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Abstract

The development and maintenance of most real-time systems has always been
problematic. In most real-time and embedded systems, software development usu-
ally employs ad-hoc methods, utilizing assembly or machine specific languages.

Research on various algorithmic means for providing real-time program be-
haviour has been in existence since the 70’s. Over the past two decades, real-time
scheduling algorithms have gained tremendous popularity and maturity. However,
a convenient means of utilizing such algorithms has lagged behind, given in part to
the lack of a popular and flexible real-time programming language.

Though various real-time programming languages exist, such languages usually
offer little with regard to flexibility in controlling the underlying real-time schedul-
ing algorithm. This thesis discusses the extension and transformation of a general
purpose programming language into a flexible programming language suitable for

real-time program development.
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Chapter 1

Introduction

Real-time computing plays a crucial role in many important computing applica-
tions. Real-time computing, also known as time-constrained computing, is distinct
from the normal computing paradigm in that the behaviour of the whole system is
dictated by deadlines. The correctness of a real-time system is not only gauged by
the correct logical output of a computation, but also in the timely completion of
the computation.

Though real-time computing can be classified into various categories, the most
general classification or distinction can be drawn between hard versus soft real-
time. Many real-time practitioners define hard real-time systems as computing
environments involving rigid timing constraints, such that a missed deadline spells
catastrophic results. The control and monitoring of a nuclear power plant, for ex-
ample, is a hard real-time system, for an untimely computational result or response
can lead to meltdown or release of radioactivity. In turn, a matching definition of a

soft real-time system is a computing environment also sharing timing constraints;
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however, missing some or all of the constraints does not necessarily imply disas-
trous consequences. A looser and, perhaps, a more common definition of a hard
real-time system is a computing environment in which time constraints need to
be very strictly adhered to, and any lapse is unacceptable. In contrast, in a soft
real-time system an occasional missed deadline is sometimes acceptable.

Whether hard or soft real-time, most industrial real-time applications are still
a generation behind the current technologies offered in today’s research real-time
systems, in which systematic and algorithmic approaches of system development
and maintenance exist. As a result, most industrial real-time application develop-
ment still utilize non-real-time-specific tools, which then implies the use of ad-hoc
methods, making development and maintenance tedious and difficult.

The challenge in this project is to extend an existing programming language
and its implementation to a flexible real-time development system. To achieve
this goal, a general-purpose programming language is extended to provide facilities
for the effective expression of the notion of time. Furthermore, constructs are
introduced that enable the explicit expression of any applicable time-constraint
and time property of a program.

In the area of language implementation, various design considerations had to
be evaluated, to achieve the goal of flexibility. Due to the availability of numerous
scheduling algorithms, each suiting a different area or real-time application, a user
must have the capability to use or implement their choice of scheduling paradigms.
The task-dispatching mechanism must, therefore, be packaged and encapsulated to

enable its convenient redefinition or replacement.
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This thesis discusses the transformation, extension, and implementation of a
concurrent and object-oriented programming language into a programming system
suitable for general real-time development. Much of the discussion centres on Unix
as the underlying operating system, and the actual implementation is in pCH+, a
C++ dialect providing object-oriented concurrency.

The implementation for this work is done on a non-embedded pCH+ environ-
ment running on top of Unix. As such, “real-time” can only be as “real” as Unix
1s willing to guarantee. Much of the discussion in this work, therefore, focuses on
soft real-time. However, the design and implementation generalizes to cover hard
real-time environments. With proper operating system support, much of the im-
plementation can, with little change, take advantage of the underlying system’s
real-time guarantees. In essence, this implementation is as “real-time” as the un-

derlying operating system.
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Time-Defined Delays

Time-defined delays make up the foundation for implementing real-time programs.
Delaying a task means a task’s execution is deferred to a later time. A time-defined
delay, in turn, specifically implies that a task’s execution is deferred until after a
defined time frame. The task is said to “sleep”, awaiting its wake-up time.

A task’s ability to sleep for a specified time frame is crucial for implementing
real-time programs. A time-constrained task always has a form of deadline asso-
ciated with it. More sophisticated time-constrained tasks have numerous forms
of deadlines (start time constraints, completion time constraints, etc.). All dead-
line management functions are usually implemented internally using time-defined

delays.
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Deadlines that require tasks to execute only after a specified time can trivially
be implemented by putting the task to sleep, only to wake up when the defined
time arrives. Consider a temperature monitoring system composed of a task A
responsible for reading in values from various temperature sensors. It is a necessity
that within 20 seconds, a temperature reading must be returned by every installed
sensor. Assuming it takes no more than 2 seconds to read the values from all the
sensors, this implies that task A should sleep for eighteen seconds, read values from
the sensors, and go back to sleep for another eighteen seconds, only to repeat the
cycle. Task A is said to be a periodic task due to its repetitive nature. Periodic
tasks make up the majority of real-time tasks.

Deadline notification and detection are also implemented using time-defined
delays. Following the temperature monitoring system described in the above para-
graph, assuming that if two seconds after temperature reading initiates, an in-
complete temperature reading is gathered from the facility, which results in an
emergency situation. At the time task A begins reading in values from the different
temperature sensors, a task B is spawned. Task B is composed of a time-defined
delay statement, requesting a delay of 2 seconds, after which it checks to see if the
table of temperature values has been completely updated by task A within the last

two seconds. Should this condition fail, an exception is raised by task B in task A.
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Real-Time Scheduling

3.1 Notations and Definitions

Each task, real-time or non real-time, usually has a logical priority P associated
with it. P signifies the logical importance of a task, in comparison to other tasks
in the system. The lower the integer value of P, the higher its logical priority is.
For instance, monitoring the temperature levels inside a power plant probably has
a lower P value than clearing out the mail spool.

A real-time task is characterized by various properties; the most intrinsic is its
computation time, denoted by C. Should a task be periodic (periodic tasks are tasks
that re-execute after a specified time interval), as is the case with most real-time

tasks, its periodicity is specified by T.
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The time at which a task becomes ready for execution is denoted by r. The
actual time it starts is s. Normally, a task completes its execution at time ¢, which
i1s s + C. Being a real-time system, a real-time task also has a deadline d associated
with it. The objective 1s to have ¢ < d. Figure 3.1 illustrates the relationship

among the various parameters.

Task | e — :

rl sl cl dl r2s2 c2 d2

Figure 3.1: Time-Line of a Periodic Real-Time Task

From this point on, intrinsic time-attributes of tasks are referred to with capital
letters. T, for instance, is a fixed attribute, which is known apriori. An intrinsic
time-attribute is expressed as a time duration. In contrast, runtime dependent
time-characteristics are referred to with lower-case letters. The deadline of a task
during a certain run is specified by d, for example. However, a task can have a
deadline D equal to T, for instance. In this case, D never changes, and is always
the length of the period of the task, whereas d is the deadline of a task, based
on the time it started execution. Lower-case attributes, therefore, specify absolute

times.
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3.2 Real-Time versus Non Real-Time Scheduling

In any time-sharing system, multiple processes or tasks exist simultaneously, neces-
sitating a scheme to decide which ready process or task may execute. Schedulers
implement the particular scheme for selection of ready processes or tasks.

Schedulers vary in objective, though the most common goal is to maintain fair-
ness among the executions of the task set. Thus, most schedulers strive to evenly
distribute execution times to all tasks, thus eliminating situations such as starva-
tion.

A real-time system is distinct, in that its scheduler is unconcerned with the
notion of “even processor allotment times” among its task set. The main objective
of a real-time scheduler is to ensure tasks commence and terminate their executions
to meet their specified deadlines. The fact that a task can be deprived of processor
time at certain instances is usually of little consequence to a real-time system, so
long as its deadlines are not compromised [51].

To illustrate the difference in real-time and non real-time scheduling paradigms,
assume a system is composed of the set of tasks shown in Table 3.1. Furthermore,
assume that the deadline D of each task (the time by which the computation needs
to be finished by) is equal to the task’s period T.

Assuming task 76 is the first task to arrive, a typical (non real-time) scheduler
utilizing a first-come-first-served algorithm services it ahead of any other tasks in the
set. Such scheduling behaviour produces disastrous results, since the execution of
7¢ effectively hogs the processor for ten seconds, thus preventing more “important”

tasks from being executed.
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H Task ‘ Period (T) ‘ Computation Time (C) ‘ Description H Priority (P) H
T 40 sec 1 sec oxygen-level check 1
To 10 psec 1 psec temperature check 1
T3 30 psec 8 usec pressure check 1
T4 15 psec 2 psec oil-level check 2
Ts 30 sec 20 psec water-level check 2
Te 60 sec 10 sec download newsfeed 9

Table 3.1: Sample Task Set

A pre-emptive round-robin scheduling algorithm may also fail, depending on
the duration of the time-slice. Tasks such as 75 are safe, in that they require small
execution times; however, 73 will most likely not meet its deadline because of the
size of the pre-emption cycle.

From the above examples, it is clear that normal scheduling algorithms fail, if
utilized on real-time systems. Special real-time scheduling must be adopted, which
takes into account the special deadline and time constraints inherent in real-time

tasks.

3.3 Nature of Deadlines

As briefly described in the introduction, deadlines are usually classified according
to their degree of importance. Another method of classifying deadlines is through
a value function. A value function is a function of time, which indicates the value
of a computation, and how such value affects the system as a whole.

Figure 3.2 illustrates a value function for a catastrophic hard real-time system.

The cut-off point for the computation is the deadline. Should a computation exceed
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Value

Time

Damage

Sart Time Deadline

Figure 3.2: Computational Value Function for a Catastrophic Hard Real-Time Task

Value

Time

Damage

Sart Time Deadline

Figure 3.3: Computational Value Function for a Catastrophic Hard Real-Time Task

its deadline, some damage results. In this particular example, as time passes from
the deadline, the damage caused increases. It is also worth noting that in this
particular value function, should a computation initiate earlier than its scheduled
start-time, damage also results. The earlier the computation is initiated prior to
its scheduled start time, the more damage results. Figure 3.3 illustrates a value
function in which after the deadline, the value of the function drops to co. In such

cases, should a deadline be missed, catastrophe is instantaneous.
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Vaue

-

Sart Time Deadline Time

Figure 3.4: Computational Value Function for a Hard Real-Time Task

Vaue

-

Sart Time Deadline Time

Figure 3.5: Computational Value Function for a Soft Real-Time Task

Certain tasks and systems are hard real-time, but do not necessarily result in
catastrophic results should deadlines be missed. Figure 3.4 illustrates the value
function for such systems. Should the deadline of a computation be missed, the
computation then has no value. In contrast, a soft real-time system (figure 3.5) is a
system in which tasks or computations should ideally be completed by its deadline.
However, should the deadline be missed, the computation is not necessarily deemed

useless. How “late” a task or computation is, indicates how much it is worth. The
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farther away from a deadline a computation is, the less valuable the result becomes.
It is, at times, imperative to know the point in time when a computation becomes

valueless.

Vaue

-

Figure 3.6: Computational Value Function for a Non Real-Time Task

A non real-time system, in contrast, is usually characterized by the value func-
tion illustrated in figure 3.6. Observe that there is no deadline indicated in the
time axis. Though a task or a computation may complete at a much later time
than desired, the computation is still of value.

Value functions are used in some real-time scheduling algorithms. However,
computationally, scheduling that utilizes even the simplest forms of value func-
tions becomes unmanageable [39]. Tokuda et al [55] implemented some canonical
value functions, and compared their run-time costs in comparison to various “clas-
sical” real-time scheduling algorithms. The results indicated a significant amount
of scheduling overhead, and that in numerous instances, the cost of making a single

scheduling decision is more costly than executing several tasks.
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3.4 History

Although there has been a lot of early research in the field of real-time scheduling,
most of it was not specifically geared towards real-time scheduling of computer
tasks. In fact, real-time computer scheduling has its roots in job-shop scheduling,
where scheduling strategies for factory, job, and machine operations were studied
[15]. Job-shop scheduling provided invaluable ideas and insights, which slowly
paved the way to the development of the field of hard real-time computing systems.

The main objective of a job-shop scheduler is to schedule its task set so that
execution is accomplished in a minimum amount of time. Generally, individual task
constraints are not taken into consideration, and the task set, as a whole, is the
only concern. This approach obviously differs from the hard real-time scheduling
paradigm.

Despite the apparent difference between job-shop scheduling and real-time schedul-
ing, job-shop scheduling acted as a foundation for very basic real-time scheduling
techniques. The apparent difference on whether the scheduling paradigm focused
on a task-set or an individual task is often of little consequence. The bottom line
1s that, in a lot of cases, both paradigms lead to the timely completion of each
individual task. Farliest deadline scheduling (Section 3.7) is a notable real-time
scheduling algorithm derived from job-shop scheduling is. In a job-shop environ-
ment, where job completion times are promised to customers, the tardiness of a
job set is minimized by sequencing the jobs in order of increasing due-times, i.e.,
perform the job with the shortest time to delivery and then the next shortest time,

and so on. As it turns out, executing tasks in the order of increasing due-dates re-
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sults in a higher ratio of tasks completing specified deadlines over prior traditional

approaches.

3.5 Real-Time Scheduler Classification

Various taxonomies have been employed for understanding the numerous real-time
scheduling algorithms available. The most common classification can be drawn
between static versus dynamic scheduling. A static scheduling algorithm usually
requires prior knowledge of a task’s behaviour, since such knowledge is usually
employed in creating a predictable system schedule or behaviour apriori (prior to
runtime). A dynamic scheduling algorithm usually computes a system’s behaviour
on-the-fly during runtime. As a result, prior knowledge of a task’s predictable
behaviour is not as essential. In a dynamic scheduling environment, the future
behaviour of the system is usually determined at various time-stages, based on all
the tasks’ characteristics and deadlines at that particular time-stage.

Static scheduling algorithms are usually very predictable and efficient. The
fact that the calculations to determine the scheduling behaviour of a system is
performed off-line makes the run-time cost of static scheduling very low. The
inherent predictability of a static scheduling algorithm also makes it highly suitable
for catastrophic and hard real-time systems. An example of a static scheduling
algorithm is the rate-monotonic algorithm (see section 3.9).

Dynamic scheduling algorithms, in comparison, have a higher run-time over-
head. This higher run-time overhead often results in a more flexible system, how-

ever. The addition or deletion of tasks at run-time can easily be dealt with. In
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addition, dynamic scheduling algorithms are more suitable for unpredictable sys-
tems, or systems with unpredictable real-time tasks. Dynamic scheduling nicely
deals with the possibly changing and fluctuating resource/time constraints of such
unpredictable tasks. The unpredictable nature of dynamic scheduling algorithms,
on the other hand, usually makes them unusable for hard real-time system. The
earliest deadline first scheduling algorithm (see section 3.7), for example, is a type
of dynamic scheduling algorithm because the decision of which task executes at
any point in time is determined by the deadline d of each task, which is a dynamic
property.

All the scheduling algorithms presented in this thesis are preemptive in nature.
Non-preemptive scheduling is much more complex than preemptive scheduling. Op-
timal non-preemptive scheduling of tasks with timing constraints has been shown
to be NP-hard [13].

