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Abstract

Debugging concurrent programs is difficult because concurrent programs contain
both sequential errors and additional concurrent errors. It is essential to have
a symbolic debugger that truly understands concurrency to improve concurrent
debugging capabilities and reduce debugging time. KDB was designed to be such
a concurrent debugger, however it was far from complete.

This thesis presents extensions to KDB’s functionality, usability, and portability.
Restricted conditional breakpoints, attachment of KDB to a running application,
behavioural groups, programmatic interface, and improved user interface have been
added to KDB to extend its functionality. KDB has been modified to understand
p#CH+ programs better so that inserted code is hidden from users improving KDB’s
usability. Finally, KDB has been ported to the 1486 architecture on the Linux OS,
increasing portability.

KDB is written in 4pC+4 and is a concurrent application, so it was possible to
test the extensions while debugging the development of the extensions. This direct
feedback helped in understanding if an extension was actually helpful in debugging

a concurrent program.
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Chapter 1

Introduction

The focus of this thesis is on developing tools and techniques to aid in the debugging
of concurrent programs. When debugging a sequential program, the process is
synchronous between the debugger and the application. However, when debugging
a concurrent program, these same control and manipulation mechanisms must be
provided independently for every thread of control. Unfortunately, most debuggers
do not work with concurrent programming languages or environments.

Of those that do deal with concurrency, most work only with kernel (operating-
system) threads. Kernel threads are controlled and scheduled by the operating
system not by the runtime environment of the application using them. While
kernel threads are essential, so too are user threads [ABLL92], which subdivide
a kernel thread’s execution among user threads in an application. User threads
have the potential to be significantly less expensive than kernel threads in many
cases because the language runtime system has specific knowledge about the form

of concurrency and its implementation.
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Given that user threads are important, some mechanism must exist to debug
concurrent programs using them. The reason is straightforward, each language
and/or thread library is different, and hence, each requires individual debugging
support. Furthermore, computer vendors cannot be expected to support all extant
and future languages and thread libraries. The KDB debugger [Kar95, BKS96],
developed by Martin Karsten, shows that it is possible to build very powerful and

flexible debugging support for user threads.

KDB (kalli’s debugger) is a multi-threaded debugger for debugging multi-threaded
pCH+ applications. pC+ [BS96] is an extended version of C+ providing light-
weight tasking facilities using a shared-memory model. Both uniprocessor and

multiprocessor pC+ applications may be debugged.

Unfortunately, KDB fell short in a number of ways due to time constraints in
its design and implementation. This thesis presents the work I did in augmenting

KDB to provide a significantly better concurrent debugger for user threads.

To extend KDB'’s functionality, I added fast conditional breakpoints, attachment
of KDB to a running application, behavioural groups, programmatic interface, and

several minor enhancements to KDB’s user interface.

As well, T solved a difficult problem relating to hidden code inserted by the
pCH- translator. Each pC+4+ statement is transformed into one or more C+4++
statements. The generated code is normally invisible to users, but becomes visible
when debugging pCH+ programs. Without knowledge of the inner workings of
pCH, 1t was easy to step into inserted code during debugging and become lost.

In particular, this problem confused and discouraged students from using KDB.
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The solution was to make KDB more aware of uC++ so that generated C+ code
remained hided during debugging, which substantially improved KDB’s usability.
Finally, KDB was originally designed to support multiple architectures; however,
Martin only had time to implement one architecture: SPARC. To determine if the
original design is truly generalized, I ported KDB to the Intel 486 architecture
on the Linux operating system. Linux/i486 was chosen because the 1486 has a
significantly different architecture from the SPARC, and it is a useful platform

used by many students.

1.1 Definitions

The following definitions are used in this thesis:

Debugging is the process of locating, analyzing, and correcting suspected faults

that cause a program to fail to perform its required function.
A processis a program component with its own thread.

A task (sometimes called a light-weight process) is similar to a process except
reduced along some particular dimension. It is often the case that a process
has its own memory address space, while tasks share a common memory. As
well, a process’s thread is usually scheduled by the OS, while a task’s thread

is usually scheduled within the application.

Parallelism occurs only when multiple processors (CPUs) are present in execution

of a program.
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Concurrency denotes when the execution of a program appears to occur in parallel.

A critical section is a group of instructions that must be performed atomically.

1.2 Debugging Issues in Concurrent Systems

1.2.1 Multi-threaded Systems

Machine architectures that support multi-threaded programming exist on:

e uniprocessor machines: programs are run concurrently via context-switching

among different processes and tasks within processes.

e multiprocessor machines: programs are run in parallel using separate CPUs

but sharing the same memory.

e distributed systems: programs are run in parallel on different machines

using separate CPUs and separate memories.

There are two types of inter-process communication (IPC) used to enable commu-

nication among different threads of control:

e shared memory: memory can be accessed by more than one process or pro-

Cessor

® message passing: no shared memory among processors, SO processors Coml-

municate by sending and receiving messages through communication channels

Multi-threaded applications consist of a set of concurrent threads that are dis-

tinguished by its creation:
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e kernel thread: created and managed by the operating system kernel.

e user-level thread: created and managed by the runtime system of a pro-

gramming language or a thread package within the process’s address space.

On all systems, user-level threads are executed by kernel threads. The address
space of an application is usually divided into code and data memory. If multiple
threads share the same code memory, they usually also share the data memory.

The reverse is not necessarily true.

1.2.2 Difficulty in Debugging Concurrent Applications

Concurrent programming is difficult due to the additional temporal dimension re-
sulting from concurrency. This temporal dimension makes it significantly harder
to debug current programs than sequential programs, since they contain both se-
quential errors and additional concurrent errors. Additional sources of error include
deadlock [MR91], race conditions [NM92], and non-determinism [MHS89], which are
unknown in the sequential domain. Each kind of concurrent error is discussed

below:

e deadlock: occurs when two or more tasks form a dependency cycle of holding

resources and waiting for those same resources.

e race condition: occurs when access to memory by different threads is not
properly synchronized, which causes non-atomic execution of a critical section.
Race conditions exist in both shared-memory and message-passing operating

systems.
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e non-determinism: sequential programs are deterministic: given the same
inputs, the result is always the same. However, concurrent programs do not
always reproduce the same behaviour. This situation is particularly hard
to deal with, since a programmer often has no control over it. Therefore,
deterministically replaying the execution of a program is very important in

debugging concurrent programs.

As a result of non-determinism in concurrent programs, there is a phenomenon
called probe effect [Gai86], which occurs when a concurrent program is augmented
with debugging or performance analysis probes, which increases or decreases the
program’s non-determinism, resulting in different program behaviour. The probe
effect makes debugging and analysing concurrent programs very difficult, because

the error or performance problem may not occur due to the probe effect.

1.3 Thesis Organization

Chapter 2 gives an overview of KDB. It presents the architecture and features
of KDB. Chapter 3 discusses some parallel and distributed debuggers, which are
contrasted with KDB. Chapters 4, 5 and 6 contain the contributions that were
made in the form of extensions to KDB.

Chapter 4 discusses the enhancements to the functionality of KDB, which in-
clude fast restricted conditional breakpoints, behavioural groups, attachment of
KDB to a program, programmatic interface and improvements to the user inter-

face.
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Chapter 5 discusses debugging translated code. Because pCH+ is a translator
and not a compiler, a pC4++ statement may be translated into one or more CH++
statements. This chapter present a method to make the inserted code invisible to
users when debugging a pC4+ program.

Chapter 6 discusses the implementation of KDB on an Intel 486 architecture in

the Linux environment.






Chapter 2

KDB

KDB (Kalli’s DeBugger) [BKS96] [Kar95] is a concurrent interactive source-level
debugger running on UNIX based symmetric shared-memory multiprocessors that
provides independent control of user-level threads. The design of KDB (but not
the implementation) is applicable to both shared memory and distributed memory
systems and is intended to be portable and inter-operable with other debugging

tools.

2.1 KDB Design

2.1.1 Independent Control of User Level Threads

Currently, computer vendors providing shared-memory concurrency hardware are
creating support for multiple kernel threads in an address space (UNIX process),

such as Solaris Threads. Along with kernel threads comes additional support for
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debugging in the form of new capabilities to query and manage kernel threads, e.g.,
extensions in /proc for kernel-level threads.

However, user-level threads are essential [ABLL92], and will always exist. It
1s naive of operating system developers to assume that the support they provide
today will encompass all extant or future concurrency paradigms. Therefore, it is
important to have a debugger that works with user-level threads and controls each
thread independently. Most existing UNIX debuggers use debugging primitives
based on ptrace [Sunb] or /proc [Suna|, which only allow synchronous interaction.
This existing approach blocks IPC and therefore precludes independent control of
user-level threads, and proper handling of multiple UNIX processes.

The mechanism used in KDB to achieve efficient asynchrony between the debug-
ger and the target application, as well as independent control of user-level threads,
i1s to distribute part of the debugger into the target application, called the local
debugger (see Figure 2.1), and the global debugger using two independent commu-

nication channels with the target application:

e Modification Channel: which is synchronous and created by using tradi-
tional debugging primitives (ptrace or /proc). It is established only tem-
porarily for the global debugger to modify the target application’s code, e.g.,

inserting a breakpoint.

e Control and Notification Channel: which is asynchronous and established
through a socket between local and global debugger. The local debugger
catches target application debugging events, like encountering a breakpoint,

and reports them to the global debugger. The global debugger then sends
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control commands, like continue a thread, to the local debugger. This com-
munication channel does not block either target application or global debug-
ger. Thus, it fulfills the requirements of independent control of user-level
threads. In fact, if it was possible for the local debugger to modify the tar-
get’s code directly, the synchronous modification channel could be merged

into the asynchronous control and notification channel.

Debugger Target
User Interface
Symbol Global User-level asynchronous
Information| Debugger Thread Control control channel L ocal Debugger
synchronous
< - 2. - - - = = = = =
Kernel Thread Control modification channel

Figure 2.1: Distribution of Work between Debugger and Target

Portability

Portability across different operating systems and architectures, and for different
source languages is important. Portability can be achieved by encapsulation of
dependent code. The separation of the debugger into multiple modules to ensure
certain portability aspects is shown in Figure 2.1.

