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Abstract

We investigated the application of a variety of text retrieval techniques to the problem
of retrieving biomedical journal articles from the MEDLINE database which are relevant
to a particular gene. Our experiments were motivated by the University of Waterloo’s
participation in the Genome Track of the 2003 Text REtrieval Conference (TREC 2003),
and conducted using the MultiText search engine developed at the University of Waterloo.

In adapting the MultiText search engine to MEDLINE, we did not incorporate domain
expertise into the engine, nor did we use external biomedical resources such as dictionar-
ies of synonyms or gene ontologies. Instead, we used techniques which have been shown
to improve retrieval in a wide range of applications: shortest substring retrieval, query
tiering, fusion, and query expansion. We experimented with query formulation using the
Okapi BM25 retrieval model and examined different fusion techniques for combining re-
trieval methods. Metadata information in the MEDLINE records were used both for the
construction of query tiers and for generating query expansions for feedback.

We discovered that a general purpose retrieval system can be successfully adapted for
biomedical document retrieval by integrating the following features: a strategy for dealing
with ambiguities in gene names, the ability to recognize the topic species of a particular
document, and exploitation of metadata and other characteristics of the corpus. Our results
showed that approaches that do not primarily involve domain-specific techniques can be
effective for improving retrieval in a biomedical corpus, and hint at future directions for

research in information retrieval in the genomics domain.
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Chapter 1

Introduction

1.1 Overview and Motivation

In recent years, there has been an enormous amount of discovery in genomics and related
fields, which has been accompanied by a proportionate increase in the scientific literature.
As a result of this growth, the information needs of researchers in biology-related fields
have changed, and there is an increasingly urgent demand for the ability to isolate and
locate relevant information in a sea of data. In particular, researchers often need to find
documents related to the function of a particular gene.

The Text REtrieval Conference (TREC) introduced its Genomics Track in 2003 to
encourage research in IR for bioinformatics applications. The primary task for the track
is the ad hoc retrieval of documents from MEDLINE, a database of biomedical journal

articles maintained by the National Library of Medicine (NLM), which are relevant to some
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particular genes. Although it appears to be a conventional ad hoc document retrieval task,
this search task is made more difficult by the prevalence of lexical ambiguity in biomedical
literature, where the meaning of a particular term is heavily dependent on context. The
problem is mitigated by metadata associated with each document in the MEDLINE records,
which supply the needed context through extensive annotation and by linkage to other
documents or databases. The characteristics of the MEDLINE corpus and the structure of
the genomics-related queries distinguish this task from previous IR problems, and suggest
that techniques which have been especially fitted to the corpus would be effective.

This thesis describes our adaptation of the MultiText search engine for the ad hoc
retrieval of biomedical documents from the MEDLINE database, carried out as part of our
participation in the Genomics Track of TREC 2003. In tailoring the MultiText system for
MEDLINE, we did not use any external bioinformatics resources, nor did we incorporate
explicit domain expertise into our system. Our approach was to take an existing general
purpose retrieval system and adapt it to the MEDLINE corpus by making use of the
special characteristics of that corpus. We discover that certain elements are crucial to
an effective retrieval system for biomedical documents, namely: a strategy for dealing
with ambiguities in gene names, the ability to recognize the topic species of a particular

document, and exploitation of metadata and other features of the corpus.
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1.2 Thesis Outline

In the next chapter, we provide some background information on the field of information
retrieval, describe the MultiText search engine, and give an overview of TREC. We explain
the design of our experiments in Chapter Bl and present the results in Chapter @l We

conclude in Chapter Bl with some directions for future work.



Chapter 2

Background

2.1 Document Retrieval for Bioinformatics

There is a long history of research into document retrieval and information retrieval. Re-
search into the automatic indexing of text started with experiments in the 1960s on index
languages, such as the Cranfield tests [Cle67, [Cle91]. The widespread availability of com-
puters and the explosive growth in the popularity of the Internet has spurred research into
the retrieval of information from large collections of documents. It is beyond the scope of
the current thesis to give a complete overview of the current state of retrieval research.
Surveys of the field may be found in Faloutsos and Oard [FO95], Voorhees [V0099|, and
Greengrass [Gre(()] .

Biomedical journal articles have certain characteristics which differentiate them from

the types of documents previously considered in IR research. Within a biomedical corpus,
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polysemy (in which the same term refers to different objects) and synonymy (in which
different terms refer to the same object) are major problems. Additional complications
are caused by the inconsistent application of abbreviations and acronyms. Thus, acronym
recognition and anaphora resolution are extremely important for document retrieval in
the biomedical domain. Furthermore, the hierarchical relationships between the entities
described in a biomedical corpus suggest that this structure can be used to improve retrieval
performance. Research has been done on anaphora resolution [CZP02], the mapping of

abbreviations to their full forms [YHE02], and on the recognition of gene and protein names

[TW02D, TW02al, NSAO2D] in a biomedical corpus, and the automatic construction of an
acronym database from MEDLINE [PCCT01, NSA(2a]. The Medstract project [PCST02]
has the ambitious goal of automatically extracting information from abstracts and articles
in the MEDLINE database, using the latest techniques in natural language processing and
text analysis. Research is also under way to investigate methods of transferring information
found in the free text of scientific literature into ontologies and knowledge bases [CA(2].
Due to the information-rich content of biomedical documents, much recent research into
bioinformatics IR has focused on building expert knowledge, such as entity and relation
identification, into the retrieval systems.

In addition to the above techniques which are based on bioinformatics-specific knowl-
edge, a number of more general techniques based on expanding the query show promise for
improving document retrieval in the bioinformatics domain. It has been shown that dif-

ferent IR systems and even different representations of a query retrieve different document
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sets [BCCCO3), [K.I9S)].

Automatic query expansion using blind feedback has been shown to improve retrieval
performance in some situations [MSB98, SB90, [Rob90]. In this type of feedback (also
called “pseudo-relevance” feedback because input is not required from the user of the IR
system), some number of the highest ranked documents retrieved using the original query
are assumed to be relevant. These top documents are then used to expand the original
query, and the modified query is used to retrieve another set of documents which is returned
to the user. This type of feedback can improve or worsen performance, depending on the
proportion of relevant documents in the documents used to generate the query expansion.
Mitra et al. showed that refining the set of documents used in the feedback, using term
co-occurrence information to estimate word correlation, often prevents query drift caused
by blind expansion [MSB98]. Xu and Croft have shown that local feedback using only
documents retrieved by the query is generally more effective than global techniques based
on the entire corpus [XC96].

Documents which are ranked highly by disparate systems are much more likely to
be actually relevant. Thus, instead of relying on the output of any single IR system,
performance can be improved by merging the results of different systems using a fusion
technique [Lee97, BCB94, [FS93]. Fox and Shaw proposed a number of rules for combining
evidence from multiple retrieval systems, by assigning weights to each and combining
the weighted scores in different ways [FS93]. Lee performed experiments on these rules

and developed the ideas further [Lee97]. Bartell et al. proposed a method by which the
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relevance estimates made by different systems can be automatically combined, using a

parametrized mixture of the relevance scores produced by each system [BCB94].

2.2 The Text REtrieval Conference (TREC)

The Text REtrieval Conference (TREC) is an annual event co-sponsored by the U.S. Na-
tional Institute of Standards and Technology (NIST), the Information Awareness Office of
the Defense Advanced Research Projects Agency (DARPA/IAO), and the U. S. Depart-
ment of Defense Advanced Research and Development Activity (ARDA) [TRE03] Voo02].
Each year at TREC, groups from academia and industry develop information retrieval (IR)
systems for performing various tasks, for the purpose of evaluating and comparing different
IR techniques and systems in a standard and unbiased manner. The tasks are grouped
into various areas of focus called “tracks”, each of which is devoted to a particular subject
of interest. Typically, each track deals with some specific information need.

The first TREC was held in 1992 [Har92], and the conference has been held every year
since then. The number of group taking part in the conference has increased from 25 at the
first TREC to 93 at TREC 2003, which took place in November of that year, and includes
participants from academic, commercial, and government institutions.

The purpose of TREC is to provide a common platform for the comparison of different

IR systems, in a standard and unbiased manner. TREC has four main goals [Voo02]:

e to encourage retrieval research based on large test collections;
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e to increase communication among industry, academia, and government by creating
an open forum for the exchange of research ideas;

e to speed the transfer of technology from research labs into commercial products
by demonstrating substantial improvements in retrieval methodologies on real-world
problems; and

e to increase the availability of appropriate evaluation techniques for use by industry
and academia, including development of new evaluation techniques more applicable

to current systems.

Every year at TREC there are a number of areas of focus called “tracks”. In 2003,
these consisted of the Ad Hoc Track, the Genomics Track, the HARD (High Accuracy
Retrieval from Documents) Track, the Interactive Track, the Novelty Track, the Question
Answering Track, the Robust Track, and the Web Track.

TREC is based on the Cranfield paradigm, in which different retrieval systems are
evaluated on the same test collection [Cle67, [Cle91]. A test collection consists of a document
set (called the “corpus”), a set of information need statements (the “topics”), and a set
of relevance judgments (called “qrels” in TREC lingo). The relevance judgments consist
of a list of documents that have been judged relevant for each topic and hence should be
retrieved by an IR system for that topic. Given the corpus and topics, the retrieval task
is then to retrieve all of the relevant documents and none of the non-relevant ones. The
effectiveness of each IR system is evaluated based on precision and recall.

Precision measures a system’s ability to find only relevant documents (or equivalently,
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to filter out non-relevant documents):

number of relevant documents retrieved

Precision = -
total number of documents retrieved

Recall measures a system’s ability to find all relevant documents:

number of relevant documents retrieved
Recall =

number of relevant documents in the collection

The average precision (AP) for each topic is the average of the precision scores after
each relevant document retrieved. The mean average precision (MAP) is the average of the
AP over the entire set of topics. This value is computed in the standard TREC manner
by using the trec_eval program written by Chris Buckley.

Two sets of topics are supplied to the participants, the training topics and the test
topics. Relevance judgments are provided to the participants for the training topics, but
not for the test topics. The training topics are assumed to be similar in characteristic
to the test topics. Participants can adjust their systems using the training data (topics
and relevance judgments) in order to improve the performance of their systems on the test

data.

2.2.1 TREC 2003 Genomics Track

The first year of the TREC Genomics Track took place in 2003. Its purpose is to provide
a forum for evaluating IR systems in the genomics domain. An overview of this track is
given by Hersh and Bhupatiraju [HBO3]. The track featured two tasks, and a total of 29

groups participated in one or both of these.
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The secondary task for the TREC 2003 Genomics Track was an information extraction
and document summarization task. We did not participate in this track.

The primary task for the TREC 2003 Genomics Track was the ad hoc document retrieval
of journal articles from MEDLINE which discuss the basic biology or protein products of

a particular gene. The task is officially defined as follows:

“For gene X, find all MEDLINE references that focus on the basic biology of
the gene or its protein products from the designated organism. Basic biology
includes isolation, structure, genetics and function of genes/proteins in normal

and disease states.” [Her03]

MEDLINE is the bibliographical database of biomedical journal articles maintained
by the National Center for Biotechnology Information (NCBI), a division of the National
Library of Medicine (NLM). A subset of this database, consisting of 525,938 records for
which indexing was completed between April 1, 2002 and April 1, 2003, was used as the
corpus for this track. The corpus was made available in both standard NLM MEDLINE
format and in XML. Each MEDLINE record comprises a number of fields, each of which
is designated by a 2 to 3 letter abbreviation. These include the document’s title (TT),
its abstract (AB), and a PubMed Identifier (PMID) which uniquely labels the document.
The full journal articles are not included in the database, although some of them are
available from other sources. There are also fields containing controlled vocabulary which
provide a linkage between the document and structured data. Two of these fields that were

particularly important are the MeSH Heading (MH) and Registry Number (RN) fields.
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MeSH (Medical Subject Heading) is a lexical hierarchy for describing medical concepts.
Each MeSH concept may be referred to by a number of synonymous terms. However, the
MeSH Heading field in the MEDLINE record uses a controlled vocabulary to ensure that
a standard nomenclature is maintained throughout the corpus. The Registry Number field
is used to list the chemicals mentioned in the document, which are also reported using a
controlled vocabulary and which may be mapped to the MeSH concepts. The MEDLINE
metadata tags are explained in detail on the PubMed web site [NCB03b].

