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Abstract

Modern object-oriented programming languages provide Exception Handling Mechanisms
(EHMs) to deal with exceptional situations during program execution. However, excep-
tion handling is still detached from the object-oriented design of a program since current
EHMs cannot associate exceptions with objects. There have been attempts to associate
exceptions with data structures (through data-oriented exception handling), but those
solutions lack true object-oriented functionality.

This thesis examines the concept of truly object-oriented Bound Exceptions. The
motivation for their use is explained, as well as methods of mimicking their behaviour
using conventional EHMs. Different binding strategies are presented, including Dynamic
Binding, which strengthens the object-oriented design with Bound Exceptions. A Bound
Exceptions design for the programming language CH+ is presented and extended to sup-
port the concurrency and resumption features of pyC++. Following this design, an imple-

mentation of Bound Exceptions as part of uCH+’s EHM is described.
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Background

This thesis deals with a specific area of exception handling. Experience with a lan-
guage using exceptions is therefore helpful for the understanding of this work. Although
Chapters 1, 2, and 4 are kept general and should be applicable to any language (pro-
vided it offers a suitable EHM), the examples in this work are almost entirely in CH.
Therefore, readers should have an understanding of CH+, especially of the exception
handling facilities. Similarly, to understand some of the specifics of uCH++, knowledge
of this dialect is helpful. For further information about uCH+, visit the following site:

http://plg.uwaterloo.ca/~usystem/uC++.html
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Chapter 1

Introduction

This work deals with exception handling. This chapter introduces the basic concepts
in exception handling as well as some of the terms used in later chapters. For a more

complete overview of exception handling, see [2].

1.1 Overview

1.1.1 Definition of exception

It is hard to define what an exception actually is since there is no widely accepted defi-
nition. For the purposes of this work, an exception, in its most basic form, is defined as
an event during execution of a program that signals an exceptional situation. An excep-
tional situation is expected to occur with low frequency. Examples of such situations are
division by zero, I/O failure, end of file, or pop from an empty stack. All other situations

are handled as part of the general algorithm.
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1.1.2 Traditional handling mechanisms
Return codes and status flags

The ‘traditional’ way of signaling exceptional conditions is with return codes and status
flags. The first approach requires a routine to return a value, which often encodes the
exceptional condition and the normal result of the routine. One example using return
codes is the printf() routine from the standard C library, which returns an integer indi-
cating the number of bytes transmitted or (in the case of an error) some negative error
code [10].

Status flags use shared variables to indicate an exceptional situation. If such an
exceptional situation occurs, the variable is set to some code representing that situation.
By checking this variable, it is possible to detect that an exception occurred (until the
variable is overwritten due to the next exception). One widely known status flag is the

errno variable [10]. These two approaches have numerous disadvantages.

Disadvantages

Primarily, checking of the return value/flag is not mandatory, so it can be delayed or even
omitted, which can cause serious errors. Also, exception handling code and algorithmic
code are intermixed, which reduces code readability and maintainability. Furthermore, a
status flag can be overwritten before the previous condition is checked or handled, and
in general, status flags cannot be used in a concurrent environment because of sharing

issues.

Non-local handling

Another disadvantage with return values is that exceptions must be checked locally, and

hence, are often handled locally. However, local handling is not always desirable since
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lower-level code does not need to know the exact reasons for its invocation. To allow
non-local handling of exceptions with return values, it is necessary to pass the return
code up in the call chain, which is unreliable since every call site has to (re-)check and
propagate the return value. However, if a routine calls several routines, all return codes
must be folded into the return code for this routine. It is hard to ensure that the routine
that is finally capable of handling the condition gets a unique and meaningful result,

which sufficiently identifies the exception.

1.1.3 Exception Handling Mechanism (EHM)

Due to the drawbacks of these two approaches, more sophisticated Exception Handling
Mechanisms (EHMs) have been developed and are in use today, of which the similar
mechanisms for CH+ [8] and Java [6] are possibly the most widely known. The events as
defined by these EHMs are what most people associate with the term ‘exception’.

In the following, the availability of a more sophisticated EHM is assumed.

1.2 Explanation of terms

Event An event is an exception instance as described above. It is generated by executing

an operation leading to the signaling of an exceptional situation.

Raise Generating an event is called raising. It is also possible to say that the exception

is thrown and the two terms are used interchangeably in this document®.

Execution An ezecution is the language unit in which an exception can be raised. For
this discussion, exceptions transfer control through dynamic blocks on the stack.

An execution is any entity with its own run-time stack, and hence, can support

'In pCH+, there is a difference between a raise and a throw, but this difference is of a syntactical not
of a terminological nature.
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exceptions. For example, a continuation, a coroutine and a task all have separate

stacks.

Handler A handler is the part of an execution respomnsible for reacting to exceptions.
One handler is usually only responsible for a certain set of exception types. Such a

handler is called a matching handler for this exception set.

Propagation Propagating an exception directs the control flow of an execution to a
handler due to the exception being raised in that execution. This process also

involves locating a matching handler.

Catch When the matching handler for an exception is located and control flow transfers
to it, the exception is caught. If the handler completes, it is said to have handled

the exception.

Guarded block A language block with associated handlers responsible for exceptions
raised from within this block is called a guarded block. An example are try-blocks

in CH. The term try-block is used as a synonym for guarded block in this work.

Synchronous exception When an exception is raised and handled by the same execu-
tion, it is called synchronous. A synchronous exception is propagated immediately

after its raise.

Asynchronous exception An asynchronous exception is handled in a possibly different
execution than the one it is raised in. An execution is not required to propagate
an asynchronous exception immediately. That is, there can be a delay between the

raise by one execution and the propagation in the other execution.
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1.3 Properties of an EHM

EHMs are characterized by certain properties. The most important are discussed in this

section. This discussion is useful for the understanding of following chapters.

1.3.1 Handling model
Termination

The most common handling model is termination. This model is used in most popular
languages with exceptions. In the termination handling model, all blocks on the run-
time stack, located between the raise of the exception and the handler that handles it,
are terminated. This process is called stack unwinding. Execution continues after the
block guarded by the handling handler.

Termination is useful in situations in which an exception invalidates the block it is

raised in, so continuation of normal execution after the raise is impossible.

Resumption

The other handling model is resumption. In this model, control flow transfers from
the raise to the handling handler, and after the handler completes, execution continues
immediately after the raise point. Unlike termination, resumption is non-destructive
during handling with respect to blocks on the stack.

The resuming model is useful in situations where it is possible to recover from an
exceptional situation and to continue in the block where the raise occurred.

Note that resumption can turn into termination (i.e., the stack is unwound) if a han-
dler determines that returning is impossible or the resuming mechanism fails otherwise,

e.g., cannot find a matching handler.
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1.3.2 Propagation model

The most common propagation model is dynamic. This approach searches the dynamic
call-stack to find a matching handler for an exception. It also means that matching
handlers guarding blocks higher in the call stack? have precedence over ones which are
lower in the stack.

One of the major consequences of dynamic propagation is that the handler chosen for

handling an event is not generally known at compile-time.

1.3.3 Handler clause selection

Like inheritance of classes, inheritance of exception types is a useful facility, providing
polymorphism among exceptions. For example, CH+ provides inheritance of exceptions.
However, inheritance can lead to a situation in which more than one handler for a guarded
block matches the raised exception, e.g., if there is a handler for a derived class and a
handler for its base class guarding the same block, both can catch an exception of the
derived type. Thus, there must be a rule to decide which of the matching handlers is the
most eligible, and therefore, the one to catch the exception.

To handle this case, most propagation schemes perform a linear search of the handler
types, as lexically given by the user, and select the first handler that matches. This

approach is both simple for the user and the propagation implementation.

1.3.4 Multiple executions and concurrency

In a concurrent system, it is useful to fold the notion of signals or interrupts into the
EHM, which allows exceptions to be sent from a source execution to a target execution,

possibly both being executed by different threads. These exceptional situations can be

2A stack is assumed to grow up in this work.
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handled by asynchronous exceptions. After an asynchronous exception is raised, it has to
be delivered to the target execution. This delivery occurs at certain times which usually
cannot be anticipated by the target execution. After the exception is delivered, it is

propagated inside the target execution.

1.3.5 Additional important features
Catch-any

It can be beneficial to be able to define a handler that matches any exception. This
catch-any handler is used when it is necessary to ensure that certain code is executed
regardless of what exception occurred. For systems with exception-type inheritance, this
functionality can also be emulated by deriving all exception types from a single super-
type and defining a handler which is responsible for catching this super-type exception. In
systems without a single root for exception types or without exception type inheritance,

a special syntax is used for the catch-any handler (e.g., catch (...) in CH).

Re-raise

It is useful to be able to catch an exception and for the catching handler to re-raise
that exact exception. This facility is useful if a handler realizes it is incapable of fully
handling the exception, and therefore, it passes the exception onto the handlers further
down the stack. This re-raise does not generate a new exception, but rather continues
the propagation of the old exception (it is always possible to raise a new exception inside
a handler).

Notice, that with catch-any and exception type inheritance, a handler may not know
what exception matched. Therefore, if the handler must continue raising the caught

exception, a special re-raise mechanism must exist, either with a special re-raise statement
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or with some mechanism to reference the caught exception so it can be raised again.

1.4 Miscellaneous points about exceptions

This section discusses several properties of exceptions that are helpful for the overall

understanding of this work or of exception handling.

1.4.1 Exceptions # errors

Although it should be clear by the definition given in 1.1.1 that an exception is not
an error, many people still make the mistake of equating exceptions with errors. In
this discussion, an exception simply signals an exceptional situation, which could be an
error, but it could also be absolutely correct and even desirable, as long as it occurs
infrequently. EHMs provide alternative control mechanisms that, while especially suited

for error handling, could be just as well used for other purposes?.

1.4.2 Non-local handling

The ability to handle an exception through higher-level code (further down the stack)
is a very powerful feature (see also section 1.1.2). However, from a software-engineering
standpoint, this feature can be dangerous. When trying to catch low-level exceptions
in higher-level code, it can effectively couple the higher-level code to the lower-level
implementation.

As an extreme example, it might be possible in a database management system,
written in C4+, to catch a File_Error inside main(). It may not make sense for main() to

know anything about File_Errors, if main() should only deal with general errors. If it does

3However, care must be taken when using exception handling in this way since the non-linear control
flow — especially with termination — can be quite confusing.
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handle the exception, main() is dependent on the implementation of whatever code that

raised the File_Error and any changes of that implementation might affect main() as well.

The solution for this problem is to introduce a systematic exception hierarchy (pro-
vided derivation of exception types is possible). In this way, it is possible to catch the more
abstract exceptions in higher-level code. Upper levels of the exception hierarchy should
be less susceptible to changes, so that higher-level code catching these exceptions does
not need to be changed. Figure 1.1 shows an example of a common hierarchy structure

that could be used for exceptions. For the previous example, File_Error could be derived

CriticalError

IOError ArithmeticError

File_Error Network_Error DivideByZero Overflow Underflow

Figure 1.1: Example exception hierarchy

from |OError, and [OError from CriticalError, so that main() can handle CriticalError with-
out establishing unnecessary coupling. It is clear that the higher-level exception handlers
cannot deal with the specifics of a certain exception and rather have to resort to some
sort of general ‘damage control’, but this is an inevitable consequence of using non-local

error handling.
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1.5 Summary

This chapter introduces basic concepts of exception handling. Exceptions indicate excep-
tional situations. Using an EHM as opposed to traditional error handling methods has
many advantages, including code clarity, maintainability and non-local error handling.
In this work, an exception is propagated dynamically and can be handled by a terminat-
ing or resuming handler. In an environment with multiple executions, synchronous and
asynchronous exceptions have to be distinguished. If a language supports inheritance of
exception types, choosing the right handler to catch an exception is done by selecting
the first eligible handler found. Finally, there are concepts such as catch-any and re-raise
that are helpful features for an EHM.

Building upon this theoretical foundation, it is now possible to introduce the specific

concepts that constitute the main focus of this work.

1.6 Thesis outline

Chapter 2 introduces the concept of Bound Exzceptions. In modern object-oriented pro-
gramming languages, exception handling does not fit into the overall object-oriented
framework since it is impossible to associate exceptions with objects. Bound Excep-
tions solve this problem. Related concepts are examined and different methods for

emulating (statically) Bound Exceptions using conventional EHMs are introduced.

Chapter 3 presents a design for Bound Exceptions. Combining the results from Chap-
ters 1 and 2, Bound Exception functionality is designed for the EHMs of C++ and
wCH-.

Chapter 4 introduces an advanced feature for Bound Exceptions: Dynamic Binding.

A motivation for using Dynamic Binding is presented, as well as a method for
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emulating Dynamic Binding using statically Bound Exceptions. Finally, these two

concepts are compared.

Chapter 5 presents an actual implementation of Bound Exceptions for yC++ using the
design elaborated in Chapter 3. The uCH+ environment is introduced, as well as the
consequences resulting from that environment. Specific problems of implementing

Bound Exceptions are discussed and the approaches taken to solve these problems.

