The Application of Patterns to Concurrent
Control Flow

Caroline Kierstead

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2001

(©Caroline Kierstead 2001

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by pho-
tocopying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of scholarly research.

111

The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below, and give address and date.

Abstract

Concurrency is an important programming paradigm to take advantage of the mul-
tiple processors available in current computers. This essay examines design patterns
as a means of organizing the current body of literature on concurrency. A simple
pattern catalog is presented, which divides concurrent design patterns into three
main groupings: synchronization, mutual exclusion, and client-server. Within the
category of client-server patterns, design patterns can be further subdivided into
client-side patterns, server-side patterns, and client-server interactions. This last
category neatly covers the areas missing from the previous two, subsuming both
delegation and publication patterns. These divisions account for both the common
and exotic patterns found in concurrent programming, without descending to the

level of idioms such as semaphores or monitors.

Vil

Acknowledgements

I would like to thank my supervisor, Dr. Peter Buhr, for his help and patience
throughout this process. Michael Van Biesbrouck and Jack Rehder have provided
support, ideas, and the occasional text book loan. And, of course, my family and

friends for their encouragement. Without them, nothing could have been done.

1X

Contents

1 Introduction

1.1 Definition
1.2 Pattern Taxonomies

1.3 Design Patterns

2 Concurrency Pattern Catalog

2.1 Synchronization

2.1.1

2.2 Mutual Exclusion

2.3 Client-Server Patterns

2.3.1

Communication . . .

2.1.1.1 Number of participants

2.1.1.2 Direction of Information Flow

2.1.1.3 Asynchronous versus Synchronous Communication

2.1.1.4 Communication Simplification

Client-Side Patterns

x1

15

17

21

21

23

27

2.3.1.1 Proxy 36

2.3.1.2 Mediator 38

2313 Broker oL oo 40

2314 Other o 44

2.3.2 Server-Side Patterns 48

2.3.2.1 Proprietor 49

2.3.2.2 Administratoro 53

2.3.2.2.1 Independent Workers 55

2.3.2.2.2 Cooperative Workers 60

2.3.2.2.3 Workers Talking to Clients 64

2.4 Client-Server Interaction Patterns 65
2.4.1 Delegation Patterns Lo 65

2.4.2 Update Patterns 71

3 Conclusion 75
A Sample Design Pattern 7
A.1 OBSERVER Object Behavioral 77
A1l Intent 7

A12 AlsoKnown As 7

A13 Motivationo 78

A14 Applicabilityo 80

A15 Structureo 80

xi1

A.1.6 Participants 81

A1.6.0.4 Subject L. 81

A1.6.0.5 Observer. 81

A.1.6.0.6 ConcreteSubject 81

A.1.6.0.7 ConcreteObserver. 82

A1.7 Collaborations 82
A1.8 Consequences 83
A.1.9 Implementation L. 85
A.1.10 Sample Codeo 91
A111 Known Uses00 95
A.1.12 Related Patterns 96
Bibliography 97

X111

List of Tables

2.1 Patterns of Participant Numbers in Communication

2.2 Patterns of Data Flow in Communication

Xv

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Al

A2

A3

A4

Fundamental Interaction Patterns 16
Pipeline Forms 27
Client-Side Design Patterns 36
Server-Side Design Patterns 0oL 48
Delegation Pattern L. 66
Simple Pipeline with Pipes as Data Connections 66

Network Pipelines with Pipes as Data Connections and Repositories 67

Forwarder-Receiver Interaction 68
Observer Design Pattern Example 79
Observer Design Pattern Structure 81
Observer Design Pattern Interaction Diagram 83
Observer Design Pattern Change Manager 90

xvil

Chapter 1

Introduction

There s no new thing under the sun. — Old Testament 8:304

The essence of pattern creation is the codification of knowledge for future reuse.
Patterns are found in subject areas ranging from architecture, where noted archi-
tect Christopher Alexander’s work provided motivation for pattern work in software
engineering, to business hierarchy management, to handbooks such as “The Civil
Engineering Handbook” or the “Handbook of Chemistry and Physics”, to the bio-
logical classification of life. However, in order to discuss a pattern, it must first be

defined.

1.1 Definition

Brad Appleton summarizes multiple pattern definitions well, stating that

“a pattern involves a general description of a recurring solution to a

2 CHAPTER 1. INTRODUCTION

recurring problem replete with various goals and constraints. But a
pattern does more than identify a solution, it also explains why the

solution is needed!” [13]

The most succinct definition belongs to James O. Coplien: “A pattern is a solution
to a problem in a context” [100]. However, John Vlissides is quick to point out
that this definition is incomplete, since, at a minimum, it leaves out the concepts

of recurrence, teaching, and a name [129], which are defined as:

recurrence of the situation makes the solution relevant outside the immediate

problem.

teaching allows a user to understand the pattern sufficiently so that a solution is
tailored to problem variants. This concept is accomplished mostly through the

description and resolution of acting forces, and the application consequences.

name allows easy reference to the pattern. This concept is required for communi-

cation of a shared vocabulary among participants.

Knutson, Budd, and Cook take the idea of patterns, which are often invented
solely for a specific paradigm such as object-oriented programming, further. They

discuss the notion of a “true pattern”, which is reasonable in any paradigm [72].

The culmination of current pattern development is an increasingly common, if
not canonical, template used by the majority of pattern writers to describe pat-
terns. (In some sense, a meta-pattern, describing the general form of an actual

pattern. This idea of a meta-pattern is not to be confused with Pree’s metapattern,

1.2. PATTERN TAXONOMIES 3

discussed later in this essay.) At a minimum, the pattern must consist of a name, a
statement of the problem the pattern is intended to solve, the problem’s context or
applicability, a description of the forces and constraints and their interactions, the
solution, illustrative examples (which often includes known instances of the pat-
tern), and any related patterns. Most authors also include a rationale explaining
how and why the pattern works. An example of this format for a specific pattern

called the “Observer” pattern is found in Appendix A.

However, having a pattern is not enough. Given the increasing number of
patterns, a means of classification is required in order to reduce the search time
for an appropriate pattern. Unfortunately, just as there are many definitions of

patterns, there are many classification schemes.

1.2 Pattern Taxonomies

The most well-known pattern taxonomy is the one proposed by the GoF'. There
are three main classifications of patterns in the GoF' literature. From low-level
to high-level [69, 25], these consist of: idioms, design patterns, and architectural

patterns.

An idiom is a programming language specific pattern. It explains a component’s
implementation or the relationship among components, using a language’s given

features. Nat Pryce refines this as “Idioms are language-specific in that the problem

!Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides wrote the seminal work,
“Design Patterns”. The patterns community frequently refers to them by the nickname, Gang of
Four, abbreviated to GoF.

4 CHAPTER 1. INTRODUCTION

they solve, or the context in which those problems are encountered, are caused by
the language” [94]. Some examples of programming idioms are: nested classes in
C++, interfaces in Java, or counted pointers 2. An example of a C coding idiom
is while(*dest++ = *src++);, which copies the contents of one array to another
[77].

A design pattern is not implementation-specific like an idiom. It allows the
refinement of a software system’s components or their relationship. By describing
a frequently occurring structure of communicating components, it solves a general
design problem within a particular context. As used by the GoF, the term design
pattern (as opposed to pattern), has come to apply specifically to object and class
relationships [77]. An example of a design pattern is the previously mentioned Ob-
server pattern, which defines a one-to-many dependency among objects. It notifies
and updates all registered dependents automatically when the dependent object

changes state [47].

An architectural pattern specifies an application’s fundamental structural prop-
erties. It also provides a set of predefined subsystems with known responsibilities
and interrelationships. It is a high-level strategic pattern relevant to large-scale
components and the system’s overall mechanisms and properties. The Broker pat-
tern is an example of an architectural pattern used in a distributed system with
decoupled components that interact via remote service invocations. The broker

component is responsible for communication coordination. Another example of a

2This idiom is used to simplify memory reclamation in the absence of garbage collection. A
reference counter is introduced into an object body that counts the number of references to the
object. The object is deleted when the counter reaches zero.

1.2. PATTERN TAXONOMIES)

common architectural pattern is that of the Model-View-Controller (MVC) pat-
tern. In the MVC pattern, an interactive system is divided into a model (core
data and functionality), views (information displays for the user), and controllers
(process user input). The user interface is formed by controllers and views. The
MVC propagates changes to ensure consistency between the model and the user

interface.

A framework conceptually fits in at the architectural pattern level; however, it
is broader based than what is implied by an architectural pattern. Jézéquel et al.

describe it best as:

A framework is a reusable software architecture that provides the generic
structure and behavior for a family of software applications, along with a

context that specifies their collaboration and use within a given domain

69].

In other words, it is a reusable software architecture that acts as a template for a
working application. The framework is customized by implementing or overriding
the missing pieces, resulting in the final application. Unlike a class library, control
flow is bidirectional between the framework and the application. It differs from a
design pattern in that it focuses on reuse at the level of algorithms, implementation,
and detailed design. In contrast, design patterns concentrate on reuse of recurring
architectural design themes [33]. While frameworks consist of software, design

patterns represent knowledge about software.

Wolfgang Pree adds the term metapattern to the classification terminology. A

metapattern is “a set of design patterns that describes how to construct frameworks

6 CHAPTER 1. INTRODUCTION

independent of a specific domain” [93].

1.3 Design Patterns

Of the three major classification levels, this essay focuses on design patterns. Here-
after, the term “pattern” means “design pattern”. In addition, this focus is nar-
rowed further to concurrent design patterns starting in Chapter 2. The remainder
of this chapter examines design pattern categorizations to lay the groundwork for

categorization of concurrent design patterns.

There are many design-pattern categorization philosophies. The most promi-
nent is the GoF' categorization. The GoF patterns are solely object-oriented pat-
terns. These patterns are subdivided along two axes [47]. The first axis divides
patterns into creational, structural, and behavioural patterns. The second axis con-
sists of the the scope or granularity of the pattern in that it is applied at either the
class or the object level. If a pattern is applied at the class level, it describes the
relationship between the class and its subclasses. While this classification scheme
is broad enough to fit the majority of design patterns without unnecessarily re-
stricting them, it is limited to object-oriented patterns. It also suffers from the fact
that it is difficult, when searching for patterns, to distinguish between behavioural
and structural patterns. That is, when the pattern itself is unknown, it is unclear

whether the pattern applies to classes or to objects [125].

Buschmann et al., in [25], extend the GoF pattern taxonomy by introducing

a problem-oriented view of the pattern system. As before, the patterns are first

1.3. DESIGN PATTERNS 7

organized into architectural patterns, design patterns, and idioms. Then, within
each of these categories, patterns are loosely organized according to purpose. The

purposes consist of: 3

From Mud to Structure Includes patterns that assist in decomposing an overall

system task into cooperating subtasks.

Distributed Systems Includes patterns that provide a foundation for systems
whose components are located in different processes or in several components

and subsystems.

Interactive Systems Includes patterns that provide a foundation for human-

computer interaction systems.

Adaptable Systems Includes patterns that allow applications to adapt or extend

themselves dynamically.

Structural Decomposition Includes patterns that assist in decomposing sys-

tems or complex components into cooperating parts.

Organization of Work Includes patterns that express how components interact

to provide a complex service.

Access Control Includes patterns that protect and restrict access to services or

components.

3The final four categories were added by Buschmann et al. to accommodate the remaining
GoF patterns not handled by the previous categories.

8 CHAPTER 1. INTRODUCTION

Management Includes patterns that manage homogeneous collections (objects,

services, or components) as a group.

Communication Includes patterns that assist in organizing communication among

components.

Resource Handling Includes patterns that assist in managing shared compo-

nents and objects.

Creation Includes patterns that assist in object instantiation and recursive object

structures.

Service Variation Includes patterns that allow an object or components behav-

iour to change.

Service Extension Includes patterns that assist in dynamically adding new ser-

vices to an object or object structure.

Adaptation Includes patterns that assist in interface and data conversion.

Unfortunately, this categorization scheme is difficult to work with [125]. Some
patterns, such as the Broker or Observer, can be used as either an architectural
or a design pattern. Additional problems result from the fact that some patterns
fit under several different categories. For example, the Pipes and Filters pattern is
placed under the Distributed Systems category when it could just as easily be used
in a centralized system. This over-specification may lead a novice to not consider

using a pattern outside of the listed category even when it is appropriate.

1.3. DESIGN PATTERNS 9

Douglas C. Schmidt classifies patterns into tactical and strategic* patterns [108].
Tactical patterns have a relatively localized impact on a software design and are
domain-independent. For example, Singleton, Strategy, State, and Adapter are
classed as tactical patterns. Strategic patterns significantly influence software ar-
chitecture. Some strategic patterns are Acceptor, Active Object, Reactor, and

Proactor.

Walter Zimmer [135] categorizes the GoF' patterns by their relationships. The
relationships are defined as “X uses Y in its solution”, “Variant of X uses Y in

its solution”, and “X is similar to Y”. He notes that even with this scheme, it

bl
is sometimes difficult to place a particular relationship in exactly one category.
Another problem arises from the fact that the categorization depends partly upon

subjective criteria. It also obscures the purpose of the design patterns, making it

useful only for someone who is already familiar with the GoF design patterns.

James Noble provides a classification scheme similar to Zimmer’s [87]. He
chooses to divide patterns into primary and secondary relationships. The pri-
mary relationships consist of patterns which use other patterns, patterns which
refine other patterns, and patterns which address the same problem as another
pattern. The secondary relationships may be inverses of the primary relationships
(patterns used or refined by other patterns), or new, complex relationships. These
other secondary relationships include pattern variants, a pattern variant used by

another pattern, similarity of patterns, combination of patterns to solve a problem,

4<«Strategy: the art of projecting and directing the larger military movements and operations
of a campaign. Usually distinguished from tactics, which is the art of handling forces in battle or
in the immediate presence of the enemy.” Oxford English Dictionary [116]

10 CHAPTER 1. INTRODUCTION

one pattern requiring a solution to another pattern, a pattern using itself, and an
elaboration of a sequence of patterns from the simple to the complex. These rela-
tionships are an extremely useful taxonomy, but do not help a designer from the

standpoint of determining which patterns are initially required to solve a problem.

Walter F. Tichy provides an alternative classification [125]. He divides patterns

into the following problem-solving categories:

Decoupling These patterns partition a software system into independent com-
ponents that are built, changed, replaced, and reused independently of each
other. Abstract Data Types, Client-Server, and Encapsulation patterns are

examples in this category.

Variant Management These patterns treat different objects uniformly by fac-
toring out the common elements. The Superclass, Template, and Visitor

patterns are examples in this category.

State Handling These patterns manipulate object state generically. The Single-

ton, Flyweight and Memento patterns are examples in this category.

Control These patterns control execution and method selection. The Blackboard,

Strategy, and Master-Slave patterns are examples in this category.

Virtual Machines These patterns simulate processors. The Interpreter, and Rule-

based Interpreter patterns are examples in this category.

Convenience Patterns These patterns simplify coding. The Convenience Class,

Default Class, and Null Object patterns are examples in this category.

1.3. DESIGN PATTERNS 11

Compound Patterns These patterns are composed of other, visible patterns.
The Model-View-Controller, Bureaucracy, and Active-Bridge patterns are ex-

amples in this category.

Concurrency These patterns control parallel and concurrent execution. The

Semaphore, Critical Region, and Reactor patterns are examples in this cate-

gory.

Distribution These patterns solve problems relevant to distributed systems. The
Remote Procedure Call, Acceptor and Connector, and Broker patterns are

examples in this category.

