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Advanced Exception Handling Mechanisms
Peter A. Buhr and W. Y. Russell Mok

Abstract—It is no longer possible to consider exception handling as a
secondary issue in language design, or even worse, a mechanism added
after the fact via a library approach. Exception handling is a primary fea-
ture in language design and must be integrated with other major features,
including advanced control flow, objects, coroutines, concurrency, real-
time and polymorphism. Integration is crucial as there are both obvious
and subtle interactions between exception handling and other language
features. Unfortunately, many exception handling mechanisms work only
with a subset of the features and in the sequential domain. A framework
for a comprehensive, easy to use, and extensible exception handling
mechanism is presented for a concurrent, object-oriented environment.
The environment includes language constructs with separate execution
stacks, e.g., coroutines and tasks, so the exception environment is sig-
nificantly more complex than the normal single-stack situation. The pros
and cons of various exception features are examined, along with feature
interaction with other language mechanisms. Both exception termination
and resumption models are examined in this environment, and previous
criticisms of the resumption model, a feature commonly missing in mod-
ern languages, are addressed.
Index Terms—Exception handling, robustness, termination, resumption,
concurrent, interrupts, object-oriented.

1 INTRODUCTION
�

UBSTANTIAL research has been done on exceptions but there
is hardly any agreement on what an exception is. Attempts

have been made to define exceptions in terms of errors but an er-
ror itself is also ill-defined. Instead of struggling to define what
an exception is, this paper examines the entire process as a con-
trol flow mechanism, and an exception is a component of an ex-
ception handling mechanism (EHM), which specifies program
behaviour after an exception has been detected. The control flow
generated by an EHM is supposed to make certain programming
tasks easier, in particular, writing robust programs.

Prior to EHMs, the common programming techniques used
to handle exceptions were return codes and status flags. The
return code technique requires each routine to return a value
on its completion. Different values indicate if a normal or rare
condition has occurred during the execution of a routine. Alter-
natively, or in conjunction with return codes, is the status flag
technique, which uses a shared variable to indicate the occur-
rence of a rare condition. Setting a status flag indicates a rare
condition has occurred; the value remains as long as it is not
overwritten.
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Both techniques have noticeable drawbacks. First, and fore-
most, the programmer is required to explicitly test the return
values or status flags; hence, an error is discovered and subse-
quently handled only when checks are made. Without timely
checking, a program is allowed to continue after an error, which
can lead to wasted work, at the very least, and an erroneous com-
putation at worst. Second, these tests are located throughout the
program, reducing readability and maintainability. Third, as a
routine can encounter many different errors, it may be difficult
to determine if all the necessary error cases are handled. Finally,
removing, changing or adding return or status values is difficult
as the testing is coded inline. The return code technique often
encodes exception values among normal returned values, which
artificially enlarges the range of valid values independent of the
computation. Hence, changing a value representing an excep-
tion into a normal return value or vice versa may be difficult as
such changes affect existing programs. The status flag technique
uses a shared variable that precludes its use in a concurrent en-
vironment as it can change unpredictably.

This paper discusses modern EHM techniques, which are fi-
nally supplanting return codes and flags even though EHMs
have been available for more than two decades. A general
framework is presented for exception handling, along with an
attempt to compose an ideal EHM, with suggested solutions to
some outstanding EHM problems. In constructing the frame-
work, a partial survey of existing EHMs is necessary to compare
and contrast approaches.

2 EHM OBJECTIVES

The failure of return codes and status flags indicates the need for
an EHM, which must:

1. alleviate testing for the occurrence of rare conditions through-
out the program, and from explicitly changing the control
flow of the program,

2. provide a mechanism to prevent an incomplete operation from
continuing,

3. be extensible to allow adding, changing and removing excep-
tions.

The first objective targets readability and programmability by
eliminating checking of return codes and flags. The second ob-
jective provides a transfer from the exception point that disal-
lows returning, directing control flow away from an operation
where local information is corrupted, i.e., the operation is non-
resumable. The last objective targets extensibility, easily allow-
ing change in the EHM, and these changes should have minimal
effects on existing programs using them.

Two EHM examples illustrate the three objectives:

� Unix signal mechanism. On encountering a rare condition,
a signal (interrupt) is generated, which preempts execution
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and calls a handler routine, suspending prior execution; when
the handler routine returns, prior execution continues. This
change of control flow does not require the programmer’s in-
volvement or testing any error code, as there is no explicit
call in the program. Using a non-local jump facility, longjmp,
the handler routine can prevent an incomplete operation from
continuing, and possibly terminate multiple active blocks be-
tween the signal handler and the non-local transfer point (see
also Section 5.1). Extensibility is quite limited, as most sig-
nals are predefined and unavailable to programmers. If a li-
brary uses one of the few user available signals, all clients
must agree on the signal’s definition, which may be impossi-
ble.� Ada exception mechanism. On encountering a rare condi-
tion, an exception is raised in Ada terminology, and control
flow transfers to a sequence of statements to handle the ex-
ception. This change of control flow does not require the pro-
grammer’s involvement or testing any error code. The opera-
tion encountering the rare condition cannot be continued, and
possibly multiple active blocks between the raise point and
the statements handling the exception are terminated. New
exceptions can be declared as long as there is no name con-
flict in the flat exception name-space; hence the mechanism
is extensible.

3 EXECUTION ENVIRONMENT

The structure of the execution environment has a significant ef-
fect on an EHM, e.g., concurrency requires a more complex
EHM than a sequential environment. The execution model de-
scribed in [1] is adopted for this discussion; it identifies three
elementary execution properties:

� Execution. is the state information needed to permit indepen-
dent execution. It includes local and global data, current exe-
cution location, and routine activation records of a sequential
computation.� Thread. is execution of code that occurs independently of
and possibly concurrently with another execution; thread ex-
ecution is sequential as it changes an execution’s state. Mul-
tiple threads provide concurrent execution; multiple CPUs
provide parallel execution of threads. A context switch is a
change in the execution/thread binding.� Mutual exclusion. is serializing execution of an operation on
a shared resource.

The first two properties are fundamental, i.e., it is impossible
to create them from simpler constructs in a programming lan-
guage. Only mutual exclusion can be generated using basic
control structures and variables (e.g., Dekker’s algorithm), but
software algorithms are complex and inefficient. Thus, these
3 properties must be supplied via the programming language.
Different combinations of the execution properties generate all
of the higher-level language constructs present in existing lan-
guages, e.g., routine, class, coroutine, monitor, and task. Both
coroutine and task have separate executions; only a task has a
thread. An EHM affects the control flow of an execution, and
therefore, it is often sufficient when discussing exceptions to re-
fer to an execution without knowing if it is a coroutine or a task.
A monitor, a coroutine, and a task can have mutual exclusion.

4 EHM OVERVIEW

An event is an exception instance, and is raised by executing a
language or system operation, which need not be available to
programmers, e.g., only the runtime system may raise prede-
fined exceptions. Raising an exception indicates an abnormal
condition the programmer cannot or does not want to handle
via conventional control flow. What conditions are abnormal is
programmer determined. The execution raising the event is the
source execution.

The execution that changes control flow due to a raised event
is the faulting execution; its control flow is routed to a han-
dler. With multiple executions, it is possible to have an excep-
tion raised in a source execution different from the faulting ex-
ecution. Propagating an exception directs the control flow of
the faulting execution to a handler, and requires a propagation
mechanism to locate the handler. The chosen handler is said to
have caught the event when execution transfers there. A handler
is a sequence of statements dealing with a set of exceptions. The
faulting execution handles an event by executing a handler as-
sociated with the raised exception. It is possible that another
exception is raised while executing the handler. A handler is
said to have handled an event only if the handler returns. Unlike
returning from a routine, there may be multiple return mecha-
nisms for a handler (see Section 5).

For a synchronous exception, the source and faulting execu-
tion are the same, i.e., the exception is raised and handled by the
same execution. It is usually difficult to distinguish raising and
propagating in the synchronous case, as both happen together.
For an asynchronous exception, the source and faulting execu-
tion are usually different, e.g., raise E in Ex raises exception E

from the current source to the faulting execution Ex. Unlike a
synchronous exception, raising an asynchronous exception does
not lead to the immediate propagation of the event in the faulting
execution. In the Unix example, an asynchronous signal can be
blocked, delaying propagation in the faulting execution. Rather,
an asynchronous exception is more like a non-blocking direct
communication from the source to the faulting execution. The
change in control flow in the faulting execution is the result of
delivering the exception event, which initiates the propagation
of the event in the faulting execution. While the propagation in
the faulting execution can be carried out by the source, faulting
or even another execution, for the moment, assume the source
raises the event and the faulting execution propagates and han-
dles it.

Goodenough’s seminal paper on exception handling suggests
a handler can be associated with programming units as small as
a sub-expression and as large as a routine [2, pp. 686-687]. Be-
tween these extremes is associating a handler with a language’s
notion of a block, i.e., the facility that combines multiple state-
ments into a single unit, as in Ada [3], Modula-3 [4] and C++ [5].
While the granularity of a block is coarser than an expression,
our experience is that fine grained handling is rare. As well,
having handlers, which may contain arbitrarily complex code,
in the middle of an expression can be difficult to read. Finally,
handlers in expressions or for routines may need a mechanism
to return results to allow execution to continue, which requires
additional constructs [2, p. 690].

