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Abstract

Threads are widely supported by many operating systems and languages to allow
concurrency in both uni-processor and multi-processor architectures. They can be
used as a program structuring tool in the uni-processor environment or to accelerate
the execution of an application in the multi-processor environment. Unfortunately,
the actual behaviour of a multi-threaded program is often quite different from
expectations and frequently does not achieve desired performance.

Since good performance is important to users and performance tuning is not
easy, programmers need profiling tools to help them understand program execution
and find its hot spots and bottlenecks. Profiling tools usually contain several metrics
to let users select a metric or metrics that provide the best understanding of a
program’s run-time behaviour.

This thesis describes the design and implementation of a profiler, called pProfiler,
for the pC4+ user-level thread library that can execute in uni-processor and multi-
processor shared-memory environments. Four new built-in metrics are presented,
each characterizing various aspects of program behaviour, giving users an opportu-

nity to view an execution from different perspectives.
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Chapter 1

Introduction

Threads, 1.e., multiple streams of execution within a single address space, are widely
supported by many operating systems and languages. Some languages, such as
Ada [U.S94] and Jave [GJSBO0], contain primitives that enable concurrent exe-
cution. Other, initially sequential, languages have developed thread libraries to
allow concurrency in both uni-processors and multi-processor architectures. In the
uni-processor environment, threads may be used to simplify the structure of a pro-
gram. In the multi-processor environment, several threads can run simultaneously,
accelerating the execution of an application.

Unfortunately, the actual behaviour of a multi-threaded program is often quite
different from expectations and frequently does not achieve desired performance.
The performance of a parallel application is affected by more factors than that of

a sequential program. The most important of these factors are:

e competition for resources
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e synchronization
e context-switching
e non-overlapping I/0

Since good performance is important to users and performance tuning is not
easy, programmers need profiling tools to help them understand program run-time
behaviour and find its hot spots, i.e., parts of code that use a disproportionately
high amount of processor time, and bottlenecks, i.e., areas of code that restrict
performance causing delays.

There are several major challenges in building a profiler for threaded pro-

grams [XMN99]:

o associating performance data with indiwidual threads: Since several threads
may execute the same parts of code, it must be ensured that correct counters
and timers are updated. One way to accomplish this is to create separate
profiling data structures for each thread and make the thread responsible for

updating the structures.

o profile thread preemption: To gather execution-time information on a thread
basis, a timer, associated with a particular thread, must be stopped and
restarted every time the thread’s execution is blocked and resumed. Since
this involves instrumenting context switches, special care must be taken that

the instrumentation code does not cause a deadlock.

e minimizing instrumentation overhead when gathering time information for

individual threads: The profiling overhead may cause high perturbation of



application execution. If it is impossible to make the perturbation insignifi-
cant, gathered data should be corrected to achieve results that more closely

reflect the execution of the un-instrumented application.

Another challenge for profiling tools is the amount of performance information
gathered during concurrent-program execution. Even short-running applications
can produce hundreds of events that need to be presented without overwhelming
a user. Profiling tools incorporate several different techniques, such as metrics,
visualization and sonification, to address this problem. Metrics use measurements
to quantify program run-time behaviour by computing numeric values for various
constructs, e.g., routines, processors, mutex objects. Visualization and sonification
use graphics and sound respectively to present the metric values.

For different programs and problems, different metrics provide the most use-
ful “picture” of a program’s behaviour. Therefore, profiling tools usually include
several metrics to allow users to select the best one for their application.

This thesis presents the design and implementation of a profiling tool called
pProfiler, which is used to profile concurrent programs written in pC++ [BS99], a
user-level thread library for CH4. pProfiler contains six built-in metrics, four of

which were developed for this thesis:

o Performance Profile Information uses statistical monitoring to find the total
time a task spends in ready, running and blocked states (not discussed in the

thesis).

o UNIX Resources Usage Information provides information about the operating

system’s resource-usage (not discussed in the thesis).
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o Call Graph and Run Times generates an execution profile that includes the
number of function calls, and the real and CPU time spent in each function

called during execution.

o FEzecution State Transition records characteristics of each state a thread enters

during its execution.

e High Level Tracing traces the activities of task threads and their interactions

with coroutines, monitors, coroutine-monitors and other tasks.

o Memory Usage Information reports memory leaks for dynamically allocated

storage.

pProfiler also allows users to implement additional metrics and incorporate them

into the profiler. Much of this extensibility capability was developed for this thesis.

1.1 Thesis Outline

Chapter 2 explains profiling terms and introduces a taxonomy for profiling methods
and metrics.

Chapter 3 presents related work in the field. It describes four major profil-
ing tools for concurrent execution and lists several other tools for instrumentation
insertion, performance data analysis and visualization.

Chapter 4 gives an overview of pC4+, which is the target environment for
pProfiler; as well as other existing profiling and debugging tools supported by pC+4+.

Chapter 5 describes the objectives, design, instrumentation insertion and im-

plementation of pProfiler.
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The next four chapters present the four pProfiler’s built-in metrics developed
for this thesis. Chapter 6 presents a Call Graph and Run Time metric, based on
a gprof [GKMS82] sequential tool. Chapter 7 describes an Fzecution State Transi-
tion metric, Chapter 8 talks about High Level Tracing and Chapter 9 illustrates a
Memory Usage Information metric.

Finally, Chapter 10 summarizes the main aspects of this thesis and presents

ideas for future work.






Chapter 2

Taxonomy of Profiling

This chapter presents a classification of profiling methods and metrics. Profiling is a
performance evaluation technique based on direct measurement; other performance
evaluation techniques include analytical modeling and simulation.

The profiling process consists of three phases:

e instrumentation insertion
Instrumentation is inserted into an application and the run-time system to

allow data gathering.

e program execution and performance data collection
The application is executed and its run-time behaviour is monitored through
the inserted instrumentation, collecting data according to a metric specifica-

tion (see Section 2.2).

e performance data analysis and visualization

The data is processed according to a metric algorithm and the results are
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displayed on a screen or saved into a file.

Profiling is an iterative process and can be executed several times, each time

using different application data and/or metric.

2.1 Instrumentation Insertion

Instrumentation is added to a program to generate performance data. It is used
to identify the part of code that is executing when a specific event occurs, e.g.,

function entry or exit. Instrumentation consists of three parts [MCI*T95]:

e instrumentation points: locations in an application’s code where instrumen-

tation can be inserted.

o instrumentation primitives: counters or timers, and operations to change their

values, e.g., set, add, reset.

o instrumentation predicates: boolean expressions that guard the execution of

primitives, e.g., if statements.

The primitives and associated predicates create instrumentation hooks, which
can be inserted at various instrumentation points allowing computation of different

metrics.

2.1.1 Direct and Indirect Instrumentation

Profiling instrumentation can be direct or indirect. In direct instrumentation, the

profiling code is placed at instrumentation points. In indirect instrumentation,
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Profiled Code

Profiled Code

Foo

- increment entry counter
- set entry timer

- set exit timer

Foo

- jump to entryTrampoline

] entryTrampoline

N___t - return

Profiling Library

- increment entry counter
- set entry timer

= . .
- update duration timer - jump to exitTrampoline ex1tTr;.am‘p011ne
- return _ return - set exit timer
\ - update duration timer

N - return

Direct Instrumentation Indirect Instrumentation

Figure 2.1: Instrumentation Types

which is more common, only a jump to a profiling routine, called a trampoline, is
inserted at instrumentation points. Figure 2.1 presents an example of direct and
indirect instrumentation for function entry and exit. The hooks gather information

about the number of function calls and call duration.

2.1.2 Static and Dynamic Insertion

The instrumentation may be inserted into a program statically or dynamically.
Static insertion may be performed at any stage of the compilation-linking pro-
cess before the execution stage (refer to Figure 2.2). Some profiling tools, such as
TAU (Section 3.1), JEWEL IS [WRM*97] and BRISK [BMR99a] expect a pro-
grammer to add the profiling instrumentation when coding an application. This

approach gives a user a lot of flexibility in specifying what parts of the code are
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Performance Evaluation Tools:

Application
Writing
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Source Code

¢

Preprocessing
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Preprocessed

Source Code
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Profiling
Libraries

Other
Libraries

Compiling
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Object Code
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Linking

=

¢

Executable

¢

Binary
Rewriting

¢

Rewritten
Executable

¢

Execution

JEWEL IS, BRISK

AIMS, SvPablo,
Alamo

uProfiler
gprof, SvPablo(HPF),
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uProfiler
AIMS, Vampir, IPS-2,

Tmon

Paradyn,
Autopilot

Figure 2.2: Instrumentation Insertion Options
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profiled, but the process is also tedious and error-prone. As well, user insertion
may be unsound because compiler optimization can move the profiling code be-
yond the desired instrumentation point. Static insertion can be also performed
automatically and safely by a preprocessor or a compiler when a profiling flag
is specified on the compilation command. AIMS (Section 3.2), SvPablo (Sec-
tion 3.4.2) and Alamo [JZTB98] use a preprocessor to insert the instrumentation,
and gprof [GKMS82], MOSS [ES98] and pProfiler (Chapter 5) utilize a compiler.
Static insertion can be completed during the linking stage, as it is done by Vam-
pir [Pal98], IPS-2 [MCH*90] and Tmon [JWL9S8]), or after the linking stage by
rewriting a binary executable, as done by Atom [ES95] and pizie [pix00].

In dynamic insertion, the executable is instrumented during application run-
time. While dynamic insertion can be used to achieve the equivalent of static in-
sertion, 1ts cost is usually greater. Therefore, dynamic insertion is mainly utilized to
find application bottlenecks. A user or a profiler, if the search is automated, decides
dynamically where, when and what hooks are inserted, reducing the profiling over-
head (probe effect) by not profiling parts of code that are viewed as unimportant,
i.e., code not causing performance problems. After data is collected, the instru-
mentation may be removed and different hooks may be inserted into other parts of
the application. Since it takes some time for a user or a profiler to reach a deci-
sion about where the instrumentation should be inserted to narrow the search for
a bottleneck, dynamic insertion is preferable for long-running programs. Paradyn
(Section 3.3) and Autopilot (Section 3.4.1) are examples of tools that use dynamic

instrumentation insertion.
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Moving down along the compilation-execution process, the instrumentation in-
sertion mechanism changes from language specific to platform specific. The lan-
guage specific instrumentation makes the instrumentation portable across all com-
pilers and platforms that support the language, but the instrumentation usually
does not work with other languages as features may be different or non-existent.
On the other hand, the platform specific instrumentation allows profiling programs
written in different languages as long as they create executables for a given plat-
form. However, it may be difficult to map execution events to source code variables
and statements when dynamic insertion is used.

Some simple forms of profiling can be done without inserting any instrumenta-
tion, e.g., measuring total execution time, but this approach gathers a very limited

amount of performance data and is not discussed in this thesis.

2.2 Metric

A metric is a function (measure) characterizing some aspect of program perfor-
mance, e.g., CPU time, number of function calls, thread blocking time, etc.

Since there are two basic types of instrumentation primitives, timers and coun-
ters, there are two basic types of metrics: metrics based on time information and
metrics based on count information. Ttme Metrics record the time of an event and
possibly its duration. Count Metrics show the number of times an event occurs. In

many cases, these basic types are combined to create more sophisticated metrics.
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2.3 Monitoring

Monitoring is the process of collecting performance data, generated by profiling
instrumentation, during application run-time. There are two general types of mon-
itoring: exact and statistical.

In exact monitoring, a monitor collects information about all events relevant to
active metrics. In statistical monitoring, a monitor samples the state of a running
application periodically. The statistical monitoring introduces lower probe-effect
but the gathered data is less accurate.

When an event occurs, a monitor can update summary statistics for the event
(direct profiling), or record the event and its characteristics into a log (tracing).

Summary data can be collected through both statistical and exact monitoring.
For example, the distribution of execution time across routines can be performed by
periodically sampling the state of a program counter, as is done in gprof [GKMS82],
or by time-stamping each function entry and exit, as is done in pProfiler (see
Chapter 6). The advantage of gathering statistics is the small amount of storage
required for the data.

Tracing is usually only meaningful for ezact monitoring. It involves collecting
large quantity of data that may need to be saved periodically to stable storage to

reduce memory usage or for robustness.
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2.4 Analysis

Data collected during run-time is retained for analysis. An analyzer processes the
data according to an active metric algorithm and prepares the resulting information
for visualization. The processing involves filtering the data, performing computa-
tions and possibly mapping the data to source code. The analyses can be done
during program execution, i.e., on-the-fly, or after the execution is finished, i.e.,
post-mortem.

On-the-fly analyses usually reduces the amount of storage needed for data since
it is processed immediately; therefore, it is useful for long-running programs. An-
other plus is the fact that the information is usually displayed during application
run-time possibly allowing a user to modify the application behaviour or switch the
profiling on and off. The drawback is higher profiling overhead caused by analyzing
and visualizing the data during execution. Furthermore, if a large amount of data
must be processed, there may be a significant latency between an occurrence of an
event and its visualization, making dynamic control difficult or impossible.

In post-mortem analyses, the data is stored during execution and then analyzed
after the execution finishes. This method has smaller probe effect but may be
infeasible for long-running programs, as a user may not want to wait several hours
or days to get performance information, and the amount of information may be

extremely large.
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2.5 Visualization

Visualization is the last step in the profiling cycle. Its purpose is to display gathered
information in a constructive way without overwhelming a user with unnecessary
detail.

Depending on the particular metric, visualizers may show various views of a

profiled system, including [NA94]:

single-time system snapshot: display of system activities at a particular point

n time.

e animation: a sequence of single-time system snapshots to demonstrate the

system’s dynamic behaviour.
o statistics: summary information for the whole time under investigation.

o time-line system view: detailed view of system activities visualized along a

time axis.

The view of the system can be represented effectively using a variety of simple
visualization techniques such as tables, charts and graphs.

Tables are useful for presenting discrete two-dimensional values. Grouping the
data into rows and columns allows large amounts of information to be displayed in
a condensed manner.

Discrete values can be also presented graphically using charts. The most popular
charts are: bar charts, pie charts and Gantt charts (see [MR82]). Pie charts and bar

charts are often used to represent percentage of time a processor spends performing
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CPU busy
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Figure 2.3: Example of a Kiviat Graph

various operations, e.g., calculation, communication, I/O operations (see [NA94]).
A Gantt chart can be utilized, for example, to display execution of a task on different
processors (see [Hea94]).

Another way to display performance data is using graphs. A graph is a dia-
gram of points, lines and areas that represents multi-dimensional relations. Among
frequently used graphs are ezecution graphs and Kiviat graphs.

An ezecution graph is a directed acyclic graph in which the arcs join consecutive
events of a single process and events from different processes when it is known that
one event precedes the other, e.g.. the event of sending a message happens before
the message is received (see [HCHP92]).

A Kiviat graph presents several metrics in one graph. The metrics are chosen
arbitrarily, usually alternating metrics for which high values are better with metrics

with preferable low values. Figure 2.3 presents an example of a Kiviat graph. The
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graph shows six metrics whose values are marked on radial lines. Each value is
connected to the values of its neighbouring metrics creating the inner area of the
graph (gray-shaded). Since, the metrics with “high” and “low” values are placed
on the circle alternately, the resulting graph has a shape of a N-pointed star, where
N is the number of “high”-value metrics. An imperfectly formed star may indicate
a problem for the metric that causes the disfiguring. By observing the pattern of
the star and relations among metrics, it is possible to detect some problems that
would be otherwise hard to discover.

More information about design aspects of graphical data displays can be found

in [Tuf84].






Chapter 3

Related Work

This chapter describes four profiling tools for concurrent programs. The tools are
commercially or publicly available and are supported by their vendors or developers.

The first two projects: TAU and AIMS have been chosen because they profile
programs written in a specific language or a group of languages, insert profiling
instrumentation into source code, and analyze and visualize gathered data post-
mortem. In other words, they are tools similar to uProfiler.

Paradyn, on the other hand, is not designed for specific languages but for specific
platforms. It inserts instrumentation dynamically during program execution, and
performs data analysis and visualization on-the-fly.

Pablo has been selected because it is an example of an integrated environment in
which a compiler, system software and hardware cooperate to improve application
performance. It contains several independent tools that can be used together to find
performance characteristics of existing applications or model execution of parallel

programs under development.

19
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3.1 TAU

Tuning and Analysis Utilities (TAU) [MMC96, SMC*98] is a visual programming
and performance analysis environment for pC++ [BBG193], a language extension
to CH++ [Str97] that permits data-parallel operations. It uses the Saget+t+ prepro-
cessor toolkit [BBGT94], which restructures a pC++ program into C++ code, for
instrumentation insertion and accessing properties of program objects. TAU is also
integrated with the pC4+ run-time system for profiling and tracing support. It

works on a variety of platforms including Linux [She99].

3.1.1 Instrumentation Insertion and Monitoring

The profiling in pC4+ is done at a function level and there are three general classes
of functions that can be profiled: thread-level functions, collection class methods
and run-time system routines. By default, every function in a source file is profiled.
However, a user can specify a subset of functions to be instrumented by using an
instrumentation command file [Moh93].

The profiling code is inserted at function entry and exit points. The instrumen-
tation is accomplished by inserting the declaration of an object from a Profiler class,
which contains only a constructor and destructor, at the start of each function. The
allocation and deallocation of the Profiler object occurs on function entry and exit,
which cause implicit calls to the constructor on entry and the destructor on exit;
in C+, the destructor is executed no matter how the function exits [MMB*94].
Various implementations of the Profiler can be easily created by providing different

code for the constructor and destructor. Currently, there are two versions of the
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Profiler: one based on direct profiling and the other based on tracing.

In direct profiling, the Profiler object gathers data similar to the UNIX prof
tool [GKMS82], such as the number of calls into a function, execution time spent in
the function alone (ezclusive timing), and time spent in the function and its children
(inclusive timing). The Profiler constructor records the function name, its parent’s
name, the time-stamp of entry, and increments an entry counter. The destructor
uses the entry time-stamp and the exit time-stamp to calculate the duration of the
function call and adds the duration to the corresponding inclusive and ezclusive
timers. It also subtracts the time from the exzclusive timer of the parent function.
At the exit of the main() function, the destructor writes the profile data for the
whole application into a file.

In trace-based profiling, the constructor and destructor call event logging func-
tions from the pC4++ event tracing library to record the type of an event, its time-
stamp and the processor on which it occurred. The resulting trace files can be

converted into the SDDF format used by Pablo performance analysis environment

(Section 3.4), ALOG format used by Upshot [HLI1], or Parvis PV format [NA94].

3.1.2 Analysis and Visualization

TAU performs the analysis and visualization of the gathered data post-mortem using
several tools implemented as graphical hyper-tools for easy extendibility [MBM94].
Each tool performs a set of predefined tasks. If one tool needs a feature of another,
it sends a message to the other tool requesting it. The tools also support global

features, such as select-function, select-class and switch-application. If a global
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feature is invoked in any of the tools, it is automatically executed in all currently

running tools.

3.1.2.1 Static Analysis Tools

There are three tools that enable a quick overview of a large pC4+ program:

e File And Class Display (FANCY) is a global function and method browser
that can be used to quickly locate the source code for a specific routine. It
displays a list of classes and their methods as well as a list of files and global

functions in each file.

e Call Graph Extended Display (CAGEY) shows a static call-graph of functions
and methods in a user application. It uses Sage+ to determine the call-graph

structure and to differentiate between global functions and class methods.

e Class Hierarchy Browser (CLASSY) is a class hierarchy display for programs
written in object-oriented languages like C++ or pC4++. It provides informa-

tion about selected class members and their properties.

The static analysis tools are integrated with the dynamic analysis tools through

the global features of TAU.