Training and test topic sets of 50 genes each were distributed to each of the participating
groups. Each group was to develop and test its IR system on the training data, and was
allowed to submit up to two official runs with the test data. To assist the groups in
developing their systems, relevance judgments were made available for the training topics.
Participating groups were to develop and test their IR systems on the training data, and
to submit two official runs on the test data to NIST for evaluation and analysis. Relevance
judgments for the test topics were not released until after the official result submission
deadline.

Each topic consists of a single gene, identified by its LocusLink ID number, and a
target organism. A list of variant ways of referring to the gene is also supplied, and each
given gene name is tagged with one of the following gene name types: official gene name,
preferred gene name, official symbol, preferred symbol, or preferred product. The target
organism was limited to four species: Homo sapiens (human), Mus musculus (mouse),

Rattus norvegicus (rat), and Drosophila melanogaster (fruit fly).
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Figure 2.1: An example topic for the Genomics Track (training topic 1).
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PRODUCT
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“cyclin-dependent kinase inhibitor 1A (p21, Cip1)”

CDKNI1A

P21

CIP1

SDI1

WAF1

CAP20

CDKN1

MDA-6

cyclin-dependent kinase inhibitor 1A
cyclin-dependent kinase inhibitor 1A
cyclin-dependent kinase inhibitor 1A
DNA synthesis inhibitor
CDK-interaction protein 1

wild-type p53-activated fragment 1
melanoma differentiation associated protein 6

PubMed ID

Statement of Function (GeneRIF Text)

12388558 role of PIN1 in transactivation

11642719 expression is related to apoptosis in thymus

12459877 p21(wafl) has a role in aortal endothelial cell aging

11762751 expression inhibited by Hepatitis C virus core protein

12474524 Codon 31 polymorphism is associated with bladder cancer

11748297 induced after DNA damage and plays a role in cell survival

11781193 expression in normal, hyperplastic and carcinomatous human prostate
12513833 p21(WAF1) transfection decreases sensitivity of K562 cells to VP-16

12

Figure 2.2: A subset of the GeneRIFs for training topic 1, LocusLink ID 1026 (cyclin-

dependent kinase inhibitor 1A).

For example, training topic 1 is the gene identified by the LocusLink ID 1026, “cyclin-

dependent kinase inhibitor 1A”. Figure EXlshows the format of the training topics file. The

first two columns contain the topic number and the LocusLink ID, and the third column

is the name of the organism (i.e. its species). The fourth column indicates the gene name

type, and the actual gene name is found in the fifth column. The topic is provided in this

format for convenience. It is sufficient to supply only the LocusLink ID, and the rest of

the information may be obtained from LocusLink using this ID number.
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In order to produce a large number of relevance judgments in a short amount of time,
the track steering committee decided that GeneRIF (Gene Reference Into Function) data
from NLM’s LocusLink database [NCB03a] would be used as relevance judgments. Each
GeneRIF for a gene consists of a PubMed ID pointing to a MEDLINE article which
discusses some function of the gene, along with a brief statement about that function.
GeneRIFs have been systematically assigned since April 2002. A document was judged to
be relevant to a gene if a GeneRIF existed for that gene and the GeneRIF pointed to that
document. Because relevance judgments for the track were based on GeneRIFs, groups
were not allowed to use GeneRIF data in their retrieval systems.

One potential problem with using GeneRIFs as a “gold standard” is that they are
incomplete, in the sense that there were some documents which are related to a gene but
which have not yet been assigned a GeneRIF. As a result, there are many false negatives
(documents which are relevant but which are not judged to be relevant).

Figure shows some of the GeneRIFs for training topic 1. One of the GeneRIFs
for this gene points to the document with PubMed ID 12388558 and has the statement
of function “role of PIN1 in transactivation”. Therefore, a retrieval system searching on

training topic 1 is expected to retrieve this particular document.
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Client Applications

Marshaller/
Dispatcher
Text Index Index
Server Engine Engine
Index Text Index Index
Engine Server Engine Engine

2.3 The MultiText Search Engine

J O O C

Figure 2.3: The architecture of the MultiText retrieval system.

14

The MultiText search engine is a general purpose information retrieval system developed

at the University of Waterloo. The system has been in development since 1993, and since

its inception the project has centred around the development of scalable technologies for

distributed information retrieval. The MultiText research group has participated in TREC

annually since TREC-4 in 1995, performing retrieving experiments with a passage-based

ranking algorithm called Shortest Substring Ranking, developing a precise query language

called GCL that yields and combines arbitrary intervals of text, and taking part in various

tracks [CCB94] [CCBYA, [CCI6, [CCPTO0, CPVC98, ICCK P99, CCKLO0, [CCL 01, [CCKT02,

YCCF03).

The MultiText retrieval system is based on the federated architecture shown in Figure
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It comprises the index engines (which maintain the index file structures and pro-
vide search capabilities), the text servers (which are specialized by document type and
provide retrieval capabilities for arbitrary text passages specified at the word level), and
the marshaler/dispatcher (which interacts with clients and coordinates query and update
activities).

We adapted the MultiText retrieval system for the Genomics Track by loading the XML
version of the MEDLINE database into MultiText and building a number of additional
subsystems on top of the basic MultiText engine. We call the resultant system MultiText

for Genomics.

2.3.1 GCL

The MultiText retrieval system models the text in a database as a continuous sequence of
terms, and indicates document structure by indexing structural markers, called metadata
tags, in between the terms. Metadata tags generally occur in pairs (the start and end
tags). For example, the text of a document is enclosed between the tags <DOC> and
</D0OC>, while the text forming the document’s title are further enclosed between the tags
<ArticleTitle> and </ArticleTitle>. Text terms and metadata tags are together
referred to as tokens, and each token in the database is assigned an integer value indicating
its position.

The query language used in the MultiText retrieval system is based on the General-

ized Concordance Lists (GCL) of Clarke, Cormack, and Burkowski [CCB94]. The GCL
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GCL Expression

Query Represented by Expression

"any_phrase"

Any phrase (the underscore character is matched to

whitespace and punctuation).

"headx*" Any term starting with “head”.

"$stem" Any term with the same (Porter) stem as “stem”.

gcll. .gcl2 An interval containing gcl1 followed by gcl2.

gclli~gcl2 A solution containing both gcll and gcl2.

gcll+gel?2 A solution containing either gcl1 or gcl2.

gcli>gel2 A solution to gcll containing a solution to gcl2.

gclicgel2 A solution to gcll contained in a solution to gcl2.

gcll/>gcl2 A solution to gcll not containing a solution to gcl2.

gcll/<gcl?2 A solution to gcll not contained in a solution to gcl2.

1/gcl Solutions of the form (n,n) where (n,m) is a solution
to gcl.

2/gcl Solutions of the form (m,m) where (n,m) is a solution

to gcl.

1~ (gcll,gel2,gcl3,...)

Equivalent to (gcll+gcl2+gcl3+...).

2" (gcll,gecl2,gcl3,...)

Equivalent to ((gcl1~gcl2)+(gclli~gcl3)+...)

(i.e. any 2 of the solutions).

n~(gcll,gcl2,gcl3,...)

Generalization of the previous rule, with n any

positive integer.

all~(gcll,gcl2,gcl3,...)

Equivalent to (gcl1~gcl27gcl3™...).

(gcll~gcl2)<[n]

An interval with gcll and gcl2 within n words.

gcli<([nl>gcl2)

An interval with gcl1 that is within n» words of gcl2.

gcl<{n,m}

Find gcl within the range (n,m).

Table 2.1: The syntax of GCL. In the above, gclX stands for any GCL sub-expression.
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query algebra expresses searches on structured text using a number of operators, such as
boolean AND (), boolean OR (+), containing (>), contained in (<), not containing (/>),
not contained in (/<), followed by (..), and so on. Table Tl gives a list of example GCL
expressions and the query represented by the expression.

The algebra manipulates arbitrary intervals of text, and provides for queries that har-
ness document structure by allowing metadata tags to be used in the query. GCL expres-
sions can be combined and nested to form more complex queries. The result or solution to
a GCL query is a set of intervals from the text, with each interval represented by an ordered
pair (n,m) with n < m, corresponding to the integer values of the first and last token of a
passage in the text satisfying the query. The solution set includes all passages in the corpus
that satisty the query, and which do not contain shorter substrings also satisfying the query.
This shortest substring rule limits the number of passages that must be considered by the
algorithm, and is the foundation behind the passage-based document ranking technique
described below. For example, the GCL query ("<doc>".."</doc>")>"cdknla" has as its
result the set of all documents containing the term “cdknla”. The shortest substring rule
ensures that the solution set contains only single documents. Start and end tags which
occur in separate documents are not linked.

As another example, for “phospholipase C, gamma 1”7 (training topic 23), the Mul-
tiText for Genomics system generates, along with other queries, the following query:
"c_gamma" "~ ("phospholipase"+ '"phospholipases"). Since the algorithm locates the

shortest substrings that satisfy the query, a passage located by the algorithm will be-
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gin (or end) with the phrase “c_gamma” (where the underscore character is matched to
whitespace or punctuation) and end (or begin) with one of the words “phospholipase” or
“phospholipases”. None of these terms will appear elsewhere in the passage, since otherwise
the passage would contain a shorter substring that also satisfies the query.

Other structural constraints (metadata tags) can be applied to the query. For ex-
ample, the query ("<NameOfSubstance>".."</NameOfSubstance>")>"cipl" identifies
instances of the NameOfSubstance metadata field that contain the term “cipl”. The GCL
query ("<docno>".."</docno>")<(("<doc>".."</doc>")>"cdknla") retrieves the doc-
ument numbers of all documents containing the term “cdknla”. (In the case of the MED-

LINE corpus, the document number for each document is its PubMed ID.)

2.3.2 Shortest Substring Ranking (SSR)

A solution to a GCL query is a set of intervals satisfying the query from the text. Ideally,
intervals in which the query terms occur densely together should be favoured or ranked more
highly. The Shortest Substring Ranking (SSR) method is a ranked retrieval method that
assigns scores to the passages retrieved based on this idea. SSR is a technique that has been
successfully deployed by the MultiText group in a number of applications [CCPT00, [CCO0].

Given a query and the resulting passages satisfying the SSR rule, a document’s score is
computed based on the lengths of all such passages contained within it. Suppose that docu-
ment d contains n passages satisfying the query under the SSR rule, labelled P, P, ..., P,

in order of increasing length. We compute a score for d that rewards higher values of n
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and shorter passages. For a passage P corresponding to the extents (p, q), we define

K if(P) > K
[(p)y=24"'" ()=

1 if [(P) <K
where [(P) is the length of P in alphanumeric tokens; that is, [(P) = ¢ — p + 1. Note
that for any passage P, we have 0 < I(P) < 1. The score for d is then computed by the

formula:

> 1Ry

1=0

For the MultiText for Genomics system, the parameters we used for SSR were I = 16
and v = 0.5. The exact details of the scoring function may be found in Clarke and Cormack

[CCO0], where an efficient algorithm for implementing SSR, is also given.

2.3.3 The Okapi Measure

The Okapi measure is a well-known probabilistic retrieval model that uses weighting func-
tions based on term frequencies [RW.I794, [RW94]. The MultiText system also has a spe-
cial implementation of the Okapi BM25 retrieval model, which as an extension also allows
phrases to be used as query terms. Otherwise, the implementation of Okapi BM25 used in
the MultiText for Genomics system follows the description of Robertson et al. [RWB9S)]
with the the standard parameters k; = 1.2, b = 0.75, ky = 0, and k3 = oo.

Specifically, given an Okapi term set (), a document d is assigned the score

Z (1) (kl + l)dt

w g
P K +d,;
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where

la

lavg

D—-D,+0.5

log | ———
D, +0.5

number of documents in the corpus
number of documents containing ¢
frequency that ¢ occurs in the topic
frequency that ¢ occurs in d
Ei((1—=0) 4+ b-1g/lang)
length of d

average document length
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Chapter 3

Experimental Design

The MultiText for Genomics system uses an elaborate combination of techniques, which
were selected and tweaked based on experimentation with the corpus and training data.

