
Adapting Information Retrieval Te
hniques

for a Biomedi
al Corpus

by

David L. Yeung

A thesis

presented to the University of Waterloo

in ful�llment of the

thesis requirement for the degree of

Master of Mathemati
s

in

Computer S
ien
e

Waterloo, Ontario, Canada, 2004





David L. Yeung 2004



I hereby de
lare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals

for the purpose of s
holarly resear
h.

David L. Yeung

I further authorize the University of Waterloo to reprodu
e this thesis by photo
opying or

other means, in total or in part, at the request of other institutions or individuals for the

purpose of s
holarly resear
h.

David L. Yeung

ii



The University of Waterloo requires the signatures of all persons using or photo
opying

this thesis. Please sign below, and give address and date.

iii



Abstra
t

We investigated the appli
ation of a variety of text retrieval te
hniques to the problem

of retrieving biomedi
al journal arti
les from the MEDLINE database whi
h are relevant

to a parti
ular gene. Our experiments were motivated by the University of Waterloo's

parti
ipation in the Genome Tra
k of the 2003 Text REtrieval Conferen
e (TREC 2003),

and 
ondu
ted using the MultiText sear
h engine developed at the University of Waterloo.

In adapting the MultiText sear
h engine to MEDLINE, we did not in
orporate domain

expertise into the engine, nor did we use external biomedi
al resour
es su
h as di
tionar-

ies of synonyms or gene ontologies. Instead, we used te
hniques whi
h have been shown

to improve retrieval in a wide range of appli
ations: shortest substring retrieval, query

tiering, fusion, and query expansion. We experimented with query formulation using the

Okapi BM25 retrieval model and examined di�erent fusion te
hniques for 
ombining re-

trieval methods. Metadata information in the MEDLINE re
ords were used both for the


onstru
tion of query tiers and for generating query expansions for feedba
k.

We dis
overed that a general purpose retrieval system 
an be su

essfully adapted for

biomedi
al do
ument retrieval by integrating the following features: a strategy for dealing

with ambiguities in gene names, the ability to re
ognize the topi
 spe
ies of a parti
ular

do
ument, and exploitation of metadata and other 
hara
teristi
s of the 
orpus. Our results

showed that approa
hes that do not primarily involve domain-spe
i�
 te
hniques 
an be

e�e
tive for improving retrieval in a biomedi
al 
orpus, and hint at future dire
tions for

resear
h in information retrieval in the genomi
s domain.
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Chapter 1

Introdu
tion

1.1 Overview and Motivation

In re
ent years, there has been an enormous amount of dis
overy in genomi
s and related

�elds, whi
h has been a

ompanied by a proportionate in
rease in the s
ienti�
 literature.

As a result of this growth, the information needs of resear
hers in biology-related �elds

have 
hanged, and there is an in
reasingly urgent demand for the ability to isolate and

lo
ate relevant information in a sea of data. In parti
ular, resear
hers often need to �nd

do
uments related to the fun
tion of a parti
ular gene.

The Text REtrieval Conferen
e (TREC) introdu
ed its Genomi
s Tra
k in 2003 to

en
ourage resear
h in IR for bioinformati
s appli
ations. The primary task for the tra
k

is the ad ho
 retrieval of do
uments from MEDLINE, a database of biomedi
al journal

arti
les maintained by the National Library of Medi
ine (NLM), whi
h are relevant to some

1
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parti
ular genes. Although it appears to be a 
onventional ad ho
 do
ument retrieval task,

this sear
h task is made more diÆ
ult by the prevalen
e of lexi
al ambiguity in biomedi
al

literature, where the meaning of a parti
ular term is heavily dependent on 
ontext. The

problem is mitigated by metadata asso
iated with ea
h do
ument in the MEDLINE re
ords,

whi
h supply the needed 
ontext through extensive annotation and by linkage to other

do
uments or databases. The 
hara
teristi
s of the MEDLINE 
orpus and the stru
ture of

the genomi
s-related queries distinguish this task from previous IR problems, and suggest

that te
hniques whi
h have been espe
ially �tted to the 
orpus would be e�e
tive.

This thesis des
ribes our adaptation of the MultiText sear
h engine for the ad ho


retrieval of biomedi
al do
uments from the MEDLINE database, 
arried out as part of our

parti
ipation in the Genomi
s Tra
k of TREC 2003. In tailoring the MultiText system for

MEDLINE, we did not use any external bioinformati
s resour
es, nor did we in
orporate

expli
it domain expertise into our system. Our approa
h was to take an existing general

purpose retrieval system and adapt it to the MEDLINE 
orpus by making use of the

spe
ial 
hara
teristi
s of that 
orpus. We dis
over that 
ertain elements are 
ru
ial to

an e�e
tive retrieval system for biomedi
al do
uments, namely: a strategy for dealing

with ambiguities in gene names, the ability to re
ognize the topi
 spe
ies of a parti
ular

do
ument, and exploitation of metadata and other features of the 
orpus.
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1.2 Thesis Outline

In the next 
hapter, we provide some ba
kground information on the �eld of information

retrieval, des
ribe the MultiText sear
h engine, and give an overview of TREC. We explain

the design of our experiments in Chapter 3 and present the results in Chapter 4. We


on
lude in Chapter 6 with some dire
tions for future work.



Chapter 2

Ba
kground

2.1 Do
ument Retrieval for Bioinformati
s

There is a long history of resear
h into do
ument retrieval and information retrieval. Re-

sear
h into the automati
 indexing of text started with experiments in the 1960s on index

languages, su
h as the Cran�eld tests [Cle67, Cle91℄. The widespread availability of 
om-

puters and the explosive growth in the popularity of the Internet has spurred resear
h into

the retrieval of information from large 
olle
tions of do
uments. It is beyond the s
ope of

the 
urrent thesis to give a 
omplete overview of the 
urrent state of retrieval resear
h.

Surveys of the �eld may be found in Faloutsos and Oard [FO95℄, Voorhees [Voo99℄, and

Greengrass [Gre00℄ .

Biomedi
al journal arti
les have 
ertain 
hara
teristi
s whi
h di�erentiate them from

the types of do
uments previously 
onsidered in IR resear
h. Within a biomedi
al 
orpus,

4
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polysemy (in whi
h the same term refers to di�erent obje
ts) and synonymy (in whi
h

di�erent terms refer to the same obje
t) are major problems. Additional 
ompli
ations

are 
aused by the in
onsistent appli
ation of abbreviations and a
ronyms. Thus, a
ronym

re
ognition and anaphora resolution are extremely important for do
ument retrieval in

the biomedi
al domain. Furthermore, the hierar
hi
al relationships between the entities

des
ribed in a biomedi
al 
orpus suggest that this stru
ture 
an be used to improve retrieval

performan
e. Resear
h has been done on anaphora resolution [CZP02℄, the mapping of

abbreviations to their full forms [YHF02℄, and on the re
ognition of gene and protein names

[TW02b, TW02a, NSA02b℄ in a biomedi
al 
orpus, and the automati
 
onstru
tion of an

a
ronym database from MEDLINE [PCC

+

01, NSA02a℄. The Medstra
t proje
t [PCS

+

02℄

has the ambitious goal of automati
ally extra
ting information from abstra
ts and arti
les

in the MEDLINE database, using the latest te
hniques in natural language pro
essing and

text analysis. Resear
h is also under way to investigate methods of transferring information

found in the free text of s
ienti�
 literature into ontologies and knowledge bases [CA02℄.

Due to the information-ri
h 
ontent of biomedi
al do
uments, mu
h re
ent resear
h into

bioinformati
s IR has fo
used on building expert knowledge, su
h as entity and relation

identi�
ation, into the retrieval systems.

In addition to the above te
hniques whi
h are based on bioinformati
s-spe
i�
 knowl-

edge, a number of more general te
hniques based on expanding the query show promise for

improving do
ument retrieval in the bioinformati
s domain. It has been shown that dif-

ferent IR systems and even di�erent representations of a query retrieve di�erent do
ument
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sets [BCCC93, KJ98℄.

Automati
 query expansion using blind feedba
k has been shown to improve retrieval

performan
e in some situations [MSB98, SB90, Rob90℄. In this type of feedba
k (also


alled \pseudo-relevan
e" feedba
k be
ause input is not required from the user of the IR

system), some number of the highest ranked do
uments retrieved using the original query

are assumed to be relevant. These top do
uments are then used to expand the original

query, and the modi�ed query is used to retrieve another set of do
uments whi
h is returned

to the user. This type of feedba
k 
an improve or worsen performan
e, depending on the

proportion of relevant do
uments in the do
uments used to generate the query expansion.

Mitra et al. showed that re�ning the set of do
uments used in the feedba
k, using term


o-o

urren
e information to estimate word 
orrelation, often prevents query drift 
aused

by blind expansion [MSB98℄. Xu and Croft have shown that lo
al feedba
k using only

do
uments retrieved by the query is generally more e�e
tive than global te
hniques based

on the entire 
orpus [XC96℄.

Do
uments whi
h are ranked highly by disparate systems are mu
h more likely to

be a
tually relevant. Thus, instead of relying on the output of any single IR system,

performan
e 
an be improved by merging the results of di�erent systems using a fusion

te
hnique [Lee97, BCB94, FS93℄. Fox and Shaw proposed a number of rules for 
ombining

eviden
e from multiple retrieval systems, by assigning weights to ea
h and 
ombining

the weighted s
ores in di�erent ways [FS93℄. Lee performed experiments on these rules

and developed the ideas further [Lee97℄. Bartell et al. proposed a method by whi
h the
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relevan
e estimates made by di�erent systems 
an be automati
ally 
ombined, using a

parametrized mixture of the relevan
e s
ores produ
ed by ea
h system [BCB94℄.

2.2 The Text REtrieval Conferen
e (TREC)

The Text REtrieval Conferen
e (TREC) is an annual event 
o-sponsored by the U.S. Na-

tional Institute of Standards and Te
hnology (NIST), the Information Awareness OÆ
e of

the Defense Advan
ed Resear
h Proje
ts Agen
y (DARPA/IAO), and the U. S. Depart-

ment of Defense Advan
ed Resear
h and Development A
tivity (ARDA) [TRE03, Voo02℄.

Ea
h year at TREC, groups from a
ademia and industry develop information retrieval (IR)

systems for performing various tasks, for the purpose of evaluating and 
omparing di�erent

IR te
hniques and systems in a standard and unbiased manner. The tasks are grouped

into various areas of fo
us 
alled \tra
ks", ea
h of whi
h is devoted to a parti
ular subje
t

of interest. Typi
ally, ea
h tra
k deals with some spe
i�
 information need.

The �rst TREC was held in 1992 [Har92℄, and the 
onferen
e has been held every year

sin
e then. The number of group taking part in the 
onferen
e has in
reased from 25 at the

�rst TREC to 93 at TREC 2003, whi
h took pla
e in November of that year, and in
ludes

parti
ipants from a
ademi
, 
ommer
ial, and government institutions.

The purpose of TREC is to provide a 
ommon platform for the 
omparison of di�erent

IR systems, in a standard and unbiased manner. TREC has four main goals [Voo02℄:

� to en
ourage retrieval resear
h based on large test 
olle
tions;
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� to in
rease 
ommuni
ation among industry, a
ademia, and government by 
reating

an open forum for the ex
hange of resear
h ideas;

� to speed the transfer of te
hnology from resear
h labs into 
ommer
ial produ
ts

by demonstrating substantial improvements in retrieval methodologies on real-world

problems; and

� to in
rease the availability of appropriate evaluation te
hniques for use by industry

and a
ademia, in
luding development of new evaluation te
hniques more appli
able

to 
urrent systems.

Every year at TREC there are a number of areas of fo
us 
alled \tra
ks". In 2003,

these 
onsisted of the Ad Ho
 Tra
k, the Genomi
s Tra
k, the HARD (High A

ura
y

Retrieval from Do
uments) Tra
k, the Intera
tive Tra
k, the Novelty Tra
k, the Question

Answering Tra
k, the Robust Tra
k, and the Web Tra
k.

TREC is based on the Cran�eld paradigm, in whi
h di�erent retrieval systems are

evaluated on the same test 
olle
tion [Cle67, Cle91℄. A test 
olle
tion 
onsists of a do
ument

set (
alled the \
orpus"), a set of information need statements (the \topi
s"), and a set

of relevan
e judgments (
alled \qrels" in TREC lingo). The relevan
e judgments 
onsist

of a list of do
uments that have been judged relevant for ea
h topi
 and hen
e should be

retrieved by an IR system for that topi
. Given the 
orpus and topi
s, the retrieval task

is then to retrieve all of the relevant do
uments and none of the non-relevant ones. The

e�e
tiveness of ea
h IR system is evaluated based on pre
ision and re
all.

Pre
ision measures a system's ability to �nd only relevant do
uments (or equivalently,
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to �lter out non-relevant do
uments):

Pre
ision =

number of relevant do
uments retrieved

total number of do
uments retrieved

Re
all measures a system's ability to �nd all relevant do
uments:

Re
all =

number of relevant do
uments retrieved

number of relevant do
uments in the 
olle
tion

The average pre
ision (AP) for ea
h topi
 is the average of the pre
ision s
ores after

ea
h relevant do
ument retrieved. The mean average pre
ision (MAP) is the average of the

AP over the entire set of topi
s. This value is 
omputed in the standard TREC manner

by using the tre
 eval program written by Chris Bu
kley.

Two sets of topi
s are supplied to the parti
ipants, the training topi
s and the test

topi
s. Relevan
e judgments are provided to the parti
ipants for the training topi
s, but

not for the test topi
s. The training topi
s are assumed to be similar in 
hara
teristi


to the test topi
s. Parti
ipants 
an adjust their systems using the training data (topi
s

and relevan
e judgments) in order to improve the performan
e of their systems on the test

data.

2.2.1 TREC 2003 Genomi
s Tra
k

The �rst year of the TREC Genomi
s Tra
k took pla
e in 2003. Its purpose is to provide

a forum for evaluating IR systems in the genomi
s domain. An overview of this tra
k is

given by Hersh and Bhupatiraju [HB03℄. The tra
k featured two tasks, and a total of 29

groups parti
ipated in one or both of these.
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The se
ondary task for the TREC 2003 Genomi
s Tra
k was an information extra
tion

and do
ument summarization task. We did not parti
ipate in this tra
k.