3.1.2.2 Dynamic Analysis Tools

The dynamic analysis tools analyze program execution behaviour using data gath-
ered through direct profiling, event tracing or break-point debugging. There are

currently five such tools:
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e Routine and Data Access Profile Display (RACY) displays information gath-
ered during direct profiling in a bar chart form. It provides the information
on a node (processor or a group of processors) basis, i.e., what functions

were accessed by the specified node, or on a function basis, i.e., which nodes

executed the given function.

e Parallel Profile Tool (PPROF') presents the same information as RACY but

in a text format similar to UNIX prof display.

e FEvent and State Display (EASY) shows states and events for individual pro-
cessors on an XY graph. The X axis displays elapsed time and the Y axis
represents the processors. The states and events are displayed as graphical
objects, e.g., circles, arrows or lines. A user can get more information about

a particular event or state by clicking on the corresponding graphical object.

EASY is based on the Upshot tool.

o Breakpoint Ezecutive Environment for Visualization and Data Display
(BREEZY) [BHMM94] is a parallel debugger that allows user control over

the execution of a pC4+ program.

e Speedup and Parallel Ezecution Extrapolation Display (SPEEDY) [MMS95]
predicts the performance of a n-thread pC4++ program in a n-processor envi-

ronment based on data gathered during uni-processor execution.

Initial work has been done to provide TAU with a run-time monitoring frame-
work [SMS99]. At user-defined time intervals, a run-time monitor accesses the

profile data and displays it on a screen during program execution.
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There also exists an external performance visualization tool, called Parallel Pro-
gram and Performance Display Environment (POPEYE) [BHMMY94] that is capa-
ble of creating sophisticated, multi-dimensional displays. POPEYE can be used to

display profile and trace data gathered by TAU.

3.2 AIMS

Automated Instrumentation and Monitoring System (AIMS) [YSMO95, YS96] is a
toolkit for performance measurement and analysis of message-passing programs
written in FORTRAN and C using NX, PVM or MPI communication libraries.
The toolkit is supported on IBM SP2 platform and clusters of workstations such
as SUNSparcs, SGI, SGI/PowerChallenge and HP.

AIMS consists of four major components: zinstrument, monitor, perturbation
compensation module, and analysis and visualization toolkit. zinstrument performs
instrumentation of a profiled application, which is then compiled and linked with a
run-time performance monitoring library, called monitor. After execution, a trace
file, created by the monitor, may be put through a perturbation compensation (pc)
module, which removes monitoring overhead and its effects on the communication
patterns. At the end, the data is processed and displayed using the analysis and

visualization toolkit.

3.2.1 Instrumentation Insertion and Monitoring

zinstrument inserts instrumentation to collect data about synchronization opera-

tions, message passing, and invocations of functions, loops and user-defined code
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segments. It also generates an application database, which stores static information
about the application such as file names and line numbers of instrumented con-
structs. This information is used by the analysis tools to relate collected data to
the source code.

zinstrument has a graphical interface, which allows an interactive instrumen-
tation. A user can instrument all source files, i.e., the default option, or browse
through the source code and select specific constructs for profiling. A user can also
specify the data-gathering mode, choosing between Monitor Mode, which generates
a trace file, or Statistics Mode, which generates summary statistics.

After the instrumentation is done, the source-code is compiled and linked with
the monitor library containing a set of time-stamping and trace-collection routines,
for gathering performance data and storing it into trace files, one per process. There

is no option to turn the profiling on and off during program execution.

3.2.2 Analysis and Visualization

The trace files generated by the monitor are concatenated, sorted by time and may
be passed through the perturbation compensation module to remove event delays
caused by performance monitoring. pc creates an updated trace file with time-
stamps that more closely match the execution of the un-instrumented program.
The updated or non-updated trace file is used by the analysis and visualiza-
tion toolkit to produce performance information. The toolkit contains four post-

processing kernels [YMG99]:

e View Kernel (VK) displays the dynamics of program execution using anima-
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tions. For example, it shows the amount, type and duration of I/O operations,

network topology, and the rate of execution for each basic block of code.

Statistics Kernel (Tally) presents statistics about time spent by each process

in each function doing computation, communication and synchronization.

Performance Index and Statistics Kernel (Xisk) attempts to explain perfor-
mance failures by isolating possible causes and linking them to the applica-
tion’s data structures and functions. It shows how much shorter (in percent-
age form) the application would run if the problem were completely elimi-

nated.

Modeling Kernel (MK) automates the process of building and simulating

parallel-program models.

3.3 Paradyn

Paradyn [MCI*95] is a profiling tool for parallel and distributed programs. It is de-

signed to measure performance and find bottlenecks in programs running for hours

or days on massively parallel computers, workstation clusters, and heterogeneous

combinations of these systems. It is able to monitor un-instrumented programs

that have already started to run.

Paradyn consists of the main Paradyn process, one or more Paradyn daemons,

and zero or more external visualization processes. The multi-threaded main Para-

dyn process includes: Data Manager controlling the gathering of data, Performance
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Consultant coordinating the search for bottlenecks, Visualization Manager respon-
sible for communication between Paradyn and external visualization tools, and
User Interface Manager displaying the information. The Paradyn daemon contains
the platform-dependent parts of Paradyn and is responsible for instrumentation

nsertion.

3.3.1 Instrumentation Insertion and Monitoring

Paradyn performs dynamic instrumentation insertion and performance evaluation,
i.e., the instrumentation is inserted and the gathered data processed and visual-
ized during application run-time. The instrumentation is largely automated and
controlled by the Performance Consultant module, which inserts it only into parts
of the program related to a problem under investigation. The Performance Con-
sultant starts looking for high-level problems, e.g., too much total synchronization
blocking, I/0 blocking or memory delays for the whole program, performing only
small amount of instrumentation. When one of these general problems is identified,
it adds additional instrumentation to locate more specific causes of the problem.
The Performance Consultant sends a message to a Paradyn daemon request-
ing particular instrumentation. The message is coded in the Metric Descrip-
tion Language, which describes the instrumentation in a machine-independent for-
mat [HMG*97]. The Paradyn daemon translates the request into a set of machine
dependent instructions, called a base trampoline, and inserts it into the application
by replacing one or more machine instructions with a branch to the base trampoline,

and moving the replaced instructions into that trampoline. Each base trampoline
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contains mini-trampolines that update profiling counters and timers.

Paradyn is also capable of profiling threaded programs [XMNO99]. It utilizes a
design called Same Instrumentation Code Multiple Data in which all threads share
the same instrumentation code, but each has its own private copy of performance
counters and timers. The base trampoline used for instrumenting threaded programs
has an extra section, called MT Preamble, that maps a thread ID to the address of
its performance data structures. In the mini-trampoline, additional code computes
the addresses of the thread counters or timers based on the value from the MT
Preamble. Since each thread only updates its own data structures, there is no need
to provide mutual exclusion when accessing the data, which significantly reduces
the probe effect.

To monitor an already running multi-threaded program, the base-trampoline
contains extra code that detects the first time a thread executes the instrumentation
code. The extra code and the MT Preamble increase the cost of a trampoline for
a threaded application about five times in comparison with one for non-threaded

program.

3.3.2 Analysis and Visualization

The Performance Consultant module of Paradyn discovers performance problems
by searching through the space defined by the W3 Search Model, which consists of a
list of potential performance problems (hypothesis). The Performance Consultant
tests the different hypothesis and tries to find the part of code causing a problem. It

uses the application’s call-graph to direct the search [CMWO00]. The search starts
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at the top of the call-graph and proceeds only along the branches on which the
inclusive timing value, 1.e., time spent in a routine and its callees, is above an
expected level.

The Performance Consultant is also able to apply historical performance data,
gathered in previous executions of an application, to the current search [KM99].
Incorporating historical data shortens the time required to identify bottlenecks and
decreases the amount of instrumentation.

Paradyn’s visualization interface allows external visualization tools to display

Paradyn’s performance data in real-time [KMLM97].

3.3.3 Related Projects

This sections lists other performance measurement tools devised by the Paradyn
Project group.

Paradyn-J [New99] is a performance tool for interpreted, just-in-time (JIT) com-
piled and dynamically compiled Java executions. It examines how an application’s
performance is affected by various interactions between the virtual machine and an
application, and is designed to be used by both an application and virtual machine
developers.

Process Hijacking [ZML99] is a new process checkpoint and migration technique,
which uses dynamic program re-writing to add check-pointing capability to a run-
ning program. It allows to checkpoint and migrate applications that cannot be

re-linked with a checkpoint library.
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KernInst [TM99] is a tool that performs fine-grained dynamic instrumentation
of a completely unmodified, running, commodity operating-system kernel. On top
of Kernlnst, there is a kernel performance profiling tool, which collects information

about kernel and application performance.

3.4 Pablo

The Pablo performance analysis environment consists of several independent, but
related, components such as Autopilot, SuPablo, Virtue and Delphi. All these com-
ponents use the Self-Defining Data Format (SDDF) for information interchange.

SDDF [Ayd00] is a data-description language that specifies both data-record
structures and data-record instances. SDDF is viewed as a data meta-format because
it describes general data-records and does not dictate semantic meaning to the
stored data. SDDF files are architecture-independent, allowing data collected on
one machine to be analyzed and displayed on another.

In addition to the meta-format, Pablo supports a library of C4++ classes that

perform all operations necessary to write and interpret SDDF files.

3.4.1 Autopilot

Autopilot [RVSt99] is a toolkit for closed-loop, adaptive performance-tuning and
resource management of heterogenous computational grids, often spread over dif-
ferent geographical areas. It automatically monitors system behaviour, determines
what changes are required to improve performance and implements those changes

during system run-time. Autopilot contains the following components: distributed
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performance sensors, software actuators, distributed name servers, sensor and ac-
tuator clients, and a robust decision mechanism.

Sensors capture performance data and send the raw data for processing or
compute some metrics and send the metrics. Every sensor has a set of properties
that are defined during its creation. Remote clients specify a list of properties they
are interested in, and Autopilot managers give them back a list of sensors that
match those properties. A client can also be notified every time a new sensor with
the required properties is created. In this way, a client can access and manage a
sensor without knowledge of the sensor’s physical location or its creation time. The
sensors can be dynamically activated and deactivated during application execution.

Actuators allow clients to modify the values of application variables and to
remotely invoke application functions. They share most of the sensor features, e.g.,
property lists, dynamic creation and management.

Name servers are the Autopilot managers. They register and deregister remote
sensors and actuators on their creation and destruction, and process remote client
requests for accessing those sensors and actuators. Name servers allow clients to dy-
namically attach themselves to geographically distributed application components,
perform required changes, and then release control.

Clients can connect to remote sensors and actuators through Autopilot man-
agers. After connection, sensors send data to clients that process the data and
issue commands to corresponding actuators. Clients can also change sensor be-
haviour by modifying its variables, e.g., buffer size or sampling rate.

Decision mechanism uses the data gathered by sensors to reach optimization
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decisions that are then implemented by actuators. The mechanism is based on
fuzzy logic [Bez93] and balances conflicting optimization goals such as minimize

response time and maximize throughput.

3.4.2 SvPablo

Source View Pablo (SuvPablo) [DR99] is a graphical analysis and visualization system
that profiles applications written in C, Fortran 77, Fortran 90 and High Performance
Fortran (HPF), running for hours or days on a variety of sequential and parallel
systems.

SvPablo can be integrated with Autopilot and Virtue (see Section 3.4.3) allowing
users to explore their application behaviour, display it in a three dimensional virtual

environment, and modify it dynamically using Autopilot sensors and actuators.

3.4.2.1 Instrumentation Insertion and Monitoring

SvPablo supports automatic and interactive instrumentation of a profiled appli-
cation. Currently, it provides interactive instrumentation of C, Fortran 77 and
Fortran 90 applications, and automatic instrumentation of HPF programs.

In the case of automatic instrumentation, SvPablo is integrated with a HPF
compiler that inserts calls to a SuPablo data-capture library into the original pro-
gram. Letting the compiler insert the instrumentation code ensures correctness
and decreases the risk of inhibiting the compiler’s optimization, especially since the
HPF compiler supports aggressive optimization, producing executable code quite

different than the source code.
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The interactive instrumentation is performed in the preprocessing stage. Sv-
Pablo parses the source code to be profiled and marks all instrumentation points
chosen by a user, e.g., function entry and exit or outer loops. After the parsing is
finished, SvPablo generates a copy of the source code with embedded calls to the
data-capture library for all marked instrumentation points. The application is then
compiled using a regular compiler.

In addition to capturing data through software instrumentation, SuPablo gathers
data from hardware performance counters to determine the interaction between

software and hardware.

3.4.2.2 Analysis and Visualization

After program execution, the SvPablo data-capture library records its statistical
analyses in a set of summary files, one file per processor. All the files are then
merged into one performance file written in the SDDF format. The performance file
is used as an input to a graphical browser, which presents the performance data in
the context of the original source code.

The SvPablo browser supports a hierarchy of performance displays, ranging from
high-level routine profiling to detailed information on the behaviour of a single line

of code on a specific processor.

3.4.3 Virtue

Virtue [SWSR99| is a general-purpose toolkit for hierarchical visualizing three-

dimensional graphs, manipulating the graphs and their representations, and anno-
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tating the graph components with audio and video comments. Examples of Virtue’s
graphs include: geographic displays of network activity, displays of parallel process
interactions and call-graphs of source code structure.

Virtue is integrated with Awutopilot for data gathering, and in turn Autopilot
uses SvPablo to insert sensors and actuators into distributed application source
code. Virtue also contains a set of direct manipulation controls, i.e., sliders, that
can be used through Autopilot actuators to change application or system behaviour
during its execution. All data collected by Virtue is written in a graph description
language based on the SDDF format.

Virtue also supports video conferencing, capturing and replaying of multime-
dia annotations, voice commands, and generation of audio cues for synchronous
and asynchronous cooperation among geographically dispersed research or system

support teams.

3.4.4 Delphi

Delphi [RPFT99] is an integrated performance measurement, analysis and predic-
tion environment for multi-lingual, object-oriented applications executing on homo-
geneous and heterogenous parallel systems. The goal of Delphi is to assist system
developers in evaluating existing and proposed systems by investigating the com-
plex interactions among an application and system software, processors, I/O, and
networks.

The Delphi system includes compilers that insert profiling instrumentation for

gathering execution-cost information, performance models of key system compo-
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nents such as task scheduling, memory, I/O management and networks, and flexi-
ble measurement and analysis software for performance evaluation. Delphi contains
instrumented libraries, which gather quantitative data needed to understand the
interaction among system components. It uses Paradyn, SvPablo and Autopilot
tools for system instrumentation and monitoring. Initial work has been done to

incorporate Virtue for information visualization.

3.5 Other Profiling Projects

The advances in technology and the growing number of parallel and distributed
systems increase the demand for parallel profiling tools. The reason for that demand
is that these systems quite often achieve only a small fraction of their predicted
performance.

This section highlights several other profiling projects designed to gather and/or
analyze performance data that can be used for parallel performance tuning, which

is not an easy process as shown by Anna Hondroudak and Rob Procter [HP9S].

3.5.1 Monitoring and Adaptive Control

There are several instrumentation and monitoring systems that are part of a soft-
ware toolkit or are stand-alone tools that can be incorporated into other per-
formance analysis tools. JEWEL Instrumentation System (IS) [WRM*197] and
Baseline Reduced Instrumentation System Kernel (BRISK) [BMR99a| are exam-
ples of stand-alone systems that collect run-time data from distributed applica-

tions and transfer it to data collectors. A Light-weight Architecture for Mon-
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itoring (Alamo) [JZTB98| is another monitoring framework for gathering data,
which can be processed and displayed by other analysis and visualization tools.
Tmon [JWLO8] is an on-line graphical performance monitor for multi-threaded
programs. It performs the monitoring as well as performance data analyzing.

OMIS Compliant Monitoring System (OCM) [WTL9S] is an instrumentation
system built according to the On-line Monitoring Interface Specification (OMIS),
which describes a universal interface between on-line tools and monitoring systems
that does not target any specific kind of tools but can handle various tools at the
same time. Mirror Object Steering System (MOSS) [ES98] is an implementation of
another instrumentation and steering model, called the Mirror Object Model.

A software performance monitor, which gathers performance data for Shared

Virtual Memory (SVM) systems implemented on the Myrinet-based cluster [LJIT98].

3.5.2 Analysis and Visualization

Event Processing and Information Rendering Architecture (EPIRA) [BMRI9D] is
an example of software technology that can be used to build on-line performance
data analysis and visualization tools for complex parallel and distributed systems.

Parvis [NA94] is a visualization tool that translates a trace file generated by the
Portable Instrumented Communication Library (PICL) [Wor92] or its extension,
MPICL [Wor00], into a number of graphical views, such as state diagrams, activity
charts, statistics and time-line displays.

ParaGraph [Hea94, HMROS] is a graphical display system for visualizing the be-

haviour and performance of parallel programs on message-passing parallel comput-
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ers. It takes as input execution trace-data provided by PICL and MPICL libraries.

Scalability Analyzer (SCALA) [SPF99] is used for performance modeling and
prediction of high performance computing programs. It uses a new approach in
scalability analysis to provide a user with better performance analysis.

Kanoko [Osa98] is a 3-D animation tool designed for parallel-program performance-
tuning. The tool maps trace data into states of a dynamic system model, simulates
the system, and visualizes and sonificates results of that simulation.

Partial Order Event Tracer (POET) [Tay95b, Tay95d] allows collection and dis-
play of event data from concurrent and distributed applications. It is utilized for

visualization of data gathered by one of pProfiler’s metrics (see Chapter 8).

3.5.3 Comparison of Profiling Tools

Jeffrey Hollingsworth and Barton Miller devised a technique, called true zeroing,
that enables direct quantitative comparison of metrics for parallel programs. True
zeroing computes the improvement in an application’s execution if a single func-
tion is removed. It has been used to compare the performance quality of six tools:
gprof [GKMS82], IPS-2 [MCH*90], Critical Path [YMS8S8], Quartz NPT [AL90], Log-
ical Zeroing [MCH*'90] and Slack [HM94]. The comparison results are described
in [HM92].

Another comparison of profiling tools was performed by Shirley Browne, Jack
Dongarra and Kevin London [BDL]. They compare the tools from a user per-
spective using evaluation criteria such as robustness, usability, scalability, portabil-

ity and versatility. They examined the following tools: AIMS(Section 3.2), VAM-
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PIR [Pal98|, Visualization Tool (VT) for the IBM SP Parallel Environment, Nup-
shot [GL99], Paradyn (Section 3.3) and Pablo (Section 3.4).



Chapter 4

1CH and its Tools

pProfiler is a set of metrics and display tools designed to profile programs written in
#C+-. Unlike many of the general-purpose tools discussed in Chapter 3, pProfiler
is tightly coupled with the pC4+ run-time kernel to achieve high accuracy and
efficiency. Therefore, understanding the design and implementation of pProfiler
requires, at least, basic knowledge of the yC4+ language itself.

This chapter describes the environment in which profiling is done and some
existing tools used for profiling and debugging. The descriptions are the minimum
necessary to understand the profiler and its metrics, described in the remainder of

the thesis. A detailed description of the yC4+ language is provided in [BS99].

4.1 puCH

The pProfiler target environment is an extension of the object-oriented C4+ lan-

guage [Str97], called pC++. pCH [BS99] is a concurrent, user-level thread li-

39
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brary that can execute in uni-processor and multi-processor shared-memory envi-
ronments. On uni-processor computers, the concurrency is achieved by interleav-
ing execution (context switching) to give the appearance of parallel execution. On
multi-processor computers, the concurrency is accomplished by interleaving and
true parallel execution; parallel execution is defined as simultaneous execution of
two or more threads, and concurrency is execution that appears to be parallel over
a period of time, but which has only one thread running at time.