While these categorizations are not as limiting as those proposed by Buschmann
et. al., it is unclear how patterns developed in subject areas such as artificial
intelligence, or databases would necessarily fit these categories. As well, these
categories are supposed to be mutually exclusive, but where would a software agent
pattern be placed? It could be considered part of a concurrent or distributed system,
or a form of decoupling. What about the pattern of an agent’s interaction with
both clients and servers? None of these categorizations truly address the qualitative
aspects of patterns either. Though the relative advantages and disadvantages are
listed, nobody distinguishes between a pattern and a good pattern. That is left up

to the user.

Fundamentally, if the taxonomy is too broad, it becomes difficult to find the
relevant pattern in the mass of other related patterns. Patterns are potentially

misplaced or duplicated if the taxonomy is too narrow. On top of this, room for

12 CHAPTER 1. INTRODUCTION

growth must be possible, as patterns in new areas are discovered.

Reasonable broad pattern categories are that of Creational, Abstraction, De-
coupling, and Interaction. These patterns are classified objectively since they are

the ones best defined in terms of purpose.

Creational patterns [47] abstract the instantiation process by encapsulating and
hiding creation details. A system using these patterns only needs awareness
of the specified abstract interface. The Abstract Factory, Builder, Factory

Method, Prototype, and Singleton design patterns are all creational patterns.

Abstractional and Decoupling patterns often have some overlap since one means
of decoupling components is to abstract them. Abstractional patterns encap-
sulate information, often reducing system complexity. The Facade, Strategy,
Command, and Memento design patterns are examples of abstraction pat-

terns.

Decoupling patterns partition a software system into independent components,
which are built, changed, replaced, and reused independently. The Mediator,

Iterator, and Bridge design patterns are examples of decoupling patterns.

Interaction patterns specify how system components interact and communicate.
Note that there is some overlap with decoupling patterns since a decoupling
pattern invariably specifies how the decoupled components interact. The
Observer, Chain of Responsibility, and Proxy design patterns are examples

of interaction patterns.

1.3. DESIGN PATTERNS 13

After this point, it is too limiting to try and group patterns by the problems
solved. A more helpful approach is to group related patterns where possible and

provide an overall road map.

Chapter 2

Concurrency Pattern Catalog

A pattern catalog is a collection of related patterns (perhaps only
loosely or informally related). It typically subdivides the patterns into at
least a small number of broad categories and may include some amount
of cross-referencing among patterns.

A pattern system s a cohesive set of related patterns which work
together to support the construction and evolution of whole architec-
tures. Not only is it organized into related groups and subgroups at
multiple levels of granularity, it describes the many interrelationships
among the patterns and their groupings, and how they may be combined
and composed to solve more complex problems. The patterns in a pat-
tern system should all be described in a consistent and uniform style
and need to cover a sufficiently broad base of problems and solutions to

enable significant portions of complete architectures to be built. [13]

15

16 CHAPTER 2. CONCURRENCY PATTERN CATALOG

The remainder of this essay is best described as a pattern catalog, rather than a
pattern system. Though some authors consider these patterns architectural in na-
ture, I believe the appropriate context turns them into design patterns. Within the
broad topic of concurrency, I divide design patterns into the following metapattern
categories: synchronization, mutual exclusion, and client-server (see Figure 2.1).
The client and server cooperate to perform a job using some form of synchroni-
zation or communication pattern. When there are multiple clients, access to the
server requires mutual exclusion. This form of interaction is called direct commu-
nication. Synchronization and mutual exclusion may also be required for passive
objects, through which clients and servers interact. This form of interaction is

called indirect communication.

Synchronization Direct Communication
Server

Mutual Exclusion

Passive Indirect Communication
Object =—=

Mutual Exclusion
Synchronization

Figure 2.1: Fundamental Interaction Patterns

2.1. SYNCHRONIZATION 17

2.1 Synchronization

nchronization occurs when a task' waits until another task reaches a particular
Synch t h task! ts until another task h ticul
point in its execution. The provision of synchronization allows communication.

omimunication may require mutual exclusion of a shared resource manage a
C t tual 1 f a shared db

server or passive object.

Design patterns used to perform synchronization:

Completion Token In [56], the authors introduce a token-based synchronization
design pattern called Asynchronous Completion Token or Magic Cookie. This
pattern allows a client to determine that the server has completed an asyn-
chronous action. The token is generally an opaque object passed to the server
by the client and returned upon completion of the service. Another variant

allows the token to act as a synchronous callback mechanism.

Services “Waiting For” blocks the tasks performing services until a condition

such as data transferral occurs [3].

Rendezvous is a meeting or synchronization between two or more tasks at a pre-
specified piece of code [8, 113]. First proposed as a binary rendezvous between
two tasks, this idea expanded later to a multiway rendezvous. A multiway
rendezvous allows an arbitrary number of asynchronous tasks to rendezvous
[28, 16]. In [49], a distinction is made between a simple rendezvous and an

extended rendezvous. A simple rendezvous is a unidirectional exchange of

INote that the terms “task”, “process”, and “thread” in the definitions are subsumed by the
term “task”.

18 CHAPTER 2. CONCURRENCY PATTERN CATALOG

information while an extended rendezvous (also referred to as a transaction)

i1s a bidirectional transfer of information.

Remote Procedure Call (often referred to by the acronym RPC) allows a client
to invoke the execution of an operation on a remote object as if it was a local
object. Ideally, the action is transparent to the client, which is suspended
until the action completes [8, 15, 113]. Tessier and Keller refer to this as a
Remote Operation [123]. Doug Lea’s Request Object, a message containing an
encoding of a method name and marshalled arguments, is an RPC mechanism

[76]. Burns and Davies talk about a remote invocation model [22].

There are many possible mechanisms for implementing RPC. In [62], a Re-
mote Proxy (Proxies are discussed in Section 2.3.1.1) is used on the client

side to perform RPC transparently.

Delta Prolog uses an event goal to ensure both communicating tasks are
“locked together” before the message is transferred [35]. Thus, an event goal
provides synchronization. Both the sender and receiver must use the same
event goal name, and if using conditional expressions, they must both evaluate
to true. Since a sender can only rendezvous with one receiver at a time, an
event goal provides mutual exclusion on the communication channel between
the sender and the receiver by keeping a third task from interfering with the
event goal. (The initial paper on Delta Prolog notes that communication was

implemented via mailboxes on a VAX/VMS system, while sockets were used

under a UNIX 4.2 system [91].)

2.1. SYNCHRONIZATION 19

Termination Synchronization is one of the simplest forms of synchronization.
A thread is spawned in order to perform work. The results are guaranteed to
be complete upon the thread’s termination, so the parent thread need only
wait until the child thread has ended. Doug Lea refers to this as thread join
[76]. Massingill, Mattson, and Sanders describe this as the ForkJoin pattern

81].

Object Synchronization Pattern This design pattern decouples object synchro-
nization from object concurrency and functionality, allowing different synchro-
nization policies to be implemented as required. Synchronization mechanisms
are encapsulated with the object, rather than distributed among the client
tasks. Since they are abstracted, they are easily replaceable. This approach
allows new policies to be tested and their performance observed before a final
solution is chosen. The synchronization policies are also separated from the
concurrency policies, allowing the concurrency policies to be modified with-
out affecting the synchronization policies. Based upon the chosen policies,

the Synchronizer schedules calling tasks as appropriate.

A similar idea is the Object Synchronization Pattern, also known as Object

Concurrency Control, or Object Serialization [101].

Completion Callback A client sends a one-way message to a server. When the
server has completed the operation, it sends a one-way callback message to
the caller [76]. It may have the same structural design as an Observer. This

pattern is also known as Self-Addressed Stamped Envelope, SASE, and Clall-

back [12]. In [36], a Callback variant is mentioned known as Named Reply.

20 CHAPTER 2. CONCURRENCY PATTERN CATALOG

Here, labeling results returned from a call allows expression of different kinds
of results. For example, based upon a calculation’s result, the server invokes

either a success or a failure method.
Future According to Gregory V. Wilson,

A future is simply a commitment by a process to use the result
of a calculation at some later date. When a future is evaluated, a
new process is created; when the parent of that process tries to read
the future’s result, it 1s automatically suspended until the child has
returned a value. It is the runtime system’s responsibility to decide
whether to execute a future in parallel with its creator, or to use a

lazy evaluation strateqy, which only calculates values when needed

[132].

Other authors view a Future simply as an object (rather than a task) acting
as a virtual representation of the real object. If the data is accessed before
it is filled in, the user blocks until the data is filled in. These two definitions
represent two different implementation patterns of a Future, one by Lazy Ini-
tialization and one by Virtual Proxy [54]. Futures are also known as promises
in RPC [14], early reply [49], an Active Object [124], IOUs [126], and wait-by-
necessity constructions in Eiffel// (a parallel extension to Eiffel) [76]. James
Noble provides two variants of his Result Object, both of which can act as a

future. One is the Future Object, the other is the Lazy Object [86].

While not intended to act as a Future, Hoffert’s Triggered Placeholder (or

2.1. SYNCHRONIZATION 21

Stub) is a creational pattern allowing the delay of an object’s creation until
a particular method on the object is invoked. In the meantime, a temporary
placeholder is returned to the invoker. The trigger method returns the real

object and deletes the placeholder.

Synchronization is also a requirement for communication since two tasks must

coordinate the information transfer.

2.1.1 Communication

While communication by itself is not a design pattern, there are commonalities in
form and use that appear frequently enough to be termed a pattern. A stronger
argument for the inclusion of this section is made by noting that many of the
standard design patterns rely not only upon a task hierarchy, but also upon the

communication flow for the design pattern definition.

Communication is first categorized by the number of participants (see Ta-
ble 2.1[15, 131, 115]) and direction of information flow (see Table 2.2 [51, 129]).

It can also be divided into asynchronous versus synchronous communication.

2.1.1.1 Number of participants

Wilson, in [132], refers to a broadcast as a one-to-all replicated communication,
a useful distinction since he also describes a scatter, also known as a one-to-all
personalized communication. Here each message type is the same, but the data

sent is different.

22

CHAPTER 2. CONCURRENCY PATTERN CATALOG

Receive
From

Send
To

Description

1

1

Also known as “one to one” communication. The Pipes
and Filter design pattern is an example of this form of
communication.

Also known as “one to many” communication. If the set of
recipients is restricted, this form of communication is termed

a multicast. 1t 1s termed a broadcast if “everybody” is sent

the message. When the Observer pattern communication changes
to more than one registered recipient, it is an example of this
form of communication.

Also known as “any to one” communication. Most Client-
Server interactions are an example of this form of
communication since there are usually multiple clients
requesting a service from a server.

Also known as “many to many” communication. The Client-
Server pattern also fits this form of communication when
each client broadcasts for the first available server.

Table 2.1: Patterns of Participant Numbers in Communication

2.1. SYNCHRONIZATION 23

Bobby Woolf provides a pattern for broadcasting or multicasting messages,
though it has other purposes. Object Recursion, also known as Recursive Del-
egation distributes the processing of a request over a structure by polymorphic
delegation [134]. In this fashion, it can broadcast a message to all nodes in a linked

structure.

2.1.1.2 Direction of Information Flow

In [51], all four basic flows are presented, but it is carefully pointed out that inward-
and outward-directed communication are not commonly used due to the inefficien-
cies introduced by the polling or blocking characteristics of most operating systems.
In general, push and pull models of communication data flow are the ones most
frequently discussed since they cover the standard means of transferring informa-
tion. However, [43] presents several other interaction patterns, including the push

and model models:

Round Robin Polling uses the pull interaction pattern to poll multiple devices
in sequence. It requires that the data providers are trustworthy and fault-

tolerant.

Opaque Interaction Patterns are patterns in which the caller is unable to mon-
itor the callee’s progress. These patterns are subdivided into synchronous and
asynchronous versions. In Synchronous Opaque Communication, the caller
waits until callee returns control. In Asynchronous Opaque Communication,

the caller is allowed to continue with other work while the callee may or may

24 CHAPTER 2. CONCURRENCY PATTERN CATALOG
Direction | Description
81 control § Bl control §
producer o 8 transducer | 8 @| consumer
a| flow 2z a| flow Z
0] (0]
Forward data flow data flow
Also known as process driven communication or the push model.
P P
c control |4 c control |94
producer 2 @ | transducer | § @ | consumer
z| flow a <| flow Q
(0] 0]
Backward data flow data flow
Also known as data driven or call by need or the pull model.
21 control § § control |4
producer o & | transducer | § @| consumer
a| flow 3 = flow o
0] D
Inward data flow data flow
g control |4 21 control <
producer 2 @ | transducer | 8 8| consumer
< flow a a| flow =3
[¢] (0]
Outward data flow data flow

Table 2.2: Patterns of Data Flow in Communication

2.1. SYNCHRONIZATION 25

not handle the message asynchronously.

Monitorable Interaction The caller is informed of the callee’s progress if the
execution time varies widely. The caller can either request the current status
(Pull-Monitorable Interaction pattern) or the callee can send periodic status

reports (Push-Monitorable Interaction pattern).

Abortable Interaction Either party involved in the communication (or both) has
the capability of deciding to abort the message processing. Variant interaction
patterns such as Abortable Asynchronous Opaque, Abortable Monitorable,

Abortable Pull-Monitorable, and Abortable Push-Monitorable also exist.

Handshaking interaction patterns break a large amount of data into a series of
messages. The caller controls the exchange (Caller-Controlled Handshaking),
or the callee (Callee-Controlled Handshaking) controls the exchange, or both
control the exchange (Dual-Controlled Handshake). The controlling party

decides when the sequence of messages is terminated.

Andrews provides three communication patterns for interacting peers: central-
ized, symmetric, and ring [8]. In the centralized approach, a task acts as a central
coordinator for the other tasks. All tasks in the symmetric communication pat-
tern perform the same algorithm, and thus communicate in the same symmetric
pattern. Finally, in a ring, each task receives a message from its predecessor and
sends a message to its successor. The last task acts as the predecessor to the first
task. Thus, the centralized approach is a form of inward-directed communication.

The other two forms rely upon the push and pull models of interaction. Interact-

26 CHAPTER 2. CONCURRENCY PATTERN CATALOG

ing peers are used to solve iterative parallel problems such as exchanging values
to determine the maximum and minimum values, and matrix multiplication. The
authors of [31] list a Peer-Peer pattern used in flight control systems to determine

flight path intersections.

Andrews also presents the heartbeat, pipe, and probe/echo interaction patterns
[7, 8]. In the heartbeat pattern, processes occasionally exchange data using a
send and then receive interaction. This pattern is particularly useful when data is
divided among workers who are responsible for updating specific sections of data
where new values depend upon values held by either the workers or their immediate
neighbours. These problems arise in areas as diverse as parallel sorting, matrix
multiplication grid computations or region labeling in image processing, cellular

automata in simulation of biological growth, or solving partial differential equations.

The pipe interaction pattern incorporates the notion of streams [15, 18, 127,
115]. In the pipe interaction pattern, data flows between processes using a receive
and then send interaction. The pipe is open-ended, closed, or circular in nature
(see Figure 2.2). In an open pipeline, the input source and output destination are
not specified. A closed pipeline is an open pipeline connected to a coordinator
providing the input for the first task and receiving the output of the last task. A
circular pipeline has the last task acting as the source of input to the first task. This
form of interaction occurs in areas such as UNIX pipes, prime number generation

(the Sieve of Eratosthenes), and distributed vector or matrix multiplication.

Finally, in the probe/echo pattern, the probe is equivalent to a send, while the

echo 1s equivalent to a receive. This disseminates and collects information in graphs

2.1. SYNCHRONIZATION 27

Open Closed Circular

Figure 2.2: Pipeline Forms

and trees, acting as the concurrent analog of a depth-first search. This pattern is
used in broadcasting to all nodes in a network, and in constructing the topology of a
network. Grady Booch provides two additional forms of cooperative communication
techniques, remote procedure calls (discussed as a synchronization technique) and
client-server interaction (see Section 2.3) [18]. In [115], Shaw encapsulates these
patterns in her architectural pattern, Communicating Processes, since it does not
specify the particular communication topology, delivery requirements, number of

participants, or synchronization.