The availability of any debugging hardware support makes implementation of a
debugger easier and efficient. For example, some hardware has support for single

stepping. However, a debugger can not rely on these features. Thus, the relevant
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code must be encapsulated so that it can be adapted to different architectures.
In the case of little or no hardware support, these facilities must be emulated in
software. For example, single stepping can be implemented by setting a breakpoint
at a proper location and continuing execution.

In KDB, the following parts of the debugger have been encapsulated:

e hardware support

e communication with the operating system (e.g., control of kernel threads)
e communication with the runtime system (e.g., control of user-level threads)
o different executable file formats

e target application’s global symbol table and code debugging information

e user interface

Inter-operability

Event collection and graphical visualization of the behaviour of a concurrent pro-
gram can help significantly in understanding it. Thus integrating all these abilities
into the debugging environment is a reasonable goal. Figure 2.2 shows a possible

relationship of auxiliary and debugging tools.

2.2 KDB Features

KDB provided a number of powerful debugging and implementation features. Those

features that are directly extended or have a related extension in this thesis are
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Debugger Analysis/Visualization

interaction

target control event handling

)
e*é\

Figure 2.2: Interactive Debugging and Event Generation

discussed in detail.

2.2.1 Operational Group

An operational group is mainly a convenience facility for a user. Instead of issuing
the same command multiple times for a group of threads, the command is issued
once for the operational group. This convenience facility is an important feature
for scaling to medium or large numbers of threads. Once groups of threads are
formed, a user can easily perform common operations on the group. Instead of
interacting with a larger number of individual threads, the user interacts with a
small number of groups. Threads can be arbitrarily grouped into an operational
group, but certain commands are meaningful to all threads in the group only if they

all share the same source code. For instance, setting a common breakpoint would
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be meaningless for threads that do not share source code. A thread can belong to

any number of operational groups.

2.2.2 Fast Breakpoints

Breakpoints in KDB are implemented by storing the breakpoint handling code at
some convenient place in memory and inserting a branch to the breakpoint handling
code in place of the original code. This is opposed to the traditional approach of
inserting a TRAP instruction that requires interaction with the OS, and hence,
is expensive. As well, performance can be increased if the breakpoint is handled
in user code, since the number of kernel context switches between debugger and
target 1s decreased. For example, a single breakpoint often applies only to a small
number of threads. However, in an application with many threads sharing the
same code image, a breakpoint can be triggered by other threads thousands of
times. The check to see if the breakpoint is applicable to the current thread can
be done quickly by the local breakpoint handler instead of the global debugger,
and the global debugger is notified only if the breakpoint is applicable. It is shown
in [Kar95] that checking the applicability of a breakpoint using a local breakpoint

handler is approximately 2400 times faster than using the global debugger.

2.2.3 Using GDB Code

Since writing a debugger from scratch is very difficult, and to increase the porta-
bility of the debugger and avoid unnecessary implementation, parts of the GDB

debugger [SP95] (a portable sequential debugger with source freely available) were
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re-used. Using GDB code also gives the advantage of possible benefit from future
GDB development as well as its portability for different platforms.
GDB code 1s used to

o deal with different executable file formats, e.g., a.out, elf etc.

e access symbolic debug information, which is inserted into the application

when it is compiled with the -g flag

e interpret application data, like stack and variable contents

To gain synchronous control of the target process, GDB, however, is not run
as a separate process and all parts of the GDB code that can gain control over a

UNIX process or modify the target process have been removed.






Chapter 3

Related Work

3.1 The Portable Parallel/Distributed Debugger

The Portable Parallel/Distributed Debugger [Ho096], p2d2, was designed and built

at NAS to accomplish the following two main objectives:
e portable enough to run on the varied collection of machines in NAS

e capable of controlling the execution of 256 processes, without requiring a

window for each process.

p2d2 features a client-server architecture, see Figure 3.1. The debugger client con-
sists of a user interface with which the user interacts, and a distribution manager
that keeps track of processes and process groups. As well, a debugger server man-
ages server operations communicated across the network to possibly multiple remote

servers controlling multiple target processes.

17



18 Chapter 3. Related Work

remote
p _ target
7 server
7/
7
7
user distribution | debugger |~
interface | manager server |\
AN
AN
. AN
client N remote
server

Figure 3.1: p2d2’s Client-Server Architecture

Like KDB, the p2d2 debugger server is based on gdb, in fact, each remote server
1s an instance of GDB. The debugger server is responsible for sending commands
to the appropriate instance of GDB and parsing any replies. Unlike KDB, GDB
is used to control the target process. The p2d2 debugger was not designed to
support user-level threads. On the other hand, KDB supports independent and

asynchronous control of user-level threads.

p2d2 supports the following useful features:

e control set: similar to the operational group in KDB, which allows a user to

send a command to a set of processes.

o focus group: displays more detailed information about a handful of processes,

e.g., process’s ID, machine name and executable name, state information.
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3.2 The Mantis Parallel Debugger

Mantis [LC96], a graphical debugger for parallel programs, provides integrated
support for the Split-C language [CDG193]. The Mantis interface can also be used
for sequential debugging in C, C4+4 Fortran, and other languages, allowing a single
environment for both sequential and parallel debugging.

Mantis 1s also based on GDB with added language support. A debug session
consists of a global debugger and multiple node debuggers. Both the global debug-
ger and the node debugger are based on GDB with global language support and
nodal language support respectively. Each node debugger interacts with a user pro-
cess. The global debugger gathers information from the node debuggers and directs

user requests to them. Mantis was not intended to support user-level threads.

3.3 IBM Distributed Debugger

The IBM Distributed Debugger [MMP*96] supports the debugging of multi-threaded,
multi-process and multi-language applications that use multiple middlewares while
executing in a heterogeneous distributed environment. The debugger consists of

the following two parts:

e front-end: consists of the user interface views, the centralized logic required

to control the distributed application, and an event monitor.

e back-end: uses a platform independent class library and executes on each of

the machines on which the application executes.
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A debug session consists of a front-end and multiple back-ends controlling a dis-
tributed application. The architecture is similar to that of the p2d2 debugger,

except it 1s more sophisticated.

The client and the debugger server of the p2d2 debugger are similar to the front-
end of the IBM distributed debugger, but the IBM distributed debugger has an
event engine consisting of an event collector that collects and stores events that
are generated by the distributed application and an event monitor that displays
the events collected by the event collector. The event engine is based on David

Taylor’s event monitoring tool [Tay93| from the University of Waterloo.

The remote server of the p2d2 debugger is somewhat like the back-end of the
IBM distributed debugger. Each remote server of the p2d2 debugger is merely
an instance of GDB. The back-end of the IBM distributed debugger consists of a
debug demon and a debug engine. The debug demon is assumed to be running
on every host that a debug engine runs on. The purpose of the debug demon
1s to accept a request from the front-end and start up a debug engine. Once
the debug engine is started, it communicates with the front-end directly. The
debug engine contains an instrumentation and control library (ICL) and Middleware
Control Services (MCS). The ICL provides the debugger developer with a platform-
independent and language-independent class library for debugging single-process
applications. The MCS serves as a mechanism needed by a debuggee to notify the
debug engine asynchronously of the occurrence of certain events in the middleware.

These notifications allow the debug engine to take appropriate event-specific action.
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According to Donald P. Pazel (personal communication), the IBM distributed
debugger provides independent control of kernel threads but currently does not

provide support for user-level threads.






Chapter 4

Enhanced Features

While Karsten implemented the initial core components of KDB, a number of im-
portant features still remained unimplemented. These missing features are neces-
sary to substantially enhance the usability and power of the debugger.

In this chapter, I discuss the following four major enhancements I added to
KDB (fast conditional breakpoints, attachment of KDB to a running application,
behavioural groups and programmatic interface), as well as several other minor

enhancements.

4.1 Enhanced Breakpoint

The ability to set breakpoints is possibly the most important feature of a debugger.
Fast breakpoints are essential to provide adequate performance with multiple tasks
sharing code images. Conditional breakpoints are also very useful in debugging,

for example, when debugging a looping structure, the ability to stop when the

23
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loop iterates N times is essential. The easiest and quickest way to achieve this
is to set a conditional breakpoint because issuing repeated continue commands is
unacceptable. In this section, fast breakpoints in KDB are discussed and how fast

restricted conditional breakpoints were added.

4.1.1 Fast Breakpoints

Fast breakpoints implemented by Martin in KDB are similar to those discussed in
[Kes90]. Breakpoints are implemented not by a traditional trap instruction, but
by inserting a call to a dedicated breakpoint routine (breakpoint_handler_i()). The
original instructions at the breakpoint are saved at a temporary location. When a
task executes the inserted call, the called routine checks if the breakpoint applies
to this thread. If the breakpoint does not apply to the current thread, the original
instructions are executed at the temporary location. The original instructions are
restored when the breakpoint is removed. Figure 4.1 shows the pseudo code for a
breakpoint handling routine.

There are N breakpoint_handler_i() routines (where i = 0..N-1) created at com-
pilation time, one for each breakpoint. A breakpoint is implemented by inserting
a call to the appropriate breakpoint_handler_i() in the application’s code. Since
N 1s finite, when a breakpoint is removed, the code changes are undone and the
breakpoint_handler_i() routine is re-used for another breakpoint. The global debug-
ger cycles through the N breakpoint_handler_i() routines as breakpoints are set and

cleared.

For breakpoint_handler_i() to decide whether the breakpoint applies to the cur-
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bool breakpointHandler( int number ) {
sendMessageToGlobalDebugger( number );
bool breakpoint_removed = receiveContinueMessageFromGlobalDebugger();
return breakpoint_removed;

}

void breakpoint_handler_i() {
saveApplicationState();
/I'U_THIS_TASK is a pointer to the currently executing user-level thread
if ( U_THIS_TASK->bp_check[i/8] & (1 << (i % 8)) ) { // breakpoint set for thread
if ( breakpointHandler( i) ) { /I tell global debugger
asm(" sub RA, -8, RA™);
restoreApplicationState();
return;
}
}
restoreApplicationState();
asm("

I reserve as many NOP instructions as needed to store the tenporary code
nop

I final returntojunp back intothe application
j mp addr ess_after _breakpoi nt _code

");

Figure 4.1: Breakpoint Handling in Application Code
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rent thread, an N-bit mask (bp_check in the pseudo code) is stored with each
thread. The breakpoint is applicable to the current thread if the ¢th bit of the
mask in the current thread is set, which corresponds to breakpoint_handler_i().
If the breakpoint is applicable to this thread, the routine breakpointHandler(i) is
called, which notifies the global debugger that the breakpoint is encountered for
this thread, and waits for a continue message from the global debugger.