In the following sections, various real-time scheduling paradigms are discussed
and analyzed. Particular attention and emphasis is given to the rate-monotonic
scheduling algorithm (Section 3.9) and its derivatives, due to its high suitability for
hard real-time systems, as well as its overwhelming popularity as the scheduling

standard in the field of real-time computing.

3.6 Cyclic Executive

The simplest form of real-time scheduling is through a cyclic executive. In this form
of scheduling, the order of task execution is crafted during the system design phase.

Determining execution order involves painstaking trial-and-error or the brute-force
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method of re-arranging task execution orders in combination with various timing
delays and specifications, to create a schedule in which all deadlines are met. Af-
ter which, throughout the system’s lifetime, the program merely repeats or cycles
through the execution of this carefully crafted schedule.

A major advantage of a cyclic executive is its speed and predictability. The
major drawback of a cyclic executive is its inflexibility. Should tasks be added to
the system or should computation times change, the whole schedule may need to

be regenerated, which makes maintenance extremely difficult.

3.7 Earliest Deadline Algorithm

Earliest deadline first algorithm [37], also known as due-date scheduling, orders a
task set’s execution by examining the deadlines of each task in the set. Tasks are
ordered by deadlines, in which tasks with earlier deadlines are executed first.

As mentioned, earliest deadline first is a dynamic scheduling algorithm (a static
counterpart of this algorithm is the deadline-monotonic scheduling algorithm, dis-
cussed in section 3.9.2.1), which implies that at certain time intervals, the tasks
in the task set are examined, and the task with the earliest deadline at that par-
ticular time-frame is executed. To implement this scheme necessities the deadline
information d for all tasks must be available at each time when context-switching
occurs (or when “earliest-deadline” calculations are to take place). Furthermore,
no precedence constraints (restrictions involving the order in which tasks must be
executed) are taken into consideration, and task independence (there is no form of

communication among tasks) is required.
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Given that the earliest deadline first algorithm is a dynamic scheduling algo-
rithm, it is possible to have tasks with varying timing/resource requirements.’ Dur-
ing transient overloads, deadlines can, in turn, be missed in an unpredictable fash-
1on.

The earliest deadline algorithm has been shown to be optimal, in that should
a scheduling algorithm exist that can schedule the specified task set, the earliest
deadline algorithm can likewise ensure that the deadline of each task in the task
set 1s met. On the other hand, should a task set be unschedulable with the earliest
deadline algorithm, no other scheduling algorithm can schedule the given task set

[37].

3.8 Earliest Critical Time Algorithm

The earliest critical time first algorithm, also known as the least slack time first
algorithm, is quite similar to the earliest deadline algorithm. Critical time, or
slack time, is defined as the deadline of a task minus the remaining computation
time required by the task. In short, it is the amount of time a task can afford to
be delayed, without missing its deadline (figure 3.7 illustrates the notion of slack
time). The task set is, in turn, ordered by increasing slack-time. The task with the
least slack-time i1s run ahead of tasks with larger slack-times.

Like the earliest deadline algorithm, the deadline information of each task, d,

!Guaranteeing hard deadlines on tasks with varying timing/resource constraints is almost
impossible. Whenever tasks of varying time and resource constraints are discussed, it is often in
the context of a soft real-time environment. Dynamic scheduling algorithms are most appropriate
for such task sets. Static scheduling algorithms can, however, still be employed. Section 3.9.2.2
discusses a means by which static scheduling algorithms can be adapted to deal with such tasks.
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Deadline

TasK A

Task B

Task C

Task D e

Computation Time (C)
Slack Time -

Figure 3.7: Hlustration of Slack Time

must be known. Besides d the completion time requirement C of each task is also
required, which allows for the calculation of the critical time.

The least slack time first algorithm has been shown to be optimal, in the same
sense as the earliest deadline first algorithm. Should any scheduling algorithm be

capable of scheduling a task set, so can the least slack time first algorithm.

3.9 Rate Monotonic Algorithm

Arguably, the most significant landmark in real-time scheduling is the paper by Liu
and Layland in 1973. The algorithm described by Liu and Layland is geared towards
finding a feasible scheduling strategy for a set of periodic tasks. Prior to this, most
real-time computer scheduling was through cyclic executives (Section 3.6), which
is best characterized as “brute-force,” but often referred to as the “trial-and-error”

method.
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Liu and Layland introduced the rate-monotonic priority assignment or rate-
monotonic algorithm [37, 36, 47], which soon gained popularity, and became the
basis for further research in the field of real-time. It includes the following assump-

tions and limitations:

1. All tasks in the system are periodic.
2. All tasks in the system have a deadline that is equal to their period (D = T).
3. All tasks have a constant computation time (computation times do not change).

4. All tasks are independent. Thus, there is no form of communication among

tasks.
5. A task can be preempted at any time.
6. There are no critical sections in any of the computations.

7. The cost of context-switching and other system overheads are ignored.

The rate-monotonic algorithm merely orders a task set in increasing order of
periodic frequency. At any point in time, the ready task with the shortest period
is the most eligible task to run. This form of scheduling is normally implemented
with the use of priorities.

The rate-monotonic algorithm can be implemented by assigning a priority p to a
task, based on a task’s periodicity. Tasks with shorter periods (and thus, tasks that
require more frequent executions) are assigned higher priorities than tasks of longer

periods. Note that priority p is different from priority P, described in section 3.1. P
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is the logical importance of a task from the perspective of a human or environment,
whereas p is the priority of a task from a computer scheduler’s perspective. As with
P, the lower the integer value of p, the higher its priority. Taking the task set of
figure 3.1 as an example, based on the rate-monotonic priority assignment scheme,
the tasks would be ordered in the following sequence, from highest priority p to
lowest: 75, 74, T3, 75, Tg, and 7. Note that although task 7 is a very important
task, it 1s given the least priority p by the rate-monotonic scheme.

In essence, in its most common implementation, the rate-monotonic algorithm
can be thought of as a formalized method of assigning priorities to tasks. The
complete scheduling algorithm, in turn, is comprised of a prioritized preemptive
scheduler, which executes the tasks on the system based on the assigned priorities
from the rate-monotonic priority assignment scheme. As a result of this, the rate-
monotonic algorithm is often referred to as fized priority preemptive scheduling
[5]. This is a very misleading name, however, given that there are other scheduling
algorithms, both real-time and non real-time, that employ fixed priority preemptive

scheduling, yet, are not remotely similar to the rate-monotonic algorithm.

3.9.1 Schedulability Test

A major difference between rate-monotonic and a cyclic executive is the availability
of a schedulability test, which determines whether each task in the set of tasks meets
its deadlines. The availability of a schedulability test is a highly desirable feature,
especially in catastrophic hard real-time systems, in which actual testing is not
always possible. Rate-monotonic schedulability tests require both the periodicity

T, as well as the computation time C for each task in the system.
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The heaviest load on a system is at a point called the critical instant, which is
usually at the beginning of a system’s run, where all the tasks are just released and
awaiting processor time. After each task has been executed once, it then becomes
bound to a certain time ¢, in which subsequent executions of the task occur at
a multiple of t. Should a task meet its deadline during the critical instant (put
another way, should a task meet its first deadline), it logically follows that a task
can meet its deadlines at other times during a system’s run, when loads are not as
heavy as during the critical instant. Based on the notion of a critical instant, Liu
and Layland proved that, given a rate-monotonic priority assignment for a set of
tasks, each task is guaranteed to be schedulable (each task meets its deadlines) if

the following equation holds:

G n(27 — 1)
T;

2

where n is the number of tasks in the system, C; is the computation time, and T;
is the periodic time interval of a task 7;.

If the combined processor utilizations of all the tasks in the system is no greater

than n(215 — 1), each task is schedulable. So, if a set of three tasks are scheduled

in the system, and its total processor utilization is less than or equal to 78%, the

task set is guaranteed to be schedulable. Note that

lim n(215 —1)=In2

n—oo

the processor utilization bound converges to In 2 or approximately 69.31%.
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The above schedulability test described by Liu and Layland is pessimistic, in
that should the condition hold, the task set is guaranteed schedulable. It is possible
to exceed the processor utilization bound, and still have the task set schedulable.
Lehoczky, Sha, and Ding subsequently proved an exact schedulability test for the
rate-monotonic algorithm [32, 30]. Given a set of tasks ordered by decreasing
priority (7; ... 7j, where i is a lower priority than j), 7; meets its deadlines if and

only if

LGt
E _J | <
Ogg—lﬁ = t ’VTJ-‘ st

Should all the tasks in the task set meet the above condition, the task set is schedu-
lable. Lehoczky et al further demonstrated that, for the average case, large task
sets, which approached processor utilizations close to 90%, still met all deadlines.
Of course, there are situations when task sets slightly exceeded the pessimistic
utilization bound of the Liu and Layland schedulability test and are indeed un-
schedulable.

The rate-monotonic algorithm is proven by Liu and Layland to be an optimal
static priority scheduling algorithm, in the sense that if any other static scheduling
algorithm can produce a feasible schedule for a set of real-time tasks, it can likewise

be scheduled by the rate-monotonic algorithm.
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3.9.2 Relaxing Restrictions

Unfortunately, the rate-monotonic algorithm is highly restrictive. The requirement
that task deadlines be equal to their periods (D = T) is highly unrealistic, for
instance. Significant research has been conducted to relax the rate-monotonic’s

assumptions and limitations. These are discussed in the following sections.

3.9.2.1 Removing the D=T Restriction

The restriction that the deadline D of every task be equal to its period T is a very
unrealistic requirement. Most real-time systems contain tasks with deadlines that
are earlier than their periodicity, and though rarer, a real-time system may even

have tasks whose deadlines are longer than its period.

When D < T Leung and Whitehead [34] have defined the deadline-monotonic
scheduling algorithm, also known as the inverse-deadline scheduling algorithm, which
addresses situations in which a task’s deadlines are earlier than or equal to its pe-
riod. Deadline-monotonic is an extension of the rate-monotonic, with the slight
change that task priorities p are ordered according to task deadlines, instead of
task periodicities. Tasks with shorter deadlines are assigned higher priorities, in
comparison to other tasks with longer deadlines. When the deadlines D and the pe-
riods T of every task are equal, the deadline-monotonic priority assignment scheme
is the same as the rate-monotonic.

The deadline-monotonic priority assignment has been shown by Leung to be
optimal, in the same way as the rate-monotonic priority assignment is. Should a

set of tasks (with any task possibly having deadlines less than its corresponding
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period) be schedulable by another static priority assignment scheme, the deadline-
monotonic algorithm is also capable of scheduling the task set.
Audsley developed a schedulability test for deadline-monotonic scheduling [4,

6, 3], given by:
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where n is the number of tasks in the system, and
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The above schedulability test is sufficient, but not necessary (the system may still

j=1

be schedulable, even if the above condition fails). As a result, this schedulability test

can be characterized as pessimistic. An exact test is extremely costly to compute.

When D > T Though generally not as common, there are situations in which it
is desirable to have a periodic task’s deadline exceed its periodicity. For example,
a certain military installation may need to launch a missile every thirty minutes.
The launching procedure for a missile must take, at most, thirty-five minutes to
complete since onset. This implies that the deadline for the periodic task of launch-
ing missiles (which is thirty-five minutes) exceeds the task’s periodicity (which is
thirty minutes). As the first missile is at its last leg of its launching process (thirty
minutes after the launching procedure was initiated), a subsequent missile launch-
ing must initiate (and thus, a new task must be spawned to handle the subsequent

missile launching). It is important to note that since the deadlines or completion
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times of the periodic chores? exceeds the chores’ period, a new task must be cre-
ated for various instances or periods of the same chore. Thus, two (or possibly
more) tasks are required to meet the period T. For such situations where a periodic
task’s deadline exceeds its periodicity, Shih, Liu, and Liu introduced the modified

rate-monotonic algorithm[49, 36].

(5 (first instance)

(5 (second instance)

Y

t0 t1 t2 13 t4

Figure 3.8: Time-Line of a Task when D > T

In the modified rate-monotonic algorithm, tasks in the system are divided into
two categories: tasks which are “new” to their current period phase, and tasks
which are “old” (i.e., tasks that have started earlier than the current period phase).
In short, using the tasks illustrated in figure 3.8 as an example, given task 7 with
period T and deadline D, where T=t1 < D, the first instance of 7, initiated at time
t0 completes at t3. However, before it completes at time t3, a second instance of
71 1s spawned at time t1. At time t2, the first instance of task 7, is referred to as

LL01d77

, and the second instance of task 71 is referred to as “new.”

2Perhaps it is clearer to use “periodic chores” instead of “periodic tasks” to refer to “tasks”
possessing this property. To be consistent with the terminology adopted the real-time community,
however, the latter term is adopted in this thesis.
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With the modified rate-monotonic algorithm, within a task’s lifetime, each task
has two types of priorities assigned to them. Both types of priorities are obtained
using the rate-monotonic algorithm. However, both types of priorities differ, in that
the first set of priorities within a task set have priorities higher than any priorities of
the second priority-type set. In short, each task 7 in a task set has priorities p and
p+k, where p i1s some priority determined through the rate-monotonic algorithm,
and k is some positive constant for the entire task set, such that & > max  pr,
where n is the number of tasks in the system.

The first set of priorities (the higher set of priorities) are assigned as the run-
ning priority of “old” tasks, whereas the second set of priorities (the lower set of
priorities) are assigned as the running priority of “new” tasks.

Following the example task set illustrated in figure 3.8, at time t0, the first
instance of 7, runs at priority p;. At time t1, the second instance of 7; begins, thus
making the first instance an “old” task. From this point on, the first instance of
71 now runs at priority p; + k. The second instance starts and continues to run at
priority p;, until the third instance of 7, arrives.

Note that, unlike the rate-monotonic algorithm, the tasks running on a modi-
fied rate-monotonic algorithm encounter a priority change (should its deadline be
greater than its period). As a result of this, the modified rate-monotonic algo-
rithm is a semi-static priority-driven algorithm. Also note that should all tasks
in the system have deadlines less than their period, only the second set of pri-
orities is utilized, and so, the modified rate-monotonic algorithm collapses to the

rate-monotonic algorithm in this case.
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Shih et al have shown that should the tasks’ deadlines be deferred by sufficiently
long times, the modified rate-monotonic algorithm should find a feasible schedule
for the task set, so long as the processor utilization is less than or equal to 1. It is
proven that the modified rate-monotonic algorithm is optimal for a task set, should

the following conditions exist:

1. There exists V > 2, such that for all i, where 0 <i <n, D; > (V - 1)T;.

2. The ratio between pjongest and pyportest 11 a task set should be less than or

equal to V.