2.1.1.3 Asynchronous versus Synchronous Communication

There are two main forms of communication, asynchronous and synchronous. In
asynchronous communication, the sender does not block upon sending a message,
unlike synchronous communication. The message’s recipient blocks until the mes-

sage 1s received.

An asynchronous message passing pattern is the Batch Communication Style

since it allows both the sender and receiver to be asynchronous. Here the message

28 CHAPTER 2. CONCURRENCY PATTERN CATALOG

from the sender is stored and forwarded to the receiver [131]. Doug Lea lists
polling (repeatedly querying some condition) and balking (refusal to proceed if some
precondition is not met) as two useful communication techniques [76]. Strangely
enough, Mark Grand has promoted the balking technique from a communication

technique to a concurrency design pattern [53].

Events, as well as messages, can act as a form of communication [76]. Aarsten,
Elia, and Menga refer to this as Actions Triggered by Events [3]. Tichy documents
the Event-Based Integration design pattern allowing participants to register interest
in common data or event channels [124]. Shaw discusses a similar architectural
pattern, Implicit Invocation. The Implicit Invocation pattern allows a collection
of acting tasks to potentially trigger the execution of other tasks based upon the

notification of system events [115].

2.1.1.4 Communication Simplification
Finally, here are some patterns used to simplify communication.

Distributed Symmetric IPC encapsulates the usual means of connecting two
peers, via one peer making an accept call while the other peer makes a connect
call, into a single connect call. The calling task can ask for either a connection
to a specified task, or to all tasks in a list. The pattern uses the Client-Server
Rule to decide which task of the communicating pair takes the role of Client,
and which takes the role of Server. No assumption is made about the order of
task start-up. The Client-Server Rule assigns the roles in such a fashion as to

avoid role conflicts. Iterative back-offs are used when making the connections,

2.1.

SYNCHRONIZATION 29

until either all connections are made or a timeout occurs.

This pattern allows a network of peer tasks to connect with each other, with-
out using a communication server. The authors, however, are quick to point
out that more realistically, one task acts as a master, directing and initiating
the connections. The master is then responsible for providing fault tolerance

for the connections.

Composite Message is a decoupling pattern. It defines an abstract form of a

message and a protocol for communication between tasks and the base system.
In this fashion, it decouples tasks that should be loosely coupled and localizes

task interactions for tightly coupled tasks [105].

Command wraps a request into an object passed to the server [47]. The Command

can be stored in a history list or manipulated in other ways. A Command
is an object-oriented replacement for a Callback. Since its lifetime may be
independent of the original request, it can be transferred to a different task

for processing.

Eskelin provides a variant known as Interruptible Command or Override Cur-
rent Processing [42]. Based on Command, it provides “a mechanism for effi-
ciently interrupting a currently executing command in favor of the execution
of a new command.” In particular, only the most recently requested com-
mand executes when multiple commands are invoked. The command itself

occurs frequently, and takes a great deal of time to process.

Composite Call is similar to Command. The pattern collects multiple opera-

30 CHAPTER 2. CONCURRENCY PATTERN CATALOG

tions to be performed into a single action performed by another task (which
may be located in another process, or another network node). This pattern
contains the server interaction in the sense that it knows the actions the
server must perform. Though it may contain several operations, the client
need only send it once [90], which improves the system efficiency by reducing
the amount of communication required. It can also allow the server to be
dynamically extended in terms of the service provided. For example, consider
a file server performing both reads and writes. It is more efficient for the
client to send the entire loop that executes the reads and writes over to the

server for processing than make the requests individually.

2.2 Mutual Exclusion

Mutual Exclusion is the prevention of multiple tasks from accessing a critical section

at the same time. A critical section consists of a pairing of code and shared data.

Patterns with the intent of providing mutual exclusion are:

Synchronizer provides mutual exclusion on shared resources for multiple tasks
[60].2 Mutual exclusion is provided via a construct called a critical section®,

guarded methods, or mutual exclusion techniques such as transactions.

2Within the paper, the authors use the term synchronization when the context clearly indi-
cates that the intended meaning is the provision of mutual exclusion. Hence, the design pattern
misnomer.

3Historically, this construct is called a “critical region” to differentiate it from the logical notion
of a critical section [20].

2.2. MUTUAL EXCLUSION 31

Mark Grand lists a variant, the Single Threaded Ezecution pattern, that is
defined as providing mutual exclusion on method calls when concurrent invo-

cations are made [53].

Michel Raynal mentions the idea of a central coordinator [97]. The cen-
tral coordinator is the boundary between the two basic forms of distributed
mutual-exclusion algorithms in his taxonomy: permission and token-based
algorithms. Processes ask the coordinator for permission before entering the
critical section, and permission can be integrated into a token managed by
the coordinator. The Lock Server, also known as a Lock Manager, works in

the same fashion [63].

While the previous patterns constitute forms of critical region, the next vari-
ants of the Synchronizer are closer in form to a conditional critical region®. In
[55], the Synchronizer selects all requests satisfying its synchronization con-
straints and assigns each of them to a thread, using either a thread-per-request

or a thread-per-object policy.?

The Actor model also uses a Synchronizer, a special kind of actor that observes
and limits invocations accepted by a group of actors [5]. It synchronizes a
group of actors by delaying the invocations of shared actors until the specified

restrictions (temporal ordering, as well as atomicity) are met.

Double-Checked Locking pattern provides mutual exclusion in a thread-safe

*A conditional critical region provides mutual exclusion like a critical region, but adds the
capability of specifying a condition that must be true before entry to the critical region is allowed.

5 Thread-per-request allocates a thread to every request. Thread-per-object allocates one thread
to every object receiving requests, thus all the requests to one object are serialized.

32 CHAPTER 2. CONCURRENCY PATTERN CATALOG

manner while attempting to reduce contention and overhead [111]. For ex-
ample, 1t can avoid duplicating the initialization of an object by multiple
threads. This occurs when one thread recognizes that the object requires
initialization but another thread has already started initialization. Both the

Lazy Initialization and Virtual Proxy patterns can use it [54].

Local Serialization Pattern serializes access to shared resources having coarse-
grained operations. Object concurrency control policies are decoupled from
object-specific algorithm semantics and concurrency generation policies. It

is also known as: Critical Section, Local Atomicity, and Object Concurrency

Control [102].

Patterns used to implement mutual exclusion:

Transaction is an operation, usually a composite of several actions, that must
be performed atomically, i.e., uninterrupted by the actions of other tasks.
Grasson presents a variant of his Synchronizer pattern that uses Transactions
by adding a Coordinator object to enforce two-phase locking and transac-
tion identifiers associated with object requests [55]. In [60], three forms of

transactions are listed:

Optimistic Transaction aborts the operation if serializability is compro-
mised. No blocking is performed. This approach should only be used
when other techniques (sharing policies, mutual exclusion, etc.) avoid

conflict, or contention is low.

2.2. MUTUAL EXCLUSION 33

Two-Phase Locking Transaction locks a resource when it is read or writ-
ten. If more than one resource is to be modified, multiple locks may need
to be acquired in the lock collection phase. If the lock is only released
when the transaction is completed, deadlock may result. This problem
can be avoided by releasing the lock and restarting the lock collection
phase when it is discovered that a required lock has already been ob-

tained by another task.

Multiversion Two-Phase Locking Transaction copies the resource be-
fore it is updated. All updates are consolidated such that serializability

is preserved when the transaction successfully terminates.
In [49], a Transaction is also described as an eztended rendezvous.

Lock Patterns provides some simple locking patterns, each designed to balance
the forces of memory latency, memory size, memory bandwidth, granularity,

and fairness in different fashions [83].

Test-and-Set Lock uses a test-and-set based locking primitive when con-
tention is low, fairness and performance are unimportant, or memory

size 1s a limiting factor.

Queued Lock uses a queued-lock primitive to solve the problem of high

contention and meet a strict fairness restriction.

Reader/Writer Lock deals with a classic problem in concurrency. Multiple
tasks can read a shared resource, or a single task can write to it. The

read and write operations must be mutually exclusive. This problem

34

CHAPTER 2. CONCURRENCY PATTERN CATALOG

is a restricted form of Parallel Fastpath, where an aggressive locking
pattern is used for the majority of the work (the Fastpath), and a more

conservative locking scheme is used for the remainder.

Three possible types of locks are presented:

Queued Reader/Writer Lock uses a queued-reader/writer-lock prim-
itive. It solves the problem of moderate to high read-to-write ratio,

a high degree of contention, and where fairness is important.

Counted Reader/Writer Lock uses a counter-reader/writer-lock prim-
itive. The lock maintains the cumulative number of requests and
completions for the readers and writers. Each requester must re-
member the current number of requests, increment the appropriate
request counter, and then wait for all prior conflicting requests to
complete. Readers wait for all prior write requests to complete,
while writers wait for all prior requests to complete. It solves the
problem of moderate to high read-to-write ratio, a high degree of

contention, and coarse-grained parallelism.

Distributed Reader/Writer Lock uses a per-CPU lock for readers
and an additional lock to serialize writers. A reader acquires only its
own CPU lock, while a writer must acquire the writer serialization
lock as well as each of the reader-side CPU locks. It solves the

problem of a high read-to-write ratio, and high read-contention.

Douglas C. Schmidt offers a Strategized Locking pattern to provide mutual

exclusion; but, it allows an application or service to configure the implemen-

2.3. CLIENT-SERVER PATTERNS 35
tation choice.[109]

Some authors classify the mechanisms used to provide mutual exclusion and
synchronization as design patterns. For example, Douglas C. Schmidt lists a design
pattern for a Monitor Object, also known as a Thread-safe Passive Object [110].
While it is true that some of these can be implemented in multiple fashions, and
thus they could be considered abstractions, they do not qualify as full-fledged design

patterns.

2.3 Client-Server Patterns

Client-Server is the most basic design pattern in this category [51, 131, 133, 9].
Since Clients and Servers are simply roles, tasks may sometimes act as a Client,

and sometimes act as a Server. A Client makes a request of a Server.

Under the division of client-server design patterns can be found client- and
server-side patterns. Note that patterns on the client-side do not affect the server,

and vice versa.

2.3.1 Client-Side Patterns

On the client-side, the design patterns interpose an intermediary between the client
and the server (see Figure 2.3). The presence of the intermediary may be trans-
parent to the client (Proxy and related design patterns), or not (Mediator and
related design patterns). From the view-point of the server, the intermediary is

just another client.

36 CHAPTER 2. CONCURRENCY PATTERN CATALOG

Inter-
mediary

Figure 2.3: Client-Side Design Patterns

2.3.1.1 Proxy

The most basic form of transparent intermediary is that of the Prozy [103]. As the
name suggests, it represents an object or task to the user. Thus, it must present
the same interface as the original. James O. Coplien’s Handle-Body idiom underlies
the Proxy pattern since it adds a level of indirection to hide the underlying details,
separating the interface of a class from its body. The “handle” is the proxy, while
the “body” is the underlying object [32].

The Proxy design pattern exists under many different names, and with many
variations. The GoF calls this a Surrogate [47]. Wolf and Liu refer to it as a “ghost
pattern” [133]. Doug Lea notes that a Proxy is a variant of the GoF Adapter®
pattern, where the Adapter has the same interface as its delegate [76]. There are
several notable Proxy variants. The GoF list virtual, remote, and protection proxies

[47]. Hans Rohnert adds the cache, synchronization, counting, and firewall proxies

103].

Virtual Proxy allows lazy construction of an object. When processing or loading

a component is costly, it is only performed upon demand. The Virtual Proxy

6An Adapter converts the interface of a class into an interface clients need [47].

2.3. CLIENT-SERVER PATTERNS 37

hides whether or not the component is fully loaded from the client, and loads

as necessary. It can thus implement Futures.

Cache Proxy allows multiple local clients to share results from the outside by
extending the proxy with a data area to temporarily hold results. The cache

must be maintained and refreshed.

Remote Proxy provides a local representation for an object in a different address
space. The request’s arguments are packaged into a message and transmitted
transparently to the “real” body class in the foreign name space. Coplien
refers to this type of proxy as an Ambassador [32]. Heuser and Fernandez
describe the RPC Client design pattern as an elaboration of the Remote
Proxy. Marquardt presents the Transparent Remote Access design pattern

[80]. Buschmann and Meunier list the Prozy-Original design pattern [24].

Protection Proxy protects the original from unauthorized access by checking the
access rights of every client. A similar pattern is the Authenticator, which

can provide a negotiation protocol as part of the access protocol [21].

Synchronization Proxy (which should more properly be called a Mutual Exclu-
sion Proxy) controls multiple simultaneous client accesses using an appropri-

ate mutual exclusion scheme, depending upon the allowed operations.

Counting Proxy maintains the number of references to the original object and
deletes the original when the count reaches zero. Thus, it automatically

deletes obsolete objects.

38 CHAPTER 2. CONCURRENCY PATTERN CATALOG

Firewall Proxy encapsulates the protection and networking code needed to com-

municate with a potentially hostile environment.

A Proxy can also be used as a Gateway [75]. A Gateway serves as a midpoint
between client-controlled and server-controlled activation policies, repackaging a set

of methods split into different services.

2.3.1.2 Mediator

Another form of intermediary design pattern is the Mediator. A Mediator is a task
that encapsulates, controls, and coordinates the interactions of a group of tasks
[47]. Since all tasks in the group now only need to know about the mediator,
instead of about each other, the number of interconnections is reduced. By placing
a mediator between peers, loose coupling is increased [100]. Name servers and
relays are examples of Mediators [36]. By this definition, an Administrator is also
a Mediator (Administrators are discussed in Section 2.3.2.2). The following list

describes a number of variants on the Mediator design pattern.

Courier assists communication between two administrators so that neither blocks
waiting for a message receipt or reply [50]. In [36], the authors discuss a
Waiter allowing the invoker to continue without blocking while the waiter
blocks for it. A similar notion is that of the Forwarder [22], also known
as the Forwarder-Receiver [25]. A Forwarder is an intermediary between
two tasks. It acts as an agent for the client, blocking on the client’s behalf

if the contacted task is not ready to receive the call. In [59], the authors

2.3. CLIENT-SERVER PATTERNS 39

use what they call a Courier design pattern to solve the problem of passing
arbitrary requests and information through a fixed interface. Information is
now packaged as an object itself and passed as an argument among tasks,
through the Courier intermediary. By expanding the types of messages sent,
interfaces need not be changed as often. As well, other message-sending

strategies such as broadcasting can be implemented.

Gateway a Mediator that decouples cooperating peer tasks throughout a network.
In this fashion, they interact without having direct dependencies on each

other.”

Emissary represents the client task to the server task. It is chosen by the client
who configures it to react to events that occur while the server processes the
client’s request. The Emissary can interact with the client to obtain further

information as necessary upon receiving messages from the server [52].

Mediator-Worker uses the Mediator to decouple cooperating Worker tasks, thus
removing direct dependencies. It can also be used to present a front for more

complex functionality by allowing individual services to be combined [24].

Event Channel mediates among event producers (referred to as suppliers) and
event consumers. This approach allows a supplier to deliver events to one or

more consumers without requiring any of the participants to be aware of each

other [96].

7Schmidt’s ACE project papers.

40 CHAPTER 2. CONCURRENCY PATTERN CATALOG

Shopper design pattern allows a consumer to obtain an arbitrary number of items
from a producer without additionally coupling them together. The consumer
passes a list of objects to the Shopper who obtains the objects from the
providers using some sort of selection strategy. The information on how to
locate or rendezvous with the producers may be provided by the consumer,

the producer, or the Shopper [38].