Chapter 6 presents the conclusions resulting from this work and provides an outlook to

future work that is possible in the area of Bound Exceptions.






Chapter 2

Bound Exceptions

The focus of new work for this thesis is Bound Exceptions. This term first appears in [3],
but similar concepts have been discussed earlier. In particular, [5] describes an alternative

method for exception handling, called data-oriented exception handling, for Ada.

This thesis presents a generalized, object-oriented approach.

2.1 Basic unbound exception handling

Modern programming languages that support exceptions usually rely on the exception
type or the data type of the exception object (in languages which do not have a specific

exception type, like C++) to find a matching handler.

Figure 2.1 shows a simple CH++ example, in which HANDLER, 2 is executed since it

is responsible for File_Error exceptions and the raised exception is exactly of that type.

13
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class Divide_By Zero { ... };
class File_Error { ... };

try {
throw File_Error();

} catch ( Divide_By_ Zero ) {
/I HANDLER 1

} catch ( File_Error e ) {
/I HANDLER 2

}

Figure 2.1: Simple CH+ exception handling
2.2 Motivation for Bound Exceptions

2.2.1 Limitations of unbound exception handling

The matching-by-type strategy can be insufficient in more complex situations. For ex-
ample, in Figure 2.2, File_Error exceptions can be thrown by the do_write() method of
log_file, data_file and tmp_file. For the matching-by-type strategy, all exceptions are han-
dled by HANDLER A, regardless of which operation actually causes the error (note,
Special _File_Error is a subclass of File_Error). This behaviour is undesirable in some cir-
cumstances as it is unlikely that errors from three different file objects can be uniformly
handled by only one routine. If appropriate, it should be possible to handle each of the

three error situations by a separate handler.

2.2.2 Role of exceptions in the object-oriented design

From an object-oriented standpoint, the conventional matching-by-type handling of ex-
ceptions is inconsistent. Basically, objects are the main components in an object-oriented

software design, and their actions determine the way a program behaves. Hence, an
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exceptional situation — as signaled by a raised exception — is the result of an object’s
action, which suggests that this responsible object should be associated with the excep-
tion it raises. Most programming languages do not support this association, leading to a
situation in which an exception is treated like something between a type and an object,

detached from the overall object-oriented design.

2.2.3 Solution in Ada

Ada [7] is not object-oriented and its ‘generic packages’ are not classes, but they serve
as templates from which specific package instances can be obtained. These instances
resemble objects closely enough that they are applicable in this discussion.

In Ada, it is possible to bind an exception to specific package instances. Thus, the same
exception originating from different instances can be handled separately. In Figure 2.3,
the File_Error exception is declared inside the generic package Filetype. Filetype has a
procedure do_write that raises the exception. The ‘pseudo-objects’ data_file and log_file
are created as instances of Filetype. Hence, it is possible in the exception handler section
to distinguish between File_Error exceptions from log_file and those from data_file. Handler
A1l is executed in the first case, while A2 is executed in the second case.

It is important to point out that in the Ada approach, it is impossible to handle gen-
eral, unbound File_Error exceptions any more since File_Error is now part of the generic
package and raised exceptions are part of the specific package instance. Although it
is possible to raise and handle general unbound exceptions in Ada, package-specific ex-
ceptions have to be handled individually for each package instance. This restriction is
undesirable as a programmer may want to handle only some cases instance-specifically,

while the rest can be handled by one general handler!.

'The fact that most languages with exceptions do not offer any binding capabilities (i.e., handle all
exceptions of the same type uniformly), and yet have useful exception handling, supports this desire.
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2.2.4 Possible solution in C++

In CH+, it would be desirable to write something similar to the Ada example. Figure 2.4
shows a possible solution using an experimental syntax. The dot-operator (.) is intro-
duced into the catch clause. The resulting catch clause catch ( object . ezception-type )
only matches if the thrown exception is of type exception-type and bound to object. This
syntax is unusual as the second operand of the dot-operator is a type rather than a field
of a structure. Unfortunately, few languages support this kind of exception-object bind-
ing for catching exceptions. With languages that lack this feature, such as CH, it is

necessary to emulate this functionality to achieve the desired behaviour.

2.3 Emulating Bound Exceptions

2.3.1 Tight Handling

One way to partially emulate Bound Exceptions is to embed each of the three operations
in its own try block as illustrated in Figure 2.5. Here, since every method call has its
own try block, each error condition can be handled individually. However, because the
try block is so tight around the method call, non-local error handling — which is one
of the advantages of using exception handling — is impossible. Additionally, since block
positioning determines automatic storage allocation and execution control, this example
is not logically equivalent to Figure 2.4. If HANDLER Al catches the exception, the
other two blocks are still executed, while in Figure 2.4, execution continues after the

single block, and hence, without calling the do_write() member of data_file and tmp file.
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before after

class Err {... }; — class Err{... }

class CL__Err: publicErr{... };

class CL {/* throws Err /} — class CL {/* now throws CL__ Err +/}
CL::foo() { throw Err(); } —s  CL:foo() { throw CL___Err(); }
catch (Err){...} —s catch (CL__Emr){...}

Table 2.1: Transformations of CL for class-specific exception types

2.3.2 Class-specific exception types

A more complete method to mimic the desired behaviour is through class-specific excep-
tion types. Consider the example in Figure 2.6. Here, the Err exceptions are handled by
the same handler, even though they originate in different objects of different classes. It
would be beneficial to be able to distinguish Err exceptions from different classes, while
at the same time retaining the ability to handle them all uniformly by a general handler.

Assuming the programming language allows inheritance of exception types, it is pos-
sible to derive new exception types CL__Err and LC__Err from Err?. Then, every raise
of Err inside CL is replaced by a raise of CL__Err, while raises inside LC are changed to
throw LC_Err.

By matching these new exception types, the exceptions raised by different classes can
be handled separately (i.e., catch (CL__Err) for catching what before was an Err exception
thrown inside CL). Table 2.1 summarizes the necessary changes for CL, while Figure 2.7
shows the changes applied to the example from Figure 2.6. Since they are now different
types (even though they are basically still the same exception), CL__Err and LC__Err can

be handled by different handlers, and because they both inherit from Err, they can both

21f the language allows it, the new class-specific type can be defined inside the scope of CL ( te.,
CL::Err in CH+), which enhances clarity by reducing the number of globally defined classes.



18 CHAPTER 2. BOUND EXCEPTIONS

be handled uniformly by a general Err handler.

Class-specific exceptions are supposed to behave like their general type. Therefore,
it is necessary to preserve the general inheritance relationships with the new class-
specific types. If the general type Err inherits from some general type Superr, then,
considering their ClL-specific variants, CL__Err must inherit from CL_Superr. Otherwise,
catch (CL__Superr) cannot handle CL__Err exceptions, even though catch (Superr) han-
dles Err exceptions. This inheritance requirement can lead to the inheritance structure
in Figure 2.8 showing a case of ‘diamond-shaped’ multiple inheritance, which can be
problematic for non-empty classes. For a general discussion of multiple inheritance for
exception types, see [2, §6.2].

Implementing the “class-specific exception types” approach, the File_Error example
changes as illustrated in Figure 2.9. It is now possible to discern between File_Errors
thrown inside tmp_file and those thrown by datafile or log_file. However, in the latter case,
it is still impossible to know which of the two Filetype objects actually raises the exception.
The problem is that class-specific exception types only allow binding exceptions to classes,
not objects.

To overcome this restriction, if the number of instances of a class is known at compile-
time, it is necessary to create that many different object-specific exception types and
associate them with the individual objects at run-time. It is clear that this solution is
neither reliable nor practical, given the huge number of classes that would have to be
created and that often the number of objects in a program is unknown at compile-time.

Another disadvantage of the “class-specific exception types” approach (apart from its
limited binding capabilities) is that it introduces an enormous amount of new classes: the
number of classes times the number of exceptions in the worst case.

The major advantage of this approach is that no new program logic or variables are

needed. It relies entirely on the existing exception handling mechanism of the language



2.3. EMULATING BOUND EXCEPTIONS 19

and no changes to the EHM are necessary.

Finally, correct class-specific exception types are impossible for languages that do not
support inheritance of exception types (Ada [7], Modula-3 [12], for example). In that
case, the new exception types can still be be created, but without inheriting from the
original exception type. While this approach still serves to identify the class an exception
is bound to, it is important to realize that the capability to use a general unbound handler
is gone. A similar problem exists with the elementary data types in C44. They can be

used as exception types, but since they are not classes, they cannot be inherited from.

2.3.3 Catch and re-raise
General outline

A different way to mimic bound exceptions is through the simple “catch and re-raise”
approach from [2, §6.4]. If it is possible to pass the ‘bound value’ from the raise to
the catch site, such as the object’s id (most likely its address), object and exception
are associated, and this association can be interpreted as a binding-relationship. When
catching the exception, the passed value can be compared to the desired binding — if they
are equal, the exception can be handled, otherwise it is re-raised.

The passing of the value can be achieved via an execution-specific variable or — if the
language supports argument/parameter passing during the raise — through the exception
itself. In C4+, the latter can be done by introducing an attribute into the exception class,

as is demonstrated in Figure 2.10.



CHAPTER 2. BOUND EXCEPTIONS

class File_Error { ... };
class Special_File_Error : File_Error { ... };
class Filetype {

virtual void do_ write() {

throw File_Error();

}
h
class Special_Filetype : Filetype {

virtual void do_ write() {
throw Special_File_Error();

}
I
Filetype log_file;
Filetype data_file;
Special_Filetype tmp_ file;

try {

log_file.do_ write();
data_file.do_ write();
tmp_file.do_ write();

} catch ( File_Error ) {
/I HANDLER A is always matched
}

Figure 2.2: Limitations of matching-by-type
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procedure BoundExceptions is
generic package Filetype is
file_error : exception;
procedure do_ write;
end Filetype;

package body Filetype is
procedure do_ write is
begin

raise File_Error;

end do_ write;
end Filetype;

package data_file is new Filetype;
package log_file is new Filetype;

begin
log_file.do_ write;
data_file.do_write;
exception
when log_file.file_error => -- HANDLER Al
when data_file.file_error => -- HANDLER A2
end BoundExceptions;

Figure 2.3: Solution in Ada — Instance-specific exceptions for generic packages

//same definitions/declarations as before
try {

log_file.do_ write();
data_ file.do_ write();
tmp_ file.do_ write();
e /I Experimental syntax:

} catch (log_file.File_Error ) { /I bind exception to log_ file object
//[HANDLER A1

} catch ( data_file.File_Error ) { /I bind exception to data_ file object
/[ HANDLER A2

} catch ( tmp_file.Special_File_ Error ){ // bind exception to tmp_file object
/ HANDLER 2

} catch( File_Error ) { /I general handler
/ HANDLER 3

}

Figure 2.4: Possible solution in CH+ using experimental syntax
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/Isame definitions/declarations as before
try {

log_file.do_ write();
} catch ( File_Error ) {

/ HANDLER A1l

}

try {
data_ file.do_ write();

} catch ( File_Error ) {
/[ HANDLER A2

}

try {
tmp_file.do_ write()

} catch ( Special_File_Error ) {
/ HANDLER 2
}

Figure 2.5: Tight Handling example

class Err{};
class CL {
void foo() { throw Err(); }

c,Iass LC {
void bar() { throw Err(); }

h

CL cl_obj;

LC Ic_obj;

try {
cl_obj.foo();
Ic_ obj.bar();

} catch ( Err) {
/I HANDLER A

}

Figure 2.6: Two classes throwing the same exceptions
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class Err{};
class CL__Err : public Err {};
class LC__Err : public Err {};
class CL {

void foo() { throw CL__Err(); }

class LC {
void bar() { throw LC__Err(); }
%
CL cl_obj;
LC Ic_obj;
try {
cl_obj.foo();
Ic_obj.bar();
} catch (CL__Err){
/I HANDLER Al
} catch (LC__err){
/I HANDLER A2
} catch (Err) {
/I HANDLER A
}

Figure 2.7: CL example after class-specific transformation

superr

err cl__superr

cl__err

Figure 2.8: Preservation of inheritance structure
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class Filetype _ File_Error : public File_Error { };
class Special_Filetype__File_Error : public File_Error { };
class Special_Filetype _ Special_File_ Error : public Special_Filetype _ File_Error { };

class Filetype {
virtual void do_ write() {
throw Filetype _ File_Error();

}
¥
class Special_Filetype : Filetype {

virtual void do_ write() {
throw Special_Filetype__ Special_File_Error();

|3

Filetype log_file;
Filetype data_file;
Special_Filetype tmp_ file;

try {
log_file.do_ write();

data_ file.do_ write();
tmp_ file.do_ write();

} catch ( Filetype__ File_Error ) {
/ HANDLER A

} catch ( Special_Filetype__ File_Error ) {
/I HANDLER B
}

Figure 2.9: File_Error example after class-specific transformation
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class Bound_ Exception {
public:
void * origin; /I attribute storing the object’s ID/address
Bound_ Exception( void * p ) : origin( p ) {} // store the origin during construction

3

class File_Error : Bound_Exception { ... };
class Special_File_Error : File_Error { ... };
class Filetype {
... I/ somewhere in here, there is a “throw File_ Error( this );”
h
class Special_Filetype : Filetype {
... I/ somewhere in here, there is a “throw Special_File_ Error( this );”

3

Filetype log_ file;
Filetype data_file;
Special_ Filetype tmp_file;

try {
log_file.do_ write(); /I call can result in “throw File_ Error(this);”
data_ file.do_ write(); /I call can result in “throw File_ Error(this);”
tmp_file.do_ write(); /I call can result in “throw Special_ File_ Error(this);”

} catch ( File_Error e ) {
if (e.origin == &log_file) /I HANDLER Al
else if (e.origin == &data_ file)// HANDLER A2
else if (e.origin == &tmp_file) // HANDLER B
else throw; /I re-raise, or handle general File_ Error exceptions

}

Figure 2.10: Catch and re-raise
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It is clear that this solution is now able to differentiate between exceptions thrown
by log file and those thrown by datafile, which is a major advance over class-specific
exception types. On the other hand, this approach increases the program’s complexity
by adding additional data and code to the exception handling process. In particular, it
requires the programmer to follow the strict convention of manually checking the binding
information after catching the exception and re-raising it if there is no handler for that
binding. Following such a convention is always unreliable. Just one omitted re-throw
could cause the program to handle exceptions incorrectly, and the time required for

debugging could be substantial.