The primary task for the TREC 2003 Genomi
s Tra
k was the ad ho
 do
ument retrieval

of journal arti
les from MEDLINE whi
h dis
uss the basi
 biology or protein produ
ts of

a parti
ular gene. The task is oÆ
ially de�ned as follows:

\For gene X, �nd all MEDLINE referen
es that fo
us on the basi
 biology of

the gene or its protein produ
ts from the designated organism. Basi
 biology

in
ludes isolation, stru
ture, geneti
s and fun
tion of genes/proteins in normal

and disease states." [Her03℄

MEDLINE is the bibliographi
al database of biomedi
al journal arti
les maintained

by the National Center for Biote
hnology Information (NCBI), a division of the National

Library of Medi
ine (NLM). A subset of this database, 
onsisting of 525,938 re
ords for

whi
h indexing was 
ompleted between April 1, 2002 and April 1, 2003, was used as the


orpus for this tra
k. The 
orpus was made available in both standard NLM MEDLINE

format and in XML. Ea
h MEDLINE re
ord 
omprises a number of �elds, ea
h of whi
h

is designated by a 2 to 3 letter abbreviation. These in
lude the do
ument's title (TI),

its abstra
t (AB), and a PubMed Identi�er (PMID) whi
h uniquely labels the do
ument.

The full journal arti
les are not in
luded in the database, although some of them are

available from other sour
es. There are also �elds 
ontaining 
ontrolled vo
abulary whi
h

provide a linkage between the do
ument and stru
tured data. Two of these �elds that were

parti
ularly important are the MeSH Heading (MH) and Registry Number (RN) �elds.
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MeSH (Medi
al Subje
t Heading) is a lexi
al hierar
hy for des
ribing medi
al 
on
epts.

Ea
h MeSH 
on
ept may be referred to by a number of synonymous terms. However, the

MeSH Heading �eld in the MEDLINE re
ord uses a 
ontrolled vo
abulary to ensure that

a standard nomen
lature is maintained throughout the 
orpus. The Registry Number �eld

is used to list the 
hemi
als mentioned in the do
ument, whi
h are also reported using a


ontrolled vo
abulary and whi
h may be mapped to the MeSH 
on
epts. The MEDLINE

metadata tags are explained in detail on the PubMed web site [NCB03b℄.

Training and test topi
 sets of 50 genes ea
h were distributed to ea
h of the parti
ipating

groups. Ea
h group was to develop and test its IR system on the training data, and was

allowed to submit up to two oÆ
ial runs with the test data. To assist the groups in

developing their systems, relevan
e judgments were made available for the training topi
s.

Parti
ipating groups were to develop and test their IR systems on the training data, and

to submit two oÆ
ial runs on the test data to NIST for evaluation and analysis. Relevan
e

judgments for the test topi
s were not released until after the oÆ
ial result submission

deadline.

Ea
h topi
 
onsists of a single gene, identi�ed by its Lo
usLink ID number, and a

target organism. A list of variant ways of referring to the gene is also supplied, and ea
h

given gene name is tagged with one of the following gene name types: oÆ
ial gene name,

preferred gene name, oÆ
ial symbol, preferred symbol, or preferred produ
t. The target

organism was limited to four spe
ies: Homo sapiens (human), Mus mus
ulus (mouse),

Rattus norvegi
us (rat), and Drosophila melanogaster (fruit 
y).
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1 1026 Homo sapiens OFFICIAL GENE NAME \
y
lin-dependent kinase inhibitor 1A (p21, Cip1)"

1 1026 Homo sapiens OFFICIAL SYMBOL CDKN1A

1 1026 Homo sapiens ALIAS SYMBOL P21

1 1026 Homo sapiens ALIAS SYMBOL CIP1

1 1026 Homo sapiens ALIAS SYMBOL SDI1

1 1026 Homo sapiens ALIAS SYMBOL WAF1

1 1026 Homo sapiens ALIAS SYMBOL CAP20

1 1026 Homo sapiens ALIAS SYMBOL CDKN1

1 1026 Homo sapiens ALIAS SYMBOL MDA-6

1 1026 Homo sapiens PREFERRED PRODUCT 
y
lin-dependent kinase inhibitor 1A

1 1026 Homo sapiens PRODUCT 
y
lin-dependent kinase inhibitor 1A

1 1026 Homo sapiens PRODUCT 
y
lin-dependent kinase inhibitor 1A

1 1026 Homo sapiens ALIAS PROT DNA synthesis inhibitor

1 1026 Homo sapiens ALIAS PROT CDK-intera
tion protein 1

1 1026 Homo sapiens ALIAS PROT wild-type p53-a
tivated fragment 1

1 1026 Homo sapiens ALIAS PROT melanoma di�erentiation asso
iated protein 6

Figure 2.1: An example topi
 for the Genomi
s Tra
k (training topi
 1).

PubMed ID Statement of Fun
tion (GeneRIF Text)

12388558 role of PIN1 in transa
tivation

11642719 expression is related to apoptosis in thymus

12459877 p21(waf1) has a role in aortal endothelial 
ell aging

11762751 expression inhibited by Hepatitis C virus 
ore protein

12474524 Codon 31 polymorphism is asso
iated with bladder 
an
er

11748297 indu
ed after DNA damage and plays a role in 
ell survival

11781193 expression in normal, hyperplasti
 and 
ar
inomatous human prostate

12513833 p21(WAF1) transfe
tion de
reases sensitivity of K562 
ells to VP-16

Figure 2.2: A subset of the GeneRIFs for training topi
 1, Lo
usLink ID 1026 (
y
lin-

dependent kinase inhibitor 1A).

For example, training topi
 1 is the gene identi�ed by the Lo
usLink ID 1026, \
y
lin-

dependent kinase inhibitor 1A". Figure 2.1 shows the format of the training topi
s �le. The

�rst two 
olumns 
ontain the topi
 number and the Lo
usLink ID, and the third 
olumn

is the name of the organism (i.e. its spe
ies). The fourth 
olumn indi
ates the gene name

type, and the a
tual gene name is found in the �fth 
olumn. The topi
 is provided in this

format for 
onvenien
e. It is suÆ
ient to supply only the Lo
usLink ID, and the rest of

the information may be obtained from Lo
usLink using this ID number.
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In order to produ
e a large number of relevan
e judgments in a short amount of time,

the tra
k steering 
ommittee de
ided that GeneRIF (Gene Referen
e Into Fun
tion) data

from NLM's Lo
usLink database [NCB03a℄ would be used as relevan
e judgments. Ea
h

GeneRIF for a gene 
onsists of a PubMed ID pointing to a MEDLINE arti
le whi
h

dis
usses some fun
tion of the gene, along with a brief statement about that fun
tion.

GeneRIFs have been systemati
ally assigned sin
e April 2002. A do
ument was judged to

be relevant to a gene if a GeneRIF existed for that gene and the GeneRIF pointed to that

do
ument. Be
ause relevan
e judgments for the tra
k were based on GeneRIFs, groups

were not allowed to use GeneRIF data in their retrieval systems.

One potential problem with using GeneRIFs as a \gold standard" is that they are

in
omplete, in the sense that there were some do
uments whi
h are related to a gene but

whi
h have not yet been assigned a GeneRIF. As a result, there are many false negatives

(do
uments whi
h are relevant but whi
h are not judged to be relevant).

Figure 2.2 shows some of the GeneRIFs for training topi
 1. One of the GeneRIFs

for this gene points to the do
ument with PubMed ID 12388558 and has the statement

of fun
tion \role of PIN1 in transa
tivation". Therefore, a retrieval system sear
hing on

training topi
 1 is expe
ted to retrieve this parti
ular do
ument.
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Text

Server

Marshaller/

    Dispatcher

Text

Server Engine

Index

Engine

Index

Engine

Index

Engine

Index

Engine

Index

Client Applications

Figure 2.3: The ar
hite
ture of the MultiText retrieval system.

2.3 The MultiText Sear
h Engine

The MultiText sear
h engine is a general purpose information retrieval system developed

at the University of Waterloo. The system has been in development sin
e 1993, and sin
e

its in
eption the proje
t has 
entred around the development of s
alable te
hnologies for

distributed information retrieval. The MultiText resear
h group has parti
ipated in TREC

annually sin
e TREC-4 in 1995, performing retrieving experiments with a passage-based

ranking algorithm 
alled Shortest Substring Ranking, developing a pre
ise query language


alled GCL that yields and 
ombines arbitrary intervals of text, and taking part in various

tra
ks [CCB94, CCB95, CC96, CCPT00, CPVC98, CCKP99, CCKL00, CCL

+

01, CCK

+

02,

YCC

+

03℄.

The MultiText retrieval system is based on the federated ar
hite
ture shown in Figure
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2.3. It 
omprises the index engines (whi
h maintain the index �le stru
tures and pro-

vide sear
h 
apabilities), the text servers (whi
h are spe
ialized by do
ument type and

provide retrieval 
apabilities for arbitrary text passages spe
i�ed at the word level), and

the marshaler/dispat
her (whi
h intera
ts with 
lients and 
oordinates query and update

a
tivities).

We adapted the MultiText retrieval system for the Genomi
s Tra
k by loading the XML

version of the MEDLINE database into MultiText and building a number of additional

subsystems on top of the basi
 MultiText engine. We 
all the resultant system MultiText

for Genomi
s.

2.3.1 GCL

The MultiText retrieval system models the text in a database as a 
ontinuous sequen
e of

terms, and indi
ates do
ument stru
ture by indexing stru
tural markers, 
alled metadata

tags, in between the terms. Metadata tags generally o

ur in pairs (the start and end

tags). For example, the text of a do
ument is en
losed between the tags <DOC> and

</DOC>, while the text forming the do
ument's title are further en
losed between the tags

<Arti
leTitle> and </Arti
leTitle>. Text terms and metadata tags are together

referred to as tokens, and ea
h token in the database is assigned an integer value indi
ating

its position.

The query language used in the MultiText retrieval system is based on the General-

ized Con
ordan
e Lists (GCL) of Clarke, Corma
k, and Burkowski [CCB94℄. The GCL
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GCL Expression Query Represented by Expression

"any phrase" Any phrase (the unders
ore 
hara
ter is mat
hed to

whitespa
e and pun
tuation).

"head*" Any term starting with \head".

"$stem" Any term with the same (Porter) stem as \stem".

g
l1..g
l2 An interval 
ontaining g
l1 followed by g
l2.

g
l1^g
l2 A solution 
ontaining both g
l1 and g
l2.

g
l1+g
l2 A solution 
ontaining either g
l1 or g
l2.

g
l1>g
l2 A solution to g
l1 
ontaining a solution to g
l2.

g
l1<g
l2 A solution to g
l1 
ontained in a solution to g
l2.

g
l1/>g
l2 A solution to g
l1 not 
ontaining a solution to g
l2.

g
l1/<g
l2 A solution to g
l1 not 
ontained in a solution to g
l2.

1/g
l Solutions of the form (n; n) where (n;m) is a solution

to g
l.

2/g
l Solutions of the form (m;m) where (n;m) is a solution

to g
l.

1^(g
l1,g
l2,g
l3,...) Equivalent to (g
l1+g
l2+g
l3+...).

2^(g
l1,g
l2,g
l3,...) Equivalent to ((g
l1^g
l2)+(g
l1^g
l3)+...)

(i.e. any 2 of the solutions).

n^(g
l1,g
l2,g
l3,...) Generalization of the previous rule, with n any

positive integer.

all^(g
l1,g
l2,g
l3,...) Equivalent to (g
l1^g
l2^g
l3^...).

(g
l1^g
l2)<[n℄ An interval with g
l1 and g
l2 within n words.

g
l1<([n℄>g
l2) An interval with g
l1 that is within n words of g
l2.

g
l<fn,mg Find g
l within the range (n;m).

Table 2.1: The syntax of GCL. In the above, g
lX stands for any GCL sub-expression.
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query algebra expresses sear
hes on stru
tured text using a number of operators, su
h as

boolean AND (^), boolean OR (+), 
ontaining (>), 
ontained in (<), not 
ontaining (/>),

not 
ontained in (/<), followed by (..), and so on. Table 2.1 gives a list of example GCL

expressions and the query represented by the expression.

The algebra manipulates arbitrary intervals of text, and provides for queries that har-

ness do
ument stru
ture by allowing metadata tags to be used in the query. GCL expres-

sions 
an be 
ombined and nested to form more 
omplex queries. The result or solution to

a GCL query is a set of intervals from the text, with ea
h interval represented by an ordered

pair (n;m) with n < m, 
orresponding to the integer values of the �rst and last token of a

passage in the text satisfying the query. The solution set in
ludes all passages in the 
orpus

that satisfy the query, and whi
h do not 
ontain shorter substrings also satisfying the query.

This shortest substring rule limits the number of passages that must be 
onsidered by the

algorithm, and is the foundation behind the passage-based do
ument ranking te
hnique

des
ribed below. For example, the GCL query ("<do
>".."</do
>")>"
dkn1a" has as its

result the set of all do
uments 
ontaining the term \
dkn1a". The shortest substring rule

ensures that the solution set 
ontains only single do
uments. Start and end tags whi
h

o

ur in separate do
uments are not linked.

As another example, for \phospholipase C, gamma 1" (training topi
 23), the Mul-

tiText for Genomi
s system generates, along with other queries, the following query:

"
 gamma"^("phospholipase"+ "phospholipases"). Sin
e the algorithm lo
ates the

shortest substrings that satisfy the query, a passage lo
ated by the algorithm will be-
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gin (or end) with the phrase \
 gamma" (where the unders
ore 
hara
ter is mat
hed to

whitespa
e or pun
tuation) and end (or begin) with one of the words \phospholipase" or

\phospholipases". None of these terms will appear elsewhere in the passage, sin
e otherwise

the passage would 
ontain a shorter substring that also satis�es the query.

Other stru
tural 
onstraints (metadata tags) 
an be applied to the query. For ex-

ample, the query ("<NameOfSubstan
e>".."</NameOfSubstan
e>")>"
ip1" identi�es

instan
es of the NameOfSubstan
e metadata �eld that 
ontain the term \
ip1". The GCL

query ("<do
no>".."</do
no>")<(("<do
>".."</do
>")>"
dkn1a") retrieves the do
-

ument numbers of all do
uments 
ontaining the term \
dkn1a". (In the 
ase of the MED-

LINE 
orpus, the do
ument number for ea
h do
ument is its PubMed ID.)