When a continue message is received for this thread, its execution continues. If
the breakpoint is removed at this time (i.e., breakpointHandler(i) returns true), the
original instructions are already restored at the original location, thus, the return
address needs to be adjusted backwards in order for the original instructions to be
executed at the original location. If the breakpoint is not removed at this time,
then the modified original instructions are executed at the temporary location.

Since breakpoint handling interacts with the runtime system, which handles the
scheduling of the user-level threads, this kind of breakpoint can not be set in parts
of the runtime system. However a traditional sequential debugger can be used to
debug this part of the runtime system, if needed.

As mentioned earlier in Section 2.2.2, having the breakpoint applicability test
checked locally in the application produced a speedup of 2400 times over using the

traditional approach.

4.1.2 Fast Restricted Conditional Breakpoints

I augmented the existing fast breakpoints with a conditional check, e.g.,

break Philosopher.cc:82 if k1 ==
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which means the breakpoint is set for the current thread at line 82 of source file
Philosopher.cc and the breakponit is only triggered when variable k1 is equal to
9. Like fast breakpoints, the breakpoint condition is checked and evaluated locally
during breakpoint evaluation, rather than at the global debugger. The conditional

breakpoint is restricted because only the following conditional forms are allowed:

° integer [ == | !=|>=| <=]| > | <] integer

° pointer [ == | !=| >=| <= | > | <] pointer

It 1s infeasible to dynamically compile and insert code into the target application
for arbitrary conditional commands presented dynamically to the global debugger.
Therefore, all possible combinations of operand types and operators must be pre-
compiled into the local debugger, and the appropriate operation is dynamically
performed during breakpoint evaluation. Since most conditions involve only inte-
gers or pointers, the restrictions on the conditional expression are not particularly

significant.

Data Structures

Since the breakpoint conditions are evaluated in the target application, the break-
point conditions are stored in the local debugger. Tasks can share breakpoints but
not conditions unless some technique is used to determine equality of expressions.
Therefore the number of conditions that may be stored in the local debugger varies
with the number of conditional breakpoints set by the user. An array of linked lists

of size N is used to store the conditions, where N is the maximum number of break-
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breakpint O
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breakpoint 1 %

breakpoint N %

Q — condition associated with thread id

Figure 4.2: Queued Conditions identified by Breakpoint Number and Thread Id

points preset when the local debugger is compiled. The data structure is shown
in Figure 4.2. Each condition is uniquely identified by the breakpoint number and
thread id. If a limit is placed on the number of conditions (as for breakpoints), the
data structure could be implemented with a fix sized two dimensional array with
better performance. However, the overhead of dynamic memory allocation is small
compared to the cost of evaluating the condition and is more flexible, using less
memory. The disadvantage of this approach is that the local debugger interacts
with the execution of the program more heavily, increasing the probe effect.
When a conditional breakpoint command is given to the global debugger, the

expression string is stored in the global debugger without evaluating the operands.
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This delay is necessary because the operands may not yet exist in the target; thus
the addresses and other information for the variables in the breakpoint condition
may not be retrievable at the time when the breakpoint is set. The global debugger
(which implements the breakpoint by selecting a breakpoint handler routine) now
tells the local debugger that the inserted breakpoint is associated with a condition.
When the breakpoint handler is invoked for the first time, and if the breakpoint is
associated with a condition, the local debugger sends a request for the condition
to the global debugger. The global debugger then looks up the addresses and
other information for the operands associated with the condition and sends this
information to the local debuggers (this is done only once). The breakpointHandler
routine in Figure 4.1 is modified to deal with the breakpoint condition, and shown

in Figure 4.3.

Evaluation of Breakpoint Condition

As mentioned in Section 4.1.2, for efficiency the breakpoint condition is evaluated
by the local debugger. The following types of operand are supported: integer or

pointer. The operation can be one of the following;:

<, <=, >, >z !:, ==
An operand of a condition can be a constant or a variable. The evaluation of a
constant is the constant itself. The evaluation of a variable depends on whether the

variable is local, static or register. The variable can also be a member of a structure,

e.g., this->id. There are four different forms allowed:

A, *A, P->A and S.A
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bool breakpointHandler( int number ) {
bool breakpoint_removed = false;
ULThreadld thread_id = U_THIS_TASK;

if (bpConditionMask[number] == true &&
bpCondition[number].search(thread_id) == NULL) {
sendRequestForConditionToGlobalDebugger( number );
bpCondition[number] = receiveConditionMessageFromGlobalDebugger();

}

if (bpConditionMask[number] == false ||
EvaluateCondition(bpCondition[number].search(thread_id)) == true) {
sendMessageToGlobalDebugger( number );
breakpoint_removed = receiveContinueMessageFromGlobalDebugger();

}

return breakpoint_removed;

Figure 4.3: Handling Breakpoint Condition

In general, an address of a variable is evaluated as:

Variable Form Evaluation of the Address
A absolute_address(A)

*A contents(A)

P->A contents(P) + offset(A)

S.A absolute_address(S) + offset(A)

However, the absolute address of a local variable changes during execution, e.g., a
local variable of a routine may have a different address for each invocation. Thus,

the local debugger only keeps relative addresses of local variables, since relative
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addresses do not change. In the case of a register variable, the register number
i1s stored. The local debugger calculates the absolute addresses needed for the

conditions from the relative addresses:

e the absolute address of a static variable is the address of the static variable,
which does not change during the execution of the program; thus, this address

1s kept at the local debugger.

e the absolute address of a local variable can be calculated as:
address = fp + offset

where address is the address of the local variable, fp is the frame pointer
of the user function, and offset is the relative address of the local variable.
Figure 4.4 shows the stack frame for the SPARC architecture. The fp of the
user function can be retrieved through the fp from the breakpointHandler(i)
function (see Figure 4.5), since the caller’s fp is stored on the callee’s stack.
The offset of a variable on the stack is looked up by the global debugger and

stored in the local debugger.

e For the SPARC architecture, when the routine breakpoint_handler_i() is called,
the “local” and “in” registers are saved on the user’s stack by the save in-

struction. The absolute address of a register variable is calculated as
sp + register_offset[register_number]

where sp is the stack pointer of the user function, register_offset contains the

offsets for registers stored on the stack, which is different from architecture



32

Chapter 4. Enhanced Features

Previous Stack Frame

%fp (old %sp)

%fp - offsst —=

%sp + offset —=

Space (if needed) for automatic
arrays, aggregates, and addressable
scalar automatics

Current Stack Frame

16 words in which to save register
window (in and local registers)

%sp

¢

Stack Growth

(decreasing memory address)

Next Stack Frame

Figure 4.4: The SPARC User Stack Frame
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(where the breakpoint is set)
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breakpointHandler i

cals

breakpointHandler(i)

Figure 4.5: The Breakpoint Handler Call Stack

to architecture. The sp of the user function can be retrieved in the same way

as the fp through the caller’s stack (see Figure 4.4).

Note that for expressions like P->A, the offset for A is evaluated only once by the
global debugger. If the value for P is changed later in the program, e.g., assigned to
NULL, this can cause a run time error. Correctly handling this case is beyond the
scope of this work. To fully support all possible breakpoint conditions, it is neces-
sary to implement a small parser within the application, which parses and evaluates
expressions. This approach is not appropriate for compiled languages, nor easily
implemented. Although, the fast restricted conditional breakpoints are useful, it
does not support all necessary conditions. Thus, a fallback option involving the
global debugger evaluating more complex conditions is reasonable. However, it is

not currently supported.



34 Chapter 4. Enhanced Features

Performance

A simple experiment was conducted in which the same conditional breakpoint was
set in a pC4++ program using GDB and KDB. KDB was found to be approximately
30 times faster than GDB.

4.2 Attachment of the Debugger to a Running
Application

Sequential programs are deterministic, errors can be regenerated by rerun the ap-
plication. However, errors may not be regenerated easily for concurrent programs,
since they are non-deterministic. Thus, the ability to attach a debugger to a run-
ning application is extremely useful, especially for debugging applications with an
infinite loop or a deadlock. Therefore, I added this feature to the existing KDB.

To attach KDB to a running application, the application has to be compiled
with the debug option, which is the default. This option links the application
with the debug version of the pC++ unikernel or multikernel. The debug version
performs runtime checks to help during the debugging phase of a pC++ program
and links the local debugger modules with the program. As well, calls are inserted
in certain routines to report particular events to the local debugger, which must be
subsequently reported to the global debugger, such as the creation of a user-level
thread.

The command for attaching KDB to an executable already running is:

attach executable-file process-id
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This command is issued in the command prompt of the KDB main window (see
Figure 4.6).

In traditional debugging, attaching to a running target application is straightfor-
ward. It is accomplished by using the system primitives ptrace or /proc, which are
only suited for a sequential debugger. As discussed in Section 2.1.1, the local debug-
ger 1s distributed into the target application, therefore using the PTRACE_ATTACH
command of ptrace freezes the application and thus the local debugger. Although
/proc does not stop the target process from continuing normal execution, it is
impossible to asynchronously wait for events from the target application.

In order for KDB to attach to a running application, the global debugger has to
establish a communication channel to the local debugger of the target application,
then obtain information about the structure of the user-level thread system through
the local debugger, which for pC++ is the clusters, processors (kernel threads) and
user threads of the application.

When a target application starts, the uC++ kernel startup routine checks whether
a global debugger exists. If it does, a local debugger is activated to communicate
with the global debugger. If the global debugger does not exist when the target ap-
plication starts, the local debugger is not activated, and hence, calls to its routines
to report events simply return. Thus, attaching the global debugger to the target

application involves the following steps:
o request kernel of the running target application to activate the local debugger.

e establish the asynchronous communication channel between the local and

global debugger (See Figure 2.1).
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Figure 4.6: Main Window
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e transfer the current execution environment, i.e., clusters, processors, and

threads, from the application to the global debugger.