Furthermore, it is also true that for a task set, if D; > 2T; (for 0 < i < n), then

the task set is schedulable with the modified rate-monotonic algorithm if:

2<n<3

9
—_

(1+n@r—1)) n>4

3.9.2.2 Non-periodic Tasks

Rate-monotonic requires that all tasks be periodic. However, there are many situ-
ations where some or all of the tasks in a system are non-periodic, i.e., tasks with
arrival times that are non-deterministic. The problem with non-periodic tasks is
that arrival times are unpredictable. Should a large set of non-periodic tasks arrive
at one particular instant, the system may experience a condition known as transient
overload. Under such situations, dynamic scheduling algorithms can manifest un-
predictable behaviours (such as more important deadlines being missed as opposed

to less important ones, where P defines the level of importance). Alternatively,
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static scheduling algorithms can be adapted to deal with non-periodic (or some-
what unpredictable) tasks. Dynamic scheduling algorithms have potential for real-
time systems that are composed of non-periodic tasks. The earliest-deadline-first
scheduling algorithm, for instance, has been shown to be optimal when a mixture
of periodic and aperiodic tasks exist in a system.

Alternatively, static scheduling algorithms, such as the rate-monotonic algo-
rithm and its variants, are geared towards scheduling periodic tasks. Tasks of a non-
periodic nature are not addressed. Various means of dealing with such tasks (within
the framework of scheduling algorithms designed for periodic tasks) [50, 17, 47| are,
in turn, described in this section.

Before proceeding further, however, a distinction must be drawn between aperi-
odic tasks, which means that no indication is given as to when tasks may arrive in a
system, versus sporadic tasks, which imply that a maximum of one instance of such
a task may arrive within a specified time frame (there is a minimum inter-arrival
time between sporadic tasks). Little can be guaranteed about aperiodic tasks, for
there is no bound on the number of aperiodic tasks that may appear in a system
at any particular time. Deadlines of sporadic tasks, on the other hand, can be

guaranteed.

Polling Server The simplest means in which sporadic or aperiodic tasks can
be dealt with by a periodic scheduling algorithm is by setting up a periodic task
that “polls” for the existence of sporadic or aperiodic tasks during its execution,
and uses its allotted periodic computation time to execute any existing sporadic or

periodic tasks.
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This “polling” approach, however, is non-ideal and wasteful. Should no sporadic
or aperiodic task arrive during the execution time of the designated periodic polling
task, valuable processing time is wasted by the designated periodic polling task
spinning, waiting for a sporadic or aperiodic task arrival. In addition, should a
sporadic task arrive right after the designated polling task executes, the sporadic
task must wait for the next period of the polling task in order to be given processor
time. Note that these deficiencies do not pose a scheduling problem because the
polling server is scheduled as if it was a normal periodic task. The problems inherent
in the “polling” approach merely imply that fewer aperiodic or sporadic tasks may

be run.

Priority Exchange Server The priority exchange server[31] method acts sim-
illarly to the polling server mechanism. A periodic server task is allocated in the
system, which is responsible for executing sporadic or aperiodic processes. Unlike
the polling server approach, should there be no sporadic or aperiodic processes to
service at the start of the designated server task, the server task exchanges priority
with a lower priority periodic processes. This technique allows a higher priority task
to execute during the server’s allotted computing time (should there be no sporadic
or aperiodic tasks to service), thus, resulting in no wasted processor time. At the
same time, computing time is preserved, should a sporadic or aperiodic task arrive,
but the sporadic or aperiodic task runs at a lower priority level than it was initially
allotted. This discrepancy in priorities makes the prediction of missed deadlines
extremely difficult. Deadlines of sporadic tasks are most likely missed in a highly

unpredictable fashion.
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Deferrable Server The deferrable server method[31, 50], like the previous meth-
ods for dealing with sporadic or aperiodic tasks, allots a periodic server task that
services sporadic or aperiodic events. Unlike the priority exchange server, should
the deferrable server have no sporadic or aperiodic task to execute during its allot-
ted computing time, it does not swap priorities with a lower priority periodic task.
Instead, execution of the deferrable server is postponed (the deferrable server sleeps
or blocks, pending the arrival of a sporadic or aperiodic task). When a sporadic or
aperiodic task does become available, the deferrable server is made ready, and exe-
cutes at its originally assigned priority. Thus, deadlines are missed in a predictable
fashion.

Compared to a priority exchange server, the implementation of a deferrable
server 1s much simpler. The fact that priorities do not change makes its imple-
mentation conceptually simpler and usually less expensive. As well, it allows more
non-periodic tasks to be serviced. The disadvantage of the priority exchange server
is that aperiodic or sporadic tasks that arrive towards the end of the deferrable
server’s execution period, unlike the priority exchange server, must wait to resume

execution at the next period of the deferrable server.

Sporadic Server The above methods for dealing with sporadic or aperiodic tasks
have the inherent property that server execution times are replenished at the begin-
ning of the server’s period. Server execution time can be thought of as a collection
of tickets, such that should a sporadic or aperiodic task arrive, the server gives the
task some tickets sufficient for its execution. Should the server’s tickets run out,
the ready sporadic or aperiodic task(s) have to wait until the server’s next period,

which is when the server gets to replenish its supply of tickets.
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A sporadic server[50] is different in that the replenishment of its execution time
i1s not always at the beginning of a period. Viewed another way, its “tickets” are
not replenished at fixed times, but rather, at varying points through its execution.
Otherwise, i1ts behaviour is identical to a deferrable server.

The sporadic server’s approach, in essence, combines the advantages of both the
priority exchange server and the deferrable server. By replenishing its execution
times when sporadic or aperiodic tasks arrive, instead of at fixed times, the replen-
ishment policy can best be described as sporadic — the same nature as the tasks it
services. This approach also forces the execution of sporadic or aperiodic tasks to
be more evenly distributed.

Sprunt, Sha, and Lehoczky further demonstrated that should a periodic task =;
be schedulable in a periodic-algorithm-scheduled system, the sporadic task serviced
by a sporadic server (having the same period and execution time as 7;) is also
schedulable[50]. As a consequence of this, hard sporadic processes can, in turn, be
guaranteed in a periodic-algorithm-scheduled environment by having each sporadic
server service one sporadic task in the system. The number of sporadic servers in
the system would, in turn, correspond to the number of hard sporadic tasks. Softer

sporadic tasks, on the other hand, can be serviced by a shared sporadic server.

3.9.2.3 Task Synchronization

Rate-monotonic (and all the other algorithms described so far) have the restric-
tion that all tasks must be independent of each other. As a result, there is no
manipulation of task-shared data structures, nor are there any forms of inter-task

communication. In most real-time applications, this restriction is unacceptable.
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Normally, certain tasks in a real-time system have some form of dependence, and
certain tasks do manipulate shared data structures.

In the following sections, two popular algorithms that allow inter-task commu-
nication are presented. The Basic Priority-Inheritance Protocol and the Priority-
Ceiling Protocol are general algorithms that can be applied on top of various
scheduling algorithms (static as well as dynamic). A pre-emptive scheduling envi-

ronment is required, however.

Basic Priority-Inheritance Protocol Assume a system with three tasks, 7o,
T1, T2, and corresponding priorities p0), pl, p2, which are in decreasing order. At
time #g, 7o is in a critical section holding a semaphore® S. At time #;, 7y arrives and
preempts 7o due to its higher priority. At time ¢,, 79 attempts entry to the critical
section occupied by 7. However, since 15 holds semaphore S, 7y is inhibited from
proceeding; 7y blocks, and 75 resumes execution. At time t3, 7; starts execution
and preempts t,. Task 79, the task of highest priority, does not execute while
lower priority tasks do. This condition, known as priority inversion, can occur
indefinitely.

Lampson and Redell [29] discussed the problem of priority inversion with regards
to monitors. They proposed that a monitor always be run at a priority level that
is higher than any of the priorities of the tasks calling the monitor. This approach

ensures that any task running inside the monitor is allowed to execute uninterrupted

3For the purpose of this discussion, a semaphore is used. Note, however, that the topics dis-
cussed in this section also apply to other synchronization primitives such as locks, monitors, etc.,
which are used to establish mutual exclusion. Furthermore, for the sake of simplicity and gener-
ality, the terms “holds” or “locks” and “releases” are used interchangeably with the semaphore
primitives P and V, respectively.
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by any other task that calls the monitor, thus preventing priority inversion. This
solution is very pessimistic, however, in that any task running inside a monitor
always runs at an extremely high priority. A normal high priority task may, in
turn, have to compete with the task running inside the monitor, even though the
high priority task may not need access to the monitor at all.

Rajkumar proposed the basic priority-inheritance protocoll4l, 42, 46], which
puts a bound on the occurrence of priority inversion, in a less pessimistic manner
than Lampson and Redell’s solution. Rajkumar’s solution is to execute a critical
section at the priority of the highest blocked task waiting to enter the critical
section. So, given the same sample task set, at time ¢5, when 7y attempts entry and
blocks, the priority of 5 (which is executing in the critical section) is bumped up
to the priority of 7y (assuming it has the highest priority among the set of blocked
tasks). At time ¢35, when 7, arrives, 7p continues running and is not preempted by
T1. T» runs uninterrupted until it finishes the critical section, after which, it returns
to its normal priority of p2. Task 7y, the highest priority task, is then executed.

The basic priority-inheritance protocol bounds the time priority inversion oc-
curs: should there be n lower priority tasks in the system, and the n lower priority
tasks access m distinct semaphores, a task can be blocked by at most min(n,m)
critical sections. Despite this bound, the blocking duration for a task can still be
significant, however. Suppose at time tg, task 7o arrives and locks semaphore Sp.
At time t;, task 7, arrives, preempts 75, and locks semaphore S;. At time ¢,, task
To arrives, needing to sequentially access both semaphore Sy and S;. Since both

semaphores are locked by two lower priority tasks, 79 must wait for the duration
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of two critical sections (till S; is released by 71, then, Sy is released by 73). This
problem is known as chain blocking.

The most serious deficiency of the basic priority-inheritance protocol, however,
is its inability to deal with the possibility of deadlocks. The prevention or escape
from a deadlock situation is not addressed by the protocol. As such, the basic
priority-inheritance protocol adds a significant responsibility to the programmer of

ensuring that deadlock situations do not arise.

Priority-Ceiling Protocol The priority-ceiling protocol[41, 42, 19, 46], also pro-
posed by Rajkumar, solves the problem of priority-inversion, without causing the
problem of chain blocking and deadlocks. In addition, the priority-ceiling protocol
bounds the blocking time of a task to, at most, the duration of one critical section
of any lower priority task.

In the priority-ceiling protocol, each semaphore has a priority-ceiling associated
with it, which is defined as the priority of the highest priority task that may lock
this semaphore. When a task 7 tries to lock a semaphore S, 7 checks to see if the
priority-ceiling of any of the currently locked semaphores (excluding semaphores
locked by task 7) is higher-than the priority of 7. Should the condition fail (the
priority ceiling of all the currently locked semaphores, except the semaphores locked
by 7, is evaluated to be lower than the priority of 7), 7 may lock S. Should the
condition exist, however, 7 is blocked and is not granted the semaphore S. In turn,
the task holding the semaphore that caused this blocking (the one possessing a
priority-ceiling that is higher-than or equal to the priority of 7) is given or inherits

the priority of 7, if the priority associated with this semaphore is lower than that of
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7. After completing the execution of the critical section, the task that possesses this
critical section returns to its previous priority-level (in a sense, inherited priorities
are stacked).

Assume a task set composed of tasks 7y, 71, 72, T3, with corresponding priorities
p0, pl, p2, p3 (in decreasing order). Suppose each task accesses a critical section

in the following manner:

701 P(S0) ... P(S2) ... V(Ss) ... V(So)

12 P(Ss) ... P(S3) ... V(Ss) ... V(S2)

T2t P(S1) ... P(S84) ... P(S5) ... V(Ss) ... V(Sa) ... V(S1)
731 P(S5) ... P(S84) ... P(S0) ... V(So) ... V(S4) ... V(Ss)

A static examination shows that the priority ceiling of the semaphore Sy is p0, since
this is the priority of the highest-priority task that ever accesses it. Respectively, S;
has priority ceiling of p2, S, has p1, S3 has p1, S4 has p2, and S5 has p2. Suppose

the following events take place in the system (also illustrated in figure 3.9):

1. At time tg, 73 arrives.
2. At time t;, 73 locks Ss.
3. At time ¢, 75 arrives and preempts 73.

4. At time t3, p attempts to lock S;. Since a semaphore is currently locked
in the system (semaphore S5), the highest priority-ceiling among the locked
semaphores is determined, and turns out to be p2. Since this priority value
is equal to the priority of the current task executing (72), 72 is blocked, and

the task holding the lock to the semaphore with the highest priority-ceiling
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10.

11.

12.

13.

14.

among the locked semaphore set (task 73 in this case) inherits the priority of
T5. The scheduler then picks up the next most eligible task to execute (the

task with the highest priority).

At time t4, 73 attempts to lock S4. Since the set of locked semaphores, ex-

cluding those held by 73, 1s empty, 73 locks S;.
At time t5, 7; arrives and preempts 3.

At time tg, 7 attempts to lock S;. Among the set of locked semaphores
(excluding those held by 71), the highest priority ceiling is p2. As a result of

this, 71 1s given the lock to S,.

At time t;, 7 attempts to lock S3. Among the set of locked semaphores not

held by 71, the highest priority ceiling is still p2. Therefore, 7 locks Ss.
At time tg, 7 releases Ss.
At time tg, 7 releases S,.

At time £19, 7 completes execution. The highest priority task that is eligible

to run is selected by the scheduler, which is 73.

At time ¢;;, 73 attempts to lock Sy. Since all locked semaphores are owned

by 73, 73 locks Sy.
At time 15, 79 arrives and preempts 3.

At time t13, 7 tries to lock Sy. It fails to do so, since the highest priority

ceiling in the locked semaphore set is equal to the priority of 79. The priority
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15.

16.

17.

18.

19.

20.

21.

22.

of the task holding the locked semaphore in question (task 73) is bumped
up to priority p0. 7y blocks, and the highest priority task eligible to run is

selected by the scheduler (task 73).

At time tq4, 73 releases So. Upon release of Sy, 73 returns to its previously
inherited priority of p2, and awakens task 79 by “V”ing on Sy. As a result of

this, the scheduler preempts 73 with the highest priority task eligible to run
(70)-

At time 15, 79 attempts to lock Sy. It is granted the lock, based on the rules

outlined for the priority-ceiling algorithm.
At time t16, 7 releases Ss.
At time 17, 79 releases Sg.

At time t;5, 79 completes execution. The scheduler selects task 73, the only

eligible task to run.
At time t19, 73 releases Sy.

At time tqg, 73 releases S5. S5 1s the semaphore responsible for 73 inheriting a
higher priority. Since Sj is released, 73 resumes its original priority of p3. In
addition, task 75 i1s made ready. The scheduler then selects the next highest
priority task eligible to run, which is 7. Note that 75 had been blocked
on semaphore 5;. As a result of this, as it starts execution, it acquires the

semaphore.

At time 51, 75 locks Sy.
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23. At time £, 75 locks Ss.