2.3.2 Shortest Substring Ranking (SSR)

A solution to a GCL query is a set of intervals satisfying the query from the text. Ideally,

intervals in whi
h the query terms o

ur densely together should be favoured or ranked more

highly. The Shortest Substring Ranking (SSR) method is a ranked retrieval method that

assigns s
ores to the passages retrieved based on this idea. SSR is a te
hnique that has been

su

essfully deployed by the MultiText group in a number of appli
ations [CCPT00, CC00℄.

Given a query and the resulting passages satisfying the SSR rule, a do
ument's s
ore is


omputed based on the lengths of all su
h passages 
ontained within it. Suppose that do
u-

ment d 
ontains n passages satisfying the query under the SSR rule, labelled P

1

; P

2

; : : : ; P

n

in order of in
reasing length. We 
ompute a s
ore for d that rewards higher values of n
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and shorter passages. For a passage P 
orresponding to the extents (p; q), we de�ne

I(P ) =

8

>

<

>

:

K

l(P )

if l(P ) � K

1 if l(P ) � K

where l(P ) is the length of P in alphanumeri
 tokens; that is, l(P ) = q � p + 1. Note

that for any passage P , we have 0 < I(P ) � 1. The s
ore for d is then 
omputed by the

formula:

n

X

i=0

I(P

i

)




For the MultiText for Genomi
s system, the parameters we used for SSR were K = 16

and 
 = 0:5. The exa
t details of the s
oring fun
tion may be found in Clarke and Corma
k

[CC00℄, where an eÆ
ient algorithm for implementing SSR is also given.

2.3.3 The Okapi Measure

The Okapi measure is a well-known probabilisti
 retrieval model that uses weighting fun
-

tions based on term frequen
ies [RWJ

+

94, RW94℄. The MultiText system also has a spe-


ial implementation of the Okapi BM25 retrieval model, whi
h as an extension also allows

phrases to be used as query terms. Otherwise, the implementation of Okapi BM25 used in

the MultiText for Genomi
s system follows the des
ription of Robertson et al. [RWB98℄

with the the standard parameters k

1

= 1:2, b = 0:75, k

2

= 0, and k

3

=1.

Spe
i�
ally, given an Okapi term set Q, a do
ument d is assigned the s
ore

X

t2Q

w

(1)

q

t

(k

1

+ 1)d

t

K + d

t
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where

w

(1)

= log

�

D �D

t

+ 0:5

D

t

+ 0:5

�

D = number of do
uments in the 
orpus

D

t

= number of do
uments 
ontaining t

q

t

= frequen
y that t o

urs in the topi


d

t

= frequen
y that t o

urs in d

K = k

1

((1� b) + b � l

d

=l

avg

)

l

d

= length of d

l

avg

= average do
ument length



Chapter 3

Experimental Design

The MultiText for Genomi
s system uses an elaborate 
ombination of te
hniques, whi
h

were sele
ted and tweaked based on experimentation with the 
orpus and training data.

The system may be roughly divided into four subsystems:

1. Okapi

2. Query Tiering

3. Fusion

4. Feedba
k

Given a Genomi
s Tra
k topi
, the Okapi subsystem generates multiple term sets from

the supplied gene name information (re
all Figure 2.1), whi
h are then used to retrieve

several sets of do
uments using the Okapi retrieval model. Simultaneously, the Query

Tiering subsystem attempts to retrieve do
uments by mat
hing the gene name information

21
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against a number of query tiers. The results from from the �rst two subsystems are merged

in the Fusion subsystem, and depending on the out
ome, the Feedba
k subsystem may

retrieve additional do
uments using pseudo-relevan
e feedba
k to supplement the results.

Before des
ribing ea
h subsystem, we des
ribe an operation that is 
ommonly 
arried

out in the MultiText for Genomi
s system, that of appending one do
ument list to the end

of another. Let L

1

and L

2

be ranked lists of do
uments, and for a do
ument d, let s

L

1

(d)

be the s
ore of the do
ument in L

1

if d 2 L

1

, and s

L

2

(d) be the s
ore of the do
ument in L

2

if d 2 L

2

. Let L

0

2

= L

2

n L

1

(then there are 
ommon do
uments between L

1

and L

0

2

). Let

S

L

1

;min

be the lowest s
ore s

L

1

(d) for a do
ument d 2 L

1

, and let S

L

0

2

;max

be the highest

s
ore s

L

2

(d) for a do
ument d 2 L

0

2

. Then let L = L

1

[ L

0

2

, with the s
oring fun
tion

s

L

(d)

8

>

<

>

:

s

L

1

(d) if d 2 L

1

s

L

2

(d)�

S

L

1

;min

S

L

0

2

;max

if d 2 L

2

We say that the do
ument list L is the result of appending L

2

to the end of L

1

with the

s
ores appropriately s
aled, and write L = append(L

1

; L

2

).

3.1 The Okapi Subsystem: Query Formulation

Two important fa
ts emerged during preliminary experiments on the MEDLINE 
orpus,

whi
h in
uen
ed the design of the experiments using the Okapi retrieval model.

First, the gene name type (oÆ
ial gene name, preferred gene name, oÆ
ial symbol,

preferred symbol, or preferred produ
t) did not seem to matter. A do
ument dis
ussing a
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Term ends in A
tion taken

-
h, -sh, -ss, -x, -z, -s Append \-es".

-y, -ey Repla
e with \-ies".

Other letter Append \-s".

Table 3.1: Rules for \pluralization".

parti
ular gene was as likely to use an oÆ
ial name as an alternate one.

Se
ond, spa
ing and pun
tuation had a large e�e
t on performan
e in some 
ases. The

gene or protein names whi
h have been supplied for ea
h topi
 (derived from Lo
usLink)

may di�er from the gene or protein names as they a
tually appear in the 
orpus by the

addition or removal of pun
tuation or whitespa
e, or by the re-arrangement of terms. In a

model based on term ve
tors, su
h as Okapi, even slight variations may signi�
antly a�e
t

the results.

We attempt to 
apture these morphologi
al di�eren
es by produ
ing three sets of Okapi

term ve
tors with di�ering degrees of �delity to the original gene and protein names, by

using heuristi
s to pro
ess semi-
olons, 
ommas, and bra
kets and generating plurals for

some terms. The three rules we used to generate Okapi term ve
tors are:

� Okapi 1:

Ea
h gene name in the original Lo
usLink-derived query, whi
h may 
onsist of

multiple alphanumeri
 tokens, is 
onsidered as a phrase and treated as a single term

in the Okapi term set. All pun
tuation is removed and repla
ed by whitespa
e. (The
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sear
h engine treats pun
tuation and whitespa
e in the 
orpus identi
ally.)

Example: Figure 3.1 shows the Okapi 1 term ve
tor for training topi
 1.

� Okapi 2:

Heuristi
s are used to handle bra
kets in the gene and protein names:

1. An internal bra
ket is un
hanged. (Thus, the gene name \l(1)hop" for training

topi
 36 retains its bra
kets).

2. If the terms between the bra
kets 
omprise only numbers and letters (in
luding

Greek letters), the bra
kets are removed. (The oÆ
ial gene name for training

topi
 12 is \tropomyosin 1 (alpha)", whi
h is 
hanged to \tropomyosin 1 alpha".)

3. Otherwise, the 
ontents of the bra
kets are 
onsidered to be alternate names,

whi
h are treated as separate terms in the Okapi ve
tor. (For training topi


31, the oÆ
ial gene name \Ta
hykinin (substan
e P, neurokinin A, neuropep-

tide K, neuropeptide gamma)" is broken up into the separate gene names

\Ta
hykinin", \substan
e P", \neurokinin A", \neuropeptide K", and \neu-

ropeptide gamma".)

Similar rules are used to break up lists separated by 
ommas and semi-
olons.

\Plurals" are generated using the simple set of rules shown in Table 3.1. If a term


onsists of all alphabeti
al 
hara
ters and is three letters or longer, and is not a

Greek letter or a stop word, the \plural" of the term is generated using these rules

and added to the term ve
tor.

Example: Figure 3.2 shows the Okapi 2 term ve
tor for training topi
 1.
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� Okapi 3:

First, the gene and protein names are separated into two sets, one 
ontaining

those that 
omprise a single token, and another 
ontaining those 
omprising multiple

tokens. (For training topi
 1, \p21", \
ip1", and so on are put into the single-token

set, while \
y
lin-dependent kinase inhibitor 1A" is put into the multiple-token set.)

For the single-token set, all pairs of distin
t elements are taken, and ea
h pair

is 
on
atenated together, with and without a spa
e between them, to form terms

whi
h are then in
luded in the Okapi term ve
tor. (For training topi
 1, the terms

\p21 
ip1", \p21
ip1", \
ip1 p21", and \
ip1p21" are generated among others for

the Okapi term ve
tor.)

For the multiple-token set, for ea
h term 
omprising multiple tokens, all bigrams

of the terms are generated and added to the Okapi term ve
tor. (For training topi


1, the term \
y
lin-dependent kinase inhibitor 1A" generates \
y
lin dependent",

\dependent kinase", \kinase inhibitor", and \inhibitor 1A".)

Example: Figure 3.3 shows the Okapi 3 term ve
tor for training topi
 1.

In addition to the above rules, the name of the topi
 spe
ies was also in
luded in ea
h of

the Okapi term ve
tors. We attempted other variations on the above rules, but experiments

on the training data found that the above rules gave the best overall results.

The three rules are in de
reasing order of stri
tness. Do
uments retrieved by Okapi 1

will 
ontain the terms exa
tly as given in the original query (ignoring pun
tuation), while

those retrieved by Okapi 2 will 
ontain terms whi
h are similar to but not exa
tly like
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\
ap20", \
dk intera
tion protein 1", \
dkn1", \
dkn1a", \
ip1", \
y
lin de-

pendent kinase inhibitor 1a p21 
ip1", \
y
lin dependent kinase inhibitor 1a",

\dna synthesis inhibitor", \mda 6", \melanoma di�erentiation asso
iated pro-

tein 6", \p21", \sdi1", \waf1", \wild type p53 a
tivated fragment 1", \Homo

sapiens", \humans", \human"

Figure 3.1: Okapi 1 term ve
tor for training topi
 1.

\
ap20", \
dk intera
tion protein 1", \
dkn1", \
dkn1a", \
ip1", \
y
lin de-

pendent kinase inhibitor 1a", \dna synthesis inhibitor", \mda 6", \mda6",

\melanoma di�erentiation asso
iated protein 6", \p21", \sdi1", \waf1", \wild

type p53 a
tivated fragment 1", \Homo sapiens", \humans", \human"

Figure 3.2: Okapi 2 term ve
tor for training topi
 1.
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\a
tivated fragment", \a
tivatedfragment", \asso
iated protein", \asso
iatedprotein", \
ap20", \
ap20 
dkn1", \
ap20 
dkn1a", \
ap20


ip1", \
ap20 mda 6", \
ap20 mda6", \
ap20 p21", \
ap20 sdi1", \
ap20 waf1", \
ap20
dkn1", \
ap20
dkn1a", \
ap20
ip1", \
ap20mda

6", \
ap20mda6", \
ap20p21", \
ap20sdi1", \
ap20waf1", \
dk intera
tion", \
dk intera
tion protein 1", \
dkintera
tion", \
dkn1", \
dkn1


ap20", \
dkn1 
dkn1a", \
dkn1 
ip1", \
dkn1 mda 6", \
dkn1 mda6", \
dkn1 p21", \
dkn1 sdi1", \
dkn1 waf1", \
dkn1a", \
dkn1a


ap20", \
dkn1a 
dkn1", \
dkn1a 
ip1", \
dkn1a mda 6", \
dkn1a mda6", \
dkn1a p21", \
dkn1a sdi1", \
dkn1a waf1", \
dkn1a
ap20",

\
dkn1a
dkn1", \
dkn1a
ip1", \
dkn1amda 6", \
dkn1amda6", \
dkn1ap21", \
dkn1asdi1", \
dkn1awaf1", \
dkn1
ap20", \
dkn1
dkn1a",

\
dkn1
ip1", \
dkn1mda 6", \
dkn1mda6", \
dkn1p21", \
dkn1sdi1", \
dkn1waf1", \
ip1", \
ip1 
ap20", \
ip1 
dkn1", \
ip1 
dkn1a", \
ip1

mda 6", \
ip1 mda6", \
ip1 p21", \
ip1 sdi1", \
ip1 waf1", \
ip1
ap20", \
ip1
dkn1", \
ip1
dkn1a", \
ip1mda 6", \
ip1mda6", \
ip1p21",

\
ip1sdi1", \
ip1waf1", \
y
lin dependent", \
y
lin dependent kinase inhibitor 1a", \
y
lindependent", \dependent kinase", \dependentk-

inase", \di�erentiation asso
iated", \di�erentiationasso
iated", \dna synthesis", \dna synthesis inhibitor", \dnasynthesis", \fragment 1",

\fragment1", \inhibitor 1a", \inhibitor1a", \intera
tion protein", \intera
tionprotein", \kinase inhibitor", \kinaseinhibitor", \mda 6", \mda

6 
ap20", \mda 6 
dkn1", \mda 6 
dkn1a", \mda 6 
ip1", \mda 6 mda6", \mda 6 p21", \mda 6 sdi1", \mda 6 waf1", \mda 6
ap20", \mda

6
dkn1", \mda 6
dkn1a", \mda 6
ip1", \mda 6mda6", \mda 6p21", \mda 6sdi1", \mda 6waf1", \mda6", \mda6 
ap20", \mda6 
dkn1",

\mda6 
dkn1a", \mda6 
ip1", \mda6 mda 6", \mda6 p21", \mda6 sdi1", \mda6 waf1", \mda6
ap20", \mda6
dkn1", \mda6
dkn1a",

\mda6
ip1", \mda6mda 6", \mda6p21", \mda6sdi1", \mda6waf1", \melanoma di�erentiation", \melanoma di�erentiation asso
iated protein

6", \melanomadi�erentiation", \p21", \p21 
ap20", \p21 
dkn1", \p21 
dkn1a", \p21 
ip1", \p21 mda 6", \p21 mda6", \p21 sdi1", \p21

waf1", \p21
ap20", \p21
dkn1", \p21
dkn1a", \p21
ip1", \p21mda 6", \p21mda6", \p21sdi1", \p21waf1", \p53 a
tivated", \p53a
tivated",

\protein 1", \protein 6", \protein1", \protein6", \sdi1", \sdi1 
ap20", \sdi1 
dkn1", \sdi1 
dkn1a", \sdi1 
ip1", \sdi1 mda 6", \sdi1 mda6",

\sdi1 p21", \sdi1 waf1", \sdi1
ap20", \sdi1
dkn1", \sdi1
dkn1a", \sdi1
ip1", \sdi1mda 6", \sdi1mda6", \sdi1p21", \sdi1waf1", \synthesis in-

hibitor", \synthesisinhibitor", \type p53", \typep53", \waf1", \waf1 
ap20", \waf1 
dkn1", \waf1 
dkn1a", \waf1 
ip1", \waf1 mda 6", \waf1

mda6", \waf1 p21", \waf1 sdi1", \waf1
ap20", \waf1
dkn1", \waf1
dkn1a", \waf1
ip1", \waf1mda 6", \waf1mda6", \waf1p21", \waf1sdi1",

\wild type", \wild type p53 a
tivated fragment 1", \wildtype", \Homo sapiens", \humans", \human"

Figure 3.3: Okapi 3 term ve
tor for training topi
 1.
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those in the original query. Do
uments retrieved by Okapi 3 
ontain the same bigrams as

found in the original query.