Data Filter filters client requests in a distributed system, according to predefined
policies maintained in some sort of policy or client database. The filtering can
be performed locally or remotely [46]. Used in combination with the Body-
guard, Authenticator, and RPC Client design patterns, an Object Filter and
Access Control pattern can be constructed. This pattern provides registered
clients, through a variety of network protocols, with a filtered data stream

whose content may be sensitive and require access control [58].

2.3.1.3 Broker

The Broker design pattern decouples clients and servers. It is classified by [25, 120]
as an architectural pattern for use in a structured distributed system where re-
mote invocation is the main means of interaction. Servers register with the broker.
Clients access the servers by sending requests to the broker who locates the appro-
priate server, forwards the request to it, and transmits the results as well as any
exceptions back to the client. An example of use is the CORBA (Common Object

Request Broker Architecture) Object Request Broker.

Stal lists five Broker implementation variants:

2.3. CLIENT-SERVER PATTERNS 41

Direct Communication Broker System allows the client to communicate di-
rectly with the remote broker instead of passing the request to a local broker
who is then responsible for forwarding it. Another possibility is that clients
communicate directly with the server once the broker notifies the client of the

available server communication channel.

Message Passing Broker System passes on messages from the client to the
server. The server uses the message type to determine the service to perform.
This approach is used in systems where message passing is used instead of

Remote Procedure Calls.

Trader System allows the broker to determine which server or servers can provide
the request, instead of forwarding the client request to exactly one uniquely

identified server.

Adapter Broker System uses an adapter layer to hide the broker’s interface.
This layer is responsible for registering and interacting with the servers. Al-
lowing multiple adapter layers enables different server implementation strate-

gies.

Callback Broker System causes the broker to be the driving force in the sys-
tem. When an event arrives, the broker invokes the callback method of the
appropriate client or server. Thus, there is no need to distinguish between

the clients and servers.

Olson describes four Broker variants [100].

42 CHAPTER 2. CONCURRENCY PATTERN CATALOG

Transceiver-Parcel is designed for a peer-to-peer interaction rather than client-
server. The broker is deliberately kept as simple as possible, only aware of
“parcels” (a parcel contains whatever method calls are needed to cause the
receiver to do the bidding of the sender). As well, all tasks in the system
(including the broker) should use the same communication method, which
is deliberately kept simple. Upon receipt of a parcel, the broker notifies the
receiving task by invoking its execute method, passing the address of the
parcel as an argument. The receiver then invokes the visit method on the

parcel.

Going Postal is similar to the Transceiver-Parcel in that the broker is kept as
simple as possible. Decoupling, flexibility, and extensibility are essential,
though efficiency is not considered crucial. The broker is now responsible for
registering tasks, receiving parcels, and routing them as appropriate. It uses
a registrar object and a routing object to accomplish its duties. This pattern

is also known as Broker as Intermediary.

Going to Court is used when the broker application is distributed across pro-
cesses and/or processors, but how it might be distributed may vary. In effect,
every task uses at least one broker for communication. Each broker should
have a proxy for each type of task it has in its own address space. The proxy
is responsible for marshalling parcels routed to it and forwarding them to
a gateway that reconstructs the original parcels and routes them to its local
broker. This pattern is also known as Broker as Divorce Attorney (In a Really

Ugly Divorce).

2.3. CLIENT-SERVER PATTERNS 43

Going to the Chapel is used when the basic broker architecture is too inefficient.
Now the broker serves to “introduce” the two tasks who then communicate
directly. The broker is notified when the communication is complete. This

pattern is also known as Broker as Matchmaker.

Schneider discusses a similar idea, the Matchmaker [113]. The Matchmaker
acts as a clearing house to pair up asynchronous request and reply messages to
implement synchronous communication. Andrews refers to the Matchmaker

as a Centralized Clearing House [7].

In [78], the authors refer to another form of Matchmaker, the Patch Panel.

Some other variants of the broker are:

Dispatcher provides location transparency in a distributed environment through
use of a name service. The Dispatcher hides communication connection details

between client and server [119, 25].

A similar idea is presented in [31] as Sender-Pass Through-Receiver. This
pattern passes the Sender’s request through the intermediary, which forwards

1t to a Receiver.

Manager-Agent pattern is similar to the Broker pattern, in that managed re-
sources are grouped into agents that are accessed by managers who per-
form management operations. Agents are responsible for monitoring their
resources and notifying managers of exceptional behaviour. Unlike the Bro-

ker, the Manager-Agent does not have the concepts of service location and

44 CHAPTER 2. CONCURRENCY PATTERN CATALOG

transparency provided by the Broker. Additionally, either party can initiate

communication asynchronously [123].

Entity Broker [128]. The authors use it to mediate between the user interface,

business object, and persistence manager layers in an application.

Switchboard manages connections among clients and device couriers. The client
requests a connection to a particular device from the Switchboard. The
Switchboard associates the appropriate device courier with the client. It then
transfers information between the client and the device courier. The device

courier obtains input from the device server [122].

2.3.1.4 Other

Other intermediary patterns include:

Curried Object to store the constant or slowly varying arguments from the origi-
nal communication protocol. This approach provides a simpler protocol since
these arguments are eliminated. The Curried Object stores the original server
object, and forwards messages to this object. In the forwarding process, it
passes along the stored arguments and updates the slowly varying arguments

[36].

Facade provides a unified interface to a set of interfaces in a subsystem. It defines a
higher-level interface that makes the subsystem easier to use since an object
represents many others. It differs from a Mediator in that it abstracts a

subsystem of objects to provide a more convenient interface and its protocol

2.3. CLIENT-SERVER PATTERNS 45

is unidirectional [47]. A Facade makes requests of the subsystem classes but

not vice versa, unlike a Mediator.

Mailbox is a task that acts as a temporary buffer between two tasks. It allows the
active process to pass data asynchronously (via the mailbox). If the buffer is

full or empty, attempts to add or remove messages cause the invoker to block

22].

Warden mediates between proxies and transporters in a distributed environment.
It “simplifies the management of object sharing over a network, and provides
message dispatching conformance and assignment of access rights in non-local
environments, to prevent the incorrect access to an object in collaborative

applications” [34]. Hays, Loutrel and Fernandez also refer to this pattern as

a Bodyguard [58].

Router decouples input mechanisms from output mechanisms. This decoupling
enables it to route data correctly without blocking a Gateway and allows it

to customize its concurrency strategies [107].

Proactor simplifies asynchronous application development. It integrates the de-
multiplexing® of completion events and the dispatching of the corresponding
event handlers. These are decoupled from the services performed in response

to events. Its pro-active event dispatching model allows multiple concurrent

8In electrical engineering, a demultiplexer is a circuit that receives information on a single
input line, and transmits this information along one selected output line. The corresponding
multiplexer selects input from one of many input lines and directs it to a single output line. As
used in this pattern, the demultiplexer receives (and probably serializes) multiple simultaneous
events or messages and dispatches them as appropriate.

46

CHAPTER 2. CONCURRENCY PATTERN CATALOG

events to be started so that the thread performing the operation is outside
of the application; hence, the application is not required to have multiple
threads. It invokes event handlers defining completion hooks. The Proac-
tor pattern is used in such places as the ACE project, and I/O Completion
Ports in Windows NT. It is related to both the Reactor and Observer de-
sign patterns, though the Reactor is an alternative concurrency approach

95, 108, 107].

Reactor serializes event handling from multiple sources within an application at

the level of event demultiplexing. This approach allows single-threaded ap-
plications to wait on event handles, demultiplex events, and dispatch event
handlers efficiently. It invokes event handlers defining initiation hooks. The
event handlers must exchange messages fixed or bounded in size without re-
quiring blocking I/O and the messages must be processed in a relatively short
period of time. The Reactor design pattern can eliminate the need for more
complicated threading, synchronization, or locking within an application. It
is related to the Observer design pattern and similar to Factory Callback

though it is behavioural in nature instead of creational [108, 107, 123].

In some sense, a Demon may be considered a form of Reactor. A Demon is
“A portion of a program that is not invoked explicitly, but that lies dormant

" Unlike a Daemon, a Demon is

waiting form some condition(s) to occur.’
usually a process within a program rather than a program in an operating

system. Demons are frequently used in artificial intelligence program. For ex-

ample, demons might implement inference rules in a knowledge-manipulation

2.3.

CLIENT-SERVER PATTERNS 47

program. As information is added, the demon appropriate to the type of infor-
mation activates and creates additional information by applying its inference

rules to the information [10].

An Active Object can implement the Reactor. An Active Object enables a
method to execute in a thread of control separate from the one that originally
invoked it. This fact requires the implementation of a rendezvous policy.
This design pattern is also known as a Concurrent Object or a Serializer [74].
Rumbaugh et al. state that “an actor is an active object that drives the
data flow graph by producing or consuming values. Actors are attached to
the inputs and outputs of a data flow graph. In a sense, the actors lie on the
boundary of the data flow graph but terminate the flow of data as sources and
sinks of data, and so are sometimes called terminators” [104]. In [75], Doug
Lea states that “Listener-based objects are also sometimes called Reactors,
Object Adapters, Guardians, Skeletons, Executives and Demultiplexers.” He
notes that they may also server as Parsers, and Builders. He adds in [76] that
an Active Object is also known as an Actor. The authors of [73], however,
point out that the concept of Actors is more general, as originally envisioned
by Carl Hewitt and later expanded on by Gul Agha. Here, Actors consist of
a soclety of cooperating agents who communicate by asynchronous message

passing. Thus, an Active Object is only one possible implementation of an

Actor [5].

Process Control regulates a physical, continuous process. Input comes from pro-

cess variables, input variables, manipulated variables, and sensors. Because

48 CHAPTER 2. CONCURRENCY PATTERN CATALOG
the controller is now decoupled from the process, it can be easily replaced

[124].

2.3.2 Server-Side Patterns

Historically, Gentleman, Shepard and Thoreson list two basic forms of servers, a

Proprietor and an Administrator [51] (see Figure 2.4).

1 Resource

Proprietor

Server

Administrator

Figure 2.4: Server-Side Design Patterns

2.3. CLIENT-SERVER PATTERNS 49

2.3.2.1 Proprietor

A Proprietor owns and manages some resource (Andrews and Schneider refer to a
similar idea as a Caretaker in [9]). The only way other tasks can perform oper-
ations on the resource is to request that the Proprietor perform the operation on
their behalf. The Proprietor thus provides mutual exclusion on the resource, and
possibly some form on synchronization. There are many variants on the theme of

a Proprietor design pattern:

Leasing manages resources in a fault-tolerant distributed system. Clients request
access to the resource for a finite period of time. Once the granted lease
expires, the corresponding resource is freed. The holder of the lease is able to
request a lease extension if the lease has not yet expired. It can also cancel a

lease once it has finished with the resource [67].

Lock Server provides mutual exclusion in a distributed system. It allows each
client to work with a consistent view of the shared resource since each client
must obtain a lock for the resource before proceeding, and must return the

lock upon completion. It is also known as a Lock Manager [63].

Lookup provides a lookup service in a distributed system. Services register with
their references and associated properties. The lookup server determines the
most appropriate service or services based upon client requests. Multiple

Lookup servers can be combined into a Federation of lookup services [66].

Manager handles a collection of objects. It takes care of creation, destruction, and

manipulation of the objects. A client requests the object from the Manager

30

CHAPTER 2. CONCURRENCY PATTERN CATALOG

and then interacts directly with the object. Once the operation is complete,
the client returns the object to the Manager [124, 118]. Gehani and McGet-
trick present a similar concept known as a Guardian [49]. Operations on the

resources are performed by executing the provided handlers.

In [114], the authors describe a Task Manager to handle thread creation and
termination. By encapsulating these services, the domain code is rendered
portable, and concurrency strategies are easily changed since only the Task

Manager code needs to be re-written.

Tessier and Keller introduce the Manager-Agent pattern. It decentralizes the
management of resources, simplifying control in a distributed system. An
Agent is in charge of a group of resources related by some criteria. The Agent
represents the resources to the rest of the management system and may take
on some managerial aspects for the resource as well. The Manager handles
some management function over the entire system. There may exist multiple

Managers, and Agents may report to more than one Manager [123].

Repository provides a central data structure for a complex body of information

that must be established, augmented, and maintained. Multiple clients need
to access and manipulate the data, often concurrently. A large, centralized,
transaction-oriented database is an example of a repository. The Blackboard,
discussed in Section 2.3.2.2, is a related pattern [124, 115]. Hu and Gill,
in [65], discuss the notion of a Library, which is similar. Here, the Library
decouples the creation of a new object from the retrieval of an existing object

from the repository cache.

2.3. CLIENT-SERVER PATTERNS 51

Resource Exchanger manages resources shared among multiple server tasks. At
some point, when a server requests a resource, such as a buffer, it must hand
over another instance of the resource in exchange. This requirement allows the
Resource Exchanger to maintain a constant pool of resources and minimize
delay times. In addition, servers build up a credit (or lack of it) with the
Resource Exchanger. Servers with a high load eventually use up their credit,
which allows low load servers to be processed. This scheme thus reduces the

overall server load, and allocates resources fairly [106].

Service Configurator enables the configuration and reconfiguration of commu-
nication services at any point in time without affecting other services. All
services must have a uniform interface for configuration and control. It can ini-
tiate, suspend, resume, and terminate services dynamically. It is also known

as a Super-server [68].

Acceptor decouples passive connection from the service after the connection is
established. It creates, accepts, and activates a new handler whenever an

event dispatcher notifies it that a connection has arrived from a client [107].

Connector decouples active service from the task’s service after the service is
initialized. It allows the services to evolve independently and transparently
from the mechanisms used to establish the connections. It acts as a factory
that assembles the resources necessary for a synchronous or asynchronous

connection [107].

Command Processor separates the request for a service from its execution. The

52

CHAPTER 2. CONCURRENCY PATTERN CATALOG

requests are managed as separate objects, which are scheduled for execution.
Additional services such as requesting storage of commands for later rollback
may also be done [117, 124]. It is also referred to as Controller-Command in

[24] though the authors later refer to it as a Command Processor in [25].

View Handler assists in managing the views of application-specific data or multi-

ple windows provided by a software system. It allows clients to open, manipu-
late, and dispose of views. It also coordinates dependencies among views and
organizes their updates (frequently, views are updated in a priority ordering).
Since the updates are performed by the data supplier at the view’s request,
it is the supplier who is responsible for notifying all dependent components
(which could include the View Handler as well as views) about a change to
its internal data. A variant of the View Handler uses Command objects to

keep the handler independent of specific view interfaces [25].

Sponsor-Selector allows a client to request the appropriate resource from the

Selector. In turn, the Selector broadcasts requests to Sponsors who rate their
resources and return the ratings. The Selector uses the ratings to select the

resource that is returned to the client for use [130].

Gatekeeper-Request-Resource passes a request for a resource to a Gatekeeper

who manages the resources and passes on the request to the appropriate

Resource. The Resource then processes the request [31].

2.3. CLIENT-SERVER PATTERNS 53
2.3.2.2 Administrator

An Administrator hides worker tasks in the same way that a Proprietor hides
a resource(s). The Administrator can delegate work to these worker tasks, and
concurrency is improved further by ensuring that it is the workers who block when
requesting work instead of the Administrator [50, 48]. Ideally, an Administrator

only blocks when it has no work or management to perform.

The Administrator has two means of controlling workers. It can create Workers
as needed and terminate them when the work is done, or it can create an initial pool
of Worker tasks that are used as necessary [51]. There are several design patterns

related to the issue of Worker creation. These consist of [92, 108]:

Thread per Request creates a thread for each client request, allowing all client

requests to run concurrently.

Thread Pool handles requests for an unlimited number of clients, using limited
stateless server resources. If the request cannot be currently filled, it is blocked
until a thread is returned to the pool. This pattern is also known as a Re-
source Pool [60]. The variant known as Client-Server-Service allows clients
to monitor the request’s progress since the server publicizes its state [3, 1].