24. At time to3, 75 releases Ss.

25. At time toy4, 75 releases Sy.

26. At time to5, 79 completes its execution. Task 73 resumes execution.

27. At time tq6, 73 completes its execution.
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Figure 3.9: Sequence of Events Illustrating the Priority-Ceiling Protocol

The priority-ceiling protocol is a pessimistic protocol. There are situations

where the priority-ceiling creates unnecessary blocking. In the above example, for

instance, at time t3, 7 blocks, even though it could have continued execution.
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Despite such unnecessary blockings, this protocol dramatically improves the worst

case blocking time of a task.

Priority-Inversion with Monitors The Priority-Inheritance algorithm has been
studied and applied to problems involving avoidance synchronization (mutual exclu-
sion). The algorithm itself, however, does not address issues involving conditional
synchronization, which is an integral part of monitors. This section presents some
initial new work on extending the algorithm to handle conditional synchronization.
In the priority-inheritance algorithm (and in real-time systems, in general),
tasks waiting for entry into a monitor await in a prioritized entry quewe. More
specifically, each of the monitor’s member routines have an entry queue associated
with it, which is prioritized. When the monitor becomes unlocked, the next task
that enters the monitor is the task with the highest priority among all the member
routine’s entry queues. Meanwhile, should a monitor be locked and a higher priority
task arrives (desiring entry into the monitor), the current task executing inside the
monitor “inherits” the priority of the highest priority task awaiting entry to the
monitor, if the currently executing task’s priority is less. This ensures that the
task inside the monitor gets to execute with little interruption, thus allowing it to
complete and leave the monitor, enabling the entry of the higher priority task.
Condition variables and their associated internal queues of waiting tasks are also
a fundamental part of monitors [23]. Signalling a condition variable makes the task
at the head of the queue eligible to run. The next task to execute in the monitor

depends on the kind of monitor [10]. For this discussion it is sufficient to look
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at the major division of monitors into priority and no-priority monitors*. Priority
monitors give preference to tasks that have already waited to enter the monitor and
no-priority monitors do not. Hence, for a priority monitor, tasks in the monitor are
considered more important than tasks waiting to enter the monitor, regardless of
task priorities. This scheme makes reasoning about concurrent execution simpler,
and prevents possible starvation of tasks.

No-priority monitors, such as Modula-3’s monitors, behave very predictably
with the priority-inheritance algorithm. Should a condition variable be signalled by
a running task, the task at the head of the condition queue (or the highest priority
task on a prioritized condition queue) is made eligible to run. This new eligible
task is then inserted on the entry queue, to compete with other tasks awaiting entry
to the monitor. In a no-priority monitor with non-blocking signals, the signaller
continues execution after signalling, at the priority of the highest priority task
awaiting entry to the monitor. In a no-priority monitor with blocking signals, the
signaller is also moved out of the monitor and inserted on the entry queue, to
compete with all other tasks awaiting entry to the monitor, as well as the signalled
task. Since the signalled task (as well as the signaller in a no-priority monitor with
blocking signals) is “moved-out” of the monitor, its priority returns to its normal or
base priority, if it previously “inherited” a higher priority. As a consequence of this
behaviour, priority-inversion is inhibited, in that the highest priority task is always
executed before any lower priority task, despite the fact that a lower priority task

may have already previously gained entrance to the monitor.

“Priority in this context is not a task’s priority, but the way in which the monitor decides
which task to execute next.
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In a priority monitor, a task from a condition queue that is made eligible to run
(by signalling the condition variable) is given preference over other tasks awaiting
entry to the monitor. The next task that executes is either the signalling or sig-
nalled task (the discussion is independent of which executes), regardless of whether
there are higher priority tasks waiting in the entry queues. This behaviour, in turn,
creates the possibility of priority-inversion. Should a very high priority task be
awaiting entry to the monitor, and a lower priority task executing in the moni-
tor signals a condition queue whose most eligible task is also lower than the task
awaiting entry to the monitor, priority-inversion results.

entry entry
queue queue

entry

ueue
for for q I

member member ll
X \\
. \@\
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@),
A
LT T T T T T
\ |
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l variables
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(—
condition
B
exit

® octivetask () blocked task

Figure 3.10: A Sample Monitor. Tasks are denoted by a letter followed by a number,
which indicates its priority. Tasks awaiting entry or execution in the monitor wait
on an entry queue. The head of the entry queue determines the next task to execute.
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Figure 3.11: Behaviour of a No-Priority Monitor After Signalling Cond. Queue A

Depending on the kind of monitor, the execution state illustrated in figure 3.10
behaves differently when condition queue A is signalled. As shown in figure 3.11, for
a no-priority monitor, when condition queue A is signalled, task r4 is moved onto
the entry queue. The entry queue continually maintains priority order, resulting in
r4 being executed only after task ¢3 executes.

For a priority monitor, when condition queue A is signalled, the task at A’s
head is moved to a “signalled stack”, as illustrated in figure 3.12. Task r4 is then
executed before any of the tasks on the entry queue, resulting in a definite priority-
inversion in this example (since task 4 executes before ¢3). The application of the

priority-inheritance protocol on a priority monitor increases the original algorithm’s
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Figure 3.12: Behaviour of a Priority Monitor After Signalling Condition Queue A

bound for priority-inversion by the amount it takes to complete the execution of

all the tasks in the signalled stack.

In pC++, tasks running inside a monitor have the additional capability of being
able to specifically accept any one of the monitor’s member routines. Consequently,
this capability brings about the possibility of bypassing higher priority tasks waiting
on other routine’s entry queues. When a member routine is accepted, the acceptor
1s moved to the signalled stack, thus causing the acceptor to block. The highest
priority task waiting on the accepted member routine then executes. When a task

leaves a monitor, the next task that executes within the monitor is determined by

the following rule:
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o If the signalled stack is not empty, the next task that executes is taken from

the head of this stack.

o If the signalled stack is empty, the next task that executes is the highest

priority task among all the entry queues of the member routines.

Following the same idea and principle as the priority-inheritance protocol, at
any point in time, the task executing inside the monitor runs at its original pri-
ority or the priority of the highest-priority task among all the member routine’s
entry queues, whichever is higher. The time when priority-inversion can take place
when accepting specific member routines is unbounded, since tasks can continually
arrive on a member routine’s entry queue, and tasks executing in the monitor can

continually accept the specific member routine in question.

3.10 Multiprocessor Considerations

The discussions presented so far revolve around scheduling in a uniprocessor en-
vironment. Multiprocessor scheduling is problematic, since it has been shown by
Mok and Dertouzos that the scheduling algorithms discussed so far are not optimal
for multiprocessor systems.

To illustrate the poor performance of various scheduling algorithms on multipro-
cessor systems, consider a task set composed of tasks 71, 75, and 73, with correspond-
ing periods (and deadlines) 20, 20, and 40 units; and corresponding computation
time requirements of 10, 10, and 32 units. Two processors are available on the

system.
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With the rate-monotonic algorithm (or earliest deadline first algorithm), 7, and
Ty are given highest priority, resulting in their execution on the two available pro-
cessors. After 7 and 7, executes, 73 is ready for execution on either processor. Task
73 still needs 32 units of computation time. However, by this time, there is only 30
units of time left to 73’s deadline. Consequently, task 73 cannot possibly meet its
deadline. However, should task 7; and 75 be allocated to one processor, and 73 be
allocated to another, there is no problem in meeting every task’s deadlines.

Optimal scheduling in multiprocessor systems is known to be NP-hard [33]. As
a result of this, research has been directed towards the simplification of the prob-
lem by determining optimal means of allocating tasks onto various processors, and
having each processor schedule its task set, independent of the other tasks on other
processors. This is often referred to as static processor binding. Though in prin-
ciple, dynamic processor binding can yield better performance than static binding,
the combinatorial analysis required during run-time is not feasible, especially for

real-time systems.



Chapter 4

Implementation of Time-Defined

Delays

4.1 The yCH++ Execution Environment

In its current state, the pCH++ programming language is implemented through a
translator, which, in turn, produces C4++ code. The program generated by the
translator is then linked with a concurrent runtime library, which provides the
necessary facilities for a concurrent execution environment [9].

At the heart of the pC++ runtime library is the pC4+ kernel. The pC++ kernel
1s the main manager of resources for a pC4+ program. The kernel is responsible
for the scheduling and context-switching among the various pC4+ tasks.

The resources managed by the C+4+ kernel are abstracted into a structure called
a cluster. A cluster is a collection of tasks and processors. The tasks in a cluster

can either be blocked (or sleeping), be executing on any one of the processors within

46
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the cluster, or be ready for processor execution. Tasks that are ready for processor
time are in a structure called a ready-queue. A cluster has one ready-queue, and any
free processor within the cluster can execute any of the tasks waiting on the ready-
queue. Within a pC+4+ program, several clusters may exist. Figure 4.1 illustrates

a cluster.
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Figure 4.1: pC++ Cluster

A processor within a cluster is implemented as a Unix process (or kernel thread).
On a uniprocessor version of pC+4+ , a single Unix process exists, which emulates
the various processors within a cluster. On the multiprocessor version of pCH+,
each processor within a cluster corresponds to an actual Unix process mapped on
to the same memory location as other processors (or Unix processes). This memory
mapping allows all the processors within a cluster to share certain data structures

like the ready-queue, for example.
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4.2 Timers

As discussed in chapter 2, time-defined delays are essential in real-time systems.
The implementation of time-defined delays requires close interaction with one or
more timer(s).

Timers are operating system entities responsible for notifying processes of the
passage of time. Operating system timers, in turn, closely interact with the hard-
ware clock. The hardware clock provides periodic interrupts to the operating sys-

tem, notifying it that a certain time interval has elapsed.

4.3 Unix Signals and Alarms

In Unix, signals are used to notify processes of certain events. For example, when a
user tries to suspend a Unix process, Unix sends a SIGTSTP signal to the process.
The process, in turn, executes corresponding code associated with a signal. The
corresponding code associated with a particular signal is referred to as a signal
handler.

Unix offers three count-down timers for each process. One timer counts down
in real-time (elapse time), one in user time (i.e., only when user code is executing),
and one in user and system time (when user code is executing, and when the
system is running on behalf of the process). When a count down timer reaches
zero, Unix interrupts the process and has it execute a signal handler registered for

the particular timer.
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In the specific implementation of time-defined delays in pC+, only the real-
time timer is used, and it i1s called the SIGALRM timer. Unix signals provide
the most efficient means by which a process can receive time notifications from
the operating system, because the timer is asynchronous to the program, and,
therefore, does not affect its execution until the timer expires. In fact, in the
current 1mplementation, time-defined delays are not the only functions relying on
the SIGALRM timer. Scheduling (normal, as well as real-time) and other time-

dependent functions all use the SIGALRM timer.

4.4 Data Structures Manipulated by the Signal
Handler

The delivery of the interrupt for the SIGALRM timer is called a SIGALRM. The
SIGALRM timer interacts with the application program through the execution of
a signal handler. The signal handler, in turn, manipulates a set of shared data
structures — shared among the real-time tasks, as well as the signal handler.

Whenever a SIGALRM occurs, the currently executing real-time thread is paused,
pending completion of the SIGALRM signal handler. The signal handler modifies
the shared data structure to affect the future behaviour of the system. After exe-
cution of the signal handler, the real-time thread resumes.

In pC++, SIGALRMs are used for two important system functions: time-
slicing and time-defined delays. Time-slicing is implemented by requesting periodic
SIGALRMs, which forces a task scheduling to occur (in certain circumstances, the

same task may be rescheduled).
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Time-defined delays are implemented and managed by maintaining a list of
sleeping tasks (or tasks that have requested a time-defined delay, and are awaiting
wakeup) within a cluster. This list is chronologically ordered by each task’s wakeup
time.

As well, the SIGALRM timer must be set, to alert the system that a wakeup
event must take place at a specified time. After a sleeping task is blocked, the
processor is then free to execute the next ready task.

The fact that the SIGALRM timer serves more than one purpose — to alert
the system that a sleeping task(s) need to be awaken, and to signal a time-slice —
necessitates a time-event data structure that maintains and manages the set of
time events in the system. Each task awaiting wakeup has a time event associated
with it. In addition, time-slicing has a time event associated with it, which is not
associated to any specific task. The SIGALRM timer is always set such that the
outstanding SIGALRM is expected to arrive at the time specified for the event
located at the head of the time-event data structure. Any change at the head of
this list necessitates resetting the SIGALRM timer (either setting, resetting, or
cancelling the SIGALRM timer). Figure 4.2 illustrates a time-event structure.

A race condition exists between the arrival of a previously requested SIGALRM
and a change of the SIGALRM timer. This situation is handled by first manipu-
lating the time-event structure before making the operating system call to set the
SIGALRM timer. Should a SIGALRM occur while setting the next SIGALRM, the
time-event structure is up to date. The time-event structure is, in turn, evaluated

by the SIGALRM handler to see if the arriving SIGALRM matches the event at



CHAPTER 4. IMPLEMENTATION OF TIME-DEFINED DELAYS 51

the head of the time-event structure. Should this not be the case, the SIGALRM
is considered spurious and ignored (It turns out that other spurious SIGALRMS
can occur due to Unix process to process communication in pC++ . It is, therefore,

important that these situations be detected and ignored.).

uEventNode uEventNode uEventNode
Expiration Time Expiration Time Expiration Time
Periodicity Periodicity Periodicity
Signal Handler Signal Handler Signal Handler
uThis pointer uThis pointer uThis pointer
Next UEventNode @— Next uEventNode @— Next uEventNode @

Figure 4.2: Time-Event Structure

It is important to note that the time-event structure may have several events
scheduled for the same time, because several tasks can request to be awoken at the
same moment. If a time-slice event happens to be scheduled for the same time as
other “wake-up” event(s), however, the time-slice event is always inserted at the end
of the set of events with the same time expiration. To illustrate the importance of
this insertion rule, assume that a very high priority task is scheduled to be awoken
at the same time as a time-slice event. If the time-slice event precedes the “wake-
up” event, upon execution of the time-slice event, the most eligible task from the
ready queue is scheduled. However, since the “wake-up” event has not yet been
executed, the very high priority task is not on the ready queue upon execution of the
time-slice, resulting in the high priority task’s deferred execution till a subsequent
time-slice event, despite the fact that it was eligible to execute at the time the initial

time-slice took place, which results in priority inversion (section 3.9.2.3 describes
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priority inversion). Uncontrollable priority inversion is unacceptable in real-time
systems; processing “wake-up” events prior to a time-slice event ensures that this
form of priority inversion does not occur.

The SIGALRM handler starts by popping the first expiring event from the time-
event structure to determine the nature of the event requesting the SIGALRM.
Should the popped event be a periodic event (such as time-slice event), a new
event for the next period is inserted in the appropriate location in the time-event
structure. The popped event is, in turn, examined. If the event is for a wake-
up request for a sleeping task, the wake-up-handler is executed. The wake-up
handler removes the associated sleeping task from the list of sleeping-tasks, and
inserts it in the ordered ready-queue (thus, every “wake-up” event in the time-event
structure has a corresponding entry in the list of sleeping tasks). If the alarm is for
a time-slice, the time-slice-handler is executed. The time-slice handler puts the
current task executing (should one exist) at the end of the ordered ready-queue,
and schedules a new task from the ready-queue.