Re-raise anomaly

Unfortunately, there are situations in which the simple “catch and re-raise” approach does

not work (see Figure 2.11). In this example, a Special_File_Error bound to tmp_file is to

Special_Filetype tmp_file, dummy;

try {
tmp_file.do_ write();

dummy.do_ write();
} catch (Special_File_Error e) {
if ( e.origin == &tmp_file ) // do something

else throw;
} catch ( File_Error e ) {
if ( e.origin == &tmp_file) // do something

else if ( e.origin == &dummy )  // do something else

else throw;

Figure 2.11: Re-raise anomaly

be handled, or a File_Error bound to either object. If tmp_file throws a Special File_Error



2.3. EMULATING BOUND EXCEPTIONS 27

exception, then the first catch clause matches and the handler is executed correctly.
However, if it is dummy that throws a Special _File_Error exception, the first catch clause
matches but it does not match the binding, and therefore, the exception is re-raised.
With normal type matching, if a catch clause does not match an exception, the lexically
following catch clauses of the same try-block are checked until a matching one is found
(see Section 1.3.3). In the case of a non-matching binding, the re-raised exception cannot
be matched against any other catch clause guarding the same try-block. In the example,
propagation cannot reach the second catch clause, which would otherwise match (note
that a Special_File_Error also is a File_Error) and handle the exception. This kind of
anomaly is discussed in [2, §6.4].

The inherent problem of this simple “catch and re-raise” strategy is the following.
Without binding, it can be expected that if a matching handler guards a try-block, it
catches the exception, while with binding, once the exception is re-raised, it is impossible
to catch it with handlers guarding the same try-block. So if the data type of the exception
matches but the binding is wrong, it is impossible to match handlers following in the same
try-block, and therefore, the exception may not be caught even though a matching (type
and binding) handler guards the try-block. This behaviour does not match the usual
semantics of exception handling, is counter-intuitive, and results in control flow that is

difficult to predict.

2.3.4 Enhanced “catch and re-raise”
Preventing the re-raise anomaly

The solution for the re-raise anomaly is to not let related catch clauses be in the same
try-block, where ‘related’ means that there exists an exception-type both of them can

catch. A typical example for related catch clauses is one clause that catches some derived
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type and one that catches its super-type. When multiple inheritance is possible, catch
clauses for all super-types can catch the sub-type. Hence, all super-type catch clauses are

related (to the sub-type and among each other).

In order to prevent the anomaly, these related catch clauses have to be separated into
different (nested) try-blocks, but since the order of catch clauses is important, the catch
clauses which lexically follow a related one have to go into the different try-block also.
This solution can be formulated into the try-block splitting algorithm presented in Figure
2.12.

start:

start with the first catch clause of the current try block;
repeat

check the type of the current catch clause;
if a ‘related’ bound catch clause has been found already in this try-block:

move the current clause and all following into a new (wrapping) try

block;,
goto start;

continue to next catch clause (if possible);

until there are no catch clauses to check any more

Figure 2.12: Algorithm for try-block splitting

Theory of try-block splitting

This try-block splitting algorithm works because the following two constructs



2.3. EMULATING BOUND EXCEPTIONS 29

try {

j.(.:atch (Typer ) {...}
catch (Typez ) { ...}

cat(;H. (Type, ) {...}

and

try {
try {

}(lzéaltch (Typer ){ ...}
catch (Typez ) { ...}

claitlch (Typer ) { ...}

} catch ( Typer41 ) { ...}
catch ( Typex42 ) { ...}

catch ( Type, ) { ... }

are logically equivalent if throws inside the handlers are ignored. The propagation mecha-
nism sequentially checks all handlers, regardless of how many try-blocks are used. Should
one handler match, then execution continues at the end of the outermost try-block as
there is no code between the two try-blocks. By induction, it is possible to show that
this quasi-equivalence holds for any arbitrary number of splittings (< n) and resulting
try-blocks (< n).

If there were a perfect equivalence, this approach would be useless since it would just
change the code but not the way it works. Now, consider throws inside handlers. In
the “catch and re-raise” approach, the problem is that an exception that is caught but
rejected, and hence re-raised, is not matched against following handlers. If there is a

second try-block enclosing the first one, the handlers of that second try-block can now
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catch the exception that would otherwise not be checked, and the anomaly of the simple

“catch and re-raise” approach is prevented.

Problems of creating new try-blocks

However, pre-existing throws (i.e., throws which are not part of the “catch and re-raise”
implementation) inside handlers now cause a problem. If pre-existing re-throws or throws
appear inside one of the handlers, the correctness of the code is not guaranteed as a
thrown exception might be handled by a handler in one of the enclosing try-blocks that
are created as part of try-block splitting.

To prevent this, pre-existing throws and those of the “catch and re-raise” mechanism
have to be distinguished. This distinguishing is accomplished by defining a boolean
variable in a new block before the beginning of the original try-block. This variable
can then be used to indicate that the current exception is pre-existing. In that case,
subsequent handlers can check this variable and ignore the exception (i.e., re-raise it)
should they ‘accidentally’ catch it. After handling the exception, the variable is destroyed

by automatic storage management as execution leaves the block.

Conversion example

Figure 2.13 shows a bound exception example using the new experimental syntax and
Figure 2.14 shows its conversion following the enhanced “catch and re-raise” approach.
In the conversion, handler D has to be separated into a new try-block since handler
C belongs to a bound catch clause of the type Ringo, which is related to D’s type Beatle.
Handler E has to be put into a new try-block as its type John is related to the bound Beatle
of D. The variable OrigThrowPaul acts as a flag to signal that the currently propagated
exception is the result of a pre-existing throw. It has to be checked in all subsequent

handlers that could potentially catch the re-thrown Paul exception: in this case it has to
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class Beatle{ }; /I exception class definitions
class John : Beatle { };

class Paul : Beatle { };

class George : Beatle { };

class Ringo : Beatle { };

AlbumClass white, pepper; /I just some objects which are going to be bound to
try{
} catch ( Beatle ) { // unbound
1A
} catch (Paul ) { //unbound
/B
throw; /I original RE-THROW
} catch (white.Ringo ) { // Ringo bound to white
/IC
} catch ( pepper.Beatle &e ){ // Beatle bound to pepper
/D
} catch (John ) { //unbound
IE
} catch ( George ) { // unbound
/IF
} catch ( white.Beatle ) { // Beatle bound to white
11G
Mitry

Figure 2.13: Enhanced “catch and re-raise” conversion — before

be checked in G since G handles Beatle exceptions, and therefore, could catch the re-raised

Paul exception.

2.4 Summary

Bound Exceptions offer advantages over conventional exception handling. With the en-
hanced “catch and re-raise” approach, it is possible to mimic Bound Exceptions using

conventional exception handling. The conversion process, however, is complicated and
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can produce large amounts of additional code. It is unreasonable for a programmer to
write this much extra code to replace a missing language feature. Additionally, enforc-
ing such a programming convention — especially if it is as complicated as in this case —
cannot be a reliable practice. Therefore, if Bound Exceptions are a desirable feature, it
is necessary to implement them as part of the language.

A design of Bound Exceptions as a language feature for C4++ and pCH+ is presented

in the following chapter.
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{
bool OrigThrowPaul = false;
try {
try {
try {
} catch ( Beatle ) {
1A
} catch ( Paul ) {
/B
OrigThrowPaul = true; // since this is a user-defined re-throw, set flag
throw; /I original RE-THROW
} catch ( Ringo Uniqueldentl ) { //first catch the exception, give it a name
if ( Unigqueldentl.origin == &white ) {
/I check if the stored binding is the right one
/I if yes, handle exception
/IC
} else {
throw; /I if not re-raise
Miif
Mitry
} catch ( Beatle &e ) {
if (e.origin == &pepper ) {
/D
} else {
throw; /l inserted re-raise
Miif
Yitry
} catch (John) {
IE
} catch ( George ) {
1IF

} catch ( Beatle Uniqueldentl ) {

if (OrigThrowPaul ) // check flag in every subsequent eligible handler to re-raise
throw; /I accidentally caught exceptions

if ( Uniqueldentl.origin == &white ) {
11G
} else {
throw;
Miif
Mitry
}

Figure 2.14: Enhanced “catch and re-raise” conversion — after






Chapter 3

Designing Bound Exceptions for

CH and pCH

After considering the theoretic properties of Bound Exceptions, this chapter describes an
actual design of Bound Exceptions for yCH-. The design consists of two part: dealing
with the requirements imposed by the base language C4+, and then extending the design

to the specialties and advanced EHM features of pC+H+.

3.1 General design for C4++

Knowing what Bound Exceptions are and what functionality they should provide, it is
now necessary to embed this concept into the target language CH+. In particular, it is
necessary to decide what types should be Bound Exceptions, where and how they should
be defined or declared, as well as when and how the binding occurs and to which object

an exception is bound.

35
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3.1.1 Declaration of Bound Exceptions

Following the example of Ada, this section examines if exceptions should be declared as

bound and how this should be done.

Bound Exceptions as class members

In Ada, due to the way generic packages work, every Bound Exception is part of the
instance it is bound to. Looking for an analogy in CH+, defining Bound Exceptions as

members of a class would make them part of the objects they are bound to, e.g.,

class File_Error; /I forward declaration
class Filetype {
File_Error err;

However, for CH+, this design is unreasonable. In CH4, exception instances are ordinary
objects, and as such take up storage space!. Hence, every Bound Exception defined as a
member of a class would take up storage space for every instance of that class. A list, for
example, in which every node object has its own Bound Exceptions could waste a lot of
space for exceptions that are probably not needed most of the time.

A related problem arises from the fact that members within classes have to be con-
structed during instantiation. CH+ supports parameter passing for exceptions by storing
them as values in the exception objects. If such non-empty exception classes are defined
as members, they have to be constructed when their containing object is created. Usu-

ally, exceptions are constructed at the time they are thrown, often as anonymous objects.

'Even ‘empty’ objects must have a unique address, and hence, take up space.
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In this way, raise-site information is stored inside them, and thus, transmitted to the

handling code, e.g.,

throw File_Error("Di sk ful I ");

It is also possible to construct the exception object in advance as a named object and to

subsequently throw that object, e.g.,

File_Error err("Di sk ful I ");

throw err;

However, early construction of exception objects is uncommon because the data passed
into it (e.g., error messages/codes, state information) is usually dependent on the excep-
tional situation encountered, but this exceptional situation is usually unknown at the time
the exception object is constructed. In the above example, a "Di sk f ul | " situation is an-
ticipated, but the real situation occurring later might be a "No wri ti ng per m ssi on"
or a "Sharing vi ol ati on". While it is possible to define member routines inside the

exception class to change the stored information, e.g.,

File_Error err("Di sk ful I ");

err.changeMessage("'Shari ng vi ol ati on");
throw err;
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this solution is clumsy at best.

By defining exceptions as members within classes, it is either mandatory to construct
them before they are used, even though that might not make sense, or to leave them
uninitialized during instantiation. In both cases, it is necessary to have special member
routines to subsequently insert useful parameter information at the raise. Both of these

reasons suggest that exceptions in CH should not be members of a class.

Note, there are cases in which class members, which usually serve a different purpose,

are thrown as exceptions during exceptional situations, e.g.,

class Filetype {
string file_name;

void fileProblem() {
throw file_name; // indicate to handler which file has problems
}

These cases are not covered in this discussion because the object thrown is usually not

used as an exception, and it is just coincidence that it can also be used as an exception.