4.2.1 Activating the Local Debugger

Initially, some form of communication is needed between the global debugger and
the application to inform the pC4+ kernel to activate the local debugger. This
initial communication is accomplished via a variable uKernelModule::uAttaching in
the debugging version of the pC4+ kernel, which is checked every time a context

switch is done.

if ( uKernelModule::uAttaching ){
uKernelModule::uAttaching = 0; // reset

uAttachLocalDebuggerinstance = ActivateLocalDebugger();

To attach, the global debugger stops the application and modifies the variable
uKernelModule::uAttaching using ptrace or /proc.

If the variable uKernelModule::uAttaching was shared among all processors exe-
cuting an application, there would be a race condition as each processor noticed the
variable set by the global debugger and activated the local debugger. However, this
problem 1is easily dealt with by making uKernelModule::uAttaching private to each
processor as opposed to shared among all processors, so that each processor has a
private copy of the variable. To attach, any UNIX process id associated with the
application can be specified in the KDB attach command, and its unique instance

of uKernelModule::uAttaching is modified.
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Note that certain actions involved in activating the local debugger require locks.
However, locks can not be used by the kernel thread. Only user-level threads can
use locks, since when a thread blocks acquiring a lock, it is put to sleep by the
kernel when the next context switch is performed, and another thread is scheduled.
However, the kernel thread can not put itself to sleep, since this would be a deadlock.
Thus, the local debugger can not be activated directly from the kernel. Instead, the
check for attaching is performed inside the context switch, just before restarting the
next user-level thread. In effect, the activation of the local debugger is performed
by the next user-level thread to be scheduled (i.e., piggy-backed on the restarting
of the thread), and that thread is allowed to block if necessary.

One additional problem is that the application can be in a state where the
variable uKernelModule::uAttaching may not be checked, since the pC4+ kernel does

perform context switches for the two following cases:

e There is no work to do, so the pC++ kernel thread puts itself to sleep, thus

no context switching is performed.

e In the uniprocessor case, if the application turns off time slicing, no context

switching is done.

To solve this problem, the global debugger always sends a SIGALRM signal to
the target application immediately after the variable uKernelModule::uAttaching is
modified. This signal either wakes up the pC++ kernel thread and/or forces the

1C+- kernel to perform a context switch.
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4.2.2 Establish the Asynchronous Communication Channel

Since KDB currently does not handle distributed applications, when a target appli-
cation starts, the pC4+ kernel activates the local debugger if the global debugger
exists by checking for the existence of certain shell variables. If the shell variables
exist, the local debugger then finds the INET communication port number from a
file whose name is in the environment variable KALLIS DEBUGGER_PORT_, which
is set by the KDB command. Unfortunately, an environment variable created after
an application starts running is not accessible. Instead, the global debugger port
number is supplied by the global debugger by writing the port number into the
variable uKernelModule::uAttaching. Since the port number is always positive, it is
possible for the puC++ kernel to know when the variable has been modified by the

global debugger.

4.2.3 Transferring the Current Execution Environment

Once the local debugger of KDB is activated, there is still the problem of trans-
ferring the particular aspects of the application’s execution state needed by the
global debugger. In essence, the application needs to be stopped, with respect to
the actions that are synchronized between it and the global debugger, for example,
the global debugger is informed about the creation and destruction of each cluster,
processor and task. There are two approaches to solving this problem.

The first solution is for the local debugger to inform the global debugger of its
activation via the communication channel, and the global debugger then stops the

application and traverses all the pertinent runtime data structures to acquire the
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information it needs about the application. Unfortunately, this approach is difficult
because the interface for reading data from the application can be as small as 4
byte words of data. It also makes the code performing the traversal dependent on
the structure of the runtime kernel, which makes maintenance difficult when the
runtime system changes. As well, if KDB is to handle different user-level thread
libraries, it must have a detailed knowledge of the data structures in each.

The second solution is to have the local debugger, which is already thread
library specific, stop the application and transfer the data it would normally have
been sending as events occurred. To do this requires traversing the runtime data
structures to locate the necessary information, and clearly, these data structures can
not be changing during the traversal. A safe traversal i1s accomplished by making
the local debugger a monitor, which serializes access. This serialization is already
needed during normal usage of the local debugger because it has internal state.

Once the activation routine of the local debugger is called by the activating
thread, the runtime data structures can be safely traversed because all calls that
report events to the local debugger wait until after the traversal is complete and
the local debugger is fully activated. In fact, an application can continue to execute

during the attachment if it is not generating new events for the local debugger.

4.3 Behavioural Groups

Behavioural groups was proposed by Martin, but not implemented. The idea of a
behavioural group is to allow a user to debug a program at a higher level, so the

expected and actual behaviour of the program can be compared. A similar and
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more sophisticated approach is found in [Bat95].

In [BKS96] and [Kar95]|, a behavioural group has been defined as a set of
arbitrary tasks whose behaviour is linked to some event. If an event occurs for any
task in a behavioural group, an action is applied to all the tasks in the group, e.g.,
when one task triggers a breakpoint, all tasks in the group are stopped. Hence, a
behavioural group must have an event and operation associated with it. Given an

event and a corresponding action, the behavioural group performs the following:
e the event operation is applied to the group if the event is a breakpoint
e wait for the event to occur
e when the event occurs, the action operation is applied to the group.

In order to examine the idea, I implemented the initial version of behavioural
groups. To use a behavioural group, a user selects a group of threads from the
main window (see Figure 4.6), and presses the “Behavioural Group” button. A
behavioural group window (see Figure 4.7) pops up with the group of threads se-
lected from the main window. The initial version restricted the event commands to
breakpoint commands, and operation commands to the stop command. Figure 4.7
shows a behavioural group window where a breakpoint is about to be set for each
Philosopher task, and each task will be stopped when one of the tasks reaches the
breakpoint. Finally, no thread can belong to more than one behavioural group of
threads, because different behavioural groups could have comflicting opertations
such as stop and continue.

An attempt was made to generalize the initial version by allowing other events
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Figure 4.7: A Behavioural Group Window

and operations. What events other than break and what operations other than stop
could provide useful capabilities for debugging? Unfortunately, the answer to this

question appears to be none. For example,

event = stop and operation = stop

would mean when one of the tasks in the group is stopped by a user (by pressing the
stop button on the task’s thread interface, see Figure 4.9), then the debugger stops
the rest of the tasks in the group. However, this can be achieved more efficiently
by an operational group to stop all tasks in the group. The reason for this is that
most events like stop or continue are predictable and the only unpredictable event is
encountering a breakpoint. All predictable events can be handled by an operational
group.

The conclusion is that the restricted (initial) version of behavioural groups is

extremely useful. The unpredictable occurrence of encountering a breakpoint and
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stopping all tasks in the group can be used for detecting race conditions, which
are very difficult to locate. Currently, there are no other unpredictable events in
KDB other than breakpoint. One possible way of making a behavioural group
more general is to allow some form of external events. This extension might also
allow threads to be in more than one behavioural group. However, this idea is not

implemented.

4.4 Programmatic Interface

Event collection and graphical visualization of the interactions among threads of
a concurrent program can help significantly in understanding and debugging the
program. Thus, it 1s useful to integrate all these abilities into a debugging envi-
ronment. Normally debugger input is usually tied to keyboard input. However
a programmatic interface to a debugger allows input from another program that
wants to use the debugger for some purpose, e.g., an event visualization tool. Thus,
KDB was extended with a programmatic interface.

Often a programmatic interface is piggy-backed on top of the user interface.
For example, debuggers with a command line interface can be accessed program-
matically by redirecting input and output. However, this approach is not always
satisfactory because the communication link may not be general enough, and gen-
erating user-level inputs and parsing user-level outputs to find required information
1s tedious.

Instead, I augmented KDB with a separate communication channel and protocol

for the communication on the channel. The channel is an INET socket so that
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remote (distributed) interaction is possible. The protocol is a simple machine level
protocol for controlling KDB and obtaining output. Clearly, it would be best if

there was a standard protocol for communicating with a debugger.

Two additional command line options are introduced:

e -api: enable the programmatic interface, an INET socket is created and the

port number is printed on the terminal.

e -nointerface: disable the Motif debugger interface, the global debugger is

started without the Motif window interface.

The following messages are supported by the programmatic interface, where
each message name has a corresponding #define in the programmatic interface in-

clude file. The following constants and types are defined:

#define MAX_CMD_LEN 256

#define MAX_VAR_LEN 64

#define MAX_COND_LEN 128

#define MAX_PATH_LEN 256

#define MAX_PRINT_LEN 1024

typedef enum {BP_SET, ..., TERMINATE} MessageType;
typedef int NotifyMsg;

typedef void=* Threadld;

typedef void=* Listld;
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BP _SET

Set a breakpoint in the specified user-thread. The message specifies the user thread

id and the breakpoint location, which is parsed by KDB, for example,

- 82 // breakpoint at line 82
- Table::pickup // breakpoint in the function pickup

- Philosopher.cc:82 if k1 <= 10

The structure of the message from the controlling program is shown below:

struct {
MessageType message_type;
Threadld thread_id;
char break_cmd[MAX_CMD_LEN+MAX_COND_LEN];

|3

The structure of a notification message from the global debugger is shown below:

struct {
MessageType message_type;
NotifyMsg notify_msg;

¥

On success, notify_msg is set to 0. In the case of failure, notify_msg is set to one of

the following:

1. thread does not exist
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2. thread is not in stopped state

3. breakpoint command error

4. other error

BP_CLEAR

Clear a breakpoint in the specified user thread. The message specifies the user
thread id and the breakpoint location, which is parsed by KDB. Clear commands
are similar to breakpoint commands except there is no conditional clause. For

example:

- 82
- Table::pickup

- Philosopher.cc:82

The structure of the message from the controlling program is shown below:

struct {
MessageType message_type;
Threadld thread_id;
char clear_cmd[MAX_CMD_LEN];

The structure of a notification message from the global debugger is shown below:
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struct {
MessageType message_type;
NotifyMsg notify_msg;

¥

On success, notify_msg is set to 0. In the case of failure, notify_msg is set to one of
the following:

1. thread does not exist

2. thread is not in stopped state

3. clear command error

4. other error

CONTINUE

Continue a user thread, which may be previously stopped or has encountered a
breakpoint. The message specifies the user-thread id of the user-thread to be con-

tinued. The structure of the message from the controlling program is shown below:

struct {
MessageType message_type;

Threadld thread_id;

The structure of a notification message from the global debugger is shown below:
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struct {
MessageType message_type;
NotifyMsg notify_msg;

¥

On success, notify_msg is set to 0. In the case of failure, notify_msg is set to one of

the following:

1. thread does not exist

2. thread is not in stopped state (thread is in running already)

STOP

Stop a specified user thread. The message specifies the user thread id to be stopped.