Besides regular C++ objects and methods, pC4+ contains several entities that
support concurrent execution, e.g., monitors, tasks, processors, clusters. Part of
these special objects are implemented using the yC+4+ translator, and part using
the run-time library. The translator reads pC+4++ code, parses uC++ primitives and
transforms them into C4+ statements. A standard C4++ compiler generates the
object code and links it to the pC++ run-time library, called the pC+4++ kernel. The
kernel is responsible for creating, managing and destroying coroutines, monitors,
tasks, clusters and processors, as well as for processor and task migration and task
scheduling. The run-time kernel also activates instrumentation for pProfiler and

invokes other tools supported by pC4+ (described in Section 4.2).

4.1.1 Coroutine

A coroutine is an object with its own execution-state, i.e., stack, so its execution
can be suspended and then resumed at the point of suspension, preserving the state
of execution and local variables. Although a coroutine executes serially so there

is no concurrency involved, it is a useful construct that enables solving problems
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associated with finite-state machines and push-down automata.

The C++ uCoroutine class [BS99] has one distinguished member: main(), called
the coroutine main, that can be suspended and resumed using uSuspend and uRe-
sume statements. uCoroutine can also be declared as a mutex object (see Sec-
tion 4.1.2), combining properties of a coroutine and a monitor; a mutex coroutine
is called a coroutine-monaitor.

Since a coroutine is executed by a task’s thread (see Section 4.1.3) and both the
coroutine and the task have their own execution stacks, special care must be taken
during profiling to ensure collection of correct execution-state information, i.e., for
certain metrics, the profiler must access the coroutine’s stack and not the task’s

stack when the thread is executing a coroutine.

4.1.2 Monitor

A monitor is a mutex object that manages access to shared resources. Its public
methods provide mutual exclusion, a mechanism allowing uninterrupted access to
a resource. For many purposes, the mutual exclusion is all a user needs, e.g., to
implement an atomic counter. However, the monitor owner, i.e., an active thread
(see Section 4.1.3) in the mutex object, sometimes must synchronize with tasks
calling or executing within the mutex object. The synchronization is performed
through internal and external scheduling.

Internal scheduling occurs when the monitor owner synchronizes with tasks
blocked on monitor condition-queues. This form of synchronization is achieved

using condition variables and wait and signal statements.
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External scheduling is typically achieved by the monitor owner specifying which
calls to mutex methods are eligible. Only a task calling an eligible mutex-method is
permitted to enter the monitor when the monitor becomes inactive and a selection
decision is made. A common implementation of external scheduling, also used in
pCH-, 1s with an accept statement, but other implementations are possible.

In pCH+, mutual exclusion and task synchronization is also provided through
low-level mechanisms such as counting semaphores, locks and barriers. These ad-
ditional mechanisms are provided for efficiency or teaching purposes.

More information about the taxonomy of monitors can be found in [BFC95].
The implementation details about pCH+ mutual exclusion mechanisms and syn-

chronization methods is presented in [BS99].

4.1.3 Task

A pCH++ task is a mutex object with its own thread of control and execution-state.
Like a monitor, its public methods provide mutual exclusion. Tasks are executed
by uCH processors (see Section 4.1.4) and are managed by the yCH+ kernel.

Tasks communicate with each other through routine call and parameter passing,
when one task calls a member routine of another task. This technique is better than
message passing because the parameter types can be checked statically. Whereas
in message passing, the check is performed dynamically or not at all.

Since concurrent execution involves interaction among different threads of con-

trol, a profiling tool must be able to profile an application on a thread basis.
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4.1.4 Processor

A puCH+ processor is a virtual, software processor that executes threads. The vir-
tual processor is scheduled for execution on a hardware processor by the underlying
operation system. In the uni-processor environment, all pC4+ processors are sim-
ulated inside one UNIX process. In the multi-processor environment, each pC+4+
processor is implemented by a separate UNIX process.

In both uni-processor and multi-processor environments, the yC++ kernel con-
trols the scheduling of tasks on virtual processors. Thus, when the operating system
assigns an execution period to a virtual processor, C++ may provide additional
time-slicing of that period to allow execution of multiple tasks.

Because a virtual processor is not bound to a hardware processor, programs can
be coded for any number of virtual processors and then executed on a computer
with a smaller number of hardware processors. This makes C4+ programs portable

among machines with different number of processors and various architectures.

4.1.5 Cluster

A puCH+ cluster is a collection of virtual processors and tasks executed by those
processors. The purpose of a cluster is to control the amount of parallelism among
tasks. A cluster must have at least one processor to be able to execute tasks.

Each cluster contains its own scheduler that determines the order in which tasks
are executed on its processors. The default scheduler is round-robin but users can
implement their own scheduling algorithms.

Users can also create additional clusters, beside the default system and user
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clusters created by pC++. For example, pProfiler is created on its own cluster to

minimize its impact on user application in the multi-processor environment.
Tasks and processors can be migrated from cluster to cluster during execution.

The most common case of task migration is moving a task to a separate I/O cluster

for input and output operations.

4.2 MVD Toolkit

puCH supports a Monitoring, Visualization and Debugging (MVD) tool set [Buh95].
Monitoring is the process of gathering data about a program’s run-time behaviour.
Visualization is tightly coupled with monitoring and involves displaying the data
collected by monitors. Debugging is a process of eliminating errors in an application.

The visualization in MVD is implemented using a modified versions of X Win-
dows [MAS, Nye93| and Motif [HF94] libraries called ¢X. The modifications are
required to assure safe access to visualization primitives by user-level threads. The
package supplies a server task, called XtShellServer, which runs on its own clus-
ter and handles all events generated for the X/Motif libraries. The pX library is
described in detail in [Buh95] and is used by uProfiler.

MVD contains the following tools: pProfiler, Kalli’s DeBugger (KDB), Shared-
Memory Application Replaying Tool (SMART), real time monitoring of program’s

execution using Watchers and Samplers, and a pC++ tracing system.

4.2.1 KDB

KDB [BKS96] is a symbolic debugger for concurrent programs written in pCH+.
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It provides standard features of debuggers, such as setting break-points, stepping
through code and looking up variables. A user can also control execution of indi-
vidual threads and access each task’s local variables.

An already running application can be attached to KDB so that a programmer
can examine problems that have already occurred.

KDB also executes a subset of the GNU DeBugger (GDB) commands, and pro-
vides limited support for debugging non-shared memory applications.

Figure 4.1 presents a KDB main window, a task-ezecution control-window for
the task highlighted in the main window (Girl / 0x7086f8), and a window displaying
break-points for that task. Also, the program is compiled with the -profile flag (see
Section 5.1.2), so the main window displays the uProfilerCluster cluster and uProfiler
task, which show that KDB can be used to debug not only user code but also the

profiler itself.

4.2.2 SMART

The main problem in debugging a concurrent program is that its execution is non-
deterministic. Therefore, some problems, such as race condition, may occur rarely
making the debugging more difficult.

SMART [Sch99] is a tool that records the execution of a program into a file and
then uses the file to replay the execution in a deterministic manner. This way, the
same problem can be recreated many times for inspection and debugging. Right
now, SMART works only for applications with deterministic input data, i.e., SMART

does not record data, that run in the uni-processor environment.
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4.2.3 Watchers and Samplers

Watchers and samplers [Buh95] are provided to statistically monitor the execution
of a program, including the pC4++ kernel, and display the information during a
program’s run-time.

A watcheris a task that manages a list of sampler objects. At specified intervals,
the watcher invokes a sampler object and then the sampler gathers the required
data, processes it, and displays it on a screen or saves it into a file. A similar
monitoring technique is used for statistical profiling in pProfiler, but the data is
analyzed and displayed post-mortem (see Section 5.3).

Watchers and samplers will be incorporated into pProfiler in the future, when

the profiler provides run-time visualization of performance data.

4.2.4 pCH++ Tracing System

The tracing system [TB96] is described in Chapter 8. It is now replaced by one of

the pProfiler metrics.






Chapter 5

pProfiler

pProfiler is part of the MVD toolkit and has been developed to provide a “user-
friendly” tool for profiling concurrent yC++ programs. The initial work on pProfiler
was done by Robert Denda and is described in his thesis [Den97].

This chapter presents a general overview of pProfiler, covering Robert’s initial

work and my modifications of the profiler design and implementation.

5.1 Objectives

The main objectives of yProfiler are:

5.1.1 Profiling at Different Levels of Detail

pProfiler is able to profile UNIX processes, uC4+ clusters, processors, tasks, corou-
tines, objects, and regular and mutex functions. It does not support profiling at

the statement level because the high cost of monitoring at such a low level makes

49
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it impractical in many cases.
pProfiler performs statistical and exact monitoring, and gathers summary and

tracing data.

5.1.2 Selective Profiling

Profiling is determined at two levels: at the compilation unit to ensure insertion
of necessary profiling code, and within a profiled compilation unit, profiling can be
dynamically enabled and disabled.

Profiling a compilation unit is specified by the -profile flag in a compilation com-
mand. During the compilation, necessary instrumentation is inserted into the user
code and the program is linked with profiling libraries. A user controls which parts
of an application are profiled by compiling only selected modules of the application
with the -profile flag and the rest of the application without.

Within a profiled compilation unit, the profiling can be turned off and on for
each task during run-time by making calls to the task’s uProfilelnactivate() and

uProfileActivate() routines.

Note: Selective profiling requires a user to have a good understanding of the
profiled application as well as the measured metrics. The user must determine
whether turning the profiling off in some parts of the program affects the usefulness
of the collected data. In most cases, the entire application is compiled with the

-profile flag.
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5.1.3 Extendibility

The design of pProfiler, presented in Section 5.2, allows an easy extension of the
profiler for new metrics or additional data-collection hooks.

Adding a new metric into pProfiler is accomplished through inheritance. A
metric monitor and analyzer are derived from abstract classes that are part of the
pProfiler kernel. This mechanism ensures that the kernel structure does not need
to be modified every time a new metric is built.

A user can create new metrics and attach them to pProfiler without recompiling
the profiler’s code. However, creating a metric requires some programming effort
(see Section 5.5.4).

Implementing extra hooks is also easily achieved, since all hooks have the same
interface structure and are controlled by the same mechanism in the pyProfiler kernel

(see Section 5.4).

5.1.4 Portability and Maintainability

Most of pProfiler code is written in pC4+, which makes it easy to maintain and
ensures 1t 1s up to date with new versions of the language.

pProfiler has already been ported to the SPARC architecture with SunOS and
Solaris operating systems, and to architectures based on Intel’s x86 processors run-
ning Linux. The long-term goal is to port the profiler to all other machines and
operating systems pC+4+ runs on, e.g., OSF, IRIX, and AIX.

Since the instrumentation of function entry and exit (see Section 5.4.2) is imple-

mented in machine-dependent assembler, porting pProfiler to new environments is
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more complicated than just recompiling the profiler’s code for a new architecture.
On the other hand, since only a very small portion of the profiler is written in

assembly language, the porting is not an intimidating task.

5.2 Static Design

The static design of pProfiler is shown in figure 5.1. The diagram uses object-

oriented analysis and design notation explained in Appendix A.

5.2.1 pProfiler Kernel

The main part of pProfiler is the pyProfiler kernel, which consists of the following
objects: uProfiler, uProfilerStartWidget, uProfilerClock, uProfileSampler, uExecution-
Monitor, uProfileAnalyze, uMetricAnalyze and uSymbolTable.

uProfiler acts as an administrator for all active metrics. It registers metric
monitors, accepts profiling-event calls and relays them to appropriate monitors,
and invokes metric analyzers to process and display gathered data.

uProfilerClock is used in statistical profiling to allow data collecting at specified
time intervals. If statistical profiling is not active, the uProfilerClock is not created.

uProfilerStartWidget is an object responsible for creating the profiler’s start-up
window, presented in Figure 5.2 (details in Section 5.5.4), and activating metrics
chosen by a user. A user can interactively select a metric or a group of metrics to be
measured from the start-up window or metrics can be activated through a metric
file. The uProfilerStartWidget looks first for the metric file. If the file exists and has

a correct format, uProfilerStartWidget activates metrics based on the information
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Figure 5.2: pProfiler: Start-up Window

provided in the file without creating the start-up window; if the file contains errors
the application aborts. If the file does not exist, uProfilerStartWidget creates the
start-up window to allow a user to make selections by pressing the button in front of
a metric name and setting other parameters when required, e.g., specifying sampling
rate for Performance Profile Information. The metric file is useful when a user
wants to measure the same metrics multiple times, possibly on different input data,
as 1t saves time pushing the same buttons and setting the same parameters on the
start-up window each time the application is profiled.

uExecutionMonitor is an abstract class providing basic functionality for metric

monitors that are derived from it. Monitors and analyzers are described in more
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details in Section 5.2.2.

uProfileSampler is responsible for creating and updating a profiling stack (see
Section 5.5.3) that contains information about currently executing routines and
their callers. That information is used to insert profiling instrumentation (see
Section 5.4.2) and to update profiling data structures.

uProfileAnalyze is an object that invokes analyzers for all active metrics. Cur-
rently, uProfileAnalyze is only created after the profiled tasks finish their execution,
i.e., the profiler performs only post-mortem analyses.

All metric analyzers must be derived from an abstract class uMetricAnalyze,
which provides the interface to create and manage selection windows. Selection
windows are used to allow hierarchical processing and displaying of gathered data.
A selection window contains a list of selectable objects that represent the next level
of detail. For example, it may contain a list of profiled tasks, then selecting a task,
shows profiling information for that task.

uSymbolTable object contains a symbol table obtained through the Binary File
Descriptor (BFD) Library [Cha9l] and provides uniform access to the compiler-
generated symbol table for a C4++ program, encapsulating all functionality that

depends on the underlying architecture and operating system.

5.2.2 puProfiler Metric

Each metric, even a built-in metric, is created as a separate entity and added to
pProfiler. This design allows easy extendibility of the profiler. It also permits users

to create their own metrics, using instrumentation hooks provided by the pProfiler.
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Each metric consists of three parts: monitor, analyzer and visualizer. These
parts reflect the stages in the profiling process. A monitor is responsible for mon-
itoring program execution and gathering data during that execution. An analyzer
processes the collected data and a wvisualizer displays the information on a screen.
All parts of a metric are tightly coupled with each other. The analyzer needs to
know about the data structures of the monitor and the visualizer must be aware of

the format of information produced by the analyzer to be able to display it.

5.2.2.1 Monitor

All monitors are inherited from a common abstract class: uExecutionMonitor, which
is a part of the pProfiler kernel (see Figure 5.1). uExecutionMonitor provides virtual
member functions for all hooks inserted into the pC++ kernel and user code (see
Section 5.4). A monitor derived from this base class implements only the members
that activate hooks needed by its metric. The monitor’s member routine Initialize(),
which must be called at the end of the derived monitor’s constructor, dynamically
checks what virtual members are overwritten by comparing member-function point-
ers of the base class and the derived class, and registers all overwritten members,
i.e., active hooks, with uProfiler.

On encountering an active hook, a profiled task updates the profiling data itself
(decentralized monitoring) or it calls into the pyProfiler kernel to let uProfiler update
its profiling data ( centralized monitoring). The task behaviour depends on the hook
encountered and on the metric measured.

In centralized monitoring, uProfiler keeps a list of all active monitors registered

for each hook. When a task calls into uProfiler after encountering an active hook, it
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blocks waiting for uProfiler to copy the data gathered by the hook into the profiler
structures. After releasing the calling task, uProfiler goes through the monitor list
for that hook and invokes each monitor’s member function associated with that
hook so that each metric can update its data structures.

The decentralized monitoring can be used when profiling on a thread basis.
In this technique, an active monitor creates a separate profiling data structure for
each profiled task, which is responsible for updating the structure during execution.
However, the monitor still keeps a list of all the created structures so that the data

can be accessed by an analyzer after the profiled tasks finish execution and are

deleted.

5.2.2.2 Analyzer

To reduce profiling overhead, only the minimum amount of data, satisfying the
metric requirements, is gathered during application execution. For example, only
function addresses are stored during run-time, but they need to be mapped into
function names before displaying them on a screen. That mapping is performed
by an analyzer that is responsible for processing the collected data. The analyzing

process consists of three steps:
1. Extract the data from the monitor’s data structures.

2. Perform additional filtering of the data, if necessary. (Currently, most of the

filtering is done during program monitoring to reduce the amount stored).

3. Process the data according to the metric algorithms.
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A main-level analyzer is derived from the pProfiler kernel abstract class, uMetric-

Analyze, and is invoked by the pProfiler kernel object, uProfileAnalyze.

5.2.2.3 Visualizer

A visualizer is responsible for displaying the information created by the analyzer.
pProfiler uses Motif’s widgets [HF94] to show the information on a screen. In
the present implementation, yProfiler does not provide any option to store the
information in a file.

There i1s no common class from which all the visualizers are derived. Currently,
pProfiler supplies a set of general visualization routines that can be used by different
metrics to display information. There are classes to draw Kiviat graphs, bar charts,
tables and selection lists (see Figure 5.1). The classes are created around Motif’s
widgets and they enable a metric designer to display the data without the need to
learn Motif syntax. The designer is free to write his own visualizing routines for
complete control over the way the data is displayed.

Since displaying performance information is often done in a hierarchical manner,

there can be several sets of analyzers and visualizers for a single metric.

5.3 Dynamic Design

Upon starting a profiled application, uProfiler starts first so it can determine which
metric to measure, either through a metric file or the pProfiler start-up window.
After monitors for all activated metrics are created, the profiled application is

continued and its execution is monitored by the profiler. In the multi-processor
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environment, where pProfiler can run in parallel with the application, the impact
of profiling on the application is minimized.

uProfiler and uProfilerClock are the only tasks on the profiler cluster. The reason
behind not designing other objects as tasks is the fact that the cluster has only
one pCH+ processor. Therefore, creating more tasks would increase the tasks’
scheduling and synchronization overhead for the profiling cluster. Besides, there is
no need to create more tasks inside the yProfiler kernel since profiled tasks gathered
the profiling data themselves in decentralized monitoring, reducing the amount of
work done by uProfiler. Only in centralized monitoring, used in statistical profiling
and exact profiling on levels other than a task level, does uProfiler gather the data.

In statistical profiling, the uProfilerClock task communicates with the uProfiler
task to alert the uProfiler that it is time to collect samples. When the time for sam-
pling arrives, uProfilerClock calls a uProfiler::WakeUp() routine and uProfiler gathers
data for all ready sampling events. After gathering the data, uProfiler sets the alarm
clock for the next sampling by calling the uProfilerClock::setClock() method (more
information about pProfiler statistical sampling can be found in [Den97]). When
statistical profiling is not active, the uProfilerClock task is not created at all leaving

uProfiler as the only task on the profiler cluster.

5.4 Instrumentation Insertion

There are two levels of instrumentation insertion in pProfiler. The first level involves
hooks inserted in the pCH+ run-time kernel and the second is instrumentation

inserted into a user application.
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5.4.1 puC++ Kernel Instrumentation

The kernel hooks are permanent, i.e., they are present whether a user application
is profiled or not. There are hooks for creation and deletion of clusters, processors,
tasks, monitors and coroutines, for processor and task migration between clusters,
for entering and exiting mutex objects, for context switches performed by the pC4+

kernel, and for suspending and resuming coroutines.

uCluster &uBaseTask::uMigrate( uCluster &toClus ) {

/I task registered for profiling ?

if (uProfileActive && uProfiler::uProfiler RegisterTaskMigrate ) {

( *uProfiler::uProfiler_ RegisterTaskMigrate )( uProfiler::uProfilerinstance,
*this, fromClus, toClus );

Yt

} // uBaseTask::uMigrate

Figure 5.3: pProfiler: Instrumentation Insertion of yC++ Kernel

Figure 5.3 shows an example of a kernel hook for gathering information about
task migration. First, a check of a uProfileActive flag is made to determine if
profiling is currently enabled for this particular task. If the task is profiled, a check
of uProfiler::uProfiler_Register TaskMigrate is made to discover if this hook is active
for the current profiling session. uProfiler::uProfiler_Register TaskMigrate is a function
pointer that points to the uProfiler::Register TaskMigrate() member routine only if at
least one metric that uses this hook is active (i.e., a metric’s monitor implements
a RegisterTaskMigrateNotify() function); otherwise, the function pointer is set to
NULL. If the hook is active (not NULL), the RegisterTaskMigrate() routine is called

and profiling data is gathered.
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All yProfiler instrumentation, i.e., pC++ kernel hooks as well as user-code hooks,

have the same interface and are activated in the same way.