Bound Exceptions in class scope

CH+ also offers the possibility to declare the exception inside the scope of a class. So
instead of making the Bound Exception a member of the class, it is possible to declare it

inside the class and then access it with the :: operator, e.g.,
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class Filetype {
class File_Error; // declaration in class-scope

void do_ write();

h
class Filetype :: File_Error { ... };

void Filetype :: do_ write() {

throw Filetype :: File_Error("Di sk ful I ");

The advantage of this approach is that there is a lexical association between the exception
and the object it is bound to by declaring the exception inside the object class. Exceptions
in class-scope also do not take up space or require construction during instantiation.

On the other hand, only being able to use such class-scope exceptions in a bound way
is a serious restriction and affects program design (since it is a design decision where to
declare classes). This requirement to declare exception classes in class-scope also means
that in order to add binding capabilities to old programs (ones that were not intended
to use Bound Exceptions) they would have to be substantially rewritten. While catch
clauses would have to change (into binding ones), with the class-scope restriction, classes
using exceptions would also have to be changed: exceptions would need to be declared
inside them. These class changes could affect other parts of the program that would have
to be rewritten subsequently.

Also, it is conceivable that binding capabilities could be added to existing code just by
(or even without) recompiling it. Of course, this code could not use (i.e., catch) Bound
Exceptions as it is not aware of their availability (or the concept), but it could throw
them. If programs which are aware of Bound Exceptions use this old code (e.g., as a

library), they could catch and handle its exceptions as Bound Exceptions. The following
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example illustrates this situation for using the STL vector class.

using namespace std;
vector<int> v(42);

try {
v[100] = O;

} catch (v.out_of range ) {
/lhandle bound STL exception

}

Without changing the source code for the STL, it may be possible to make its classes
throw Bound Exceptions. This capability is impossible if Bound Exceptions have to be
declared in class-scope since there is no way to change that declaration inside the STL

classes (or any other old code) without rewriting it?.

Bound Exceptions without explicit declaration

Therefore, declaring an exception in class scope is not a good requirement for Bound
Exceptions, and hence, the location in which an exception is declared should not affect
its binding character. A programmer should decide to declare exceptions inside classes

due to the program design, not due to syntactic requirements of the EHM.

3.1.2 Determining the binding character of an exception

Since the declaration location is dismissed for defining the bound characteristic, it is
necessary to define what determines whether a particular exception object is bound or
not. There are three different methods that could be used here, based on the exception

type, the catch, and the raise.

2Note that these two legacy issues also apply to Bound Exceptions defined as class members.
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Exception type

One way of determining the binding character of an exception is to assign a directive to
the definition of the exception type. Thus, all instances of one exception class would be

bound and all instances of a different class would be unbound, e.g.,

class Overflow {...};

bound class File_Error { ... };

In the above example, the experimental bound directive is used to declare File_Error objects
as bound, while instances of the ‘normal’ exception class Overflow are implicitly declared
as unbound.

This solution is unsuitable for reasons similar to the ones in Section 3.1.1. Again, a
class which was not planned to be used as a Bound Exception could never become one
because of legacy issues with syntax and semantics. Additionally, the classification of
some exceptions classes as bound and others as unbound is inconsistent with the CH++
philosophy that ‘everything can be an exception’. It is better to give every exception

class the possibility to be bound.

Catch

The catch clause has to provide a means to specify how matching is performed for Bound
and Unbound Exceptions. Using the experimental syntax again, it is possible to write
catch (obj.File_Error) to handle a File_Error bound to obj. At the same time, it should
be possible to use catch (File_Error) to handle the unbound version of File_Error. In fact,
it makes more sense if the second catch clause also deals with the bound versions of

File_Error since those are just special cases of File_Error, and catch (File_Error) suggests that
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it provides a handler for all objects of that type (see also the discussion in Section 2.2.3).

Raise

It is conceivable to provide a mechanism such that the bound or unbound character of an
exception can be determined during the raise. An example would be throw File_Error()
for throwing an unbound File_Error exception and boundthrow File_Error() for throwing a

bound File_Error exception.

Discussion

Table 3.1 summarizes the four possible combinations of bound /unbound raising and catch-
ing and the resulting handling (it is assumed that the exception types match in all cases)

when bound and unbound raises and catches are permitted in an EHM.

(unbound) throw | boundthrow

catch unbound unbound

bound catch - bound

Table 3.1: Possible options for bound/unbound catching/raising

If the raise is bound and the catch is bound (to the same object?®), the catch clause
is able to provide an object-specific handler, and the exception is handled as a Bound
Exception. For a bound raise and an unbound catch, there exists no object-specific
handler. The catch clause indicates it can handle all exceptions of that type, even the
bound ones. Hence, the Bound Exception is handled by a general, unbound handler. If
the raise is unbound and the catch is unbound, the case is like conventional exception
handling, and the general handler matches.

The most difficult option here is the one for the unbound throw and bound catch.

It means that although the user provides a handler for exceptions bound to a specific

3The question to what object the exception is actually bound is answered in Section 3.1.3.
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object, the exception is still not handled since the throw is unbound. This option is of
questionable use since higher-level code (lower in the call stack) has no way of handling
this exception in a bound way, but rather has to use a general handler, even though
it might be able to provide a more object-specific solution. It seems unreasonable to
prematurely restrict an exception to unbound handling at the raise since a bound handler

should be as well suited (or probably better) to handle it as a general unbound handler.

Therefore, the left column should be dismissed completely, and all throws, and hence,
all exceptions become bound. The decision to handle them as Bound Exceptions or
regardless of their binding is made solely in the catch clause. Table 3.2 shows the two

remaining options.

throw
catch unbound
bound catch bound

Table 3.2: Possible options for bound/unbound catching

A positive consequence of this design is that an existing program, which does not
know about Bound Exceptions, continues to work after replacing all throws by bound
ones. The binding information the exceptions provide is just an additional option that

the user can decide to use or not and completely transparent if it is not used.

A negative consequence is that treating all throws as bound wastes resources as it
takes memory and time to store binding information which may not be needed. However,
the additional space required is marginal compared to the memory usually allocated for
normal (unbound) exception handling purposes in current implementations. Also, a raise
only occurs in exceptional situations and the performance during exceptional situations
is usually slower than the performance during normal situations (see also Section 5.2.3).

Therefore, the space and time overhead is not considered to be a problem.
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3.1.3 Defining the object binding

It is now necessary to define the object an exception should be bound to. It has already
been argued that this object should be the one responsible for raising the exception. It
remains to define what the ‘responsible’ object is. An object’s actions take place in its
member functions. This suggests that this is also where the exceptions to which it should
be bound are raised. Conversely, if an exception is raised inside an object’s member

function, it should naturally be bound to that object (since all exceptions are bound).

Hence, the bound-to object is defined as the one whose member function contains the
raise. For non-member functions (i.e., global functions) as well as static class members,
there is no object they belong to — therefore, exceptions raised inside these functions have

an invalid binding (which could be indicated by an impossible binding value, e.g., NULL).

As a consequence, if a programmer does not want an exception thrown inside an
object’s member to have a usable binding, it is possible to define a static member routine

for the sole purpose of throwing that exception.

Another consequence is that it is impossible to throw an exception bound to a different
object (e.g., throw log file.File_Error). Such a possibility would weaken the object-oriented
design of a program and is therefore rejected. To achieve the same functionality, it is
possible to define a member function inside Filetype for the sole purpose of throwing a

File_Type exception (e.g., log_file.raiseFile_ErrorException();).

3.2 Design for pC++

When trying to extend the design of Bound Exceptions to puCH+, it is necessary to
consider the advanced exception handling features that pCH+ provides. In particular,

bound variants for resumption and asynchronous exceptions have to be designed.
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3.2.1 Resumption
Introduction

In addition to termination, pCH+ provides the concept of resumption. When throwing a
terminating exception, the stack is unwound until a matching handler is found; whereas
when raising a resuming exception (resumption), the stack is not unwound, and after
finding and executing the matching handler, execution returns and continues immediately

after the location of the raise.

Extending Bound Exceptions to Resumption

Extending the concept of Bound Exceptions to resumption is straight-forward since there

are no differences with respect to matching between resumptions and exceptions.

3.2.2 Asynchronous Exceptions
Introduction

For both exceptions and resumptions, uyCH+ provides the concept of asynchronous prop-
agation. Through this feature, it is possible to send events (terminating exceptions or

resuming exceptions) from a source to a target task?, which are delivered asynchronously.

Unsuitability of normal binding

When an event is raised in one task and propagated to another, it may be possible to
argue that if there is a responsible object in the source task, the exception should be
bound to it according to the rules established in Section 3.1.3. However, it is unlikely

that this object is meaningful to the target task. Even if the target ‘knows’ that object,

*More precisely, it is actually possible to send events from/to any coroutine, but the task example is
probably the most common case.
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it does not mean it knows any of the circumstances leading to the event as they occurred
in the execution that raised the exception. Also, the programmer would have to prepare
bound handlers (in the target task) for all different kinds of exceptions bound to all
different kinds of objects, because unlike synchronous exceptions for which at any given
point there is a very limited number of bound exceptions that can be possibly thrown, the
target task has no control over the sending execution and events can essentially happen

anytime, anywhere?

Binding to sender

A better solution is to bind the exception to the sending execution (source)®. Analogously
to the synchronous case, it appears to the target that it is the source which is ‘responsible’
for the event, hence, it makes sense to bind the event to the source. Also, asynchronous
events serve as inter-task communication, and it is helpful to ‘sort’ events by their sender,
i.e., provide different handlers for the same events sent by different tasks. The number
of tasks which can send events to and are known by the target is often limited, so that
the number of bound handlers should be small. In cases which have a large number of
different tasks communicating with the target (e.g., clients communicating with a server),
it is unnecessary and undesirable to provide bound handlers, so that handling of those

events is accomplished by a general, unbound handler.

3.3 Summary

This section presents a design of Bound Exceptions for CH+ and pCH+, which yields

the following results. All exceptions are bound, but some can have an invalid binding.

5In reality, there are clearly defined times at which events are delivered, but some of them cannot be
anticipated by an execution.

6Note that in pCH, tasks and coroutines are objects as well.



3.3. SUMMARY 47

The decision to handle an exception by a bound or an unbound handler is solely made
in the catch clause. A synchronous Bound Exception is bound to the object in whose
member function it was raised (if applicable). An asynchronous Bound Exception is
always bound to the sending execution. Finally, Bound Resumptions are treated just like
Bound Exceptions with respect to handler matching.

The next chapter introduces a different kind of binding strategy: Dynamic Binding.






Chapter 4

Dynamic Binding

The method of binding an object/exception pair at the raise discussed so far is called
Static Binding since the binding information remains unchanged once it has been stored.
This chapter introduces Dynamic Binding, a new kind of binding strategy, which has

significant advantages over Static Binding?.

4.1 Limitations of static binding

4.1.1 Problems of non-local error handling

Many popular programming languages use an EHM that performs stack unwinding. This
capability is a very powerful feature, as it allows ‘postponing’ the handling of an exception
to a lower scope in the call stack and enables non-local error handling. Statically Bound
Exceptions, as described so far, have these features, as they behave exactly like their
unbound counterparts with regard to stack unwinding. However, the binding information

is not as useful after stack unwinding. In fact, the lower down the stack the catch clause

'Note that the terms Static Binding and Dynamic Binding in the context of this thesis only refer to
the binding of exceptions to objects.

49
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is located (compared to the point where the Bound Exception is raised), the less likely it
is that the exception’s binding information is meaningful at that point.

This point is illustrated in the following example in Figure 4.1. The first catch clause

class Filetype;
class File_Error; // forward declarations

class Database {
Filetype &f; //initialized by a constructor

public:
void commit() {
try {
f.do_write(); //throws File_Error
} catch (f.File_Error) {} /I OK
}
¥
void DB_ Manager :: flush( Database &db ) {
try {
db.commit();

} catch (f.File_Error) {} /I SYNTAX ERROR
} catch ( db.File_Error) {} /I OK, but never matched

}

class MainDriver {
public:
static void run() {
DB_ Manager dbman;
Database db( /* construction arguments */ );
dbman.flush( db );

Figure 4.1: Problems of non-local error handling

inside commit() is close to the raise of the exception and represents the typical case of a

bound catch.
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The first catch clause in flush() (same as for commit()) seems logically possible because
the bound object is f. However, it is syntactically impossible since f is not inside the scope
of flush().2 At that point, while the exception object is carrying the binding information
for the object f, it has become outdated as the stack is unwound.

Finally, there is the third catch clause: catch (db.File_Error). This clause is probably
what a user would like to write, as db exists in the current scope and (from a logical point
of view) is responsible for throwing the exception. However, since the exception is bound
to f, the handler for this third catch clause is never matched. So, only the the first (close
to the throw) catch clause is actually useful for the statically bound case, which shows
there are reasonable situations in which static binding is inadequate for non-local error
handling.