The system may be roughly divided into four subsystems:

1. Okapi
2. Query Tiering
3. Fusion

4. Feedback

Given a Genomics Track topic, the Okapi subsystem generates multiple term sets from
the supplied gene name information (recall Figure EIII), which are then used to retrieve
several sets of documents using the Okapi retrieval model. Simultaneously, the Query

Tiering subsystem attempts to retrieve documents by matching the gene name information

21
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against a number of query tiers. The results from from the first two subsystems are merged
in the Fusion subsystem, and depending on the outcome, the Feedback subsystem may
retrieve additional documents using pseudo-relevance feedback to supplement the results.

Before describing each subsystem, we describe an operation that is commonly carried
out in the MultiText for Genomics system, that of appending one document list to the end
of another. Let L; and Lo be ranked lists of documents, and for a document d, let sy, (d)
be the score of the document in L, if d € L, and sp,(d) be the score of the document in L,
if d € Ly. Let L, = Ly \ Ly (then there are common documents between L; and Lf). Let
SLy,min be the lowest score sy, (d) for a document d € Ly, and let Sp; 4, be the highest

score s, (d) for a document d € Li,. Then let L = L; U L), with the scoring function

S1q (d) if d S L1
s(d)

SL ,min .
SL2(d) X # ldeLQ
Lz,ma:c

We say that the document list L is the result of appending Lo to the end of L; with the

scores appropriately scaled, and write L = append(Ly, L).

3.1 The Okapi Subsystem: Query Formulation

Two important facts emerged during preliminary experiments on the MEDLINE corpus,
which influenced the design of the experiments using the Okapi retrieval model.
First, the gene name type (official gene name, preferred gene name, official symbol,

preferred symbol, or preferred product) did not seem to matter. A document discussing a
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Term ends in | Action taken

-ch, -sh, -ss, -x, -z, -s | Append “-es”.

-y, -ey | Replace with “-ies”.

Other letter | Append “-s”.

Table 3.1: Rules for “pluralization”.

particular gene was as likely to use an official name as an alternate one.

Second, spacing and punctuation had a large effect on performance in some cases. The
gene or protein names which have been supplied for each topic (derived from LocusLink)
may differ from the gene or protein names as they actually appear in the corpus by the
addition or removal of punctuation or whitespace, or by the re-arrangement of terms. In a
model based on term vectors, such as Okapi, even slight variations may significantly affect
the results.

We attempt to capture these morphological differences by producing three sets of Okapi
term vectors with differing degrees of fidelity to the original gene and protein names, by
using heuristics to process semi-colons, commas, and brackets and generating plurals for

some terms. The three rules we used to generate Okapi term vectors are:

e Okapi 1:
Each gene name in the original LocusLink-derived query, which may consist of
multiple alphanumeric tokens, is considered as a phrase and treated as a single term

in the Okapi term set. All punctuation is removed and replaced by whitespace. (The
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search engine treats punctuation and whitespace in the corpus identically.)
Example: Figure Bl shows the Okapi 1 term vector for training topic 1.
e Okapi 2:

Heuristics are used to handle brackets in the gene and protein names:

1. An internal bracket is unchanged. (Thus, the gene name “l(1)hop” for training
topic 36 retains its brackets).

2. If the terms between the brackets comprise only numbers and letters (including
Greek letters), the brackets are removed. (The official gene name for training
topic 12 is “tropomyosin 1 (alpha)”, which is changed to “tropomyosin 1 alpha”.)

3. Otherwise, the contents of the brackets are considered to be alternate names,
which are treated as separate terms in the Okapi vector. (For training topic
31, the official gene name “Tachykinin (substance P, neurokinin A, neuropep-
tide K, neuropeptide gamma)” is broken up into the separate gene names
“Tachykinin”, “substance P”, “neurokinin A”, “neuropeptide K”, and “neu-

ropeptide gamma”.)

Similar rules are used to break up lists separated by commas and semi-colons.

“Plurals” are generated using the simple set of rules shown in Table Bl If a term
consists of all alphabetical characters and is three letters or longer, and is not a
Greek letter or a stop word, the “plural” of the term is generated using these rules
and added to the term vector.

Example: Figure shows the Okapi 2 term vector for training topic 1.
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e Okapi 3:

First, the gene and protein names are separated into two sets, one containing
those that comprise a single token, and another containing those comprising multiple
tokens. (For training topic 1, “p21”, “cipl”, and so on are put into the single-token
set, while “cyclin-dependent kinase inhibitor 1A” is put into the multiple-token set.)

For the single-token set, all pairs of distinct elements are taken, and each pair
is concatenated together, with and without a space between them, to form terms
which are then included in the Okapi term vector. (For training topic 1, the terms
“p21 cipl”, “p2lcipl”, “cipl p21”, and “ciplp2l” are generated among others for
the Okapi term vector.)

For the multiple-token set, for each term comprising multiple tokens, all bigrams
of the terms are generated and added to the Okapi term vector. (For training topic
1, the term “cyclin-dependent kinase inhibitor 1A” generates “cyclin dependent”,
“dependent kinase”, “kinase inhibitor”, and “inhibitor 1A”.)

Example: Figure shows the Okapi 3 term vector for training topic 1.

In addition to the above rules, the name of the topic species was also included in each of
the Okapi term vectors. We attempted other variations on the above rules, but experiments
on the training data found that the above rules gave the best overall results.

The three rules are in decreasing order of strictness. Documents retrieved by Okapi 1
will contain the terms exactly as given in the original query (ignoring punctuation), while

those retrieved by Okapi 2 will contain terms which are similar to but not exactly like
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“cap20”, “cdk interaction protein 1”7, “cdknl”, “cdknla”, “cipl”, “cyclin de-
pendent kinase inhibitor la p21 cipl”, “cyclin dependent kinase inhibitor 1a”,
“dna synthesis inhibitor”, “mda 6”, “melanoma differentiation associated pro-
tein 67, “p217, “sdil”, “wafl”, “wild type p53 activated fragment 17, “Homo

sapiens”, “humans”, “human”

Figure 3.1: Okapi 1 term vector for training topic 1.

“cap20”, “cdk interaction protein 17, “cdknl”, “cdknla”, “cipl”, “cyclin de-
pendent kinase inhibitor 1a”, “dna synthesis inhibitor”, “mda 6”7, “mda6”,
“melanoma differentiation associated protein 67, “p21”, “sdil”, “wafl”, “wild

type p53 activated fragment 17, “Homo sapiens”, “humans”, “human”

Figure 3.2: Okapi 2 term vector for training topic 1.

26
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“activated fragment”, “activatedfragment”, “associated protein”, “associatedprotein”, “cap20”, “cap20 cdknl”, “cap20 cdknla”, “cap20
cipl”, “cap20 mda 6”7, “cap20 mda6”, “cap20 p21”, “cap20 sdil”, “cap20 wafl”, “cap20cdknl”, “cap20cdknla”, “cap20cipl”, “cap20mda
67, “cap20mda6”, “cap20p21”, “cap20sdil”, “cap20wafl”, “cdk interaction”, “cdk interaction protein 1”7, “cdkinteraction”, “cdknl”, “cdknl
cap20”, “cdknl cdknla”, “cdknl cipl”, “cdknl mda 6”, “cdknl mda6”, “cdknl p21”, “cdknl sdil”, “cdknl wafl”, “cdknla”, “cdknla
cap20”, “cdknla cdknl”, “cdknla cipl”, “cdknla mda 6”7, “cdknla mda6”, “cdknla p21”, “cdknla sdil”, “cdknla wafl”, “cdknlacap20”,
“cdknlacdknl”, “cdknlacipl”, “cdknlamda 67, “cdknlamda6”, “cdknlap21”, “cdknlasdil”, “cdknlawafl”, “cdknlcap20”, “cdknlcdknla”,
“cdknlcipl”, “cdknlmda 6”, “cdknlmda6”, “cdknlp21”, “cdknlsdil”, “cdknlwafl”, “cipl”, “cipl cap20”, “cipl cdknl”, “cipl cdknla”, “cipl
mda 67, “cipl mda6”, “cipl p21”, “cipl sdil”, “cipl wafl”, “ciplcap20”, “cipledknl”, “cipledknla”, “ciplmda 67, “ciplmda6”, “ciplp21”,
“ciplsdil”, “ciplwafl”, “cyclin dependent”, “cyclin dependent kinase inhibitor 1a”, “cyclindependent”, “dependent kinase”, “dependentk-
inase”, “differentiation associated”, “differentiationassociated”, “dna synthesis”, “dna synthesis inhibitor”, “dnasynthesis”, “fragment 17,
“fragment1”, “inhibitor 1a”, “inhibitorla”, “interaction protein”, “interactionprotein”, “kinase inhibitor”, “kinaseinhibitor”, “mda 6”, “mda
6 cap20”, “mda 6 cdknl”, “mda 6 cdknla”, “mda 6 cipl”, “mda 6 mda6”, “mda 6 p21”, “mda 6 sdil”, “mda 6 wafl”, “mda 6cap20”, “mda
6cdknl”; “mda 6cdknla”, “mda 6¢ipl”, “mda 6mda6”, “mda 6p21”, “mda 6sdil”, “mda 6wafl”, “mda6”, “mda6 cap20”, “mda6 cdknl”,
“mda6 cdknla”, “mda6 cipl”, “mda6 mda 67, “mda6 p21”, “mda6 sdil”, “mda6 wafl”, “mda6cap20”, “mda6cdknl”, “mda6cdknla”,
“mda6cipl”, “mda6mda 67, “mda6p21”, “mda6sdil”, “mdabwafl”, “melanoma differentiation”, “melanoma differentiation associated protein
6”7, “melanomadifferentiation”, “p21”, “p21 cap20”, “p21 cdknl”, “p21 cdknla”, “p21 cipl”, “p21 mda 6”7, “p21 mda6”, “p21 sdil”, “p21
wafl”, “p2lcap20”, “p2lcdknl”, “p2lcdknla”, “p2lcipl”, “p2lmda 6”7, “p21lmda6”, “p21sdil”, “p2lwafl”, “p53 activated”, “p53activated”,
“protein 17, “protein 67, “proteinl”, “protein6”, “sdil”, “sdil cap20”, “sdil cdknl”, “sdil cdknla”, “sdil cipl”, “sdil mda 67, “sdil mda6”,
“sdil p217, “sdil wafl”, “sdilcap20”, “sdilcdknl”, “sdilcdknla”, “sdilcipl”, “sdilmda 6”7, “sdilmda6”, “sdilp21”, “sdilwafl”, “synthesis in-
hibitor”, “synthesisinhibitor”, “type p53”, “typep53”, “wafl”, “wafl cap20”, “wafl cdknl”, “wafl cdknla”, “wafl cipl”, “wafl mda 6”, “wafl
mda6”, “wafl p21”, “wafl sdil”, “waflcap20”, “waflcdknl”, “waflcdknla”, “waflcipl”, “waflmda 67, “waflmda6”, “waflp21”, “waflsdil”,

“wild type”, “wild type p53 activated fragment 1”7, “wildtype”, “Homo sapiens”, “humans”, “human”

Figure 3.3: Okapi 3 term vector for training topic 1.
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those in the original query. Documents retrieved by Okapi 3 contain the same bigrams as
found in the original query.

Each query formulation has its own advantages and disadvantages. The top documents
returned by Okapi 1 are likely to be relevant, since they contain the query exactly, but
many relevant documents may be missed because the gene name in the document appears
differently than in the query. On the other hand, Okapi 3 retrieves many relevant docu-
ments in which the gene name does not appear exactly as in the query. However, it also
retrieves many irrelevant documents. The documents retrieved by Okapi 2 are intermediate
between the two.

We found that the document sets retrieved using the term vectors generated by the
three rules were quite different. Therefore, a document that is retrieved by all three term
vectors was very likely to be relevant, and it was decided that the three result sets should
be fused together to produce the final result. After experimenting with a number of fusion

techniques, it was decided that the fusion was to be accomplished in the following manner:

e Okapi Fusion:

The document sets retrieved by Okapi 1, Okapi 2, and Okapi 3 are combined by
taking the intersection of the three sets. A document’s score is taken to be the
product of the three scores. This list is then followed by the remainder of Okapi 3,
with the scores appropriately scaled.