Ea
h query formulation has its own advantages and disadvantages. The top do
uments

returned by Okapi 1 are likely to be relevant, sin
e they 
ontain the query exa
tly, but

many relevant do
uments may be missed be
ause the gene name in the do
ument appears

di�erently than in the query. On the other hand, Okapi 3 retrieves many relevant do
u-

ments in whi
h the gene name does not appear exa
tly as in the query. However, it also

retrieves many irrelevant do
uments. The do
uments retrieved by Okapi 2 are intermediate

between the two.

We found that the do
ument sets retrieved using the term ve
tors generated by the

three rules were quite di�erent. Therefore, a do
ument that is retrieved by all three term

ve
tors was very likely to be relevant, and it was de
ided that the three result sets should

be fused together to produ
e the �nal result. After experimenting with a number of fusion

te
hniques, it was de
ided that the fusion was to be a

omplished in the following manner:

� Okapi Fusion:

The do
ument sets retrieved by Okapi 1, Okapi 2, and Okapi 3 are 
ombined by

taking the interse
tion of the three sets. A do
ument's s
ore is taken to be the

produ
t of the three s
ores. This list is then followed by the remainder of Okapi 3,

with the s
ores appropriately s
aled.

More formally, let O

1

, O

2

, and O

3

be the do
ument sets retrieved by the Okapi

1, Okapi 2, and Okapi 3 term ve
tors respe
tively. Let d be a do
ument, and let
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s

i

(d) be the s
ore assigned to d by Okapi i, for i = 1; 2; 3. Then F

0

= O

1

\ O

2

\ O

3

is the interse
tion of the three do
ument sets. For ea
h do
ument d 2 F

0

, de�ne

s

F

0

(d) = s

1

(d) � s

2

(d) � s

3

(d) to be the s
ore of that do
ument in F

0

. Then the

Okapi Fusion is F = append(F

0

; O

3

).

The rationale behind the fusion is that a do
ument that s
ores highly on all three

query formulations is very likely to be relevant. Taking the produ
t of the s
ores allows

ea
h of the three do
ument sets to vote on the relative distan
e (in terms of rank) between

retrieved do
uments. Sin
e Okapi 3 is the most relaxed of the three query formulations, it

retrieves most if not all of the do
uments retrieved by Okapi 1 and 2. Thus, the interse
tion

of the three do
ument sets likely 
ontains most of the relevant do
uments in the do
ument

sets returned by Okapi 1 and 2, while it might miss relevant do
uments retrieved by Okapi

3. For that reason, the remainder of the Okapi 3 do
ument set is appended to the end of

the 
ombined list.

While there are other standard fusion te
hniques, the above seemed to work very well

in preliminary trials, and thus was the only te
hnique used in the �nal 
ompleted runs. It

would be interesting to experiment with other fusion te
hniques for 
ombining the Okapi

do
ument sets.

The performan
e of the Okapi 1 term ve
tor set alone was 
onsidered to be the baseline

run for 
omparison purposes with our other runs.
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3.2 The Query Tiering Subsystem: Use of Metadata

The MEDLINE re
ords are highly stru
tured, and some of the metadata �elds are more

useful indi
ators than others of a do
ument's relevan
e. Preliminary experiments showed

that there was a 
orrelation between some of the metadata �elds in the MEDLINE re
ord

and the relevan
e of the do
ument. In parti
ular, there was a strong 
orresponden
e

between the query terms and the terms that appeared in the RN (registry number) �eld

of the MEDLINE re
ord. The RN �eld 
ontains a list of the 
hemi
als dis
ussed in the

do
ument. Many of these 
hemi
al names 
an be mat
hed to the gene names found in query.

The 
hemi
al list is a better indi
ator of a do
ument's relevan
e than the do
ument's title,

whi
h in turn is a better indi
ator than the abstra
t. To 
apture this hierar
hy of relevan
e

between the metadata �elds, we used a number of query tiers. In parti
ular, the RN �eld

of ea
h MEDLINE re
ord 
ontains a list of 
hemi
als mentioned in that do
ument. Many

of these 
hemi
al names 
an be mat
hed to the gene names given in the query, and thus

there is a high degree of 
orrelation between the 
ontents of the RN �eld and the relevan
e

of that do
ument.

Through experimentation, we arrived at the following system of six query tiers, whi
h

are given in de
reasing order of relevan
e. The �rst query tier attempts to mat
h the query

against the 
hemi
al list exa
tly (ex
ept for stop words, spa
ing, and pun
tuation). The

se
ond and third tiers are relaxations of the �rst. The query is 
onverted into a boolean

expression by turning ea
h gene name into the 
onjun
tion of its terms, and taking the

disjun
tion of all gene names. This expression is then applied to the title for the fourth
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tier, to the 
hemi
al list for the �fth tier, and to the abstra
t for the sixth tier.

� Tier 1:

The gene name is found in the 
hemi
al list, or it is found in the 
hemi
al list

pre
eded or followed by the word \protein", optionally followed by the name or

des
ription of the spe
ies. Spa
es and pun
tuation are ignored for the purposes of


omparison.

Examples: For training topi
 1, all do
uments with \
ip1 protein" in the 
hemi
al

list are retrieved. For training topi
 5, \gly
ine re
eptor, alpha 1" is 
onsidered to

be equivalent to \gly
ine re
eptor alpha1".

� Tier 2:

This tier is similar to Tier 1, ex
ept that the 
hemi
al name is allowed to have

additional terms.

Examples: For training topi
 1, the gene name \p21" is mat
hed to the phrase

\p21-a
tivated kinase 1" in the 
hemi
al list. For training topi
 11, \RAC1" retrieves

do
uments in whi
h \ra
1 GTP-Binding Protein" appears in the 
hemi
al list.

� Tier 3:

An attempt is made to �nd the 
onjun
tion of the terms from the gene name in

the 
hemi
al list. If the gene name 
onsists of a 
lass name followed by a sequen
e

of letters and numbers that spe
i�es an obje
t of that 
lass, the name is su

essively
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(\sdi1"+(\
y
lin"^\dependent" ^ \kinase" ^ \inhibitor"^\1a")+(\
dk"^ \inter-

a
tion"^\protein"^\1")+\
dkn1"+\
ip1"+(\mda"^\6")+(\dna"^\synthesis"^

\inhibitor")+\
ap20"+\p21"+(\wild"^\type"^\p53"^\a
tivated"^\fragment"^

\1")+\mda6"+\
dkn1a"+(\melanoma"^\di�erentiation"^\asso
iated"^ \pro-

tein"^\6")+\waf1")

Figure 3.4: Boolean expression for training topi
 1.

weakened until a mat
h is made. Heuristi
s are also used to re
ognize plurals.

Example: From training topi
 32, \estrogen re
eptor 1" is weakened until the

do
uments retrieved 
ontain \Re
eptors, Estrogen" in the 
hemi
al list.

� Tier 4:

The query is 
onverted into a boolean expression by turning ea
h gene name into

the 
onjun
tion of its terms, and taking the disjun
tion of all gene names. The

boolean expression is mat
hed against the title metadata �eld.

Example: Figure 3.4 shows the boolean expression generated for training topi


1. Among other do
uments, this expression retrieves the do
ument with the title

\An immunohisto
hemi
al study of p21 and p53 expression in primary node-positive

breast 
ar
inoma".

� Tier 5:

The boolean expression from Tier 4 is mat
hed against the 
hemi
al list metadata
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The histologi
al grade of 
hondrosar
oma 
orrelates well with their 
lini
al be-

havior and with the patient's survival duration. We have previously demon-

strated that p21 was expressed in the hypertrophi
 
hondro
ytes of the growth

plate. To assess the relationship of p21 (waf1/
ip1) to 
ell di�erentiation in


hondrosar
oma, we examined the p21 expression in 14 
ases of 
hondrosar-


oma immunohisto
hemi
ally and the indu
tion of p21 by insulin-like growth

fa
tor-I (IGF-I) during 
ell di�erentiation in SW1353 
hondrosar
oma 
ells. p21

immunorea
tivity was seen in well-di�erentiated 
hondrosar
oma 
ells and was

mutually ex
lusive with MIB1 rea
tivity in grade-1 
hondrosar
oma. : : :

Figure 3.5: Part of the abstra
t for a do
ument retrieved using the boolean expression.

�eld.

Example: The boolean expression in Figure 3.4 retrieves do
uments in whi
h the

phrase \Cip1 protein" appears in the 
hemi
al list.

� Tier 6:

The boolean expression from Tier 4 is mat
hed against the abstra
t metadata �eld.

Example: Figure 3.5 shows part of the abstra
t of a do
ument retrieved by mat
h-

ing the boolean expression of Figure 3.4 against the abstra
t metadata �eld.

In addition, the do
uments are restri
ted to those in whi
h the name of the spe
ies

appears in the MeSH Heading metadata �eld. This �ltering does not 
ompletely eliminate
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do
uments whi
h are not relevant to the spe
ies, sin
e it is possible for the name of the

spe
ies to appear in the MeSH �eld even if the fo
us of the paper is another spe
ies. It

is quite 
ommon for an arti
le about a gene in one spe
ies to mention a homologue in a

related spe
ies. Nevertheless, if the name of the wanted spe
ies does not appear in the

MeSH heading, then the arti
le is (almost 
ertainly) not relevant. Thus, using spe
ies

data in the MeSH metadata �eld may result in false positives but not (or rarely) in false

negatives.

The Query Tiering subsystem 
an return three types of results:

� All Tiers:

Retrieve do
uments from all the tiers. Do
uments retrieved by ea
h tier are ranked

ahead of all do
uments retrieved by the next tier. (A do
ument that is retrieved in

more than one tier is 
ounted towards only its highest tier.)

� Best Tier:

Retrieve the do
uments in the �rst tier that 
ontains a non-zero number of do
u-

ments. Subsequent tiers are ignored.

� Exa
t:

Retrieve only do
uments in Tier 1. No do
uments are retrieved if there are no

do
uments in Tier 1.

Note that for some topi
s, this subsystem may retrieve no do
uments. In the 
omplete
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MultiText for Genomi
s system, the 
omplete runs supplement the do
ument sets retrieved

by the Query Tiering subsystem with do
uments from other subsystems.

3.3 The Fusion Subsystem: Multiple Eviden
e Com-

bination

The Okapi and Query Tiering subsystems are essentially autonomous and retrieve two

independent sets of do
uments. By merging the two result sets, we obtain a single set of

do
uments with a high pre
ision. We implemented two di�erent methods of 
ombining the

two do
ument sets from the two previous subsystems:

In the following, assume that we have two lists of do
uments, M = fm

1

; m

2

; m

3

; : : :g

and N = fn

1

; n

2

; n

3

; : : :g, where m

i

and n

j

are do
uments and the subs
ript denotes the

rank of the do
ument within the list.

� Interweave:

The two do
ument sets are 
ombined by taking one do
ument from ea
h set su
-


essively. That is, the interweave of M and N is L = fl

1

; l

2

; l

3

; : : :g where

l

i

=

8

>

<

>

:

m
i+1

2

if i is odd

n
i

2

if i is even

Dupli
ate o

urren
es of the same do
ument are removed from L; that is, if l

i

= l

j

and i < j, then l

j

is removed from L.
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� Rank Fusion:

To merge two sets of do
uments using rank fusion, the do
uments whi
h were

retrieved by both methods are �rst merged together. Ea
h do
ument is assigned

a s
ore that is the weighted sum of its (reverse) rank in ea
h do
ument set. The


ombined do
uments are followed by interweaving the remainder of the two do
ument

sets.

More formally, if i is the rank of the do
ument m

i

2 M and j is the rank of

the do
ument n

j

2 N , then L

1

= M \ N , and the s
ore of a do
ument d 2 L

1

is

s

L

1

(d) = k

1

� (R � i) + k

2

� (R � j), where k

1

and k

2

are weights and R = 1000

is the number of do
uments retrieved by ea
h method. Let M

0

= M n L

1

and

N

0

= N n L

2

be the remainders of the do
uments from M and N respe
tively (the

do
uments retrieved by ea
h method but not by both). Let L

2

be the interweave

(as de�ned above) of M

0

and N

0

. Then the (weighted) rank fusion of M and N is

L = append(L

1

; L

2

).

Merging three do
ument sets is done in an analogous manner.

We also attempted other types of fusion, based on those of Fox and Shaw [FS93℄.

However, the above te
hniques seemed to work very well during testing and were the only

ones whi
h were fully implemented. Note that the weight rank fusion is a weighted version

of the CombSUM formula des
ribed by Fox and Shaw.
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3.4 The Feedba
k Subsystem: Query Expansion

The entries of the RN metadata �eld in the MEDLINE re
ord 
omprise a list of 
hemi
als

mentioned in the do
ument. A mat
h between one of these 
hemi
als and the query is a

very good indi
ation that the do
ument is relevant. However, be
ause a gene may have

an alias that di�ers signi�
antly from any of its known names, it is not always possible to

identify the query gene in the 
hemi
al list using string mat
hing alone.