The SIGALRM handler repeats the above steps until all the handlers for the
expired events have been executed. After execution of the last handler in the set
of expiring events, the SIGALRM timer is reset to the expiration time of the next

event in the time-event structure (also see section 4.5). Figure 4.3 illustrates the

behaviour of the SIGALRM handler.
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1 Handler() {

2 while (CurrentTime later than or equal to head event in
3 time-event structure) {

4 event = pop event in head of time-event structure
5 if (event is periodic)

6 insert event in time-event structure

7 case (event) {

8 wake-up event:

9 do wake-up-handler() ;

10 break;

11 time-slice event:

12 do time-slice-handler();

13 break;

14 }

15 }

16 reset alarm request from Unix

17 }

Figure 4.3: Signal Handler Code for the Manipulation of the Time-Event Structure

4.5 Time-Granularity of Alarms

Each Unix system has a minimum time interval at which alarms may arrive. Should
an alarm be requested that is smaller than this minimum inter-arrival time, the
SIGALRM request arrives later than the requested time — at the minimum inter-
arrival time.

To compensate for the possibility of a late alarm arrival (and, in turn, a late
wakeup time for a time-defined delay request), when an event in the time-event
structure is evaluated with an expiration time within the current time and the
minimum arrival time of a SIGALRM, the event is popped from the time-event

structure, and the appropriate handler is executed. The possibly premature exe-
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cution of the event handler whose expiration has yet to arrive may cause problems
for certain real-time applications. The underlying assumption for this default be-
haviour is that it is often better to be early than to be late — obviously, such
philosophy does not apply to all systems. This feature can, in turn, be disabled by

a simple redefinition of a compiler preprocessor constant.

4.6 The Problem Caused by Unix Alarms’ Asso-
ciation with a Process

In Unix, timers and signals are bound to a process. On the multiprocessor version
of pC4+, this implies that timers and their signals are associated with pCH4 pro-
cessors, because processors are implemented as Unix processes (see section 4.1 for
a discussion of the pCH+ runtime environment). On a cluster containing several
processors, several alarms can, therefore, exist.

As further described in section 4.1, every task within a cluster has the possibility
of executing on any of the processors belonging to the same cluster. As such, any of
the tasks requesting time-defined delays (thus, setting the Unix timer), for example,
may make such requests from any of the processors in the cluster.

The fact that tasks can issue time-defined delays from any processor in a cluster
introduces a management problem: What is the most appropriate means of manag-
ing the different time requests issued on different processors, where each processor
has its own timer? The previous discussion of a single time-event structure (see

section 4.4) is significantly complicated, as is managing the timer that causes the

SIGALRM.
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A possible solution to the management problem is to designate one processor
within a cluster to handle Unix alarm requests (in short, the list of sleeping tasks
and time-event structure is only accessed by one process). Whenever a processor
encounters a time-defined delay request from a task it is executing, an alarm request
1s passed on to the designated processor responsible for alarm requests. Though
possible, such an implementation suffers from inefficiencies resulting from the fact
that communication among processors is expensive. Statically analyzing programs
to determine which tasks utilize time-defined delays, and designating such tasks to a
specific processor is another option. Another option is dynamically migrating tasks
to a specific processor when it requests a time-defined delay. However, such options
are extremely naive. If every task on the system requests time-defined delays, the
remaining non-SIGALRM-designated processors would merely be sitting idle.

Rather than attempting to centralize management of the time-event structure,
a more distributed approach turns out to be better. By sharing the list of sleeping
tasks and the time-event structure among processors, it is possible to eliminate the
inefficiency previously described, by not having one statically designated proces-
sor handling time-defined delays, but by having the responsibility be “randomly”
designated among processors. If a task requests a time-define delay, for example,
an appropriate event is inserted into the shared time-event structure (as well, the
list of sleeping tasks is updated). If the event that is added will expire sooner, a
SIGALRM is requested by the processor running the task in question. This proces-
sor requesting the latest SIGALRM is then the designated SIGALRM processor.

Should a processor on the same cluster (other than the newly designated SIGALRM
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processor) have an outstanding SIGALRM request for a particular task on the list
of sleeping tasks, that SIGALRM will be dealt with as a spurious event because
it does not match the time of the event at the beginning of the event list. When
the valid or current SIGALRM does come in, the designated processor services all
the expiring events on the time-event structure, and requests a new SIGALRM for
the next event that will become due. In short, one processor is designated as the
manager of the list of sleeping tasks and the time-event structure. There is no
binding between the task requesting a time-defined delay, and the host processor
it requested a delay from. Processors “randomly” take turns managing alarms and
the data structures associated with them.

The above solution eliminates the bottleneck and inefficiency of having merely
one processor do all the Unix alarm chores. Some form of interprocessor commu-
nication still exists, however, in that previously designated SIGALRM processors
need to somehow be notified when a new SIGALRM processor is designated. Thus,
the above solution is not spared from the inefficiencies inherent in interprocessor
communication.

Sharing the time-event structure and/or list of sleeping tasks requires mutually
exclusive access of the list(s), which introduces additional overhead. By having each
processor maintain its own list of sleeping tasks and time-event structure, which
creates true independence among processors, it is possible to eliminate the sharing
cost. When a task requests a time-defined delay on a processor, the task becomes
bound to the host processor until the task re-awakens. After the task re-awakens,
the waking task is re-inserted by its host processor to the shared ready-queue,

making the task free to re-execute on any of the cluster’s processors.
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The processor-independent nature of the last solution implies that occurrences
of time-slice events can occur much more randomly, independently, and efficiently,
given that each processor keeps track of and controls its own time-slice event. Fur-
thermore, the management of SIGALRMs is more fairly distributed among pro-
cessors, in much the same way as each task on the ready-queue can be randomly

executed by any of the cluster’s processors.

4.7 The Mutual Exclusion Problem Involving Alarms

The time-event structure/list of sleeping tasks is the primary data structure ma-
nipulated by the SIGALRM handler. Furthermore, should a SIGALRM be caused
by a time-slice event, certain pC4+ kernel data structures have to be read and
modified.

The asynchronous and sporadic nature of SIGALRM arrivals creates problems,
in that SIGALRMs can arrive while the above data structures are in the process of
being modified by the uC++ kernel. It is imperative, therefore, that these structures
be in a consistent state before the SIGALRM handler is allowed to execute. To
ensure the consistency of shared data structures, a typical solution is to utilize a
lock to provide mutual exclusion of the shared data. With the SIGALRM handler,
however, utilizing locks can create problems. Assume, for a moment, that the
SIGALRM handler happens to arrive and execute on the same thread as the owner
of the locked data structure. Upon arrival of the SIGALRM, the task owning
the lock is blocked (only to resume after the SIGALRM handler exits), and the
SIGALRM handler is executed. Since the SIGALRM handler cannot acquire the

lock to the shared data, it blocks, which results in a deadlock.



CHAPTER 4. IMPLEMENTATION OF TIME-DEFINED DELAYS 58

A solution that does not use locks for the shared data structures is possible.
However, a lock-free data structure usually requires reference counts and/or shadow
copies of the shared structure [22]. Therefore, such solutions are usually expensive,
and 1mposes significant overheads on the system.

A possible solution for enforcing mutual exclusion, without the signal handler
blocking, is called roll-forwarding[40]. Bershad|[8] also posed a very similar solution
to this problem. Roll-forward is a technique that defers the execution of asyn-
chronous or sporadic interrupt code, should the code be precluded from executing
at its arrival time. The deferral is due to an inconsistent data structure, or merely
the fact that the operation performed by the interrupt code is undefined during the
current execution. Roll-forward transfers control back to the interrupted code, and
after the interrupted code completes, the deferred interrupt code is executed.

Interrupt code is usually of high priority. Since roll-forward code affects the
execution of the interrupt code, roll-forwarding must be used with caution. Roll-
forwarded code should be as small as possible, thus minimizing the time delay
before interrupt code gets executed.

Using roll-forwarding, a general solution to the mutual exclusion problem in-
volving Unix signals is outlined in Figure 4.4. In this solution, upon execution of
the signal handler, semaphore! L is checked to see if the shared data structure is in

use. Note that semaphore L is not P’d (it is only checked), thus, the signal handler

1A semaphore is used to guarantee mutual exclusion among normal routines manipulating the
shared structure. If only one routine manipulates the structure, and the only mutual exclusion that
needs to be guaranteed is between the routine and the signal handler, a lock-free data structure
can be implemented. In fact, a flag alone, which indicates whether the routine is in the process
of manipulating the shared structure, is sufficient.
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never blocks. If semaphore L is unlocked, work CC (the actual work of the signal
handler) is executed. If on the other hand, semaphore L is locked (some function
that manipulates the shared data structure is executing when the SIGALRM is
delivered), execution of CC is deferred and left for the interrupted code to execute
as soon as it completes its critical section and the shared data structures are in a

consistent state.

0 //RollForwardFlag is initialized to false
1 Signal_Handler_Function() {

2 if (lock L is free) { //L guards the shared data structure

3 do CC() //CC is some work utilizing the shared structure
4 }

5 else {

6 set RollForwardFlag to true

7 }

8 }

9

10 Outline_of_Functions_Manipulating_Shared_Structure() {

11 p(L) //L is a semaphore used by all functions accessing the
12 //shared data structure to guarantee mutual exclusion
13 manipulate shared structure (this is the critical section)
14 { //block B

15 if (RollForwardFlag is true) {

16 do cC()

17 set RollForwardFlag to false

18 }

19 } //end of block B

20 v(L) //release semaphore L

21 }

Figure 4.4: Roll-forward Solution with a Lock
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The above solution solves the mutual exclusion problem of the shared data
structure, without the signal handler blocking. However, another restriction arises:
block B (starting at line 14) cannot be interrupted. To understand this requirement,
assume block B can be interrupted. While executing line 15, assume RollForward-
Flag evaluates to false, and right after this evaluation, a SIGALRM occurs. The
signal handler evaluates L to be locked, and sets the flag RollForwardFlag to true.
The signal handler exits, and the interrupted function resumes execution. Prior to
interruption, the RollForwardFlag evaluates to false, so the function exits block B,
and releases semaphore L. Execution of CC is missed.

A solution guaranteeing the atomicity of block B is to block SIGALRMs prior
to entering B. After execution of block B, SIGALRM signals are resumed. When
a signal i1s blocked, the execution of the signal handler is consequently blocked.
While blocked, signals are queued, not lost. Thus, execution of the appropriate
signal handler occurs after unblocking the signal.

The blocking and unblocking of signals is, however, an unsatisfactory solution.
Blocking a signal is expensive, and the possibility that a function is interrupted
within block B is rare.

In the pCH++ implementation of time-defined delays, the above problem is cir-
cumvented by associating certain data structures with a processor, rather than
sharing it among processors within a cluster (see Section 4.6). By having only one
processor manipulate the critical data structures, and by integrating all manipula-
tion of such structures inside the “kernel” (a subset of code that is executed serially

and uninterrupted), the use of locks becomes unnecessary. Also, by incorporating,
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within the kernel, code that manipulates the critical data structures, concurrent
access to the critical structures is highly minimized. The special set of code that
manipulates the critical structures (the interrupt code) is the only other means by
which concurrent access to the critical data structures can possibly takes place, and

the the roll-forward solution nicely guarantees mutual exclusion for this scenario.

0 //RollForwardFlag is initialized to false
1 Signal_Handler_Function() {

2 if (RollForwardFlag is true) return;
3 if (DisablelInterrupts is false) {

4 do Handler()

5 }

6 else {

7 set RollForwardFlag to true

8 }

9}

10

11 Some_Kernel_Code() {

12 some kernel chores ...

13 set Disablelnterrupts to true

14 manipulate shared structure (this is the critical section)

15 set Disablelnterrupts to false
16 if (RollForwardFlag is true) {

17 do Handler()

18 }

19 some kernel chores ...
20 }

Figure 4.5: Roll-forward Solution to Kernel Interruption

The solution illustrated in Figure 4.5 (figure 4.3 in Section 4.4 defines function
Handler) roughly illustrates roll-forwarding in the implementation of time-defined

delays (and, consequently, the uC4++ kernel). A SIGALRM is the only form of
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interrupt where roll-forwarding is utilized. Furthermore, the default action in Unix
i1s to mask SIGALRMs until after the SIGALRM handler has completed. This
default action implies that while Handler is executing, no further alarms can come.
Consequently, the RollForwardFlag needs to be reset to false after the chores in

Handler are executed, but before resetting the Unix alarm (line 16 of Figure 4.3).



Chapter 5

Notion of Time in Real-Time

Programming

In any real-time programming environment, a time base must exist from which
jobs and functions are scheduled. The very nature of time-constrained computing
requires frequent access to a clock and, in turn, a need for a convenient means by
which a clock can be queried [2, 24].

Queries to clocks yield time. The convenient manipulation of time is yet another
essential characteristic in any time-constrained environment. Manipulating time,
in turn, yields another metric that expresses a span or duration of time.

The Ada language provides a CALENDAR library package, which is an interface
that allows for the convenient querying and manipulation of time. In addition, the
Ada95 standard [25] defines an Ada.Real-Time package, which is a high-resolution
monotonic clock library. Ada.Real-Time extends the CALENDAR library by pro-

viding additional facilities for manipulating time to the nanosecond level of gran-
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ularity (in much the same way the POSIX real-time extensions does for Unix and
POSIX threads). Ada’s clock package arguably provides a very sophisticated level
of services, in comparison to other clock facilities provided by other languages suit-
able for real-time development.

C and C4+ on the other hand, provides a primitive interface for querying time.
Though the standard C library defines various units by which time can be queried,
the standard does not define any means by which time units can be easily and
flexibly manipulated. Manipulation of time entails the manual manipulation of the
internal representation of time, which, on most current Unix systems, is in the form
of two long integers representing the number of seconds and micro or nanoseconds
elapsed since the Unix epoch (defined as 1970 Jan 1 00:00:00:000000000).

In making 4C4++ a more suitable platform for real-time development, an inter-
face is provided that encapsulates the internal representation of clock, time, and
duration. As a result, units of time can be easily manipulated, without involv-
ing the programmer in implementation and architecture-dependent details. The
pC+ Calendar package, in turn, combines the power of Ada’s CALENDAR and

Ada.Real-Time library packages.
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5.1 Duration

uDuration is a class whose instances represent a span of time. By subtracting two

time values, for instance, the resulting difference is a time span.