In addition, a handler can handle multiple exceptions and
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multiple handlers can be bound to one block. Syntactically, the
set of handlers bound to a particular block is the handler clause,
and a block with handlers becomes a guarded block. A block
with no handler clause is an unguarded block. An exception
can propagate from any block; the propagation mechanism de-
termines the order the handler clauses bound to different blocks
are searched.

5 HANDLING MODELS

Yemini and Berry [6, p. 218] identify 5 exception handling mod-
els: non-local transferring, 2 terminating, retrying and resum-
ing. An EHM can provide multiple models.

5.1 Non-local Transfer

PL/I [7] is one of a small number of languages that supports non-
local transfer among dynamic blocks through the use of label
variables. A label variable in PL/I contains both a point of trans-
fer and a pointer to an activation record on the stack containing
the transfer point; therefore, a label variable is not a static ob-
ject. The non-local transfer in PL/I directs control flow to the
label variable specified in a goto statement. A consequence of
the transfer is that blocks activated after the one with the label
variable are destroyed. The C routines setjmp and longjmp are
a simplified non-local transfer, where setjmp sets up a dynamic
label variable and longjmp performs the non-local transfer.

An EHM can be constructed using a non-local transfer mech-
anism by labelling code to form handlers and terminating opera-
tions with non-local transfers to labels in prior blocks. However,
non-local transfer is too general, allowing branching to almost
anywhere (the structured programming problem). This lack of
discipline makes programs less maintainable and error-prone [8,
p. 102]. More importantly, an EHM is essential for sound and ef-
ficient code generation by a compiler (as for concurrency [9]). If
a compiler is unaware of exception handling (e.g., setjmp/longjmp

in C), it may perform code optimizations that invalidate the pro-
gram, needing bizarre concepts like the volatile declaration qual-
ifier. Hence, this model is rejected.

5.2 Termination Model

In the termination model, control flow transfers from the raise
point to a handler, terminating intervening blocks; when the han-
dler completes, control flow continues as if the incomplete oper-
ation in the guarded block terminated without encountering the
exception. Hence, the handler acts as an alternative operation
for its guarded block. This model is the most popular, appearing
in Ada, C++, ML [10], Modula-3 and Java [11].

5.3 Retrying Model

The retry model combines the termination model with special
handler semantics, i.e., restart the failed operation. There must
be a clear beginning for the operation to be restarted. The begin-
ning of the guarded block is usually the restart point and there
is hardly any other sensible choice. Figure 1 gives an example
by extending C++ with a retry handler. The exception Negative

is raised using termination semantics, and the retry handler com-
pletes by jumping to the start of the try block. The handler is

1 void f( int a[ ] ) {
2 try {

3 int sum = 0;

4 for ( int i = 0; sum > 100; i += 1 ) {
5 if ( a[ i ] < 0 ) throw Negative(i);
6 sum += a[ i ];
7 }
8 } retry( Negative(p) ) a[ p ] = 0;
9 }

Fig. 1. Retry Handling

supposed to remove the abnormal condition so that the opera-
tion can complete during retry. Mesa [12], Exceptional C [13]
and Eiffel [14] provide retry semantics through a retry statement
only available in the handler body.

As mentioned, establishing the operation restart point is es-
sential; reversing the second and third lines of f in the figure
generates a subtle error with respect to the exception but not
normal execution, i.e., the sum counter is not reset on retry. This
error can be difficult to discover because control flow involv-
ing propagation occurs infrequently. In addition, when multi-
ple handlers exist in the handler clause, these handlers must use
the same restart point, which may make retrying more difficult
to use in some cases. Finally, Gehani [13, p. 834] shows the
retrying model can be mimicked with a loop and the termination
model. We believe mimicking is superior so all looping is the
result of language looping constructs, not hidden in the EHM.
Because of the above problems and that retry can be mimicked
easily with termination and looping, this model is rejected.

5.4 Resumption Model

In the resuming model, control flow transfers from the raise
point to a handler to correct the incomplete operation, and then
back to the raise point. Indeed, control flow into and out of the
handler is identical to that of a routine call [13], [15]. The dif-
ference between a normal routine call and a resuming call is that
the resuming call locates the handler dynamically. While resum-
ing handlers can be simulated by passing routines as arguments
that are subsequently called at the raise point, the simulation is
impossible for legacy code and prevents reuse (see Section 6.5).

Liskov/Snyder [16, p. 549], and Mitchell/Stroustrup [17,
p. 392] argue against the resumption model but the reasons
seem anecdotal. Goodenough’s resumption model is complex
and Mesa’s resumption is based on this model [6, pp. 235-240].
However, a resumption model can be as simple as dynamic rou-
tine call, which is easy to implement in languages with nested
routines. For languages without nested routines, like C/C++,
it is still possible to construct a simple resumption model [13],
[18], [19]. Given a simple resumption model, the only remain-
ing problem is recursive resumption, which is discussed in Sec-
tion 8.1.3.

6 EHM FEATURES

This section examines additional features that make an EHM
easy to use (see also [2], [15], [18], [20]).
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6.1 Catch-Any and Reraise

It is important to have a simple mechanism for catching any
exception entering a guarded block, and to subsequently reraise
the unknown exception, e.g.:
try { . . .
} catch(. . .) { // catch any exception

. . . raise; // reraise unknown exception
}

For termination, this capability still allows clean up of a guarded
block when it does not handle an exception. Block finaliza-
tion executed on both normal and exceptional termination, and
C++-style object destructors also allow clean up for this case.
For resumption, this capability allows a guarded block to gather
or generate information about control flow passing through the
guarded block.

6.2 Derived Exceptions

An exception hierarchy is useful to organize exceptions, similar
to a class hierarchy in object-oriented languages. An exception
can be derived from another exception, just like deriving a sub-
class from a class. A programmer can then choose to handle an
exception at different degrees of specificity along the hierarchy;
hence, derived exceptions support a more flexible programming
style.

An important design question is whether to allow derivation
from multiple exceptions, called multiple derivation, which is
similar to multiple inheritance of classes. While Cargill [21] and
others argue against multiple inheritance as a general program-
ming facility, the focus here is on derived exceptions. Consider
the following example of multiply deriving an exception [20]:
exception network-err, file-err;
exception network-file-err : network-err, file-err; // multiple derivation

While this looks reasonable, there are subtle problems:
try { . . . raise network-file-err . . .
} catch( network-err ) // close network connection

catch( file-err ) // close file

If network-file-err is raised, neither of the handlers may be appro-
priate to handle the raised event, but more importantly, which
handler in the handler clause should be chosen because of the
inheritance relationship? Executing both handlers may look le-
gitimate, but indeed it is not. If a handler clause has a handler
only for file-err, does it mean that it cannot handle network-file-err

completely and should raise network-err afterwards? The exam-
ple shows that handling an exception having multiple parents
may be inappropriate. If an exception cannot be caught by one
of its parent, the derivation becomes moot. Therefore, multi-
ple derivation is rejected for derived exceptions as it introduces
significant complications into the semantics.

6.3 Exception Parameters

The ability to pass data from the source to the faulting execu-
tion is essential for the handler to analyse why an exception was
raised and how to deal with it. Exception parameters enable
the source to transfer important information into and out of a
handler, just like routine parameters and results. An exception
parameter can be read-only, write-only and read-write. While
information could be passed through shared objects, exception

parameters eliminate side-effects and locking in a concurrent en-
vironment. Ada has no parameters, Modula-3 has a single pa-
rameter, C++ has an object (essentially a single parameter), ML
and Mesa have multiple parameters.

Parameter specification for an exception depends on the form
of the exception declaration. In Mesa and Modula-3, a technique
similar to routine parameters is used, as in:

exception E( int ); // exception declaration with parameter
raise E( 7 ); // argument supplied at raise
catch( E( p ) ) // handler receives argument in parameter

In C++, an object type is the exception and an object instance is
created from it as the parameter, as in:

struct E { int p; E(int p) : p(p) {} };
throw E( 7 ); // create object, initialized with 7
catch( E p ) . . . // handler receives object in parameter

In all cases, it is possible to have parameters that are routines
(or member routines), and these routines can perform special
operations. For example, by convention or with special syntax,
an argument or member routine can be used as a default handler,
which is called if the faulting execution does not find a handler
during propagation, as in:

exception E( . . . ) default( f ); // default routine f
struct E { . . . void default() {. . .}; }; // named default member

Other specialized operations are conceivable.
The arguments of an asynchronous exception are usually ac-

cessible to the source after the event is raised, and to the faulting
execution after the event is caught. Therefore, access to these
arguments must be properly synchronized in a concurrent envi-
ronment if pointers are involved. The synchronization can be
provided by the EHM or by the programmer. The former makes
programming easier but can lead to unnecessary synchroniza-
tion as it requires blocking the source or the faulting execution
when the argument is accessed, which may be inappropriate in
certain cases. The latter is more flexible as it can accommodate
specific synchronization needs. With the use of monitors, fu-
tures, conditional variables and other facilities for synchroniza-
tion, the synchronization required for accessing an exception ar-
gument can be easily implemented by a programmer. Hence,
leaving synchronization to the programmer simplifies the EHM
interface and hardly loses any capabilities.