Instead of attempting to re
ognize these name variants, we try to learn the variant

name by using pseudo-relevan
e feedba
k. If the gene name was mat
hed in the �rst tier

in the Query Tiering subsystem, then the 
hemi
al list in the top retrieved do
uments

already 
ontains the gene name, and so feedba
k is unne
essary. Otherwise, we s
ore the


hemi
als in the top retrieved do
uments using a Tf-Idf formula, and retrieve an additional

set of do
uments 
ontaining the top 
hemi
al. The 
hemi
al names in the top do
uments

were assigned a s
ore using the formula:

w

i

= R

i

�

�

log

�

N

f

i

��

�

For a 
hemi
al i, R

i

is the number of times the 
hemi
al name appears in the 
hemi
al

list of the top do
uments, f

i

is the number of times it appears in the 
orpus, N is the total

length of all do
uments in the 
orpus, and w

i

is the s
ore assigned to i. The formula was

developed experimentally, based on the standard Tf-Idf (term frequen
y, inverse do
ument

frequen
y) idea [SB88℄. The 
hemi
al names that appear frequently in the top do
uments



Experimental Design 38

Okapi 1

Okapi 2

Okapi 3

Okapi Fusion

Best Tier

FusionFeedback
Documents

Topic

Tier 1 empty?

Figure 3.6: Flow diagram for the 
ombined MultiText for Genomi
s system.

are more likely to be relevant, whi
h is re
e
ted in the \term frequen
y" part of the equa-

tion. On the other hand, those 
hemi
al names that appear frequently in the 
orpus (su
h

as \DNA" whi
h is ubiquitous) are unlikely to be uniquely relevant to the top do
uments,

and their s
ores are attenuated by the \inverse do
ument frequen
y" part of the equation.

For the MultiText for Genomi
s system, we used a value of � = 3.

The highest s
oring 
hemi
al name is then used to retrieve a set of do
uments 
ontaining

that name. This do
ument set is then merged with the results from the previous subsystems

to produ
e the �nal do
ument set.

3.5 The Combined MultiText for Genomi
s System

The 
ombined MultiText for Genomi
s system 
onsists of the four subsystems des
ribed

above. The Okapi and Query Tiering subsystems o

ur in parallel, and depending on the
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out
ome of the Query Tiering subsystem, the Feedba
k subsystem may be a
tivated. The

resultant do
ument sets are then merged to produ
e the �nal output of the system.

Ea
h 
ombination of te
hniques and parameters is 
alled a run. Following the TREC

standard pro
edure, 1000 do
uments were retrieved for ea
h run. The runs whi
h we used

in our �nal system are as follows:

� Okapi 1, 2, 3, and Fusion: These are the do
ument sets retrieved by the pro
edure

des
ribed in Se
tion 3.1.

� All Tiers (AT): This is the set of do
uments retrieved by using the All Tiers method

as des
ribed in Se
tion 3.2. The do
uments retrieved by Okapi Fusion are appended

to the end.

� All Tiers Interweave-fusion (ATI): The set of do
uments retrieved by All Tiers is

interweaved with the Okapi Fusion do
ument set as des
ribed in Se
tion 3.3.

� All Tiers Rank-Fusion (ATR): The set of do
uments retrieved by All Tiers is 
om-

bined with the Okapi Fusion do
ument set using the weighted rank fusion method

as des
ribed in Se
tion 3.3. It was experimentally determined that good results 
an

be obtained if the Okapi rank was weighted 4 times as heavily as the Query Tiering

rank.

� All Tiers Interweave/Rank-fusion with Feedba
k (ATIF, ATRF): These are the same

as ATI and ATR, respe
tively, ex
ept that the feedba
k pro
edure des
ribed in Se
-

tion 3.4 was used if no do
uments were retrieved in Tier 1.
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� Best Tier (BT, BTI, BTR, BTIF, BTRF): These are analogous to the above, ex
ept

that the Query Tiering subsystem retrieved only do
uments from the �rst tier with

non-zero do
uments.

� Exa
t: Instead of all the tiers or the best tier, only Tier 1 was used to retrieve

do
uments. The Okapi Fusion do
ument set was then appended to the end. (If

no do
uments were retrieved in Tier 1 for a topi
, then the �nal set of retrieved

do
uments is just the set retrieved by Okapi Fusion.)

� Exa
tI: The set of do
uments retrieved by Tier 1 is interweaved with the Okapi

Fusion set.

Figure 3.6 shows the 
ow diagram of the 
ombined system for the BTRF (Best Tier,

Rank-fusion, Feedba
k) run. The topi
 is sent to both the Okapi and Query Tiering

subsystems, ea
h of whi
h returns a set of do
uments. If the �rst tier to retrieve a non-

zero number of do
uments is Tier 1, then the two do
ument sets are fused in the Fusion

subsystem. Otherwise, a third set of do
uments is retrieved using the Feedba
k subsystem,

and the three sets of do
uments are merged together. The other runs follow a similar logi



ow.

The parameters of the various runs were optimized for the training data, using the

supplied relevan
e judgments. Thus, the performan
e of the IR system on the training data

is not ne
essarily re
e
tive of its performan
e on the test data, espe
ially if the training

and test data have di�erent 
hara
teristi
s. In parti
ular, the relative performan
e of some
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of the runs that relied on a single retrieval te
hnique may not be ne
essarily preserved.

Nevertheless, the runs involving fusion and feedba
k do seem to 
onsistently outperform

the systems on whi
h they are based. The parameters for these runs were adjusted not

only to maximize performan
e, but to in
rease stability as well.

The performan
e of feedba
k is dependent on the number of top do
uments used to

determine the most relevant 
hemi
al name, and on the type of fusion used to merge the

three do
ument sets. These parameters are in turn dependent upon the query tiering

te
hnique used. For the All Tiers te
hnique, it was determined that using the top 25{30

do
uments to determine the most relevant 
hemi
al name produ
ed the best performan
e.

(The value of 27 was used in the experiments.) The three do
ument sets are fused using

rank fusion with equal weights. For the Best Tier te
hnique, the top 42 do
uments were

used, and the three do
ument sets were merged using weighted rank fusion with a weight

of 5 for the query tiers do
ument set, 28 for the feedba
k do
ument set, and 20 for the

Okapi Fusion do
ument set. These numbers were determined experimentally.

The reason for the di�eren
e between the feedba
k parameters of the AT and BT

runs is that more of the top do
uments retrieved by the Best Tier te
hnique are relevant


ompared to those retrieved by All Tiers. Sin
e feedba
k is only used when no do
uments

are retrieved in Tier 1, the set of do
uments retrieved using the top 
hemi
al name will

be far more relevant than the do
uments retrieved by the Best Tier, and slightly more

relevant than retrieved by Okapi.

The Exa
t and Exa
tI runs were experiments designed to test the e�e
ts of ignoring all
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subsequent tiers if no do
uments are retrieved by Tier 1. Early experiments showed that

it performed better than All Tiers on those topi
s for whi
h a mat
h was found in Tier

1, and worse otherwise. Be
ause the performan
e was unstable, and be
ause Best Tier

seemed to always perform better, the full set of fusion and feedba
k experiments were not

performed on the Exa
t run.

We examine the experimental results on the training and test data in further detail in

the next 
hapter.



Chapter 4

Experimental Results

4.1 Results on Training Topi
s

The values of the parameters of the MultiText for Genomi
s system were tuned using the

training data. On
e these values had been de
ided upon, we 
ondu
ted ea
h of the runs

on the training data to obtain the �nal results whi
h are shown in Table 4.1. The results

of the Wil
oxon paired-T signi�
an
e test for 
ertain pairs of runs on the training data are

shown in Table 4.2.

As 
an be seen from Table 4.1, the best average pre
ision belonged to the BTRF run,

at 0:4821. This is a 47:3% improvement over the baseline Okapi 1 (p < 0:001), whi
h had

an average pre
ision of 0:3273. The BTIF run had an average pre
ision of 0:4812, a 47:0%

improvement (p < 0:001), and the ATRF run had an average pre
ision of 0:4598, a 40:5%

(p < 0:001) improvement. The ATRF run retrieved 291 relevant do
uments, whi
h was

43
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Method Used Rel. & Ret. Avg. Pre
ision R-Pre
ision

Okapi 1 224 0.3273 0.3077

Okapi 2 245 0.3193 0.2917

Okapi 3 261 0.3157 0.2700

Okapi Fusion 261 0.3321 0.3173

AT 282 0.3819 0.3452

ATI 282 0.4394 0.3836

ATIF 289 0.4429 0.3844

ATR 284 0.4519 0.4324

ATRF 291 0.4598 0.4448

BT 279 0.4003 0.3818

BTI 279 0.4528 0.4236

BTIF 286 0.4812 0.4448

BTR 279 0.4452 0.4216

BTRF 286 0.4821 0.4579

Exa
t 277 0.3981 0.3820

Exa
tI 277 0.4246 0.3959

Table 4.1: Summary of Results on Training Data: 50 topi
s, 1000 retrieved per query, 335

total relevant.

the most relevant do
uments retrieved of all the runs. This is slightly more than the 286

retrieved by BTRF and BTIF, and 
onsiderably more than the 224 retrieved by the Okapi

1 run.

Among the Okapi runs, more relevant do
uments were retrieved by Okapi 3 than by

Okapi 2, whi
h in turn retrieved more relevant do
uments than Okapi 1. Performan
e,

however, was in the reverse order, with Okapi 1 having the best average pre
ision of the

three. Figure 4.1 shows the pre
ision-re
all 
urves

1

for the Okapi runs on the training

data. As is typi
al for su
h 
urves, the pre
ision and re
all are inversely related for ea
h

of the Okapi runs. As 
an be seen, at lower re
all levels (when fewer do
uments have

been retrieved) Okapi 1 has the highest pre
ision, and Okapi 3 has the lowest, with Okapi

1

Note that this and subsequent pre
ision-re
all 
urves have been s
aled to show the pre
ision range

0:1� 0:7 for the sake of 
larity.
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Runs Compared p-value

Okapi 1 Okapi Fusion 0.061

Okapi Okapi 2 Okapi Fusion 0.097

Okapi 3 Okapi Fusion 0.23

Okapi 1 AT 0.14

Okapi 1 BT 0.089

Query Tiering Okapi 1 Exa
t 0.012

Okapi Fusion AT 0.15

Okapi Fusion BT 0.14

Okapi Fusion Exa
t 0.057

AT ATI 0.035

AT ATR 0.074

Fusion BT BTI 0.037

BT BTR 0.091

Exa
t Exa
tI 0.18

ATI ATIF 0.45

Feedba
k ATR ATRF 0.50

BTI BTIF 0.083

BTR BTRF 0.025

Okapi 1 ATIF < 0.001

Feedba
k Okapi 1 ATRF < 0.001

vs. Baseline Okapi 1 BTIF < 0.001

Okapi 1 BTRF < 0.001

Chosen Runs ATRF BTRF 0.11

Table 4.2: Wil
oxon paired-T test results on runs for training data.

2 in the middle. However, as the re
all level in
reases (when more do
uments have been

retrieved) the relative positions of the three runs are reversed. By using bigrams, the Okapi

3 system was able to retrieve more relevant do
uments, but they were ranked lower as it also

retrieved many irrelevant do
uments whi
h it ranked highly. This suggests that the gene

names in the 
orpus are a
tually very 
lose to how they appear in the Lo
usLink-derived

query.

The Okapi Fusion run both retrieved more relevant do
uments and a
hieved a better

performan
e than ea
h of the individual Okapi runs. It retrieved as many do
uments as

Okapi 3 did, while its average pre
ision was 0:3321, a 1:4% (p = 0:061) improvement

over Okapi 1. While the gain is not signi�
ant, it nevertheless demonstrates that an
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improvement in retrieval 
an be made simply by reformulating the query and merging the

do
uments retrieved using di�erent query formulations. More importantly, retrieval using

the fusion te
hnique is more stable than any of Okapi 1, Okapi 2, or Okapi 3 alone. The

�rst three rows of the Table 4.2 
ompare ea
h of the Okapi runs to the Okapi Fusion run.

As 
an be seen in Figure 4.1, the Okapi Fusion run is outperformed by Okapi 1 when the

re
all level is low, and by Okapi 3 when the re
all level is high, but performs better than

ea
h of the individual Okapi runs at the intermediate re
all level. This suggests that a

good strategy for merging the results of the individual Okapi runs should weigh Okapi 1

more heavily at �rst but gradually in
rease the dominan
e of Okapi 3 as more do
uments

are retrieved.

Feedba
k and fusion improved performan
e in every 
ase, and the systems with the

best performan
e made use of both. It isn't 
lear whi
h fusion method is better, sin
e

ATR outperformed ATI, but BTI did better than BTR. However, when fusion is used with

feedba
k, the rank fusion method outperformed the interweave fusion method in both 
ases.

Figures 4.2 and 4.3 show the pre
ision-re
all 
urves for the All-Tiers and Best-Tier runs.

At low re
all levels, ATI and ATIF outperform ATR and ATRF, but the reverse is true

at high re
all levels. Similarly, BTI and BTIF outperform BTR and BTRF at low re
all

levels, but while BTRF outperforms BTIF at high re
all levels, the performan
e of BTI and

BTR are similar. This suggests that, when few do
uments have been retrieved, the Okapi

and Query Tiering subsystems retrieve di�erent relevant do
uments, and good results may

be obtained simply by interweaving the two do
ument sets. However, as more do
uments
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are retrieved, the Okapi methods retrieve more relevant do
uments than the Query Tiering

methods, even if it gives these relevant do
uments a low rank, and so do
uments in the

Okapi do
ument set should be favoured.

Table 4.2 shows that the improvement to the retrieval due to the fusion of the Okapi

and Query Tiering subsystems over the Query Tiering by itself is not very signi�
ant.

Furthermore, it shows that the improvements due to using feedba
k are not signi�
ant at

all for the All-Tiers runs while they are somewhat signi�
ant for the Best-Tier runs. Sin
e

feedba
k is used only when the set of do
uments retrieved by Tier 1 in the Query Tiering

subsystem is empty, the Best Tier runs are more sensitive to its e�e
ts.

There is a high level of 
orresponden
e between the metadata �elds and the relevan
e

of the do
uments. This is 
lear from the fa
t that retrieval using query tiers based on the

information in the metadata �elds outperformed the Okapi runs, in
luding the Okapi Fusion

run. Before fusion and feedba
k, the best te
hnique that is based on query tiers is BT,

with an average pre
ision of 0:4003, whi
h is a 22% improvement (p = 0:089) over Okapi 1.