More formally, let Oy, O,, and O3 be the document sets retrieved by the Okapi

1, Okapi 2, and Okapi 3 term vectors respectively. Let d be a document, and let
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si(d) be the score assigned to d by Okapi i, for i = 1,2,3. Then F' = O, N0, N O3
is the intersection of the three document sets. For each document d € F’, define
spi(d) = s1(d) x s2(d) X s3(d) to be the score of that document in F’. Then the

Okapi Fusion is F' = append(F’, O3).

The rationale behind the fusion is that a document that scores highly on all three
query formulations is very likely to be relevant. Taking the product of the scores allows
each of the three document sets to vote on the relative distance (in terms of rank) between
retrieved documents. Since Okapi 3 is the most relaxed of the three query formulations, it
retrieves most if not all of the documents retrieved by Okapi 1 and 2. Thus, the intersection
of the three document sets likely contains most of the relevant documents in the document
sets returned by Okapi 1 and 2, while it might miss relevant documents retrieved by Okapi
3. For that reason, the remainder of the Okapi 3 document set is appended to the end of
the combined list.

While there are other standard fusion techniques, the above seemed to work very well
in preliminary trials, and thus was the only technique used in the final completed runs. It
would be interesting to experiment with other fusion techniques for combining the Okapi
document sets.

The performance of the Okapi 1 term vector set alone was considered to be the baseline

run for comparison purposes with our other runs.
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3.2 The Query Tiering Subsystem: Use of Metadata

The MEDLINE records are highly structured, and some of the metadata fields are more
useful indicators than others of a document’s relevance. Preliminary experiments showed
that there was a correlation between some of the metadata fields in the MEDLINE record
and the relevance of the document. In particular, there was a strong correspondence
between the query terms and the terms that appeared in the RN (registry number) field
of the MEDLINE record. The RN field contains a list of the chemicals discussed in the
document. Many of these chemical names can be matched to the gene names found in query.
The chemical list is a better indicator of a document’s relevance than the document’s title,
which in turn is a better indicator than the abstract. To capture this hierarchy of relevance
between the metadata fields, we used a number of query tiers. In particular, the RN field
of each MEDLINE record contains a list of chemicals mentioned in that document. Many
of these chemical names can be matched to the gene names given in the query, and thus
there is a high degree of correlation between the contents of the RN field and the relevance
of that document.

Through experimentation, we arrived at the following system of six query tiers, which
are given in decreasing order of relevance. The first query tier attempts to match the query
against the chemical list exactly (except for stop words, spacing, and punctuation). The
second and third tiers are relaxations of the first. The query is converted into a boolean
expression by turning each gene name into the conjunction of its terms, and taking the

disjunction of all gene names. This expression is then applied to the title for the fourth
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tier, to the chemical list for the fifth tier, and to the abstract for the sixth tier.

e Tier 1:

The gene name is found in the chemical list, or it is found in the chemical list
preceded or followed by the word “protein”, optionally followed by the name or
description of the species. Spaces and punctuation are ignored for the purposes of

comparison.

Examples: For training topic 1, all documents with “cipl protein” in the chemical
list are retrieved. For training topic 5, “glycine receptor, alpha 1”7 is considered to

be equivalent to “glycine receptor alphal”.

o Tier 2:

This tier is similar to Tier 1, except that the chemical name is allowed to have

additional terms.

Examples: For training topic 1, the gene name “p21” is matched to the phrase
“p21-activated kinase 1” in the chemical list. For training topic 11, “RAC1” retrieves

documents in which “racl GTP-Binding Protein” appears in the chemical list.

e Tier 3:

An attempt is made to find the conjunction of the terms from the gene name in
the chemical list. If the gene name consists of a class name followed by a sequence

of letters and numbers that specifies an object of that class, the name is successively
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(“sdil”+(“cyclin” " “dependent” ~ “kinase” ~ “inhibitor” " “la” )+ (“cdk” "~ “inter-
action” " “protein” " “17 )+ “cdknl”+“cipl” +(“mda” " “6” )+ (“dna” " “synthesis” "
“inhibitor” )+ “cap20” +“p21” +(“wild” " “type” " “p53” " “activated” " “fragment”

“17)+“mda6” + “cdknla” +(“melanoma” " “differentiation” " “associated” ~ “pro-

tein” ~ “677 )+ “Waf]_” )

Figure 3.4: Boolean expression for training topic 1.

weakened until a match is made. Heuristics are also used to recognize plurals.
Example: From training topic 32, “estrogen receptor 1”7 is weakened until the
documents retrieved contain “Receptors, Estrogen” in the chemical list.
e Tier 4:

The query is converted into a boolean expression by turning each gene name into
the conjunction of its terms, and taking the disjunction of all gene names. The

boolean expression is matched against the title metadata field.

Example: Figure shows the boolean expression generated for training topic
1. Among other documents, this expression retrieves the document with the title
“An immunohistochemical study of p21 and p53 expression in primary node-positive

breast carcinoma’”.

e Tier b:

The boolean expression from Tier 4 is matched against the chemical list metadata
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The histological grade of chondrosarcoma correlates well with their clinical be-
havior and with the patient’s survival duration. We have previously demon-
strated that p21 was expressed in the hypertrophic chondrocytes of the growth
plate. To assess the relationship of p21 (wafl/cipl) to cell differentiation in
chondrosarcoma, we examined the p21 expression in 14 cases of chondrosar-
coma immunohistochemically and the induction of p21 by insulin-like growth
factor-1 (IGF-I) during cell differentiation in SW1353 chondrosarcoma cells. p21
immunoreactivity was seen in well-differentiated chondrosarcoma cells and was

mutually exclusive with MIB1 reactivity in grade-1 chondrosarcoma. ...

Figure 3.5: Part of the abstract for a document retrieved using the boolean expression.

field.
Example: The boolean expression in Figure B4 retrieves documents in which the
phrase “Cipl protein” appears in the chemical list.
e Tier 6:
The boolean expression from Tier 4 is matched against the abstract metadata field.

Example: Figure B3 shows part of the abstract of a document retrieved by match-

ing the boolean expression of Figure B4l against the abstract metadata field.

In addition, the documents are restricted to those in which the name of the species

appears in the MeSH Heading metadata field. This filtering does not completely eliminate
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documents which are not relevant to the species, since it is possible for the name of the
species to appear in the MeSH field even if the focus of the paper is another species. It
is quite common for an article about a gene in one species to mention a homologue in a
related species. Nevertheless, if the name of the wanted species does not appear in the
MeSH heading, then the article is (almost certainly) not relevant. Thus, using species
data in the MeSH metadata field may result in false positives but not (or rarely) in false
negatives.

The Query Tiering subsystem can return three types of results:

e All Tiers:

Retrieve documents from all the tiers. Documents retrieved by each tier are ranked
ahead of all documents retrieved by the next tier. (A document that is retrieved in
more than one tier is counted towards only its highest tier.)

e Best Tier:

Retrieve the documents in the first tier that contains a non-zero number of docu-

ments. Subsequent tiers are ignored.
e [xact:

Retrieve only documents in Tier 1. No documents are retrieved if there are no

documents in Tier 1.

Note that for some topics, this subsystem may retrieve no documents. In the complete
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MultiText for Genomics system, the complete runs supplement the document sets retrieved

by the Query Tiering subsystem with documents from other subsystems.

3.3 The Fusion Subsystem: Multiple Evidence Com-
bination

The Okapi and Query Tiering subsystems are essentially autonomous and retrieve two
independent sets of documents. By merging the two result sets, we obtain a single set of
documents with a high precision. We implemented two different methods of combining the
two document sets from the two previous subsystems:

In the following, assume that we have two lists of documents, M = {m, my, ms,...}
and N = {ny, ng,ns, ...}, where m; and n; are documents and the subscript denotes the

rank of the document within the list.

e Interweave:

The two document sets are combined by taking one document from each set suc-

cessively. That is, the interweave of M and N is L = {ly,l,13,...} where

mi+1 if’i is odd

if 7 is even

Duplicate occurrences of the same document are removed from L; that is, if [; = [;

and ¢ < 7, then /; is removed from L.
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e Rank Fusion:

To merge two sets of documents using rank fusion, the documents which were
retrieved by both methods are first merged together. Each document is assigned
a score that is the weighted sum of its (reverse) rank in each document set. The
combined documents are followed by interweaving the remainder of the two document

sets.

More formally, if ¢ is the rank of the document m; € M and j is the rank of
the document n; € N, then L; = M N N, and the score of a document d € L, is
sp,(d) = ky x (R —14) + ko x (R — j), where k; and ky are weights and R = 1000
is the number of documents retrieved by each method. Let M’ = M \ L; and
N' = N \ Ly be the remainders of the documents from M and N respectively (the
documents retrieved by each method but not by both). Let Ly be the interweave
(as defined above) of M’ and N’. Then the (weighted) rank fusion of M and N is

L = append(Ly, Ls).

Merging three document sets is done in an analogous manner.

We also attempted other types of fusion, based on those of Fox and Shaw [FS93].
However, the above techniques seemed to work very well during testing and were the only
ones which were fully implemented. Note that the weight rank fusion is a weighted version

of the CombSUM formula described by Fox and Shaw.
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3.4 The Feedback Subsystem: Query Expansion

The entries of the RN metadata field in the MEDLINE record comprise a list of chemicals
mentioned in the document. A match between one of these chemicals and the query is a
very good indication that the document is relevant. However, because a gene may have
an alias that differs significantly from any of its known names, it is not always possible to
identify the query gene in the chemical list using string matching alone.

Instead of attempting to recognize these name variants, we try to learn the variant
name by using pseudo-relevance feedback. If the gene name was matched in the first tier
in the Query Tiering subsystem, then the chemical list in the top retrieved documents
already contains the gene name, and so feedback is unnecessary. Otherwise, we score the
chemicals in the top retrieved documents using a Tf-Idf formula, and retrieve an additional
set of documents containing the top chemical. The chemical names in the top documents

were assigned a score using the formula:

= (s (3))’

For a chemical ¢, R; is the number of times the chemical name appears in the chemical
list of the top documents, f; is the number of times it appears in the corpus, N is the total
length of all documents in the corpus, and w; is the score assigned to i. The formula was
developed experimentally, based on the standard Tf-Idf (term frequency, inverse document

frequency) idea [SB8§]. The chemical names that appear frequently in the top documents
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] Okapi 1| |
= Okapi 2 Okapi Fusion —
i Tier 1empty?
Topic | : Feedback +-------- ~ Fusion  Documents

Best Tier

Figure 3.6: Flow diagram for the combined MultiText for Genomics system.

are more likely to be relevant, which is reflected in the “term frequency” part of the equa-
tion. On the other hand, those chemical names that appear frequently in the corpus (such
as “DNA” which is ubiquitous) are unlikely to be uniquely relevant to the top documents,
and their scores are attenuated by the “inverse document frequency” part of the equation.
For the MultiText for Genomics system, we used a value of o = 3.

The highest scoring chemical name is then used to retrieve a set of documents containing
that name. This document set is then merged with the results from the previous subsystems

to produce the final document set.

3.5 The Combined MultiText for Genomics System

The combined MultiText for Genomics system consists of the four subsystems described

above. The Okapi and Query Tiering subsystems occur in parallel, and depending on the
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outcome of the Query Tiering subsystem, the Feedback subsystem may be activated. The
resultant document sets are then merged to produce the final output of the system.

Each combination of techniques and parameters is called a run. Following the TREC
standard procedure, 1000 documents were retrieved for each run. The runs which we used

in our final system are as follows:

e Okapi 1, 2, 3, and Fusion: These are the document sets retrieved by the procedure

described in Section Bl

e All Tiers (AT): This is the set of documents retrieved by using the All Tiers method
as described in Section B2 The documents retrieved by Okapi Fusion are appended

to the end.

e All Tiers Interweave-fusion (ATI): The set of documents retrieved by All Tiers is

interweaved with the Okapi Fusion document set as described in Section B3

e All Tiers Rank-Fusion (ATR): The set of documents retrieved by All Tiers is com-
bined with the Okapi Fusion document set using the weighted rank fusion method
as described in Section B3 It was experimentally determined that good results can
be obtained if the Okapi rank was weighted 4 times as heavily as the Query Tiering

rank.

e All Tiers Interweave/Rank-fusion with Feedback (ATIF, ATRF): These are the same
as ATI and ATR, respectively, except that the feedback procedure described in Sec-

tion B4l was used if no documents were retrieved in Tier 1.
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e Best Tier (BT, BTI, BTR, BTIF, BTRF): These are analogous to the above, except
that the Query Tiering subsystem retrieved only documents from the first tier with

non-zero documents.

e Exact: Instead of all the tiers or the best tier, only Tier 1 was used to retrieve
documents. The Okapi Fusion document set was then appended to the end. (If
no documents were retrieved in Tier 1 for a topic, then the final set of retrieved

documents is just the set retrieved by Okapi Fusion.)

e Exactl: The set of documents retrieved by Tier 1 is interweaved with the Okapi

Fusion set.