Finally, with derived exceptions, parameters to and results
from a handler must be dealt with carefully depending on the
particular language. For example, given exception D, derived
from B, with additional data fields for passing information into
and out of a handler, when a D event is raised and caught by a
handler bound to B, it is being treated as a B exception within the
handler and the additional data fields cannot be accessed with-
out a dynamic down-cast. Consequently, if the handler returns
to the raise point, some data fields in D may be uninitialized. A
similar problem occurs if static dispatch is used instead of dy-
namic (both Modula-3 and C++ support both forms of dispatch).
The handler treating exception D as a B can call members in B

with static dispatch rather than members in D. For termination,
these problems do not exist because the handler parameters are
the same or up-casts of arguments. For resumption, any result
values returned from the handler to the raise point are the same
or down-casts of arguments. The problem of down-casting is a
subtyping issue, independent of the EHM, which programmers
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must be aware of when combining derived exceptions and event
parameters with resumption.

6.4 Bound Exceptions and Conditional Handling

In Ada, an exception declared in a generic package creates a new
instance for each package instantiation, e.g.:

generic package Stack is
overflow : exception; . . .

end Stack;
package S1 is new Stack; -- new overflow
package S2 is new Stack; -- new overflow

begin
. . . S1.push(. . .); . . . S2.push(. . .); . . .

exception
when S1.overflow => . . . -- catch overflow for S1
when S2.overflow => . . . -- catch overflow for S2

Hence, it is possible to distinguish which stack raised the over-
flow without passing data from the raise to the exception. In
object-oriented languages, the class is used as a unit of mod-
ularity for controlling scope and visibility. Similarly, it makes
sense to associate exceptions with the class that raises them, as
in:

class file {
exception file-err; . . .

However, is the exception associated with the class or objects in-
stantiated from it? As above, the answer affects the capabilities
for catching the exception, as in:

file f;
try { . . . f.read(. . .); . . . // may raise file-err
} catch( file::file-err ) . . . // option 1

catch( f.file-err ) . . . // option 2

In option 1, only one file-err exception exists for all objects cre-
ated by type file. Hence, this catch clause deals with file-err events
regardless of which file object raises it. In option 2, each file ob-
ject has its own file-err exception. Hence, this catch clause only
deals with file-err events raised by object f, i.e., the handler is for
an event bound to a particular object, called a bound exception.
This specificity prevents the handler from catching the same ex-
ception bound to a different object. Both facilities are useful but
the difference between them is substantial and leads to an im-
portant robustness issue. Finally, an exception among classes is
simply handled by declaring the exception outside of the classes
and referencing it within the classes.

Bound events cannot be trivially mimicked by other mech-
anisms. Deriving a new exception for each file object (e.g.,
f-file-err from file-err) results in an explosion in the total num-
ber of exceptions, and cannot handle dynamically allocated ob-
jects, which have no static name. Passing the associated object
as an argument to the handler and checking if the argument is
the bound object, as in:

catch( file::file-err( file *fp ) ) // fp is passed from the raise
if ( fp == &f ) . . . // deal only with f
else raise // reraise event

requires programmers to follow the coding convention of rerais-
ing the event if the bound object is inappropriate [18]. Such a
coding convention is unreliable, significantly reducing robust-
ness. In addition, mimicking becomes infeasible for derived ex-
ceptions, as in:

exception B( obj ); // base exception
exception D( obj ) : B; // derived exception
obj o1, o2;
try { . . . raise D(. . .); . . .
} catch( D( obj *o ) ) // deal with derived exception

if ( o == &o1 ) . . . // deal only with o1
else raise // reraise event

catch( B( obj *o ) ) // deal with base exception
if ( o == &o2 ) . . . // deal only with o2
else raise // reraise event

Assuming exception D is raised, the problem occurs when the
first handler catches the derived exception and reraises it if the
object is inappropriate, because the reraise now precludes the
handler for the base exception from being chosen as a handler
clause has been selected for the guarded block. Therefore, the
“catch first, then reraise” approach is an incomplete substitute
for bound exceptions.

Finally, it is possible to generalize the concept of the bound
exception with conditional handling [22], as in:

catch( E( obj &o ) ) when( o.f == 5 ) . . .

where the when clause specifies a general conditional expression
that must also be true before the handler is chosen. Conditional
handling can mimic bound events simply by checking if the ob-
ject parameter is equal to the desired object. Also, the object in
the conditional does not have to be the object containing the ex-
ception declaration as for bound exceptions. The problem with
conditional handling is the necessity of passing the object as an
argument or embedding it in the exception before it is raised.
Furthermore, there is now only a coincidental connection be-
tween the exception and conditional object versus the statically
nested exception in the bound object. While we have experi-
ence on the usefulness of bound exceptions [18], we have none
on conditional handling.

6.5 Exception List

An exception list is part of a routine’s signature and specifies
which exceptions may propagate to its caller, e.g., in Good-
enough, CLU [16], Modula-3 and Java (optional in C++). In
essence, the exception list is precisely specifying the behaviour
of a routine. The exception list allows an exception to propagate
through many levels of routine call only as long as it is explicitly
stated that propagation is allowed. This capability allows static
detection of situations where a raised exception is not handled
locally or by its caller, or runtime detection where the exception
may be converted into a special failure exception or the program
terminated.

While specification of routine behaviour is certainly essen-
tial, this feature is too restrictive [17, p. 394], having a signifi-
cant feature interaction between the EHM and a language’s type
system. For example, consider the C++ template routine sort:
template<class T> void sort( T items[ ] ) {

// using bool operator<( const T &a, const T &b );

using the operator routine <. In general, it is impossible to know
which exceptions may be propagated from the routine <, and
subsequently those from sort because sort takes many different
< routines to support code reuse. Therefore, it is impossible to
give an exception list on the template routine. An alternative is
to add the specification at instantiation of the template routine,
as in:
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sort( V ) raises X, Y, Z; // instantiate with exception list

This case works because a new sort routine is essentially gen-
erated for each instantiation and so there are actually multiple
versions each with a different signature. However, if sort is pre-
compiled or passed as a further argument, there is only one sig-
nature to match all calls.

As well, for arguments of routine pointers (functional style)
and/or polymorphic methods or routines (object-oriented style),
exception lists preclude reuse, e.g.:

int f( int (*g)(. . .) ) {
. . . *g(. . .) . . .

}
int g() raises(E) { raise E; }
int h(. . .) {

try { . . . f( g ); . . .
} catch( E ) . . .

}

class B {
virtual int g() {}
int f() { . . . g(); . . . }

};
class D : public B {

int g() raises(E) { raise E; }
int h() {

try { . . . f(); . . .
} catch( E ) . . .

}
};

The left example illustrates arguments of routine pointers, where
routine h can handle exception E raised by g, but only if it
passed unchanged through the intermediate routine f. Similarly,
the right example illustrates object-oriented dynamic dispatch,
where the derived class replaces member g, which is called from
member B::f. Member routine D::h calls B::f, which calls D::g with
the potential to raise exception E. Member D::h is clearly capa-
ble of handling the exception because it created the version of
g raising the event. However, this reasonable case is precluded
because the signature of D::g is less restrictive than B::g. If f in
the left example or B in the right example are precompiled in
a library, there is no option to expand the signatures to allow
this reuse scenario. Nor is it reasonable to expand the signa-
ture for every routine. In fact, doing so makes the program less
robust because the signature now covers too broad a range of ex-
ceptions. Converting the specific raised exception to the failure
exception at the boundary where the specific exception does not
appear in the exception list precludes any chance of handling
the specific event at a lower level and only complicates any re-
covery. The problem is exacerbated when a raised event has an
argument because the argument is lost in the conversion. Fi-
nally, determining an exception list for a routine becomes diffi-
cult or impossible with the introduction of asynchronous excep-
tions because an asynchronous exception may be propagated at
any time.

7 PROPAGATION MECHANISMS

Propagating directs control flow of the faulting execution to a
handler; the search for a handler normally proceeds through the
blocks, guarded and unguarded, on the runtime stack. Different
implementation actions occur during the search depending on
the kind of propagation. Two kinds of propagation are possible,
throwing and resuming, corresponding to the termination and
resumption models, respectively, and both forms can coexist in
a single EHM.

Throwing propagation means control does not return to the
point of the raise. This semantics implies the blocks on the
stack between the raise and the handler/guarded block are de-
stroyed, called stack unwinding. The unwinding associated with

throwing normally occurs during the propagation, although this
is not required; unwinding can occur when the handler is found,
during the handler’s execution, or on its completion. However,
there is no advantage to delaying unwinding for throwing, and
doing so results in problems (see Section 9.2) and complicates
most implementations.

Resuming propagation means control returns to the point of
the raise; hence, there is no stack unwinding. However, a han-
dler may determine that control cannot return, and need to un-
wind the stack, i.e., change the resume into a throw. One mech-
anism to allow this capability is an unwind statement available in
the handler to trigger stack unwinding, as in VMS [23]. With
an unwind statement, it is conceivable to eliminate throwing and
have only resuming propagation, where the handler determines
whether to unwind the stack. Unfortunately, the absence of
throwing precludes the source from forcing unwinding, and con-
sequently, opens the door for unsafe resumption.