Douglas C. Schmidt’s “Thread Pool” is an example of a Resource Pool.

Thread per Session creates a thread for each client session, handling all of that

client’s requests. This pattern is also known as Thread per Connection.

Some examples of worker tasks are:

54 CHAPTER 2. CONCURRENCY PATTERN CATALOG

Notifier which notifies the Administrator that an event has occurred [50].
Timer which notifies the Administrator of an amount of elapsed time [50].

Courier which allows the Administrator to communicate without blocking for a

reply [50].

Assassin which deletes other tasks for the Administrator [19]. The Evictor is an
Assassin variant. It removes idle servants based on a Least Recently Used
algorithm. It can be extended to support distributed garbage collection, in
order to reclaim the space occupied by unused servants [61]. Henning de-
scribes using an Evictor variant for a Trader. That variant uses a separate

reaper thread to get rid of the unused servants.

A similar pattern is the Undertaker [40], which handles dangling reference
pointers not recognized by the system as garbage, or the Vulture [11], which

is responsible for terminating unauthorized software services and logons.

Cheriton presents a Death Proprietor for processing requests to destroy tasks.
It also sends messages to the System Proprietor to reclaim the resources of

destroyed tasks [29].
Overseer which manages other workers tasks [19].

Secretary and Director where the Secretary contains the set of all common state
variables accessed by the Directors, and the Director makes requests of the
Secretary, which then is responsible for coordinating the Director based upon

the stored state information. Dijkstra uses “the metaphor of directors and a

2.3. CLIENT-SERVER PATTERNS 35

common secretary because in the director—secretary relation in real-life orga-

nization it’s also unclear who is the master and who is the slave!” [37].

Shell and Tenant is an abstraction pattern for workers [51]. The Shell task takes
on the role of any type of worker (known as a Tenant) based upon the infor-

mation it receives from the Administrator.

2.3.2.2.1 Independent Workers

Most patterns that rely upon solving a problem using independent workers collect

events or job requests into some sort of queue. These patterns include:

Distributed Bag of Tasks uses a “bag” that contains independent work requests
and is shared by multiple worker tasks. Each worker repeatedly removes work
from the bag and completes it. The processing of the request may generate
more work requests to place in the bag. The manager implements the bag,

hands out work, collects the results, and detects termination [8].

Magee and Kramer, in [79], refer to this as a Supervisor- Worker pattern.
They note that is also known under the names Replicated Worker [7], Process
Farm [22], and Agenda Parallelism [26].

Work Crew consists of a fixed set of worker tasks. The workers remove jobs
from a queue, where jobs consist of computational work. If the worker can
subdivide the job, it will do so, placing all pieces but the one it is working on
back in the job queue. When the worker has completed its piece, it checks to

see if all of the help requests have been answered. If they have not, it works

56 CHAPTER 2. CONCURRENCY PATTERN CATALOG

on the next piece. The cycle continues until the entire job has been completed

[98].

Manager-Agent is used to regroup a number of heterogeneous resources, whose
interfaces cannot be modified to one homogeneous interface, under the super-
vision and control of an Agent. The Agent represents the resources to the
rest of the management system. If so desired, the Agent can be responsible
for managing certain aspects of the resources. Each Agent reports to one
or more Managers, who handle some management function over the entire
system. The Agent performs operations on the resources on behalf of the
requesting Manager. If the Agent notices changes in its resources requiring

the Manager to be notified, it reports the changes [123].

Master-Slave introduces redundancy, fault tolerance, safety and correctness. The
Master task delegates work to independent Slave tasks and computes a final
result from the results the Slaves return. The Master, when calculating the
final result, may use different strategies for selecting among the Slave-returned
results. These strategies include: taking the first result returned, taking the
result the majority returned, taking the average of all the returned results,
taking a result returned from a Slave that did not fail, or sometimes declining
to select any result (for example, if they all returned different results). The
Slaves may also use different strategies for providing the service for which
they are responsible [24, 123, 48]. In [36], this design pattern is also referred

to as host-helper. Variants listed in [25] include:

2.3. CLIENT-SERVER PATTERNS 57

Object Group by Maffeis uses the Master-Slave variant that provides group

communication and fault tolerance in a distributed environment.

Master-Slave Pattern for Parallel Compute Services by Brooks con-

centrates on describing how the Slaves can be implemented as processes.

Slaves as Threads by Kleiman, Shah, and Smaalders investigates using

threads to implement the Slave task.

Workpool Model by Knopp and Reich uses a Workpool of Workers, cor-
responding to the idea of Slaves, to handle client requests. The request

function sent by the client corresponds to the Master.

Gaggles by Black and Immel builds upon the Master-Slave pattern to use
replicated service objects. The service objects are represented by the
Gaggle, which forwards client requests to one of the replicated service

objects.

Buschmann, in [23], states that the Master-Slave design pattern is based on
the Actor-Agent-Supplier variant of the Actor-Supplier design pattern. This
connection can be seen if the client requesting the service takes on the role of
the Actor, the Master takes on the role of the Agent, and the Slaves act as

the Suppliers.

Pacherie and Jézéquel see the Master-Slave design pattern as one possible
refinement of their Operator design pattern, also known as Ubiquitous Agent

[89].

Wilson discusses another variant, the Crystalline Model, also known as Single

38

CHAPTER 2. CONCURRENCY PATTERN CATALOG

Program, Multiple Data or SPMD [132]. This pattern consists of a finite set
of worker tasks, more cannot be created dynamically, and a single controller.
The worker tasks are organized in a regular topology since each communicates
only with a direct neighbour. They each have their own data space and work
independently until a communication event arrives, at which point they must
all participate. The controller is also independent, and can communicate

directly with any of the workers.

A variant of the Master-Slave for mobile computing, Supervisor-Worker, is
discussed in [45]. The pattern is designed to protect mobile agents from
having unauthorized tasks acquire or alter information. This protection is
accomplished by building a central knowledge-base and management unit
on top of the Master-Slave pattern, which ensures all information is process
correctly, and at the right times. The participants in the pattern consist of the
Agent, the Supervisor, and the Worker. The Agent is mobile, and has its own
constraint manager keeping track of the constraints for the work the Agent
is supposed to accomplish. The Supervisor divides up the work, controls the
workers, and merges reports. It develops work completion strategies, creates
subdivisions of the work, and keeps track of required information such as
merge constraints, and Worker assignments. The Worker completes the job

assigned by the Supervisor and sends reports to the Supervisor.

Cela and Alfonso examine the standard centralized version and two dis-
tributed versions of a Master-Slave pattern to solve preconditions of Sparse

Approximate Inverses [27]. In the distributed versions, the Slaves commu-

2.3.

CLIENT-SERVER PATTERNS 39

nicate among each other to assist in solving the problem since the data has
already been distributed. In the first version, a Slave answers a request for
data only when it sends a request. In the other version, a Slaves answers a

request for data only when a user defined signal arrives.

EmbarrassinglyParallel pattern uses a collection of concurrent, independent

tasks to solve a problem [82]. In particular, it attempts to organize the
computation so that each task completes at about the same time. Tasks that
are faster take on a larger share of the computation. These tasks may be
homogeneous, or heterogeneous. During execution, more tasks may be cre-
ated, depending upon the problem being solved. The authors describe three

variants of this pattern.

1. Sub-solutions are accumulated in a shared data structure. The tasks are
no longer completely independent since they share and must synchronize

access to the data structure.

2. A termination condition other than all tasks completing exists. This
condition is particularly useful when an overall solution can be obtained

without having to solve all subproblems.

3. Not all subproblems are initially known. This situation occurs when

subproblems are generated while solving other subproblems.

This pattern is also known as Master-Worker, or Task Queue.

Two additional patterns, the SeparableDependencies and the GeometricDe-

composition patterns are also presented. The first is related to Embarassing-

60

CHAPTER 2. CONCURRENCY PATTERN CATALOG

lyParallel in that the tasks have dependencies, which when removed, allow
the problem to be solved using the EmbarassinglyParallel pattern. The other
is used when the concurrency is based on parallel updates of sections of a de-
composed data structure, and the update of each section requires data from

the other sections.

Leader/Followers is used to efficiently process events arriving from multiple event

sources shared by multiple tasks. One task, the Leader, waits for an event.
The Followers queue themselves, awaiting their turn as Leader. When the
Leader detects an event, it promotes a Follower as the new Leader, and then
processes the event. This demultiplexes and dispatches the event to the des-

ignated event handler. Upon completion, the task takes on the role of a

Follower [112].

2.3.2.2.2 Cooperative Workers

The following design patterns rely upon cooperative Workers:

Collection-Worker uses a Collection to control a finite number of Workers. The

Collection only performs operations that apply across its entire set of Workers.
The Worker does all it can with what it knows, or what others may tell it in

combination with what it knows [31].

Blackboard is a solution to the pattern recognition problem of transforming raw

data (such as that collected by sensors) into a higher-level data structure

when no deterministic algorithm for the transformation exists [25]. Instead,

2.3.

CLIENT-SERVER PATTERNS 61

algorithms applying partial transformations are used, but the order in which
the transformations are applied is unknown. The pattern involves three com-
ponents: the Blackboard, a Moderator, and at least one Contributor (also
referred to as a Knowledge Source). The Blackboard is a shared data struc-
ture maintaining the different versions of the data, ranging from the original

raw form to the final product.

The Moderator is responsible for choosing among the Contributors’ proposals.
It selects the proposal calculated to advance the problem the furthest, allows
the Contributor who submitted the proposal to update the Blackboard, and
repeats the cycle. If necessary, the Moderator may reverse its decisions if it

determines that the present trend will not lead to the desired solution.

The Contributors are independent tasks that communicate only with the
Moderator. They view the Blackboard, and make a proposal to modify some
level of the data structure. The proposal is accompanied by a metric indi-

cating the degree of certainty of success, based upon the current state of the

Blackboard.

In [25], the Repository is considered a generalization of the Blackboard. The
authors also consider the Blackboard to be an extreme variant of the Pro-
duction System by Forgy and McDermott. Within the Production System,
subroutines are represented as condition-action rules, and data is globally
available in working memory. The action specified by a condition-action rule
is only performed when the associated condition is true, and the rule has been

selected by the conflict resolution module.

62 CHAPTER 2. CONCURRENCY PATTERN CATALOG

The authors of [36] list a variant of the Blackboard, which they consider to
be a variant of the Master-Slave pattern. Here the Coordinator serves as the
Blackboard, which is now a work queue from which the Contributors take

work to be computed. The results can then be fed back into the Blackboard.

Leader/Collaborator/Collaboration design pattern by [2] is based on the Client-
Server-Service pattern, except new roles are assigned to the participants. It
is intended for use in the context of cooperative, autonomous software agents.
Here, the agent (Leader), upon determining that collaboration is required to
fulfill its task, asks one or more Collaborators for assistance. When asking
for help, the Leader indicates what type of collaboration is required. If a Col-
laborator agrees to help, a Collaboration object is created and its reference is
returned to the Leader. (The Collaboration object encapsulates a thread of
execution and manages the agent’s collaboration process.) The Leader creates
its own Collaboration object, which is configured to work directly with the
other Collaboration object. These objects have direct visibility of each other
while the collaboration is underway. From this point on, all communication

is among peers since there is no longer any role distinction.

Model-View-Controller decouples the user interface of a system from its core
functionality. The interactive application is divided into three components:
the Model, the View, and the Controller. The Model contains the core func-
tionality and data of the application. Its information is presented by one or
more Views to the user (each View may present the information in a different

format). Every View has a corresponding Controller. The Controller trans-

2.3.

CLIENT-SERVER PATTERNS 63

lates user input into a service request to the Model. Changes in the Model’s
state cause the Views to update the information presented to the user. This

pattern implies a reliance upon the Publisher/Subscriber design pattern [25].

As the pattern is described, all communication is performed via update method
calls, unlike the following Presentation-Abstraction-Control (PAC) pattern.
No mention is made of issues such as mutual exclusion of service requests or
updates, or of how consistency in the Model is maintained given that a Con-
troller may need to obtain more information from the Model after the initial

service request is made.

Presentation-Abstraction-Control is an alternative approach to the problem

solved by Model-View-Controller (MVC). A tree-like hierarchy of cooperating
agents is responsible for an interactive system. The hierarchy is tree-like in the
sense that there is only one agent at the top-most level, but there are several
intermediate-level agents and many low-level agents. Each agent depends
upon all of the agents higher up in the hierarchy. The top-level agent is
responsible for the core functionality of the system, and any parts of the user
interface that cannot be assigned to lower-level agents. An intermediate agent
represents either multiple low-level agents, or the relationships between them.
A low-level agent represents the basic concepts of the system, upon which the

users can act [25].

Each agent is divided into Presentation, Abstraction, and Control sections,
though the Presentation section may be non-existent at the top levels of the

hierarchy. The Presentation section provides the “visible behaviour” of the

64

CHAPTER 2. CONCURRENCY PATTERN CATALOG

agent. It is equivalent to the MVC View and Controller.

The Abstraction section maintains and manipulates the data model that un-
derlies the agent, which is the same as the Model in MVC. A particular point
to note is that if a low-level agent requests information, all agents in the path
to the top-level agent must participate in the communication. As well, if an
agent depends upon data stored in another agent, then a pattern such as

Publisher/Subscriber must be used to ensure notification of updates.

The Control section allows the agent to communicate with other agents, and
connects the Presentation and Abstraction sections. It acts as a Mediator,
passing on changes from the top-level agent, and requests from the lower-level

agents.

While it is mentioned that multiple threading can be used to implement this
pattern, no mention is made of how mutual exclusion or synchronization (a

necessity of communication) is to be performed.

2.3.2.2.3 Workers Talking to Clients

The key to these patterns is that the delegated task ends up communicating with

the client instead of the sever.

Sender-Lookup-Receiver has the Sender look up the Receiver in a Lookup ser-

vice. The Sender then contacts the Receiver directly [31].

Caller-Dispatcher-Caller Back has the Sender call the Dispatcher who tells

Caller Back to return the Sender’s initial call [31].

2.4. CLIENT-SERVER INTERACTION PATTERNS 65

Matchmaker see the Broker as Matchmaker in section 2.3.1.3.

A similar notion can be found in the V Distributed System where a client can
use a group identifier to multicast to all servers in a group in an effort to find the
server responsible for managing a particular object. Once the responsible server
answers, the client can communicate with it directly and thus avoid multicasting

to the group as a whole [30].

2.4 Client-Server Interaction Patterns

There are two main forms of interaction available beyond the basic communication
of a request from a client to a server. The request, or subsequent work, can be
delegated to other tasks in the system. It may also be necessary to provide a means

of keeping tasks aware of changes in the system state by using update patterns.

2.4.1 Delegation Patterns

Figure 2.5 illustrates the basic form of a client-server interaction pattern. Note
that the roles of client and server are fluid since the server can in turn become
the client of another server. Other forms of interaction involve the Administrator
delegating an operation to multiple Workers. The Workers may be independent, or

cooperative. They can also communicate directly with the Client.

The Pipeline is the most basic form of interaction pattern. It is a collection of
tasks in which the output of one becomes the input of another [9, 15, 18, 127, 115,

79]. The information can be either pushed or pulled through the Pipeline. In this

66 CHAPTER 2. CONCURRENCY PATTERN CATALOG

Figure 2.5: Delegation Pattern

fashion, it can effectively delegate work to other tasks in the Pipeline. It is also
known as Pipes and Filters since a Pipeline can be used to filter information as it
passes through the pipe. The filters may be sources (produce data), sinks (consume
data), transformers, or removers. A pipe may simply be a data connection such as

a Stream [4, 39], or a data connection plus some other structure such as a repository

(see Figures 2.6 and 2.7). [124, 85, 25].