Figure B0 shows the flow diagram of the combined system for the BTRF (Best Tier,
Rank-fusion, Feedback) run. The topic is sent to both the Okapi and Query Tiering
subsystems, each of which returns a set of documents. If the first tier to retrieve a non-
zero number of documents is Tier 1, then the two document sets are fused in the Fusion
subsystem. Otherwise, a third set of documents is retrieved using the Feedback subsystem,
and the three sets of documents are merged together. The other runs follow a similar logic
flow.

The parameters of the various runs were optimized for the training data, using the
supplied relevance judgments. Thus, the performance of the IR system on the training data
is not necessarily reflective of its performance on the test data, especially if the training

and test data have different characteristics. In particular, the relative performance of some
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of the runs that relied on a single retrieval technique may not be necessarily preserved.
Nevertheless, the runs involving fusion and feedback do seem to consistently outperform
the systems on which they are based. The parameters for these runs were adjusted not
only to maximize performance, but to increase stability as well.

The performance of feedback is dependent on the number of top documents used to
determine the most relevant chemical name, and on the type of fusion used to merge the
three document sets. These parameters are in turn dependent upon the query tiering
technique used. For the All Tiers technique, it was determined that using the top 25-30
documents to determine the most relevant chemical name produced the best performance.
(The value of 27 was used in the experiments.) The three document sets are fused using
rank fusion with equal weights. For the Best Tier technique, the top 42 documents were
used, and the three document sets were merged using weighted rank fusion with a weight
of 5 for the query tiers document set, 28 for the feedback document set, and 20 for the
Okapi Fusion document set. These numbers were determined experimentally.

The reason for the difference between the feedback parameters of the AT and BT
runs is that more of the top documents retrieved by the Best Tier technique are relevant
compared to those retrieved by All Tiers. Since feedback is only used when no documents
are retrieved in Tier 1, the set of documents retrieved using the top chemical name will
be far more relevant than the documents retrieved by the Best Tier, and slightly more
relevant than retrieved by Okapi.

The Exact and Exactl runs were experiments designed to test the effects of ignoring all
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subsequent tiers if no documents are retrieved by Tier 1. Early experiments showed that
it performed better than All Tiers on those topics for which a match was found in Tier
1, and worse otherwise. Because the performance was unstable, and because Best Tier
seemed to always perform better, the full set of fusion and feedback experiments were not
performed on the Exact run.

We examine the experimental results on the training and test data in further detail in

the next chapter.



Chapter 4

Experimental Results

4.1 Results on Training Topics

The values of the parameters of the MultiText for Genomics system were tuned using the
training data. Once these values had been decided upon, we conducted each of the runs
on the training data to obtain the final results which are shown in Table LIl The results
of the Wilcoxon paired-T significance test for certain pairs of runs on the training data are
shown in Table

As can be seen from Table LTl the best average precision belonged to the BTRF run,
at 0.4821. This is a 47.3% improvement over the baseline Okapi 1 (p < 0.001), which had
an average precision of 0.3273. The BTIF run had an average precision of 0.4812, a 47.0%
improvement (p < 0.001), and the ATRF run had an average precision of 0.4598, a 40.5%

(p < 0.001) improvement. The ATRF run retrieved 291 relevant documents, which was

43
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| Method Used H Rel. & Ret. | Avg. Precision | R-Precision

Okapi 1 224 0.3273 0.3077
Okapi 2 245 0.3193 0.2917
Okapi 3 261 0.3157 0.2700
Okapi Fusion 261 0.3321 0.3173
AT 282 0.3819 0.3452
ATI 282 0.4394 0.3836
ATIF 289 0.4429 0.3844
ATR 284 0.4519 0.4324
ATRF 291 0.4598 0.4448
BT 279 0.4003 0.3818
BTI 279 0.4528 0.4236
BTIF 286 0.4812 0.4448
BTR 279 0.4452 0.4216
BTRF 286 0.4821 0.4579
Exact 277 0.3981 0.3820
Exactl 277 0.4246 0.3959

Table 4.1: Summary of Results on Training Data: 50 topics, 1000 retrieved per query, 335

total relevant.

the most relevant documents retrieved of all the runs. This is slightly more than the 286
retrieved by BTRF and BTIF, and considerably more than the 224 retrieved by the Okapi
1 run.

Among the Okapi runs, more relevant documents were retrieved by Okapi 3 than by
Okapi 2, which in turn retrieved more relevant documents than Okapi 1. Performance,
however, was in the reverse order, with Okapi 1 having the best average precision of the
three. Figure 1l shows the precision-recall curveJ;I for the Okapi runs on the training
data. As is typical for such curves, the precision and recall are inversely related for each
of the Okapi runs. As can be seen, at lower recall levels (when fewer documents have

been retrieved) Okapi 1 has the highest precision, and Okapi 3 has the lowest, with Okapi

!Note that this and subsequent precision-recall curves have been scaled to show the precision range

0.1 — 0.7 for the sake of clarity.
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Runs Compared p-value
Okapi 1 Okapi Fusion | 0.061
Okapi Okapi 2 Okapi Fusion | 0.097
Okapi 3 Okapi Fusion | 0.23
Okapi 1 AT 0.14
Okapi 1 BT 0.089
Query Tiering Okapi 1 Exact 0.012
Okapi Fusion AT 0.15
Okapi Fusion BT 0.14
Okapi Fusion Exact 0.057
AT ATI 0.035
AT ATR 0.074
Fusion BT BTI 0.037
BT BTR 0.091
Exact Exactl 0.18
ATI ATIF 0.45
Feedback ATR ATRF 0.50
BTI BTIF 0.083
BTR BTRF 0.025
Okapi 1 ATIF < 0.001
Feedback Okapi 1 ATRF < 0.001
vs. Baseline Okapi 1 BTIF < 0.001
Okapi 1 BTRF < 0.001
| Chosen Runs | ATRF ‘ BTRF ‘ 0.11 ‘

Table 4.2: Wilcoxon paired-T test results on runs for training data.

2 in the middle. However, as the recall level increases (when more documents have been
retrieved) the relative positions of the three runs are reversed. By using bigrams, the Okapi
3 system was able to retrieve more relevant documents, but they were ranked lower as it also
retrieved many irrelevant documents which it ranked highly. This suggests that the gene
names in the corpus are actually very close to how they appear in the LocusLink-derived
query.

The Okapi Fusion run both retrieved more relevant documents and achieved a better
performance than each of the individual Okapi runs. It retrieved as many documents as
Okapi 3 did, while its average precision was 0.3321, a 1.4% (p = 0.061) improvement

over Okapi 1. While the gain is not significant, it nevertheless demonstrates that an
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improvement in retrieval can be made simply by reformulating the query and merging the
documents retrieved using different query formulations. More importantly, retrieval using
the fusion technique is more stable than any of Okapi 1, Okapi 2, or Okapi 3 alone. The
first three rows of the Table compare each of the Okapi runs to the Okapi Fusion run.
As can be seen in Figure ], the Okapi Fusion run is outperformed by Okapi 1 when the
recall level is low, and by Okapi 3 when the recall level is high, but performs better than
each of the individual Okapi runs at the intermediate recall level. This suggests that a
good strategy for merging the results of the individual Okapi runs should weigh Okapi 1
more heavily at first but gradually increase the dominance of Okapi 3 as more documents
are retrieved.

Feedback and fusion improved performance in every case, and the systems with the
best performance made use of both. It isn’t clear which fusion method is better, since
ATR outperformed ATI, but BTI did better than BTR. However, when fusion is used with
feedback, the rank fusion method outperformed the interweave fusion method in both cases.
Figures and show the precision-recall curves for the All-Tiers and Best-Tier runs.
At low recall levels, ATT and ATIF outperform ATR and ATRF, but the reverse is true
at high recall levels. Similarly, BTT and BTIF outperform BTR and BTRF at low recall
levels, but while BTRF outperforms BTIF at high recall levels, the performance of BTT and
BTR are similar. This suggests that, when few documents have been retrieved, the Okapi
and Query Tiering subsystems retrieve different relevant documents, and good results may

be obtained simply by interweaving the two document sets. However, as more documents
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are retrieved, the Okapi methods retrieve more relevant documents than the Query Tiering
methods, even if it gives these relevant documents a low rank, and so documents in the
Okapi document set should be favoured.

Table shows that the improvement to the retrieval due to the fusion of the Okapi
and Query Tiering subsystems over the Query Tiering by itself is not very significant.
Furthermore, it shows that the improvements due to using feedback are not significant at
all for the All-Tiers runs while they are somewhat significant for the Best-Tier runs. Since
feedback is used only when the set of documents retrieved by Tier 1 in the Query Tiering
subsystem is empty, the Best Tier runs are more sensitive to its effects.

There is a high level of correspondence between the metadata fields and the relevance
of the documents. This is clear from the fact that retrieval using query tiers based on the
information in the metadata fields outperformed the Okapi runs, including the Okapi Fusion
run. Before fusion and feedback, the best technique that is based on query tiers is BT,
with an average precision of 0.4003, which is a 22% improvement (p = 0.089) over Okapi 1.
The Exact run had an average precision of 0.3981, a 21% improvement (p = 0.012), while
the AT run had an average precision of 0.3819, which close to 17% (p = 0.14) over Okapi
1. Note that both Best Tier and Exact had a better average precision than the All Tiers
method. It appears that once a match has been found in a tier, it was a better strategy to
append the Okapi Fusion list rather than documents from lower tiers. The experimental
results suggest that the performance of the Okapi Fusion method was between that of Tier

1 and Tier 2.
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Figure shows the recall-precision curve for the runs with feedback, with the Okapi
1 run shown as a baseline for comparison. Table shows that each of Query Tiering,
Fusion, and Feedback improve upon the Okapi runs.

Table shows the documents retrieved in each tier for the 50 training topics. The
topic number is shown in the first column, followed by six columns showing the number of
documents retrieved in each of the six tiers. The last column contains the expression or
expressions used in the first tier in which a match was made.

In 32 out of 50 topics, the best tier was Tier 1. Of the remaining topics, Tier 2 was
the best tier in 4 topics, Tier 3 was best in 8, and Tier 4 was best in 4. No documents
were retrieved at all in Tier 5, and Tier 6 was the best tier for 1 topic. The reason that
Tier 5 was included at all is that the tiers were developed independently and had been
re-arranged during training. In the final arrangement of the query tiers, it happened that
every document retrieved by Tier 5 had already been retrieved in a higher tier.

Because Tier 1 had a better performance on its own than Okapi or even feedback,
performance can be improved by recognizing relevant chemical names in the chemical list
metadata, even in cases where the name of the gene and the relevant chemical name are
different.