The Exa
t run had an average pre
ision of 0:3981, a 21% improvement (p = 0:012), while

the AT run had an average pre
ision of 0:3819, whi
h 
lose to 17% (p = 0:14) over Okapi

1. Note that both Best Tier and Exa
t had a better average pre
ision than the All Tiers

method. It appears that on
e a mat
h has been found in a tier, it was a better strategy to

append the Okapi Fusion list rather than do
uments from lower tiers. The experimental

results suggest that the performan
e of the Okapi Fusion method was between that of Tier

1 and Tier 2.



Experimental Results 52

Figure 4.4 shows the re
all-pre
ision 
urve for the runs with feedba
k, with the Okapi

1 run shown as a baseline for 
omparison. Table 4.2 shows that ea
h of Query Tiering,

Fusion, and Feedba
k improve upon the Okapi runs.

Table 4.3 shows the do
uments retrieved in ea
h tier for the 50 training topi
s. The

topi
 number is shown in the �rst 
olumn, followed by six 
olumns showing the number of

do
uments retrieved in ea
h of the six tiers. The last 
olumn 
ontains the expression or

expressions used in the �rst tier in whi
h a mat
h was made.

In 32 out of 50 topi
s, the best tier was Tier 1. Of the remaining topi
s, Tier 2 was

the best tier in 4 topi
s, Tier 3 was best in 8, and Tier 4 was best in 4. No do
uments

were retrieved at all in Tier 5, and Tier 6 was the best tier for 1 topi
. The reason that

Tier 5 was in
luded at all is that the tiers were developed independently and had been

re-arranged during training. In the �nal arrangement of the query tiers, it happened that

every do
ument retrieved by Tier 5 had already been retrieved in a higher tier.

Be
ause Tier 1 had a better performan
e on its own than Okapi or even feedba
k,

performan
e 
an be improved by re
ognizing relevant 
hemi
al names in the 
hemi
al list

metadata, even in 
ases where the name of the gene and the relevant 
hemi
al name are

di�erent.

Table 4.4 shows the 
hemi
al names produ
ed by the pseudorelevan
e feedba
k for those

topi
s in whi
h no do
uments were retrieved in Tier 1, for the BTRF run. The �rst 
olumn

gives the topi
 number, and the se
ond 
olumn gives a gene name from the query. The

third 
olumn shows the 
hemi
al name that was found using automati
 query expansion.
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Topi
 Number of Do
uments Retrieved Mat
hes in Best Tier

T1 T2 T3 T4 T5 T6

1 438 120 0 19 0 482 \
ip1 protein"

2 6 13 38 4 0 28 \rna dependent atpase", \protein p68"

3 19 31 0 5 0 43 \tel protein"

4 35 2 499 2 0 75 \keratino
yte growth fa
tor", \�broblast growth fa
tor 7 pre
ursor", \�broblast growth fa
tor 7"

5 16 0 23 0 0 6 \gly
ine re
eptor alpha1"

6 93 10 0 2 0 101 \hla dqb1"

7 56 3 44 0 0 39 \janus kinase 2"

8 { { { 8 0 50 ((\luteinizing"^\hormone"^\
horiogonadotropin"^\re
eptor")+\lh
gr"+\l
gr"+\lhr"+

(\luteinizing"^\hormone"^\re
eptor")+(\lutropin"^\
horiogonadotropin"^\re
eptor")+\l
grs"+

\lh
grs"+(\luteinizing"^\
horiogonadotropin"^\re
eptor")+\lgr2"+\lhrs"+(\lutropin"^\re
eptor")+

(\
horiogonadotropin"^\re
eptor"))

9 15 1 68 12 0 345 \growth inhibitory fa
tor"

10 161 360 757 480 0 785 \protein 
"

11 { 80 0 0 0 117 \ra
1"

12 3 0 41 0 0 11 \tropomyosin 1"

13 3 0 3 7 0 163 \gp
r protein", \frizzled 4 protein vertebrate"

14 { { { 10 0 408 ((\tyrosyl"^\trna"^\synthetase")+\tyrrses"+\ytses"+\yts"+

(\tyrosyl"^\trna"^\ligase")+\yars"+\tyrrs"+\yarses"+\yrses"+\yrs")

15 11 1 0 13 0 109 \major vault protein"

16 4 0 80 0 0 0 \adrenergi
 re
eptor alpha 1d", \adrenergi
 re
eptor alpha 1a"

17 { 10 0 0 0 0 \rhob"

18 213 0 205 2 0 73 \
pp32 protein"

19 6 0 0 0 0 6 \
t
f protein"

20 162 0 979 2 0 68 \fasl protein"

21 { { 1 2 0 44 (((\ig")))

22 { { { 4 0 14 (\ihhs"+(\indian"^\hedgehog")+\ihh")

23 { { 47 1 0 16 (((\phospholipase"+\phospholipases"))^\
 gamma")

24 { { 3 0 0 0 (((\seven"+\sevens")^(\absentia"+\absentias")))

25 { { { 3 0 112 (\dntts"+\tdt"+\dntt"+(\terminal"^\deoxynu
leotidyl"^\transferase")+

(\deoxynu
leotidyltransferase"^\terminal")+\tdts")

26 { { { 1 0 1 ((\rho"^\related"^\btb"^\domain"^\
ontaining"^\2")+\rhobtb2"+\kiaa0717"+\db
2")

27 { { { { { 19 ((\
holinergi
"^\re
eptor"^\mus
arini
"^\3")+\
hrm3")

28 { 11 0 9 0 57 \egr1", \ng�"

29 19 1 0 0 0 8 \glu
okinase"

30 2 0 40 0 0 1 \retinoi
 a
id re
eptor gamma"

31 149 4 460 9 0 93 \neurokinin a", \substan
e p", \neuropeptide k"

32 { { 186 4 0 75 (((\estrogen"+\estrogens")^(\re
eptor"+\re
eptors")))

33 { { 70 0 0 21 (((\guanylate"+\guanylates")^(\
y
lase"+\
y
lases")))

34 20 1 0 0 0 2 \
o
aine and amphetamine regulated trans
ript protein"

35 { { { { { { {

36 5 0 9 2 0 6 \hop protein"

37 1 0 0 0 0 1 \slob protein"

38 3 0 0 0 0 0 \eiger protein drosophila"

39 32 1 7 1 0 15 \
adherins"

40 6 0 0 3 0 2 \stat92e protein"

41 3 0 0 0 0 3 \ebony protein"

42 10 0 0 0 0 5 \
rb protein drosophila"

43 { { 3 11 0 422 (((\
al
ineurin"+\
al
ineurins")))

44 3 0 4 0 0 0 \gp73 protein"

45 5 1 3 2 0 5 \sh3px1 protein", \wisp protein"

46 { 7 0 5 0 16 \hanks", \ank"

47 2 0 0 0 0 0 \dda3 protein"

48 10 0 0 10 0 323 \artemis protein human"

49 { { 1000 67 0 947 (((\trans
ription"+\trans
riptions")^(\fa
tor"+\fa
tors")))

50 1 0 2 0 0 1 \pax 8 protein"

Total 32 4 8 4 0 1

Table 4.3: Mat
hes in the query tiers for the training topi
s.
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Topi
 Query Term/Phrase Feedba
k Chem. Name Ret. R.&R. MAP R-P MAP Fb. R-P Fb. Imp.

8 luteinizing hormone/ Re
eptors, LH 49 7 0.2917 0.4286 0.4305 0.4286 +47%


horiogonadotropin re
eptor

11 ras-related C3 botulinum ra
1 GTP-Binding Protein 80 13 0.2302 0.4118 0.1977 0.1765 -14%

toxin substrate 1 (rho family,

small GTP binding protein Ra
1)

14 tyrosyl-rRNA synthetase Tyrosine-rRNA Ligase 10 6 0.5872 0.5000 0.8238 0.6667 +40%

17 ras homolog B (RhoB) rhoB GTP-Binding Protein 6 2 0.3333 0.3333 0.3889 0.6667 +17%

21 immunoglobulin heavy 
hain 6 Immunoglobulins, mu-Chain 21 0 { { { { {

(heavy 
hain of IgM)

22 Indian hedgehog hedgehog protein, vertebrate 69 6 0.4703 0.5000 0.6723 0.5000 +43%

23 phospholipase C, gamma 1 phospholipase C gamma 47 9 0.6503 0.5556 0.5262 0.4444 -19%

24 seven in absentia 2 seven in absentia protein 3 2 1.0000 1.0000 1.0000 1.0000 0%

25 terminal deoxynu
leotidyl transferase DNA Nu
leotidylexotransferase 8 2 1.0000 1.0000 1.0000 1.0000 0%

26 Rho-related BTB domain QM protein, 0 0 1.0000 1.0000 1.0000 1.0000 0%


ontaining 2 Trypanosoma bru
ei

27 
holinergi
 re
eptor, mus
arini
 3 Re
eptors, Mus
arini
 153 2 0.0312 0.0000 0.0747 0.0000 +139%

28 Early growth response 1 Krox-24 protein 40 8 0.0258 0.1250 0.2523 0.1250 +878%

32 estrogen re
eptor 1 Re
eptors, Estrogen 163 11 0.1039 0.0909 0.1354 0.0000 +30%

33 guanylate 
y
lase 1, soluble, beta 3 Guanylate Cy
lase 70 1 0.0774 0.0000 0.0569 0.0000 -26%

35 CG3599 Drosophila Proteins 638 0 { { { { {

43 Cal
ineurin B Cal
ineurin 3 1 0.5000 0.0000 1.0000 1.0000 +100%

46 ankylosis, progressive homolog ankylosis protein 5 3 0.1595 0.0000 0.7500 0.7500 +370%

49 trans
ription fa
tor 23 Trans
ription Fa
tors 1000 0 { { { { {

Table 4.4: Analysis of the e�e
ts of feedba
k on performan
e for the training topi
s.

The next two 
olumns show the number of do
uments retrieved using the 
hemi
al name

and the number of these whi
h were also relevant. The next two 
olumns show the mean

average pre
ision and the interpolated re
all-pre
ision, respe
tively, for that topi
 without

using feedba
k. (These are equivalent to the MAP and re
all-pre
ision for the BTR run.)

The next two 
olumns give the mean average pre
ision and interpolated re
all-pre
ision

with feedba
k, and the last 
olumn gives the per
entage improvement (or degradation) due

to using feedba
k. It is apparent that most of the 
hemi
al names are related in some way

to the gene name, and a better way of re
ognizing the relationship between a gene and a


hemi
al name will 
learly improve performan
e.

For topi
 28, the top 
hemi
al name \Krox-24 protein" was produ
ed for the \Early
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growth response 1". In fa
t, \Krox-24 protein" is another name for \Early growth response

1". By sear
hing on \Krox-24 protein", whi
h does not appear in the original query, the

average pre
ision was improved by an in
redible 878%. Of 
ourse, the original performan
e

for this topi
 was very poor, but there is 
learly a lot of potential for improving performan
e

by re
ognizing the alternate names of a gene or a substan
e related to a gene.

In some 
ases, this is relatively simple. For topi
 14, for example, the 
hemi
al name

\Tyrosine-rRNA Ligase" was generated for the gene name \tyrosyl-rRNA synthetase". A

system that understood the relationship between \tyrosine" and \tyrosyl" and \ligase" and

\synthetase" 
an determine that the two expressions refer to the same thing (or 
losely

related things), and even assign a s
ore for the degree of similarity. In other 
ases, this

is 
ompli
ated by the fa
t that more than one 
hemi
al name generated by the automati


expansion might be relevant to the query. For topi
 27, sear
hing on the gene name \
holin-

ergi
 re
eptor, mus
arini
 3" resulted in the top 
hemi
al name \Re
eptors, Mus
arini
".

However, the 
hemi
al name \mus
arini
 re
eptor M3", whi
h is 
learly more relevant,

was overlooked. Choosing this 
hemi
al name instead of the more general \Re
eptors,

Mus
arini
" would have resulted in an improvement of 534%.

As the table shows, in most 
ases the performan
e was improved by using feedba
k

to �nd the most relevant 
hemi
al, though in some 
ases there was a degradation in

performan
e. Determining the 
onditions under whi
h feedba
k improved or degraded

performan
e would allow feedba
k to be used more e�e
tively.

The results on the training data show that the mixture of te
hniques and the parameters
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used in the MultiText for Genomi
s system performs quite well for genomi
s do
ument

retrieval from the MEDLINE 
orpus.

4.2 Results on Test Topi
s

Even though the Genomi
s Tra
k allowed for the submission of only two oÆ
ial runs,

we performed the same runs using the test data as we did on the training data, for the

purposes of 
omparing the 
hara
teristi
s of the test and training data as well as to verify

the properties we believe the various 
ombinations of te
hniques to have.

The two runs 
hosen for oÆ
ial submission to TREC were the BTRF and ATRF runs.

The �rst of these used the Best Tier retrieval method in the Query Tiering subsystem,

while the se
ond used the All Tiers retrieval method. Both runs used the Rank Fusion

method in the Fusion subsystem. The BTRF run was 
hosen be
ause it had the highest

average pre
ision on the training data, while the ATRF run was 
hosen partly be
ause

it had one of the highest average pre
isions, but also be
ause it had the highest number

of relevant do
uments retrieved. Even though BTIF had a better mean average pre
ision

than ATRF on the training data, it was too similar to the BTRF run in that it di�ered only

in the fusion method used. It was found that by adjusting the fusion weights, it was always

possible for the rank-fusion to outperform the interweave fusion. It was also suspe
ted that

the ATRF run might be more stable, in the sense that the performan
e would not be too

adversely a�e
ted by an in
orre
t mat
h in Tier 1. Both the ATRF and BTRF runs had
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Method Used Rel. & Ret. Avg. Pre
ision R-Pre
ision

Okapi 1 447 0.2060 0.1965

Okapi 2 473 0.2155 0.1948

Okapi 3 524 0.2169 0.2095

Okapi Fusion 524 0.2323 0.2138

AT 550 0.2542 0.1967

ATI 550 0.3334 0.2723

ATIF 559 0.3379 0.2680

ATR 552 0.3425 0.3050

ATRF 562 0.3479 0.3013

BT 535 0.2443 0.2010

BTI 535 0.3066 0.2581

BTIF 556 0.3322 0.2745

BTR 535 0.3161 0.2852

BTRF 556 0.3534 0.3113

Exa
t 528 0.2500 0.2194

Exa
tI 528 0.2803 0.2449

Table 4.5: Summary of Results on Test Data: 50 topi
s, 1000 retrieved per query, 566 total

relevant.

a p-value mu
h less than 0:001 when 
ompared with the Okapi 1 baseline run. It would

be interesting to examine the trade-o� between retrieving more relevant do
uments and

having a better pre
ision.

