cooperation because
an owner can see the changes to its PIQ and update itself be-
fore an updater can change the active priority. If an owner
calls another mutex object during an update, it can entry
block using a low-priority updater’s PIQ value, but a high-
priority updater can change the owner’s PIQ before the low-
priority updater changes the owner’s active priority. If the
low-priority updater uses the high-priority value from the
PIQ for updating the active priority, the owner’s position on
the entry queue is inconsistent with its active priority, which
results in problems. The low-priority updater does not at-
tempt to update the entry queue because of the cooperation.
If an updater only uses its initial value during updating, the
inconsistency is avoided because updating is conditional on
the priority being greater. Therefore, the low-priority up-
dater discards its updating of the active priority should the
owner see a high-priority update first. Holding the entry
lock during updating precludes two updates from manipu-
lating the same mutex object simultaneously.

5.4.6 Optimizations

Interestingly, it is possible to proceed with inheritance with-
out maintaining the entry lock of every mutex object in the
inheritance chain. In fact, the ultimate blocker is the only
task in an inheritance chain that can execute. So, every
other owner in the chain is blocked waiting for the ultimate
blocker to release them. However, an interesting feature of
the entry lock is that it prevents a task from exiting its asso-
ciated mutex object. Thus, acquiring a particular entry lock
prevents tasks from backing up past that mutex object in
the inheritance chain and effectively fixes the earlier portion
of an inheritance chain. Therefore, entry locks associated
with mutex objects earlier in the chain can be released. The
advantage of this approach is that it allows tasks to still
block on the entry queues of those mutex objects during
priority inheritance. Finally, to maintain integrity as a task
proceeds along the inheritance chain, the next entry lock
must be acquired before the current entry lock is released.

However, the entry lock of the mutex object associated with
the updater, i.e., the first entry lock acquired, is a special
case. While releasing this lock is fine because the updater
cannot be scheduled as long as an entry lock further down
the chain is acquired, this entry lock must be re-acquired be-
fore the last entry lock is released. Re-acquiring this entry
lock is necessary to prevent the task performing the inheri-
tance from being scheduled before it blocks. Otherwise, as
soon as the last entry lock is released, the back portion of
the inheritance chain is no longer fixed and so it is possible
for the updater to be scheduled before it can block. Re-
acquiring the first entry lock before releasing the back por-
tion of the inheritance chain allows this task to atomically
block and release the lock as required.

Releasing the first entry lock also allows the active priority
of the updater (versus owner) to increase while it is walking
the inheritance chain. To maintain consistency, it is impor-
tant not to switch to this updated value in the middle of
the inheritance operation. The potential problem is that an

owner’s PIQ can be updated using one value and its active
priority can be updated using a higher value. This discrep-
ancy can lead to the owner being blocked on the entry queue
at a priority value different from its active priority.

One difficulty encountered when an updater is augmenting
a mutex owner’s PIQ is determining the existing priority in-
heritance value associated with the mutex object in order to
decrement the count associated with this priority. Explic-
itly storing the priority inheritance value used by the mutex
owner, e.g., in the entry queue, eliminates re-calculating this
value during subsequent inheritance.

5.5 Analysis

The algorithm described above is equivalent to the general
case version of the basic-priority-inheritance algorithm by
Moylan, Betz and Middleton [31]. In our case, as the entry
queues are prioritized, only the task with the highest active
priority needs to be counted. Otherwise, a priority queue
is maintained for each task, which is used to determine a
task’s active priority at any given time.

The additional complexity in the pC4+4 implementation ex-
ists because it is tailored to dynamic-priority scheduling. In
this case, a task must also remember the queue number cor-
responding to a particular priority and not just the priority
value as this array index is needed to access the schedul-
ing queue associated with a particular priority. However,
if a fixed-priority array-based scheduling technique is used,
then only the counts are necessary. (Such a scheduler is also
implemented in the pC++ scheduler library.)

As the PIQ, and the entry and mutex queues are imple-
mented based on the discussion of priority queues in Sec-
tion 4.4, all the associated operations are O(1). Adjusting a
task’s priority is also an O(1) operation. Therefore, the com-
plexity of priority inheritance is O(k), for k tasks in a block-
ing chain, and the complexity of uOnAcquire and uOnRelease
is O(1). uOnAcquire retains complexity O(1) despite the fact
that it performs priority inheritance, because it is executed
by or on behalf of the owner, so the blocking chain has size
at most one.