5.4.2 User Code Instrumentation

The instrumentation of a user code is performed using shared trampolines. All
profiled tasks and coroutines share the same profiling code but each of them has its
own profiling stack (see Section 5.5.3 for profiling stack details). The trampolines
are inserted statically at entry and exit points of each function in the profiled
program during compilation.

pProfiler uses the support from a C4+4 compiler to insert the trampolines. The
C++ compiler performs instrumentation insertion for prof and gprof [GKMS82], pro-
filing tools for sequential programs. The compiler inserts a call to mcount(), which
counts and records the number of entries into a routine, as the first statement in
a profiled routine. pProfiler uses the same mechanism to instrument user code.
However, it modifies mcount() to enable instrumentation at both routine entry and
exit.

Figure 5.4 shows the instrumentation insertion of a user function performed by
pProfiler. The call to mcount() is inserted at the beginning of a user function.
Inside mcount(), a check is performed to determine whether routine-level profiling
is active. If this is not the case, control returns immediately to the profiled func-
tion; otherwise, mcount() gathers execution-state information about a currently

executing task or coroutine. The execution-state information includes:

e current function address
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uFunctionPrologue

- push task’s state information onto its profiling stack 3
- if function entry hook active, update corresponding data structures
- return

Profiled Code

Foo
Bar() 1
7 / return
4
2
Bar
call mcount mcount
- if function-level profiling inactive, return
return \ - call uFunctionPrologue
6 / - modify Bar function’s return address
5 - return
uFunctionEpilogue

- pop up task’s state information from its profiling stack
- if function exit hook active, update corresponding data structures
- return

Figure 5.4: pProfiler: Instrumentation Insertion of a User Function
e start address of the parent function
e address of an instruction following the call into the current function
e object pointer

The state information is passed into uFunctionPrologue(), where it is saved on the
profiling stack. If the function-entry hook is active, uFunctionPrologue() updates the
data structures associated with this hook directly, in the decentralized monitoring

mode, or it makes a call into pProfiler in the centralized monitoring mode, so



5.4. INSTRUMENTATION INSERTION 63

uProfiler can take care of data collecting. After returning from uFunctionPrologue(),
mcount() uses the address of the instruction following the call-instruction to modify
the return address of the current function. On reaching its end, the current function
does not return directly to its caller, but calls instead uFunctionEpilogue(), which
pops the execution-state information from the profiling stack. If the function-exit
hook is active, the corresponding data structures are updated in a similar way to
the function-entry hook. Then, uFunctionEpilogue() returns control to the calling
function.

In the decentralized monitoring mode when the function-entry and/or function-
exit hooks are active, uFunctionPrologue() and/or uFunctionEpilogue() update the
profiling data structures directly, without calling uProfiler (see Section 5.5.1), be-
cause each function-call performed by the profiling code increases the probe effect
substantially, which has been verified empirically. Since, these two hooks may be
processed hundreds of times during application execution, it is important to reduce
the profiling overhead as much as possible. However, the decentralized monitoring
can be used only by the built-in metrics (see Section 5.5.1), so uProfiler provides
a separate set of function-entry and function-ezit hooks for user-designed metrics.
The user hooks can be processed only in the centralized monitoring mode, which is
significantly more expensive.

Retrieving the execution-state information and manipulating the return address
of a profiled function depend on the underlying machine architecture. Therefore,

parts of mcount() must be written in assembly language.
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5.5 Implementation

pProfiler is invoked by the pC4+ run-time kernel before a user application starts
execution, which allows for profiling the entire application including global construc-
tors and destructors. Since the global constructors and destructors are executed
by the pCH+ system task, called uBootTask, this task is registered for profiling as

soon as the profiler is created.

5.5.1 Monitoring

Upon reaching an active hook, a profiled task calls a uProfiler non-mutez member
associated with that hook (see Section 5.4.1). In the decentralized monitoring mode,
profiling data is updated by the calling task inside the non-mutez routine, indepen-
dently of the uProfiler thread. Since each task accesses only its own data structures,
there is no need for mutual exclusion and several tasks can execute the function at
the same time. In the centralized monitoring mode, the non-mutexr member calls a
corresponding mutex routine. uProfiler accepts these calls in a mutually-exclusive
manner, which may result in blocking of the calling task. To minimize the blocking
time and to increase the concurrency, the work performed inside the mutez member
is reduced to a minimuin, i.e., the necessary information is copied into uProfiler data
structures and the caller is released. Afterwards, uProfiler invokes the correspond-
ing member routine of each active monitor registered for the hook that generated
the call.

The decentralized monitoring is desirable because of its low profiling overhead.

The profiling cost is lower than in centralized monitoring because a calling task
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does not have to synchronize, a potentially blocking operation, and communicate
with another task. Nevertheless, uProfiler must support the centralized monitoring
for two reasons. First, since user metrics are incorporated into pProfiler without
recompiling the profiler’s code, a user cannot modify uProfiler non-mutexr members
associated with hooks activated by a new metric to allow updating of the metric’s
data structures. The data structures can be updated only through the metric’s
monitor routines, which are executed by the uProfiler’s thread. Second, the central-
1zed monitoring must be used in metrics that do not profile on a task level because
it provides a mechanism for mutual exclusion when several tasks update the same

profiling data structures.

Note: Since pyC+ and pProfiler source code is publicly available, a user can
incorporate his metric into the profiler as a built-in metric (this requires modifying
and recompiling the pyProfiler code), which allows the metric to use decentralized

monitoring.

5.5.2 Analysis and Visualization

Each monitor must implement a CreateMetricAnalyze() member, which creates a
main-level analyzer. After the profiled application finishes execution, the uProfiler
task creates a uProfileAnalyze object, which is part of the pProfiler kernel (see
Section 5.2). uProfileAnalyze goes through the list of active monitors, and for every
monitor on the list invokes its CreateMetricAnalyze() routine. The analyzer processes
the data according to its metric algorithms and then invokes its visualizer to display

the information. Depending on user interactions with the visualizer, e.g., selecting
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lower levels of details, additional analyzers and visualizers may be invoked.

5.5.3 Profiling Stack

Execution-state information, gathered by mcount() (see Section 5.4.2), needs to be
stored at a memory location easily accessible to the running thread. To minimize
the cost of creating and accessing the profiling stack, and to eliminate costly dy-
namic memory allocations, pyProfiler uses the memory that is already allocated for
the execution stack. The profiling stack is located at the other end of the execution
stack and grows in the opposite direction. Only a small amount of information, four
pointers, are added to the profiling stack on profiled function entry and removed
on function exit. Therefore, in general, these two stacks should not interfere with
each other. Only highly recursive function-calls can cause the stacks to intersect
each other. To ensure the stacks’ integrity, uProfiler checks for the profiling-stack
overflow, and when it happens the application is terminated with an error message.

Since both tasks and coroutines possess their own execution stacks, the profiling

stack is created for both of them.

5.5.4 Adding Metrics into pProfiler

The process of adding a metric into pProfiler consists of two steps. The first
step involves offering the metric to the user in the pProfiler start-up window (see
Figure 5.2) and the second, creating a metric monitor when the metric is activated
by the user.

Each metric or a group of metrics is put into a metric initialization class that
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class uExactProfiling {
static bool ES_ INFO;
static bool CG_INFO;
static int CGT_INFO;
static bool HLT_INFO;
static bool POET;

public:
static void CreateWidget( Widget mainForm );
/I execution state transition metric
static void ESToggleCB( Widget, void *, XmToggleButtonCallbackStruct *);
/I call graph and run times metric
static void CGToggleCB( Widget, void *, XmToggleButtonCallbackStruct =);
static void CGT_ ToggleCB( Widget button, void =*status,
XmToggleButtonCallbackStruct *call _data );

/I high-level tracing
static void HLToggleCB( Widget, void *, XmToggleButtonCallbackStruct *);
static void CreateMonitor( uProfiler &profiler );

}; //uExactProfiling

Figure 5.5: Initialization Class for a Group of Exact Metrics

must contain two member functions: CreateWidget() and CreateMonitor(). The first
function creates a Motif widget [HF94] that advertises the metric(s) and provides
some way to activate it (them), e.g., push buttons, sliders, etc. The second function,
as the name implies, creates monitors for the activated metrics. No objects of the
initialization class are created; the class acts as a module for abstraction purposes.

Figure 5.5 shows the declaration of an initialization class for a group of metrics
that perform exact profiling. The uExactProfiling::CreateWidget() method creates
the Ezact Profiling box in Figure 5.2 with push buttons for three metrics: Task
Execution State Transition Information, Function Call Graph Information and its
options, and High Level Tracing. The uExactProfiling class also contains Motif call-

back (CB) routines, invoked when buttons are pressed, and flags that keep track of
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which buttons are pressed. The flags are used inside uExactProfiling::CreateMonitor()
to activate the corresponding monitors.

During pProfiler start-up, the profiler looks for routines named className::Create-
Widget and className::CreateMonitor in the symbol table and adds these function
addresses into a metric startup list, 1.e., a simple form of dynamic linking. These
addresses are then converted into function calls by the uProfilerStartWidget object
to create the pProfiler start-up window and invoke monitors for metrics selected by

a user.

5.6 Limitations

The current implementation of uProfiler has some limitations due to other software

1t uses:

e Hard-Coded File Name Access
The profiler needs to know the name of the executable to be profiled. Due
to the problem of accessing command line arguments during the pProfiler
start-up process, that name is supplied to the profiler during the compilation
stage. As a result, the executable name cannot be changed after compilation.

Changing the name of the executable requires the program to be recompiled.

e Executable Size
Integrating the profiler into the user application increases the size of the in-

strumented executable considerably due to the size of X-Windows and Motif.



Chapter 6

Function Call Graph and Run

Time Metric

This chapter discusses the pyProfiler’s built-in Function Call Graph and Run Time
(CG&RT) metric.

CG&RT is based on the profiling tool called gprof [GKMS82], which generates an
execution profile of a sequential program. gprof records the number of function
calls, the time spent in the function itself (called ezclusive time or CPU time), and
the time spent in the function and its descendants (inclusive time or real time). It
also shows function call-cycles with a listing of the cycle members. The CG&RT
metric provides the same information as gprof, plus the minimum and maximum
real and CPU times spent in each function, a dynamic function call-graph for each
task, and the source-code file and line information for presented routines.

The main difference between gprof and CG&RT lies in a way they gather the

timing data. gprof uses statistical sampling of the program counter on each clock
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Figure 6.1: CG&RT Metric: Main Display

tick, and derives the execution times from the distribution of the samples. CG&RT
gathers the data through exact profiling, i.e., it actually measures the time spent in

each function. Therefore, CG&RT is more accurate but has a higher overhead than

gprof.

6.1 Design

Figure 6.1 displays information gathered by the CG&RT metric for a uMain task
of the test program used in Section 6.4. For each routine invoked by the task,
CG&RT reports the name of the called routine (From/To column), the number of
calls made to it (Calls column), the Average, Minimum and Maximum real and CPU
time of a single call, and the Total real and CPU time for all calls. The information
is presented in a single-level, call-graph format that shows a relationship between

a routine and its callees. In the first column, under each From routine, there is
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Close |
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quicksort
quicksort < Cycle
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zart?
zort? < Cycle >
quicksort < Cycle >
partition

Figure 6.2: CG&RT Metric: Options Display

an indented list of its direct descendants, i.e., To routines (callees). For each To

routine, the columns following its name represent the number of calls and the time

spent in the routine when called only from the above parent. On the other hand,

the columns associated with the From function show summary information for all

the calls to that function regardless their origin. The call-graph format allows a

user to notice variations in function behaviour when called from different parents.

This feature is not supported by gprof, which assumes that all calls to a specific

routine take the same amount of time to execute.

Figure 6.2 demonstrates additional features of the CG&RT metric, using infor-
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mation collected for a uMain task of a program containing recursive function calls.
A function is recursive if it calls itself either directly or indirectly, i.e., creates a
call-cycle. CG&RT is able to detect both the direct (Cycle 1 and Cycle 2 in the
example) and indirect recursion (Cycle 3 in the example).

Another feature of CG&RTthat is not available in gprof is finding file and line-
number information for all routines invoked by a task. Pressing the Display Cy-
cle/File Information button in the Options menu (Figure 6.2) replaces the call and
timing data (Figure 6.1) with information about cycles to which a routine belongs,
the location of the routine’s source code (File Name), and the line number within
the file that marks the beginning of the routine.

The Display Call Graph option creates a dynamic call-graph for a task in a sep-
arate window (Figure 6.2). In both the CG&RT main window and the call-graph
display, the callees of each routine are listed in an arbitrary order that does not
necessarily corresponds to the order in which the routines are called by the parent
function.

To reduce the execution overhead, CG&RT gives a user some flexibility in de-
ciding the amount of data to be collected by providing the user with three options

(see pProfiler start-up window in Figure 5.2):

1. Function Call Graph Information

reports the number of function calls only (the first two columns in Figure 6.1)

2. Function Ezecution: Real Time
reports the number of function calls and real time information (the first six

columns in Figure 6.1)
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3. Function Ezecution: Real & CPU Time
reports the number of function calls, real time and CPU time information (all

of Figure 6.1)

Since the options are really sub-options of one another, they are mutually ex-
clusive, 1.e., only one option can be active at any given time.

The design of the CG&RT metric is presented in Figure 6.3. The notation used
in this object-oriented analysis model is explained in Appendix A.

As can be seen from the diagram, CG&RT follows the metric-design rules out-
lined in Section 5.2.2. It consists of a monitor and a main-level analyzer derived
from pProfiler-kernel abstract-classes, uExecutionMonitor and uMetricAnalyze re-
spectively. And because the metric uses the decentralized monitoring mode, uP-
rofileSampler is responsible for updating profiling data structures for the calling
task.

The data structures and their methods are encapsulated inside a uCallGraphlinfo
object. To maximize the speed of accessing and querying the data, a hash table in
the form of uHashTable object is used (more information about the hash table and
hashing technique is provided in Section 6.3.1).

Since all three options require different hooks to be activated, there are separate
monitors for each of them: uCGOnlyMonitor is created for the first option, uCGI-
Monitor for the second and uCGEMonitor for the last one. All these monitors are
derived from the common abstract class uCGMonitor that contains attributes and
member routines that are generic to all three options. For example, all of them

use the same structures for storing data during execution, and the same analyzers
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Figure 6.3: Object-Oriented Model of CG&RT Metric
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Figure 6.4: CG&RT Metric: Task Selection Display

and visualizers for processing and displaying the data. The analyzers and visualiz-
ers determine what option is active and what data has been collected by checking
the uExecutionMonitor::execTimeFlag attribute (see Figure 5.1), set by the metric
monitor, using information provided by the uExactProfiling::CGT_INFO flag from
the metric initialization class (see Section 5.5.4).

Since the data is gathered and analyzed on a thread basis, the CG&RT metric
first displays a list of profiled tasks (see Figure 6.4). The uCallGraphAnalyze object
assembles the list of task names, and the common visualization class uSelection-
Window (see Section 5.2.2.3) provides the widget to display and manage the list.
When a user chooses one of the listed tasks, by clicking on it, another analyzer,
uAnalyzeFuncCallTable, and a visualizer, uAnalyzeFuncCallTableWD, are invoked to
process and display information for the selected task. The uAnalyzeFuncCallTable
analyzer finds the function call-cycles, calculates the timing information, assembles
file and line-number information, and creates a dynamic call-graph when a user
activates Display Call Graph in the Options menu. The uAnalyzeFuncCallTable WD

creates the displays in Figures 6.1 and 6.2.
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6.2 Instrumentation Insertion

The CG&RT metric’s three options each requires a different instrumentation to be

activated. Figure 6.5 shows the instrumentation for each option.

UserFunction { UserFunction { UserFunction {
Add to counter —> Add to .counter > Add to clounter I
Start timer Start timer
Stop timer [
Function(); Function(); Function();
Start timer [

. 5
context context i e context
switch switch switch

Start timer
Stop timer |- Stop timer |-
} } }
Function Call (FC) Info FC & Real Time (RT) FC, RT & CPU Time

Figure 6.5: Instrumentation Insertion of CG&RT Metric

To find out the number of function calls (first option), it is enough to activate the
function-entry hook only; instrumentation is there similar to the mcount() function
used by gprof. For information about real time (second option), i.e., the clock
time measured between entering a function and returning to the caller, the metric
needs to get a time-stamp not only on function entry but also on function exit.

By subtracting the entry-time from the exit-time, the metric calculates the time
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spent in the function and its descendants. The last option is the most expensive to
profile. CPU time records the time spent in a function alone excluding its callees.
Therefore, the timer must be stopped every time execution leaves the function, e.g.,
when the function blocks explicitly, e.g., a wait statement, or implicitly, e.g., a time
slice, or when it calls another function. To gather all this data, the last option
needs active instrumentation not only inside user code, i.e., function entry and exit
points, but also inside the yC++ kernel context-switch routines to stop the timer
when a thread blocks and resume the timer when it starts running again.

Besides the instrumentation shown in Figure 6.5, the metric activates register-
task and register-coroutine hooks, inside a task’s and a coroutine’s constructor,
which create a uProfileSampler object for each task and coroutine. The uProfile-
Sampler is responsible for creating and updating the profiling stack, and collecting
data during execution.

The CG&RT metric also records the change of a task’s name performed by a call
to the task’s uSetName() routine.

The member functions that activate hooks common to all three options, such as
RegisterTaskNotify(), RegisterCoroutineNotify(), RegisterSetNameNotify(), Register-
FunctionEntryNotify() and RegisterCoroutineUnblockNotify(), belong to the abstract
class uCGMonitor. The derived monitors implement only member routines needed

to activate hooks specific to their option (see Figure 6.3).

6.3 Implementation

This sections discusses several implementation problems and solutions.
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6.3.1 Hash Table

CG&RT uses a hash table for each task to allow quick access to profiling data during
execution. Two designs were considered. The first one is a hash table with an entry
for each executed routine. A drawback of this design is that there is no information
about a routine’s caller. For example, function A may use 20 milliseconds of CPU
time every time it is called by function B but only 4 milliseconds when called from
function C. Having that kind of information may be important to a program analyst
but impossible to provide in this model. The second design allows keeping track
of the caller-callee relationship. In this design, the hash table has entries only for
non-leaf routines, i.e., routines that have at least one callee, and each entry keeps
track of all function-calls performed from that non-leaf routine. When updating a
routine’s information, its caller’s address is used as the hash key.

CG&RT utilizes the second design which, besides showing variations in function
behaviour when called from different parents, also enables the creation of a dynamic
call-graph. The implemented hash table is encapsulated inside a uHashTable object
(refer to Figure 6.3) that contains an array of pointers to uHashTableEntry objects.
Each uHashTableEntry consists of a key, i.e., function address, and a separate uP-
rofilelnfo structure for each callee of the key function. If a key has more than one
callee, the resulting uProfilelnfo structures are chained together (see Figure 6.6).
A uHashTableEntry is created only for functions that have callees; a leaf function
possesses only a uProfilelnfo entry associated with the uHashTableEntry of its caller.
If a routine is called from two different parents, it has two separate uProfilelnfo

entries, each linked to the respective parent’s uHashTableEntry.
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Figure 6.6: Hash Table
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uProfilelnfo

HashFunction(key) = key mod hashTableSize

Where key is a function address, which is divisible by the address alignment of the

underlying computer architecture. For example, on SPARC machines, the adresses

are divisible by four. Therefore, to provide better utilization of the hash table on

these machines, the key value is divided by four.