The structure of the message from the controlling program is shown below:

struct {
MessageType message_type;

Threadld thread_id;

The structure of a notification message from the global debugger is shown below:

struct {
MessageType message_type;
NotifyMsg notify_msg;

¥
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On success, notify_msg is set to 0. In the case of failure, notify_msg is set to one of

the following:
1. thread does not exist

2. thread is in stopped state (thread is stopped already)

PRINT

Print a variable in the specified user thread. The message specifies the user thread
id and the variable name. The result of print is sent back to the controlling program.

The structure of the message from the controlling program is shown below:

struct {
MessageType message_type;
Threadld thread_id;
char var_name[MAX_VAR_LEN];

The structure of the notification message from the global debugger is shown below:

struct {
MessageType message_type;
NotifyMsg notify_msg;
char printfMAX_PRINT_LEN],
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On success, notify_msg is set to 0. The raw output is put in field print. In the case

of failure, notify_msg is set to one of the following:
1. thread does not exist

2. thread is not in stopped state

ATTACH

Attach the debugger to the specified process. The message specifies the process id
and the relative or absolute path of the executable. The structure of the message

is shown below:

struct {
MessageType message_type;
int pid;
char path[MAX_PATH_LEN];

The structure of a notification message from the global debugger is shown below:

struct {
MessageType message_type;
NotifyMsg notify_msg;

¥

On success, notify_msg is set to 0. In the case of failure, notify_msg is set to one of

the following:
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1. process does not exist
2. executable file does not exist

3. executable file is not compiled with -debug option

CLUSTER_LIST, THREAD_LIST, PROCESSOR_LIST

Send the current cluster list, thread list, or processor list, depending on the message_type,

to the controlling program. The structure of the message is shown below:

struct {

MessageType message_type;

The structure of the notification message from the global debugger is shown below:

struct {
MessageType message_type;
NotifyMsg notify_msg;
char list_name[MAX_VAR_LEN];
Listld id;

Members of a list are sent one at a time. notify_msg is set to 0, if current list

requested is completely sent. notify_msg is set to 1, if more list items are to be sent.
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BP_HIT

Notification only message. Notify the controlling program that a breakpoint is

encountered in a thread. The structure of the message is shown below:

struct {
MessageType message_type;

int thread_id;

PROGRAM_TERMINATED

Notification only message. Notify the controlling program that the program has

terminated. The structure of the message is shown below:

struct {

MessageType message_type;

TERMINATE

Close the connection. KDB removes any outstanding breakpoints from the appli-
cation and terminates. At this point, the application continues execution normally.

The structure of the message is shown below:

struct {

MessageType message_type;
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There is no notification.

4.5 Other Enhanced Features

4.5.1 Updating GDB

Although using GDB code has advantages, as mentioned in Section 2.2.3, there are

a few disadvantages as well:

o the design of GDB is tightly integrated, hence it is non-trivial to use only the

necessary parts
o the need to configure and compile GDB before KDB can be built

e GDB has to be constantly upgraded to work with the most recent version of
the GNU compilers and it often lags behind. For example, gdb-4.14 can not
find addresses of local variables for programs compiled with g++-2.7. This
problem has been solved in gdb-4.16 on most platforms, however, it still exists

on Solaris.

Figure 4.8 shows how GDB code i1s used with the rest of KDB. A library,
1libgdb, i1s constructed containing the parts of the GDB code that are needed
by KDB and APIs for interacting with the GDB code. Modules that are not
needed by KDB are removed (for example, language extensions for Fortran). The
APIs were written to make access to GDB code easier. For example, the function
accessGDB_getCallingFrame(prgreg_t* reg_set, int nth) creates and returns the nth

stack frame backwards from the current frame. Finally, because GDB code is not
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thread safe, access to the APIs is covered by a monitor, AccessGDB, to serialize
access.

The libraries, 1ibbfd, libiberty, libopcodes and libreadline, are part of
the GDB source distribution. Each library provides support for GDB. For exam-
ple, 1ibbfd (Binary File Descriptor) deals with different formats for executables
and core files. These libraries use the pC4+ malloc function, since the default
system malloc 1s not safe for pyC++ threads. This is achieved by turning on the flag

-DNO_MMALLOC when the libraries are compiled.

user-level

thread

user-level
thread

-

AccessGDB

GDB code

,//\\

libbfd

libiberty

libopcodes

libreadline

During the development of KDB, GDB has been updated twice, from version

4.14 to 4.15 and 4.15 to 4.16, to keep compatibility with newer versions of g++.

Figure 4.8: Access GDB utilities
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For each update, the following enhancements were performed:

o check whether the GDB functions called from the APIs still exist and have
the same functionality. Unfortunately, this check must be done by browsing
GDB source code, reading comments and writing small programs to test the

functionality.

e GDB contains a data structure, target_ops, that contains callbacks for a vari-
ety of actions, for example, reading a target’s memory. This structure must be
checked to determine if the declarations for callback functions have changed.
If target_ops is extended, some additional callback functions have to be pro-

vided.

e update the patch files to reflect new locations of changes.

e remove newly added GDB object files that are not used by KDB, e.g., ser-tcp.o.

The APIs to GDB have also been augmented for implementing KDB on the

1486 architecture. This is discussed in Section 6.4.

4.5.2 User Interface

I made a few changes to the KDB interface based on experience gained through

usage.

Click to Print

One of the most common operations performed during debugging is printing the

value of a variable. Normally, printing is performed by typing the entire print
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command in the command prompt of the thread window. To simplify this operation,
the interface was modified so that double clicking on a variable or function in the
source text pane of the thread window prints the value of the variable or the function
address. The longest C-style variable/expression not separated by whitespace is
selected, e.g., clicking anyway on “state[me]” selects the entire string. As well,
the print command for this operation is also inserted into the command prompt
verifying what command is executed. This command is also helpful for printing
slight variants of the variable, for example, to print *NoPhils after printing NoPhils.
Figure 4.9 shows a double clicking on the variable state[me], and the output is
shown in the output pane. Finally, cut and paste capabilities were added to many

of the windows.

Buffering Output

The previous interface flushed all output from the output panes of the main and
Thread windows. However, previous output is very useful. Therefore the interface
was changed to buffer output in the output panes, each logical block of output is

separated by dashed lines. Figure 4.9 has 3 blocks of output.

Reducing Window Clutter

When debugging a large number of threads, a computer screen does not have
enough space to show many thread windows, especially when working with op-
erational /behavioural groups with a large number of threads. When a breakpoint
is encountered in a thread, the default action is to create a thread window on the

screen. This semantic can be very inconvenient if a breakpoint hit occurs in mul-
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tiple threads within a group, causing multiple windows to pop-up and flood the
screen. Therefore, this semantic was modified so that windows can be created in
iconic state if one does not already exist, by clicking the toggle button in the group

interface window.

Reorganizing Buttons on the Thread and Main Windows

Some of the buttons for the main and Thread windows were moved to make inter-

acting easier, for example, common operations were moved closer together.
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Debugging Translated Code

pC+ is a translator!, which reads a program containing concurrent language ex-
tensions and translates each extension into one or more C4++ statements. The
translated program is then compiled by an appropriate C++ compiler and linked
with a concurrency runtime library, called the pC++ kernel. Normally, the inserted
code 1s invisible to programmers. Unfortunately the inserted code becomes visi-
ble when debugging at the statement level, since the inserted code is composed of
one or more language statements. Currently, there is no facility in CH+ or gdb to
tag a group of statements as being 0 or possibly 1 statement. This same problem
occurred as far back as ratfor [Ker75] and more recently in the C+ compiler
(AT&T C front) [Str91], both of which were translators and not true compilers. In
fact, a similar problem occurs when debugging optimized code because the program

execution may not follow the source code.

Tt is a “translator” because uC4+ programs are partially parsed and symbol tables are
constructed.

99



60 Chapter 5. Debugging Translated Code

The problem this causes during debugging is that a programmer can easily step
into translated code, which can be very confusing to novice programmer and even
difficult to deal with for experienced programmers due to the complexities of pC+.
If the translated code could be made invisible during debugging as it is at other
times, then the debugging model would match the execution model, making life
simpler for the programmers.

In this chapter, I discuss the methods that I developed to address the problem
of debugging translated code. Both for normal inserted functions and for special

situation associated with coroutine functions.