In an EHM where throwing and resuming coexist, it is possi-
ble to partially override their semantics by raising events within
a handler, as in:
try { . . . resume E1; try { . . . throw E1;
} catch( E1 ) throw E2; } catch( E1 ) resume E2;

In the left example, the throw overrides the resuming and forces
stack unwinding, starting with the stack frame of the handler
(frame on the top of the stack), followed by the stack frame of
the block that originally resumed the exception. In the right
example, the resume cannot override the throwing because the
stack frames are already unwound, so the new resume starts with
the handler stack frame.

Two approaches for binding throwing or resuming propaga-
tion to an exception are available: binding when declaring the
exception or when raising the event. Associating the propaga-
tion mechanism at exception declaration forces a partitioning
of exceptions, as in Goodenough [2] with ESCAPE and NOTIFY,

� System [18] with exceptions and interventions, and Excep-
tional C [13] with exceptions and signals. A single overloaded
raise statement is sufficient as the exception determines the prop-
agation mechanism. Alternatively, the exception declaration is
general and binding occurs when raising the event, which re-
quires a throw and a resume statement to indicate the particular
mechanism. Hence, the same exception can be thrown or re-
sumed at different times. We know of no actual EHM allowing
general exceptions to be either thrown or resumed.

8 PROPAGATION MODELS

The propagation mechanism determines how to find a handler,
and most EHMs adopt dynamic propagation, which searches the
call stack to find a handler. The other propagation mechanism is
static propagation, which searches the lexical hierarchy. Static
propagation was proposed by Knudsen [24], [25], and his work
has been largely ignored in the EHM literature. As a result,
dynamic propagation is often known as propagation.

8.1 Dynamic Propagation

Dynamic propagation allows the handler clause bound to the top
block on the call stack to handle the event, provided it has an ap-
propriate handler. A consequence is that the event is handled by
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a handler closest to the block where propagation of the event
starts. Usually, operations higher on the stack are more specific
while those lower on the call stack are more general. Handling
an exception at the highest level deals with the exception in a
context that is more specific, without affecting the abstract oper-
ation at a lower level. Handling an exception is often easier in a
specific context than in a general context. Dynamic propagation
also minimizes the amount of stack unwinding when (dynami-
cally) throwing an event.

However, there are criticisms against dynamic propagation:
visibility problem, dynamic handler selection, and recursive re-
suming. These criticisms are discussed before looking at static
propagation, a proposal intended to solve the problems of dy-
namic propagation.

8.1.1 Visibility

Dynamic propagation can propagate an exception into a block
in a different lexical scope, as in the examples in Section 6.5. In
this case, the exception is propagated through a scope where it
is invisible and then back into a scope where it is visible. It has
been suggested this semantics is undesirable because a routine
is indirectly propagating an exception it does not know [26].
Some language designers believe an exception should never be
is propagated into a scope where it is invisible, or if allowed,
the exception should lose its identity and be converted into a
general failure exception. However, we have demonstrated the
reuse restrictions resulting from complete prevention and loss
of specific information for conversion when these semantics are
adopted (see end of Section 6.5).

8.1.2 Dynamic Handler Selection

With dynamic propagation, the handler chosen for an excep-
tion cannot usually be determined statically, due to conditional
code or calls to precompiled routines raising an event. Hence, a
programmer seldom knows statically which handler is selected,
making the program more difficult to trace and the EHM harder
to use [6], [8], [24], [26].

However, when raising an exception it is rare to know what
specific action is taken; otherwise, it is unnecessary to define the
handler in a separate place, i.e., bound to a guarded block lower
on the call stack. Therefore, the uncertainty of a handling ac-
tion when an event is raised is not introduced by a specific EHM
but by the nature of the problem and its solution. For example,
a library normally declares exceptions and raises them without
providing any handlers; the library client provides the specific
handlers for the exception in their applications. Similarly, the
return code technique does not allow the library writer to know
the action taken by a client. When an EHM facility is used cor-
rectly, the control flow of propagation and the side-effects of
handlers should be understandable.

8.1.3 Recursive Resuming

Because resuming propagation does not unwind the stack, han-
dlers defined in previous scopes continue to be present during
resuming propagation. In throwing propagation, the handlers in
previous scopes disappear as the stack is unwound. The pres-
ence of resuming handlers in previous scopes can cause a situ-
ation called recursive resuming. The simplest situation where

recursive resuming can occur is when a handler for a resuming
exception resumes the same event, as in:
try { . . . resume R; . . . // T(H(R)) => try block handles R
} catch( R ) resume R; // H(R) => handler for R

The try block resumes R. Handler H is called by the resume, and
the blocks on the call stack are:
. . . � T(H(R)) � H(R)

Then H resumes exception R again, which finds the handler just
above it at T(H(R)) and calls handler H(R) again and this continues
until the runtime stack overflows. Recursive resuming is similar
to infinite recursion, and is difficult to discover both at compile
time and at runtime because of the dynamic choice of a handler.
Asynchronous resuming compounds the difficulty because it can
cause recursive resuming where it is impossible for synchronous
resuming.

MacLaren briefly discussed the recursive resuming problem
in the context of PL/I [8, p. 101], and the problem exists in Ex-
ceptional C and � System. Mesa made an unsuccessful attempt
to solve this problem because its solution is often criticized as
incomprehensible. The Mesa and other possible solutions are
discussed in Section 14.

8.2 Static Propagation

Knudsen proposed a static propagation mechanism [24], [25],
with the intention of resolving the dynamic propagation prob-
lems, using a handler based on Tennent’s sequel construct [27,
p. 108]. A sequel is a routine, including parameters; however,
when a sequel terminates, execution continues at the end of the
block in which the sequel is declared rather than after the sequel
call. Thus, handling an exception with a sequel adheres to the
termination model. However, propagation is along the lexical
hierarchy, i.e., static propagation, because of static name bind-
ing. Hence, for each sequel call, the handling action is known
at compile time. Finally, Knudsen augments the sequel with
virtual and default sequels to deal with controlled cleanup, but
points out that mechanisms suggested in Section 6.1 can also be
used [25, p. 48].

While static propagation is feasible for monolithic programs,
it fails for modular (library) code as the static context of the
module and user code are disjoint, e.g.:
{ // new block

sequel StackOverflow(. . .) { . . . }
class stack {

void push( int i ) { . . . raise StackOverflow(. . .); }
. . .

};
stack s;
. . . s.push( 3 ); // causes overflow

} // sequel transfers to end of lexical scope

if stack is separately compiled, StackOverflow cannot be refer-
enced in the user’s code. To overcome this problem, a sequel
can be made a parameter of stack, e.g.:
class stack { // separately compiled

stack( sequel overflow(. . .) ) { . . . } // constructor
void push( int i ) { . . . raise overflow(. . .); }

};
{ // separately compiled

sequel StackOverflow(. . .) { . . . }
stack s( StackOverflow );
. . . s.push( 3 ); // causes overflow

} // sequel transfers to end of lexical scope
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In static propagation, every exception raised during a rou-
tine’s execution is known statically, i.e., the static context and/or
sequel parameters form the equivalent of an exception list (see
Section 6.5). However, when sequels become part of a class’s
or routine’s type signature, reuse is inhibited, as for exception
lists. Furthermore, declarations and calls now have potentially
many additional arguments, even if parameter defaults are used,
which results in additional execution cost on every call. Inter-
estingly, the dynamic handler selection issue is resolved only for
monolithic programs; when sequels are passed as arguments, the
selection becomes dynamic, i.e., the raise point does not know
statically which handler is chosen, but it does eliminate the prop-
agation search. Finally, there is no recursive resuming because
there is no special resumption capability; resumption is achieved
by explicitly passing fix-up routines and using normal routine
call, which is available in most languages. However, passing
fix-up routines has the same problems as passing sequel rou-
tines. Essentially, if users are willing to explicitly pass sequel
arguments, they are probably willing to pass fix-up routines.

Finally, Knudsen shows several examples where static prop-
agation provides syntax and semantics superior to traditional
dynamic EHMs (e.g., CLU/Ada). However, with advanced
language features like generics and overloading, and advanced
EHM features suggested in this paper, it is possible to achieve
almost equivalent syntax and semantics in all cases. For these
reasons, static propagation is rejected for an EHM, in favour of
the more powerful and expressive dynamic propagation.

9 HANDLER CONTEXT

The static context of a handler is examined with respect to its
guarded block and lexical context.

9.1 Guarded Block

The static context of handlers is different in C++ and Ada. A
C++ handler executes in a scope outside its guarded block, while
an Ada handler is nested inside its guarded block, and hence, can
access variables declared in it, e.g.:
int x; // outer
try {

int x; // inner
} catch( . . . ) {

x = 0; // outer x
}

VAR x : INTEGER; -- outer
BEGIN

VAR x : INTEGER; -- inner
EXCEPTION WHEN Others =>

x := 0; -- inner x
END;

By moving the handler and possibly adding another nested
block, the same semantics can be accomplished in either lan-
guage, as long as a handler can be associated with any nested
block. According to [20], the approach in C++ can lead to better
use of registers. Because one approach can mimic the other, lo-
cal declarations in a guarded block are assumed to be invisible
in the handler.