In general, in order to successfully catch a Bound Exception, the object in the bound
catch has to exist in the current scope and has to actually match the object to which the

exception is bound.

Coincidental case

Notice, there exists a coincidental possibility that there is an object f in the scope of
flush(), e.g., a global Filetype variable f. In this case, there would be no compile-time error,
but the bound-to object inside the exception does not have to be this f —in which case the
catch clause would be misleading. In fact, once inside flush(), the binding information for
f stored in the exception object can be used for bound catching only if this f references
a Filetype object visible in flush() and the catch clause tries to bind to that object. In
other words, if f references some global Filetype variable called some_global_variable, the

catch clause has to be catch ( some_global_variable.File Error ).

2There is a coincidental possibility that this code is valid if another symbol f is visible inside flush().
This case is discussed shortly.
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4.1.2 Software-Engineering considerations

Coupling problem

The requirement to have some_global variable visible in flush() is problematic and danger-
ous from a software engineering standpoint, as it prohibits a clean interfacing and encap-
sulation of code modules. More specifically, by testing for a binding to some_global_variable
inside flush(), this code is very strongly coupled to the implementation of the Database
class. Even a catch clause much higher up in the call hierarchy would have to know these
implementation details. This structure affects maintainability and reuse of the code, and
in general, inhibits the use of statically Bound Exceptions in libraries or other situations

where there is no access to the code that potentially throws an exception.

Possible Solution

To avoid these problems, Database could provide some kind of interface to reveal the
address of f. With this interface, catch (db.getAddress().File_Error) can be used to properly
match the Bound Exception. However, to use this strategy consistently, getAddress()
methods must be supplied for every object that a class uses - and recursively for every
object that these objects use. This requirement would result in an explosion of the number
of methods, and even if it were practical, it would reveal the number of objects a class

uses - which again is questionable from a software-engineering standpoint.
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4.2 Principle of Dynamic Binding

4.2.1 Theoretical considerations
Hypothetical solution

Most static-binding problems could be solved if the exception changed its binding during
propagation ‘through’” an object, e.g., from f to db in Figure 4.1. Naturally, db is inside
the scope of flush(), so there would be no compile-time errors. At the same time, flush()
would not need to know any implementation details of Database. It suffices to know that
Database can throw (or rather propagate) a File_Error exception. For flush(), it would
also make more sense to test for binding to an object it uses directly, as opposed to
some magical global variable. Thus, all the software-engineering issues listed before are
mitigated once the bound-to object is re-associated from f to db. Note also that this
solution is compatible with the common sense expectation that if an exception is thrown
as a result of a call to db.commit(), then db is actually the object responsible for the

throw, and hence, is the one to which the exception should be bound.

Defining “current-level responsible”

In general, in any given try block the exception should be bound to the object whose
member function, called in that block, is (possibly indirectly) responsible for raising the

exception. This object and the call to its member are called current-level responsible.

4.2.2 Possible Implementations
Catch and re-raise

One way to achieve this binding is to explicitly catch and re-raise all bound exceptions

in all methods callable from different objects, as shown in Figure 4.2. Through this
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class Filetype;
class File_Error; /I forward declarations

class Database {
Filetype &f;
public:
void commit() {
try {
f.do_write(); // throws File_ Error
} catch ( File_Error e ) {

throw e; /I changing bound object through catch and re-raise
}
}
¥
void DB_ Manager :: flush( Database &db ) {
try {
db.commit();

} catch ( db.File_Error ) {// handle error}
} catch ( File_Error e ) {throw e;} // or catch and re-raise

Figure 4.2: Catch and re-raise for emulating Dynamic Binding

convention, an exception is always bound to the last object which re-raised it, which
is also the current-level responsible object as the binding follows the call stack. In the
database example above, the File_Error exception inside flush() would be bound to db, so
that catch db.File_Error can be matched.

However, any such programming convention applied by programmers, i.e., to catch
and re-raise every exception in virtually every method, is unreliable. Additionally, since
every method call has at least one try block and one handler, depending upon the im-
plementation of the EHM used, the increase in exception handling code can result in a

significant increase of code size or a slower execution of every method call®.

3See also Section 5.2.3 on page 66.
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Proper Dynamic Binding

A better solution is to automatically change the binding association during exception
propagation by following this convention. For this purpose, a new kind of binding strategy
is introduced: Dynamic Binding.

Note that the term dynamic/static binding does not describe whether the binding is
done at run-time or compile-time (as the binding always occurs during run-time), but

rather determines how rigid the binding of objects to exceptions is.

4.2.3 Dynamic Binding in detail

Dynamic Binding describes the binding strategy in which, unlike static binding, the object
to which the exception is bound changes during stack unwinding - just like in the example
above, but without explicitly catching and re-raising the exception.

With this binding strategy, non-local handling in flush() finally works as intended by

the catch ( db.File_Error ) clause:

void DB_ Manager :: flush( Database &db ) {
try {
db.commit();
} catch ( db.File_Error ) /I Note the valid binding to db here

}

Here, the call of db.commit() is current-level responsible for raising the exception, and
consequently (by using Dynamic Binding), the exception object is bound to db. The
catch clause expects this binding and correctly matches the exception.

The dynamic nature of the binding has further consequences. If the exception is not
handled inside flush(), it is propagated down the stack, and therefore, MainDriver :: run(),

which calls flush(), has to be considered. This routine expects an exception to be bound
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to the instance dbman of DB_Manager whose flush() member it called and not to db, as
ideally, it knows nothing about the implementation of flush() and how db is used inside

it.

Algorithm

With dynamic binding, the rules determining the current binding are as described in
Figure 4.3.

1. Initially, binding is like static binding

2. For every stack unwinding:

a) if there was a current object in the previous stack frame, change binding to
if th t object in the previ tack f , change binding t
that object

(b) if there was no current object in the previous stack frame, do not change

binding

Figure 4.3: Algorithm for Dynamic Binding

Discussion

An interesting problem of the algorithm is to determine what happens if the exception
passes through a stack frame without a current object (e.g., a global function, a static
member) during propagation. Besides the option chosen (do not change the binding),
it is conceivable to change the binding to NULL or another value indicating that there
is no binding. This solution is appealing because it is consistent with the rest of the
algorithm (i.e., change binding to the current object). However, this approach violates
the principle of modularity, which demands that there should be no difference between
executing a piece of code in-line and wrapping it into a function and calling that function.
The programmer could decide to move a section of the code into a general function. In

this case, Bound Exceptions passing through that function during propagation might not
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be handled anymore since now, they are unbound, when before they where bound to some
object. If the binding information stays the same, the catching code continues to work
because nothing changes for the exception.

Using the example in Figure 4.1 without the catch clauses and now utilizing Dy-
namic Binding, Figure 4.4 illustrates the changing of binding information for the thrown
File_Error exception during stack unwinding, following the algorithm from Figure 4.3.

Inside f.do_write(), the binding is to f since it is the initial binding (rule 1). After one

Stack bound object

S ‘ ~~~~~~~~~~ -+ commit() - > ~~~~~
db

o ' o fTush() e > ~~~~~
: dbman

Figure 4.4: Change of binding information

level of unwinding, inside db.commit()’s stack frame, the binding remains to f because the
previous stack frame had f as its current object (rule 2a). Note, that up to this point, Dy-

namic and Static Binding behave identically. During the next level of stack unwinding, the
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binding changes, so that inside dbman.flush(), the bound-to object is db according to rule
2a (using Static Binding, the binding would remain f). In MainDriver::run() the binding
is to dbman since that was the object of the previous stack frame(rule 2a). Finally, from
MainDriver::run() to its caller, the binding remains unchanged because MainDriver::run()

is a static member, and hence, there is no current object in that frame (rule 2b).

4.3 Further problems of non-local error handling

Using dynamic binding permits non-local error handling. However, there is a fundamental
problem when using (both bound or unbound) exceptions in this way: the data type of the
exception always stays the same during stack unwinding. This can lead to a situation in
which an exception is (dynamically) bound to an object that at first glance does not have
much to do with this exception. In the example from Figure 4.4, a File_Error exception
could be bound to dbman, a DB_Manager object — without an obvious association between
these two. This situation can be especially confusing if a programmer is used to bound
exceptions being declared inside the scope of the bound-to object’s class (like for Ada’s
generic packages). This general problem of exception handling is addressed in Section
1.4.2, and again, a strict exception hierarchy is the solution. Using the example from Fig-
ure 1.1 on page 9, it is possible to test for a binding of IOError to db - catch (db.IOError) -

and that of CriticalError to dbman, thus mitigating the wrong-association problems.

4.4 Dynamic vs. Static Binding

4.4.1 Discussion of a specific example

Even with the advantages of Dynamic Binding, statically Bound Exceptions are not

obsolete. There are situations in which knowing the first bound-to object (i.e., the one
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used by Static Binding) is useful. Consider the example in Figure 4.5, which produces

the object/call chain in Figure 4.6.

void Transactionclass :: do_transaction( Database &db, User_Log &ul) {

Filetype data_file;
Filetype log_file;

try {

ul.log_events(log_file);
db.begin_transaction(data_ file, log_ file);

} catch ( File_Error ) {}

}

void User_Log :: log_events( Filetype &f) {
f.do_write() /I throws File_ Error

}

void Database :: begin_transaction (Filetype &d, Filetype &I) {
d.do_ write(); /I throws File_ Error
[.do_ write(); /I throws File_ Error

}

Figure 4.5: Discussion — Static vs. Dynamic Binding

Advantage of Dynamic Binding

Assuming that log file’s do_write() member throws a File_Error exception which is caught
inside Transactionclass :: do_transaction(), it is clear that Static Binding only provides
information that the error originated in log file. However, in order to know if it is the
User_Log or the Database object that is responsible for the problem, Dynamic Binding
is needed, as it causes the binding information to change to whatever object caused the

failing call to log_file.do_write().
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: Transactionclass

log_events() begin_transaction()

‘ ul : User_Log ‘ ‘db : Database ‘

do_write() do_write( do_write()

‘ log file : Filetype ‘ ‘ data_file : Filetype

Figure 4.6: Object/Call chain for Transactionclass example

Advantage of Static Binding

On the other hand, if data_file throws a File_Error exception, it is clear that it ‘passes
through’ db, as only db uses data_file, which changes the Dynamic Binding. Once inside
do_transaction(), it is impossible to know if this exception originates from data_file or
from log_ file, as the only information available at that point is a File_Error bound to
db. So Dynamic Binding does not help in determining what Filetype object actually has
a problem — for this, Static Binding is needed, which stores the original thrower and

provides the required information.

Summary

Here is a situation in which the coexistence of both Static and Dynamic Binding is helpful,
and since every dynamically Bound Exception behaves like a statically bound one on the
highest stack level, there should be no implementation issues that prevent having both
forms of binding (it is just necessary to use more storage to remember the first bound-to
object). So although Dynamic Binding is generally preferable to the static version, there

is a good reason to keep and use both.
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4.4.2 Generalization: When to use Static Binding

In general, Static Binding is preferable over Dynamic Binding if there is tight coupling
between objects on different levels of the call stack. A good example for this situation
is a messenger object that delivers messages from code which is responsible for catching

exceptions thrown from the message receivers, as shown in Figure 4.7. Here MainDriver is

MainDriver
Messenger
- N -
Worker_1 ‘ ‘ Worker_2 Worker 3| - - Worker_n
- - -

Figure 4.7: Messenger example

not interested in bindings to Messenger but rather in knowing which of the worker objects
raised an exception. As they are tightly coupled, MainDriver knows these objects and their
implementation sufficiently well so that the exceptions they throw are meaningful to it.

Static Binding preserves the original binding, which is useful in this situation.

4.4.3 Further theoretic considerations

Of course, a more complicated object/call tree is conceivable, which would require remem-

bering the objects ‘between’ the first (static) and the last (dynamic) binding, resulting
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in even more complex binding options/strategies. In this case, however, there would be
no bound to the number of possible objects ‘in between’ or the possible different strate-
gies. Therefore, it would be unreasonable to try to add more binding strategies, as all
possibilities cannot be covered (and it would be difficult to use). Therefore, only Static
and Dynamic Binding are suggested, and by using a good exception handling design (i.e.,
where to place try blocks and catch clauses), it is possible to cover all the cases in be-
tween.

A proposal for the syntax of Static and Dynamic binding can be found in Section 5.3.

4.5 Summary

This chapter introduces Dynamic Binding. It showed that handling exceptions non-
locally is difficult with Static Binding. Dynamic Binding can replace Static Binding in
many cases and enables the combination of Bound Exceptions and non-local handling.
Still, it is necessary to use Static Binding in cases when the initial binding must be
preserved.

Using the concepts discussed in the previous chapters, the following chapter presents

an implementation of Bound Exceptions for pCH+.