Pi pe Pi pe Pi pe Pi pe
p 1 p 5 p 3 p 4
_ | Filter _ Filter _ Filter _
(data pipe) 1 | (data pipe) 2 | (data pipe) 3 | (data pipe)

Figure 2.6: Simple Pipeline with Pipes as Data Connections

Pipeline variants include:

Translator pattern can be viewed as a limited Pipeline since it servers to marshal

and unmarshal messages [123].

Producer-Consumer is a Pipeline where each task in the pipeline acts as a filter
[7,8,57,61]. Buschmann and Meunier refine the idea further by listing several

variants of the Producer-Consumer pattern such as the Producer-Repository-

67

2.4. CLIENT-SERVER INTERACTION PATTERNS

(edid e1ep)

(edid erep)

%ad Id

-

€
19114

(edid e1ep)
%ad Id

% (edid e1ep)

“ad Id

1%
19114

(edid + A1ousodau)

¥ ad Id

(edid + Alonsodal)

T
ad Id

% ad Id
€ P14 mmo_ Id
(edid erep)
T (edid e1ep)
R1ld =
z \ Fod Id
198114 (edid erep)
®ad Id

Figure 2.7: Network Pipelines with Pipes as Data Connections and Repositories

68

CHAPTER 2. CONCURRENCY PATTERN CATALOG

Consumer pattern, and the Producer-Sensor-Consumer pattern in [24] but do

not describe them further.

The Forwarder-Receiver decoupling design pattern is another form of Producer-
Consumer. It provides transparent communication among peers. Every task
is provided with both a Forwarder and a Receiver (see Figure 2.8). The For-
warder marshals and delivers the message to the other Receiver. The Receiver
unmarshals and delivers the message to its associated peer [24, 25]. Since the
Readers and Writer pattern is a restricted form of the Producer-Consumer

design pattern, it is also considered a form of Pipeline [124, 76].

For war derl Recei ver

2

Peer
1

Peer
2

/ \
x\\\\\\-Receiver Forwarder2 é?//////

1

Figure 2.8: Forwarder-Receiver Interaction

Another variant of Producer-Consumer is Producer-Intermediary-Consumer.
This pattern places an intermediary between the Producer and the Consumer.
This intermediary may be a passive object such as a monitor, or an active
object such as a task. An example of this pattern is Doble’s Shopper who

obtains items for a Consumer from a Producer [38].

Doug Lea defines a Producer-Consumer variant, the Flow Network. A Flow
Network 1s a collection of objects that pass one way messages from sources

(Producers) to sinks (Consumers). Examples of Flow Networks are: avionics

2.4.

CLIENT-SERVER INTERACTION PATTERNS 69

control systems, assembly systems, data flow systems, work flow systems, and
event systems [76]. Andersen refers to this as a Network since there may be

multiple input sources, and multiple output sinks [6].

Tee and Join Pipeline Systems listed as variants by [25] allow more than one

input and/or output.

Program Chaining divides each piece of the program into an individual compo-

nent that invokes the next one in sequence. The main purpose of this pattern
is to reduce memory requirements by using secondary storage (a mass storage
device such as a floppy disk, hard disk, tape drive) to store the components
until they are required. Each newly invoked phase of the program and its run-
time data are loaded from secondary storage into main memory, completely

replacing the invoking executable [88].

Chain of Responsibility allows a task to send a request to another task, which is

implicitly at the head of a chain of other tasks. The request is passed through
the chain, and any member of the chain can fulfill the request, depending upon
run-time conditions. The number of participants in the chain is unbounded,
and participants in the chain can be selected at run-time. This design pattern

is also known as Event Handler, Bureaucrat, and Responder [47].

Two patterns that rely heavily upon Chain of Responsibility are: Matcher-
Handler, and Bureaucracy. The Matcher-Handler design pattern has traits
of the Observer, Chain of Responsibility, and Strategy design patterns. It

delivers data to implicitly specified receivers, of whom more than one may

70

CHAPTER 2. CONCURRENCY PATTERN CATALOG

handle the request. The set of receivers can also be dynamically specified.

These qualities let it behave like Chain of Responsibility.

Since a data event may need to be processed independently and simultane-
ously by more than one task, Matcher-Handler has traits of the Observer
design pattern, except that the handlers are only notified when the informa-

tion they are specifically waiting for has arrived.

In order to reduce the impact of changing the matching criteria over time,
the Strategy pattern isolates the matching behaviour; however, the purpose
of Strategy is to provide selectable behaviour, particularly at runtime. The

end result is the same, though the purposes differ [84].

The other design pattern, Bureaucracy, is based on the Composite?, Ob-
server, and Chain of Responsibility design patterns. The Bureaucracy design
pattern lets developers build self-contained, hierarchical structures that can
interact with clients on every level. No external control is necessary, and the
structures can maintain their own inner consistency. Chain of Responsibility
forwards requests until a task is reached that can fully execute the request.
The previous tasks may have partially executed the request, reinterpreted it,
or cancelled it. Because the work can be handled by a task low in the hi-
erarchy, which would not have notified higher-level tasks since it knew how
to process the request, the higher-level tasks still need to be warned of the

state change. Therefore the Observer is responsible for notifying tasks of the

9GoF define the Composite pattern as composing objects into tree structures to represent

hierarchies (either part of, or the entire hierarchy). Clients can treat individual objects and
compositions of objects uniformly.

2.4. CLIENT-SERVER INTERACTION PATTERNS 71

hierarchy of state changes. The Composite pattern allows the building of

complex structures [99].

2.4.2 Update Patterns

These patterns are responsible for maintaining the state information in a system

by ensuring that all participants are notified of changes.

Observer defines and maintains a dependency among objects. As an object
changes, all clients who have registered an interest with the Observer are noti-
fied of the changes. This design pattern is also known as: Broadcaster/Listener
[1], Caller/Provider [3], Provider/Observer [43], Subscriber/Publisher [70],
Announcer/Listener [79], Dependents, Publisher-Subscriber [24, 25, 31], Up-
date, and Listener [47, 123, 100, 124, 129]. Wolf and Liu refer to it as a
“dependency” and note that Coad refers to this as a “broadcast” [133]. Feiler
and Tichy classify it as a special case of the Propagator pattern [44]. Kim
and Benner provide several implementation design patterns for the Observer

design pattern [71].

There are a number of related design patterns, including the Spy, the Noti-
fication Server, the Notifier, the Handler, Broadcasting Sequential Processes,

the Component Bus, and the ValueModel.

In the Spy design pattern, the Spy task monitors the progress of a parallel
program by examining shared global memory. It can consolidate, process,

and report the gathered information [121].

72

CHAPTER 2. CONCURRENCY PATTERN CATALOG

Hirschfeld and Eastman’s Notification Server inverts the Observer’s roles.
The Notification Server takes on the role of the observed subject though it is
really the shared resource that is being observed, while the registered clients
are the observers. Also unlike the Observer pattern, the Notification Server
is not notified of the changes, only the registered clients are notified [64]. The
Notifier notifies the administrator when an event has occurred; thus, it could

be used as part of the Observer implementation [50].

Berczuk defines a Handler to process items when the end-to-end system re-
quirements have not been fully specified yet. When an item to be processed
is created, it registers itself with the handler. This pattern is related to the
Observer pattern except that the observer is the class of object created, and

the event that triggers notification is the creation of an object of a given class
[17].

Broadcasting Sequential Processes (BSP) uses the Publisher-Subscriber pat-
tern. A message broadcast (published) by one task can be received by all
other tasks (subscribers). Thus, programs are collections of loosely coupled

tasks cooperating to accomplish a common goal [48].

The Component Bus allows tasks to communicate indirectly. It manages the
routing of information dynamically, as tasks can dynamically register interest
in the required information [41]. The Component Bus is also referred to
as a Message Bus. It (or a Broker) is used to implement the Event-Based

Integration design pattern [124].

Woolt’s ValueModel framework is another variant of the Observer design pat-

2.4. CLIENT-SERVER INTERACTION PATTERNS 73

tern. It contains a value, and it informs its registered dependents when the

value changes [134].

Propagator is a family of patterns for consistently updating objects in a depen-
dency network [44]. All of these patterns support smart propagation for
avoilding redundant work as well as concurrent updates. It is also known as

Cascaded Update. There are four main Propagator patterns:

Strict Propagator always performs a complete update. No indication of
success or failure is given. It only keeps track of its dependents for
the purpose of propagation. The changed predecessor is passed with
the update method and is thus accessible to the dependents, allowing
them to identify which predecessor has changed. This design pattern
combines the methods of the subject and object classes of Observer and
makes the notification method recursive. It is also known as the Forward,

Immediate, or Eager Propagator.

Strict Propagator with Failure is the same as the Strict Propagator, ex-
cept that an object is marked as invalid if the update failed. It is also

known as an Optimistic Propagator.

Lazy Propagator only updates objects if it can determine that they are
changed. Objects in the dependency network only keep track of their
direct predecessors. It is also known as Update on Demand, or the

Backward Propagator.

Adaptive Propagator is a compromise between the Strict Propagator and

74

CHAPTER 2. CONCURRENCY PATTERN CATALOG

the Lazy Propagator. It immediately forward propagates only the invalid
marker and separately propagates updates optimistically, periodically, or
on demand. The forward propagation phase performs no updates, and
stops quickly in the case of successive waves, since it encounters already
marked objects. The actual updates take place in the backward phase,
which can even be run simultaneously with the forward phase. In this
fashion, it can avoid successive waves of updates (Strict Propagator), or
having to traverse the entire network backwards to the roots and check

time stamps (Lazy Propagator).

Chapter 3

Conclusion

In the realm of design patterns, there is no satisfactory taxonomy that meets the
needs of everyone. This is amply evident from the proliferation of possibilities.
A large part of this is due to the inability to firmly classify each pattern into
solely one nomenclature (architectural pattern versus design pattern), category
of functionality, or purpose. This process is rendered even more complicated by
the quantity of published patterns, whose names and purposes overlap, as is seen
throughout Chapter 2. The scope of the problem is magnified and driven home once
the reader realizes that concurrency patterns are only a small portion of patterns
applicable to a restricted area of computer science.

Though no system of classification is perfect, I believe that a good start has been
made by identifying the basic, underlying metapatterns of concurrent programming.
The three main divisions are: synchronization, mutual exclusion, and client-server.

Synchronization covers the mechanisms for synchronizing tasks as well as patterns

75

76 CHAPTER 3. CONCLUSION

in communication while mutual exclusion discusses various lock patterns.

Within the category of client-server, design patterns can be further subdivided
into client-side patterns, server-side patterns, and client-server interactions. Client-
side patterns involve the introduction of an intermediary (passive or active, implicit
or explicit) between the client and server. The three main metapatterns are proxies,
mediators, and brokers. Server-side metapatterns are those of the proprietor and
the administrator. Since the administrator uses worker tasks, the patterns involving
workers are also examined, yielding the basic patterns of independent workers,

cooperative workers, and workers communicating directly with a client.

The final category of client-server interactions neatly covers the areas missing
from the previous two, subsuming both delegation and publication patterns. These
divisions account for both the common and exotic patterns found in concurrent
programming, without descending to the level of idioms such as semaphores or

monitors.

Appendix A

Sample Design Pattern

This pattern is taken from pages 293 to 303 of the GoF' design patterns text [47].

A.1 OBSERVER Object Behavioral

A.1.1 Intent

Defines a one-to-many dependency between objects so that when one object changes

state, all its dependents are notified and updated automatically.

A.1.2 Also Known As

Dependents, Publish-Subscribe

77

78 APPENDIX A. SAMPLE DESIGN PATTERN

A.1.3 Motivation

A common side-effect of partitioning a system into a collection of cooperating classes
is the need to maintain consistency among related objects. You do not want to
achieve consistency by making the classes tightly coupled, because that reduces

their reusability.

For example, many graphical user interface toolkits separate the presentational
aspects of the user interface from the underlying application data [KP88, LVC89,
P+88, WGMSS|. Classes defining application data and presentations are indepen-
dently reused. They can work together, too. Both a spreadsheet object and bar
chart object can depict information in the same application data-object using differ-
ent presentations (see Figure A.1). The spreadsheet and the bar chart do not know
about each other, thereby letting you reuse only the one you need. But they behave
as though they do. When the user changes the information in the spreadsheet, the

bar chart reflects the changes immediately, and vice versa.

This behavior implies that the spreadsheet and bar chart are data views de-
pendent of the data object, and therefore, are notified of any change in its state.
There is no reason to limit the number of dependent objects to two; any number

of different user interfaces for the same data could exist.

The Observer pattern describes how to establish these relationships. The key
objects in this pattern are subject and observer. A subject may have any number
of dependent observers. All observers are notified whenever the subject undergoes
a change in state. In response, each observer queries the subject to synchronize its

state with the subject’s state.

A.1. OBSERVER OBJECT BEHAVIORAL

observers

—>» change notification
—>» requests, modifications

subject

Figure A.1: Observer Design Pattern Example

79

80 APPENDIX A. SAMPLE DESIGN PATTERN

This kind of interaction is also known as publish-subscribe. The subject is the
publisher of notifications. It sends out these notifications without having to know
the types or identities of the observers. Any number of observers can subscribe to

receive notifications.

A.1.4 Applicability

Use the Observer pattern in any of the following situations:

e When an abstraction has two aspects, one dependent on the other. En-
capsulating these aspects in separate objects lets you vary and reuse them

independently.

e When a change to one object requires changing others, and you do not know

statically how many objects need to be changed.

e When an object should be able to notify other objects without making as-
sumptions about the kind of objects these are. In other words, you do not

want the objects tightly coupled.

A.1.5 Structure

See Figure A.2.

A.1. OBSERVER OBJECT BEHAVIORAL 81

Observer

observers
Subject
J Update()
Attach(Observer)
Det'aCh(Observer) for all o in observers {
Notify() o - - - - | - - o->Update()

} /\

/N

subject |ConcreteObserver
ConcreteSubject [observerState =

Update) O =77 77| subject->GetState()

GetState() O - - - - A .
SetState() return subjectState

observerState

subjectState

Figure A.2: The Observer Design Pattern Structure in UML.
A.1.6 Participants
A.1.6.0.4 Subject
e knows its observers. Any number of Observer objects may observe a subject.

e provides an interface for attaching and detaching Observer objects.

A.1.6.0.5 Observer

o defines an updating interface for objects that are notified of changes in a

subject.

A.1.6.0.6 ConcreteSubject

e stores state of interest to ConcreteObserver objects.

82 APPENDIX A. SAMPLE DESIGN PATTERN

e sends a notification to its observers when its state changes.

A.1.6.0.7 ConcreteObserver
e maintains a reference to a ConcreteSubject object.
e stores state that should stay consistent with the subject’s.

e implements the Observer updating interface to keep its state consistent with

the subject’s.

A.1.7 Collaborations

e ConcreteSubject notifies its observers whenever a change occurs that could

make its observers’ state inconsistent with its own.

e A ConcretelObserver object, once informed of changes in the concrete sub-
ject, may query the subject for information. ConcreteObserver uses this
information to reconcile its state with that of the subject. The interaction
diagram in Figure A.3 illustrates the collaborations among a subject and two

observers:

The collaboration starts with an observer telling the subject to change its state
by invoking the SetState method that may implicitly invoke the Notify method.
Once the subject determines that a change has occurred, it notifies all observers by

invoking their respective Update methods.

A.1. OBSERVER OBJECT BEHAVIORAL 83

aConcreteSubject AConcreteObserver anotherConcreteObserver
J‘A SetState()
Notify()
Update() -
| GetState()
Update() -
- GetState()
T

Figure A.3: Observer Design Pattern Interaction Diagram

Note how the Observer object that initiates the change request postpones its
update until it gets a notification from the subject. Notify is not always called
by the subject. An observer, or another kind of object entirely, can call it. The

Implementation subsection discusses some common variations.