5.1 Normal Functions

A pCH+ program and its translated C4++ code are shown in Figure 5.1 (some
editing of the translated code has been performed for presentation reasons). The
translator preserves line numbers between the original and translated programs
by generating long lines in the translated output (which is why the example in
Figure 5.1 was edited). This approach means that compilation errors generate
correct line numbers and stepping from line to line (called nexting) using the
debugger hides the translated code, but not stepping into routines invoked within
a line (called stepping). The translated code includes a number of declarations,
including a default constructor and destructor for the task Dummy, which are
inserted before the statement int x. In detail, each pC+4+ task has the following calls
inserted: uBaseTask::uBaseTask, uSerial::uSerial, uQueue<uBaseTaskSL>::uQueue,

uSerialConstuctor::uSerialConstuctor, uTaskConstructor::uTaskConstructor, and
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#CH code

Generated C++ code

uTask Dummy{

int x;
void main() {
inti=8§;
X =8 *i;
}
3

void uMain::main(){
Dummy dummy;
intz=09;

inty = 10;
}

class Dummy : public uBaseTask {
private:
uAction uDestruct;
Dummy(Dummy&);
Dummy& operator = (Dummy&);
protected:
uSerial uSerialinstance;
uBaseTaskQueue uEntry00;
public:
~ Dummy(){{
uSerialDestructor u0007(uDestruct,uSeriallnstance,uEntry00,0x00);{
uTaskDestructor u0008(uDestruct, (uBaseTask&) *this);

1}
}

Dummy (uAction uConstruct = uYes) { { uDestruct = uConstruct; {
uSerialConstructor u0009(uConstruct, uSeriallnstance); {
uTaskConstructor u0010(uConstruct,*this,”"Dummy”,uSeriallnstance);

1}
}

private:

int X ;

void main () { uTaskMain u0006 ( uSeriallnstance ) ; {
inti =8
X=8x*ij;

)

J§

void uMain :: main () {
uTaskMain u0011 ( uSeriallnstance) ; {
Dummy dummy ;

intz=9;
inty =10 ;
+}

Figure 5.1: A Sample C4+ Program and its Translated CH++ Code
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uSerialConstructor::~uSerialConstructor.
During a debugging session, a user would expect a stepping operation for the

declaration

Dummy dummy;

to transfer to line
intz=09;

because they did not write a constructor for the task. However, it transfers to the

first line in task Dummy

int x;

since the inserted constructor for Dummy is defined on that line (remember the
source in Figure 5.1 has been edited). This transfer can not be avoided, since
there 1s no way to know if the constructor was provided by the user or the pC+4++
translator. Therefore, users must simply get use to this additional transfer.
However, an additional step operation by the user does not return after the
declaration of dummy. Instead, it transfers into the function uBaseTask::uBaseTask,
which is the base class constructor for any uTask class (more inserted code). This
transfer of control is now very confusing for users in debugging their programs and
also requires some knowledge of the implementation details of pCH+. A similar
situation occurs when a task exits, as the inserted destructor of the task is called.
There are two possible solutions to this problem. In order to discuss them, it is

first necessary to look at how single stepping is implemented in KDB.
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5.1.1 Single Stepping

In KDB, Martin implemented the traditional approach for single stepping of a
user-level thread by inserting temporary breakpoints in the target application, con-
tinuing the application, and removing the breakpoints afterwards. As mentioned,
there are two operations for controlled advancing of execution: nezt, which does not
step into subroutines, and step, which does. For each kind of operation, multiple
breakpoints may be inserted and removed afterwards.

A default breakpoint is set at the beginning of the next line in the source code.
Additional breakpoints are inserted if any or all of the instructions are detected in

the current source line:

e call: if the operation is step, a breakpoint is set at the target address of the

call.
e return: a breakpoint is set in the caller’s function after the call.

e branch: if the target address is beyond the scope of the current line, a break-

point is set at the target address.

After the breakpoints are inserted, the thread is continued until one of the break-

points is encountered, and then all temporary breakpoints are removed.

5.1.2 Hiding Translated Code

There are two possible solutions for dealing with translated code involving normal

functions. The first solution i1s more general. The debugger checks if it is stepping
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into an inserted routine, like uBaseTask::uBaseTask. If it is, the single stepping is

modified to:
step, return step, step

The first step steps into uBaseTask::uBaseTask, and the return step steps out of
uBaseTask::uBaseTask. The last step steps into the next inserted routine in this
case, uSerial::uSerial. And, a similar check is done for uSerial::uSerial, and a similar
action 1s taken. This action is done for all inserted code defined on that line.
When the last function is exited, the last step moves to the next execution point.
Although this method works, it is very time consuming, since for each function
called, multiple steps are taken.

The second solution is to examine the translated code for groups of consecutive
calls; and next over the entire group. For example, none of the inserted functions
at the start of a task need to be entered. Therefore, nexting over the single line
inserted by the translator for all the calls in that group moves to the next execution

point, i.e.,
intz=29;

for the program in Figure 5.1. This action is accomplished by simply changing the
single stepping operation into a nexting operation, which prevents stepping into
any function defined on the translated line (see Section 5.1.1). The disadvantage
of this approach is that the action is dependent on the particular code sequences
generated by the translator. This solution is a refinement of the first solution, and
does not generalize to all situations. Thus, I used the second solution wherever

possible, and used the first solution otherwise.
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5.1.3 Scheduling Statements

1 C+- supports internal and external scheduling within objects that provide mutual
exclusion. The statements for internal scheduling are uSignal and uWait. The
statement for external scheduling is uAccept with clauses uwWhen, uOr and uElse.
Each of these statements is translated into one or more function calls at translation
time. Clearly, for these pC4+ language statements, control should not transfer
into the translated functions generated for them by a step operation. Thus, a
step operation should be equivalent to a next operation. A uAccept statement is

translated into functions that have unique names, for example, the statement,

uAccept (2);

is translated to the line (shown here as multiple lines),

unsigned int uHere ;

uSeriallnstance . uAcceptStart ( uHere ) ;

if ( uSeriallnstance . uAcceptTry ( uEntry02 , 0x02 ) ) {
u0013 : ;

Thus, for each step operation on a scheduling function, the debugger changes it to
a next operation instead. Again, this works because the translated code is a single
line of C++ code.

However this scheme fails for complex statements translated into multiple state-

ments and routine calls, for example,
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uWhen ( fred() ) uAccept (2);

which is translated to the line (shown here as multiple lines)

unsigned int uHere ;

uSeriallnstance . uAcceptStart ( uHere ) ;

if ((fred ()) && uSeriallnstance.uAcceptTry( uEntry02, 0x02 )) {
u0014 : {

The scheme described above skips to the next line, and never enters the user
function fred(), while step should enter the function.

Thus, the step operation into the function uAcceptStart is changed to:
step, return step, step

which ensures control steps into the user function fred(). If there is no user function,
this stops in the function uAcceptTry, which is a special function and the step

operation is handled accordingly.

5.1.4 Event Trace

When a pC++ application is compiled with the option -trace, additional runtime
code is inserted in objects to generate events for particular pC4+ operations. See
[BK95] for information about displaying event traces. With the -trace option, the

statement

uAccept (2);
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is translated to the line (shown here as multiple lines)

unsigned int uHere ;
uSeriallnstance . uAcceptStart ( uHere ) ;
uTraceAcceptStart ( uTracelnstance ) ;

if ( uSeriallnstance . uAcceptTry ( UEntry02 , 0x02 ) )

All inserted trace code, like uTraceAcceptStart, is also handled using similar

techniques as the ones discussed in this section.

5.2 Coroutine Functions

5.2.1 What is a Coroutine?

The flow control of coroutine functions are very different from those of normal
functions. A coroutine is an object with its own execution state so its execution
can be suspended and resumed. Execution of a coroutine is suspended as control
leaves it, only to carry on from that point when control returns at some later time.
This means that a coroutine is not restarted at the beginning on each activation
and that its local variables are preserved. Hence, a coroutine solves the class of
problems associated with finite-state machines and push-down automata, which
are logically characterized by the ability to retain state between invocations.

Coroutines can be used in two slightly different ways:

e A semi-coroutine is characterized by the fact that it always activates its

caller, as in the producer-consumer example of Figure 5.2. Notice the ex-
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plicit call from Prod’s main routine to delivery and then the return back when
delivery completes. delivery always activates its coroutine, which subsequently

activates delivery.

A full-coroutine is characterized by the fact that it never activates its
caller; instead, it activates another coroutine by invoking one of its member
routines. Thus, full coroutines activate one another often in a cyclic fashion,
as in the producer-consumer example of Figure 5.2. Notice the uResume
statements in routines payment and delivery. The uResume in routine payment
activates the execution-state associated with Prod::main and that execution-
state continues in routine Cons::delivery. Similarly, the uResume in routine
delivery activates the execution-state associated with Cons::main and that
execution-state continues in Cons::main initially and subsequently in routine

Prod::payment.

5.2.2 Debugging Coroutines

While it 1s possible to debug coroutines using GDB because there is no concurrency,

once a step occurs into the translated code for uResume and uSuspend, it does not

come out in the resumed coroutine because control must first transfer through a

context switch; using nezt skips the important control flow into the other coroutine.

In effect, uResume and uSuspend need to be handled in a similar way to routine

calls. That is, a step at a uUResume or uSuspend ends up at the correct execution
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Producer Consumer
uCoroutine Prod { uCoroutine Cons {
Cons *c; int p1, p2, status;
int N, status;
void main() {
void main() { // 1st resume starts here
int p1, p2; while (pl >=0) {
/l 1st resume starts here /l consume pl1 and p2
for (inti=1;i<=N;i+=1){ status = .. .;
... Il generate a p1 and p2 uSuspend; // restart Cons::delivery
status = c->delivery( p1, p2 ); } /1 while
if (status ==...) ... }; /' main
} 1l for public:
c->delivery( -1, 0 ); int delivery( int p1, int p2 ) {
}; /I main Cons::pl = p1;
public: Cons::p2 = p2;
Prod( Cons *c ) { Prod::c = c; }; uResume; / restart Cons::main
void start( int N ) { return status;
Prod::N = N; }; 1/ delivery
uResume; I/l restart Prod::main |}; // Cons
}; I/ start
}; 1l Prod int main() {
Cons cons; /I create consumer
Prod prod( &cons ); // create producer
prod.start( 10 ); // start producer
} // main

Figure 5.2: Semi-Coroutine Producer-Consumer
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Producer

Consumer

uCoroutine Prod {
Cons *c;
int N, money, status, receipt;

void main() {
int p1, p2;
/I 1st resume starts here
for (inti=1;i<=N;i+=1){
... Il generate a p1 and p2
status = c->delivery( pl, p2);
if (status ==...) ...
} 1l for
c->delivery( -1, 0 );
}; 1/ main
public:
int payment( int money ) {
Prod::money = money;
... Il process money
uResume; // restart prod in Cons::delivery
return receipt;
}; Il payment
void start( int N, Cons *c ) {
Prod::N = N;
Prod::c = c;
uResume;
}; I/ start
}; 1/ Prod

uCoroutine Cons {
Prod *p;
int p1, p2, status;

void main() {
int money, receipt;
/l 1st suspend starts here
while (p1 >=0) {
/l consume p1 and p2
status = ...
receipt = p->payment( money );
} Il while
}; // main
public:
Cons( Prod *p ) { Cons::;p = p; };
int delivery( int pl, int p2 ) {

Cons::pl = pl;
Cons::p2 = p2;
uResume;

/ restart cons in Cons::main 1st time
/l and cons in Prod::payment afterwards
return status;
}; 1l delivery
}; 1/ Cons

int main() {
Prod prod;
Cons cons( &prod );

Il create producer
/I create consumer

prod.start( 10, &cons );// start producer
} // main

Figure 5.3: Full-Coroutine Producer-Consumer
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point with respect to coroutine control flow, just as a step at a call or return ends
up at the correct execution point with respect to subroutine control flow. Initially,
KDB was worse than GDB with respect to following coroutine execution because
breakpoints can not be set in some parts of the pC+H+ kernel as mentioned in
Section 4.1.1, thus it was impossible to even step into the context switch routine to
get to the other coroutine, which is possible with GDB.