Chapter 5

Implementing Bound Exceptions

for nCH++

5.1 Overview of uC++

1 CH- is basically a concurrent dialect of CH+. It provides high-level concurrency as well
as other advanced features as part of the language. The concurrency features of uCH+t+
are provided indirectly by a translator and a run-time library, not directly through the
compiler. For the actual compilation, pCH+ relies on the CH+ compiler of the GNU
Compiler Collection (GCC).

5.1.1 Interaction between yCH++ and GCC

To build a program with pCH+, the translator first reads in the source file. It then
transforms the source from the pCH+ dialect into C++ code and calls to the pCH+ run-
time libraries. The output is then compiled by GCC and finally linked against the pCH+

run-time libraries (among others).
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Advantages

This design greatly reduces the complexity of the actual pCH+ part, and at the same
time takes advantage of GCC’s optimizing code generation and its availability for many
platforms. Otherwise, pCH could not be made available for as many platforms as it

supports now.

Disadvantages

Since pCH+ is conceptually only a concurrency library, it suffers from the shortcomings
of all such solutions [1]. More importantly for the purpose of this thesis, pCH+ has little

control over GCC’s code generation or its CH4 run-time libraries.

5.1.2 Technical view of the yC++ EHM

The pCH translator and run-time, as well as the GCC run-time library, are all involved
in puCH+’s EHM. More precisely, pCH+ uses its run-time system to handle resumption
and asynchronous delivery, The C4H+ EHM is used for propagating terminating exceptions
(stack unwinding, handler matching), which is a combination of compiler and run-time

mechanisms.

5.2 Adding binding capabilities to pC++

The dependence on the GCC exception handling mechanism becomes a problem in adding
Bound Exceptions to pC4+’s EHM. Determining the right handler according to exception
type and binding information is part of the matching process for which GCC’s exception

handling routines are responsible — but these routines know nothing about binding.
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5.2.1 Extending GCC

One way to solve this problem is to add binding capabilities to GCC’s EHM, thereby
effectively incoporating Bound Exceptions into the CH++ language. This effect would be
highly desirable. However, in order to achieve this, it would be necessary to rewrite parts

of GCC, especially the run-time system.

Discussion

This solution has several drawbacks. First, GCC is a very complex software project.
It would take considerable time and effort to examine how exactly its EHM works, to
change the run-time code involved, and to add the new language features to GCC’s CH+
front-end.

Then, unless the GCC maintaners can be convinced to adopt Bound Exceptions as
a standard, one would have to maintain a separate branch of GCC. In time, the main
branch and the Bound Exception branch would move farther and farther apart since it
is difficult to keep up with the pace of GCC’s development. At some point, the Bound
Exceptions branch would be out-dated and so would pCH+.

Finally, uCH+ users would have to install the supplied special version of GCC as well,

which could cause conflicts with already installed versions of GCC or system libraries.

5.2.2 Emulating Bound Exceptions

To avoid above difficulties, it is necessary to find a way to implement Bound Exceptions
while still relying on the basic C+H EHM. In Section 2.3.4, exactly such a way was
developed: the programming convention “enhanced catch and re-raise” emulates Bound
Exceptions using a regular non-binding EHM.

While the solution was discarded as too complicated and unreliable to be used by
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a programmer, pCH’s translator does not suffer from these limitations. The uCH+
translator can use this conversion algorithm to convert from pCH++ Bound Exceptions
code to plain CH exception handling code while preserving the binding semantics. This

approach is the one used in pCH to implement Bound Exceptions.

5.2.3 Performance considerations

Naturally, emulating a certain functionality instead of implementing it directly reduces
a program’s performance. In the following, the performance effects of emulating Bound
Exceptions compared to using unbound exceptions are examined. In this particular case,
it is necessary to differentiate between performance during normal program execution

(non-exceptional case) and exception handling (exceptional case).

Non-exceptional case

The regular, non-exceptional case is examined first. GCC’s EHM has two different imple-
mentations, one based on the C routines setjmp/longjmp [9] and one based on DWARF2
information [15]. Without going into too much detail, the DWARF2 approach, which
is the default implementation on the platforms supported by pCH+, uses address tables
and has the major advantage that exception handling code has no run-time performance
impact if no exceptions are handled. It does not matter how many try-blocks or catch
clauses a program contains, there is no slow-down as long as no exceptions are actually
raised and handled. Hence, the only difference between the unbound and the bound sim-
ulation case is slightly larger code size in the latter due to some extra code and bigger

address tables (caused by additional try-blocks).
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Exceptional case

The case of a raised exception is more complex for the bound simulation case. First, the
binding information has to be stored®, which does not occur for unbound exceptions. The

overhead for this is negligible, though.

During propagation, before the exception is caught, there is no difference between

bound and unbound handling,.

The biggest performance impact occurs during catching. For a single original try-
block with n catch clauses, try-block splitting can produce up to n nested try-blocks
with one catch clause each in the worst case, which can lead to n catches and re-throws,

2

compared to only one catch in the unbound case. That is quite a significant difference®,

but it is important to realize that this only occurs when actually handling an exception.

Results

The definition of exceptions given in Section 1.1.1 states that exceptions occur infre-
quently. Hence, performance penalties resulting from emulating Bound Exceptions, which
are only experienced in those exceptional situations, also occur infrequently and should

have little impact on the overall run-time performance of the program.

In general, a sound philosophy is to not let exception handling code affect non-
exception handling performance (as with DWARF2), so that the exception handling

code will have little influence on the overall performance. See also [13, §16.2 and §16.9.1].

'"How exactly this is done is described in Section 5.4.1

2For exact measurements, see Appendix A.
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5.2.4 Dynamic Binding

The conversion algorithm from Section 2.3.4 only considers Static Binding. The imple-
mentation of Dynamic Binding is inherently more difficult as the binding information
changes during propagation, over which there is no control from the pCH+ run-time
system. It would be necessary to somehow interrupt exception propagation after every
stack frame unwinding, so control can return to the puC4++ run-time, which could change
the binding information and then return control to the propagation mechanism again.
There is no way to directly interrupt GCC’s propagation mechanism, so again, some

work-around is needed.

Catch and re-raise approach

3 convention was introduced that can simulate dy-

In Section 4.2.2, a catch and re-raise
namic binding, provided that static binding is possible.
The reliability issues associated with such a regimen do not apply when using the

1 CH- translator. However, such a solution would still have the code size problems dis-

cussed in Section 4.2.2.

Dummy object approach

A different approach to achieve dynamic binding functionality uses constructors and de-
structors of dummy objects to change the binding information of an exception during
stack unwinding. The technique applied here is called “resource acquisition is initial-
ization” in [14, §14.4]. The following example shows the definition of such a dummy

class.

31t is no coincidence that “catch and re-raise” approaches are helpful for emulating EHM features. A
catch effectively interrupts an exception’s propagation, while a re-raise continues that propagation.
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class DummycClass {
void * binding;
public:
DummyClass( void * pointer ) : binding( pointer ) { }
~DummyClass() {
thisExecution().setExceptionBindingTo( binding );
}

|3

The function thisExecution() returns a reference to some object maintaining state infor-
mation for the current execution. This object is responsible for storing the binding of the
current exception. The translator can insert an instance of DummyClass at the beginning

of every non-static member function definition, such as in

void SomeClass :: someMember() {
DummyClass _unnamed_( this ); // <==inserted by translator
/I xxxx start of original user code *xxx

}

If an exception causes the termination of the someClass :: someMember() block during
stack unwinding, the DummyClass instance is destroyed and its destructor executed. This
destructor sets the current binding to the this pointer that was valid when it was con-
structed. For the next stack frame, that pointer referenced the current object of the
previous stack frame, as required by rule 2a of the Dynamic Binding algorithm from
Figure 4.3.

In the catch clause, the binding stored by the previously destroyed dummy object is
compared to the one supplied by the user for the catch clause, and if they are equal, the

handler matches.
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Performance

This solution has the advantage that it just slightly increases code size. It is also faster
than the “catch and re-raise” approach discussed before since it does not involve the
notoriously slow exception handling engine through repeated throws and catches, but
rather executes very few operations to achieve the same effect.

However, it must be clear that by using this approach, regardless whether there is an
exceptional situation or not, a dummy object has to be constructed for every member
function call, and every time a member function terminates (stack unwinding, or return),

a dummy object has to be destroyed.

Conclusion

Adhering to the policy that exception handling code should have no (or very little) impact
on the performance when not actually handling an exception, it was decided to not

implement Dynamic Binding in pCH+ until a better solution can be found.

5.3 Syntax

The following introduces the syntax for using Bound Exceptions in uCH+. The format is
partly based on the grammar from [8]. However, it has been extended to reflect semantic
requirements. For example, uDualClass-erpression means that the grammar requires an

expression, but to make sense semantically, the expression must be of type uDualClass*.

*All exception types that take advantage of pC++’s advanced exception handling capabilities are
implicitly derived from uAEHM::uDualClass, which is the root of the hierarchy of all dual events (i.e.,
events that can be handled through termination and resumption). uAEHM::uThrowClass is the super-
class for all termination-only events, uUAEHM::uRaiseClass is the root for the hierarchy of resumption-only
events.
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5.3.1 Throwing a Bound Exception
The following expressions inside a non-static member function (re-)throw a terminating

synchronous or asynchronous exception:

Syntax

‘ uThrow vDualClass-expression;

‘uThrow wDualClass-expression uAt uwBaseCoroutine-expression;

There is no change from the non-binding syntax since now, all throws are bound.

Examples

The first example throws a synchronous File_Error exception bound to the current object.

uThrow File_Error( 1I0_CRITICAL );

The second example throws a Special _File_Error exception bound to the current coroutine

asynchronously at someTask.

uThrow Special_File_Error() uAt someTask;

5.3.2 Terminating handler

The following shows the general form of a bound catch clause

Syntax

catch ( lvalue-expression . exception-declaration ) compound-statement
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Important here is the dot-operator ( . ), which connects the bound-to lwalue on the left
with the exception on the right side. The bound catch clause works for any lvalue, but
for the binding to make sense it should be any object whose member functions can raise

exceptions, or any coroutine or task objects raising asynchronous events.

Examples

The following handles all File_Error exceptions bound to the object named ob;j.

catch ( obj.File_Error e)

Note the optional declarator e, which is used to name the exception object inside the

handler.

The following catches a File_.Error exception bound to whatever object

func_returning_pointer() references.

catch ( *func_returning_ pointer().File_ Error )

Note that the expression *func_returning_pointer() is evaluated during handler matching
even if the handler does not match. Caution is required when using functions in this way,

or otherwise unexpected side-effects can occur.

The next example handles all asynchronous exceptions sent by the task someTask

catch ( someTask.UAEHM::uThrowClass )

Finally, here is an example of a general unbound handler, which accepts all binding

information. Again, a declarator is supplied.
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catch ( Special_File_Error &e )

5.3.3 Raising a Bound Exception (Resumption)

The syntax for the resuming raise is very similar to that of the throw, the only difference

being the use of uRaise instead of uThrow.

Syntax

‘ uRaise uDualClass-expression;

‘uRaise wDualClass-expression uAt uBaseCoroutine-expression;

Examples

A simple raise of a File_Error exception bound to the current object (this time returning):

uRaise File_Error();

The following example shows how a task can asynchronously raise an exception and send

it to itself>:

uRaise Special_File_Error() uAt uThisTask();

5Note that the exception is propagated only after it has been delivered asynchronously. In the previous
example, the exception is propagated immediately.
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5.3.4 Resuming handler

The pCH syntax for resuming handlers is very different from the one for terminating
handlers (i.e., catch clause). The reason is that a resuming handler is like a nested routine
with dynamic name look-up. However, C++ has no provision for nested routines, so an
unusual syntax has to be adopted. For more information on how to use resumption,

see [11] and [4].

Syntax

‘try <lvalue-ezpression . uDualClass-type-specifier > compound-statement

‘try <lvalue-ezpression . uDualClass-type-specifier | handler-function > compound-statement

‘try < lvalue-expression . uDualClass-type-specifier , handler-function , uClosure-name > compound-statement

Again, the difference between the bound and the unbound version is the dot-operator.

Examples

The following catches a File_Error exception bound to obj, and it should be handled by

the default handler® for this type.

try < obj.File_Error > {

}

The following example states that all raised events bound to obj should be handled by

foo() with closure containing args

®If an event is raised but no handler is supplied, a default resuming handler uDefaultResume() is
executed. The pre-defined handler throws the event, but it is possible to override it by a user-defined
handler.
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try < obj.uAEHM::uRaiseClass, foo, args > {

}

Finally, the following lets bar() handle all File_Error resumption events sent to the current

coroutine by someTask.

try < someTask.File_Error, bar > {

}

5.3.5 Dynamic Binding

Although Dynamic Binding is currently not supported by pCH+, a possible future syntax
should be considered. Like the dot-operator for Static Binding, the slash-operator ( /)

could be used for Dynamic Binding.