A.1.8 Consequences

The Observer pattern lets you vary subjects and observers independently. You
can reuse subjects without reusing their observers, and vice versa. It lets you add

observers without modifying the subject or other observers.

Further benefits and liabilities of the Observer pattern include the following:

1. Abstract coupling between Subject and Observer. All a subject knows is that it

has a list of observers, each conforming to the simple interface of the abstract

84

APPENDIX A. SAMPLE DESIGN PATTERN

Observer class. The subject doesn’t know the concrete class of any observer.

Thus the coupling among subjects and observers is abstract and minimal.

Because Subject and Observer are not tightly coupled, they can belong to
different layers of abstraction in a system. A lower-level subject can com-
municate and inform a higher-level observer, thereby keeping the system’s
layering intact. If Subject and Observer are lumped together, then the re-
sulting object must either span two layers (and violate the layering), or it
must be forced to live in one layer or the other (which might compromise the

layering abstraction).

. Support for broadcast communication. Unlike an ordinary request, the notifi-

cation that a subject sends need not specify its receiver (presumably since it
might be directed to a ChangeManager who is responsible for broadcasting the
message to registered observers). The notification is broadcast automatically
to all interested objects that subscribed to it. The subject does not care how
many interested objects exist; its only responsibility is to notify its observers.
This gives you the freedom to add and remove observers at any time. It is up

to the observer to handle or ignore a notification.

. Unezxpected updates. Because observers have no knowledge of each other’s

presence, they can be blind to the ultimate cost of changing the subject. A
seemingly innocuous operation on the subject may cause a cascade of updates
to observers and their dependent objects. Moreover, dependency criteria that
are not well-defined or maintained usually lead to spurious updates, which

can be hard to track down.

AL

OBSERVER OBJECT BEHAVIORAL 85

This serious problem is aggravated by the fact that the simple update proto-
col provides no details on what changed in the subject. Without additional
protocol to help observers discover what changed, they may be forced to work

hard to deduce the changes.

A.1.9 Implementation

Several issues related to the implementation of the dependency mechanism are

discussed in this subsection.

1. Mapping subjects to their observers. The simplest way for a subject to keep

track of the observers it should notify is to store references to them explicitly
in the subject. However, such storage may be too expensive when there are
many subjects and few observers. One solution is incur a time penalty and
reduce the required amount of space by using an associative look-up (e.g.,
a hash table) to maintain the subject-to-observer mapping. Thus a subject
with no observers does not incur storage overhead. On the other hand, this
approach increases the cost of accessing the observers by adding in the cost

of the look-up.

Observing more than one subject. It might make sense in some situations for
an observer to depend on more than one subject. For example, a spreadsheet
may depend on more than one data source. It is necessary to extend the
Update interface in such cases to let the observer know which subject is

sending the notification. The subject can simply pass itself as a parameter

86

APPENDIX A. SAMPLE DESIGN PATTERN

in the Update operation, thereby letting the observer know which subject to

examine.

3. Who triggers the update? The subject and its observers rely on the notification
mechanism to stay consistent. But what object actually calls Notify to trigger

the update? Here are two options:

(a) Have state-setting operations on Subject call Notify after they change
the subject’s state. The advantage of this approach is that observers
do not have to remember to call Notify on the subject. The disadvan-
tage is that several consecutive operations will cause several consecutive

updates, which may be inefficient.

(b) Make subjects responsible for calling Notify at the right time. The
advantage here is that the subject can wait to trigger the update until
after a series of state changes has occurred, thereby avoiding needless
intermediate updates. The disadvantage is that subjects have an added
responsibility to trigger the update. That makes errors more likely, since

clients might forget to call Notify.

4. Dangling references to deleted subjects. Deleting a subject should not produce
dangling references in its observers. One way to avoid dangling references is
to make the subject notify its observers as it is deleted so that they can reset
their reference to it. In general, simply deleting the observers is not an option,
because other objects may reference them, or they may be observing other

subjects as well.

AL

OBSERVER OBJECT BEHAVIORAL 87

5. Making sure Subject state is self-consistent before notification. It is important

to make sure Subject state is self-consistent before calling Notify, because
observers query the subject for its current state in the course of updating

their own state.

This self-consistency rule is easy to violate unintentionally when Subject sub-
class operations call inherited operations. For example, the notification in
the following code sequence is triggered when the subject is in an inconsistent

state:

void MySubject::0peration (int newValue) {
BaseClassSubject: :0Operation(newValue);
// trigger notification

_myInstVar += newValue;
// update subclass state (too late!)

You can avoid this pitfall by sending notifications from template methods
(Template Method (325)) in abstract Subject classes. Define a primitive op-
eration for subclasses to override, and make Notify the last operation in the
template method, which will ensure that the object is self-consistent when
subclasses override Subject operations. An example of this is the template
method Cut containing the primitive operation ReplaceRange which is over-

ridden by the subclasses.

void Text::Cut (TextRange r) {
ReplaceRange(r); // redefined in subclasses
Notify();

88

APPENDIX A. SAMPLE DESIGN PATTERN

By the way, it is always a good idea to document which Subject operations

trigger notifications.

. Avoiding observer-specific update protocols: the push and pull models. Imple-

mentations of the Observer pattern often have the subject broadcast addi-
tional information about the change. The subject passes this information as

an argument to Update. The amount of information may vary widely.

At one extreme, which we call the push model, the subject sends observers
detailed information about the change, whether they want it or not. At the
other extreme is the pull model; the subject sends nothing but the most

minimal notification, and observers ask for details explicitly thereafter.

The push model might make observers less reusable, because Subject classes
make assumptions about Observer classes that are not always true. The pull
model emphasizes the subject’s ignorance of its observers, whereas the push
model assumes subjects know something about their observers’ needs. On the
other hand, the pull model is potentially inefficient, because Observer classes

must ascertain what changed without help from the Subject.

. Specifying modifications of interest erplicitly. You can improve update effi-

ciency by extending the subject’s registration interface to allow registering
observers only for specific events of interest. When such an event occurs,
the subject informs only those observers that have registered interest in that
event. One way to support this uses the notion of aspects for Subject ob-

jects. To register interest in particular events, observers are attached to their

AL

OBSERVER OBJECT BEHAVIORAL 89

subjects using

void Subject::Attach(Observer*, Aspect& interest);

where interest specifies the event of interest. At notification time, the subject
supplies the changed aspect to its observers as a parameter to the Update

operation. For example:

void Observer::Update(Subject*, Aspect& interest);

Encapsulating compler update semantics. When the dependency relation-
ship among subjects and observers is particularly complex, an object that
maintains these relationships is possibly required. We call such an object
a ChangeManager. Its purpose is to minimize the work required to make
observers reflect a change in their subject. For example, if an operation in-
volves changes to several interdependent subjects, you may have to ensure
that their observers are notified only after all the subjects were modified to

avoid notifying observers more than once.

ChangeManager has three responsibilities:

(a) It maps a subject to its observers and provides an interface to main-
tain this mapping. This eliminates the need for subjects to maintain

references to their observers and vice versa.
(b) It defines a particular update strategy.

(c¢) It updates all dependent observers at the request of a subject.

90 APPENDIX A. SAMPLE DESIGN PATTERN

Figure A.4 depicts a simple ChangeManager-based implementation of the Ob-

server pattern. There are two specialized ChangeManagers. SimpleChangeManager
is naive in that it always updates all observers of each subject. In con-
trast, DAGChangeManager handles directed-acyclic graphs of dependencies
among subjects and their observers. A DAGChangeManager is preferable to
a SimpleChangeManager when an observer observes more than one subject.
In that case, a change in two or more subjects might cause redundant up-

dates. The DAGChangeManager ensures the observer receives just one update.

SimpleChangeManager is fine when multiple updates are not an issue.

Subject o< ChangeManager »e Observer
Attach(Observer subjects : : observers
ach() 9 Register(Subject, Observer) Update()
Detgch(Observer) } Unregister(Subject, Observer)
‘ chman
! Subject-Observer mapping
|

chman->Notify()

X

chman->Register(this,o)

SimpleChangeManager

DAGChangeManager

Register(Subject, Observer)
Unregister(Subject, Observer)

Notify() ¢

Register(Subject, Observer)
Unregister(Subject, Observer)

Notify() ¢

forall s in subjects
forall o in observers
o->Update(s)

mark all observers to update
update all marked observers

Figure A.4: Observer Design Pattern Change Manager

ChangeManager is an instance of the Mediator (273) pattern.

In general

A.1. OBSERVER OBJECT BEHAVIORAL 91

there is only one ChangeManager, and it is known globally. The Singleton

(127) pattern is potentially useful here.

9. Combining the Subject and Observer classes. Class libraries written in lan-
guages that lack multiple inheritance (like Smalltalk) generally do not define
separate Subject and Observer classes. One proposed solution is the combina-
tion of their interfaces into one class. That lets you define an object that acts
as both a subject and an observer without multiple inheritance. In Smalltalk,
for example, the Subject and Observer interfaces are defined in the root class

Object, making them available to all classes.

A.1.10 Sample Code

An abstract class defines the Observer interface:

class Subject;

class Observer {
public:

virtual ~0Observer();

virtual void Update(Subject* theChangedSubject) = 0;
protected:

Observer();

};

This implementation supports multiple subjects for each observer. The subject
passed to the Update operation lets the observer determine which subject changed

when it observes more than one.

Similarly, an abstract class defines the Subject interface:

92

APPENDIX A. SAMPLE DESIGN PATTERN

class Subject {
public:
virtual “Subject();

virtual void Attach(Observerx);
virtual void Detach(Observerx);
virtual void Notify();
protected:
Subject () ;
private:
List<0bserver*> *_observers;

};

void Subject::Attach (Observer* o) {
_observers->Append(o);

3

void Subject::Detach (Observer* o) {
_observers->Remove(o);

b

void Subject::Notify () {
ListIterator<Observer*> i(_observers);

for (i.First(); 'i.IsDone(); i.Next()) {
i.CurrentItem()->Update(this);

ClockTimer is a concrete subject for storing and maintaining the time of day. It

notifies its observers every second. ClockTimer provides an interface for retrieving

individual time units such as the hour, minute, and second.

class ClockTimer : public Subject {
public:
ClockTimer();

A.1. OBSERVER OBJECT BEHAVIORAL 93

virtual int GetHour();
virtual int GetMinute();
virtual int GetSecond();
void Tick();

s

The Tick operation gets called by an internal timer at regular intervals to
provide an accurate time base. Tick updates the ClockTimer’s internal state and

calls Notify to inform observers of the change:

void ClockTimer::Tick () {
// update internal time keeping state

/!l ...
Notify();

Now we can define a class DigitalClock that displays the time. It inherits
its graphical functionality from a Widget class provided by a user interface toolkit.
The Observer interface is mixed into the DigitalClock interface by inheriting from

Observer.

class DigitalClock: public Widget, public Observer {
public:

DigitalClock(ClockTimerx) ;

virtual “DigitalClock();

virtual void Update(Subjectx*);
// overrides Observer operation

virtual void Draw();
// overrides Widget operation;
// defines how to draw the digital clock
private:
ClockTimer* _subject;

94 APPENDIX A. SAMPLE DESIGN PATTERN

};

DigitalClock: :DigitalClock (ClockTimer* s) {
_subject = s;
_subject->Attach(this);

DigitalClock::"DigitalClock () {
_subject->Detach(this) ;
}

Before the Update operation draws the clock face, it checks to make sure the

notifying subject is the clock’s subject:

void DigitalClock: :Update (Subject* theChangedSubject) {
if (theChangedSubject == _subject) {
Draw();
by

void DigitalClock: :Draw () {
// get the new values from the subject

int hour = _subject->GetHour();
int minute = _subject->GetMinute();

// etc.

// draw the digital clock

An AnalogClock class is similarly defined.

class AnalogClock : public Widget, public Observer {
public:

AnalogClock(ClockTimerx*);

virtual void Update(Subjectx*);

virtual void Draw();

A.1. OBSERVER OBJECT BEHAVIORAL 95

/...
};

The following code creates an AnalogClock and a DigitalClock that always

show the same time:

ClockTimer* timer = new ClockTimer;
AnalogClock* analogClock = new AnalogClock(timer);
DigitalClock* digitalClock = new DigitalClock(timer);

Whenever the timer ticks, the two clocks are updated and redisplay themselves

appropriately.

A.1.11 Known Uses

The first and perhaps best-known example of the Observer pattern appears in
Smalltalk Model/View/Controller (MVC), the user interface framework in the Small-
talk environment [KP88]. MVC’s Model class plays the role of Subject, while View
is the base class for observers. Smalltalk, ET++ [WGMS88], and the THINK class
library [Sym93b] provide a general dependency mechanism by putting Subject and

Observer interfaces in the parent class for all other classes in the system.

Other user interface toolkits that employ this pattern are InterViews [LVC89],
the Andrew Toolkit [P+88], and Unidraw [VL90]. InterViews defines Observer
and Observable (for subjects) classes explicitly. Andrew calls them "view” and
”data object,” respectively. Unidraw splits graphical editor objects into View (for

observers) and Subject parts.

96 APPENDIX A. SAMPLE DESIGN PATTERN

A.1.12 Related Patterns

Mediator (273): By encapsulating complex update semantics, the ChangeManager

acts as mediator between subjects and observers.

Singleton (127): The ChangeManager may use the Singleton pattern to make it

unique and globally accessible.

Bibliography

1]

Amund Aarsten, Davide Brugali, and Giuseppe Menga. Designing concurrent
and distributed control systems. Communications of the ACM, 39(10):50-58,
1996.

Amund Aarsten, Davide Brugali, and Giuseppe Menga. Patterns
for cooperation. In Proceedings of the Third Jownt Pattern Lan-
guages of Programs, Distribution Workshop, 1996. Retrieved January
20, 2000 from the PLoPT™ 1996 database on the World Wide Web:
http://www.cs.wustl.edu/~schmidt/PLoP-96/amundl.ps.gz.

Amund Aarsten, Gabriele Elia, and Giuseppe Menga. G++: A pat-
tern language for the object-oriented design of concurrent and distributed
information systems, with Applications to computer integrated manufac-
turing. In James O. Coplien and Douglas C. Schmidt, editors, Pat-
tern Languages of Programs Design, volume 1 of Software Patterns Se-
ries. Addison-Wesley, 1995. Retrieved January 1, 2000 from Pat-
tern Languages of Programs Design database on the World Wide Web:
ftp://galileo.polito.it/articles/gpp/plop94.ps.

Harold Abelson and Gerald Jay Sussman. Structure and Interpre-
tation of Computer Programs. MIT Press, 1984. Retrieved Jan-
uary 9, 2001 from the MIT Press database on the World Wide Web:
http://mitpress.mit.edu/sicp/full-text/sicp/book/book.html.

Gul Agha, Svend Frglund, WooYoung Kim, Rajendra Panwar, Anna Pat-
terson, and Daniel Sturman. Abstraction and modularity mechanisms for
concurrent computing. In Gul Agha, Peter Wegner, and Akinori Yonezawa,
editors, Research directions in concurrent object-oriented programmaing. MIT,

1993.

97

98

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

BIBLIOGRAPHY

Henning Andersen. Network: A pattern for composing computation. In Pro-
ceedings of the Second European Conference on Pattern Languages of Pro-
grams, General Design Patterns, Munich, Germany: Siemens, 1997. (Eu-
roPLoP’97) Siemens Technical Report 120/SW1/FB. Retrieved September
19, 2000 from the EuroPLoP™ 1997 database on the World Wide Web:
http://www.riehle.org/events/europlop-1997/p15final.pdf.

Gregory Andrews. Concurrent Programming: Principles and Practice.

Addison-Wesley, 1991.

Gregory Andrews. Foundations of Multithreaded, Parallel, and Distributed
Programming. Addison-Wesley, 2000.