6. CONCLUSIONS

The goal of this work is the creation of an extensible, flexi-
ble, and predictable real-time system, to encourage the use
of new real-time methodology and discourage the use of ad-
hoc approaches. Allowing users access to some of the tra-
ditionally internal data-structures of mutex objects and the
runtime system provides two important advantages (see [19]
for others). First, the system is extensible, allowing new
ideas and theory to be tested and incorporated into applica-
tions as they become available. Second, it allows fine tuning
of the system for an application, which is crucial because a
real-time application can have a significant impact on the
data structures and algorithms used, and vice versa.

However, there are drawbacks to this approach. A user is re-
sponsible for guaranteeing that any functionality added has
a fixed worst-case execution time. Furthermore, the user is
also responsible for maintaining the coherence of the system.
Therefore, the goals of creating an efficient and consistent
system tend to conflict with the goals of allowing the sys-
tem to be flexible and extensible. In a real-time system,

this tradeoff is acceptable because the user already bears
a significant amount of responsibility for guaranteeing the
predictability and timing constraints of their code.

The approach implemented in pC++ does not limit users to a
fixed set of real-time scheduling and protocol approaches. A
user can select from standard functionality already provided
through existing data-structures and algorithms defined in
the pCH+ real-time library or augment these existing library
facilities or define new ones. While the real-time attributes
in POSIX and the pragmas in Ada are reasonable for deal-
ing with priority scheduling and inversion with respect to
mutex objects, there is little or no flexibility to incorporate
other approaches. This limitation, however, does allow more
thorough runtime checks to be incorporated into these sys-
tems and allows the implementation to be optimized for a
particular scheduling strategy.

7. ACKNOWLEDGMENTS

We would like to thank Bob Zarnke for his input in devel-
oping the timeout mechanism.

8. REFERENCES
[1] G. R. Andrews and F. B. Schneider. Concepts and

notations for concurrent programming. ACM Comput.

Surv., 15(1):3-43, Mar. 1983.

[2] N. C. Audsley, A. Burns, M. F. Richardson, and A. J.
Wellings. Hard real-time scheduling: The
deadline-monotonic approach. In Proceedings of the
1991 IFAC/IFIP Workshop on Real-Time Operating
Systems and Software AND 8th IEEE Workshop on
Real-Time Operating Systems and Software, pages
127-132, Atlanta, Georgia, U. S. A., 1992.

[3] T. Baker. Stack-based scheduling of real-time
processes. Real-Time Systems, 3(1):67-99, Mar. 1991.

[4] T. Baker and O. Pazy. Real-time features of Ada 9x.
In Proc. IEEFE Real-Time Systems Symposium, pages
172-180, 1991.

[5] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, and M. Turnbull. The Real-Time
Specification for Java. The Real-Time for Java Expert
Group, http://www.rtj.org. Addison-Wesley, 2000.

[6] M. W. Borger and R. Rajkumar. Implementing
priority inheritance algorithms in an ada runtime
system. Technical Report CMU/SEI-89-TR-15,
Carnegie Mellon, 1989.

[7] P. Brinch Hansen. Operating System Principles.
Prentice-Hall, 1973.

[8] P. A. Buhr. Are safe concurrency libraries possible?
Commun. ACM, 38(2):117-120, Feb. 1995.

[9] P. A. Buhr, M. Fortier, and M. H. Coffin. Monitor
classification. ACM Comput. Surv., 27(1):63-107,
Mar. 1995.

[10] P. A. Buhr and R. A. Stroobosscher. pC++ annotated
reference manual, version 4.7. Technical report, Dept.
of Computer Science, University of Waterloo, Aug.

1999. ftp://plg.uwaterloo.ca/pub/uSystem/uC++.ps.gz.

[11]

[12]

[13]

[14]

[15]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

A. Burns and A. Wellings. Real-Time Systems and
Programming Languages. Addison-Wesley, 1997.

D. R. Butenhof. Programming with POSIX Threads.
Professional Computing. Addison-Wesley, 1997.

M. Chen and K. J. Lin. Dynamic priority ceilings: A
concurrency control protocol for real-time systems.
Journal of Real-Time Systems, 2(4):325-346, Nov.
1990.