If more than one key hashes to the same array entry (hashing collision), the

uHashTableEntry objects are chained together (see Figure 6.6). Since the key is

stored as a part of the uHashTableEntry the chained objects are easily distinguished.
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The size of the hash table is equal to the size of the pProfiler symbol table, read
from the executable, that contains information about all user and system functions
in a profiled application (to decrease the number of collisions, the size is rounded
to a prime number). Choosing a greater size for the hash table would result in a
sparse distribution of entries, because it is impossible to have more entries in the
hash table than there are in the symbol table. Since many routines in a program,
especially system routines, are never called, the size of the hash table should produce
few collisions. In the development environment, where the pC+4++ kernel and the
X-Window library are compiled with the -g flag for debugging, the symbol table
contains between 3,500 to 4,500 entries. In the user environment, the size of the
symbol table should normally be less than 1,000 entries. For simple test programs,

10 to 20 entries of the hash table are occupied.

6.3.2 Monitoring Function Calls

Figure 6.7 shows the implementation for gathering data for the CG&RT metric. It
shows two cases the metric needs to deal with. The general case covers the situation
when a function invokes another one without creating a call-cycle. The second case
deals with recursive function invocation. Operations common to both cases are
shown in regular font and the statements in bold font represent calculations specific
to each case.

To keep track of the number of function calls, a profiled function’s counter
variable is incremented on each entry. To get the real time information, CG&RT

generates time-stamps on function entry and exit and then subtracts the values.
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The greatest amount of work is done to record CPU time. The execTime variable
of a current function must be updated when the function calls another routine and
when a task executing the function blocks or is time-sliced.

Updating the data structures becomes more complicated when a profiled ap-
plication contains recursive function calls. The recursion problems are explained
using, for simplicity, a function calling itself but the solution applies to more elab-
orate call-cycles, such as Cycle 3 in Figure 6.2.

The first problem with recursive calls involves reporting total real time for a
function. In the general case, the total time is calculated by summing real time
values for each call to the function. When using the same principle in the recursion
example in Figure 6.7, the total real time for function foo() would be calculated in
the following manner:

total RealTime(foo()) = R2 4+ R1
Since the time reported by R1 also contains the R2 time, it may lead to a situation
where the total real time for foo() is larger than the execution time of the whole
application. To avoid that absurd situation, CG&RT sets the total real time to the
real time of the first recursive call; in the example:
total RealTime( foo()) = R1

If a call-cycle is invoked more than once by the same parent, then the total time is
a sum of the total real times of each cycle.

The maximum real time for a recursive function is equal to the longest total real
time of a single cycle, and the minimum real time is equal to the shortest real time

spent in the most nested call. Unfortunately, finding these values introduces another
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problem. In the general case, the startRealTime variable is set to the clock’s current
value on function entry, then, when exiting the function, it is subtracted from the
exit time to find the real time of a single call. In the case of recursive calls, the
startReal Time variable set in one call to a function gets overridden when processing
the next call into the same function, i.e., the second call occurs before the first one
is completed. One solution to this problem is to push the value of startRealTime
of a previous call on a stack when entering a function the second time, and then
pop it from the stack back into the variable on function exit. Pushing and popping
values on a stack requires creating and deleting objects dynamically from the heap
memory, which is a shared resource using locking to prevent access contention. As
a result, updating a stack would increase the profiling overhead considerably. To
avoid that extra cost, another approach was devised. startRealTime is set only on
the first recursive call into a function; there is a recursiveCounter, incremented on
function entry and decremented on exit, that is checked to determine the first call.
On all subsequent calls, helpStartReal Time is set and is used to find the minimum
real time.

The last problem with recursion involves keeping track of CPU time for a single
function call. In the general case, when entering a new function, CG&RT stops
the CPU timer of the calling function (execTime+= startExecTime — currTime)
and then the callee proceeds with updating its own execTime variable. However,
in the case of recursive calls, the caller and callee share the same entry in the
hash table. Therefore, by setting up its own execTime variable, the callee would

modify the execTime of its caller. To prevent this situation, the execTime of a
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caller is pushed on a stack before entering the callee. There is no way to avoid
creating the stack in this case; however, since it is expensive and is needed only for
recursive calls, CG&RT uses the recursiveCounter to determine whether it is dealing
with recursion and creates the stack only when necessary. As a result, gathering
CPU time information for an application that contains call-cycles is more expensive

than for one without recursive calls.

6.3.3 Monitoring Coroutines

The implementation of the CG&RT metric’s data gathering for a coroutine is shown
in Figure 6.8. The bold font is used to represent calculations specific to a coroutine.

One problem with a coroutine is that it may end its execution without reaching
the end of the coroutine main, i.e., a suspended coroutine may be explicitly deleted
by its creator, and as a result, not reach the function-exit hook to gather the
required profiling data. Another problem is keeping track of the number of calls
into a coroutine main. While the main() routine can be called in the regular way, it
is also started and suspended through uResume and uSuspend statements that can
be invoked by various coroutine member functions.

To solve these problems, each block of code between resuming and suspending
of the coroutine main is treated as a single function call to main(). Therefore, the
counter variable is incremented not only when starting main(), i.e., on the first uRe-
sume statement, but each subsequent time main() is resumed. Thus, suspending
the execution of main() is treated as encountering the function-ezit hook, and re-

suming it is equivalent to processing the function-entry hook. However, since the
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Figure 6.8: Implementation of CG&RT Metric for Coroutine



86 CHAPTER 6. FUNCTION CALL GRAPH AND RUN TIME METRIC

Sl Task Worker {0x909698) : Function Call Information -0 X
Cloze  Options |
Call Cycles:
“<no call cycles detectedr
4
Function Real and CPU Times:
From/To REAL TIMES {msec: CPU TIMES ¢msecy
Calls Average Minimum Mazximum Total Average Mirimum Mazx 1 mum Total
ubachContexts iulrvokeCoroutine
maryiimain b 1,013 1,010 1,025 5,063 1,013 1,010 1,025 5,063
fred:imain 3 2,015 2,012 2,028 10,076 2,015 2,012 2,025 10,076
Horkerimain 1 21,707 21,707 2,707 21,707 0,097 0,097 0,097 0,097
mary: rgohlary b 1,535 1,531 1,047 7,676 0,521 0,521 0,522 2,607
fred: inextFred b 2,786 2,783 2,796 13,934 0,771 0,771 0,773 3,858
uMachContext:julnvokeTask
Worker:imain 1 21,707 21,707 21,707 21,707 0,097 0,097 0,097 0,037

Figure 6.9: CG&RT Metric: Main Display for Task Accessing Coroutine

suspending and resuming of a coroutine is done by the pC+4++ kernel, the kernel’s
hooks are respounsible for collecting the profiling data. The RegisterCoroutineBloc-
kNotify() and RegisterCoroutineUnblockNotify() members of the CG&RT monitors
activate these hooks (see Figure 6.3).

As with other functions in a profiled application, CG&RT stores the timing in-
formation for a coroutine with the task whose thread accesses the coroutine. Since
a coroutine main is usually not called in a regular way, it is not shown as invoked
by any function, but it has a separate entry in the main display of the metric.
Figure 6.9 shows the display for a Worker task from the test program used in
Section 6.4.1. The task accesses two coroutines: mary and fred, and the main()
functions for both of them are shown under the pC+4++ kernel’s routine uMachCon-
text::ulnvokeCoroutine(). The columns associated with the mary::main and fred::main
show summary information for all “calls” made by the task into the coroutine. Also
in the dynamic call-graph, created by the CG&RT metric, a coroutine main is dis-

played separately, resulting in a graph with two roots (see Figure 6.10).
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ubachContext: ;ulrvokeCoroutine
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fred: tmain
uMachContextt tulnvokeTask
Worker: tmain
maryt 1gotary
fred: inextFred

Figure 6.10: CG&RT: Call Graph Display for Task Accessing Coroutine

All other coroutine member functions, besides main(), are entered and exited in
a regular way. Therefore, there is nothing special in processing their entry and exit
hooks (see second case in Figure 6.8). Suspending the execution of the member
routine, i.e., uResume statement, is equivalent to calling another function from the
routine (which affects only the CPU time) and is processed by the pCH+ kernel
hook.

6.4 Validation

It 1s important to validate the CG&RT metric to verify that it provides correct in-
formation. Since the metric gathers the same information as the gprof tool, both
should report similar results for the same program. There can be some differ-
ences because gprof is a statistical tool and CG&RT performs exact profiling. gprof
provides accurate information for routines whose run-time is considerably bigger
than the sampling period [?]. Therefore, the gprof and CG&RT results should be
comparable for a reasonably large test.

Since gprof works only with sequential programs, a sequential C program (source
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code in Appendix B.1.1) is used for testing, with an adaptation for pC++ that
requires the main() routine to be named uMain::main(), which creates a task to
execute the routine. Since the program runs sufficiently long, the cost of the the
additional task creation is insignificant. The work performed by each function is
simulated by using spinning loops. Each function runs at least several milliseconds
to allow gprof to gather timing information. Since gprof is a statistical tool, it
usually does not report times for short-lived functions. Also in very short-lived
functions, the pProfiler overhead may be the dominant factor in the results reported
by CG&RT.

The C and pCH+ versions of the program were run ten times each and average

times were calculated for each function. The results are presented in Table 6.1.

pProfiler gprof
Function Name || No. of | Real T. ‘ CPUT. | No. of | Real T. ‘ CPUT.
Calls (msec/call) Calls (msec/call)

(uMain::)main 1] 13,793.55 44.31 1] 13,778.00 43.00
first 10 | 1,370.50 44.30 10 | 1,369.40 46.40
second 10 4.43 4.43 10 4.10 4.10
third 100 88.45 44.23 100 88.37 44.04
fourth 100 44.19 44.19 100 43.93 43.93
fifth 1,000 4.42 4.42 || 1,000 4.43 4.43

Table 6.1: CG&RT: Comparison of Results between pProfiler and gprof

As can be observed from the table, the results given by pProfiler and gprof are
very similar. Most of the times reported by CG&RT are slightly higher than those
reported by gprof. This increase is likely caused by pProfiler’s higher overhead
generated by calls to a timer routine to get the time of each function entry and

exit.
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6.4.1 Thread and Profiling Stack Testing

A test to verify that the CG&RT metric correctly handles multiple threads and
profiling stacks associated with tasks and coroutines was constructed. The test is
designed for two reasons. First, since yProfiler is intended for profiling concurrent
applications, it should be tested with a program that creates several threads of
control. Second, because a coroutine is executed by a task’s thread and both of
them have profiling stacks, pProfiler must ensure that the correct stack is accessed
when gathering metric data.

The program used for testing (source code in Appendix B.1.2) creates ten Worker
tasks and each Worker accesses two mutex coroutines: mary and fred. The main
CG&RT display for a single Worker task is shown in Figure 6.9 and the dynamic
call-graph for that task is presented in Figure 6.10.

The loops inside each coroutine member function, including main(), are cali-
brated by a separate program so that the CPU time spent in each of these func-
tions can be estimated. The calibration program, which reports the time spent in a
spinning loop, is used to adjust the number of loop iterations to obtain the desired
delay.

The expected and the actual results produced by CG&RT are displayed in Ta-
ble 6.2. The actual results are averages obtained from all ten Worker tasks of a

single program run.
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Function No. of | CPU Time (msec/call)

Name Calls | Expected ‘ CG&RT
fred::main 5 2.000 2.026
fred::nextFred 5 0.750 0.776
mary::main ) 1.000 1.032
mary::goMary ) 0.500 0.526

Table 6.2: CG&RT: Test Results for Program with a Coroutine

The results are similar, indicating that the CG&RT metric correctly monitors
programs with multiple threads and properly handles the profiling stack for both

tasks and coroutines.



Chapter 7

Execution States Transition

Metric

This chapter discusses the pProfiler’s built-in Fzecution States Transition (EST)
metric.

There are five execution states a thread can be in. In pC4+, the states are:

e start: task created but has not started its execution yet

ready: task able to execute but not scheduled for execution

running: task executed by a pC++ processor

blocked: task waiting for some event to happen

terminate: task finished its execution but has not been deleted yet

EST collects state-data through tracing, i.e., it records each state a task en-

ters and the duration of the state. Knowing the number of state transitions a

91
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thread makes during its life-time and the time spent in each state allows a user
to observe thread’s blocking patterns as well as evaluate a thread’s behaviour in
relation with other threads, e.g., check when several tasks run at the same time
in a multi-processor environment or verify expected execution patterns in a uni-

processor environment.

7.1 Design

The design of the EST metric is presented in Figure 7.1. The notation used in this
object-oriented analysis model is explained in Appendix A.

Since EST utilizes decentralized monitoring (see Section 5.2.2), a uProfileSampler,
one for each profiled task, is responsible for recording trace data, i.e., the time of
the state change and the address of the function the thread is in when the change
occurs. The data is stored into a uExecStatelnfoEntry structure, which is a part of
an uExecStatelnfo object. Detailed information about the metric’s data structures
is provided in Section 7.3.

uESMonitor, derived from the pProfiler kernel’s abstract-class: uExecutionMoni-
tor (see Figure 5.1), activates the necessary hooks, creates the uExecStatelnfo object
for each task, and keeps a list of the created data structures to allow a metric ana-
lyzer to access the data after the end of program execution.

EST has only one analyzer, uExecStateAnalyze, derived from the pProfiler ker-
nel’s abstract-class, uMetricAnalyze. The analyzer calculates the duration of each
state by subtracting the start time of a given state from the start time of the fol-

lowing state. It also finds the minimum and maximum state duration for each task,



7.1. DESIGN

uProfileSampler uExecutionMonitor uMetricAnalyze
1 v é_
1
/ ( O
uExecStatelnfo ; N
uESMonitor uExecStateAnalyze
tasklD
taskName . - execStatelnfolist - monitor .
:_xecStatelnfoTableSae 1 RegisterTaskNotify symbolTable )
irstExecStatelnfoTable DeregisterTaskNotif execStatelnfolist
currExecStatelnfoTable € y

overviewInfolist 0.n
b

RegistrrSetNameNotify execStateWidget

executionEndTime Register TaskExecStateNotify

monitor

stateMinDuration Rgg_ist_erCoroutineNotify CalculateStateDuration 1
MaxDuration Initialize UpdateSummafyInfo =
statellaxDuratio CreateMetricAnalyze CalculateOverviewlInfo
readyStateDuration R
runningStateDuration 1 1
blockedStateDuration
GetTaskID ! - 1
GetTaskName .
. uExecStateAnalyzeWidget uExecState TaskGraphWidget
- analyzer 1 1 analyzer.
taskSelectionList parentWidget
noOfTasks
1 taskGraphWidget CreateTaskGraphText
overviewChartWidget
uExecStatelnfoTable comparisonChartWidget
. CreateSelectionList 1 . . )
tableEntries CreateTable uExecStateOverviewWidget
tabIeTI_nzllex PickNewSelectable 0n analyzer 1
next Table parentWidget [
UpdateStatelnfo 1 minDuration
1 compressionRatio
( O .
n
uExecStateCompareWidget g:::::g;i\:v\;?e%vACrE:rt
analyzer CompressChart
parentWidget
1 stateMinDuration 1
compressionRatio e N
ulixsecStatelnfoEntry CreateDrawingArea uTaskExecStateAnalyzeWidget 1
taskotate CreateComparisonChart analyzer
stateStart Time CompressChart y
currentFun_ctlon CreateStatelnfoText
stateDuration 1

CreateSummarylInfoText

Figure 7.1: Object-Oriented Model of EST Metric
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Bl Execution State Transition Information: Task Selection - 0O X

Close Options |

Tazk Mame ¢ID2 Creation Time Humber of Tasks
thimsz,msd Created Deleted Started maint}  Ended main{} Executing

uBootTask (Ox10f448) 19337110, 265 1 0 1 0 1
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Philozopher (Ox71f9803 19:37:10,279 7 0 2 0 7

Figure 7.2: EST Metric: Summary Information Table Display

the total time a task spends in ready, running and blocked states (a task is only once
in the start and terminate states), and the real time for the task’s main(), i.e., the
duration between the first and the last running state, inclusive. uExecStateAnalyze
also maps function addresses, recorded during execution, into function names.

EST has five visualizers: uExecStateAnalyzeWidget, uExecStateTaskGraphWid-
get, uExecStateOverviewWidget, uExecStateCompareWidget and uTaskExecStateAna-
lyzeWidget. All of them use information provided by the uExecStateAnalyze object.
The uExecStateAnalyzeWidget is invoked by the analyzer and the other visualizers
are created when a user makes a choice from the Options menu or selects a task
from the list (see Figure 7.3).

uExecStateAnalyzeWidget displays a table of summary information for all profiled
tasks (see Figure 7.2). The table was not a part of the original design, but has been
added on users’ request. Its first two columns contain a name and ID of a task, and
its creation time. The next four show the total number of tasks: created, deleted,
that started their main() and ended their main() from the beginning of program

execution up to the specified creation time. The last column (Executing) is derived
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Figure 7.3: EST Metric: Options Menu and Task Creation Graph Displays

by subtracting the number of tasks that ended their main() (column six) from
the number of created tasks (column three). A user can get even more information
from the table by subtracting other values. For example, subtracting the number of
deleted tasks (column four) from the number of created tasks (column three), gives
the total number of tasks in the system at a particular time. Similarly, subtracting
tasks that ended their main() (column six) from tasks that started main() (column
five) produces the number of tasks still in that function.

Pressing the Options button on the menu bar reveals a list of three choices (see
Figure 7.3), which can be used to obtain more summary information about all
profiled tasks.

Selecting the first option, Task Creation Graph, invokes a uExecStateTaskGraph-
Widget visualizer, which generates a graph showing parent-child relationships for
task creation process (see Figure 7.3). Under each task name, there is an indented

list of its direct descendants, i.e., tasks created by that particular task.
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Figure 7.4: EST Metric: Execution Overview Chart Display

The second option is another feature of the EST metric that has been added on
users’ request. Pressing on Execution Overview Chart invokes a uExecStateOverview-
Widget visualizer, which creates a Gantt chart [MR82]. The chart graphically
displays, for each task, three pieces of information (see Figure 7.4): time between
task creation and starting its main(), real time spent in main(), and time between
ending main() and the task’s deletion (terminate state). The Y axis represents the
profiled tasks and the X axis shows elapsed and clock time of the execution. The
time spent in main() is portrayed in purple colour, and the time outside main() in
gray. To shorten the diagram, information is presented not from the beginning of
program execution but from the time there are at least two tasks created. As a
result, it omits information about the initial execution of uBootTask. The omitted
information can be found by selecting a detailed display for uBootTask (explained

below in the discussion of uTaskExecStateAnalyzeWidget).
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Figure 7.5: EST Metric: Execution State Transition Chart Display

Since users want to apply this chart to search for execution patterns, they like
to see the whole line for a task without scrolling. To make this possible, the chart
can be compressed horizontally. Pressing the Compress button on the menu bar
produces a dialog box asking for the compression ratio; the box also shows the last
ratio applied. After specifying the desired ratio, the chart is scaled accordingly and
redrawn; some information may be lost during the compression. The scaling is al-
ways done from the original size and the chart cannot be enlarged beyond that size.
If the original chart is very large, i.e., it spans more than 32,000 pixels horizontally,
the chart is automatically compressed and it cannot be enlarged beyond that ratio,
but it can be further compressed. The chart presented in Figure 7.4 is compressed
by 2 to show the whole display.