The results for the various runs on the test data are shown in Table 4.5, and the results

of the Wil
oxon paired-T tests shown in Table 4.6. Some similarities and di�eren
es

between the training and test results may be noted. The two oÆ
ial runs turned out to be

ex
ellent 
hoi
es, as the BTRF and ATRF runs on the test data had the two highest average

pre
isions, at 0:3534 and 0:3479 respe
tively, 
orresponding to improvements of 71:5%

(p < 0:001) and 68:9% (p < 0:001) over the Okapi 1 baseline result of 0:2060. The ATRF

run retrieved the most relevant do
uments, with 562 relevant do
uments retrieved, whi
h

is 25:7% more than the 447 retrieved by Okapi 1. Furthermore, ATRF performed better

than BTIF, whi
h had an average pre
ision of 0:3322, a 61:3% improvement (p < 0:001)
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Runs Compared p-value

Okapi 1 Okapi Fusion < 0.001

Okapi Okapi 2 Okapi Fusion 0.0086

Okapi 3 Okapi Fusion 0.056

Okapi 1 AT 0.088

Okapi 1 BT 0.016

Query Tiering Okapi 1 Exa
t 0.0046

Okapi Fusion AT 0.38

Okapi Fusion BT 0.68

Okapi Fusion Exa
t 0.20

AT ATI < 0.001

AT ATR < 0.001

Fusion BT BTI < 0.001

BT BTR < 0.001

Exa
t Exa
tI 0.015

ATI ATIF 0.76

Feedba
k ATR ATRF 0.35

BTI BTIF 0.017

BTR BTRF 0.0077

Okapi 1 ATIF < 0.001

Feedba
k Okapi 1 ATRF < 0.001

vs. Baseline Okapi 1 BTIF < 0.001

Okapi 1 BTRF < 0.001

OÆ
ial Runs ATRF BTRF 0.80

Table 4.6: Wil
oxon paired-T test results on runs for test data.

over Okapi 1.

The distan
e between ATRF and BTRF was also smaller. Although BTRF showed

4:8% higher average pre
ision in training, the di�eren
e was not signi�
ant (p = 0:11).

On the test data the di�eren
e diminishes to 1:6% (p = 0:80). Thus these tests do not

demonstrate any real di�eren
e in e�e
tiveness between ATRF and BTRF as measured by

average pre
ision. Whereas for the training data, the BT run slightly outperformed the AT

run, for the test data the situation is reversed. For the test data, the relevant do
uments

were more likely to be distributed between the tiers rather than be 
on
entrated in the best

tier. This suggests that there is more variation in the 
hara
teristi
s identifying relevant

do
uments for the test data than for the training data.
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The pre
ision-re
all 
urves for the Okapi runs are shown in Figure 4.5. The Okapi

Fusion run performed better than any individual Okapi run, and has a higher pre
ision

for almost all re
all levels below 0:65, above whi
h Okapi 3 has a higher pre
ision. Of

the individual Okapi runs, Okapi 3 had the highest average pre
ision, followed by Okapi

2, and then Okapi 1. This is the reverse of the order with the training data. Using

bigrams rather than the original query resulted in better performan
e on the test data.

This suggests that with the test data, the gene and protein names in the 
orpus are less

like the Lo
usLink-derived queries than is the 
ase with the training data. This would also

explain the reversal in performan
e between the AT and BT runs for the training and test

data des
ribed above.

Figures 4.6 and 4.7 show the pre
ision-re
all 
urves for these runs. The Rank-fusion

method seemed to work better for the test data than for the training data. The ATRF

run had a better pre
ision than the ATIF run for both high and low re
all levels, with

ATIF outperforming ATRF only in the range of re
all levels from 0:2 and 0:3. The BTRF

run outperformed the BTIF run at every re
all level. Sin
e the parameters are set su
h

that the Rank-fusion algorithm assigns a heavier weight to the Okapi Fusion do
ument set

than it does to the Query Tiering do
ument set, this means that the Okapi subsystem is

ranking relevant do
uments more highly with the test data than with the training data.

A 
omparison of Table 4.3 with Table 4.7 shows that the mat
hes in the query tiers

are more distributed among the tiers for the test data than for the training data. Whereas

32 out of 50 training topi
s retrieved do
uments in Tier 1, only 25 test topi
s did so, with
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Topi
 Number of Do
uments Retrieved Mat
hes in Best Tier

T1 T2 T3 T4 T5 T6

1 18 0 29 1 0 45 \a
tivating trans
ription fa
tor 2 protein"

2 { 1 118 2 0 48 \e2f1"

3 { 2 0 13 0 40 \eif4e"

4 { 146 62 214 0 891 \g protein"

5 79 0 36 2 0 64 \heme oxygenase 1"

6 145 4 0 1 0 47 \pten protein"

7 8 0 31 0 0 6 \synde
an 4"

8 18 0 5 1 0 16 \ex
itatory amino a
id transporter 2"

9 { 3 0 28 0 79 \stat5"

10 102 0 0 3 0 92 \thrombopoietin"

11 103 0 201 0 0 20 \tissue inhibitor of metalloproteinase 2"

12 { 12 380 92 0 94 \vdr", \1 25 dihydroxyvitamin d3"

13 { 10 48 1000 0 604 \ah", \ahr", \in"

14 1 269 7 11 0 211 \b
l2 protein mouse"

15 { 97 0 2 0 63 \
d34"

16 { { { 5 0 22 ((\heterogeneous"^\nu
lear"^\ribonu
leoprotein"^\a1")+\hnrnpa"+\hnrpa1"+(\hnrnp"^\a"))

17 33 0 28 1 0 29 \interleukin 1 re
eptor antagonist protein"

18 81 2 968 4 0 363 \interleukin 5"

19 12 0 0 0 0 1 \ptp 1b protein"

20 { 20 16 5 0 152 \spa", \surfa
tant asso
iated protein a"

21 { { 61 1 0 4 (((\adenylate"+\adenylates")^(\
y
lase"+\
y
lases")^(\a
tivating"+\a
tivatings")^

(\polypeptide"+\polypeptides")))

22 { 86 0 54 0 205 \di", \vas"

23 35 0 390 1 0 61 \protein kinase 
 alpha"

24 { { { 7 0 17 (\glutbs"+\gtg3"+\glutb"+(\solute"^\
arrier"^\family"^\2"^\a"^\1"^\brain")+\sl
2a1"+

\ratgtg1"+(\fa
ilitated"^\glu
ose"^\transporter")+\gtg1"+(\solute"^\
arrier"^\family"^\2"^

\member"^\1")+\glut1")

25 { 19 577 0 0 219 \tnf"

26 1 6 0 4 0 27 \fat protein drosophila"

27 10 1 0 0 0 6 \numb protein"

28 9 29 0 1 0 19 \epidermal growth fa
tor"

29 5 0 0 1 0 4 \brahma protein"

30 { 26 0 0 0 7 \reaper"

31 { { { 7 0 12 \((\gonadotropin"^\releasing"^\hormone"^\re
eptor")+\gnrhrs"+\gnrhr")"

32 { 523 488 70 1 537 \fas", \
d95"

33 10 0 63 0 0 10 \edg 1 protein"

34 { { { 5 0 27 (\her3"+(\v"^\erb"^\b2"^\erythroblasti
"^\leukemia"^\viral"^\on
ogene"^\homolog"^\3")+

(\v"^\erb"^\b2"^\avian"^\erythroblasti
"^\leukemia"^\viral"^\on
ogene"^\homolog"^\3")+

\erbb3"+(\transformation"^\gene"^\erbb"^\3"))

35 93 734 65 975 0 838 \interleukin 3"

36 { 13 4 9 0 580 \ing1"

37 { { { 29 0 134 (\ppargs"+\humpparg"+\pparg2"+(\peroxisome"^\proliferative"^\a
tivated"^\re
eptor"^

\gamma"^\isoform"^\2")+\pparg1"+\humppargs"+\pparg"+(\ppar"^\gamma")+(\peroxisome"^

\proliferative"^\a
tivated"^\re
eptor"^\gamma"^\isoform"^\1")+(\peroxisome"^\proliferative"^

\a
tivated"^\re
eptor"^\gamma")+\nr1
3")

38 { { { 15 0 403 ((\mip"^\1"^\alpha")+\s
ya3"+\ld78alpha"+\g0s191"+(\small"^\indu
ible"^\
ytokine"^\a3")+

\mip1a"+(\
hemokine"^\ligand"^\3")+\mip1alpha"+(\
"^\
"^\motif")+\

l3"+(\g0s19"^\1"))

39 { 170 0 4 0 103 \sp1"

40 { 22 0 8 0 56 \tie 2"

41 1 78 0 45 0 227 \
ash protein"

42 { 6 257 3 0 40 \app"

43 23 5 0 5 0 78 \
reb binding protein"

44 23 0 38 2 0 45 \�broblast growth fa
tor re
eptor 1"

45 73 23 0 20 0 156 \growth hormone"

46 19 0 7 0 0 9 \hepato
yte nu
lear fa
tor 3beta"

47 { { 3 0 25 19 (((\purkinje"+\purkinjes")^(\
ell"+\
ells")^(\protein"+\proteins")))

48 49 0 0 0 0 30 \stat6 proteinstat6 protein"

49 { { 1 14 0 113 (((\t
r"+\t
rs")))

50 164 1 11 3 0 169 \interleukin 6"

Total 25 16 3 6 0 0

Table 4.7: Mat
hes in the query tiers for the test topi
s.
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Topi
 Query Term/Phrase Feedba
k Chem. Name Ret. R.&R. MAP R-P MAP Fb. R-P Fb. Imp.

2 E2F trans
ription fa
tor 1 trans
ription fa
tor E2F 111 10 0.1515 0.0909 0.2559 0.1818 +69%

3 eukaryoti
 translation initiation Eukaryoti
 Initiation Fa
tor-4E 36 12 0.5180 0.4615 0.6803 0.6154 +31%

fa
tor 4E

4 guanine nu
leotide binding protein G-Protein, Stimulatory Gs 42 0 0.0085 0.0000 0.0109 0.0000 +28%

(G protein), alpha a
tivating a
tivity

polypeptide, olfa
tory type

9 signal transdu
er and a
tivator of mammary gland-spe
i�
 nu
lear 80 8 0.1244 0.1250 0.2508 0.2500 +102%

trans
ription 5A fa
tor

12 vitamin D (1,25- dihydroxyvitamin Re
eptors, Cal
itriol 134 24 0.1481 0.0800 0.2174 0.2000 +47%

D3) re
eptor

13 aryl-hydro
arbon re
eptor Re
eptors, Aryl Hydro
arbon 49 8 0.2650 0.2500 0.4342 0.3750 +64%

15 CD34 antigen Antigens, CD34 97 3 0.3333 0.3333 0.7222 0.6667 +117%

16 heterogeneous nu
lear hnRNP A1 7 3 0.3344 0.3333 0.6667 0.6667 +99%

ribonu
leoprotein A1

20 surfa
tant asso
iated protein A Pulmonary Surfa
tant- 19 6 0.4511 0.5000 0.3480 0.1667 +77%

Asso
iated Protein A

21 adenylate 
y
lase a
tivating pituitary adenylate 
y
lase 61 7 0.1503 0.1429 0.1796 0.0000 +19%

polypeptide 1 a
tivating polypeptide

22 arginine vasopressin 8-Hydroxy-2-(di-n-propylamino) 63 0 0.0255 0.0000 0.0200 0.0000 -22 %

tetralin

24 Glut1 GLUT-1 protein 27 5 0.5821 0.7143 0.6596 0.7143 +13%

25 tumor ne
rosis fa
tor superfamily, Tumor Ne
rosis Fa
tor 575 25 0.0411 0.0769 0.0727 0.1154 +77%

member 2

30 reaper reaper peptide, Drosophila 26 7 0.7760 0.6250 0.6955 0.5000 -10%

31 gonadotropin-releasing hormone Re
eptors, LHRH 23 4 0.7500 0.7500 0.7857 0.7500 +5%

re
eptor

32 CD95 Antigens, CD95 516 65 0.2353 0.2121 0.1964 0.1970 -17%

34 ERBB3 Re
eptor, erbB-3 31 5 0.2958 0.3333 0.4062 0.3333 +37%

36 p33ING1 p33(ING1) protein 13 4 0.3405 0.0000 0.4155 0.5000 +22%

37 peroxisome proliferative a
tivated peroxisome proliferator- 385 61 0.1281 0.1311 0.2106 0.1639 +64%

re
eptor, gamma a
tivated re
eptor

38 MIP1A Ma
rophage In
ammatory 83 9 0.0370 0.1111 0.1516 0.2222 +309%

Protein-1

39 Sp1 trans
ription fa
tor Trans
ription Fa
tor, Sp1 168 35 0.3533 0.3421 0.2633 0.2105 -25%

40 TEK tyrosine kinase, endothelial TIE-2 re
eptor tyrosine kinase 22 4 0.4946 0.6000 0.4413 0.4000 -11%

42 amyloid beta (A4) pre
ursor protein Amyloid beta-Protein Pre
ursor 131 10 0.0414 0.0588 0.0749 0.0588 +81%

47 inositol 1,4,5-triphosphate re
eptor 1 inositol-1,4,5-triphosphate 25 6 0.1535 0.1429 0.4149 0.4286 +170%

re
eptor

49 T-
ell re
eptor alpha 
hain Re
eptors, Antigen, T-Cell, 166 5 0.0833 0.1429 0.1115 0.1429 +34%

alpha-beta

Table 4.8: Analysis of the e�e
ts of feedba
k on performan
e for the test topi
s.
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another 16 topi
s having Tier 2 as their best tier. This 
on�rms that the test data di�ers

from the training data in that the query gene and protein names are not as similar to the

relevant gene and protein names in the 
orpus.

Table 4.8 shows the 
hemi
al names asso
iated by the Feedba
k subsystem with ea
h

topi
 for whi
h no do
uments were retrieved in Tier 1, for the BTRF run on the test

data. Whereas for the training data feedba
k was used for only 18 topi
s, for the test

data feedba
k was used for 25 topi
s, or half of the 50 topi
s. This is due to fewer topi
s

having an exa
t mat
h, i.e. a mat
h in Tier 1 in the Query Tiering subsystem. In 20


ases, feedba
k improved the performan
e, while the performan
e was degraded in 5 of the


ases. As with the training data, it is apparent that there is a 
lear relationship between

most of the query terms and the feedba
k term 
hosen by the feedba
k system. The ability

to re
ognize this relationship using domain-spe
i�
 knowledge would de�nitely improve

retrieval.