C. L. A. Clarke. Language and compiler support for
synchronous message passing architectures. Master’s
thesis, University of Waterloo, Waterloo, Ontario,

Canada, N2L 3G1, 1990.
R. I. Davis, K. W. Tindell, and A. Burns. Scheduling

slack time in fixed priority preemptive systems. In
Proceedings of the Real-Time Systems Symposium,
pages 222-231, Raleigh-Durham, NC, U. S. A., Dec.
1993. IEEE Computer Society Press.

N. H. Gehani and W. D. Roome. The Concurrent C
Programming Language. Silicon Press, NJ, 1989.

T. M. Ghazalie and T. P. Baker. Aperiodic servers in
a deadline scheduling environment. Journal of

Real-Time Systems, 9(1):31-68, July 1995.

J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

M. Haines. On designing lightweight threads for
substrate software. In USENIX 1997 Annual Technical
Conference. Anaheim, CA, pages 243-255, Jan. 1997.

A. S. Harji. High-level real-time concurrency. Master’s
thesis, University of Waterloo, Dec. 1999.
ftp://plg.uwaterloo.ca/pub/uSystem /Harji Thesis.ps.gz.

C. A. R. Hoare. Monitors: An operating system
structuring concept. Commun. ACM, 17(10):549-557,
Oct. 1974.

N. Homayoun and P. Ramanathan. Dynamic priority
scheduling of aperiodic tasks in hard real-time
systems. Journal of Real-Time Systems, 6(2):207-232,
Mar. 1994.

Intermetrics, Inc. Annotated Ada Reference Manual,
international standard ISO/IEC 8652:1995(E) edition,
Dec. 1994. Language and Standards Libraries, V 6.0.

M. Joseph, editor. Real-time Systems, Specifications,
Verification and Analysis. Prentice Hall, 1996.

J. P. Lehoczky, L. Sha, and J. K. Strosnider.
Enhanced aperiodic responsiveness in hard real-time
environments. In Proc. IEEE Real-Time Systems
Symposium, pages 261-270, 1987.

J. Y. T. Leung and J. Whitehead. On the complexity
of fixed-priority scheduling of periodic, real-time tasks.
Performance Fvaluation, North Holland, 2:237-250,
1982.

P. E. Lim, Jr. Real-time in a concurrent,
object-oriented programming environment. Master’s
thesis, University of Waterloo, Aug. 1996.
ftp://plg.uwaterloo.ca/pub/uSystem/LimThesis.ps.gz.

(28]

C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time

environment. J. ACM, 20(1):46-61, Jan. 1973.

R. Maheshwari. An empirical evaluation of priority
queue algorithms for real-time applications. Master’s
thesis, Florida State University, 1990.

A. K. Mok. Fundamental design problems of
distributed systems for the hard real-time environment.

PhD thesis, MIT, 1983.
P. J. Moylan, R. E. Betz, and R. H. Middleton. The

priority disinheritance problem. Technical Report
EE9345, The University of Newcastle, 1993. ftp://-
ee.newcastle.edu.au/pub/reports/Disinheritance.ps.Z.

R. Rajkumar. Synchronization in Real-Time Systems:
A Priority Inheritance Approach. Kluwer Academic
Publishers, 1991.

D. C. Schmidt and F. Kuhns. An overview of the
real-time CORBA specification. IEFFE Computer,
33(6):56-63, June 2000.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Trans. Comput.,
39(9):1175-1185, Sept. 1990.

B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task
scheduling for hard real-time systems. Journal of

Real-Time Systems, 1(1):27-60, June 1989.
J. A. Stankovic, M. Spuri, M. Di Natale, and G. C.

Buttazzo. Implications of classical scheduling results
for real-time systems. Computer, 28(6):16-25, June
1995.

H. Takada and K. Sakamura. Experimental
implementations of priority inheritance semaphore on
itron-specification kernel. In Proceedings of 11th

TRON Project International Symposium, pages
106-113. IEEE Computer Society Press, Dec. 1994.

P. van Emde Boas, R. Kaas, and E. Zijlstra. Design
and implementation of an efficient priority queue.

Mathematical Systems Theory, 10:99-127, 1977.
C.-D. Wang, H. Takada, and K. Sakamura. Priority

inheritance spin locks for multiprocessor real-time
systems. In Proceedings of the 1996 International
Symposium on Parallel Architecture, Algorithms and
Networks (ISPAN’96), pages 70-76, June 1996.

J. W. J. Williams. Algorithm 232: Heapsort.
Commun. ACM, 7:347-348, 1964.