The only scheme available to a programmer using the old version of KDB was
to explicitly set breakpoints after each uSuspend and uResume to catch control
flow after the context switch. Clearly, this approach is tedious and error-prone.
To solve this problem, it is possible to calculate the address in the other coroutine
where it is re-activated from its stack information, then implement a step operation
by setting a breakpoint at that address and continuing the execution. However,
calculating the re-activation address is a non-trivial task, because the location of
the return address on the stack is architecture dependent. An alternative approach,
which I subsequently adopted, is to look at the locations where the execution ends
up after executing uResume and uSuspend. There are three possible locations for

uResume:

e initiates coroutine’s main routine, which only occurs once when uResume is
called for the first time. The first routine encountered on starting a coroutine

is uCoroutineMain::uCoroutineMain, which is inserted by the translator.

e re-activates the coroutine’s main at the last uSuspend statement. The trans-

lated routine that is restarted is uBaseCoroutine::uCoSuspend.

e re-activates another coroutine’s main at the last uResume. The translated
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routine that is restarted is uBaseCoroutine::uCoResume.

There is one possible location for uSuspend:

e transfer to last uResume statement. The translated routine that is restarted

1s uBaseCoroutine::uCoResume.

Stepping into the translated code for uResume or uSuspend is then modified

nto:

1. Setting temporary breakpoints at the end of the functions
uCoroutineMain::uCoroutineMain, uBaseCoroutine::uCoSuspend and
uBaseCoroutine::uCoResume for uResume, or at the end of the func-
tion uBaseCoroutine::uCoResume for uSuspend. Then a continue operation

is performed.

2. A normal single stepping operation: step

After the continue operation, the program has executed through the context
switch to the other coroutine and stops at the last line in one of the translated
routines, and the second stepping operation transfers to the expected location in

the other coroutine. The temporary breakpoints are then removed.

Thus, it is now possible to follow coroutine execution with KDB as easily as it

is to follow subroutine execution.
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5.3 Implementation Problems

In this chapter, I presented techniques for debugging translated code involving both
normal functions and coroutine functions. In order for these techniques to work, it
is essential to find the exact addresses of the inserted functions. However, some of
these functions may be inline, and hence there may be multiple copies of the inline
functions in the executable. For example, the gnu C4+4 compiler version 2.6 has
this problem, but it is resolved in version 2.7.

These techniques also depend on the implementation of pCH++. Any changes
related to the inserted code (e.g., changing the name of a function) requires the
debugger to be modified as well. However, this problem is mitigated somewhat by
abstracting special inserted function names into a table with their corresponding
actions. Therefore, it is very easy to change the names of special functions, or
add new special functions and their actions. The special function table is shown in
Table 5.1.

Finally, there is a cost associated with scanning this table during stepping, but
the cost of searching this table is insignificant compared to the cost of setting and

removing breakpoints needed for these debugger commands.
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Special Inserted Function ‘ Stepping Action
uCoroutineMain::~uCoroutineMain next
uBaseCoroutine::uBaseCoroutine next
uCoroutineDestructor::uCoroutineDestructor | next
uSerialMember::uSerialMember step, return step
uSerialMember::~uSerialMember step, return step
uSerialDestructor::uSerialDestructor next
uSerialConstructor::~uSerialConstructor next
uSerial::uSerial next
uTaskMain::uTaskMain step, return step
uBaseTask::uBaseTask next
uTaskDestructor::uTaskDestructor next
uTaskMain::~uTaskMain next
uCondition::uS next
uCondition::uwW next
uSerial::uAcceptStart step, return step, step
uSerial::uAcceptEnd next
uSerial::uAcceptTry next
uSerial::uAcceptTestMask next
uSerial::uAcceptElse next
uTracelnit::uTracelnit next
uTraceSuspend::uTraceSuspend step, return step, step
uTraceResume::uTraceResume step, return step, step
uTraceResume::~uTraceResume step, return step
uTraceDestructor::uTraceDestructor next
uTraceMain::~uTraceMain next
uTracePetition::uTracePetition next
uTraceAcceptStart::uTraceAcceptStart step, return step, step

Table 5.1: Special Inserted Code with Actions
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Implementing KDB on Linux

While KDB was originally designed to support multiple architectures, it was only
implemented on the SPARC architecture in a UNIX environment. Thus, I im-
plemented KDB on the Intel 486 architecture in a Linux environment for three

reasons:

e to determine if the original design is truly generalized to support multiple

architectures,

¢ to get KDB running on an important, useful platform used by many students:

Linux, and

e because learning how to implement user-level breakpoints on different archi-
tectures helps to extend KDB to run in a heterogeneous distributed environ-

ment in the future.

Intel 80x86 computers are CISC machines which are very different from RISC

machines such as SPARC computers. Thus, a significant amount of work was

75
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involved in porting KDB to the Intel 486 architecture. Also this difference required

additional generalization in the architecture of this component of KDB.

6.1 Process Control under Linux

In KDB, implementing and removing breakpoints in the target application is accom-
plished by using ptrace or /proc. In Linux, the ptrace system call is supported
for process control. Linux does provide a /proc file system; however, it is different
from the UNIX SVR4 /proc file system. The SVR4 /proc (process file system)
1s a file system that provides access to the image of each process in the system.
The Linux /proc (process information pseudo-filesystem) is a pseudo-filesystem
used as an interface to kernel data structures rather than reading and interpreting
/dev/kmem.

The Linux ptrace call is very similar to that found in SunOS, but with fewer

operations. The following operations supported by SunOS are not supported by

Linux:
PTRACE_GETREGS, /* 12, get all registers */
PTRACE_SETREGS, /* 13, set all registers */
PTRACE_GETFPREGS, /* 14, get all floating point regs */
PTRACE_SETFPREGS, /* 15, set all floating point regs */
PTRACE_READDATA, /* 16, read data segment */
PTRACE_WRITEDATA, /* 17, write data segment */
PTRACE_READTEXT, /* 18, read text segment */

PTRACE_WRITETEXT, /* 19, write text segment */
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PTRACE_GETFPAREGS, /* 20, get all fpa regs */
PTRACE_SETFPAREGS, /* 21, set all fpa regs */
PTRACE_DUMPCORE, /* 25, dump process core */
PTRACE_SETWRBKPT, /* 26, set write breakpoint */
PTRACE_SETACBKPT, /* 27, set access breakpoint */

In Linux, PTRACE_PEEKUSR and PTRACE_POKEUSR must be used to get and set a
process’s registers. The code for getting and setting a process’s registers in KDB

was rewritten for Linux.

6.2 Setting and Resetting a Breakpoint

Intel 80x86 computers are CISC machines and instructions are of variable length.
Thus, it is much harder to decode 80x86 instructions than to decode SPARC in-
structions. All instruction encodings are subsets of the general instruction format
that consists of optional prefixes, one or two primary opcode bytes, possibly an
address specifier consisting of the ModR/M byte and the SIB (Scale Index Base)
byte, a displacement, if required, and an immediate data field, if required. The
shortest instruction is 1 byte in size, and the longest instruction without redundant

prefixes is 15 bytes long for the Intel 486.

6.2.1 Saving and Restoring the Local State

The breakpoint handler must save the state of a user-level thread, so when execution

continues, the same state can be restored. This action is achieved by saving all
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registers and loading them back immediately before execution continues, which is
shown by the calls saveApplicationState() and restoreApplicationState() in Figure 4.1.
On the Intel 486, the Stack-Frame Base Pointer (EBP) register is automatically

saved by pushing it on to the stack, at the start of each function, as shown below:

pushl %ebp

movl %esp,%ebp
The additional registers are then saved by:

pushal # save all 32-bit general registers

pushf # save the EFLAGS register

Note that pushal and pushf push 9 four-byte registers onto the stack (see Figure 6.1).
Since the callee is responsible for saving the general registers, they must be
saved in the breakpoint handler. Condition codes (e.g., carry, sign, overflow) and
mode bits are kept in the 32-bit register EFLAGS, which must be saved as well.
If the breakpoint is applicable to the current thread, the breakpoint handler
calls the local debugger to notify the global debugger. This call automatically
saves the registers as part of the standard calling convention. When the thread is
continued, the reverse instructions are executed, before control transfers back into
the application or before the temporary code is executed. This restore is done by

the call restoreApplicationState() shown in Figure 4.1 and is shown below:

movl %ebp,%esp
subl $36,%esp
popf

popal
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%EBP

%EBP - 32 (pushal)
%EBP - 36 (pushf)

Y%ESP
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Previous Stack Frame
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¢

Stack Growth
(decreasing memory address)

Next Stack Frame

Figure 6.1: The breakpointHandler Stack Frame
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6.2.2 Creating the Temporary Instructions

On the SPARC (and most other RISC machines), a fast breakpoint (see Sec-
tion 2.2.2) is implemented by replacing the original instructions with a call in-
struction to a breakpoint handler, followed by a nop instruction (the delay slot).
Since CISC machines do not require delay slots after transfers, only the call in-
struction is inserted at the address of the breakpoint. The Intel 486 call instruction
1s 5 bytes long, which spans the entire 32 bit address space. However, the number of
bytes to be replaced can be up to 19 bytes long (e.g., a 4 byte instruction followed
by a 15 byte instruction). Thus, some nop instructions have to be inserted after

the call instruction if more than 5 bytes of original instructions are replaced.

