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There has been a significant effort over the past decade in creating concurrency libraries for a num-
ber of sequential programming languages, particularly for object-oriented ones such as C++ [BLL88], Eiffel
[KB93], and Smalltalk [YT86]. While the goal is laudable, this discussion shows that obtaining concurrency
solely through libraries is, in general, unattainable in both shared-memory and distributed environments. An
informal proof shows that while it is possible to build a concurrency library and applications that use it, no
guarantee of correctness can be given without an unrealistic requirement being placed on the library designer
and user, even when the library features are used correctly in a well formed concurrent program. This unre-
alistic requirement is the need to examine the executable instructions after every compilation of the library or
application for incorrectly generated code. Furthermore, if incorrect code is found, it may not be possible to
fix the problem directly. The library or application may have to be restructured, possibly significantly, to pro-
duce a working program. Such a requirement is clearly beyond that of any reasonable, practical technique,
tool, or programmer. In other words, if a concurrency library imposes such an inspection and repair require-
ment, the library feature cannot be safely implemented. Moreover, such requirements violate the abstraction
and encapsulation of the concurrency library itself because of the need to examine the generated code.

The proof is based on the observation that any linguistic feature that affects code generation cannot be
implemented in a safe and portable way outside of a translator (compiler, assembler, etc.). Without language-
based constructs to indicate concurrent semantics, an underlying translator may generate code that is correct
for sequential execution but incorrect for concurrent execution. Without examining the generated code after
each translation, a programmer cannot assess and guarantee the correctness of even a well formed program.
The proof does not assume a particular programming language or concurrency paradigm; it will be shown
that all concurrency library approaches may suffer from the unrealistic requirement.

While this observation holds generally, three examples of code generation situations suffice to demon-
strate problems with concurrency libraries. The three examples are: storage of values in registers, code re-
ordering, and instruction substitution. Compilers and assemblers use these and other techniques to generate
efficient code, particularly for RISC computers. In fact, most RISC computers rely heavily on these and other
techniques to achieve their stated performance specifications. While these techniques are valid for sequen-
tial execution, the temporal nature of concurrent programs can result in problems. The following anecdotes,
which have all affected this author, illustrate the problems that can occur with each code optimization tech-
nique.

When a compiler moves the location of a variable into a register, the current value of the variable becomes
hidden from other tasks. For example, in C:

flag1 = flag2 = 0;

task � task �

while ( flag2 == 0 ); flag2 = 1;
. . . while ( flag1 == 0 );
flag1 = 1; . . .
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if the compiler loads variables flag1 and flag2 into registers, neither task can see the changes made to the
shared variables and the tasks spin forever in their busy loops. This particular behaviour is clearly unex-
pected and cannot be debugged without examining the assembler code. Furthermore, all software solutions
to mutual exclusion, such Dekker’s and G. L. Petersons’ algorithms, use this technique, so it is important.
This problem also affects exception handling and is the main reason that the declaration qualifier volatile was
added to C.

The surreptitious movement of code by translators to fill instruction pipelines causes problems for both
the implementor and user of a concurrency library. For example, in:

acquire(lock)
critical section
release(lock)

the locking routines are often inlined for efficiency reasons. This optimization might be done explicitly by the
lock designer or implicitly by the compiler. However, code reordering allows the machine instructions at the
boundaries between the locking operations and the critical section to become intermixed. The critical section
code can start execution before the lock is acquired, or the lock can be released before the critical section has
completed execution. In the extreme case, the code to release the lock, which may be a single instruction, is
moved before the critical section. Even if the code for the locking routines is not inlined, code in the critical
section might still be moved before or after them if the critical section only accesses local variables on the
grounds that the locking routines cannot see the local variables and have no aliases to them.

Some assemblers substitute multiple instructions for a single instruction generated by a compiler or as-
sembler programmer. Unfortunately, this can cause errors in concurrent programs. For example, on a MIPS
computer:

written substituted
lw $sp,PrivateStack lui $sp,4097

lw $sp,-15288($sp)

the loading of the stack pointer register, $sp, with an absolute address, PrivateStack, has been changed into
two loads, which load the absolute address in two parts, high and low order 16 bits, because there are 16-bit
immediate values in instructions. However, if a context switch occurs between the substituted instructions
because of an interrupt/signal, the stack pointer is invalid, which may cause a failure on systems that use the
user stack to deliver an interrupt. This problem is not specific to the stack pointer; any transformation of an
atomic action into a non-atomic action may cause problems. Without knowing which operations are truly
atomic, a library cannot guarantee correctness.