Table A shows the chemical names produced by the pseudorelevance feedback for those
topics in which no documents were retrieved in Tier 1, for the BTRF run. The first column
gives the topic number, and the second column gives a gene name from the query. The

third column shows the chemical name that was found using automatic query expansion.
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Topic || Number of Documents Retrieved | Matches in Best Tier
TI| T2] T3] T4[T5] T6

1 438 | 120 0] 19 0| 482 | “cipl protein”

2 6| 13 38 4 0| 28| “rna dependent atpase”, “protein p68”

3 19 | 31 0 5 0| 43| “tel protein”

4 35 2 499 2 0| 75| “keratinocyte growth factor”, “fibroblast growth factor 7 precursor”, “fibroblast growth factor 77

5 16 0 23 0 0 6 | “glycine receptor alphal”

6 93| 10 0 2 0| 101 | “hla dgb1”

7 56 3 44 0 0| 39| “janus kinase 2”

8 - - - 8 0| 50| ((“luteinizing” " “hormone” " “choriogonadotropin” * “receptor” )+ “lhegr” + “legr” + “lhr” +
(“luteinizing” ~ “hormone” ~ “receptor” )+ ( “lutropin” * “choriogonadotropin” " “receptor” )+ “legrs” +
“Ihcgrs” +( “luteinizing” * “choriogonadotropin” * “receptor” )+ “lgr2” + “lhrs” +( “lutropin” * “receptor” )+
(“choriogonadotropin”  “receptor”))

9 15 1 68 | 12 0 | 345 | “growth inhibitory factor”

10 161 | 360 757 | 480 0 | 785 | “protein c¢”

11 -| 80 0 0 0117 | “racl”

12 3 0 41 0 0| 11| “tropomyosin 1”

13 3 0 3 7 0 | 163 | “gpcr protein”, “frizzled 4 protein vertebrate”

14 - —| 10| 0408 | ((“tyrosyl”” “trna” " “synthetase” )+ “tyrrses” + “ytses” + “yts”+
(“tyrosyl”” “trna” " “ligase” )+ “yars” + “tyrrs” + “yarses” + “yrses” + “yrs”)

15 11 1 0| 13 0 | 109 | “major vault protein”

16 4 0 80 0 0 0 | “adrenergic receptor alpha 1d”, “adrenergic receptor alpha 1a”

17 - 10 0 0 0 0| “rhob”

18 213 0 205 2 0| 73| “cpp32 protein”

19 6 0 0 0 “ctef protein”

20 162 0 979 2 0| 68| “fasl protein”

21 [ 1] 2] o] 44| (((ig")

22 - - - 4| 0| 14 (‘1hhs +(“indian” " “hedgehog” )+ “ihh”)

23 - - 47 1| 0| 16 | (((“phospholipase”+ “phospholipases”))” “c gamma”)

24 - - 3 0] 0 0 | (((“seven”+“sevens”)” (“absentia” + “absentias”)))

25 - - - 3| 0112 | (“dntts”+“tdt” +“dntt” +(“terminal” " “deoxynucleotidyl” " “transferase” )+
(“deoxynucleotidyltransferase” " “terminal” )+ “tdts”)

26 - - - 11 0 ((“rho” " “related” " “btb” " “domain” " “containing” " “2”)+ “rhobtb2” + “kiaa0717” + “dbc2”)

27 - - - —| 19 | ((“cholinergic” " “receptor” " “muscarinic” " “3”)+“chrm3”)

28 BT 0] 9] 0] 57 “egrl”, “nghi”

29 19 1 0 0 0 8 | “glucokinase”

30 2 0 40 0 0 1| “retinoic acid receptor gamma”

31 149 4 460 9 0| 93| “neurokinin a”, “substance p”, “neuropeptide k”

32 -1 —| 186 41 0] 75| (((“estrogen”+ “estrogens”)” (“receptor” + “receptors”)))

33 - - 70 0] 0] 21| (((“guanylate”+ “guanylates”)”(“cyclase”+“cyclases”)))

34 20 1 0 0 0 2 | “cocaine and amphetamine regulated transcript protein”

35 - - - - - -

36 5 0 9 2 0 6 | “hop protein”

37 1 0 0 0 0 1| “slob protein”

38 3 0 0 0 0 0 | “eiger protein drosophila”

39 32 1 7 1 0| 15| “cadherins”

40 6 0 0 3 0 2 | “stat92e protein”

41 3 0 0 0 0 3 | “ebony protein”

42 10 0 0 0 0 5 | “crb protein drosophila”

43 - - 3| 11| 0422 | (((“calcineurin”+ “calcineurins”)))

44 3 0 4 0 0 0 | “gp73 protein”

45 5 1 3 2 0 5 | “sh3px1 protein”, “wisp protein”

46 - 7 0 5 0| 16 | “hanks”, “ank”

47 2 0 0 0 0 0 | “dda3 protein”

48 10 0 0| 10 0 | 323 | “artemis protein human”

49 -| -11000| 67| 0947 | (((“transcription”+ “transcriptions”)” (“factor” + “factors”)))

50 1 0 2 0 0 1 | “pax 8 protein”

Total 32 4 8 4 0 1

Table 4.3: Matches in the query tiers for the training topics.
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[ Topic ] Query Term /Phrase Feedback Chem. Name | Ret. [ R.&R. | MAP | R-P | MAP Fb. [ R-P Fb. | Tmp. |
8 luteinizing hormone/ Receptors, LH 49 7 0.2917 | 0.4286 0.4305 0.4286 +47%

choriogonadotropin receptor
11 ras-related C3 botulinum racl GTP-Binding Protein 80 13 0.2302 | 0.4118 | 0.1977 0.1765 -14%
toxin substrate 1 (rho family,
small GTP binding protein Racl)
14 tyrosyl-rRNA synthetase Tyrosine-rRNA Ligase 10 6 0.5872 | 0.5000 | 0.8238 0.6667 | +40%
17 ras homolog B (RhoB) rhoB GTP-Binding Protein 6 2 0.3333 | 0.3333 | 0.3889 0.6667 | +17%
21 immunoglobulin heavy chain 6 Immunoglobulins, mu-Chain 21 0 - - - - -
(heavy chain of TgM)
22 Indian hedgehog hedgehog protein, vertebrate 69 6 0.4703 | 0.5000 | 0.6723 0.5000 | +43%
23 phospholipase C, gamma 1 phospholipase C gamma 47 9 0.6503 | 0.5556 0.5262 0.4444 -19%
24 seven in absentia 2 seven in absentia protein 3 2 1.0000 | 1.0000 1.0000 1.0000 0%
25 terminal deoxynucleotidyl transferase | DNA Nucleotidylexotransferase 8 2 1.0000 | 1.0000 1.0000 1.0000 0%
26 Rho-related BTB domain QM protein, 0 0 1.0000 | 1.0000 1.0000 1.0000 0%
containing 2 Trypanosoma brucei

27 cholinergic receptor, muscarinic 3 Receptors, Muscarinic 153 2 0.0312 | 0.0000 | 0.0747 0.0000 | +139%
28 Early growth response 1 Krox-24 protein 40 8 0.0258 | 0.1250 0.2523 0.1250 | +878%
32 estrogen receptor 1 Receptors, Estrogen 163 11 0.1039 | 0.0909 | 0.1354 0.0000 | +30%
33 guanylate cyclase 1, soluble, beta 3 Guanylate Cyclase 70 1 0.0774 | 0.0000 | 0.0569 0.0000 -26%
35 CG3599 Drosophila Proteins 638 0 - - - - -
43 Calcineurin B Calcineurin 3 1 0.5000 | 0.0000 1.0000 1.0000 | +100%
46 ankylosis, progressive homolog ankylosis protein 5 3 0.1595 | 0.0000 | 0.7500 0.7500 | +370%
49 transcription factor 23 Transcription Factors 1000 0 - - - - -

Table 4.4: Analysis of the effects of feedback on performance for the training topics.

The next two columns show the number of documents retrieved using the chemical name

and the number of these which were also relevant. The next two columns show the mean

average precision and the interpolated recall-precision, respectively, for that topic without

using feedback. (These are equivalent to the MAP and recall-precision for the BTR run.)

The next two columns give the mean average precision and interpolated recall-precision

with feedback, and the last column gives the percentage improvement (or degradation) due

to using feedback. It is apparent that most of the chemical names are related in some way

to the gene name, and a better way of recognizing the relationship between a gene and a

chemical name will clearly improve performance.

For topic 28, the top chemical name “Krox-24 protein” was produced for the “Early
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growth response 1”7. In fact, “Krox-24 protein” is another name for “Early growth response
1”. By searching on “Krox-24 protein”, which does not appear in the original query, the
average precision was improved by an incredible 878%. Of course, the original performance
for this topic was very poor, but there is clearly a lot of potential for improving performance
by recognizing the alternate names of a gene or a substance related to a gene.

In some cases, this is relatively simple. For topic 14, for example, the chemical name
“Tyrosine-rRNA Ligase” was generated for the gene name “tyrosyl-rRNA synthetase”. A
system that understood the relationship between “tyrosine” and “tyrosyl” and “ligase” and
“synthetase” can determine that the two expressions refer to the same thing (or closely
related things), and even assign a score for the degree of similarity. In other cases, this
is complicated by the fact that more than one chemical name generated by the automatic
expansion might be relevant to the query. For topic 27, searching on the gene name “cholin-
ergic receptor, muscarinic 3” resulted in the top chemical name “Receptors, Muscarinic”.
However, the chemical name “muscarinic receptor M3”, which is clearly more relevant,
was overlooked. Choosing this chemical name instead of the more general “Receptors,
Muscarinic” would have resulted in an improvement of 534%.

As the table shows, in most cases the performance was improved by using feedback
to find the most relevant chemical, though in some cases there was a degradation in
performance. Determining the conditions under which feedback improved or degraded
performance would allow feedback to be used more effectively.

The results on the training data show that the mixture of techniques and the parameters
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used in the MultiText for Genomics system performs quite well for genomics document

retrieval from the MEDLINE corpus.

4.2 Results on Test Topics

Even though the Genomics Track allowed for the submission of only two official runs,
we performed the same runs using the test data as we did on the training data, for the
purposes of comparing the characteristics of the test and training data as well as to verify
the properties we believe the various combinations of techniques to have.

The two runs chosen for official submission to TREC were the BTRF and ATRF runs.
The first of these used the Best Tier retrieval method in the Query Tiering subsystem,
while the second used the All Tiers retrieval method. Both runs used the Rank Fusion
method in the Fusion subsystem. The BTRF run was chosen because it had the highest
average precision on the training data, while the ATRF run was chosen partly because
it had one of the highest average precisions, but also because it had the highest number
of relevant documents retrieved. Even though BTIF had a better mean average precision
than ATRF on the training data, it was too similar to the BTRF run in that it differed only
in the fusion method used. It was found that by adjusting the fusion weights, it was always
possible for the rank-fusion to outperform the interweave fusion. It was also suspected that
the ATRF run might be more stable, in the sense that the performance would not be too

adversely affected by an incorrect match in Tier 1. Both the ATRF and BTRF runs had
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| Method Used H Rel. & Ret. | Avg. Precision | R-Precision

Okapi 1 447 0.2060 0.1965
Okapi 2 473 0.2155 0.1948
Okapi 3 524 0.2169 0.2095
Okapi Fusion 524 0.2323 0.2138
AT 550 0.2542 0.1967
ATI 550 0.3334 0.2723
ATIF 559 0.3379 0.2680
ATR 552 0.3425 0.3050
ATRF 562 0.3479 0.3013
BT 535 0.2443 0.2010
BTI 535 0.3066 0.2581
BTIF 556 0.3322 0.2745
BTR 535 0.3161 0.2852
BTRF 556 0.3534 0.3113
Exact 528 0.2500 0.2194
Exactl 528 0.2803 0.2449

Table 4.5: Summary of Results on Test Data: 50 topics, 1000 retrieved per query, 566 total

relevant.

a p-value much less than 0.001 when compared with the Okapi 1 baseline run. It would
be interesting to examine the trade-off between retrieving more relevant documents and
having a better precision.

The results for the various runs on the test data are shown in Table E3 and the results
of the Wilcoxon paired-T tests shown in Table Some similarities and differences
between the training and test results may be noted. The two official runs turned out to be
excellent choices, as the BTRF and ATRF runs on the test data had the two highest average
precisions, at 0.3534 and 0.3479 respectively, corresponding to improvements of 71.5%
(p < 0.001) and 68.9% (p < 0.001) over the Okapi 1 baseline result of 0.2060. The ATRF
run retrieved the most relevant documents, with 562 relevant documents retrieved, which
is 25.7% more than the 447 retrieved by Okapi 1. Furthermore, ATRF performed better

than BTIF, which had an average precision of 0.3322, a 61.3% improvement (p < 0.001)
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Runs Compared p-value
Okapi 1 Okapi Fusion | < 0.001
Okapi Okapi 2 Okapi Fusion | 0.0086
Okapi 3 Okapi Fusion | 0.056
Okapi 1 AT 0.088
Okapi 1 BT 0.016
Query Tiering Okapi 1 Exact 0.0046
Okapi Fusion AT 0.38
Okapi Fusion BT 0.68
Okapi Fusion Exact 0.20
AT ATI < 0.001
AT ATR < 0.001
Fusion BT BTI < 0.001
BT BTR < 0.001
Exact Exactl 0.015
ATI ATIF 0.76
Feedback ATR ATRF 0.35
BTI BTIF 0.017
BTR BTRF 0.0077
Okapi 1 ATIF < 0.001
Feedback Okapi 1 ATRF < 0.001
vs. Baseline Okapi 1 BTIF < 0.001
Okapi 1 BTRF < 0.001
[ Official Runs |  ATRF | BTRF  [0.80 |

Table 4.6: Wilcoxon paired-T test results on runs for test data.

over Okapi 1.