The creation and manipulation of uDuration values are performed by the fol-

lowing routines:

class uDuration {

public:
uDuration()

{};

uDuration(long seconds, long ssec);

uDuration(long seconds) ;

operator struct timeval();

friend uDuration operator- (uDuration gl, uDuration g2);
friend uDuration operator+ (uDuration gl, uDuration g2);

friend uDuration operator*(uDuration gl, long int g2);
friend uDuration operator/(uDuration gl, long int g2);

friend bool
friend bool
friend bool
friend bool
friend bool
friend bool

operator>(uDuration gi, uDuration g2);
operator<(uDuration gi, uDuration g2);
operator>=(uDuration gl, uDuration g2);
operator<=(uDuration gl, uDuration g2);
operator==(uDuration gl, uDuration g2);
operator!=(uDuration gl, uDuration g2);

Usually, uDuration objects are created implicitly when manipulating time (see

Section 5.2 regarding additional functions that provide for the generation of uDu-

ration objects). However, uDuration objects can also be assigned duration values,

by specifying seconds and nanoseconds in a uDuration’s constructor, for example:

uDuration x(4,447398253); //Declaration of uDuration object x,

uDuration x();
uDuration x(5);

//where x represents a duration of

//4 seconds and 447398253 nanoseconds
//Declaration where x is of zero duration
//Declaration where x is 5 seconds
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Direct manipulation of uDuration objects is illustrated as follows:

uDuration x, y, z; int i;

x =y + z; //Addition of two uDuration objects. Sum is a uDuration.

X =y - z; //Subtraction of two uDuration objects. Difference
//is a uDuration.

x =y * i; //uDuration object x is a multiple of y (i multiples).

i * y; //uDuration object x is a multiple of y (i multiples).

x =y / i; //uDuration object y is divided by an integer i.

™
]

In addition, relational comparison operators are defined for uDuration objects:

(>), (<), (>=), (<=), (I =), and (==). All relational operators return a boolean.

5.2 Time

uTime is a class, whose instance represent a static value depicting a particular time.
A uTime object can, therefore, be created by specifying various arguments such
as a year, month, day, hour, minutes, seconds, and nanoseconds. The specified
arguments indicate a particular time a uTime object represents. It is important
to note, however, that the specified parameters and, in turn, instances of uTime,
themselves, cannot represent time prior to the Unix epoch.

As with uDuration objects, certain mathematical and relational operations can
be performed on uTime objects. A duration, for example, may be added to or
subtracted from a uTime object to yield a new instance of uTime. In addition,
two different times can be subtracted from each other to obtain a certain duration.

Comparison operations on uTime behave similarly as those defined for uDuration.
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class uTime {
public:

uTime();

uTime(int yr, int mnth, int day, int hr, int min,
long sec, long ssec);

uTime(int mnth, int day, int hr, int min, long sec, long ssec);

uTime(int day, int hr, int min, long sec, long ssec);

uTime(int hr, int min, long sec, long ssec);

uTime(int min, long sec, long ssec);

uTime(long sec, long ssec);

uTime (long sec);

operator struct timeval();

friend uTime operator+(uTime x, uDuration y);

friend uTime operator+(uDuration y, uTime x);

friend uTime operator-(uTime x, uDuration y);

friend uDuration operator-( uTime gl, uTime g2 );

friend bool operator>(uTime gil, uTime g2);

friend bool operator<(uTime gil, uTime g2);

friend bool operator>=(uTime gl, uTime g2);

friend bool operator<=(uTime gl, uTime g2);

friend bool operator==(uTime gl, uTime g2);

friend bool operator!=(uTime gl, uTime g2);

The uTime constructors are overloaded so there is a choice of specifying the
arguments, based on varying units of time (which are differentiated by the number

of arguments). The arguments of uTime constructors have the following meanings:

e yr- the number of years since 1970;

default value is 1970.

e mnth - the number of months since January [0-11];

default value is 0.
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e day - the day of the month [1-31];

default value is 1.

e hr - the number of hours since midnight [0-23];

default value is 0.

e min - the number of minutes after the hour [0-59];

default value is 0.

e sec - the number of seconds after the minute [0-60];

default value is 0.

e ssec - the number of nanoseconds past sec;

default value is 0.

It is important to note, however, that the various arguments for uTime’s con-
structors can exceed the “logical” ranges specified between the brackets (] |) above.

For example, the following declaration is valid:

uTime x(1,48,0,60,1000000000); //because there are five arguments,
//uTime(int day, int hr, int min,
//long sec, long ssec) is called.
//x is init. with the logical value
//(1970 Jan 3 0:01:01:000000000)
// (assuming timezone is GMT)

uTime x(818227413, 0); //uTime(long sec, long ssec) is called.
//x is init. with the logical value
//1995 Dec 6 00:23:32:000000000
// (assuming timezone is EDT)
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5.3 Clocks

Clocks are objects whose fundamental purpose is to furnish a dynamic property
called time. uClock is a class whose instances specify a monotonically increasing
value, i.e., clocks are entities that continually count up by a fixed duration amount.

The uClock package is designed to support the “multi-clock” environment es-
sential in various real-time platforms. It is common for real-time systems to have
various high-precision clocks, for instance, used in various time-critical applications.
In its current implementation, uClock relies on POSIX system calls, which conve-
niently query various hardware clocks present on the system. In turn, the use of
hardware clocks other than the default system clock requires the presence of the
clock/time POSIX libraries.

The design of the uClock package allows for the definition of unlimited virtual
clocks. Instances of virtual clocks are no more than independent clocks possessing
their own time bases. It is possible to create a clock possessing a time other than
the current system time, for instance. The only restriction is that the clock times

must be greater than the Unix epoch.

class uClock {
public:
uClock(void);
uClock(int clock_id);
uClock(uTime t);
void uGetTime(int &yr, int &mth, int &day, int &hr,
int &min, int &sec, long &ssec);
uTime uGetTime();
void uResetClock(uTime t);
void uResetClock(int clock_id);
void uResetClock();
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Several overloaded constructors are available for creating instances of uClock:

e uClock(void) - uClock objects created with this constructor use the normal
or default system-wide clock (the clock used by the Unix operating system

for its normal clock or time work).

e uClock(int clock_id) - uClock objects that actually correspond to a hard-
ware clock can also be declared. The corresponding constructor for this dec-
laration involves an integer parameter. To declare a uClock object that cor-
responds to the normal or default system-wide clock, the clock_id parameter

must be zero.

e uClock(uTime t) - uClock objects are usually defined by specifying a time
base by which the uClock object functions from. The specified time base
(defined by t), indicates the start time from which the uClock object counts

upwards. The uClock object created through this method is a virtual clock.

From uClock objects, time can be extracted using uGetTime. uGetTime is
overloaded, in that it may return a uTime object as the extracted time of the
particular uClock object, or it may accept a set of six variables as its parameters,
in which the logical time is assigned.

The base time of a uClock object can be changed after its creation. This is
accomplished with the uResetClock function. The uResetClock member, without
any parameter, simply resets the clock object to the same time as the default system
clock. With a uTime parameter, uResetClock automatically transforms the uClock

object to a virtual clock, if it is not already one. The time base of the uClock object
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is reset to the time specified in the uTime parameter. With an integer parameter,
uResetClock corresponds to the hardware clock specified by the integer argument.

As usual, an argument of zero sets the uClock object to correspond to the default

system clock.



Chapter 6

Real-time Constructs

Without programming language facilities that allow for the specification of time
constraints and behaviours, real-time programs are usually limited to cyclic exec-
utives, and the likelihood of encountering timing errors increases, as manual cal-
culations are utilized. The introduction of real-time constructs is a necessity for
accurately expressing time behaviour, as well as providing a means for the runtime
program to evaluate whether any timing constraints have been broken. Further-
more, explicit time-constraint constructs can drastically minimize coding complex-
ity as well as analysis. Various programming language constructs for real-time

environments are discussed in [45, 38, 35, 28, 27, 26, 20, 16, 14, 43].

6.1 Construct for the Expression of Time-Defined
Delays

In the Ada programming language[25, 48], a time-defined delay is expressed by
either of two constructs:
delay delaytime

delay until delaytime

72



CHAPTER 6. REAL-TIME CONSTRUCTS 73

delay specifies a delay time relative to the outset of the statement declaration
(duration), whereas delay until specifies an absolute delay time.

In pCH++, time-defined delays are implemented as function calls to the pCH++
kernel. As such, the flexibility of C4+ allows for the overloading of functions, which
eliminates the need to have two different forms of time-delay specification:

void uSleep(uDuration duration);

void uSleep(uTime time) ;
With a uDuration parameter, uSleep works in the same way as Ada’s delay state-
ment. Given a uDuration parameter, the task requesting a time-defined delay
sleeps for the span of time indicated by the duration parameter. A uTime param-
eter behaves the same as Ada’s delay until statement. Since uTime specifies an
absolute time, the task requesting a time-defined delay sleeps until the specified
absolute time. Note that should the uDuration argument be less than or equal
to a duration of zero, the task in question does not sleep and simply ignores the
request. Similarly, a uTime parameter specifying an absolute time that has already

passed results in the request being ignored.

6.2 Specification of Periodic Tasks

Without a programming language construct to specify periodicity, and without
programming language facilities to express time, it is almost impossible to accu-
rately express time specifications within a program. Specifying a periodic task in a
language without proper time constructs, for example, can introduce catastrophic

inaccuracies. For example, in
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for (; ;) o
// Some periodic chores
uDuration DelayTime = NextTime - CurrentTime;
uSleep(DelayTime) ;

g W NN =

should the task in question be context-switched out after executing line 3 (or be
context-switched out after the CurrentTime is evaluated in line 2), the DelayTime
would be inaccurate. As a result, the sleep time of the program is erroneous.

The above problem can be eliminated by specifying an absolute time to uSleep
(specifying “NextTime” as the parameter to uSleep). However, with this form
of periodic task specification, it is infeasible to specify other forms of deadlines.
Ada only supports the periodic task specification using delays, and the system
guarantees that a periodic task delays for a minimum time specified in DelayTime,
but makes no guarantee as to when the periodic task actually gets to execute [7].
As a result, a task can request to be put to sleep for 10 seconds (and Ada would
guarantee that it sleeps for at least 10 seconds), but end up executing 20 seconds
later.

In pCH+ ., a periodic task is defined in a similar manner as a class. A periodic
task has, in fact, all the properties of a class, with the addition that a task of
any sort (be it periodic, aperiodic, or a normal task) possesses its own thread of
control, execution-state, and mutual exclusion. Task constructors are executed by
the calling thread, after which the newly created task starts execution with its own
thread. A task’s thread of execution initiates with main. Note that main has no
parameters. Information that needs to be passed to main may be done through the

constructor. A periodic task has the following form:
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uPeriodicTask task-name {
private:
/] ...
protected:
/...
void main() ;
public:
/] ...
};

A uPeriodicTask type, if not derived from some other type, is implicitly derived

from the task type uPeriodicBaseTask, as in:

uPeriodicTask task-name : public uPeriodicBaseTask {
private:
/] ...
protected:
uDuration uPeriod;
uTime uFirstActivateTime;
uEvent uFirstActivateEvent;
uTime EndTime;
uDuration Deadline;
/] ...
public:
uPeriodicBaseTask (uDuration Period,
uCluster &cluster = uThisCluster());
uPeriodicBaseTask (uDuration Period, uTime FirstActivate,
uTime EndTime, uDuration Deadline,
uCluster &cluster = uThisCluster());
uPeriodicBaseTask (uDuration Period, uEvent FirstActivate,
uTime EndTime, uDuration Deadline,
uCluster &cluster = uThisCluster());
uPeriodicBaseTask(uDuration Period, uTime FirstActivate,
uEvent FirstActivate, uTime EndTime,
uDuration Deadline,
uCluster &cluster = uThisCluster());
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Periodic tasks may be initiated by two means. The first is by specifying a start
time at which the periodic task begins execution. The second is by specifying an
event (an interrupt), such that upon receipt of the event, the periodic tasks begins.
If both time and event are specified, the task starts either on receipt of an event
or when the specified time arrives, whichever comes first. If no time or event is
specified, the periodic task may start at any time. End times may also be specified.
When a specified end time arrives, the periodic task halts after the execution of the
current period. The Deadline parameter indicates the deadline of a task, expressed
as a duration from the beginning of a task’s period. A 0 (zero) as an argument for
any of the parameters indicates that the task in question is free from the constraints
represented by the parameters (the exception is Period, which cannot have a zero
argument). For example, should the FirstActivate parameter be zero, this implies
that the task is scheduled for initial execution at the next available time the system
can accommodate it. Finally, the cluster parameter specifies which cluster the task
should be created in. Should this parameter be omitted, the task is created on the
current cluster.

An example of a periodic task declaration is to start at a specified time and

execute indefinitely (without any deadline constraints):

uPeriodicTask sample-task {
protected:
void main() {
//periodic task body
//...
}
public:
sample-task (uDuration period, uTime time) :
uPeriodicBaseTask(period, time, 0, 0) {};
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6.3 Specification of Sporadic Tasks

Sporadic tasks are not as predictable as periodic tasks, in that the ready time of
a sporadic task is not always within a constant duration, as is with periodic tasks.
There is a sense of predictability, however, in that there is a minimum duration
between the arrival of the same sporadic task.

Sporadic tasks are defined in a similar manner as periodic tasks, with the excep-
tion of the Period parameter. In the declaration of a sporadic task, the minimum
inter-arrival time of the sporadic task is specified as a parameter, called Frame.

A uSporadicTask type, if not derived from some other type, is implicitly derived

from the task type uSporadicBaseTask, as in:

class uSporadicTask : public uSporadicBaseTask {
protected:

uDuration uFrame;

uTime uFirstActivateTime;

uEvent uFirstActivateEvent;

uTime EndTime;

uDuration Deadline;

/...

public:

uSporadicBaseTask(uDuration Frame,
uCluster &cluster = uThisCluster());

uSporadicBaseTask (uDuration Frame, uTime FirstActivate,
uTime EndTime, uDuration Deadline,
uCluster &cluster = uThisCluster());

uSporadicBaseTask (uDuration Frame, uEvent FirstActivate,
uTime EndTime, uDuration Deadline,
uCluster &cluster = uThisCluster());

uSporadicBaseTask (uDuration Frame, uTime FirstActivate,
uEvent FirstActivate, uTime EndTime,
uDuration Deadline,
uCluster &cluster = uThisCluster());
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6.4 Specification of Aperiodic Tasks

Aperiodic tasks have no deterministic ready-time patterns. As a result, aperiodic

tasks can, at most, be used in soft real-time applications.