Experimental syntax

‘catch ( ezception-declaration / lvalue-expression ) compound-statement

The following line would mean to catch all File_Error exceptions dynamically bound

to obj.

catch ( File_Error / obj )

The inverted order of exception and bound-to object allows using Static and Dynamic

Binding at the same time, e.g.,
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catch (log_file . File_Error / db )

Here, all File_Error exceptions statically bound to log_file and dynamically bound to db

are handled (see the example from Section 4.4.1).

5.4 Implementation details

This section describes those parts of the EHM in greater detail that are crucial for the

implementation of Bound Exceptions.

5.4.1 uThrow

In Section 3.1.2, it was postulated that all exception types should be binding. This raises
the question of where the binding information is actually stored since not all types provide

a data field for this purpose (especially not the elementary types like int, float, etc.)

Storing binding information as execution-specific data

One approach is to store the binding information in the structure maintaining state
information for an execution, like in the dummy approach from Section 5.2.4. Since, at
any given time, at most one exception is being propagated in an execution, this approach

is safe.

Storing binding information inside exception object

In pCHt, in order to use advanced features like resumption or asynchronous exceptions,
it is necessary to derive an exception type from uAEHM::uDualClass. As a consequence,
all exception types effectively inherit (protectedly) from uAEHM::uDualClass. Hence, to

make sure all exception types are potentially binding, it is only necessary to include an
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attribute in uUAEHM::uDualClass for storing the binding information. This approach is the
one implemented in pC+H++ since, from a design standpoint, it is better for an exception
to maintain its own binding information.

The following shows the important parts of the definition of uUAEHM::uDualClass (const

declarations omitted).

class UAEHM::uDualClass {
void * uStaticallyBoundObject;

public:
void * uGetOriginalThrower() { return uStaticallyBoundObject; }
uDualClass * uSetOriginalThrower( void * p ) {

uStaticallyBoundObject = p;
return this;

|3

During the throw, uAEHM::uDualClass::uSetOriginal Thrower() is used to store the current

this pointer inside the exception. When the translator encounters an expression such as

void Mary::foo() {

uThrow File_ Error();

it transforms it into

void Mary::foo() {

throw =*File_Error().uSetOriginalThrower( this );
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which constructs an anonymous exception object, stores the current this pointer in that
object, and then de-references the address returned by uSetOriginalThrower() to throw
the exception. Since on the right side of an initial (not re-throw) uThrow there has to
be an expression which implements uAEHM::uDualClass, it is clear that this conversion

works for any kind of throw (e.g., also if an already constructed, named object is thrown)

5.4.2 uRaise

The transformations done for a uRaise are identical to those of uThrow.

5.4.3 Asynchronous uRaise/uThrow

This part is very similar to the simple uThrow. The only difference is that

&uThisCoroutine()” is stored inside the event object, and not this.

5.4.4 Resuming handler

Propagation and handler matching for resumption is done entirely inside the pCH+ run-
time. When a resuming event is raised, the existing resumption clauses (which are stored
in a special data structure) are searched linearly (down the stack) until one is found whose
type and binding match. The handler determined by the found resumption clause is then

executed.

5.4.5 Terminating handler

As discussed in Section 5.2.2, the “enhanced catch and re-raise” algorithm is used to
implement the matching of terminating Bound Exceptions. So whenever the translator

encounters a bound catch clause, it basically transforms it according to the algorithm.

7uThisCoroutine() returns a reference to the object representing the current coroutine/execution.
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See Appendix B for a comprehensive conversion example. There are three subtle points
in which the implementation differs from the algorithm.
Optimization

There are cases in which it is possible to minimize the number of try-block splittings.

Consider the following example.

Filetype log_ file, data_ file;
try {

} catch ( log_file.File_Error e ) { /*x A=/}
catch ( data_file.File_Error e ) { [*B =/ }

Since both catch clauses are of a related type, according to the original algorithm, they

would have to be separated, i.e.,

try {
try {

} catch ( File_Error e ) {
[+ if bound to log_file, execute A
else reraise */

}
} catch ( File_Error e ) {
/[« if bound to data_ file, execute B
else reraise */

However, since the exception types are equal (as well as the declarators) and follow each
other, it is possible to achieve the same functionality with only one try-block and catch

clause. The following shows the equivalent optimized code.



80 CHAPTER 5. IMPLEMENTING BOUND EXCEPTIONS FOR uC++

try {

} catch ( File_Error e ) {
[+ if bound to log_file, execute A
else */
/[« if bound to data_ file, execute B
else reraise */

As it is highly probable that bound catch clauses of the same type follow each other and
have the same declarator, this optimization should significantly reduce the performance

overhead caused by emulation.

Pre-existing throw flag problem

In Section 2.3.4, the solution offered for the pre-existing throws problem is to set a
flag for this exception and check it in all subsequent eligible (i.e., capable of catching
the exception) handlers. In reality, the uCH++ translator cannot always determine the
eligible handlers. If, for example, a routine contains a re-throw and exception handlers
call this routine, the type of the re-thrown exception can only be determined at run-
time. Additionally, when encountering the routine’s definition, the translator does not
know which handlers call it. Therefore, in the actual implementation of the conversion
algorithm, a single flag is defined before every converted try-block, and the flag is checked

in every catch clause of a transformed try-block.

Multiple Inheritance problem

In the original algorithm, the exception is handled if the address stored in the exception
is the same as the address of the object supplied by the user in the catch clause. Since

multiple inheritance is possible in CH/pCH-, a special adjustment has to be made to
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the algorithm®

Consider the example in Figure 5.1. Without the adjustment, the Busy exception

class Teacher {
public:
void teach() {

uThrow Busy();

}
h
class Researcher {
public:
Paper * research() {

uThrow Busy();

}
h
class Professor : public Teacher, public Researcher {
public:
void supervise() { ... }
h

void schedule() {
Professor Bob;
try {
Paper *p = Bob.research();
} catch ( Bob . Busy ) {
/I Handler
}

Figure 5.1: Multiple inheritance problem

would not be caught in the example above, for the following reason. Since Professor

inherits from both Teacher and Researcher, Bob internally consists of two parts — a

8This adjustment applies to GCC versions up to 2.96, which are used in pCH+ 4.9. For later versions
of pC++, this adjustment is not necessary since the GCC versions used show a different behaviour with
regards to this pointers.
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Researcher part and a Teacher part (see Figure 5.2). These parts behave like individual

&Bob Bob:

e

(Teacher * ) &Bob

i \( tea_ch() ]—Hi this

&Bob + sizeof(Teacher) L J

S

(Researcher * ) &Bob

l s .
; \research() ]7‘— this
|

Professor part

[supervise()] this —

&Bob + sizeof(Bob)}——=

Figure 5.2: Organization of a Professor instance

sub-objects. In particular, calls to the member functions teach() and research() supply
different this pointers, and hence, throws inside these functions are bound to different
addresses. Teacher is the first class Professor inherits from. Therefore, GCC places the
Teacher part at the beginning of Bob, so the this pointer for Bob.teach(), which points to
the Teacher part of Bob, is the same as the address of Bob. The Researcher part of Bob
is placed after the Teacher part. Hence, Bob.research(), which belongs to that Researcher
part, has a this pointer with a higher address (&Bob + sizeof(Teacher)), which is why the

binding inside the catch clause fails.
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To overcome this problem, the actual matching algorithm checks whether the stored
address lies in the range | &Bob , &Bob + sizeof( Bob ) ), which covers the whole Bob
object and therefore also accepts the binding information from Bob.research().

This solution has one interesting consequence. Consider the example in Figure 5.3.
Since [ &t , &t + sizeof( t ) ) only covers the Teacher part of Bob, the binding fails again.
In this case, however, this is the correct behaviour because a Researcher member function
should not be able to bind an exception to a Teacher object, only to a Researcher or

Professor object.

void schedule() {
Professor Bob;
Teacher &t = Bob; // sub-type assignment
try {
Paper *p = Bob.research();
} catch (t. Busy) {
/l Handler
}

Figure 5.3: Attempted binding to Teacher part

5.5 Summary

In pCH+, a translator is used to implement statically Bound Exceptions. Dynamic Bind-
ing is currently not implemented as it would result in significant performance loss or code
size increase; the correct way to implement Dynamic Binding is through the compiler,
which is beyond the scope of this thesis. In this implementation of Static Binding, the
address of the bound object is stored as a field inside uAEHM::uDualClass, which all pC++
exceptions inherit from. When the pC4+ translator encounters a raise using Bound Ex-

ceptions, it transforms it into plain CH code that stores the binding information inside
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the exception object. In a bound catch or resumption clause, the dot-operator connects
the bound object on the left with the exception on the right side. For resumption, han-
dler matching is done in the pCH+ run-time. Terminating catch clauses are matched
by GCC’s EHM, and therefore, the pCH+ translator converts bound catch clauses using
a variant of the “enhanced catch and re-raise” approach to emulate Bound Exception

handler matching.
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Conclusion and Outlook

6.1 Conclusion

With the introduction of Bound Exceptions, it is possible to truly incorporate exception
handling into the object-oriented design of a program. In particular, I developed the
concept of Dynamic Binding, which offers software-engineering advantages over existing
binding schemes. The ability to associate exceptions with objects strengthens the re-
lationship between an exception and the object responsible for its raise. This feature
creates more powerful exception handling capabilities, contributing to building more ro-
bust software.

This work presents the design of Bound Exceptions for CH+ and pCH+. The benefits
of Bound Exceptions are not restricted to these languages alone. Following the CH+
example, it should be simple to port the design to other object-oriented languages, as
long as they provide a suitable EHM.

The implementation of Bound Exceptions for the EHM of uCH+ provides a platform
for using this feature under practical circumstances. With resumption and asynchronous

exceptions supports basically all exception models in use today. erefore, i
ptions, uCH+ supports basically all pti dels i today. Therefore, it

85
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can serve as a test platform that developers can use to evaluate the usefulness of Bound

Exceptions in their programs and decide if they are a desirable feature for other languages.

6.2 Outlook

The following lists several future developments necessary or possible in the area of Bound

Exceptions.

6.2.1 Field Testing

This work clearly demonstrates the theoretic advantages of using Bound Exceptions.
However, to actually prove its practical usefulness, theoretic considerations and ‘toy ex-
amples’ are insufficient.

With pCH+t, there now exists a tool to create larger, real-world applications exploiting
the capabilities of Bound Exceptions. By doing so, it is possible to prove that Bound

Exceptions deliver the advantages they promise theoretically.

6.2.2 Conditional Handling

In [2, §6.4], it is shown that Bound Exceptions are a special form of a broader concept:
Conditional Handling. Through Conditional Handling, an exception is caught by a certain
handler only if a supplied condition is met (i.e., the expression is true). With Bound
Exceptions, this condition is the equality of user-supplied binding and actual bound-to
object. Buhr et al. argue that there is no evidence for the usefulness of Conditional
Handling, but this could be due to the lack of practical testing. It would be very simple
to incorporate Conditional Handling into pCH+’s EHM since the concept and the required

transformations are similar to those of Bound Exceptions.
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Possible application

The following shows a possible syntax using square brackets to encompass the condition

‘catch ( [ expression | exception-declaration ) compound-statement

Here is an example utilizing Conditional Handling:

try {

} catch ([ log_file.getLogStatus() == DB_INTACT ] File_Error e ) {
db.rollback();
log_file.notify( e.getErrorMsg() );

} catch ( CriticalError ) {
cleanUpAndAbort();

}

If a File_Error is thrown inside the try-block and log file.getLogStatus() returns
DB_INTACT, the handler matches and handles the exception. If the condition is false, the
exception is matched to the general CriticalError handler (this happens naturally if the

exception is a CriticalError but not a File_Error).

6.2.3 Dynamic Binding

In Chapter 4.4, the concept of Dynamic Binding is developed and shown to be superior
to Static Binding in many contexts. It would be desirable to have Dynamic Binding
capabilities in pCH+ so that their usefulness can be evaluated in practice.

In order to achieve this, it is necessary to find a more efficient way to emulate Dynamic
Binding or to accept the performance issues associated with the dummy object algorithm
from section 5.2.4. A third possibility is to extend GCC by adding (dynamic) binding

capabilities.
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6.2.4 Extending GCC

In many ways, the best solution would be to incorporate Bound Exceptions directly into
GCC. Given that the problems described in section 5.2.1 can be solved (by convincing the
GCC maintainers of the advantages of Bound Exceptions, for example) or are ignored, it
would be highly desirable to have GCC recognize Bound Exceptions. Programmers who
are uninterested in concurrency would not have to use uCH++ in order to benefit from
Bound Exceptions, but could just use plain GCC CH++. Additionally, all performance
issues associated with emulation would disappear, and in particular, it would be possible

to implement Dynamic Binding properly.



Appendix A

Performance measurements

In pCH+, an emulation (“enhanced catch and re-raise”) has to be used in order to imple-
ment Bound Exceptions'. This emulation cannot be as efficient as a direct implementa-
tion. In order to measure the performance overhead of the emulation, two programs are
presented here. Section A.l shows a uCH++ program (BEperf.cc) utilizing Bound Excep-
tions. Section A.2 shows an equivalent program (BEmimic.cc) that, instead of using the
1#CH EHM, mimics Bound Exceptions functionality through object-specific exception
types (see section 2.3.2). This implementation is very fast since it introduces no new
try-blocks or catch clauses.