The distance between ATRF and BTRF was also smaller. Although BTRF showed
4.8% higher average precision in training, the difference was not significant (p = 0.11).
On the test data the difference diminishes to 1.6% (p = 0.80). Thus these tests do not
demonstrate any real difference in effectiveness between ATRF and BTRF as measured by
average precision. Whereas for the training data, the BT run slightly outperformed the AT
run, for the test data the situation is reversed. For the test data, the relevant documents
were more likely to be distributed between the tiers rather than be concentrated in the best
tier. This suggests that there is more variation in the characteristics identifying relevant

documents for the test data than for the training data.
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The precision-recall curves for the Okapi runs are shown in Figure E3l The Okapi
Fusion run performed better than any individual Okapi run, and has a higher precision
for almost all recall levels below 0.65, above which Okapi 3 has a higher precision. Of
the individual Okapi runs, Okapi 3 had the highest average precision, followed by Okapi
2, and then Okapi 1. This is the reverse of the order with the training data. Using
bigrams rather than the original query resulted in better performance on the test data.
This suggests that with the test data, the gene and protein names in the corpus are less
like the LocusLink-derived queries than is the case with the training data. This would also
explain the reversal in performance between the AT and BT runs for the training and test
data described above.

Figures and E7 show the precision-recall curves for these runs. The Rank-fusion
method seemed to work better for the test data than for the training data. The ATRF
run had a better precision than the ATIF run for both high and low recall levels, with
ATIF outperforming ATRF only in the range of recall levels from 0.2 and 0.3. The BTRF
run outperformed the BTIF run at every recall level. Since the parameters are set such
that the Rank-fusion algorithm assigns a heavier weight to the Okapi Fusion document set
than it does to the Query Tiering document set, this means that the Okapi subsystem is
ranking relevant documents more highly with the test data than with the training data.

A comparison of Table with Table shows that the matches in the query tiers
are more distributed among the tiers for the test data than for the training data. Whereas

32 out of 50 training topics retrieved documents in Tier 1, only 25 test topics did so, with
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Figure 4.5: Precision-recall curves for the Okapi runs on the test data.
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Figure 4.6: Precision-recall curves for the All-Tiers runs on the test data.
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Figure 4.7: Precision-recall curves for the Best-Tier runs on the test data.
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Figure 4.8: Precision-recall curves for the test runs using feedback.
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Topic || Number of Documents Retrieved | Matches in Best Tier
TI[ T2[ T3] T4[T5] T6

1 18 0] 29 1 0| 45| “activating transcription factor 2 protein”

2 - 1118 2 0| 48| “e2f1”

3 - 2 0 13 0| 40| “eifde”

4 —| 146 | 62| 214| 0] 891 | “g protein”

5 79 0] 36 2| 0| 64| “heme oxygenase 1”

6 145 4 0 1 0| 47| “pten protein”

7 8 0| 31 0 0 6 | “syndecan 4”

8 18 0 5 1 0| 16 | “excitatory amino acid transporter 2”

9 - 3 0 28 0| 79| “statd”

10 102 0 0 3 0] 92| “thrombopoietin”

11 103 0201 0 0| 20| “tissue inhibitor of metalloproteinase 2”

12 - 12380 92 0] 94| “vdr”, “1 25 dihydroxyvitamin d3”

13 —| 10| 48| 1000 0 | 604 | “ah”, “ahr”, “in”

14 1| 269 7 11 0| 211 | “bcl2 protein mouse”

15 - 97 0 2 0| 63| “cd34”

16 - - - 5| 0| 22| ((“heterogeneous”” “nuclear” " “ribonucleoprotein” " “al” )+ “hnrnpa”+ “hnrpal” +(“hnrnp” " “a”))

17 33 0| 28 1 0| 29| “interleukin 1 receptor antagonist protein”

18 81 2 | 968 4| 0| 363 | “interleukin 5”

19 12 0 0 0 0 1 | “ptp 1b protein”

20 -1 20| 16 5 0| 152 | “spa”, “surfactant associated protein a”

21 - -| 61 11 0 4 | (((“adenylate”+ “adenylates”) " ( “cyclase” + “cyclases”) " (“activating” 4 “activatings” )"
(“polypeptide” + “polypeptides”)))

22 -| 86 0 54 0] 205 | “di”, “vas”

23 35 01390 1 0| 61| “protein kinase c¢ alpha”

24 - - 7| 0| 17| (“glutbs”+“gtgd” + “gluth” +( “solute” ~ “carrier” " “family” " “2” "~ “a’ “brain” )+ “slc2al”+
“ratgtgl” +(“facilitated” ~ “glucose” " “transporter carrier” ” “family” " “2” "
“member” " “17)+ “glut1”)

25 —| 19| 577 0 0219 | “tnf”

26 1 6 0 4 0| 27| “fat protein drosophila”

27 10 1 0 0 0 6 | “numb protein”

28 9 29 0 1 0| 19| “epidermal growth factor”

29 5 0 0 1 0 4 | “brahma protein”

30 26 0 0 0 7 | “reaper”

31 - - - 7| 0] 12| “((“gonadotropin” " “releasing” " “hormone” " “receptor” )+ “gnrhrs” + “gnrhr”)”

32 — | 523 | 488 70 1| 537 | “fas”, “cd95”

33 10 0| 63 0 0| 10| “edg 1 protein”

34 - - - 5 0| 27| (“her3”4(“v”"“erb” " “b2” " “erythroblastic” ~ “leukemia” ~ “viral” " “oncogene” ~ “homolog” "
(“v7 " “erb” " “b2” " “avian” " “erythroblastic” " “leukemia” " “viral” " “oncogene” " “homolog”
“erbb3” +(“transformation” " “gene” " “erbb” " “3”))

35 93| T34 | 65| 975 0 | 838 | “interleukin 37

36 - 13 4 9 0| 580 | “ingl”

37 - - - 29 0 | 134 | (“ppargs”+ “humpparg”+“pparg2” +( “peroxisome” " “proliferative” " “activated” " “receptor”
“gamma” " “isoform” " “2” )+ “ppargl” + “humppargs” + “pparg” +( “ppar” " “gamma” )+ ( “peroxisome”
“proliferative” " “activated” " “receptor” " “gamma” " “isoform” " “1”)+( “peroxisome” " “proliferative” *
“activated” " “receptor” " “gamma” )+ “nrle3”)

38 - - - 15| 0403 | ((“mip”” 1"~ “alpha”)+“scya3” + “Id78alpha” 4 “g0s191” +(“small” ~ “inducible” " “cytokine” " “a3” )+
“mipla”+(“chemokine” " “ligand” " “3”)+“miplalpha” +(“c” " “c” " “motif” )+ “ccl3” +( “g0s19” "~ “17))

39 - | 170 0 4 0| 103 | “spl”

40 - 22 0 8 0| 56| “tie 2"

41 1 78 0 45 0 | 227 | “cash protein”

42 - 6 | 257 3 0| 40| “app”

43 23 5 0 5 0| 78| “creb binding protein”

44 23 0] 38 2| 0| 45| “fibroblast growth factor receptor 1”

45 73| 23 0 20| 0 156 | “growth hormone”

46 19 0 7 0 0 9 | “hepatocyte nuclear factor 3beta”

47 - -1 3 0| 25| 19| (((“purkinje” + “purkinjes”) " (“cell” 4 “cells”) " (“protein” + “proteins”)))

48 49 0 0 0 0] 30| “stat6 proteinstat6 protein”

49 - - 1 14| 0] 113 | (((“ter”+“ters”)))

50 164 1 11 3 0| 169 | “interleukin 6

[Total | 25] 16] 3] 6] o] 0]

Table 4.7: Matches in the query tiers for the test topics.
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Topic Query Term/Phrase Feedback Chem. Name Ret. | R.&R. | MAP R-P | MAP Fb. | R-P Fb. | Imp.
2 E2F transcription factor 1 transcription factor E2F 111 10 0.1515 | 0.0909 | 0.2559 0.1818 | +69%
3 eukaryotic translation initiation Eukaryotic Initiation Factor-4E | 36 12 0.5180 | 0.4615 | 0.6803 0.6154 | +31%

factor 4E
4 guanine nucleotide binding protein G-Protein, Stimulatory Gs 42 0 0.0085 | 0.0000 | 0.0109 0.0000 | +28%
(G protein), alpha activating activity
polypeptide, olfactory type
9 signal transducer and activator of | mammary gland-specific nuclear | 80 8 0.1244 | 0.1250 | 0.2508 0.2500 | +102%
transcription 5A factor
12 vitamin D (1,25- dihydroxyvitamin Receptors, Calcitriol 134 24 0.1481 | 0.0800 | 0.2174 0.2000 | +47%
D3) receptor
13 aryl-hydrocarbon receptor Receptors, Aryl Hydrocarbon 49 8 0.2650 | 0.2500 | 0.4342 0.3750 | +64%
15 CD34 antigen Antigens, CD34 97 3 0.3333 | 0.3333 | 0.7222 0.6667 | +117%
16 heterogeneous nuclear hnRNP Al 7 3 0.3344 | 0.3333 | 0.6667 0.6667 | +99%
ribonucleoprotein Al
20 surfactant associated protein A Pulmonary Surfactant- 19 6 0.4511 | 0.5000 | 0.3480 0.1667 | +77%
Associated Protein A
21 adenylate cyclase activating pituitary adenylate cyclase 61 7 0.1503 | 0.1429 | 0.1796 0.0000 | +19%
polypeptide 1 activating polypeptide
22 arginine vasopressin 8-Hydroxy-2-(di-n-propylamino) | 63 0 0.0255 | 0.0000 | 0.0200 0.0000 | -22 %
tetralin
24 Glutl GLUT-1 protein 27 5 0.5821 | 0.7143 | 0.6596 0.7143 | +13%
25 tumor necrosis factor superfamily, Tumor Necrosis Factor 575 25 0.0411 | 0.0769 | 0.0727 0.1154 | +77%
member 2
30 reaper reaper peptide, Drosophila 26 7 0.7760 | 0.6250 | 0.6955 0.5000 -10%
31 gonadotropin-releasing hormone Receptors, LHRH 23 4 0.7500 | 0.7500 | 0.7857 0.7500 +5%
receptor
32 CD95 Antigens, CD95 516 65 0.2353 | 0.2121 | 0.1964 0.1970 -17%
34 ERBB3 Receptor, erbB-3 31 5 0.2958 | 0.3333 | 0.4062 0.3333 | +37%
36 p33ING1 p33(ING1) protein 13 4 0.3405 | 0.0000 | 0.4155 0.5000 | +22%
37 peroxisome proliferative activated peroxisome proliferator- 385 61 0.1281 | 0.1311 0.2106 0.1639 | +64%
receptor, gamma activated receptor
38 MIP1A Macrophage Inflammatory 83 9 0.0370 | 0.1111 0.1516 0.2222 | +309%
Protein-1
39 Spl transcription factor Transcription Factor, Spl 168 35 0.3533 | 0.3421 0.2633 0.2105 -25%
40 TEK tyrosine kinase, endothelial TIE-2 receptor tyrosine kinase 22 4 0.4946 | 0.6000 | 0.4413 0.4000 -11%
42 amyloid beta (A4) precursor protein | Amyloid beta-Protein Precursor | 131 10 0.0414 | 0.0588 | 0.0749 0.0588 | +81%
47 inositol 1,4,5-triphosphate receptor 1 inositol-1,4,5-triphosphate 25 6 0.1535 | 0.1429 | 0.4149 0.4286 | +170%
receptor
49 T-cell receptor alpha chain Receptors, Antigen, T-Cell, 166 5 0.0833 | 0.1429 | 0.1115 0.1429 | +34%
alpha-beta

Table 4.8: Analysis of the effects of feedback on performance for the test topics.
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another 16 topics having Tier 2 as their best tier. This confirms that the test data differs
from the training data in that the query gene and protein names are not as similar to the
relevant gene and protein names in the corpus.