9.2 Lexical Context

Resuming a handler is like calling a nested routine, which re-
quires the lexical context for the handler to access local variables
in its static scope. In general, languages with nested routines
(or classes) use lexical links among activation records, which
are traversed dynamically for global references. Compilers of-
ten attempt to optimize lexical links for performance reasons,

handler

f(false)

nested()

f(true)

stack
growth

lexical
link

call

nested1()

f(false,nested1)

nested2()

f(true,NULL)

Fig. 2. Lexical Contexts

which can complicate resumption. For termination, when the
stack is unwound immediately, lexical links are unnecessary. If
unwinding occurs during or after the handler is executed, it may
be necessary to ignore extraneous stack contexts, which would
cause incorrect references or recursive resuming.

The lexical context for resuming handlers has been cited as a
source of confusion and complexity [13, p. 833] [17, pp. 391-
392], which occurs with either statically or dynamically bound
handlers. Confusion results from unexpected values being ac-
cessed due to differences between static and dynamic contexts,
and complexity from the need for lexical links. However, both
these issues are related to nesting and not specific to an EHM.
The following examples generate identical dynamic situations
(see Figure 2):
void f( bool x, void (*r)() ) {

void nested1() {. . .}
void nested2() {

f( ! x, nested1 );
}
if ( x ) nested2();
else r();

}

void f( bool x ) {
void nested() {

try { f( ! x );
} catch( E ) . . .;

}
if ( x ) nested();
else resume E;

}

The call to nested1 in the left example and the resuming handler
in the right example both have a lexical context of f(true. . .), so
both routines reference x with a value of true even though there is
an instance of f(false. . .) (i.e., x is false) directly above them on the
stack. As mentioned, this confusion and lexical links are an arti-
fact of nesting not the resumption model. We believe the number
of cases where this problem occurs are few. In languages with-
out nested routines, e.g., C/C++, these issues do not exist, but
the resuming handlers must then be specified separately from
the guarded block, affecting readability [13], [18], [19].

10 HANDLER PARTITIONING

An EHM can force a handler to bind to one handling model at
compile time by declaring a terminating handler or a resuming
handler but never both, as in the left example in Figure 3. Here,
the general catch clause is replaced by the specific terminate and
resume clauses, which only handle exception e if it is thrown or
resumed, respectively. Hence, handlers are partitioned accord-
ing to the handling model. The EHMs in Exceptional C [13] and

� System [18] have handler partitioning.
With handler partitioning, a handling model is determined by

the time a handler is chosen, i.e., at the end of the propagation.
However, the choice of handling model can be further delayed
as mentioned in Section 7. The handler can decide how to han-
dle the exception depending on the information passed to the
handler or by checking the global context, as shown in the right
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// partitioned // not partitioned
try { . . . try { . . .
} terminate( E e ) { } catch( E e ) {

if ( ! resumable ) {
cleanup( e ); cleanup( e ); unwind;

} resume( E e ) { } else
recover( e ); recover( e );

} }

Fig. 3. Handler Partitioning

example of Figure 3. The VMS and the Beta [28] exception
handling systems are two examples of this approach. Obviously,
more flexible handlers can be written without handler partition-
ing.

11 EXCEPTION PARTITIONING

This section discusses two issues about exception partitioning:
partitioning of exceptions into categories throw-only, resume-
only and dual, and implications of partitioning on derived ex-
ceptions.

11.1 Partitioning Categories

An exception can be tied to a particular propagation mechanism
at declaration [2, p. 688]. A consequence is the partitioning of
exceptions. An exception can be declared to be throw-only or
resume-only, if it can be only thrown or only resumed respec-
tively, or dual if it can be either thrown or resumed. Without
partitioning, every exception becomes dual if the EHM supports
throwing and resuming.

The declaration should reflect the nature of the abnormal con-
dition causing the event being raised. For example, Unix signals
SIGBUS or SIGTERM always lead to termination of an operation,
and hence, should be declared as throw-only. Indeed, having
throw-only and resume-only exceptions can remove the mistake
of using the wrong handling or propagation mechanism.

Having dual exceptions in addition to throw-onlyand resume-
only enhances the EHM programmability in several ways. First,
encountering an abnormal condition can lead to resuming an ex-
ception or throwing one depending on the execution context.
Without dual exceptions, two different exceptions must be de-
clared, one being resume-only and the other throw-only. These
two exceptions are apparently unrelated without a naming con-
vention; using a single dual exception is simpler. Next, using a
dual exception instead of resume-only for some abnormal con-
ditions allows a resumed event to be thrown when no resuming
handler is found to handle it. This effect can be achieved through
a default resuming handler that throws the exception. A resume-
only exception cannot be thrown. Finally, always restricting one
raising mechanism to one exception has its drawbacks. Suppose
a throw-only exception is declared in a library and a client of
the library wants to resume it, or vice versa. The problem is
that throw-only and resume-only exceptions lack the flexibility
of dual, and flexibility improves reusability.

11.2 Derived Exception Implications

With derived exceptions and partitioned exceptions, there is the
issue of deriving one kind from the other, say resume-only from

dual, called heterogeneous derivation. If the derivation is re-
stricted to exceptions of the same kind it is called homogeneous
derivation.

Homogeneous derivation is straightforward and easy to un-
derstand. Heterogeneous derivation is complex but more flexi-
ble because it allows deriving from any kind of exception. With
heterogeneous derivation, it is possible to have all exceptions in
one hierarchy.

The complexity with heterogeneous derivation comes from
the following heterogeneous derivations:

parent throw resume dual dual throw resume

derived resume throw resume throw dual dual

option 1 2 3

In option 1, the kind of exception is different when the derived
exception is raised and the parent is caught. If a resume-only
exception is caught by a throw-only handler, it could unwind
the stack, but that invalidates resumption at the raise point. If
a throw-only exception is caught by a resume-only handler, it
could resume the event, but that invalidates the termination at the
raise point. In option 2, problems occur when the dual excep-
tion attempts to perform an unwind or resume on an exception
of the wrong kind, resulting in the option 1 problems. In option
3, there is neither an obvious problem nor advantage if the dual
exception is caught by the more specific parent. In most cases, it
seems that heterogeneous derivation does not simplify program-
ming and may confuse programmers; hence, it is rejected as a
useful feature.

12 MATCHING HANDLING

Section 5 identifies two handling models, termination and re-
sumption, as retrying is a special form of the termination model.
Section 7 identifies two propagation mechanisms, throwing and
resuming. These mechanisms are orthogonal, and hence, lead to
four possible situations in an EHM, as in:

terminating handler resuming handler

throwing 1. matching 2. unmatching
resuming 3. unmatching 4. matching

Up to now, matching has been assumed between handling model
and propagation mechanism, i.e., termination matches with
throwing and resumption with resuming. However, the other
two possibilities (options 2 and 3) must be examined to deter-
mine if there are useful semantics. In fact, this discussion paral-
lels that for heterogeneous derivation.

In option 2, when an exception is thrown, the stack is immedi-
ately unwound and the operation cannot be resumed. Therefore,
a resuming handler handling a thrown exception cannot resume
the terminated operation. This semantics is misleading and dif-
ficult to understand, possibly resulting in an error long after the
handler returns, because an operation throwing an exception ex-
pects a handler to provide an alternative for its guarded block,
and a resuming handler catching an exception expects the oper-
ation raising it to continue. Therefore, unmatching handling of
a thrown exception is largely an unsafe feature and is rejected.

In option 3, when an exception is resumed, the stack is not
unwound so a terminating handler has four possibilities. First,
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the stack is not unwound and the exception is handled with the
resumption model, i.e., the termination is ignored. Second, the
stack is unwound only after the handler executes to completion.
Third, the stack is unwound by executing a special statement
during execution of the handler. Fourth, the stack is unwound af-
ter finding the terminating handler but before executing it. The
first option is unsafe because the terminating handler does not
intend to resume, and therefore, it does not correct the problem
before returning to the raise point. The next two options can
result in recursive resuming in the terminating handler because
of outstanding handlers on the unwound stack. The problems
can be avoided by the fourth option, which unwinds the stack
before executing the handler, essentially handling the resumed
exception as a thrown one. It also simplifies the task of writ-
ing a terminating handler because a programmer does not have
to be concerned about unwinding the stack explicitly, or lexi-
cal scoping problems and side-effects from terminated blocks
if the stack is unwound inside or after the terminating handler.
Because of its superiority over the other two options favouring
termination, the last option is the best semantics for unmatching
handling of resumed exception (but is still questionable).

In matching handling, it is possible to determine what model
is used to handle a raised exception (and the control flow) by
knowing either how an exception is raised or which handler is
chosen. Abstracting the resumption model and the termination
model are done in a symmetric fashion. The same cannot be said
about unmatching handling. In particular, it is impossible to tell
whether a resumed exception is handled with the resumption
model without knowing which handler catches it, but a thrown
exception is always handled with the termination model. Hence,
throwing and resuming are asymmetric in unmatching handling.
Without knowing the handling model used for a resumed excep-
tion, it becomes more difficult to understand the resuming mech-
anism for unmatching handling than the throwing and resuming
mechanism for matching handling. Therefore, unmatching han-
dling is inferior to matching handling and is rejected.

13 HANDLER SELECTION

The propagation mechanism determines how handler clauses are
searched to locate a handler. It does not specify which handler in
a handler clause is chosen if there are multiple handlers capable
of catching the exception. This section discusses issues about
three orthogonal criteria — agreement, closeness and specificity
— for choosing a handler among those capable of handling a
raised exception.