Selecting the last option, Execution State Transition Chart, invokes a uExecState-

CompareWidget visualizer that creates another Gantt chart displaying, this time,
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all state transitions (see Figure 7.5). The states are portrayed by different colors:
start and terminate are shown in gray, ready in yellow, running in green and blocked
in red. The chart axes are labeled in the same way as in the previous chart and
the widget also contains a Compress button. It should be noted, however, that
compressing this chart loses more information, i.e., many states are represented by
very short lines that are not displayed after compression. As a result, a user may
end up with a confusing diagram that, for example, shows two tasks running at the
same time in a uni-processor environment. Since the compression has significant
repercussions, even long charts are initially displayed using their original sizes.

The first column in the summary information table, presented in Figures 7.2
and 7.3, is a task selection list. A user can click on a task name to obtain detailed
information about that task’s execution.

Selecting a task from the list invokes a uTaskExecStateAnalyzeWidget visualizer
for that task. The visualizer creates and displays a widget presented in Figure 7.6.
The upper part of the widget contains summary information for the task, e.g.,
its life duration, the total duration of ready, running and blocked states, and the
minimum and maximum state duration. The lower part shows detail information
for each state the task entered, i.e., the start time of the state, its duration, the
cumulative duration for the task execution and the name of a function in which the
state began. A separate uTaskExecStateAnalyzeWidget object is created for each

selected task.
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f=.me,us) (mEec) (mzec)

1 uStart 10,276,889 0,063 0,063 ¥k nown¥

2 uReady 10,276,942 3.474 2,027 *Link oLk

3 uRunning 10,280,416 0,123 3,600 *Lnknown#

4 uBlocked 10,280,539 0,728 4,408 Philozopher: imain
5 uReady 10,281,297 0,265 4,673 Philosopher:imain
B uRunning 10,281,562 0,138 4,811 Philosopher: tmain
7 uBlocked 10,281, 700 0,100 4,911 Philozopher: rmain
8 uReady 10,281,800 0,071 4,932 Philozopher: tmain
3 uRunning 10,281,871 0,112 0,034 Philozopher: imain
10 uBlocked 10,281,933 0,040 0,134 Philosopher:imain
11 uReady 10,282,023 0,197 5,331 Philosopher: tmain
12 wRunning 10,282,220 0,122 0,403 Philozopher: rmain
13 uBlocked 10,282,342 g,093 11,546 uSemaphores; ;uP

14 uFeady 10,238,430 0,296 11,842 uSemaphore: fuP

15 uRunning 10,288,731 0,051 11,893 uSemaphore?: tuP

16 uBlocked 10,288,732 0,044 11,937 Philosopher: tmain

=] =

Figure 7.6: EST Metric: Single Task Execution State Transiton Display
7.2 Instrumentation Insertion

The EST metric activates five hooks inside the yCH+ kernel (see Figure 7.1). The
main hook, which generates data for each state, is activated by RegisterTaskExec-
StateNotify().

RegisterTaskNotify() and RegisterCoroutineNotify() create the uProfileSampler ob-
ject for each task and coroutine registered for profiling. uProfileSampler is respon-

sible for creating and updating the profiling stack, and gathering the data.
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The start and end times of a task’s execution are recorded by RegisterTask-
Notify() and DeregisterTaskNotify() respectively.

RegisterTaskSetNameNotify() changes the task’s name saved in the uExecState-
Info object and displayed in the selection list (see Figure 7.2) to the name given by

a user through a call to a task’s uSetName() routine.

7.3 Implementation

Since EST is based on tracing, which implies gathering a large amount of data, the
main issue in implementing the metric is data storage. Even a short-running task
can go through several hundred states during its execution. Therefore, dynamically
allocating a new data structure for each state would be expensive, considering that
memory is a shared resource and its allocation requires mutual exclusion. To avoid
this overhead, larger chunks of memory, i.e., enough to store data for many states,
are allocated at a time.

Data for a single state is stored into uExecStatelnfoEntry (see Figure 7.1). The
uExecStatelnfoEntry objects are grouped into an array (tableEntries) that is embed-
ded in the uExecStatelnfoTable. For fast access into the array, the uExecStateln-
foTable contains an index (tablelndex) that marks the last occupied spot in the
array. tablelndex is also used to detected the end of the array. As soon as all en-
tries in one array are filled out, another uExecStatelnfoTable object is created and
chained to the previous one through a nextTable pointer.

The uExecStatelnfo object, created for each profiled task, contains two uExec-

StatelnfoTable pointers to the first and last uExecStatelnfoTable node (table) of the
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linked list. firstExecStatelnfoTable points to the first table, enabling the metric
analyzer (uExecStateAnalyze) to access the data after execution, and currExecState-
InfoTable points to the currently updated table to speedup the update process
during execution.

The uExecStatelnfo object also includes the size (execStatelnfoTableSize) of the
tableEntries array. Based on empirical analysis, the size of the array has been set
at one hundred entries, because most tested short-running programs went through
sixty to five hundred transitions. Making the size smaller would result in a larger
number of calls for memory allocation, increasing the profiling overhead. On the
other hand, making the size larger could result in wasting memory, since the last
array for each task usually is not completely filled. This wastage could lead to
memory shortage for data analyzing and visualizing, especially when a profiled
program contains many tasks.

The uExecStatelnfo also contains stateMinDuration, stateMaxDuration, readyS-
tateDuration, runningStateDuration and blockedStateDuration variables, which are

computed by the uExecStateAnalyze object after program execution.

7.4 Validation

The validation of the EST metric is done using the CG&RT metric described in
Chapter 6. It was shown that CG&RT generates correct data (see Section 6.4);
therefore, showing that both metrics produce statistically similar results implies

that the EST presents correct information.
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EST finds the life time of a task, real time of its execution and duration of each
state it was in. And CG&RT finds real and CPU time a task spends in each of its
functions. Therefore, summing the total CPU time of each function called by a task
(reported by the CG&RT metric) should be equal to the total running time for the
task (reported by the EST metric). Furthermore, the real time reported by CG&RT
for a task’s main() should be equal to the execution real time reported by EST.

A test was performed using the program presented in Appendix B.2. The uMain
task creates five User tasks that try to enter a Bathroom mutex object, which results
in task’s blocking. The time spent in the Bathroom is simulated by a spinning loop.
Each task tries to enter the Bathroom object five times, spinning for a constant
amount of time between each attempt.

Both metrics are active during the same run of the program and their results

are presented in Table 7.1.

CG&RT EST
Task Name Running T. | Real Time || Running T. | Real Time
(msec) (msec) (msec) (msec)
User (0x724a38) 1,132.376 | 5,158.284 1,131.156 | 5,158.316
User (0x717a38) 1,104.181 | 5,047.355 1,102.934 | 5,047.419
User (0x70aa38) 1,114.265 | 4,930.196 1,112.767 | 4,930.226
User (0x6fda38) 1,116.604 | 4,715.182 1,115.311 | 4,715.212
User (0x6{0a38) 1,123.079 | 4,039.161 1,121.828 | 4,039.190
uMain (0x6d8d48) 7.937 | 5,599.141 7.178 | 5,599.175

Table 7.1: EST: Comparison of Results between EST and CG&RT

As can be observed from the table, the results given by both metrics are very
similar. The running time reported by CG&RT is slightly higher than the time

given by the EST metric because of the CG&RT’s higher probe effect. Since the
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running time in the CG&RT metric is distributed among functions, the profiling
data structures must be updated not only on context switches (what is done by
EST) but also on each function entry and exit. On the other hand, the real time
reported by EST is slightly higher than the real time reported by CG&RT. This
difference can be explained by the order in which the metrics’ hooks are processed.
At the beginning of execution, a task is first scheduled to run (its state changes to
running) and then starts its main(), i.e., the EST ezecution-state hook is processed
before the CG&RT function-entry hook. At the end of execution, the task first exits
its main() and then it changes the state to terminate, i.e., the CG&RT function-exit

hook is encountered before the EST hook.

7.4.1 User Experience

The EST metric has been used by students to profile algorithms for LIFO and FIFO
task scheduling. Their program performs a parallel matrix-multiplication using a
divide-and-conquer method. In FIFO scheduling, all tasks are created first and then
the calculations are performed. Whereas, in LIFO scheduling, only one branch of
tasks is created, and after they finish their work, another group of tasks is created,
reducing the maximum number of tasks in the system and the amount of memory
used.

The users applied pProfiler to verify that their program behaved in an expected
way in a uni-processor environment to get a better understanding of the program’s
behaviour in a multi-processor environment where the execution is more compli-

cated, and to improve its performance.
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Figures 7.7 and 7.8 show an overview chart (compressed) for the original pro-
gram with FIFO and LIFO scheduling in a uni-processor environment. It was im-
mediately obvious that the program was not accomplishing what the users wanted.
There was a long delay between the task’s end of execution and its deletion. Only
after multiple changes, each one examined in detail with pProfiler, did the users
finally achieve their desired result. Figures 7.9 and 7.10 present execution of the
improved program, which decreases the use of memory and the number of tasks in

a system during execution.
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Figure 7.7: Example: Original Program - FIFO Scheduling
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Figure 7.9: Example: Improved Program - FIFO Scheduling
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Figure 7.10: Example: Improved Program - LIFO Scheduling



Chapter 8

High Level Tracing Metric

This chapter describes the pProfiler’s built-in High Level Tracing (HLT) metric.
HLT replaces an existing tracing support, built into the pC++ translator.

In the tracing system [TB96], the uC4+ translator inserts additional code into a
user program when compiled with a -trace flag. The inserted code records synchro-
nization and communication events and sends them immediately for visualization
to an external visualization tool, POET.

Partial Order Event Tracer (POET) [Tay95b, Tay95d] is a general tool for col-
lecting and displaying event data from concurrent and distributed applications,
running in several different target environments, such as OSF DCE, ABC++, SR,
PVM. To achieve target-system independence, POET places information describing
each target environment in a separate configuration file. Therefore, adapting POET
to a new programming environment [Tay95a] is reduced to creating a configuration
file for the new environment. The old tracing system had a configuration file for

1C+-. The file i1s now modified to accommodate new events supported by HLT.

109
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8.1 Design

The HLT metric traces the activities of task threads and their interactions with
objects such as coroutines, monitors, coroutine-monitors and other tasks (see Sec-
tion 4.1). Within these objects, HLT profiles only events that are important to con-
current execution or accessing a coroutine, 1.e., interactions with mutex members
and the coroutine main. It does not profile thread access to non-mutex objects, free
routines (routines that do not belong to an object), non-mutex members of mutex
objects, and coroutine members that do not resume the coroutine main.

The design of the HLT metric is presented in Figure 8.1. The notation used in
this object-oriented analysis model is explained in Appendix A.

Since HLT utilizes POET for data analysis and visualization, its design differs
from the design of other metrics; HLT has only a monitor and does not have ana-
lyzers and visualizers.

The metric’s monitor, uHLT Monitor, derived from the abstract class uExecution-
Monitor, activates hooks necessary to trace the specified objects and events. It also
creates a uPoetlnterface object, which establishes a socket connection with POET
and transmits the data (called by POET events). POET recognizes two kinds of
events: a normal event, representing an occurrence of an event, and a text (named)
event, containing an annotation attached to a normal event. uPoetInterface encap-
sulates these two kinds of events inside EVENT and NAMED-EVENT classes.

uProfileSampler is created for each coroutine, monitor and task registered for
profiling. It keeps track of accounting information required by POET’s events, e.g.,

trace-line ID (explained in Section 8.1.1) or event number, and stores the informa-
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Figure 8.2: POET: Main Display for HLT Metric (Task)

tion inside a uPoetEventInfo structure.
Each recorded event is immediately sent to POET for processing and visualiza-

tion; POET supports run-time visualization versus post-mortem.

8.1.1 POET Visualization

Figure 8.2 presents part of POET’s display for the HLT metric, tracing execution
of a producer-consumer program; the program illustrates interactions of multiple

tasks with a single monitor.
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POET represents each profiled object by a horizontal line, called a trace line. A

trace line begins with a name, which consists of three parts:

o capital letter that represents the type of the object: Cfor a coroutine, M for

a monitor, C-M for a coroutine-monitor and T for a task,

e name of a class from which the object is instantiated or a name given by a

user through a call to a task’s or coroutine’s uSetName() routine,
e object ID, to differentiate among several objects from the same class.

Internally, a trace line has a unique ID, which must be included with each event
transmitted to allow POET to associate the incoming event with a correct trace
line.

An event is drawn as an empty or a filled circle (0, ®) or square (O, m). Interaction
between objects (synchronization event) is represented by a vertical line, with an
arrow at one end, that connects two filled circles ® from separate trace lines. A
thread’s state is presented by solid (ready or running state) or dash (start, blocked
or terminate state) lines. More information about specific event representation is
provided in Section 8.1.1.1.

Time flows from left to right in the diagram; however, the events are placed
based on relative, and not absolute, time. On a single trace line, events to the left
of a particular event occurred before it and events to its right occurred after it.
Events on different trace lines have no time relationship. However, there are partial
orderings between trace lines caused by synchronization events. At a synchroniza-

tion point (vertical line), all events on both connected trace lines to the left of that
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point occurred before the synchronization, and all events to its right occurred after

the synchronization.

8.1.1.1 Event Representation

The first symbol on each trace line is an empty square O that represents an ob-
ject’s creation. Similarly, each trace line ends with another empty square O (see
M:uOwnerLock (0x6e6818) or uFileAccess objects in Figure 8.2) depicting an object’s
deletion. For tasks, the start and end of a thread’s execution are presented by filled
squares W. Since a thread is in the start state between its creation (O) and the start
of its execution (m), and in the terminate state after ending its execution (m) and
waiting for deletion (O), there is a dash line between the corresponding events.

In general, events that cause a thread to block are displayed with empty squares
0, and events that cause a thread to become ready are shown with filled squares m.

A call to a mutex member (petition to enter) is represented by an empty circle
o, followed by a dash line that indicates the task’s waiting (blocking) for mutually-
exclusive access to the mutex object. When a thread acquires mutual exclusion,
the call to the mutex member proceeds. If the thread is not inside the mutex
object already (a call from one mutex member to another is allowed in pC++), its
entry is presented by a synchronization event and the thread is seen to transfer
from one trace line to another. Leaving the mutex object is shown by another
synchronization event. The direction of the arrow on the vertical line, represents
the direction in which the thread moves.

When an object contains only blocked threads, its trace line is dashed. When

there is a ready or running thread inside an object, its trace line is solid. And there
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Figure 8.3: POET: Main Display for HLT Metric (Coroutine)

is no trace line if an object does not have any threads inside.

The HLT metric also traces suspending and resuming of a coroutine. When
a thread executes a coroutine’s member that performs a uResume statement, the
thread switches from its current stack (execution state) to the coroutine’s stack; it
switches back after executing a uSuspend statement. These transfers are represented
in POET’s display by synchronization events (see Figure 8.3).

With a coroutine-monitor, if a coroutine’s mutex member contains the uResume
statement, an entry into that member is shown in the regular way, i.e., petition to
enter followed by synchronization event, which transfers a thread from its current
trace line into the C-M trace line (see bottom diagram of Figure 8.6). However,
since the thread is already on the C-M trace line, entering coroutine’s main is shown
only by a filled square m followed by a solid line because the thread is executing.
Similarly, suspending main() is depicted by an empty square O with a solid line
behind it (thread changes execution stack but does not block). Finally, leaving the

mutex member transfers the thread back to its own trace line, represented by a
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synchronization event.

Information about POET’s menu options, horizontal scrolling (which preserves
the relative ordering of events), or obtaining detail information about an event
and viewing its predecessor and successor events can be found in the POET user

manual [Tay95c].

8.2 Instrumentation Insertion

Since there are three kinds of objects to be monitored and quite a number of events
associated with them, the HLT metric activates the largest number of hooks (see
Figure 8.1). All the hooks are inserted into various routines of the pC+ kernel.

The RegisterTaskNotify(), RegisterCoroutineNotify() and RegisterMonitorNotify()
routines are used to inform POET that it needs to create a trace line and mark the
creation event (0). The corresponding Deregister... routines are used to mark the
end of a trace line by sending the deletion event (0).

RegisterSetNameNotify() generates an event instructing POET to change the
name of a trace line for a coroutine or a task when a thread calls a uSetName()
routine.

Register TaskStartExecutionNotify() and Register TaskEndExecutionNotify() activate
hooks that mark a task’s entering and exiting its main(), represented by the second
and second last mark (m) on a task’s trace line.

There are several hooks associated with gathering information about tasks call-
ing a mutex member and accessing a mutex object (monitor). Since access is

serialized, a task first makes a petition to enter a mutex member (RegisterMutex-
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FunctionEntryTryNotify()), and when there are no tasks in the monitor, the access
is granted (RegisterMutexFunctionEntryDoneNotify()); the exit from the mutex ob-
ject is marked by RegisterMutexFunctionExitNotify(). On the other hand, if there
are already tasks in the mutex object, the arriving task blocks and waits until its
entry gets scheduled by the monitor. Since monitors support two types of schedul-
ing, internal and external scheduling (see Section 4.1.2), both of them must be
profiled. Hooks for internal scheduling are activated by RegisterWaitNotify(), Regis-
terReadyNotify() and RegisterSignalNotify() functions. Whereas RegisterAcceptStart-
Notify() and RegisterAcceptEndNotify() activate hooks for external scheduling.
Suspending and resuming of a coroutine is profiled through hooks activated by

RegisterCoroutineBlockNotify() and RegisterCoroutineUnblockNotify() functions.

8.3 Implementation

Since several tasks can access the uPoetlnterface object at the same time, HLT
must ensure that data from different tasks does not get mixed up. To prevent the
mixing, a buffer (EVENT or NAMED-EVENT structure) from which the data is
transmitted to POETis declared as a local variable inside a SendEvent() function.
Therefore, if a task gets context-switched when copying data into the buffer, the
event structure is stored on its execution stack, which prevents overwriting the data
by another task.

POET expects some events to arrive in a predetermined order, specified in a
configuration file. For example, entering a monitor by a thread (marked by a

synchronization event) really consists of two events. The first event announces that
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the thread is entering the monitor and puts a mark (e) on the task’s trace line.
The second event indicates that the monitor received the thread and draws a mark
() on the monitor’s trace line as well as connects these two dots with a vertical
line and an arrow. If the events are not received in the correct order and POET is
unable to straighten out the ordering, it aborts program execution. Therefore, HLT
must guarantee that POET receives events in the order they are sent. To ensure
this ordering, each thread reports its own execution, i.e., a task sends events for
its own trace line as well as for trace lines of each object accessed by its thread.
Consequently, even if a task gets context-switched inside SendEvent() and another
task comes in and sends its events first, it does not cause a problem because traces

from different threads are independent.

8.4 Validation

The validation of the HLT metric has been done by comparing displays generated
by the metric with those created by the tracing system for separate executions of
the same program.

Since the translator modifies only user code, the tracing system cannot collect
data about user tasks interacting with the system’s mutex objects, such as uOwn-
erLock, uFile or uFileAccess, created by uBootTask. As a result, it does not profile
I/O operations, which use mutual exclusion in pC++ [BS99]. But I/O is profiled
by the HLT metric. Therefore, to make the displays similar, the test programs did
not contain I/O operations.

Also, the trace line for uBootTask, generated by the tracing system contains only
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creation, start and end of execution, and deletion events. Whereas the uBootTask
trace line produced by HLT includes many more events and shows interactions with
the system’s objects (see Figure 8.2). Again, to make the displays similar and to
shorten the HLT’s display, these system’s objects are grouped into a Group of system
objects POET-cluster and displayed as a single line; this is done using the Cluster
Hierarchy Interface Tool (CHIT) available under POET.

For all test cases, the upper display is generated by the tracing system and the

lower one is done by HLT.

8.4.1 Task Interaction with Monitor

A simple producer-consumer program (source code in Appendix B.3.1) is used to
test interactions among tasks and monitors. The program traces, produced by the
tracing system and the HLT metric, are shown in Figure 8.4. The traces are identical
after disregarding the uBootTask trace line.