Table shows the chemical names associated by the Feedback subsystem with each
topic for which no documents were retrieved in Tier 1, for the BTRF run on the test
data. Whereas for the training data feedback was used for only 18 topics, for the test
data feedback was used for 25 topics, or half of the 50 topics. This is due to fewer topics
having an exact match, i.e. a match in Tier 1 in the Query Tiering subsystem. In 20
cases, feedback improved the performance, while the performance was degraded in 5 of the
cases. As with the training data, it is apparent that there is a clear relationship between
most of the query terms and the feedback term chosen by the feedback system. The ability
to recognize this relationship using domain-specific knowledge would definitely improve
retrieval.

The runs on the test data confirm that the combination of techniques and parameters
chosen for the MultiText for Genomics system improves retrieval performance. The results
showed that there are some differences between the characteristics of the training and test
data, but our system was robust enough to have a very good performance on the test data.

There were a total of 49 official runs, submitted by 25 groups. The final results may be
found in Hersh and Bhupatiraju [HB03]. Our system placed 4th among the 25 competing
systems, with our two runs having mean average precision (MAP) scores of 0.3534 and

0.3479. Table shows the top 15 official runs, sorted by MAP, along with the number of
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Run Tag Run Type Mean Average Relevant @ 10 Relevant @ 20
Precision documents retrieved documents retrieved

NLMUMDSE automatic 0.4165 3.16 4.84
NLMUMDSRB manual 0.3994 3.20 4.56
nrcl automatic 0.3941 2.94 4.38
biotext1 automatic 0.3912 3.06 4.46
nrc2 automatic 0.3771 2.76 4.36
biotext0 automatic 0.3753 2.92 4.30
uwmtg03btrf  automatic 0.3534 2.28 3.68
uwmtg03atrf  automatic 0.3479 2.48 4.00
axon2 automatic 0.3173 2.50 3.86
axonl automatic 0.3118 2.40 3.78
CSUSM2 automatic 0.3079 2.68 3.76
edstanrecall automatic 0.3015 2.60 3.74
edstanprec automatic 0.2984 2.60 3.74
KUBIOIRNE automatic 0.2980 2.32 3.42
KUBIOIRRAW  automatic 0.2937 2.24 3.38
Mean (all runs) 0.2313 1.85 2.85
Median (all runs) 0.1960 1.58 2.60

Table 4.9: The top 15 official runs by mean average precision.

relevant documents at 10 and 20 documents retrieved.
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Discussion

5.1 Analysis of Results

We have identified three features which appear to be vital to a successful biomedical doc-
ument retrieval system, namely: 1) the ability to deal with variants of gene names; 2)
recognition of the subject species of a document; and 3) use of metadata fields and struc-
tured data. Furthermore, we have also identified a fourth feature which, while not crucial,
may have increased the performance of some systems for the TREC genomics track: 4)
identification of documents which are cited by GeneRIFs.

We explain each of these features below.

68
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5.1.1 Recognition of Gene Name Variants

A strategy for dealing with ambiguities in biomedical nomenclature seems to be the one
defining feature separating a successful biomedical document retrieval system from a failure.
While we have not examined every system that participated in the genomics track, it is
clear that any system which did not implement this feature, or was unsuccessful in doing
so, would fail to find the majority of relevant documents.

In our system, we used two different strategies for recognizing gene name variants. In
the Okapi subsystem, gene names are relaxed and converted into term vectors, while in the
Query Tiering subsystem, gene names are matched by relaxing the gene name and by using
a boolean expression. These steps together served the same purpose as the hand-crafted
gene variant generation rules and decision trees used by some other systems. Our approach
may be described as a “shotgun” approach: we simply generated many re-arrangements of
the given gene name in the belief that those which corresponded to sensible gene names
would retrieve relevant documents. While unorthodox, this approach seemed to have paid
off, rewarding us with a high precision in our retrieval system.

An issue related to the recognition of gene name variants is the disambiguation of
acronyms. In our system, we do not attempt to disambiguate acronyms explicitly, leaving
that function to the statistics of the corpus and our scoring functions, which weigh terms
that co-occur frequently with the query terms more heavily. Acronyms in the MeSH con-
trolled vocabulary may also be recognized by our Feedback subsystem. For example, on

training topic 8, the query gene name is “luteinizing hormone/choriogonadotropin recep-
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tor”, and our Feedback subsystem correctly deduced “Receptors, LH” as the most relevant
chemical. This was accomplished without any recognition on the part of our system that

the acronym “LH” stood for “luteinizing hormone”.

5.1.2 Species Filtering

Because the same gene might exist in many different organisms, a retrieval system might
retrieve many documents which are relevant to the gene but for the wrong species. Filtering
out documents about species other than the topic species would therefore greatly increase
the precision of the retrieval.

In our Query Tiering subsystem, documents in which the name of the species does not
appear in the MeSH Heading metadata are removed from consideration. This does not
completely eliminate documents which are not relevant to the species, since it is possible
for the name of the species to appear in the MeSH Heading field even if the focus of the
paper is another species. It is quite common for an article about a gene in one species to
mention a homologue in a related species. Nevertheless, if the name of the wanted species
does not appear in the MeSH Heading metadata, then the article is (almost certainly) not
relevant. Thus, using species data in the MeSH metadata field may result in false positives
but not (or rarely) in false negatives.

In our Okapi subsystem, the name of the topic species is added to the term vectors.
However, we do not filter documents by species in this subsystem. Nevertheless, because

the Okapi result set is fused with the Query Tiering result set which does not contain any
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documents where the topic species is not mentioned in the MeSH Heading metadata, the

combined document set has effectively been filtered by species.

5.1.3 Use of Structured Data

Each MEDLINE record is divided into a number of metadata fields, and not every field is
equally useful for determining the relevance of a document. A match between the query
and the title, for example, appeared to be slightly more indicative of a document’s relevance
than a match between the query and its abstract, since the title is more tightly focused on
the subject of the document. The top groups in the TREC genomics track were unanimous
in according pride of place to the structured data and controlled vocabulary portions of
the MEDLINE records, although each group used the data differently.

Our system makes use of the chemical list both in our Query Tiering subsystem and in

our Feedback subsystem, as explained in Sections and B4 above.

5.1.4 GeneRIF Identification

Not every document in MEDLINE is cited by a GeneRIF, and in fact the distribution
of GeneRIF's is quite sparse. Because GeneRIFs are used as pseudo-relevance judgments
for the TREC genomics track, the ability to determine which documents are cited by
GeneRIF's confers a big advantage in the task of finding “relevant” documents.

At first, however, this might seem to be a case of overfitting the solution to the problem,

since GeneRIFs were chosen to be the qrels for the genomics track merely for the sake of
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convenience. But there are, in fact, some quite legitimate reasons for wanting to distinguish
between documents cited by GeneRIFs and those which are not. The goal of the task is
to find all documents related to the function of a gene. Only a portion of MEDLINE
documents are about gene function, of which a portion have been assigned GeneRIFs. The
removal of documents which are not about gene function at all from the search pool would
greatly reduce the effort needed for finding relevant documents. While there is no easy
way to determine whether a document is about gene function, documents which have been
assigned GeneRIF's is characteristic of this class of documents.

We did not make any attempt to classify documents which have been assigned GeneR-
IFs. However, GeneRIF identification was a component of several other systems which

achieved high performance in the Genomics Track.
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Conclusions

6.1 Summary

To summarize, we adapted an “off the shelf” general purpose retrieval system to a genomics
corpus. In doing so, we solved a number of problems which are essential for anyone wanting
to construct a biomedical document retrieval system. We handled ambiguities in gene
and protein names by generating term vectors containing relaxed versions, and also by
matching them against a number of query tiers. We attempted to restrict our search to
documents about the topics species by removing some documents in which the species is
not mentioned in the MeSH Heading metadata field. We made use of structured data
and controlled vocabulary by using the chemical list metadata for our query tiers and for
pseudo-relevance feedback. All in all, we tuned our retrieval system to the specific features

and characteristics of the MEDLINE corpus. Our system had an excellent performance in
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the TREC Genomics Track primary task, placing 4" among 25 participating systems.

The research reported here is a preliminary study in the field of genomics informa-
tion retrieval. Our experimental results demonstrate that it is possible to achieve very
good retrieval performance, even without using expert knowledge, by tailoring standard
IR techniques to the task and taking advantage of the corpus characteristics. Through
our experimentations with the MultiText for Genomics system, we have determined some
key features of a successful biomedical document retrieval system for the TREC Genomics
Track, namely: a strategy for dealing with ambiguities in gene names, the ability to rec-
ognize the topic species of a particular document, and exploitation of metadata and other
features of the corpus. We showed that a general purpose retrieval system can be success-
fully adapted to a biomedical corpus by incorporating each of these features.

As the TREC Genomics Track has generated a phenomenal amount of interest and
appears poised to become a very active track in the future, we have provided potential
future track participants with a recipe for constructing a good baseline system quickly.
Future research into biomedical document retrieval can be built upon the foundations

described in this thesis.

6.2 Future Work

There are a number of areas in which further work can be done. Due to time constraints, it

was not possible to test every combination of techniques, or even a very wide range of pa-
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rameters for each combination of techniques. Many experiments, such as fusion techniques
other than the ones used in the final MultiText for Genomics system, were abandoned
early on due to unsatisfactory preliminary results. Potentially, experimental parameters
or combinations of techniques other than those we used might improve further retrieval.

The implementation of the Okapi retrieval model in our Okapi subsystem applies the
retrieval model to entire documents, and does not distinguish between metadata fields.
It would be an interesting experiment to add query tiering to the basic Okapi retrieval
model by applying the retrieval model to each of the metadata fields separately. This can
be implemented in our system by splitting the corpus into separate databases, with each
database containing the data from one metadata field across all documents.

The metadata fields of the MEDLINE records contain information which we have shown
to be highly relevant to retrieval. An avenue of exploration that is likely to be fruitful is
to take advantage of the metadata more fully, in particular the hierarchical relationship
inherent in the metadata. We have found that the most effective technique for finding
the relevant documents in MEDLINE is to find a matching chemical name in the meta-
data. Currently, our system attempts to generate phrases and boolean expressions from
the topic gene and protein names which are then checked against the contents of these
metadata fields. This procedure may be improved in a number of ways. For example, the
Feedback subsystem often retrieves a chemical name which actually corresponds to a class
of chemicals. By recognizing that the topic gene or protein is a part of a broader family of

genes or proteins, the search may be narrowed or broadened as necessary depending on the
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number of relevant documents retrieved. Furthermore, instead of using heuristics to guess
at a chemical name or using feedback to find it, it might be possible to learn the chemical
name from the corpus using pattern matching. A system with built-in genomics domain-
specific knowledge can produce a list of candidate chemicals before any documents have
been retrieved. Some intriguing possibilities for learning this domain knowledge include
data mining the MEDLINE corpus and exploiting external databases, which we have not
done in our system.

It was assumed due to preliminary tests that the gene name type (such as whether a
gene name is its official name or an alias) made no difference to retrieval. However, further
analysis is required to confirm or refute this assumption. It may be that the gene name
type is relevant in a way that is not evident to the statistical techniques we have used in
our experiments.

Another area requiring further inquiry is an assessment of the suitability of the GeneRIF
data as the “gold standard” for relevance judgment. The use of GeneRIF's for this purpose
is somewhat problematic, as the GeneRIFs are incomplete, in the sense that there were
some documents which are related to a gene but which have not yet been assigned a
GeneRIF. As a result, there are many false negatives (documents which are relevant but
which are not judged to be relevant). Even though these false negatives should not affect
the relative performance of different IR systems with respect to each other, according to
the assumptions of the Cranfield paradigm, it would be instructive to pool the results from

the various Genomics Track participants to obtain a list of the most relevant documents,
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in order to determine the extent to which the incompleteness of the GeneRIF data affected
the evaluations of the performance of the various systems.

While our investigations were specific to the MEDLINE corpus and the requirements
of the TREC Genomics Track, the lessons we have learned may have broader applications

to other biomedical databases and other specialized forms of retrieval.
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