One option is to forbid such optimizations by the translator because in certain situations they cause fail-
ures in concurrent programs. However, even if possible, this is too Draconian. Concurrent code situations
that cause problems occur infrequently in most concurrent programs. Therefore, if optimizations occur, it is
necessary to specify when they cannot be performed throughout the entire transformation hierarchy (com-
piler, assembler, linker, loader). There are three approaches:

1. provide some explicit language facilities to control optimizations (e.g. pragma, volatile, etc.),

2. provide some concurrency constructs that allow the translator to determine when to disable certain
optimizations,

3. a combination of approaches one and two.

Notice that the programming language has been extended over its sequential counterpart in all three ap-
proaches. As an aside, there has been some suggestion in the C++ community and C POSIX standards com-
mittee for a standard concurrency-library interface, which the compiler is aware of, so that correct code can
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be generated. However, if the compiler must be aware of the concurrency library, this is the same as extending
the language.

In the first approach, the user is responsible for explicitly controlling all optimizations that could affect
correctness. For example, it may be necessary to declare the variables, flag1 and flag2, used for synchro-
nization in the previous example, as shared (or volatile in C parlance) so that the program works correctly. A
user would only know that an additional declaration qualifier is needed through an understanding of poten-
tial problems with code optimization. If a user does not deactivate a particular optimization for a particular
architecture or system, the program may fail. An overcautious user might deactivate too many optimizations
and pay an unnecessary runtime performance penalty. Therefore, this approach can be rejected because it
requires extensive knowledge of each translator’s implementation to know what and when certain optimiza-
tions are applied, which constitutes another unrealistic requirement for the library designer and user. This
unrealistic requirement applies to each translator and must be rechecked if the translator changes (possibly
by examining the generated code, leading back to the first unrealistic requirement). Furthermore, whatever
facility is provided, it must be completely open-ended because new code optimizations can appear at any
time. Finally, optimizations vary from translator to translator and from system to system, which makes writ-
ing portable code extremely difficult.

In the second approach, the translator is responsible for detecting all temporal situations and ensuring
correct and efficient code generation. To accomplish this task, the translator must be aware that a program is
concurrent through specific concurrency constructs. The exact form of these constructs and the concurrency
paradigm that results from them is not important in this discussion. It is sufficient to point out that the pro-
gramming language is extended. However, the form of the concurrency constructs must be extensive enough
so that the translator can adequately determine when specific optimizations can and cannot be applied. (It is
beyond the scope of this short discussion to talk about a “minimal set” of concurrency constructs that allow
a compiler to determine this fact.) Notice, that the translator must not only handle all usages of its specific
concurrency constructs correctly, but also situations like the shared synchronization flags (flag1, flag2), even
if such cases are outside of the concurrency paradigm supplied by the concurrency constructs.

The last approach is a combination of the previous two. In this approach, the translator ensures correct
code generation for its supplied concurrency constructs, but allows incorrect generation of code for tempo-
ral situations outside of these constructs, such as the shared synchronization flags. To make synchronization
work using flag variables would require capabilities from approach one to ensure correct code generation,
which implies some understanding of general implementation/optimization details. However, with a reason-
able complement of concurrency constructs in a language, a user would never have to use constructs that
require knowledge of optimizations. Special situations would arise only for users performing unusual con-
current operations or possibly for teaching purposes. Essentially, this last approach admits that outside of the
specific concurrency constructs, the translator may not be able to automatically detect all possible concur-
rent situations that could appear in a program or that it may be too expensive to analyze an entire program to
detect them all.

Virtually all concurrency libraries, including the ones build by this author [BS90, BDS
�

92], are built on
an unsafe foundation that can result in unexpected failure both inside the library or in user programs. To en-
sure correct operation, most of these libraries rely on the fact that many compiler optimizations do not cross
a routine-call boundary. However, with the advent of more powerful global optimizations and the desire to
inline small routines for efficiency reasons, this is no longer a valid assumption. While the above proof is
informal, its conclusion, that safe concurrent programs require extensions to the programming language they
are written in, follows directly from the observation that concurrency is a linguistic feature that affects code
generation. It also seems clear that it is impractical to just control optimizations independently of concur-
rency. Translators need to know what is going on in a program to generate correct code and still be able to
perform adequate optimizations. Therefore, programming languages without concurrency constructs must
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be extended with sufficient concurrency capabilities to ensure their correct operation and to allow some rea-
sonable degree of portability.

Finally, while this discussion has been independent of the concurrency constructs added to a language,
it is important to point out that there are other high-level language issues that can interact with concurrency.
Language features like exception handling, polymorphism, persistence, and distributed programming all in-
teract with concurrency in both obvious and subtle ways. In many cases, it is not possible for concurrency
libraries to deal with these interactions, leading to imposed restrictions or coding conventions on library users
that increase the potential for runtime errors (see [BDZ89, BD92] for those relating to C++). Again, the only
way the translator can statically check for incompatible interactions among language features, so that it can
print appropriate warnings and errors, are concurrency extensions.
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