An aperiodic task is defined as a uRealTimeTask. If a uRealTimeTask type

is not derived from some other type, it is implicitly derived from the task type

uRealTimeBaseTask, as in:

class uRealTimeTask : public uRealTimeBaseTask {

};

private:
/...
protected:
uTime uFirstActivateTime;
uEvent uFirstActivateEvent;
uTime EndTime;
uDuration Deadline;
/] ...
public:
uRealTimeBaseTask (uCluster &cluster=uThisCluster());
uRealTimeBaseTask (uTime FirstActivate, uTime EndTime,
uDuration Deadline,
uCluster &cluster=uThisCluster());
uRealTimeBaseTask (uEvent FirstActivate, uTime EndTime,
uDuration Deadline,
uCluster &cluster=uThisCluster());
uRealTimeBaseTask (uTime FirstActivate, uEvent FirstActivate,
uTime EndTime, uDuration Deadline,
uCluster &cluster=uThisCluster());

6.5 Exception Handling

In the design and implementation of real-time programs, various timing constraints

are guaranteed through the use of scheduling algorithms, as well as the utilization

of exception facilities.
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Exception facilities are extremely crucial in real-time systems, as they allow a
system to react to an error in a deterministic fashion. Hecht [21] demonstrated,
through various empirical studies, that the introduction of even the most basic
fault-tolerance mechanisms into a system drastically improves the reliability of a
real-time system.

pC+ 1s extending the basic exception constructs of C++ to deal with con-
currency, as illustrated in figure 6.1. Should an exception condition be raised from
within the uTry block, the appropriate or matching handler is executed from within
the declared handlers. The future behaviour of the exception environment is defined

by the following possible options for dealing with an exception situation:

e uCatch - deals with the exception situation in the same way C++ deals with
exceptions. Should an error condition occur, program execution transfers
from the point where the exception is raised, to the exception handler. After
execution of the exception handler, the task in question continues execution

outside of the uTry block.

e uResume - should an error condition occur, program execution transfers from
the point where the exception is raised, to the exception handler [11]. Upon
completion of the exception handler, program execution returns to the point
where the exception is raised. In short, should an exception condition occur,
control branches to the handler, and after execution of the handler, control

returns to where it left off before the exception condition occurred.

As in C++, an ellipses (...) condition indicates that the handler is executed if an

exception is raised, but no appropriate exception handler is specified.
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Real-time tasks (periodic, sporadic, and aperiodic tasks) may raise particular

exceptions. These exceptions are:

e uDeadlineExpiry- A task usually has a predefined deadline. Anytime during
the execution of the task body, should the deadline arrive, this exception is

raised.

e uLateStart - A task may be required to start execution at a certain time.
Should the task execute later than its specified execution time, this exception

is raised.

e uEarlyStart - A task required to start execution at a certain time may, at
times, be run earlier than its specified execution time. Should this case occur,

this exception is raised.

The above exceptions may be raised and caught anywhere in the real-time task
body (without the need to enclose the real-time code within a uTry block). If a
programmer does not catch these exceptions, the default action is to terminate
the program. The programmer may override the default actions by enclosing the
body of the real-time task’s main function within a uTry block. Should one wish to
override these exceptions, it is imperative that no other code precede and supercede
the uTry block, along with the declared handlers. Figure 6.1 illustrates this.
There are portions of code, however, that the programmer may deem as “crit-
ical” or uninterruptable, such that exceptions may not interrupt such code. This
portion of uninterruptable code (uninterruptable in terms of exceptions) is labeled

as uProtected:
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uProtected {
//Exceptions may not interrupt this portion of code

Should an exception condition arrive while the program is executing within the
uProtected region, the execution of the exception handler i1s deferred until after the

program exits the uProtected region.

6.6 Statement-Level Timing Constraints

Statement-level timing constraints may be specified anywhere within a program.
Statement-level timing constraints are expressed within a uBy block, as illustrated

below:

uBy (some_uTime_or_uDuration) {

/...

¥

uResume (uDeadlineExpiry) {
/...

¥

The uBy statement takes a uTime or uDuration parameter, which specifies the ab-
solute time or length of time by which the enclosed statement needs to be executed.
By the defined deadline, if the execution of the enclosed statement had not been
completed, an exception is raised (section 6.5 discusses exceptions in detail, as well
as the various forms of exception facilities that may be invoked).

Within a real-time task (periodic, sporadic, or aperiodic tasks), a uBy statement
may be declared by itself, without being followed by an exception handler. The

uDeadlineExzpiry exception is automatically invoked, unless the default behaviour
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is overridden by an explicit declaration of an exception facility and a handler, as

llustrated above.

6.7 Condition Variable Timing Constraints

In pCH++ , condition variables provide a facility for waiting and synchronizing tasks.
In a real-time environment, however, the time a task can wait for synchronization
may need to be bounded.

Normally, a wait on a condition variable is specified by:

uWait ConditionVariable;

With timing constraints, the waiting time on a condition variable is checked to
ensure that the condition variable has, indeed, been signaled by a certain time (or
within a duration of time). Should this not be the case, an exception is raised. The

specification of the time constraint is as follows:

uWait ConditionVariable by (Some_uTime_or_SomeDuration)
uCatch (uDeadlineExpiry) {

// ...
};

6.8 Real-Time Programming Constraints

Real-time programming can vastly differ from programming without time con-
straints, in that certain operations whose execution times cannot be bounded are
deemed inappropriate. The following additional constraints are listed for complete-

ness, but not addressed in this work.
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The use of dynamic data structures can lead to unbounded and unpredictable
waiting times. The unpredictable nature of task arrivals and, in turn, memory
requests to the operating system, coupled with the inherently sequential nature
of memory management, makes memory allocation requests unpredictable (time-
wise). Following the same reasoning, the dynamic creation of tasks also leads to
similar unpredictable time behaviours.

Schedulability analyzers and various compile-time code analyzers are often used
in real-time programs, so as to evaluate the schedulability of a program, or deter-
mine certain runtime parameters. Besides dynamic allocation of memory, the use of
recursion, for instance, may also inhibit a schedulability analyzer from determining
the execution time of a piece of code. Furthermore, stack-size requirements may
not be accurately determinable apriori.

Certain language constructs such as a general while-loop, for example, makes a
program less predictable. It has even been proposed that such constructs (that can
take arbitrarily long to execute) not be made available to real-time programming
languages [52]. In general, iterative computations in real-time environments must

be expressible in terms of a constant-count loop.
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uPeriodicTask sampletask {

main() {

// No user code allowed
uTry {

// Periodic Task Body
/...

}

uCatch (conditionl) {
//...

}

uCatch (condition2) {
//...

}

//...

uResume (condition10) {
//...

}

uResume (conditioni1l) {
//...

}

//...

uCatch (uDeadlineExpiry) {
// new default behaviour

}

uCatch (...) {
//...

}

// No user code allowed

Figure 6.1: Basic Exception Handling
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Real-Time Scheduler
Implementation

7.1 The Notion of Priority in a Real-Time Pro-
gramming Language

In adapting a general programming language to become a flexible real-time pro-
gramming language, the notion of priority becomes a very handy tool, allowing for
flexible implementations of various forms of scheduling paradigms [1, 12, 18]. As
discussed in earlier chapters, the term priority has no single meaning. The prior-
ity of a task may signify its logical importance to a programmer, or may simply
be a property determined by its periodic characteristics, as is the case with the
rate-monotonic priority assignment scheme.

In this design and implementation of a real-time programming language, the
notion of priority simply determines the order by which a set of tasks executes. As
far as the real-time system is concerned, the task with the highest priority is the
most eligible task to execute, and among a set of ready tasks awaiting processor

time, the highest priority task is always executed first, with little regard for the
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possible starvation of lower priority tasks. This form of scheduling is often referred
to as a prioritized preemptive scheduling.

In pC+H+, each task’s priority can be redefined and queried by the following
functions, which are member routines of uBaseTask, from which all the different

kinds of tasks inherit:

void uSetPriority(int priority);

void uSetActivePriority(int priority);
int uGetPriority();

int uGetActivePriority();

To provide the facilities for implementing various priority-changing scheduling algo-
rithms (such as the priority-inheritance algorithm, for instance), a pC4+ task can
have two priorities associated with it: a base priority and an active priority. It is
up to the scheduling algorithm implementor or programmer to set the appropriate
priority values, or to determine whether the base priority or the active priority is
the priority that will be utilized in scheduling tasks, if they are used at all.!

The notion of a task’s priority can not only be utilized in determining which
task executes next, but priorities also dictate the behaviour of various synchroniza-
tion primitives such as semaphores and monitors [12]. pC+4 monitors have been
extended so that entry queues are prioritized.? The highest priority task that calls
into a monitor always enters the monitor first, unless a particular entry queue is
explicitly accepted, in which case, the highest priority task in the particular en-

try queue executes. Condition queues within a monitor are also prioritized, such

1Upon every task’s creation, uCH+ sets the base and the active priority of a task to a uniform
default value, if no default priority is specified.

2A task’s active priority is utilized by a uCH+ monitor to determine a task’s priority value
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that the signaling of a condition queue schedules the highest priority task. Thus,
both the monitor entry queues and the condition queues are prioritized, with FIFO
(first-in first-out) within each priority level. With the current implementation, 32
priority levels are supported. Support for more or less priority levels can be trivially
implemented by redefining the data structures in question (see section 7.2).

Prior to transforming the pC++ language implementation into a real-time “friendly”
system, the monitor entry queues and the condition variable queues were scheduled
using FIFO, and there was no notion of priority incorporated into the system. The
addition of priorities and FIFO within the priority levels merely adds functionality,
while maintaining backward compatibility to uC++ ’s previous behaviour. If an ap-
plication is not real-time, all the tasks are assigned an equal, default priority level.
Thus, all tasks have one active priority, and FIFO scheduling dictates the system’s

behaviour.

7.2 Provisions for the Implementation of a Flex-

ible Scheduler

As discussed in the introduction, one of the goals of this project is to design and
implement a flexible real-time system, capable of being adapted to various real-time
environments and applications. The wide availability of various forms of real-time
scheduling algorithms, coupled with each algorithm’s suitability for different forms
of real-time applications, makes it essential that the language definition provide
as few restrictions as possible on which algorithms can or cannot be utilized and

implemented.
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Scheduling i1s the mechanism by which the next task to run is chosen from a
set of runnable tasks. However, this selection mechanism is closely tied to the
data-structure representing the set of runnable tasks. In fact, the data-structure
containing the set of runnable tasks i1s often designed with a particular scheduling
algorithm in mind.

To achieve the goal of implementing a flexible scheduler, the ready “queue” is
packaged as one entity — readily accessible and replaceable by a user. Consequently,
the rules and mechanisms by which insertion and removal takes place from the ready
data structure® is completely up to the implementor.

Four functions must be defined, which are mandatory for the ready data struc-

ture:

class uBaseQueueStructure {
public:
virtual void uAdd( TaskStructure *task ) = 0;
virtual TaskStructure *uPop() = 0;
virtual int uEmpty() = 0; //is the structure empty? True or false?
virtual void uAddInitialize() = O;
virtual void uRemovelInitialize() = 0;

In turn, the “kernel” uses these four function calls to interact with the user-defined
ready structure.?

A user can, in turn, construct any form of scheduling algorithm by modifying

the behaviour of uAdd and uPop. To implement a dynamic scheduling algorithm,

3The term “ready queue” is no longer appropriate because the data structure may not be a
queue.

4Operating systems such as Amoeba[54], Chorus[44], and Apertos[56] employ a similar mecha-
nism by which the kernel can utilize external modules that are essential to the operating system.
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for instance, everytime a uAdd or a uPop is performed by the kernel, an analysis of
the set of runnable tasks may be performed, which may, in turn, alter the priorities
of the tasks at hand. uAddInitialize is called by the kernel whenever a task is
added to the cluster, and uRemoveInitialize is called by the kernel whenever a
task is deleted from the cluster (section 4.4 defines cluster). Note that the addition
(or deletion) of tasks to (or from) the cluster is not the same as adding or popping
tasks from the ready structure. With a static scheduling algorithm, for example,
task set analysis is only performed upon task creations, making the uAddInitialize
function an ideal place to specify such analysis code. uAdd and uPop are called
throughout the lifetime of the real-time tasks, but in a static scheduling algorithm,
no task set analysis occurs within these functions.

A real-time cluster behaves just like a normal pC4+ cluster, except a real-
time cluster can have a special ready data-structure associated with it (the ready
data-structure, in turn, has a scheduling or task dispatching policy associated with
it). The ready data-structure must inherit from the uBaseQueueStructure class,
however, and must be specified upon the creation of the real-time cluster. A real-

time cluster has the following constructors:

class uRealTimeCluster : public uCluster {
public:
uRealTimeCluster( uBaseQueueStructure *Ready,
int size = uDefaultStackSize(),
const char *name = "" );
uRealTimeCluster( uBaseQueueStructure *Ready, const char *name );

Section 7.3 discusses, in detail, the syntax for the creation of a real-time cluster.
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7.3 Implementation of Deadline Monotonic Schedul-

ing in uCH+

The amalgamation of ideas discussed in the previous sections of this chapter lay the
foundation for implementing many kinds of scheduling algorithms. The implemen-
tation of the deadline monotonic scheduling algorithm, for instance, only requires
that a special ready data structure (with deadline monotonic as its task-dispatching

policy) be plugged into a real-time cluster.

Priority 2 Q—’Q—’Q—’Q

Priority 30
Priority 31 Q

Q - Task

Figure 7.1: Ready-Queue Utilized in the Deadline Monotonic Implementation

The underlying ready data structure for the deadline monotonic implementation

1s a prioritized ready-queue, with support for 32 priority levels. The uwAdd function
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adds a task to the ready-queue in a FIFO manner within a priority level. The uwPop
function returns the most eligible task with the highest priority from the ready-
queue. Both uAdd and uwPop utilize a constant-time algorithm for the location of
the highest priority task. Figure 7.1 illustrates this prioritized ready-queue.

The uAddInitialize function contains the heart of the deadline monotonic
algorithm. In uAddInitialize, each task in the ready-queue is examined, and
tasks are ordered from soonest to farthest deadlines. Priorities are, in turn, assigned
to every task. With the newly assigned priorities, the ready queue is re-evaluated,
so as to ensure that it is in a consistent state.

On a deadline monotonic environment, tasks are not normally removed from
the system. On rare occasions, should task removal be necessary, the same task set
and ready queue evaluation takes place as when a new task is added. Consequently,
the uRemoveInitialize function is identical to uAddInitialize.

Each time uAddInitialize is called, the priorities of the tasks within the cluster
are manipulated. As indicated in section 7.2, this function is usually called only
by the kernel. Furthermore, it is only called whenever a new task is added to the
current cluster, thus requiring a re-evaluation of the task priorities.

Any real-time program wishing to utilize the deadline-monotonic algorithm must
include the “uDeadlineMonotonic.h” header file in their code. A sample real-time
program is illustrated in figure 7.2.

At the beginning of the uMain: :main() routine is the creation of a real-time
cluster. Note that the parameter passed to the constructor of uRealTimeCluster
is a uDeadlineMonotonic class, which is a ready data-structure derived from uBase-

QueueStructure.
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#include<uC++.h>
#include<uDeadlineMonotonic.h>

uPeriodicTask PeriodicTaskl {
public:
PeriodicTaskl (uDuration period, uDuration deadline,
uCluster &clust) : uPeriodicBaseTask(period, uTime(),
uTime(), deadline, clust) {};
void main() {
//Periodic Task Body

} // main

3

uPeriodicTask PeriodicTask2 {
public:
PeriodicTask2(uDuration period, uDuration deadline,
uCluster &clust) : uPeriodicBaseTask(period, uTime(),
uTime(), deadline, clust) {};
void main() {
//Periodic Task Body

} // main
void uMain: :main() {

uRealTimeCluster Clust(new uDeadlineMonotonic);
uProcessor *processor;

{
// Note that these tasks are created, but they do not begin

// execution till a processor is created on the "Clust" cluster.
// This is ideal, so that "uInitialize" is run when all tasks are
// already set-up, and no task gets to execute ahead of another

PeriodicTaskl t1(15, 5, Clust); //15 sec period, 5 sec deadline
PeriodicTask2 t2(30, 10, Clust); //30 sec period, 5 sec deadline
PeriodicTaskl t3(60, 20, Clust); //60 sec period, 20 sec deadline

// There are no real-time tasks executing yet, since there
// are no processors assigned to the cluster yet.