13.1 Three Orthogonal Criteria

A handler clause can have several handlers capable of handling
a raised event. A handler clause can handle both a derived and
parent exception; it can also have a handler for an exception with
and without the bound/conditional property.

The agreement criteria selects a handler that matches with the
propagation mechanism. Agreement only applies for an EHM
with the two distinct propagation mechanisms and handler par-
titioning.

The closeness criteria chooses the closest handler on the stack
capable of handling an exception. A handler is closer than an-

other if its handler clause is located prior to others based on a
given propagation mechanism.

The specificity criteria implies an eligible handler is more spe-
cific than another (in any handler clause) if: 1) both handle
the same exception and the former applies conditional handling
while the other does not, or 2) the former handles an excep-
tion derived from the one handled by the latter, and both these
handlers handle the exception unconditionally or conditionally
(where all conditions have the same ranking). It is sometimes
infeasible to tell which handler in a handler clause is more spe-
cific. In particular, a handler for an exception E and a conditional
handler for an ancestor of E are equally specific.

A language designer has to set priorities among these three
orthogonal criteria and there are 6 ( ����� ) possible ways to order
them. In addition, the priority of handling a thrown exception is
orthogonal to that of a resumed one, so there are actually 36 (6 � )
possible ways to define how to select a handler. Instead of look-
ing at individual selecting schemes, it is sufficient to examine
just the priorities.

13.2 Prioritizing the Criteria

Agreement should have the highest priority, when applicable,
because matching handling is safe, consistent and comprehen-
sible (see Section 12). A consequence of mandatory agreement
is a terminating handler hierarchy for thrown exceptions and a
resuming handler hierarchy for resumed ones. With separate
handler hierarchies, it is reasonable for an exception to have
both a default terminating handler and resuming handler (see
Section 6.3 concerning default handlers). It is still possible for
a default resuming handler to override resuming (see Section 7)
and throw an exception in the terminating hierarchy. Overriding
does not violate mandatory agreement because of the explicit
throw in the handler. If there is no default handler in either case,
the runtime system must take some appropriate action, usually
terminating the execution.

Closeness should have the next highest priority for the reasons
given in Section 8.1, i.e., handling an exception at the highest
level deals with the condition in a context that is more specific,
where maximum information exists.

Specificity is good, but comes after closeness to ensure a han-
dler can protect an exception from propagating out of a guarded
block. In the following, assume exception E2 is derived from E1

and specificity has higher priority than closeness:
try {

try { . . . throw E2; . . . // E2 is derived from E1
} catch( E1 ) . . . // parent handler

} catch( E2 ) . . . // exact handler

then the handler for E2 is chosen, not the one for E1, which
means E2 is propagated out of the inner guarded block. As ex-
ception derivation cannot be anticipated in general, no handler
can guarantee to handle an exception and prevent it from prop-
agating further and affecting a more abstract operation. Indeed,
a library routine working perfectly if called by one client rou-
tine can behave differently if called by a different client routine
because the client routine sets up its handlers differently. This
semantics is a trap for programmers and potentially breaks ab-
straction. In addition, before committing to a particular handler,
the runtime system has to search all handler clauses for an exe-
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cution to ensure a more specific handler is not available.
The only exception to this strict prioritization is when two

handlers in the same handler clause are equally specific for a
raised exception, requiring additional criteria to resolve the am-
biguity. The most common one is the position of a handler in
a handler clause, e.g., select the first matching handler found
in the handler-clause list. Whatever this additional criteria is, it
should be applied to resolve ambiguity only after using the other
three ordering criteria.

14 PREVENTING RECURSIVE RESUMING

Recursive resuming (see Section 8.1.3) is the only legitimate
criticism of resuming propagation. Mesa probably has the only
EHM that attempts to solve this problem [12, p. 143]. The rest
of this section looks at the solution in Mesa and other possible
solutions.

14.1 Mesa Propagation

Mesa propagation prevents recursive resuming by not reusing an
unhandled handler bound to a specific called block, i.e., once a
handler for a block is entered it is marked as unhandled and not
used again. The propagation mechanism always starts from the
top of the stack to find an unmarked handler for a resume excep-
tion.1 However, this unambiguous semantics is often described
as confusing.

The following program demonstrates how Mesa solves recur-
sive resuming:
void test() {

try { // T1(H1(R2))
try { // T2(H2(R1))

try { resume R1; // T3(H3(R2))
} catch( R2 )resume R1; // H3(R2)

} catch( R1 ) resume R2; // H2(R1)
} catch( R2 ) . . . // H1(R2)

}

The following stack frame is generated at the point when excep-
tion R1 is resumed from the innermost try block:
test � T1(H1(R2)) � T2(H2(R1)) � T3(H3(R2)) � H2(R1)

The potential infinite recursion occurs because H2(R1) resumes
R2, and there is resuming handler H3(R2), which resumes R1,
while handler H2(R1) is still on the stack. Hence, handler body
H2(R1) calls handler body H3(R2) and vice versa with no case to
stop the recursion.

Mesa prevents the infinite recursion by marking an unhandled
handler as ineligible (in bold), resulting in:
test � T1(H1(R2)) � T2(H2(R1)) � T3(H3(R2)) � H2(R1)

Now, H2(R1) resumes R2, which is handled by H3(R2):
test � T1(H1(R2)) � T2(H2(R1)) � T3(H3(R2)) � H2(R1) � H3(R2)

Therefore, when H3(R2) resumes R1 no infinite recursion occurs
as the handler for R1 in T2(H2(R1)) is marked ineligible.

However, the confusion with the Mesa semantics is that there
is now no handler for R1, even though the nested try blocks ap-
pear to deal with this situation. In fact, looking at the static
structure, a programmer might incorrectly assume there is an
infinite recursion between handlers H2(R1) and H3(R2), as they
resume one another. This confusion has resulted in a reticence

�

This semantics was determined with test programs and discussions with
Michael Plass and Alan Freier at Xerox Parc.

by language designers to incorporate resuming facilities in new
languages. In detail, the Mesa semantics has the following neg-
ative attributes:

� Resuming an exception in a block and in one of its handlers
can call different handlers, even though the block and its han-
dlers are in the same lexical scope. For instance, in the above
example, an exception generated in a guarded block is han-
dled by handlers at or below the block on the stack, but an
exception generated in a handler body can be handled by han-
dlers above it on the stack. Clearly, lexical scoping does not
reflect the difference in semantics.� Abstraction implies a routine should be treated as a client of
routines it calls directly or indirectly, and have no access to
the implementations it uses. However, if resuming from a
resuming handler is a useful feature, some implementation
knowledge about the handlers bound to the stack above it
must be available to successfully understand how to make cor-
rections, thereby violating abstraction.� Finally, exceptions are designed for communicating abnor-
mal conditions from callee to caller. However, resuming an
exception inside a resuming handler is like abnormal condi-
tion propagating from caller to callee because of the use of
handlers above it on the stack.

14.2 New Propagation Scheme

A new propagation mechanism for solving the recursive resum-
ing problem, but without the Mesa problems, is presented. Fur-
ther, the mechanism is extended to cover asynchronous excep-
tions, which Mesa does not have. Before looking at the new
mechanism, the concept of consequent events is defined, which
helps to explain why the semantics of the new mechanism are
desirable.

14.2.1 Consequent Events

Raising an exception synchronously implies an abnormal con-
dition has been encountered. A handler can catch an event and
then raise another synchronous event if it encounters another ab-
normal condition, resulting in a second synchronous exception.
The second event is considered a consequent event of the first.
More precisely, every synchronous event is an immediate con-
sequent event of the most recent exception being handled in the
execution (if there is one). For example, in the previous Mesa
resuming example, the consequence sequence is R1, R2, and R1.
Therefore, a consequent event is either the immediate conse-
quent event of an event or the immediate consequent event of an-
other consequent event. The consequence relation is transitive,
but not reflexive. Hence, synchronous events propagated when
no other events are being handled are the only non-consequent
events.

An asynchronous exception is not a consequent event of other
exceptions propagated in the faulting execution because the con-
dition resulting in the event is encountered by the source execu-
tion, and in general, not related to the faulting execution. Only a
synchronous event raised after an asynchronous event is a con-
sequent event of the asynchronous event.
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14.2.2 Consequential Propagation

A new propagation mechanism is proposed, called consequen-
tial propagation, based on the premise that if a handler cannot
handle an event, it should not handle its consequent events, ei-
ther. Conceptually, the propagation searches the execution stack
in the normal way to find a handler, but marks as ineligible all
handlers inspected, including the chosen handler. Marks are
cleared only when an event is handled, so any consequent event
raised during handling also sees the marked handlers. Practi-
cally, all resuming handlers at each level are marked when re-
suming an event; however, stack unwinding eliminates the need
for marking when throwing an event. Agreement eliminates the
need to mark terminating handlers because only resuming han-
dlers catch resume events. If the resuming handler overrides the
propagation by throwing, the stack is unwound normally from
the current handler frame.