In the program, a single “product” is generated by a producer (prod) and given
to a consumer (cons). A buffer class is not a mutex object, so it does not have a
trace line. However, the two semaphores (full and empty), which are implemented in
pCH as monitors [BS99], inside the class have trace lines. Also, it should be noted
that the call to buffer::query() made inside prod::main() is not reported because
query() is a non-mutex member.

All trace lines contain creation and deletion events (O) for each object, and the
start and end of execution events (m) for tasks.

The cons task tries to get a product by accessing a full buffer slot (o followed by
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Figure 8.4: HLT testing: Task Interaction with Monitor

synchronization event between the cons task and full [first] semaphore). Because a
product is not delivered yet, cons blocks inside the semaphore (0). In the meantime,
the prod task drops off the product without blocking by obtaining an empty buffer
slot (o followed by two synchronization events between the prod and the empty
[second| semaphore). The prod task then signals the waiting cons that the product
has been delivered by indicating a full buffer slot (o followed by two synchronization
events - signal never blocks), then ends its execution and is destroyed. The cons

task unblocks knowing there is a full buffer slot (m), and removes the product from
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the buffer (synchronization event). The cons task then indicates an empty buffer

slot (o followed by two synchronization events), ends its execution, and gets deleted.

8.4.2 Task Communication

The test program (source code in Appendix B.3.2) illustrates a simple heterosexual
dating service. Girl and Boy tasks call the dating service leaving their phone numbers
and block until they are given a phone number of a person of opposite sex.

A DatingService task accepts calls from Girl and Boy tasks using external schedul-
ing. When it is time to close, the DatingService task accepts its destructor, which
ends its execution. The result of running the program with three Girl and three
Boy tasks is shown in Figure 8.5. The traces, produced by the tracing system (top
diagram) and the HLT metric (bottom diagram), are very similar.

There is a difference in the order of matching the second pair of tasks. In the
trace generated by the tracing system, the Girl task calls before a Boy task, so it
blocks waiting for the Boy task. In the display generated by HLT, the situation is
reversed. This difference is easily explained by the fact that these two diagrams
come from two separate executions of the program, and in a concurrent environment
the order of running tasks is unpredictable. Even though the order of some events
is reversed, the logic behind them stays the same in both diagrams.

The only real difference between these two displays is at the end of the Dat-
ingService trace line. There is an extra filled square m between the thread’s last
blocking event (0O) and the end-of-execution event (m) in the HLT diagram. When

all Girl and Boy tasks are deleted, DatingService accepts its destructor (m after the



CHAPTER 8. HIGH LEVEL TRACING METRIC

122

TI0495 1YBTH/1497 $RTIUSPT faTPPTH

£ < O-m—=e W C—a-{ > {BEEaTm0) Rog 1]
< O-B—® = ook o oo oooooooooo oo O—m-0 > (OFIPTLx0) Fog 1)
< 00 0 O-me e®------- Co—.-0O > (geepTLx0) fiog 1]
< -O—a-0 > (BEEGOLX0) T419 3L
< OF-M—@ W-----f----mmmmefmmm e e b e e -O—a-{ LOP4FOLEOY T4T1 21
< 0 11 | Or-m% ® - ----oofooooFobooe -O—m-0 = CEREROLR0) T419 2L
< O-—a-{1—.-- - - - O - O ={0EZ249%0) aaladacBurier 3]
< O-a—a-0 > COLPGRIR0) WIEN 1]
=30algo walshs o dnoug
\% A.&-&-E-%-%-&-%-E-?nuflﬂ s CBRLPOTHOY MERLIOOGN T
suoTid S3TBJ} JIPIO-3Y SUOTIOUN
5 o 2> aI8d] JUBAT ++h [ e
TTO428 IIYBTY/HJ9] RJTIURPT 2TPPTH

£ < > (029501 =0 Fog
= Oo-2—9 = (0525003 fiog

< > {0RE50T=0 Rog

= = {0PQ2=0 T4T]

< Oy- - > (062303 410
= = {0RED=R0 14T
< O-a-0—.--—=&- (TR0 nacEuTIe]
= O-a—=-0 = {BPEGRED yUTEHN
ol ~ O-m—=-0 = (BIRA60)HER 300N

suoTld) S280RJ} JAPJ0-3yY SUDTIOUNY
g aded] Juaad ++n FhaEe

Figure 8.5: HLT Testing: Tasks Cooperation



8.4. VALIDATION 123

last synchronization event), and blocks again (O0). But the cleaning up (deleting the
task’s data structures) inside the destructor can be done only after the task finishes
its execution. Therefore, the destructor unblocks the DatingService task (the extra
m), which breaks out of the infinite loop and ends its execution (last m). Then
the destructor deletes the task (last O0). The tracing system does not record the
unblocking operation because of the break statement, which moves the thread out
of the loop in the middle of the uAccept statement. This omission is a bug in the
tracing system not present in the HLT metric that has hooks inside the pC4+ kernel

routines, which are executed no matter how a thread leaves the uAccept statement.

8.4.3 Coroutine

A simple coroutine program (source code in Appendix B.3.3) that generated the
output presented in Figure 8.3 (program compiled with the -profile flag), was also
compiled with the -trace flag and run under the tracing system. Both created
identical displays (disregarding the uBootTask).

A complex program (source code in Appendix B.3.4) using a Fibonacci number
generator has been used to test task interaction with a coroutine-monitor. Two in-
dependent generators, i.e., two instances of the fibonacci coroutine, create Fibonacci
numbers for tasks entering the coroutine-monitor. A task gets a single number from
each generator. Since the generators are accessed by multiple Worker tasks, they
require mutual exclusion to allow only one task in at a time.

Figure 8.6 contains the results of running the program under the tracing system

and the HLT metric. The differences in showing how a thread accesses a coroutine-
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monitor result from extensions in the HLT metric over the original tracing system.

The tracing system shows the petition to enter event (0), when a task calls
a coroutine’s mutex member (fibonacci::next), but it does not display the actual
entry into the member (synchronization event). The synchronization events in the
diagram indicate only entering and leaving the coroutine’s main. Therefore, if a
coroutine’s mutex member does not resume the coroutine, the trace shows petition
to enter a mutex routine but does not show the transfer of thread to the C-M trace
line for that mutex member.

On the other hand, the HLT metric traces both entering and exiting a mutex
member, and resuming and suspending a coroutine. Therefore, the synchroniza-
tion events in the HLT display represent entry and exit to/from a mutex member,
and the filled (m) and empty (O) squares signify coroutine-monitor resumption and

suspension.

8.4.4 HLT Extensions

This sections presents few other differences between the tracing system and the HLT
metric.

For internal scheduling, a thread gets blocked on a condition and it is reactivated
when another (active) task executes a signal statement. The tracing system, shows
the thread’s blocking, i.e., executing a wait statement, and unblocking, i.e., the
result of performing a signal operation by another task, using an empty square O
and a filled square m, respectively. However, it does not record the execution of

the signal statement itself done by the signalling task. The HLT metric registers
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Figure 8.7: HLT testing: Internal Scheduling - Task Signalling

all three events, utilizing the same symbols for a thread’s blocking and unblocking,
and using an empty circle O to show the signal statement. Presenting the signal
statement is useful especially when a task signals more than one task.

Figure 8.7 presents traces, obtained under the tracing system and the HLT met-
ric, for a dating-service program, which uses internal scheduling for matching Girl
and Boy tasks (source code in Appendix B.3.5). For the first pair of matched tasks,
the Girl task calls first into the DatingService, which is implemented as a monitor (it
is implemented as a task in the external scheduling, see Section 8.4.2), and blocks

inside the monitor (O), waiting for a Boy phone number. Then, a Boy task comes
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Figure 8.8: HLT testing: Task Entering its Mutex Member

in (synchronization event), leaves his phone number and signals the Girl task. The
signalling is shown in the HLT metric with an empty circle o, but it is not shown in
the tracing system. After, the Boy task leaves the monitor (synchronization event),
the Girl task unblocks (m) and continues her execution.

Another feature added into the HLT metric, involves processing calls to a mutex
member in the same mutex object that has already been acquired, including calls
to a task’s own mutex members. In this situation, the tracing system indicates
only petition to enter (0) but does not show the actual entry and exit to/from the
mutex member. On the other hand, the HLT metric records all three events, i.e.,

the petition to enter is followed by two filled circles ® on the same line indicating
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the entering and leaving the mutex member.

Figure 8.8 shows the traces produced by the tracing system and the HLT metric
for a simple program in Appendix B.3.6. It can be observed that the tracing system
displays only two petition to enter events (two O on fred line) for the two calls to
fred::mem() performed by fred::main(). Whereas, HLT shows the petition to enter
as well as entering and exiting the fred::mem() routine.

This program also illustrates another property that is common for both the
tracing system and the HLT metric. Neither system records the event of a coroutine
resuming itself. Therefore, the presented traces show only the uResume performed
by mary::mem() called from uMain::main(), which transfers the thread from uMain
task trace-line into the corouinte’s trace-line, and the uSuspend statement, which
transfers the thread back to its own trace line. The diagrams do not show the uRe-
sume statement executed by mary::mem() called from mary::main() and the uResume
statement in mary::main() because these two statements switch the coroutine back
to itself.

Switching the coroutine to itself is not useful nor does it occur frequently in
programs but it is not precluded by the language semantics. However, generating
an event for this esoteric case would have complicated the implementation substan-

tially. Therefore, it was decided to ignore this case for event-tracing.



Chapter 9

Memory Usage Information

Metric

This chapter describes the pProfiler built-in Memory Usage Information (MUI)
metric.

In languages, like C+, with explicit dynamic storage-allocation (versus implicit
garbage collection), there is the potential to make a number of memory allocation
and deallocation errors. Some memory managers in the language run-time system
provide no error-checking for performance reasons. However, it is possible to check
for double free on the same block of memory or freeing a corrupted pointer. pC4+
provides this kind of error-checking in its memory manager. Detecting these errors
in puCH+terminates a program producing an error-message, which can be used to
quickly track the problem with print-statements and/or a debugger.

However, there is one kind of allocation problem that does not lead to program

termination: a memory leak. A memory leak occurs when allocated storage is never
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freed. Finding memory leaks is difficult because there is usually no error to work
from and the point of allocation is unknown; only if the memory leak is severe, such
that it exhausts storage, does an error occur.

To help with memory leaks, the MUl metric collects data about each dynamic
allocation (malloc(), calloc(), realloc(), operator new) and deallocation (free(), op-
erator delete) of memory performed by a user program or by a library function,
called directly or indirectly from the user program. This data is filtered to present
only information about memory that has been dynamically allocated but not freed
and information about attempts to free a NULL pointer, which are just ignored by
a system deallocation routine without causing an error; however, freeing a NULL
pointer is sometimes an indication of a problem.

The MUI metric and the error-checking in pC4+ are not meant to provide ex-
haustive memory checks as it is done in Purify [?]. Instead, they provide a low-
cost, simple mechanism to locate a significant number of memory problems. A tool
such as Purify uses a very complex compiler/architecture-dependent code-rewriting
method to check every memory read and write performed by an application. Such

an aggressive approach does not work for concurrent systems like pCH+.

9.1 Design

Figure 9.1 presents a main display for the MUl metric. The only deallocations
presented are for a NULL pointer. The reminder of the discussion only refers to
the allocations without matching deallocations and is sufficient to understand the

simple case of freeing a NULL pointer.
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Figure 9.1: MUI Metric: Main Display

The first column in the display contains the start address of a memory alloca-
tion. The next two columns show the requested and actually allocated size; these
two sizes are never identical because the allocated block includes additional data
(header) required for memory management. The fourth column presents which task
performed the allocation request. And the last column displays the call-stack at
the time of the memory allocation. The call-stack is limited to sixteen functions
for each memory allocation, which is adequate for most situations and bounds the
cost for the metric.

The design of the MUI metric is presented in Figure 9.2. The notation used in

this object-oriented analysis model is explained in Appendix A.
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Figure 9.2: Object-Oriented Model of Memory Usage Information Metric

MUI uses decentralized monitoring; therefore, one uProfileSampler for each pro-
filed task is responsible for recording data about each memory allocation and deal-
location performed by the task, and storing it into uMemorylnfo. uMemorylnfoTable
and uMemoryInfoEntry data structures inside the uMemorylnfo object are allocated
in the same way as it is done in the EST metric (see Section 7.3). That is, large
chunks of memory (an array of uMemorylnfoEntry), enough to store data for fifty

profiled memory operations, are allocated at a time. After exhausting one array,
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Figure 9.3: MUI Metric: Option Display

another is dynamically allocated and chained to the previous one.

uMemMonitor, derived from the pProfiler kernel’s abstract-class, uExecution-
Monitor, activates the necessary hooks and keeps a list of the uMemorylnfo objects
to allow a metric analyzer to access the data after program execution.

A uMemorylnfoAnalyze analyzer, derived from uMetricAnalyze, goes through the
data and tries to match each allocation request with a corresponding deallocation
request. First, it looks for the matches within the data of a single task and transfers
all unmatched entries into memorylLeaksList. Then, it makes a final sweep through
the memoryLeaksList to see if some memory is allocated by one task and deallocated
by another.

The memorylLeaksList 1s used by the uMemorylnfoAnalyzeWidget visualizer to

display the memory leaks information on the screen (see Figure 9.1). The display
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contains an Options menu with a Display File Information button. Pressing the
button adds an extra column to the display (see Figure 9.3) containing file and line

number information for the presented functions.

9.2 Instrumentation Insertion

The MUI metric uses hooks inserted into the pC44 memory allocation and deal-
location routines. The hooks are activated by RegisterMemoryAllocateNotify() and
RegisterMemoryDeallocateNotify() routines.

RegisterTaskNotify() creates the uProfileSampler object, for each task register for
profiling, and the uMemorylnfo data structures.

The job of Register TaskSetNameNotify() is the same as in all the previous metrics.
It records the change of a task name when a user’s program calls the uSetName()

routine.

9.3 Implementation

There are two main issues in implementing the MUl metric. First is to avoid record-
ing memory allocations done by the metric itself as well as by all other metrics,
and the other is to get complete call-stack information.

MUI stores the memory data into an array. When a single array is full, MUI
dynamically creates another one by calling operator new inside an UpdateMemory-
Info() function. Profiling this call to operator new would generate another call into

UpdateMemorylnfo(). MUI would again detect that a new array must be created and
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would make another call to operator new, creating an infinite call-cycle. To avoid
this situation, uMemorylnfo contains a metricAllocationFlag, which is turned on when
MUI performs memory allocation to ensure that the operation is not registered.

The flag 1s also used to prevent recording of memory allocations performed
by other pProfiler metrics, even though their operations do not cause recursion.
These allocation are not profiled because the profiling data structures are used for
analysis and are deleted when pProfiler closes (long after a user program finishes).
But since the profiler collects data only during user program execution, all profiling
data structures would be reported as allocated but not freed.

The other problem involves obtaining information about functions that lead
to memory allocation or deallocation. Unfortunately, the profiling stack (see Sec-
tion 5.5.3) contains only functions that are compiled with the -profile flag, and
hence have calls to mcount() (see Section 5.4.2). Most libraries are precompiled
without this flag, so their functions do not end up on the profiling stack. As a
result, a dynamic (de)allocation inside a library function would get assigned the
profiled function on the top of the profiling stack as the caller. Thus, users would
be unsure whether the reported problem is really caused by their program or by
a library routine. To avoid this confusion, MUl walks the task’s execution stack
to obtain the function addresses, which is architecture dependent. For example,
walking the stack on SPARC machines requires flushing the register windows into
a memory (trap 3), which is expensive. However, since the MUI metric is mostly
used for debugging, the probe effect is usually acceptable.

An additional problem is that the MUl metric finds names only for statically-
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linked functions; dynamically-linked functions are reported as *unknown*. Find-
ing names for dynamically-linked functions is not provided in the BFD (see Sec-
tion 5.2.1) used for symbolic name lookup. However, most systems, including pC+,
allow a program to be statically or dynamically linked. Therefore, programs should

be statically linked to obtain maximum information from the MUl metric.

9.4 Validation

The validation has been performed by comparing expected results with the infor-
mation reported by the MUl metric.

The test includes a simple program (source code in Appendix B.4) with only
one task (uMain::main) that dynamically creates six objects without deleting them
and also frees a NULL pointer. The objects are of the following types: char, int,
float, double, Female and Male. The Female and Male objects dynamically allocate
memory for their name variables without freeing it, so it also should be reported by
the metric. Additionally, invoking a Male object involves creating a Female object,
which in turn dynamically allocates memory for its name, generating another block
of un-freed memory. Therefore, HLT should report memory leaks for nine blocks,
plus it should also show the deallocation of a NULL pointer.

The estimation of the amount of a requested memory is performed by summing
sizes of all variables inside the objects, using the following sizes (in bytes) for basic-
types: char = 1, int, float, bool = 4, double = 8, pointer = 4.

The estimation of the allocated size is done by applying a formula used by pC++

memory management:
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Expected Sizes MUT Sizes
Object Name Requested | Allocated || Requested | Allocated
(bytes) (bytes) (bytes) (bytes)

letter 1 16 1 16
intNum 4 16 4 16
floatNum 4 16 4 16
doubleNum 8 16 4 16
littleMary 140 256 140 256
littleMary—mname 50 64 50 64
bob 824 1024 824 1024
bob—name 18 32 18 32
bob—wife.name 18 32 18 32
nullPtr 0 0

Table 9.1: MUI: Test Results

allocatedSize = [log,(requestedSize + header)|

where header contains two pointers; therefore, its size is 8 bytes.

The expected and the actual results are shown in table 9.1. They are identical.

The memory addresses reported by the MUl metric are compared to the object
addresses printed by the test program; they are the same.

The MUI function call-stack information is compared to the call-stack generated
by the GDB debugger; both stacks are identical.

A separate program, which is not shown in this thesis, is used to verify that the

metric correctly relates memory leaks to specific tasks.






Chapter 10

Conclusions and Future Work

This thesis focuses on profiling user-level threads in concurrent object-oriented pro-
grams running in shared-memory, uni-processor and multi-processor environments.

pProfiler is a performance-analysis tool implemented in pC++, a high-level con-
current object-oriented language, that makes the profiler extendible and portable.
pProfiler is also intuitive and easy to use, which is important since most users are

unwilling to spent much time and effort learning to use new performance tools.

10.1 Contributions

My work includes enhancements to the yProfiler kernel and implementation of four
new metrics that help users to understand program run-time behaviour, and find
program hot spots and bottlenecks.

This thesis contributes three major enhancements to the pProfiler kernel: de-

centralized monitoring, coroutine profiling and incorporating user-designed metrics.
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In decentralized monitoring, each task is responsible for updating its own profil-
ing data structures, eliminating the task’s potentially blocking calls into pProfiler
and, as a result, drastically reducing the profiling overhead. Furthermore, since
only a single thread accesses a particular data structure, there is no need for mu-
tual exclusion making the profiling process even less intrusive.

The initial gProfiler failed when a profiled task executed a coroutine. The failure
occurred because the profiling stack was only implemented for tasks. When the
task’s thread switched to the coroutine’s stack, it still tried to add information to
the task’s profiling stack, which caused a segmentation fault. To fix this problem,
the profiling stack is now created for tasks and coroutines, and pProfiler has a
mechanism to recognize when a thread is executing a coroutine, so it accesses the
correct stack.

Users are allowed to create their own metrics using the instrumentation hooks
provided by the pProfiler kernel. The metrics are incorporated into pyProfiler with-
out recompiling the profiler’s code. To ensure that the process of adding a user
metric works correctly, the CG&RT metric was originally implemented as a user
metric. After testing, it has been converted into a built-in metric to take advantage
of decentralized monitoring.