// We now assign a processor into "Clust"

processor = new uProcessor(Clust);
} // wait for t1, t2, and t3 to all finish, before continuing
delete processor;

};

Figure 7.2: Sample Real-Time Program
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In pCH-, upon a task’s creation, it is added to a cluster (either the default
cluster or a user specified one), after which, the cluster’s task set is analyzed,
and task priorities are (re)assigned. After this priority assignment, the task is
added to the ready queue, and made eligible to execute. For a static scheduling
algorithm, this behaviour is sometimes unideal, in that the critical instant (see
section 3.9.1 for an explanation of the critical instant) is not preserved. Upon a
task’s creation, it is made eligible to execute, even though its priority is not yet
fully determined (as newer tasks are created, a task’s priority changes — and the
priority only becomes fixed and determined after all the tasks in the system have
been created and analyzed). To preserve the critical instant, a possible solution
(illustrated in figure 7.2) is to create a real-time cluster without initially assigning
a processor to it. All the system’s tasks are then created. A task is created by
the current active processor on the current cluster, and the task set of the cluster
where the new task is added is analyzed (and the task priorities manipulated) by
the current active processor on the current cluster. After the creation of the tasks,
a processor 1s finally assigned to the real-time cluster. This approach ensures that
when the processor is put in place, the task priorities are fully determined, and the

critical instant is ensured.

7.4 Testing the uC++ Real-Time Environment

To test the functionality and correctness of pC++ s real-time features, some real-
time programs were run. In particular, the implementation of the deadline mono-

tonic algorithm was tested, as well as the implementation of the priority-inheritance
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T
Ty | O
5 10 15 20 25 30 35 40 45 50 55 60
Figure 7.3: Predicted Time-Line for the Deadline Monotonic Test
protocol.

H Task ‘ Period (T) ‘ Computation Time (C) H

To 15 sec 5 sec
T 30 sec 9 sec
Ty 60 sec 19 sec

Table 7.1: Task Set of the Deadline Monotonic Test Program

To test the deadline monotonic algorithm, a simple real-time program was con-
structed. The program creates three real-time periodic tasks, as illustrated in
table 7.1. Based on the deadline monotonic algorithm, task 7y is given the highest
priority, and task 7, gets the lowest priority. Schedulability tests all fail to prove
that task deadlines will be met. However, carefully reasoning about the program'’s
expected behaviour reveals that deadlines for all tasks can, indeed, be met. The
reasoned or predicted time-line is illustrated in figure 7.3. When run, the program’s
behaviour does confirm the predicted time-line. A sample output of the program
1s shown in figure 7.5.

To test the functionality of the deadline monotonic, as well as the priority-
inheritance protocol, the “Toilet-Going Philosophers” was implemented. In a philoso-

pher’s lifetime, a philosopher must constantly sleep, go to the toilet upon waking
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up, wash after going to the toilet, and go back to sleep. All philosophers must share
a common restroom, which results in only one philosopher being able to go to the
toilet or to wash at any one time. Philosophers, like any other person, do not wish
to be interrupted while in the toilet. While washing, however, philosophers do not
mind being interrupted. Philosophers must go to the toilet and wash for specified

times, as indicated in table 7.2.

| Task | Period (T) | Toilet Time | Washing Time |
7o (Philosopher 1) 20 sec 2 sec 2 sec
71 (Philosopher 2) 30 sec 4 sec 3 sec
75 (Philosopher 3) 40 sec 6 sec 4 sec
73 (Philosopher 4) 50 sec 8 sec 5 sec

Table 7.2: Task Set of the Priority-Inheritance Test Program

Based on the deadline monotonic scheduling algorithm, task 7y is the highest
priority task, followed by 71, 75, and 73 as the lowest priority task within the task
set.

The predicted time-line for the behaviour of the priority-inheritance program
1s illustrated in figure 7.4. Note that at the 80th second since program invocation,
task 79 becomes ready to execute. During this time, however, task 73 1s in the
toilet. Task 7y is not allowed to interrupt task 73, and graciously waits for task
T3 to leave the toilet. In turn, task 73’s priority is bumped up to the priority of
task 79. As soon as task 73 leaves the toilet, 7y gets to enter the toilet. The same
behaviour can be observed on the 95th second mark for tasks 7; and 75, as well
as the 100th second mark for tasks 7y and 7;. The program output illustrated in

figure 7.6 confirms this expected behaviour.
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Figure 7.4: Predicted Time-Line for the Priority-Inheritance Test Program
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Time TaskID

0.3354 This is Task O Beginning

5.112075 This is Task 0 Ending 5.108710 seconds later
5.114328 This is Task 1 Beginning

14.262883 This is Task 1 Ending 9.148541 seconds later
14.265232 This is Task 2 Beginning

15.22611 This is Task O Beginning

20.105209 This is Task 0 Ending 5.82588 seconds later
30.14129 This is Task O Beginning

35.62590 This is Task 0 Ending 5.48452 seconds later
35.114608 This is Task 1 Beginning

44.197571 This is Task 1 Ending 9.82950 seconds later
45.5562 This is Task O Beginning

50.64510 This is Task 0 Ending 5.58937 seconds later
57.755201 This is Task 2 Ending 43.489957 seconds later
59.997723 This is Task O Beginning

65.46781 This is Task 0 Ending 5.49046 seconds later
65.108272 This is Task 1 Beginning

74.193848 This is Task 1 Ending 9.85566 seconds later
74.259131 This is Task 2 Beginning

75.58465 This is Task O Beginning

80.115619 This is Task 0 Ending 5.57143 seconds later
90.49913 This is Task O Beginning

95.97519 This is Task 0 Ending 5.47595 seconds later
95.151069 This is Task 1 Beginning

104 .245666 This is Task 1 Ending 9.94585 seconds later
105.41277 This is Task O Beginning

110.97361 This is Task 0 Ending 5.56075 seconds later
117.733971 This is Task 2 Ending 43.474826 seconds later
120.34317 This is Task O Beginning

125.84269 This is Task 0 Ending 5.49944 seconds later
125.143853 This is Task 1 Beginning

134.256453 This is Task 1 Ending 9.112594 seconds later
134.258466 This is Task 2 Beginning

135.34733 This is Task O Beginning

140.109882 This is Task 0 Ending 5.75139 seconds later
150.25800 This is Task O Beginning

155.110087 This is Task 0 Ending 5.84277 seconds later
155.226391 This is Task 1 Beginning

164.330029 This is Task 1 Ending 9.103628 seconds later
165.17250 This is Task O Beginning

170.95681 This is Task 0 Ending 5.78420 seconds later
177 .877887 This is Task 2 Ending 43.619401 seconds later

Figure 7.5: Sample Program Output of the Deadline Monotonic Test
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0.2324 Philosopher
2.14766 Philosopher
2.17301 Philosopher
4.23333 Philosopher
4.26036 Philosopher
8.39601 Philosopher
8.41992 Philosopher
11.4671 Philosopher
11.4941 Philosopher
17.5764 Philosopher
17.6110 Philosopher
20.5421 Philosopher
22.5793 Philosopher
22.6028 Philosopher
24.6863 Philosopher
25.9466 Philosopher
25.9718 Philosopher
33.1170 Philosopher
33.1194 Philosopher
34.5528 Philosopher
38.5090 Philosopher
38.5322 Philosopher
40.6581 Philosopher
42.6502 Philosopher
42.6766 Philosopher
44.6804 Philosopher
45.6844 Philosopher
49.1398 Philosopher
51.4731 Philosopher
57.5066 Philosopher
57.5309 Philosopher
60.1477 Philosopher
62.1691 Philosopher
62.1715 Philosopher
64.1720 Philosopher
64.1745 Philosopher
68.1856 Philosopher
68.1883 Philosopher
71.1920 Philosopher
72.1037 Philosopher
75.8965 Philosopher
83.8694 Philosopher
83.8935 Philosopher
83.9979 Philosopher
85.1116 Philosopher
85.1139 Philosopher
87.1175 Philosopher
91.1004 Philosopher
97.1026 Philosopher
97.1052 Philosopher
97.2010 Philosopher
101.199 Philosopher
101.202 Philosopher
101.211 Philosopher
103.214 Philosopher
103.216 Philosopher
105.220 Philosopher
108.222 Philosopher
112.130 Philosopher
113.144 Philosopher
120.193 Philosopher
122.196 Philosopher
122.198 Philosopher
124.197 Philosopher

Figure 7.6: Sample Program Output of the Priority-Inheritance Test

goes to TOILET (priority 1)

leaves TOILET 2.124 sec later (priority 1)

goes to WASH (priority 1)

finished with WASH 2.602 sec later (priority 1)
goes to TOILET (priority 2)

leaves TOILET 4.135 sec later (priority 2)

goes to WASH (priority 2)

finished with WASH 3.471 sec later (priority 2)
goes to TOILET (priority 3)

leaves TOILET 6.821 sec later (priority 3)

goes to WASH (priority 3)

goes to TOILET (priority 1)

leaves TOILET 2.370 sec later (priority 1)

goes to WASH (priority 1)

finished with WASH 2.835 sec later (priority 1)
finished with WASH 8.335 sec later (priority 3)
goes to TOILET (priority 4)

leaves TOILET 8.198 sec later (priority 4)

goes to WASH (priority 4)

goes to TOILET (priority 2)

leaves TOILET 3.995 sec later (priority 2)

goes to WASH (priority 2)

goes to TOILET (priority 1)

leaves TOILET 1.999 sec later (priority 1)

goes to WASH (priority 1)

finished with WASH 2.381 sec later (priority 1)
finished with WASH 7.152 sec later (priority 2)
finished with WASH 16.204 sec later (priority 4)
goes to TOILET (priority 3)

leaves TOILET 6.334 sec later (priority 3)

goes to WASH (priority 3)

goes to TOILET (priority 1)

leaves TOILET 2.213 sec later (priority 1)

goes to WASH (priority 1)

finished with WASH 2.545 sec later (priority 1)
goes to TOILET (priority 2)

leaves TOILET 4.110 sec later (priority 2)

goes to WASH (priority 2)

finished with WASH 3.372 sec later (priority 2)
finished with WASH 15.506 sec later (priority 3)
goes to TOILET (priority 4)

leaves TOILET 7.997 sec later (priority 1)

goes to WASH (priority 4)

goes to TOILET (priority 1)

leaves TOILET 2.118 sec later (priority 1)

goes to WASH (priority 1)

finished with WASH 2.352 sec later (priority 1)
goes to TOILET (priority 3)

leaves TOILET 6.221 sec later (priority 2)

goes to WASH (priority 3)

goes to TOILET (priority 2)

leaves TOILET 3.998 sec later (priority 1)

goes to WASH (priority 2)

goes to TOILET (priority 1)

leaves TOILET 2.319 sec later (priority 1)

goes to WASH (priority 1)

finished with WASH 2.314 sec later (priority 1)
finished with WASH 7.199 sec later (priority 2)
finished with WASH 15.252 sec later (priority 3)
finished with WASH 30.550 sec later (priority 4)
goes to TOILET (priority 1)

leaves TOILET 2.239 sec later (priority 1)

goes to WASH (priority 1)

finished with WASH 1.999 sec later (priority 1)

98



Chapter 8
Future Work

Though the current implementation eliminates most of the tedious chores involved
in implementation of real-time applications (such as the automated calculation
of priorities for certain scheduling algorithms), the current environment still falls
short, in that a form of offline schedulability analyzer has yet to be implemented.
Though various research results on schedulability analysis have been presented in
this thesis, automating such calculations have yet to be implemented. Implemen-
tation of schedulability analyzers are discussed in [53]. Besides a schedulability
analyzer that determines the feasibility and schedulability of a task set, it is also
desirable to have an analyzer which evaluates the average and worst case execution
times of a program.

The current implementation does not take advantage of multiprocessor archi-
tectures, partly due to the scheduling difficulty associated with such environments.
Despite this difficulty, however, restrictive environments can be constructed which
could utilize the multiprocessor environment. In addition, with the use of heuristics,

multiprocessor environments can still be suitable for soft real-time applications.
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No programming language support has yet been defined to provide dynamic
change management, which is important in “on-going” systems or systems with
long and uninterruptable operations. Software upgrade and maintenance on these
systems are often extremely difficult, and research on explicit programming lan-
guage support for such features are scarce.

Future real-time systems are going to be more intelligent, adaptive, complex,
and distributed. As such, broad areas of research have and are evolving in ar-
eas of process to processor allocations, bounding the end-to-end communication
times between (distributed) resources, and integrating dynamic scheduling (which
is sometimes necessary for very dynamic and adaptive systems) into static schedul-

ing.



Chapter 9

Conclusion

In the work embodied in this project, the concurrent, object-oriented programming
language pC++ was extended, making it a more suitable platform for real-time
development. Changes to both the language and its implementation had to be
undertaken to accomplish this goal.

Before anything, the notion of “time” was examined. The effective expression of
time, along with its convenient manipulation, is an extremely essential characteristic
of a real-time language. To this end, the notion of a clock, time, and duration
were introduced, which allowed for the specification of various forms of “time”,
differentiating durations of time from absolute time values.

The introduction of a few constructs that allowed for some form of time-constraint
specification was imperative. The effective specification of time constraints is a ne-
cessity for any real-time language, for it is only with the ability to do so, that the
system can deterministically and concretely dictate the behaviour of the system.
Constructs were introduced that allowed for the specification of various temporal

scopes, which took the form of absolute deadlines, relative deadlines, and delays.
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Furthermore, exception facilities were discussed, which allowed for orderly means
for handling missed deadlines and other errors.

The notion of priority was introduced to tasks within the programming lan-
guage. Each task’s priority, in turn, dictated its scheduling behaviour. Along with
the normal task dispatching scheduling policy, the notion of each task’s priority
dictated the behaviour of various synchronization primitives such as semaphores
and monitors. Queues for monitors and condition variables, in particular, were
made to be “priority-aware”.

A flexible means of implementing various scheduling algorithms was possible
by making the ready data-structure into a user replaceable module. The task-
dispatching behaviour of the ready data-structure, in turn, dictates which task
executes next. To illustrate this flexibility, the deadline monotonic scheduling al-
gorithm was implemented.

Finally, the priority inheritance algorithm was extended and implemented. The
original algorithm did not address monitor issues such as condition variables. The
implemented version of the priority inheritance protocol took such issues into con-
sideration, and upper bounds for the modified version of this algorithm were dis-

cussed.
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