The runs on the test data 
on�rm that the 
ombination of te
hniques and parameters


hosen for the MultiText for Genomi
s system improves retrieval performan
e. The results

showed that there are some di�eren
es between the 
hara
teristi
s of the training and test

data, but our system was robust enough to have a very good performan
e on the test data.

There were a total of 49 oÆ
ial runs, submitted by 25 groups. The �nal results may be

found in Hersh and Bhupatiraju [HB03℄. Our system pla
ed 4th among the 25 
ompeting

systems, with our two runs having mean average pre
ision (MAP) s
ores of 0:3534 and

0:3479. Table 4.9 shows the top 15 oÆ
ial runs, sorted by MAP, along with the number of
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Run Tag Run Type Mean Average Relevant � 10 Relevant � 20

Pre
ision do
uments retrieved do
uments retrieved

NLMUMDSE automati
 0.4165 3.16 4.84

NLMUMDSRB manual 0.3994 3.20 4.56

nr
1 automati
 0.3941 2.94 4.38

biotext1 automati
 0.3912 3.06 4.46

nr
2 automati
 0.3771 2.76 4.36

biotext0 automati
 0.3753 2.92 4.30

uwmtg03btrf automati
 0.3534 2.28 3.68

uwmtg03atrf automati
 0.3479 2.48 4.00

axon2 automati
 0.3173 2.50 3.86

axon1 automati
 0.3118 2.40 3.78

CSUSM2 automati
 0.3079 2.68 3.76

edstanre
all automati
 0.3015 2.60 3.74

edstanpre
 automati
 0.2984 2.60 3.74

KUBIOIRNE automati
 0.2980 2.32 3.42

KUBIOIRRAW automati
 0.2937 2.24 3.38

Mean (all runs) 0.2313 1.85 2.85

Median (all runs) 0.1960 1.58 2.60

Table 4.9: The top 15 oÆ
ial runs by mean average pre
ision.

relevant do
uments at 10 and 20 do
uments retrieved.



Chapter 5

Dis
ussion

5.1 Analysis of Results

We have identi�ed three features whi
h appear to be vital to a su

essful biomedi
al do
-

ument retrieval system, namely: 1) the ability to deal with variants of gene names; 2)

re
ognition of the subje
t spe
ies of a do
ument; and 3) use of metadata �elds and stru
-

tured data. Furthermore, we have also identi�ed a fourth feature whi
h, while not 
ru
ial,

may have in
reased the performan
e of some systems for the TREC genomi
s tra
k: 4)

identi�
ation of do
uments whi
h are 
ited by GeneRIFs.

We explain ea
h of these features below.

68
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5.1.1 Re
ognition of Gene Name Variants

A strategy for dealing with ambiguities in biomedi
al nomen
lature seems to be the one

de�ning feature separating a su

essful biomedi
al do
ument retrieval system from a failure.

While we have not examined every system that parti
ipated in the genomi
s tra
k, it is


lear that any system whi
h did not implement this feature, or was unsu

essful in doing

so, would fail to �nd the majority of relevant do
uments.

In our system, we used two di�erent strategies for re
ognizing gene name variants. In

the Okapi subsystem, gene names are relaxed and 
onverted into term ve
tors, while in the

Query Tiering subsystem, gene names are mat
hed by relaxing the gene name and by using

a boolean expression. These steps together served the same purpose as the hand-
rafted

gene variant generation rules and de
ision trees used by some other systems. Our approa
h

may be des
ribed as a \shotgun" approa
h: we simply generated many re-arrangements of

the given gene name in the belief that those whi
h 
orresponded to sensible gene names

would retrieve relevant do
uments. While unorthodox, this approa
h seemed to have paid

o�, rewarding us with a high pre
ision in our retrieval system.

An issue related to the re
ognition of gene name variants is the disambiguation of

a
ronyms. In our system, we do not attempt to disambiguate a
ronyms expli
itly, leaving

that fun
tion to the statisti
s of the 
orpus and our s
oring fun
tions, whi
h weigh terms

that 
o-o

ur frequently with the query terms more heavily. A
ronyms in the MeSH 
on-

trolled vo
abulary may also be re
ognized by our Feedba
k subsystem. For example, on

training topi
 8, the query gene name is \luteinizing hormone/
horiogonadotropin re
ep-
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tor", and our Feedba
k subsystem 
orre
tly dedu
ed \Re
eptors, LH" as the most relevant


hemi
al. This was a

omplished without any re
ognition on the part of our system that

the a
ronym \LH" stood for \luteinizing hormone".

5.1.2 Spe
ies Filtering

Be
ause the same gene might exist in many di�erent organisms, a retrieval system might

retrieve many do
uments whi
h are relevant to the gene but for the wrong spe
ies. Filtering

out do
uments about spe
ies other than the topi
 spe
ies would therefore greatly in
rease

the pre
ision of the retrieval.

In our Query Tiering subsystem, do
uments in whi
h the name of the spe
ies does not

appear in the MeSH Heading metadata are removed from 
onsideration. This does not


ompletely eliminate do
uments whi
h are not relevant to the spe
ies, sin
e it is possible

for the name of the spe
ies to appear in the MeSH Heading �eld even if the fo
us of the

paper is another spe
ies. It is quite 
ommon for an arti
le about a gene in one spe
ies to

mention a homologue in a related spe
ies. Nevertheless, if the name of the wanted spe
ies

does not appear in the MeSH Heading metadata, then the arti
le is (almost 
ertainly) not

relevant. Thus, using spe
ies data in the MeSH metadata �eld may result in false positives

but not (or rarely) in false negatives.

In our Okapi subsystem, the name of the topi
 spe
ies is added to the term ve
tors.

However, we do not �lter do
uments by spe
ies in this subsystem. Nevertheless, be
ause

the Okapi result set is fused with the Query Tiering result set whi
h does not 
ontain any
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do
uments where the topi
 spe
ies is not mentioned in the MeSH Heading metadata, the


ombined do
ument set has e�e
tively been �ltered by spe
ies.

5.1.3 Use of Stru
tured Data

Ea
h MEDLINE re
ord is divided into a number of metadata �elds, and not every �eld is

equally useful for determining the relevan
e of a do
ument. A mat
h between the query

and the title, for example, appeared to be slightly more indi
ative of a do
ument's relevan
e

than a mat
h between the query and its abstra
t, sin
e the title is more tightly fo
used on

the subje
t of the do
ument. The top groups in the TREC genomi
s tra
k were unanimous

in a

ording pride of pla
e to the stru
tured data and 
ontrolled vo
abulary portions of

the MEDLINE re
ords, although ea
h group used the data di�erently.

Our system makes use of the 
hemi
al list both in our Query Tiering subsystem and in

our Feedba
k subsystem, as explained in Se
tions 3.2 and 3.4 above.

5.1.4 GeneRIF Identi�
ation

Not every do
ument in MEDLINE is 
ited by a GeneRIF, and in fa
t the distribution

of GeneRIFs is quite sparse. Be
ause GeneRIFs are used as pseudo-relevan
e judgments

for the TREC genomi
s tra
k, the ability to determine whi
h do
uments are 
ited by

GeneRIFs 
onfers a big advantage in the task of �nding \relevant" do
uments.

At �rst, however, this might seem to be a 
ase of over�tting the solution to the problem,

sin
e GeneRIFs were 
hosen to be the qrels for the genomi
s tra
k merely for the sake of
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onvenien
e. But there are, in fa
t, some quite legitimate reasons for wanting to distinguish

between do
uments 
ited by GeneRIFs and those whi
h are not. The goal of the task is

to �nd all do
uments related to the fun
tion of a gene. Only a portion of MEDLINE

do
uments are about gene fun
tion, of whi
h a portion have been assigned GeneRIFs. The

removal of do
uments whi
h are not about gene fun
tion at all from the sear
h pool would

greatly redu
e the e�ort needed for �nding relevant do
uments. While there is no easy

way to determine whether a do
ument is about gene fun
tion, do
uments whi
h have been

assigned GeneRIFs is 
hara
teristi
 of this 
lass of do
uments.

We did not make any attempt to 
lassify do
uments whi
h have been assigned GeneR-

IFs. However, GeneRIF identi�
ation was a 
omponent of several other systems whi
h

a
hieved high performan
e in the Genomi
s Tra
k.



Chapter 6

Con
lusions

6.1 Summary

To summarize, we adapted an \o� the shelf" general purpose retrieval system to a genomi
s


orpus. In doing so, we solved a number of problems whi
h are essential for anyone wanting

to 
onstru
t a biomedi
al do
ument retrieval system. We handled ambiguities in gene

and protein names by generating term ve
tors 
ontaining relaxed versions, and also by

mat
hing them against a number of query tiers. We attempted to restri
t our sear
h to

do
uments about the topi
s spe
ies by removing some do
uments in whi
h the spe
ies is

not mentioned in the MeSH Heading metadata �eld. We made use of stru
tured data

and 
ontrolled vo
abulary by using the 
hemi
al list metadata for our query tiers and for

pseudo-relevan
e feedba
k. All in all, we tuned our retrieval system to the spe
i�
 features

and 
hara
teristi
s of the MEDLINE 
orpus. Our system had an ex
ellent performan
e in

73
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the TREC Genomi
s Tra
k primary task, pla
ing 4

th

among 25 parti
ipating systems.

The resear
h reported here is a preliminary study in the �eld of genomi
s informa-

tion retrieval. Our experimental results demonstrate that it is possible to a
hieve very

good retrieval performan
e, even without using expert knowledge, by tailoring standard

IR te
hniques to the task and taking advantage of the 
orpus 
hara
teristi
s. Through

our experimentations with the MultiText for Genomi
s system, we have determined some

key features of a su

essful biomedi
al do
ument retrieval system for the TREC Genomi
s

Tra
k, namely: a strategy for dealing with ambiguities in gene names, the ability to re
-

ognize the topi
 spe
ies of a parti
ular do
ument, and exploitation of metadata and other

features of the 
orpus. We showed that a general purpose retrieval system 
an be su

ess-

fully adapted to a biomedi
al 
orpus by in
orporating ea
h of these features.

As the TREC Genomi
s Tra
k has generated a phenomenal amount of interest and

appears poised to be
ome a very a
tive tra
k in the future, we have provided potential

future tra
k parti
ipants with a re
ipe for 
onstru
ting a good baseline system qui
kly.

Future resear
h into biomedi
al do
ument retrieval 
an be built upon the foundations

des
ribed in this thesis.

6.2 Future Work

There are a number of areas in whi
h further work 
an be done. Due to time 
onstraints, it

was not possible to test every 
ombination of te
hniques, or even a very wide range of pa-
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rameters for ea
h 
ombination of te
hniques. Many experiments, su
h as fusion te
hniques

other than the ones used in the �nal MultiText for Genomi
s system, were abandoned

early on due to unsatisfa
tory preliminary results. Potentially, experimental parameters

or 
ombinations of te
hniques other than those we used might improve further retrieval.

The implementation of the Okapi retrieval model in our Okapi subsystem applies the

retrieval model to entire do
uments, and does not distinguish between metadata �elds.

It would be an interesting experiment to add query tiering to the basi
 Okapi retrieval

model by applying the retrieval model to ea
h of the metadata �elds separately. This 
an

be implemented in our system by splitting the 
orpus into separate databases, with ea
h

database 
ontaining the data from one metadata �eld a
ross all do
uments.

The metadata �elds of the MEDLINE re
ords 
ontain information whi
h we have shown

to be highly relevant to retrieval. An avenue of exploration that is likely to be fruitful is

to take advantage of the metadata more fully, in parti
ular the hierar
hi
al relationship

inherent in the metadata. We have found that the most e�e
tive te
hnique for �nding

the relevant do
uments in MEDLINE is to �nd a mat
hing 
hemi
al name in the meta-

data. Currently, our system attempts to generate phrases and boolean expressions from

the topi
 gene and protein names whi
h are then 
he
ked against the 
ontents of these

metadata �elds. This pro
edure may be improved in a number of ways. For example, the

Feedba
k subsystem often retrieves a 
hemi
al name whi
h a
tually 
orresponds to a 
lass

of 
hemi
als. By re
ognizing that the topi
 gene or protein is a part of a broader family of

genes or proteins, the sear
h may be narrowed or broadened as ne
essary depending on the
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number of relevant do
uments retrieved. Furthermore, instead of using heuristi
s to guess

at a 
hemi
al name or using feedba
k to �nd it, it might be possible to learn the 
hemi
al

name from the 
orpus using pattern mat
hing. A system with built-in genomi
s domain-

spe
i�
 knowledge 
an produ
e a list of 
andidate 
hemi
als before any do
uments have

been retrieved. Some intriguing possibilities for learning this domain knowledge in
lude

data mining the MEDLINE 
orpus and exploiting external databases, whi
h we have not

done in our system.

It was assumed due to preliminary tests that the gene name type (su
h as whether a

gene name is its oÆ
ial name or an alias) made no di�eren
e to retrieval. However, further

analysis is required to 
on�rm or refute this assumption. It may be that the gene name

type is relevant in a way that is not evident to the statisti
al te
hniques we have used in

our experiments.

Another area requiring further inquiry is an assessment of the suitability of the GeneRIF

data as the \gold standard" for relevan
e judgment. The use of GeneRIFs for this purpose

is somewhat problemati
, as the GeneRIFs are in
omplete, in the sense that there were

some do
uments whi
h are related to a gene but whi
h have not yet been assigned a

GeneRIF. As a result, there are many false negatives (do
uments whi
h are relevant but

whi
h are not judged to be relevant). Even though these false negatives should not a�e
t

the relative performan
e of di�erent IR systems with respe
t to ea
h other, a

ording to

the assumptions of the Cran�eld paradigm, it would be instru
tive to pool the results from

the various Genomi
s Tra
k parti
ipants to obtain a list of the most relevant do
uments,
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in order to determine the extent to whi
h the in
ompleteness of the GeneRIF data a�e
ted

the evaluations of the performan
e of the various systems.

While our investigations were spe
i�
 to the MEDLINE 
orpus and the requirements

of the TREC Genomi
s Tra
k, the lessons we have learned may have broader appli
ations

to other biomedi
al databases and other spe
ialized forms of retrieval.
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