Currently, even the built-in metrics are treated by the pProfiler kernel as exter-
nal metrics and are dynamically linked into the profiler. To make this possible, the
pProfiler start-up process, and especially the creation of the start-up window, as
well as the coupling between the pProfiler kernel and the metrics were redesigned

and re-implemented.
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Implementation of new metrics requires some programming effort, but it gives
users the freedom to tailor pProfiler to better address their needs. For users that
are not interested in creating their own metrics, yProfiler contains, at present, six
built-in metrics to provide insights into program behaviour. Two of the metrics,
Performance Profile Information and UNIX Resources Usage Information, were
developed during initial implementation of the profiler [Den97] and altered during
this work so that they function correctly with the redesigned kernel. Both metrics’
visualizers are modified to better utilize the Motif resources, and the UNIX Re-
sources Usage Information metric is updated to work with a new interface to the
UNIX process file system (proc) [?]. The other four yProfiler’s metrics, Call Graph
and Run Times, Execution State Transition, High Level Tracing and Memory Usage
Information, are outcomes of this thesis.

pProfiler’s metrics describe various aspects of a program’s run-time behaviour,
giving users an opportunity to view their applications from different perspectives.
It does not mean that a user must use all of the available metrics to profile an
application. For one program, it may be enough to apply only one metric, whereas
another program may require two or three metrics to find its problems or understand
its behaviour. Since no single metric is able to answer all performance questions,
a profiler needs to have several of them to successfully deal with diverse problems

and behaviour in concurrent programs.
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10.2 Future Work

The thesis shows that pProfiler can cooperate with an external visualization tool,
i.e., POET. This idea could be taken further by allowing the profiler to save perfor-
mance data into widely supported file formats, such as Pablo SDDF, that can be
then read and visualized by other analysis tools.

Another idea, which also involves storing data into a file, is to extend pyProfiler’s
functionality to permit comparison of performance data for several runs of the same
program with different input data, changed system parameters or implemented code
modifications.

Another field for future work is extending pProfiler to allow profiling of the
pC+ run-time kernel. Right now, only inline kernel-functions, accessed by profiled
tasks, are monitored because they contain calls to mcount(). It is also possible to
profile the other MVD tools, KDB and SMART, or use uProfiler to profile itself, albeit
with some restrictions to prevent recursive problems. Furthermore, the profiler
needs to be ported to all the architectures supported by pC+.

Future work should also include: research on feasibility of dynamic instrumen-
tation insertion, run-time analysis and visualization of performance data, a mech-
anism for finding names for dynamically-linked functions, and of course, the devel-

opment and applicability of new metrics and suitable visualization techniques.



Appendix A

Object-Oriented Analysis &

Design Notation

The notation used in this thesis is based on the object-oriented analysis and de-
sign notation provided by Peter Coad and Jill Nicola in [CN93]. It is also con-
sistent with the notation used by Robert Denda, who did the initial work for the
pProfiler [Den97]. The notation has been modified to show special objects in pC+
and to simplify the design overview. The explanation in this appendix targets
people with at least a basic knowledge of the object-oriented paradigm.

Figure A.1 shows symbols used to depict classes and objects. The Class-é-object
symbol represents a class and one or more objects of that class. The inner rounded
rectangle denotes a class and the outer rectangle denotes an object or objects of
that class. Below the name of the class are its attributes and member functions.
Ounly attributes and members relevant to the design being described are shown.

The Class symbol represents an abstract class, one that has no objects.
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Class & Object Symbol Abstract Class Symbol
N
Class Name Class Name
Attribute 1 Attribute 1
Attribute 2 Attribute 2
Member Function 1 Member Function 1
\Member Function 2 \Member Function 2 P,

Figure A.1: Class and Object Notation

When the attributes and member functions are unimportant to the concept
being explained or because they have been already listed in previous diagrams, a
simplified notation containing only the class name is used. Figure A.2 shows the
simplified symbols.

Class & Object Abstract Class

-

Class Name Class Name

\

Figure A.2: Class and Object Simplified Notation

pC+ contains objects that have their own thread of control and execution
state, i.e., tasks (see Section 4.1.3 for information about tasks). These “active”
objects are represented by regular rectangles in which the space between the inner
and outer rectangle is shaded. The active object symbol, which is not a part of
Peter Coad’s notation, is shown in Figure A.3.

Inheritance, or generalization-specialization structure as called in [CN93], is rep-
resented by a line with a semi-circle, drawn between classes. Inheritance is done

among classes, not objects, and that is why the inner rectangles are connected in
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Active Object

Class Name

Atrribute 1
Attribute 2

Member Function 1
Member Function 2

Figure A.3: Active Object Notation

Figure A.4. The derived (specialized) class inherits the attributes and member
functions of the base (general) class, and it extends and modifies members to suit
its own purposes. More than one specialized class can be derived from the general

class.

R .
General Class

Name Name

ER A

Specialized Class J

General Class

N

Specialized Class 1 Specialized Class 2

Name Name Name

J

Figure A.4: Inheritance Notation

The notation in Figure A.5 represents object connection/association. The car-
dinality displayed on the line connecting the objects shows how many objects of one
class are connected to how many objects of another class. In the given example, an
object of Class 2 knows about one or more, up to n, objects of Class 1. But each

object of Class 1 knows about exactly one object of Class 2.
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Name Name

-
Class 1 1 1,n Class 2 J

N

Figure A.5: Object Relationship Notation

In figure A.6, the line with a triangle on it is called a whole-part structure and
represents the aggregation of objects. The triangle points toward the Whole object.
The range or limit markings on the connecting line depict the relation between the
objects. In the example, the Whole object can have between zero and n objects of

Part class, and a Part object is an attribute of only one Whole object.

s N
Whole Class
Name
J
0,n
1]
. ™
Part Class
Name
_ J

Figure A.6: Aggregation Notation
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Test Programs

B.1 CG&RT Metric

B.1.1 C/uC+H Program

#include <uC++.h>

#define BIGLOOP 100000
#define SMALLLOOP 10

void first( void );
void second( void );
void third( void );
void fourth( void );
void fifth( void );
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#ifdef __U_CPLUSPLUS_ _
void uMain::main ( void ) {
#else
void main ( void ) {
#endif
for (inti=0;i< SMALLLOOP; i +=1) {
first();
for (intj=0;j<BIGLOOP; j+=1) {}
second();
} // for
} // main

void first( void ) {
for (inti=0;i < SMALLLOOP; i +=1) {
third();
for (intj=0;j<BIGLOOP; j+=1) {}
fourth();
} // for
} /1 first

void second( void ) {
for (intj=0;j<BIGLOOP ;j+=1){}
} // second

void third( void )}
for (inti=0;i < SMALLLOOP; i +=1) {
fifth();
for (itj=0;j<BIGLOOP; j+=1){}
} // for
} /1 third

void fourth( void ) {
for (inti=0;i< SMALLLOOP; i +=1) {
for (intj=0;j<BIGLOOP; j+=1) {}
} // for
} // fourth

void fifth( void ) {
for (intj=0;j<BIGLOOP ;j+=1){}
} /1 fifth

/I compile-command for C program: “g++ testl.c -o testl -pg”

TEST PROGRAMS

/I compile-command for uC++ program: “setenv MVDPATH /u/usystem/software/MVD;

1 u++ -profile testl.cc”
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B.1.2 uC+H+ Coroutine Program

#include <uC++.h>

uMutex uCoroutine fred {
void main() {
for (5 5){
for (inti=1;i<=45440;i+=1){}
uSuspend;
} /I for
} // main
public:
void nextFred() {
uResume;
for (inti=1;i<=17040;i+=1){}
} // nextFred
}; /I fred

uMutex uCoroutine mary {
void main() {
for (5 5){
for (inti=1;i<=22720;i+=1){}
uSuspend;
} /I for
} // main
public:
void goMary() {
uResume;
for (inti=1;i<=11360;i+=1) {}
} // mary::goMary
}; [/ mary

uTask Worker {
fred &f;
mary &m;

void main() {
for (inti=0;i<5;i+=1){
f.nextFred();
m.goMary();
} /1 for
} // main
public:
Worker( fred &f1, mary &2 ) : f(f1 ), m(f2) {}
}; 1/ Worker
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/I'loop for 2 msec

/I'loop for 0.75 msec

/I'loop for 1 msec

/I'loop for 0.5 msec

/I Worker()
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void uMain::main() {
const int NoOfWorkers = 10;
fred f;
mary m; /I create coroutines
Worker *workers[ NoOfWorkers];

for (inti = 0;i < NoOfWorkers; i += 1) {

workers[i] = new Worker( f, m); /I create tasks
} // for
for (inti = 0;i < NoOfWorkers; i += 1) { Il delete tasks
delete workersJ[i];
} // for

} // uMain::main

/I compilation-comand: setenv MVDPATH /u/usystem/software/MVD;
/1 u++ -profile -multi coroutineTest.cc

B.2 EST Metric

#include <uC++.h>
#define BIGLOOP 5000000
#define SMALLLOOP 10000

uMonitor Bathroom {
uCondition busy;
int inBathroom;
public:
Bathroom() {
inBathroom = 0;
} // Bathroom

void enter() {
if ( inBathroom == 0) {
inBathroom += 1;
for( inti=0; i< BIGLOOP; i +=1) {}
inBathroom -= 1;
uSignalBlock busy;
} else {
uWait busy;
Y f
} /lenter
}; // Bathroom
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uTask User {
Bathroom &b;

void main() {
for (intj=0;j<5;j+=1){
for (inti=0;i< SMALLLOOP;i+=1) {}
b.enter();
} /I for
} // main
public:
User( Bathroom &b ) : b( b ) {}
}; I/ User

void uMain::main() {
const int NoOfUsers = 5;
Bathroom b;
User *users[NoOfUsers];

for (inti=0;i < NoOfUsers; i +=1){

users[i] = new User( b ); /I create tasks
} // for
for (inti=0;i < NoOfUsers; i +=1) { Il delete tasks
delete users[i];
} // for

} // uMain::main

/I compilation-comand: setenv MVDPATH /u/usystem/software/MVD;
1 u++ -profile estTest.cc -multi

B.3 HLT Metric
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B.3.1 Producer-Consumer Program: Semaphore Solution

Program written by Peter A. Buhr.

#include <uC++.h>
#include <uSemaphore.h>
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class buffer {

int front, back; /I position of front and back of queue
int count; /I number of used elements in the queue
uSemaphore full, empty; /I synchronize for full and empty buffer
int elems[5];

public:

buffer() : full( 0 ), empty( 5 ) { front = back = count = 0; }
int query() { return count; }
void insert( int elem ) {
empty.uP(); /I wait if queue is full
elems[back] = elem;
back = ( back + 1) % 5;
count += 1,
full.uv(); /I signal a full queue space
} // buffer::insert

int remove() {
int elem;

full.uP(); /I wait if queue is empty
elem = elems[front];
front = ( front + 1) % 5;
count -= 1,
empty.uV(); /I signal empty queue space
return( elem );

} // buffer::remove

3

uTask prod {

buffer &buf; /I reference to shared buffer

void main() {
buf.query(); /I check status of buffer
buf.insert( 3 ); /l insert data

}

public:
prod( buffer &b ) : buf( b ) {}

h

uTask cons {
buffer &buf; // reference to shared buffer
void main() {
buf.remove(); /I remove data
}
public:
cons( buffer &b ) : buf( b ) {}
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void uMain::main() {

buffer b; /I create bounded buffer task
cons c( b); /I create consumer task
prod p( b); /Il create producer task

}

/I compile-command for tracing system: “u++ -trace prodCons.cc -o prodCons”
/I compile-command for uProfiler: “setenv MVDPATH /u/usystem/software/MVD;
1 u++ -profile prodCons.cc"

B.3.2 Dating Service Program - External Scheduling
Program written by Peter A. Buhr and Richard A. Stroobosscher.

#include <uC++.h>

uTask DatingService {
int GirlPhoneNo, BoyPhoneNo;
void main();
public:
DatingService() {
GirlPhoneNo = BoyPhoneNo = -1;
}; // DatingService::DatingService
int Girl( int PhoneNo );
int Boy( int PhoneNo );
}; // DatingService

void DatingService::main() {

for (;;){
uAccept( ~DatingService )
break;

uOr uAccept( Girl );
uOr uAccept( Boy );
// do other work
} // for
} // DatingService::main

int DatingService::Girl( int PhoneNo ) {
GirlPhoneNo = PhoneNo;
if ( BoyPhoneNo == -1 ) uAccept( Boy );
int temp = BoyPhoneNo;
BoyPhoneNo = -1;
return temp;

} // DatingService::Girl
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int DatingService::Boy( int PhoneNo ) {
BoyPhoneNo = PhoneNo;
if ( GirlPhoneNo == -1 ) uAccept( Girl );
int temp = GirlPhoneNo;
GirlPhoneNo = -1;
return temp;

} // DatingService::Boy

uTask Girl {
DatingService &TheExchange;

void main() {
uYield( rand() % 100 ); /I don't all start at the same time
int PhoneNo = rand() % 10000000;
int partner = TheExchange.Girl( PhoneNo );

} // main

public:
Girl( DatingService &TheExchange ) : TheExchange( TheExchange ) {} // Girl
}; 1 Girl

uTask Boy {
DatingService &TheExchange;

void main() {
uYield( rand() % 100 ); /I don't all start at the same time
int PhoneNo = rand() % 10000000;
int partner = TheExchange.Boy( PhoneNo );
} // main
public:
Boy( DatingService &TheExchange ) : TheExchange( TheExchange ) {} // Boy
}; // Boy

void uMain::main() {
DatingService TheExchange;
Girl *girls;
Boy +boys;

girls = new Girl[ 3]( TheExchange );
boys = new Boy[3]( TheExchange );

delete [ ] girls;
delete [ ] boys;
} // uMain::main
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B.3.3 Producer-Consumer Program: Coroutine Solution
Program written by Peter A. Buhr.

#include <uC++.h>

uCoroutine cons {
int elem;

void main() { /* consume */ }
public:
void delivery( int e ) {
elem = g;
uResume; / restart cons::main
} // cons::delivery

h

uCoroutine prod {
cons &c;

void main() { c.delivery( 5); }

public:
prod( cons &c ) : c(c) {}
void start() { uResume; } /I restart prod::main
¥
void uMain::main() {
cons c; /Il create consumer
prod p( ¢ ); /I create producer
p.start();

} // uMain::main
B.3.4 Fibonacci Number Generator Program
Program written by Peter A. Buhr and Richard A. Stroobosscher

#include <uC++.h>
#include <ulOStream.h>
#include <unistd.h> /I getpid
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uMutex uCoroutine fibonacci {
int fn, fnl, fn2;

void main() {
fn = 1;
fnl = fn;
uSuspend;
fn = 1;
fn2 = fnl;
fnl = fn;
uSuspend;
for (5 5){
fn = fnl + fn2;
fn2 = fnl;
fnl = fn;
uSuspend;
} /I for
} // fibonacci::main
public:
int next() {
uResume;
return fn;
} // fibonacci::next
}; // fibonacci

// 1st case

// 2nd case

/I general case

uTask Worker {
fibonacci &fl, &f2;
int nl1, n2;

void main() {
nl = fl.next();
n2 = f2.next();
} // Worker::main
public:

APPENDIX B.

TEST PROGRAMS

Worker( fibonacci &f1, fibonacci &f2 ) : f1( 1), f2( f2 ) {} // Worker::Worker

}; 1/ Worker

void uMain::main() {
const int NoOfWorkers = 4;
Worker *workers[ NoOfWorkers];
fibonacci f1, f2;

int i;

for (i = 0; i< NoOfWorkers; i += 1) {
workers[i] = new Worker( f1, f2);

} // for

for (i = 0; i< NoOfWorkers; i += 1) {
delete workersJ[i];

} // for

} // uMain::main

/I create fibonacci generator
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B.3.5 Dating Service Program - Internal Scheduling
Program written by Peter A. Buhr and Richard A. Stroobosscher

#include <uC++.h>

uMonitor DatingService {
int GirlPhoneNo, BoyPhoneNo;
uCondition GirlWaiting, BoyWaiting;
public:
int Girl( int PhoneNo ) {
if ( BoyWaiting.uEmpty() ) {
uWait GirlWaiting;
GirlPhoneNo = PhoneNo;
} else {
GirlPhoneNo = PhoneNo;
uSignal BoyWaiting;
Y f
return BoyPhoneNo;
} // DatingService::Girl

int Boy( int PhoneNo ) {
if ( GirlWaiting.uEmpty() ) {
uWait BoyWaiting;
BoyPhoneNo = PhoneNo;
} else {
BoyPhoneNo = PhoneNo;
uSignal GirlWaiting;
Y f
return GirlPhoneNo;
} // DatingService::Boy
}; // DatingService

uTask Girl {
DatingService &TheExchange;

void main() {
uYield( rand() % 100 ); /I don't all start at the same time
int PhoneNo = rand() % 10000000;
int partner = TheExchange.Girl( PhoneNo );

} // main

public:
Girl( DatingService &TheExchange ) : TheExchange( TheExchange ) {} // Girl
}; 1 Girl
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uTask Boy {
DatingService &TheExchange;

void main() {
uYield( rand() % 100 ); /I don't all start at the same time
int PhoneNo = rand() % 10000000;
int partner = TheExchange.Boy( PhoneNo );
} // main
public:
Boy( DatingService &TheExchange ) : TheExchange( TheExchange ) {} // Boy
}; // Boy

void uMain::main() {
DatingService TheExchange;
Girl *girls;
Boy *boys;

girls = new Girl[ 3]( TheExchange );
boys = new Boy[3]( TheExchange );

delete [ ] girls;

delete [ ] boys;
} // uMain::main

B.3.6 Task Calling Its Mutex Member
Program written by Peter A. Buhr.

#include <uC++.h>

uCoroutine mary {
void main() {

mem();
uResume; /l resumes itself
uSuspend;
}
public:
void mem() {
uResume;

} // mary::mem
}; [/ mary
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uTask fred {
public:
void mem() {
}.
private:
void main() {
mem();
mem();
uAccept( mem );
} // fred::main
}; /I fred

void uMain::main() {
mary m;
m.mem();
fred f;
f.mem();

} // uMain::main

B.4 MUI Metric

#include <uC++.h>
#include <ulOStream.h>
#include <string.h>

class Female {
int children;
int parents;

char childrenSchool[ 128];

public:
char *name;

Female( char *n ) {

name = new char[strlen(n) + 17];

strcpy(name, n);
} // Female::Female
}; // Female

/I call to its member
/I call to its member
/I call from another task

/] start coroutine

/I space for \0
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class Male {

APPENDIX B. TEST PROGRAMS

char house[800];
double bestScore;

public:

char *name;
Female wife;

Male( char *n, Female woman ) : wife( woman ) {
name = new char[strlen(n) + 17]; /I space for \0
strcpy(name, n);

} // Male::Male

}; // Male

void uMain::main() {
char +letter = new char[1];
int *intNum = new int(2);
float *floatNum = new float(1.3);
double *doubleNum = new double(5.678);
Female =+littleMary = new Female(

"Maria Anna Smit h- Tonpson with very | ong | ast name");

Male *bob = new Male(""Bob Zachary Br own", Female("St acy Tracy Bl ack"));

uCout <<
uCout <<
uCout <<
uCout <<
uCout <<
uCout <<
uCout <<
uCout <<
uCout <<

"letter " << (void *)letter << endl;

"i nt Num" << (void *)intNum << endl;

"fl oat Num" << (void *)floatNum << endl;

"doubl eNum" << (void *)doubleNum << endl;

"littl eMary " << (void #)littleMary << endl;

"littl eMary’s name " << (void =*)littleMary->name << endl;
"bob " << (void *)bob << endl;

"bob’s nane " << (void *)bob->name << end|;

"bob’s wi f e name " << (void *)bob->wife.name << end|;

char *nullPtr = NULL; /Il freeing NULL pointer
free(nulPtr);
} // uMain::main()

/I compile-command for uProfiler: “setenv MVDPATH /u/usystem/software/MVD;

I

u++ -profile memMetricTest.cc”
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