How does consequential propagation make a difference?
Given the previous Mesa runtime stack:

test � T1(H1(R2)) � T2(H2(R1)) � T3(H3(R2)) � H2(R1)

consequential propagation marks all handlers between the raise
of R1 in T3(H3(R2)) to T2(H2(R1)) as ineligible (in bold):

test � T1(H1(R2)) � T2(H2(R1)) � T3(H3(R2)) � H2(R1)

Now, H2(R1) resumes R2, which is handled by H1(R2) instead of
H3(R2).

test � T1(H1(R2)) � T2(H2(R1)) � T3(H3(R2)) � H2(R1) � H1(R2)

Like Mesa, recursive resuming is eliminated, but consequential
propagation does not result in the confusing resumption of R1

from H3(R2). In general, consequential propagation eliminates
recursive resuming because a resuming handler marked for a
particular event cannot be called to handle its consequent events.
As well, propagating a synchronously resumed event out of a
handler does not call a handler bound to a stack frame between
the handler and the handler body, which is similar to a thrown
event propagated out of a guarded block because of stack un-
winding.

Consequential propagation does not preclude all infinite re-
cursion with respect to propagation, as in:

void test() {
try { . . . resume R; . . . // T(H(R))
} catch( R ) test(); // H(R)

}

Here, each call of test creates a new try block to handle the next
recursion, resulting in an infinite number of handlers:

test � T(H(R)) � H(R) � test � T(H(R)) � H(R) � test � . . .

As a result, there is always an eligible handler to catch the next
event in the recursion. Consequential propagation is not sup-
posed to handle this situation as it is considered an error with
respect to recursion not propagation.

Finally, consequential propagation does not affect throwing
propagation, because marked resuming handlers are simply re-
moved during stack unwinding. Hence, the application of con-
sequential propagation is consistent with either throwing or re-
suming. As well, because of partitioning, a terminating handler
for the same event bound to a prior block of a resuming handler
is still eligible, as in:

void test() {
try { . . . resume R; . . . // T(r(R),t(R))
} terminate( R ) . . . // t(R)

resume( R ) throw R; // r(R)
}

Here, the resume of R in the try block is handled by the spe-
cific handler resume( R ), which then throws the exception and it
is handled by the specific handler terminate( R ), resulting in the
following call stack:
test � T(r(R),t(R)) � r(R) � t(R)

Notice, the resuming handler for R is marked ineligible during
the resume of R, and the terminating handler for the same try

block is still eligible to handle the throw of R.
All handlers are considered unmarked for a propagated asyn-

chronous event because an asynchronous event is not a conse-
quent event. Therefore, the propagation mechanism searches
every handler on the runtime stack. Hence, a handler ineligible
to handle an event and its consequent events can be chosen to
handle a newly arrived asynchronous event, reflecting its lack of
consequentiality.

In summation, consequential propagation is better than other
existing propagation mechanisms because:

� it supports throwing and resuming propagation, and the
search for a handler occurs in a uniformly defined way,� it prevents recursive resuming and handles synchronous and
asynchronous exceptions according to a sensible consequence
relation among exceptions,� the context of a handler closely resembles its guarded block
with respect to lexical location; in effect, an event propagated
out of a handler is handled as if the event is directly propa-
gated out of its guarded block.

15 MULTIPLE EXECUTIONS AND THREADS

The presence of multiple executions and multiple threads has
an impact on an EHM. In particular, each execution has its own
stack on which threads execute, and the different threads can
carry out the various operations associated with handling a sin-
gle exception. For example, the thread of the source execution
raises an exception in the faulting execution executed by another
thread, which finally propagates and handles it.

15.1 Coroutine Environment

Coroutining represent the simplest execution environment
where the source execution can be different from the faulting
execution, but the thread of a single task executes both source
and faulting execution. In theory, either execution can propagate
the event, but in practice, only the faulting execution is reason-
able. Assume the source execution propagates the event in the
following:
try { // T1(H1(E1))

try { EX1 (suspended) // T2(H2(E2))
} catch( E2 ) . . . // H1(E2)

} catch( E1 ) . . . // H2(E1)

and execution EX1 is suspended in the guarded region T2. While
suspended, a source execution EX2 raises and propagates an
asynchronous exception E1 in EX1, which directs control flow
of EX1 to handler H2(E1), unwinding the stack in the process.
While EX1 is still suspended, a third source execution EX3 raises
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and propagates another asynchronous exception E2 (EX2 and EX3

do not have to be distinct). Hence, control flow of EX1 goes to
another handler determined in the dynamic context, further un-
winding the stack. The net effect is that neither of the exceptions
is handled by any handler in the program fragment.

The alternative approach is for the faulting execution, EX1, to
propagate the exceptions. Regardless of which order EX1 raises
the two arriving events, at least a handler for one of the events is
called. Because of the potential for confusion, only the faulting
execution should propagate an exception in an environment with
multiple executions.

15.2 Concurrent Environment

Concurrency represents the complex execution environment
where the separate source and faulting executions are executed
by the threads of different tasks. In theory, either execution can
propagate the event, but in practice, only the faulting execution
is reasonable. If the source execution propagates the event, it
must change the faulting execution, including the runtime stack
and program counter. Consequently, the runtime stack and the
program counter become shared resources between tasks, mak-
ing a task’s execution dependent as other task’s execution in a di-
rect way, i.e., not through communication. To avoid corrupting
an execution, locking is now required. Hence, an execution must
lock its own runtime stack before execution and blocking, re-
spectively. Obviously, this approach generates a large amount of
superfluous lockings to deal with a situation that occurs rarely.
Therefore, it is reasonable to allow only the faulting execution to
propagate an exception in an environment with multiple tasks.

15.3 Real-Time Environment

In the design and implementation of real-time programs, various
timing constraints are guaranteed through the use of schedul-
ing algorithms, as well as an EHM. Exceptions are extremely
crucial in real-time systems, e.g, deadline expiry or early/late
starting exceptions, as they allow a system to react to abnormal
situations in a timely fashion. Hecht [29] demonstrated, through
various empirical studies, that the introduction of even the most
basic fault-tolerance mechanisms into a real-time system drasti-
cally improves its reliability.

The main conflict between real-time and an EHM is the need
for constant-time operations and the dynamic choice of a han-
dler [30]. As pointed out in Section 8.1.2, the dynamic choice
of a handler is crucial to an EHM, and therefore, it may be im-
possible to resolve this conflict. At best, exceptions may only
be used in restricted ways in real-time systems when a bound
can be established on call stack depth and the number of active
handlers, which indirectly puts a bound on propagation.

16 ASYNCHRONOUS EVENTS

The protocol for communicating asynchronous events among
coroutines and tasks is examined.

16.1 Communication

Because only the faulting execution should propagate an event
and directly alter control flow, the source must inform the fault-
ing execution to propagate an event. This requires a form of di-

rect communication not involving any shared object. In essence,
an event is transmitted from the source to the faulting execution.

There are two major categories of direct communication:
blocking and non-blocking. In the first, the sender blocks un-
til the receiver is ready to receive the event; in the second, the
sender does not block. In both cases, the receiver is blocked if
the sender has yet to send an event.

16.1.1 Source Execution Requirement

Using blocking communication, the source blocks until the
faulting execution executes a complementary receive. However,
an execution may infrequently (or never) check for incoming
events. Hence, the source can be blocked for an extended pe-
riod of time waiting for the faulting execution to receive the ex-
ception event. Therefore, blocking communication is rejected.
Only non-blocking communication allows the source to raise an
exception on one or more executions without suffering an ex-
tended delay.

16.1.2 Faulting Execution Requirement

Non-blocking communication for exceptions is different from
ordinary non-blocking communication. In the latter case, a mes-
sage is delivered only after the receiver executes some form of
receive. The former requires the receiver to receive an exception
event without explicitly executing a receive because an EHM
should preclude checking for an abnormal condition. The pro-
grammer is required to set up a handler only to handle the rare
condition. From the programmer’s perspective, the delivery of
an asynchronous exception is transparent. Therefore, the under-
lying system must poll for the arrival of such an exception, and
propagate it on arrival. The delivery of asynchronous exceptions
must be timely, but not necessarily immediate.

There are two polling strategies: explicit polling and implicit
polling. Explicit polling requires the programmer to insert ex-
plicit code to activate the polling. Implicit polling is performed
by the underlying system. (Hardware interrupts involve implicit
polling because the CPU automatically polls for the event.)

Explicit polling gives a programmer control over when an
asynchronous exception can be raised. Therefore, the program-
mer can delay, or even completely ignore pending asynchronous
exceptions. Delaying and ignoring asynchronous exceptions are
both undesirable. The other drawback of explicit polling is that
a programmer has to worry about when to and when not to poll,
which is equivalent to explicitly checking for exceptions.

Implicit polling alleviates programmers from polling, and
hence, provides an apparently easier interface to programmers.
On the other hand, implicit polling has its own drawbacks.
First, infrequent implicit polling can delay the handling of asyn-
chronous exceptions; polling too frequently can deteriorate the
runtime efficiency. Without specific knowledge of a program,
it is difficult to have the right frequency for implicit polling.
Second, implicit polling suffers the non-reentrant problem (dis-
cussed next).

Unfortunately, an EHM with asynchronous exceptions needs
to employ both implicit and explicit polling. Implicit polling
simplifies using the EHM and reduces the damage a program-
mer can do by ignoring asynchronous exceptions. However, the
frequency of implicit polling should be low to avoid unnecessary
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loss of efficiency. Explicit polling allows programmers to have
additional polling when it is necessary. The combination of im-
plicit and explicit polling gives a balance between programma-
bility and efficiency. Finally, certain situations require any im-
plicit polling to be turned off, possibly by a compiler or runtime
switch, e.g., low-level system code where execution efficiency
is crucial or real-time programming to ensure deadlines.