In both programs, the outer loop is executed REP times, each iteration throwing one
exception. The exceptions are evenly distributed over the five catch clauses, so that on
average, the propagation mechanism has to check 2% handlers before the matching one
is found. The inner loop is used to simulate ‘realistic’ algorithmic code by executing
2 x REPREAL arithmetic and 1 x REPREAL I/O operations for every exception thrown.

The time for executing the outer loop is measured.

'For a comprehensive example explaining how exactly the yC++ translator transforms source code
into code that emulates Bound Exceptions, see appendix B.
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Both programs are built by executing u++ BEperf.cc and u++ BEmimic.cc, respec-
tively. By defining PURE during compilation (i.e., u++ -DPURE), it is possible to only
execute exception handling code, i.e., eliminate the inner loop. For BEperf.cc, it is possi-
ble to enable optimization (see section 5.4.5) by defining OPTIMIZE during compilation.

Table A.1 summarizes the performance measurements. All programs were executed 9

times, the median was taken as the measurement. The results when PURE is defined are

Mimicking | pC++ (OPTIMIZE) | pCH++ (no OPTIMIZE)
PURE 0.93s 1.79s 3.92s
Realistic code 9.12s 10.09s 12.05s

Table A.1: Measured execution times

significantly smaller as only exception handling code and no algorithmic code has to be
executed. Hence, the effects of the different exception handling mechanisms are reflected
in the top row. With OPTIMIZE defined, all bound exception clauses have the same
type and declarator. Therefore, it is possible to use only one try-block and one catch
clause. Without optimization, five try-blocks with one catch clause each are created,
and 27 catches and (re-)throws are executed on average. These additional exception
handling operations are responsible for the longer run-time of the unoptimized program.
There are some operations (e.g., setting of pre-existing throws flag, storing of the binding
information) that are executed only once in both cases, which is why the run-time of the
unoptimized program is less than 2% as long as that of the optimized program.

Since there is only one try-block with one catch clause in the optimized case, it could
be as fast as the mimicking version, which has the same number of try-blocks. In reality,
the pCH+ code takes about twice as long. This effect can be explained by the additional
operations that have to be executed during the raise (i.e., storing of the binding). In fact,
if the throws are replaced with uThrows in the mimicking version, the measured time of

1.92s is actually slightly higher than that of the optimized pC4+ version. The difference
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can be explained by the slightly more complex code for choosing the right raise (inside
mary::foo()) and that the mimicking version still has five catch clauses, which results in
2% catch clause checks (on average) by GCC’s EHM during propagation.

The bottom row shows that the difference among the Bound Exceptions implemen-
tations quickly diminishes when even a small amount of algorithmic code is executed for
each exception raise. Therefore, only when Bound Exceptions comprise the majority of
control flow is performance an issue. However, it was made clear in section 1.1.1 that
exceptions are supposed to indicate rare situations. Hence, when exceptions are used
correctly, performance issues resulting from pCH++’s emulation of Bound Exceptions are

negligible.
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APPENDIX A. PERFORMANCE MEASUREMENTS

Bound Exceptions using pCH+

#include <uC++.h>
#include <ulOStream.h>
#include <uFStream.h>

#define REP 10000
#define REPREAL 100

#ifndef PURE

#define CLOSE f.close();
#else

#define CLOSE
#endif

#ifdef OPTIMIZE
#define A
#define B
#define C
#define D
#define E

#else
#define A aa
#define B bb
#define C cc
#define D dd
#define E ee

#endif

uThrowEvent fred { };
ulnitEvent( fred );

class mary {
public:
void foo( int k) {
uThrow fred();
M/foo

h

void uMain::main () {
mary a,b,c,d,e;

uTime start = uThisProcessor().uGetClock().uGetTime();

for (intj=0;j<REP; j++) {

#ifndef PURE
int k = 100;
ulFStream f("a. out ");
char dummy;

#endif
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try {
for (inti=0;i < REPREAL; i++) {
#ifndef PURE
kx=21;
k/=19;
f >> dummy;
#endif
}Mifor
switch (j % 5) {
case 0: a.foo());
case 1: b.foo());
case 2: c.foo());
case 3: d.foo());
case 4: e.foo());
Hlswitch

} catch ( a.fred A) { CLOSE }
catch ( b.fred B) { CLOSE }
catch ( c.fred C) { CLOSE }
catch ( d.fred D) { CLOSE }
catch ( e.fred E) { CLOSE
Mitry

}Mifor

uDuration dur = uThisProcessor().uGetClock().uGetTime() - start;
uCerr << dur << endl;
}Y/main
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A.2 Mimicking Bound Exceptions with C4++ code

APPENDIX A. PERFORMANCE MEASUREMENTS

#include <uC++.h>
#include <ulOStream.h>
#include <uFStream.h>

#define REP 10000
#define REPREAL 100
#ifndef PURE

#define CLOSE f.close();
#else

#define CLOSE
#endif

class fred { };

class fred_a : public fred
class fred_b : public fred
class fred_c : public fred
d
d

{}
{}
{¥
class fred_d : public fred { };
class fred_e : public fred { };
class mary {
public:
void foo( int k) {
switch (k % 5) {
case 0: throw fred_a(); //a
case 1: throw fred_b(); //b
case 2: throw fred_c(); /ic
case 3: throw fred_d(); //d
case 4: throw fred_e(); /e
Hiswitch
M/foo

h

void uMain::main () {
mary a,b,c,d,e;
uTime start = uThisProcessor().uGetClock().uGetTime();

for (intj =0;j <REP; j++) {

#ifndef PURE
int kK = 100;

ulFStream f("a. out ");

char dummy;
#endif

try {

for (inti=0;i < REPREAL; i++) {
#ifndef PURE
kx=21;



A.2. MIMICKING BOUND EXCEPTIONS WITH C+ CODE 95

k/=19;
f >> dummy;
#endif
}Mifor
switch (j % 5) {
case 0: a.foo());
case 1: b.foo());
case 2: c.foo());
case 3: d.foo());
case 4: e.foo());
Hiswitch

} catch ( fred_a ) { CLOSE }
catch ( fred_b ) { CLOSE }
catch ( fred_c ) { CLOSE }
catch ( fred_d ) { CLOSE }
catch ( fred_e ) { CLOSE;
Mitry

}Mifor

uDuration dur = uThisProcessor().uGetClock().uGetTime() - start;
uCerr << dur << endl;

}Y/main







Appendix B

A comprehensive transformation
example

The example in section B.1 illustrates the transformation the pCH+ translator performs
to emulate Bound Exceptions through the “enhanced catch and re-raise” approach (with
modifications). It is a purely synthetic example with the sole purpose of demonstrating
the criteria used by the puCH+ translator in order to decide where to split try-blocks and
where to optimize. For each important part of the source code, there is an explanation as
a comment #nside the code itself. Section B.2 shows the output of the uC4+ translator for
the example. Comments were restored (as they are usually removed during translation)

and the output re-formatted so it can be used in this document.
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B.1 Example before transformation

#include <uC++.h>
#include <ulOStream.h>

uThrowEvent Grandmother { };
ulnitEvent( Grandmother );

uThrowEvent Father : public Grandmother { };
ulnitEvent( Father );

uThrowEvent Aunt : public Grandmother { };
ulnitEvent( Aunt );

uThrowEvent Child : public Father { };
ulnitEvent( Child );

class someObject {

public:
void doSomething() { uThrow Grandmother(); }

|5
void uMain::main() {
someObject fred, mary, john;

try {

try {
/I after transformation, notice the second variable

/I uOrigRethrow in this scope overlapping the first one
mary.doSomething();

} catch( Aunt ) {
// unbound Handler, note: uOrigRethrow is checked everywhere
/I after transformation

}

} catch ( Father ) {
/I first unbound handler

} catch ( fred.Child ) {
/IEven though Father and Child are related,
/I there is no splitting since Father was unbound

} catch ( mary.Aunt ) {
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/IAgain, no splitting since Aunt is not related to Child
/I catch( Aunt ) and catch( Child ) cannot catch the same exception

} catch ( Child ) {
/[Here, splitting is necessary even though the catch is unbound
/IReason: Child is related to Child, which was bound to fred before

} catch ( mary.Father ) {
/INo splitting here. Father may be related to Child, but Child was
/l unbound in the first catch clause of current try-block

} catch ( fred.Father ) {

/[Theoretically, splitting is necessary

/I (Father and Father are related, and mary.Father bound),

/Il but since exception type and declarator (none in original source,

/I U_BOUND_ PARM after transformation) are equal, optimization is possible
/I -> no splitting is required

} catch ( john.Father e ) {
/[Here, splitting is required since the declarator e makes
/I optimization impossible

} catch ( Grandmother e ) {

/IAgain, splitting is required since Father and Grandmother are related
/I and john.Father of the same (new) try-block is bound

}

}Y/main
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B.2 Example after transformation

/I first part of file omitted

class Child : public Father {
private : protected :
virtual void * uEvent_id () const { return & uld ; }
virtual uDualClass * uDuplicate ( ) const { return new Child ( * this ) ; }
virtual void uStackThrow () const { throw = this ; }
public : static void * uld ;
Child () { uld = & Father :: uld ; {}}
private :

b,
void * Child :: uld = __null ; ;

class someObject {
private : protected : public : private : public :
void doSomething () {
{ uOrigRethrow = true ; UAEHM :: uAEThrow ( * Grandmother ( ) .uSetOriginalThrower( this ) ) ; }
}
}s

void uMain :: main () {
uTaskMain uTaskMaininstance ( * this ) ;

{n
someObject fred , mary , john ;
{12
bool uOrigRethrow = false ;
try {//3
try {//4
try {//5
try {//6
{7
{118
bool uOrigRethrow = false ;
try {//9
{/ho

/I after transformation, notice the second variable
/I uOrigRethrow in this scope overlapping the first one

mary . doSomething () ;
Hi10

} catch ( Aunt) {
if ( uOrigRethrow ) throw ; {
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/l unbound Handler, note: uOrigRethrow is checked everywhere
/I after transformation
}
HI9
M8
M7
} catch ( Father ) {
if ( uOrigRethrow ) throw ; {

/I first unbound handler

}
} catch ( Child U_BOUND_PARM ) {
if ( uOrigRethrow ) throw;
void * _U_bindingVal = ( U_BOUND_PARM ) . uGetOriginalThrower();
if ( ( _U_bindingVal >= &( fred ) )
&& ( (int) _U_bindingVal < (int) &( fred ) + sizeof( fred ) ) ) {

/I Even though Father and Child are related,
/I there is no splitting since Father was unbound

} else { throw ; }
} catch ( Aunt U_BOUND_PARM ) {
if ( uOrigRethrow ) throw;
void * _U_bindingVal = ( U_BOUND_PARM ) . uGetOriginalThrower();
if ( (_U_bindingVal >= &( mary ) )
&& ( (int) _U_bindingVal < (int) & mary ) + sizeof( mary ) ) ) {

/I Again , no splitting since Aunt is not related to Child
/I catch (Aunt ) and catch ( Child ) cannot catch the same exception

} else { throw ; }
HI6
} catch ( Child ) {
if ( uOrigRethrow ) throw ;
{
/I Here, splitting is necessary even though the catch is unbound
/I Reason: Child is related to Child, which was bound to fred before

} catch ( Father U_BOUND_PARM ) {
if ( uOrigRethrow ) throw;
void * _U_bindingVal = ( U_BOUND_PARM ) . uGetOriginalThrower();
if ( ( _U_bindingVal >= &( mary ) )
&& ( (int) _U_bindingVal < (int) & mary ) + sizeof( mary ) ) ) {

/I No splitting here. Father may be related to Child, but Child was
// unbound in the first catch clause of current try - block

} else if ( ( _U_bindingVal >= &( fred ) )
&& ( (int) _U_bindingVal < (int) &( fred ) + sizeof( fred ) ) ) {
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/I Theoretically , splitting is necessary

/I (Father and Father are related, and mary.Father bound),

// but since exception type and declarator (none in original source,

/I U_BOUND_ PARM after transformation) are equal, optimization is possible
/I -> no splitting is required

} else { throw ; }
HI5
} catch ( Father e ) {
if ( uOrigRethrow ) throw;
void * _U_bindingVal = ( e ) . uGetOriginalThrower();
if ( ( _U_bindingVal >= &( john ) )
&& ( (int) _U_bindingVal < (int) &( john ) + sizeof( john ) ) ) {

/I Here, splitting is required since the declarator e makes
/I optimization impossible

} else { throw ; }
M4
} catch ( Grandmother e ) {
if ( uOrigRethrow ) throw ; {

/I Again, splitting is required since Father and Grandmother are related
/I and john.Father of the same (new) try-block is bound

}

MI3
HI2
M1
}Y/main
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