Intel 486 conditional jump instructions (Jcc) can be 2 or 6 bytes long. For the
2 byte long instruction, the displacement address ranges from 128 bytes before the
instruction to 127 bytes after the instruction. Thus, if a 2 byte Jcc instruction
is replaced at the breakpoint address, it must be changed to a corresponding 6
byte long Jcc instructions so it executes correctly at the temporary location in the
breakpoint handler. An unconditional jump instruction (jmp) can also be 2 or 5
byte long, thus a 2 byte jmp instruction at the breakpoint address must also be
changed to a 5 byte long jmp instruction. Therefore, at least 27 bytes (e.g., 2 two-
byte jump instructions followed by a 15 byte instruction) must be reserved in the

breakpoint handler to store the worst case temporary instructions (see Figure 4.1).

There is a problem if a branch points to the middle of some inserted breakpoint
instructions. For example, in Table 6.1, a breakpoint is set at line 10. Since the

instruction on line 10 i1s 4 bytes long, the next instruction on line 11 also needs
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to be replaced since the call instruction is 5 bytes long. In this case, 7 bytes are
replaced to implement the breakpoint instruction. If a branch instruction points
at line 11 or address 0x800057a, and is taken while the breakpoint is implemented,
it executes at the 5th byte of the call instruction. This problem is similar to the
situation on the SPARC architecture where a branch points to the address right
after the breakpoint address (the nop after the call). To handle this situation on
the SPARC, the code of the current function is checked for branches to this address
before the temporary code is generated, and if a branch to this address is detected,
the address of the breakpoint is adjusted by +1. For the 1486, if a branch to this
address i1s detected, the address of the breakpoint is adjusted to the beginning of

the next source line.

Original Breakpoint
Line ‘ Address ‘ Instruction Address ‘ Instruction
10 0x8000576 | movb $0x61,0xffffffff(%ebp) || 0x8000576 | call _bphandler_0
11 0x800057a | movb Oxffffffff(%ebp),%al

0x800057b | nop
0x800057c | nop

Table 6.1: A Potential Problem

The temporary code in the breakpoint handler for the general case is shown in

Figure 6.2. The instructions

movl %ebp,%esp // redo function save
popl %ebp
addl $4, %esp /I skip return address

restore the local state of the application. Since the call instruction pushes the return
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address onto the stack, this address has to be removed from the stack in order to
execute the original instructions correctly. The correct return address is pushed
onto the stack after the original instructions are executed (shown on the second

last line).

movl %ebp,%esp /I redo function save
popl %ebp
addl $4, %esp /1 skip reuturn address

original instruction 1
original instruction 2

original instruction i / at least 5 bytes

pushl ReturnAddress
retl

Figure 6.2: Temporary Code

jump Instructions

The argument of jcc and jmp instructions are adjusted when moved to the temporary

location, since the target address is calculated relative to the program counter.

call Instruction

Like the jump instructions, the argument of call has to be adjusted when it is moved
to the temporary location. However, there are two problems with this. First, a
backtrace of the current function calls would include breakpoint_handler_i() instead

of the caller from the original code (see Figure 4.1). For example, a backtrace
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would look like the one shown in Figure 6.3 instead of the one shown in Figure 6.4.
breakpoint_handler_i() should never be seen by the user. Second, in the example
shown in Figure 6.3, if the user steps through the function g, execution ends up in
the function breakpoint_handler_i() as the user steps out of function g. This situation

causes an error, since breakpoints can not be inserted in a breakpoint handler.

#0 g () at handler.cc:8
#1 0x804beb2 in breakpoint_handler_i ()
#2 0x8089726 in uMachContext::ulnvoke ()

Figure 6.3: Incorrect Backtrace

#0 g () at handler.cc:8
#1 0x8049ed2 in uMain::main (this=0x80e9c88) at handler.cc:12
#2 0x8089726 in uMachContext::ulnvoke ()

Figure 6.4: Correct Backtrace

On the SPARC architecture, these problems are avoided by placing a restore
instruction right after the call instruction. The return address is set by restore
instead of call. On the Intel 486 architecture, the call instruction is not moved into

the breakpoint handler. Instead, it is replaced by a jmp instruction as shown below:

pushl return_address II'5 bytes

jmp  function_address /I'5 bytes
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This substitution of the jmp for the call fixes both of the previous problems.

6.3 Conditional Breakpoints

There is no difference in evaluating static variables on the 1486 and SPARC ar-
chitectures. There is some difference in evaluating register and local variables.
As mentioned in Section 4.1.2, variables in conditional expressions for conditional
breakpoints may be in registers, which must be accessed by the local debugger. On
an 1486, as described in Section 6.2.1, the registers are saved when the breakpoint
handler is called, i.e., at the beginning of the breakpoint handler (see Figure 6.1).
On a SPARC, registers are saved at the end of the user function (see Figure 4.4).

The address of a register variable on an 1486 is calculated as
sp - register_offset[register_number]

where sp is the stack pointer of the user function (see Figure 4.5), and register_offset
1s the offsets for registers stored on a stack.

The address of a local variable on an 1486 is calculated similar to the SPARC

case,

address = EBP + offset

where EBP (fp on SPARC) is the stack-frame base pointer of the user function, and
offset is the relative address of the local variable. The EBP value of the previous
stack frame is directly pointed to by the current EBP on the stack. The fp value of

the previous stack frame on SPARC is saved on the stack.
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6.4 Augmenting GDB Code

As mentioned in Section 2.2.3, one advantage of using GDB code is that GDB is

highly portable. However, some changes to the GDB APIs had to be made:
e remove the GDB object files not used by KDB.

e modify the Makefile to generate the dummy functions on Linux for functions

in the GDB object files that are removed.

o architecture and OS specifics defined in APIs are changed appropriately, e.g.,
matching the system definition and GDB definition for the register set, and
modifying the target_ops data structure, which stores platform dependent
data and callback functions such as reading register values. Some of these

functions were rewritten.

e check that the GDB functions called from the APIs still exist and have the
same functionality as those on the SPARC. This check is similar to that for

updating GDB discussed in Section 4.5.1.






Chapter 7

Conclusions

Concurrent programming is difficult, since concurrent programs contain both se-
quential errors and additional concurrent errors. The complexity of concurrent
programming can be reduced by using high-level concurrency constructs through
programming languages such as pC4++. A symbolic debugger that understands the
concurrency constructs can improve debugging capabilities and reduce debugging
time significantly. KDB is a concurrent symbolic debugger that provides indepen-
dent control of user-level threads in a shared-memory environment. This thesis

presents several ways to improve KDB and make it a more powerful debugger.

7.1 Summary

Chapter 4 describes features I added to KDB. These features include fast restricted
conditional breakpoints, where the condition is evaluated by the local debugger;

behavioral groups that allow a user to debug the application at a higher level;

87
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attachment of the debugger to a running application, which allows KDB to debug
a running application; programmatic interface, which allows KDB to be controlled
by a program through a socket; and enhancements to the user interface.

Chapter 5 presents the approach I used to make pC++ translator code invisible
to programmers during debugging. The strategy adopted to hide the code is to give
special treatment to pC++ inserted routines when stepping into them. By general-
izing the translated routines into a table with appropriate actions, the approach is
reasonably flexible. Portability to other user-level thread libraries requires a table
for each library.

Chapter 6 gives the implementation details of KDB on Linux for the Intel 486
architecture. KDB was designed to support multiple architectures, but only two
UNIX versions on SPARC architectures were supported. Since the Intel 486 is a
CISC machine, the implementation of user-level breakpoints is very different from
that of SPARC. The process control is also different in Linux as in SunOS and
SVRA4. These differences required additional generalization in the architecture of

this component of KDB.

7.2 Experience

Peter Buhr and I have used both the old and new KDB to debug many puC++ appli-
cations, including KDB itself. As well, the old KDB has been used by students in
the CS342 concurrency course taught at the University of Waterloo. Unfortunately,
the new KDB was not ready for student testing during this term so I cannot report

on student experiences with the new KDB. The new KDB will be used the next
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time the CS342 course is taught.

Nevertheless, many of the new KDB extensions were made because of feed-
back from students using the old KDB. In particular, complaints were voiced about
stepping into puC4+ translator code and being unable to follow coroutine execu-
tion. Hiding pC4+ translator code and dealing with coroutine control flow does
simplify debugging. Both Peter and I noticed an improvement once this feature was
available. I believe this improvement will help both teaching and learning pC++
concepts, especially coroutines, which are very different from normal routines. As
well, both Peter and I found the simple click-to-print enhancement extremely useful

during debugging, especially for long variable names.

While the other enhancements are not used as often, I would say that I used each
enhancement at some point in debugging a concurrent program, and without that
enhancement it would have been extremely difficult to have found the error. For
example, attaching KDB to a running application was used to find several difficult
race and deadlock conditions. These conditions did not occur often, so once the
program failed, it was essential to extract as much information as possible directly
from the failed execution. Once KDB was attached to the program, the ability to

examine each task in detail was invaluable in locating the error.

While each enhancement is useful, I believe it is the cumulative effect of the set
of enhancements that is most important. Users will use two enhancements to locate
one problem and three different ones to locate another. Therefore, no particular
enhancement stands out, but each one is needed to deal with the diverse kinds of

errors found in a concurrent program.
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7.3 Future Work

Although, the fast restricted conditional breakpoints are useful, it does not support
all necessary conditions. It could be desirable to have a fallback option where the
global debugger evaluates more complex conditions but at a significantly higher
cost. Also behavioural groups can be made more general by accepting asynchronous
external events rather than just breakpoint events in the application.

As mentioned in section 2.1, event collection and graphical visualization is a
very useful tool in understanding concurrent programs. A more powerful debugging
environment may be built by integrating these tools and the debugger. KDB is now
extended with a programmatic interface, so its functionality can be accessed by
commands via a socket instead of the user interface. Thus, KDB may be integrated
with some event engine in a similar way to [Yu96].

The implementation of KDB on Linux supports the claim [Kar95] that the design
of KDB can be generalized to multiple architectures, although there was more work
than originally expected. More ports should be done to further test the portability
of KDB and general applicability of the concept for user-level breakpoint handling.

Finally, the design of KDB is applicable to both shared-memory and distributed
memory, but it is only implemented on shared-memory architectures. Ports to more
architectures would allow KDB to run in a heterogeneous distributed environment.
As discussed in [Kar95], a stub program would run on each machine, which per-
forms some requests, like implementing a breakpoint, on behalf of the global de-
bugger. A daemon, similar to [MMP*96], must also run on each machine to invoke

the stub program.
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