16.2 Non-Reentrant Problem

Asynchronous events introduce a form of concurrency into se-
quential execution because delivery is non-deterministic with
implicit polling. The event delivery can be thought as temporar-
ily stealing a thread to execute the handler. As a result, it is pos-
sible for a computation to be interrupted while in an inconsistent
state, a handler found, and the handler recursively calls the in-
consistent computation, called the non-reentrant problem. For
example, while allocating memory, an execution is suspended
by delivery of an asynchronous event, and the handler for the
exception attempts to allocate memory. The recursive entry of
the memory allocator may corrupt its data structures.

The non-reentrant problem cannot be solved by locking the
computation, because either the recursive call deadlocks on the
second call or for recursive locks, reenters and corrupts the data.
To ensure the correctness of a non-reentrant routine, the execu-
tion must block the delivery, and consequently the propagation,
of asynchronous exceptions, hence temporarily precluding de-
livery.

Hardware interrupts are also implicitly polled by the CPU.
The non-reentrant problem can occur if the interrupt handler en-
ables the interrupt and recursively calls the same computation
as has been interrupted. However, because hardware interrupts
can happen at times when asynchronous exceptions cannot, it is
more difficult to control delivery.

16.3 Disabling Asynchronous Exceptions

Because of the non-reentrant problem, facilities must exist to
disable asynchronous exceptions. There are two aspects to dis-
abling: the specific event to be disabled and the duration of dis-
abling. (This discussion is also applicable to hardware interrupts
and interrupt handlers.)

16.3.1 Specific Event

Without derived exceptions, only the specified exception is dis-
abled; with derived exceptions, the exception and all its descen-
dants can be disabled. Disabling an individual exception but not
its descendents, called individual disabling, is tedious as a pro-
grammer must list all the exceptions being disabled, nor does it
complement the exception hierarchy. If a new derived exception
should be treated as an instance of its ancestors, the exception
must be disabled wherever its ancestor is disabled. Individual
disabling does not automatically disable the descendents of the
specified exceptions, and therefore, introducing a new derived
exception requires modifying existing code to prevent it from
activating a handler bound to its ancestor. The alternative, hi-
erarchical disabling, disables an exception and its descendents.
The derivation becomes more restrictive because a derived ex-
ception also inherits the disabling characteristics of its parent.
Compared to individual disabling, hierarchical disabling is more

complex to implement and usually has a higher runtime cost.
However, the improvement in programmability makes hierar-
chical disabling attractive.

A different approach is to use priorities instead of hierarchical
disabling, allowing a derived exception to override its parent’s
priority when necessary. Selective disabling can be achieved
by disabling exceptions of priority lower than or equal to a
specified value. This selective disabling scheme trades off the
programmability and extensibility of hierarchical disabling for
lower implementation and runtime costs. However, the problem
with priorities is assigning priority values. Introducing a new
exception requires an understanding of its abnormal nature plus
its priority compared to other exceptions. Hence, defining a new
exception requires an extensive knowledge of the whole system
with respect to priorities, which makes the system less main-
tainable and understandable. It is conceivable to combine pri-
orities with hierarchical disabling; a programmer specifies both
an exception and a priority to disable an asynchronous excep-
tion. However, the problem of maintaining consistent priorities
throughout the exception hierarchy still exists. In general, prior-
ities are an additional concept that increases the complexity of
the overall system and are rejected.

Therefore, hierarchical disabling with derived exceptions
seems the best approach in an extensible EHM. Note that mul-
tiple derivation (see Section 6.2) only complicates hierarchical
disabling, and the same arguments can be used against hierar-
chical disabling with multiple derivation.

16.3.2 Duration

The duration for disabling could be specified by a time duration,
but normally the disabling duration is specified by a region of
code that cannot be interrupted. There are several mechanisms
available for specifying the region of uninterruptable code.

One approach is to supply explicit routines to turn on and off
the disabling for particular asynchronous exceptions. However,
the resulting programming style is like using a semaphore for
locking and unlocking, which is a low-level abstraction. Pro-
gramming errors result from forgetting a complementary call
and are difficult to debug.

An alternative is a new kind of block, called a protected block,
which specifies a list of asynchronous events to be disabled and
the associated region of code. On entering a protected block, the
listed of disabled asynchronous events is modified, and subse-
quently enabled when the block exits. The effect is like entering
a guarded block.

An approach suggested for Java [31] associates the disabling
semantics with an exception named AIE. If a member routine in-
cludes this exception in its exception list, interrupts are disabled
during execution of the member; hence, the member body is the
protected block. However, this approach is poor language de-
sign because it associates important semantics with a name, AIE,
and makes this name a hidden keyword.

The protected block seems the simplest and most consistent
in an imperative language with nested blocks. Regardless of
how asynchronous exceptions are disabled, all events (except
for special system events) should be disabled initially for an ex-
ecution; otherwise an execution cannot install handlers before
asynchronous events begin arriving.
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16.4 Multiple Pending Asynchronous Exceptions

Since asynchronous events are not serviced immediately, there is
the potential for multiple events to arrive between two polls for
events. There are several options for dealing with these pending
asynchronous events.

Asynchronous events do not have to be queued, so each ex-
ecution has a buffer for only one pending event. New events
would be are discarded after the first one arrives, or overwritten
as new ones arrive, or overwritten only for higher priority events.
However, the risk of losing an asynchronous event makes a sys-
tem less robust; hence queuing events is usually superior.

For queueing, the options are the service order of the list. The
order of arrival can be chosen to determine the service order of
handling pending events. However, a strict FIFO delivery order
may be unacceptable, e.g., an asynchronous event to stop an ex-
ecution from continuing erroneous computation can be delayed
for an extended period of time in a FIFO queue. A more flexible
semantics for handling pending exceptions is user-defined pri-
orities. However, Section 16.3 discusses how a priority scheme
reduces extensibility, making it inappropriate in an environment
emphasizing code reuse.

Therefore, FIFO order seems acceptable for its simplicity in
understanding and low implementation cost. However, allowing
a pending event whose delivery is disabled to prevent delivering
other pending events seems undesirable. Hence, an event should
be able to be delivered before earlier events if the earlier events
are disabled. This out of order delivery has important implica-
tions on the programming model of asynchronous exceptions. A
programmer must be aware of the fact that two exceptions hav-
ing the same source and faulting execution may be delivered out
of order (when the first is disabled but not the second). This ap-
proach may seem unreasonable, especially when causal ordering
is proved to be beneficial in distributed programming. However,
out of order delivery is necessary for urgent events. Currently,
the most adequate delivery scheme remains as an open problem,
and the answer may only come with experience.

16.5 Converting Interrupts to Exceptions

As mentioned, hardware interrupts can occur at any time, which
significantly complicates the non-reentrant problem. One tech-
nique that mitigates the problem is to convert interrupts into
language-level asynchronous events, which are then controlled
by the runtime system. Some interrupts target the whole pro-
gram, like abort execution, while some target individual exe-
cutions that compose a program, like completion of a specific
thread’s I/O operation. Each interrupt handler raises an appro-
priate asynchronous exception to the particular faulting execu-
tion or to some system execution for program faults. However,
interrupts must still be disabled when enqueueing and dequeu-
ing the asynchronous events to avoid the possibility of corrupt-
ing the queue by another interrupt or the execution processing
the asynchronous events. By delivering interrupts through the
EHM, the non-reentrant problem is avoided and interrupts dis-
able for minimal time. Furthermore, interrupts do not usually
have all the capabilities of an EHM, such as parameters; hence,
interrupts are not a substitute for a general EHM. Finally, the
conversion also simplifies the interface within the language. The

interrupts can be completely hidden within the EHM, and pro-
grammers only need to handle abnormal conditions at the lan-
guage level, which improves portability across systems. How-
ever, for hard real-time systems, it may still be necessary to have
some control over interrupts as they can invalidate timing con-
straints.

One final point about programming interrupt handlers is that
raising a synchronous exception within an interrupt handler is
meaningful only if it does not propagate outside of the handler.
The reason is that the handler executes on an arbitrary execution
stack, and hence, there is usually no relationship between the
interrupt handler and the execution. Indeed, Ada 95 specifies
that propagating a thrown event from an interrupt handler has
no effect.

17 CONCLUSIONS

Raising, propagating and handling an exception are the three
core control-flow mechanisms of an EHM. For safety, an EHM
should provide two raising mechanisms: throwing and resum-
ing. There are two useful handling models: termination and
resumption. Handlers should be partitioned with respect to
the handling models to provide a better abstraction. Excep-
tion parameters, homogeneous derivation of exceptions and
bound/conditional handling all improve programmability and
extensibility. In a concurrent environment, an EHM must pro-
vide some disabling facilities to solve the non-reentrant prob-
lem. Hierarchical disabling is best in terms of programmability
and extensibility. The new propagation mechanism proposed,
consequential propagation, solves the recursive resuming prob-
lem and provides consistent propagation semantics, making it
better than existing propagation mechanisms. As a result, the
resumption model becomes attractive and can be introduced into
existing termination-only EHMs. An EHM based on the ideas
presented in this paper has been implemented in � C++ [19], pro-
viding feedback on correctness. We plan to report on practical
experience in another paper.
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