Gregory R. Andrews and Fred B. Schneider. Concepts and notations for
concurrent programming. Computing Surveys, 15(1), March 1983.

Anonymous. Demon, July 1993. Retrieved December 20, 2000
from the Hacker Dictionary database on the World Wide Web:
http://www.lysator.liu.se/hackdict/split2/demon.html.

Anonymous. Glossary of tech support terms associated with version 5.0.x
of the raptor firewall, 1998. Retrieved January 12, 2001 from AXENT Tech-
nologies Technical Support Group for Raptor products database on the World
Wide Web: http://www.raptor.com/cs/FAQ/eaglebglossary.html.

Anonymous. Self-Addressed Stamped Envelope. Portland Pat-
tern Repository, 4 September 2000. http://c2.com/cgi/
wiki?SelfAddressedStampedEnvelope.

Brad Appleton. What 1s a pattern anyway? Patterns and
Software: Essential Concepts and Terminology, 14 February 2000.
http://www.enteract.com/~bradapp/docs/patterns-intro.html.

Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. Con-
current Programming in ERLANG. Prentice Hall, Second edition, 1996.

Jean Bacon. Concurrent Systems: An Integrated Approach to Operating Sys-
tems, Database, and Distributed Systems. Addison Wesley, Second edition,
1998.

Rajive Bagrodia. Synchronization of asynchronous processes in CSP.
The Association for Computing Machinery Transactions on Program-
ming Languages and Systems, 11(4), 1989. Retrieved September 28,

BIBLIOGRAPHY 99

[24]

[25]

2000 from the The Association for Computing Machinery Digital Library
database on the World Wide Web: http://www.acm.org/pubs/citations/
journals/toplas/1989-11-4/p585-bagrodia.

Stephen Berczuk. Organizational multiplexing: Patterns for processing satel-
lite telemetry with distributed teams. In John M. Vlissides, James O. Coplien,
and Norman L. Kerth, editors, Pattern Languages of Programs Design, vol-
ume 2 of Software Patterns Sertes. Addison-Wesley, 1996.

Grady Booch. Object Oriented Analysis and Design with Applications. Ben-
jamin Cummings, Second edition, 1994.

K. S. Booth, W. M. Gentleman, and J. Schaeffer. Anthropomorphic Pro-
gramming. Technical Report CS-82-47, Department of Computer Science,
University of Waterloo, 1984.

Per Brinch Hansen. Concurrent programming concepts. Software—Practice

and Ezperience, 5(4):223-245, December 1973.

F. Lee Brown, Jr., James DiVietri, Graziella Diaz de Villegas,
and Eduardo B. Fernandez. The authenticator pattern. In Pro-
ceedings of the Sizth Pattern Languages of Programs, The Group 3
Workshop. Pattern Languages of Programs, 1999. Retrieved Jan-
uary 5, 2001 from the PLoP™ 1999 database on the World
Wide Web: http://st-www.cs.uiuc.edu/ plop/plop99/proceedings/
Fernandez4/Authenticator3.PDF.

Alan Burns and Geoft Davies. Concurrent Programming. Addison-Wesley,

1993.

Frank Buschmann. The master-slave pattern. In James O. Coplien and Dou-
glas C. Schmidt, editors, Pattern Languages of Programs Destgn, volume 1 of
Software Patterns Series. Adddison-Wesley, 1995.

Frank Buschmann and Regine Meunier. A system of patterns. In James O.
Coplien and Douglas C. Schmidt, editors, Pattern Languages of Programs
Design, volume 1 of Software Patterns Series. Adddison-Wesley, 1995.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture — A System of Pat-
terns. John Wiley and Sons Ltd, 1996.

100

[26]

[30]

[31]

32]

[33]

[34]

BIBLIOGRAPHY

Nicholas Carriero and David Gelertner. How to write paral-
lel programs: a guide to the perplexed. ACM Computing Sur-
veys, 21(3), September 1989. Retrieved September 28, 2000 from
the ACM Digital Library database on the World Wide Web:
http://dev.acm.org/pubs/citations/journals/surveys/1989-21-3/
p323-carriero/.

José Cela and José Alfonso. Parallelization of the spai preconditioner in a
master-slave configuration. In Third European PVM Conference Proceedings,
Lecture Notes in Computer Science. Springer-Verlag, 1996.

Arthur Charlesworth. The multiway rendezvous. Transactions on Program-
ming Languages and Systems, 9(2), July 1987.

David R. Cheriton. Multi-process structuring and the thoth operating system.
Technical Report CS-79-19, Department of Computer Science, University of
Waterloo, 1979.

David R. Cheriton. The V distributed system. Communications of the ACM,
31(3), March 1988.

Peter Coad, David North, and Mark Mayfield. Object Models : Strategies,
Patterns and Applications. Prentice Hall, Second edition, 1997.

James Coplien. Advanced C++ Programming Styles and Idioms. Addison-
Wesley, 1992.

James O. Coplien and Douglas C. Schmidt, editors. Pattern Languages of
Program Design. Software Patterns Series. Addison-Wesley, 1995.

Fernando Das Neves and Alejandra Garrido. Warden: A pattern for
object distribution. In Proceedings of the Third Joint Pattern Lan-
guages of Programs, Distribution Workshop, 1996. Retrieved January
20, 2000 from the PLoPT™ 1996 database on the World Wide Web:
http://www.cs.wustl.edu/~schmidt/ PLoP-96/warden.ps.gz.

Andrew Davison. A Survey of Logic Programming-Based Object-Oriented
Languages. Massachusetts Institute of Technology, 1993.

Dennis de Champeaux, Douglas Lea, and Penelope Faure. Object-Oriented
System Development. Addison-Wesley, HTML edition, 1993. Retrieved
September 20, 2000 from Doug Lea’s home page on the World Wide Web:
http://g.oswego.edu/dl/oosdw3/index.html.

BIBLIOGRAPHY 101

[37]

[41]

[42]

[43]

[44]

Edsger W. Dijkstra. Hierarchical ordering of sequential processes. In C.A.R.
Hoare and R.H. Perrott, editors, Operating Systems Techniques, pages 72-93.
1972.

Jim Doble. Shopper. In John M. Vlissides, James O. Coplien, and Norman L.
Kerth, editors, Pattern Languages of Programs Design, volume 2 of Software
Patterns Series. Addison-Wesley, 1996.

Stephen H. Edwards. Streams: A pattern for pull-driven processing. In
James O. Coplien and Douglas C. Schmidt, editors, Pattern Languages of
Programs Design, volume 1 of Software Patterns Series. Adddison-Wesley,
1995.

Bjorn Eiderback and Jiarong Li. Undertaker. In Proceedings of the
Second FEuropean Conference on Pattern Languages of Programs, Gen-
eral Design Patterns, Munich, Germany: Siemens, 1997. (EuroPLoP’97)
Siemens Technical Report 120/SW1/FB. Retrieved September 19,
2000 from the EuroPLoP™ 1997 database on the World Wide Web:
http://www.riehle.org/events/europlop-1997/p17final.pdf.

Philip Eskelin. Component interaction patterns. In Proceedings of
the Sixth Pattern Languages of Programs, The Group 1 Workshop.
Pattern Languages of Programs, 1999. Retrieved September 14,
2000 from the PLoP™ 1999 database on the World Wide Web:
http://st-www.cs.uiuc.edu/~plop/plop99/proceedings/Eskelinl/
ComponentInteractionPatterns.PDF.

Philip Eskelin. Interruptible command. In Proceedings of the Fifth
Pattern Languages of Programs, The Group 2 Network of Learning
Workshop. Pattern Languages of Programs, 1999. Retrieved Septem-
ber 20, 2000 from the PLoP™ 1998 database on the World Wide Web:
http://jerry.cs.uiuc.edu/~plop/plop98/final submissions/P46.pdf.

Ted Faison. Interaction patterns for communicating processes. In Pro-
ceedings of the Fifth Pattern Languages of Programs, Four-Story Limit
Workshop, 1998. Retrieved September 19, 2000 from the PLoP™™ 1998
database on the World Wide Web: http://jerry.cs.uiuc.edu/~plop/
plop98/final submissions/P02.pdf.

Peter Feiler and Walter Tichy. Propagator: A family of patterns. In
Proceedings of the Third Joint Pattern Languages of Programs, System

102

[45]

[46]

[47]

[48]

[49]

[50]

BIBLIOGRAPHY

Configuration and Resource Management Workshop, 1996. Retrieved Jan-

uary 20, 2000 from the PLoP™ 1996 database on the World Wide Web:
http://www.cs.wustl.edu/~schmidt/ PLoP-96/tichy.ps.gz.

Sebastian Fischmeister and Wolfgang Lugmayr. The supervisor-worker
pattern. In Proceedings of the Sizth Pattern Languages of Programs,
The Group 5 Workshop. Pattern Languages of Programs, 1999. Retrieved
September 14, 2000 from the PLoP™™ 1999 database on the World Wide Web:
http://st-www.cs.uiuc.edu/~plop/plop99/proceedings/fischmeister/
pattern-times.pdf.

Robert Flanders and Eduardo B. Fernandez. Data filter architecture
pattern. In Proceedings of the Sizth Pattern Languages of Programs, The
Group 7 Workshop. Pattern Languages of Programs, 1999. Retrieved
January 5, 2001 from the PLoP™™ 1999 database on the World Wide Web:
http://st-www.cs.uiuc.edu/ plop/plop99/proceedings/Fernandez5/
Flanders3.PDF.

Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Professional
Computing Series. Addison-Wesley, 1995.

Narain Gehani. Broadcasting sequential processes (bsp). In Narain Gehani
and Andrew D. McGettrick, editors, Concurrent Programming, pages 234—
255. Addison-Wesley, 1988.

Narain Gehani and Andrew McGettrick, editors. Concurrent Programming.
International Computer Science Series. Addison-Wesley, 1988.

Morven Gentleman. Message passing between sequential processes: the reply
primitive and the administrator concept. Software—Practice and Ezxperience,

11(5), 1981.

Morven Gentleman, Terry Shepard, and Douglas Thoreson. Administrators
and multiprocessor rendezvous mechanisms. Software—Practice and Ezperi-

ence, 22(1), 1992.

Ramiro Gonzalez Maciel. The emissary design pattern. In Proceed-
ings of the Fifth Pattern Languages of Programs, Agricultural Valleys
Workshop, 1998. Retrieved September 19, 2000 from the PLoP™™ 1998
database on the World Wide Web: http://jerry.cs.uiuc.edu/~plop/
plop98/final submissions/P57.pdf.

BIBLIOGRAPHY 103

[53]

[54]

[55]

[59]

[60]

[61]

Mark Grand. Patterns in Java: a catalog of reusable design patterns, vol-

ume 1. John Wiley and Sons, Inc., 1998.

Mark Grand. Patterns in Java: a catalog of reusable design patterns, vol-

ume 2. John Wiley and Sons, Inc., 1999.

Ennio Grasso. Synchronizer—an object behavioral pattern for concurrent
programming. In Proceedings of the Second European Conference on Pattern
Languages of Programs, Distribution Patterns, Munich, Germany: Siemens,
1997. (EuroPLoP’97) Siemens Technical Report 120/SW1/FB. Retrieved
September 19, 2000 from the EuroPLoP™™ 1997 database on the World Wide
Web: http://www.riehle.org/events/europlop-1997/p3final.pdf.

Timothy Harrison, Douglas C. Schmidt, and Irfan Pyarali. Asynchronous
completion token: An object behavioural pattern for efficient asynchronous
event handling. In Pattern Languages of Programs Design, volume 3
of Software Patterns Series. Addison-Wesley, 1997. Retrieved January
20, 2000 from the PLoPT™ 1996 database on the World Wide Web:
http://www.cs.wustl.edu/~schmidt/PLoP-96/ACT.ps.gz.

Stephen Hartley. Concurrent Programmaing: the Java programming language.

Oxford University Press, 1998.

Viviane Hays, Marc Loutrel, and Eduardo B. Fernandez. = The ob-
ject filter and access control framework. In Proceedings of the Sev-
enth Pattern Languages of Programs, The Office Connections Work-
shop. Pattern Languages of Programs, 2000. Retrieved December
13, 2000 from the PLoP™ 2000 database on the World Wide Web:
http://jerry.cs.uiuc.edu/ plop/plop2k/Fernandez3/Fernandez3.pdf.

Richard Helm and Erich Gamma. Patterns and software design: The courier
pattern. Dr. Dobb’s Sourcebook, pages 55-59, January/February 1996.

K. Hendrikx, E. Duval, and H. Olivié. Managing shared resources. In
Proceedings of the Fifth European Conference on Pattern Languages of
Programs, Design and Programming Workshop, 2000. Retrieved October

21, 2000 from the EuroPLoP™ 2000 database on the World Wide Web:
http://www.coldewey.com/europlop2000/papers/hendrikx.zip.

Michi Henning and Steve Vinoski. Advanced CORBA® Programming with
C++. Addison-Wesley, 1999.

104

[62]

[63]

[64]

[65]

[66]

[68]

BIBLIOGRAPHY

Mark Heuser and Eduardo Fernandez. RPC client: A pattern for the
client-side implementation of a pipelined request/response protocol. In
Proceedings of the Sizth Pattern Languages of Programs, Group Five
Workshop. Pattern Languages of Programs, 1999. Retrieved September
14, 2000 from the PLoP™ 1999 database on the World Wide Web:
http://jerry.cs.uiuc.edu/~plop/plop99/proceedings/fernandezA/
heuser003.PDF.

Robert Hirschfeld and Jeff Eastman. Lock server. In Proceedings of the Fifth
Pattern Languages of Programs, Four-Story Limit Workshop, 1998. Retrieved
September 19, 2000 from the PLoP™™ 1998 database on the World Wide
Web: http://jerry.cs.uiuc.edu/~plop/plop98/final submissions/
P18.pdf.

Robert Hirschfeld and Jeff Eastman. Notification server. In
Proceedings of the Fifth Pattern Languages of Programs, Four-
Story Limit Workshop, 1998. Retrieved September 19, 2000

from the PLoP™ 1998 database on the World Wide Web:
http://jerry.cs.uiuc.edu/~plop/plop98/final submissions/P20.pdf.

James C. Hu and Christopher D. Gill. Patterns in flexible server application
frameworks. In Proceedings of the Seventh Pattern Languages of Programs,
The Unselfconscious Process Workshop. Pattern Languages of Programs,
2000. Retrieved December 13, 2000 from the PLoP™ 2000 database on the
World Wide Web: http://jerry.cs.uiuc.edu/ plop/plop2k/Hu/Hu.pdf.

Prashant Jain and Michael Kircher. Leasing. In Proceedings
of the Seventh Pattern Languages of Programs, Quiet Backs Work-
shop. Pattern Languages of Programs, 2000. Retrieved October

21, 2000 from the PLoP™ 2000 database on the World Wide
Web: http://jerry.cs.uiuc.edu/ plop/plop2k/Jain-Kircher/Jain-
Kircher.pdf.

Prashant Jain and Michael Kircher. Lookup. In Proceedings of
the Fifth FEuropean Conference on Pattern Languages of Programs, Ar-
chitecture and Design Workshop, 2000. Retrieved October 21, 2000
from the EuroPLoP™ 2000 database on the World Wide Web:

http://www.coldewey.com/europlop2000/papers/jain+kircher.zip.

Prashant Jain and Douglas C. Schmidt. Service configurator —
a pattern for dynamic configuration and reconfiguration of commu-

BIBLIOGRAPHY 105

[69]

[70]

[71]

73]

[74]

nication services. In Proceedings of the Third Pattern Languages
of Programs, System Configuration and Resource Management Work-
shop, 1996. Retrieved January 20, 2000 from the PLoP™ 1996
database on the World Wide Web: http://www.cs.wustl.edu/~schmidt/
PLoP-96/Service-Configurator.ps.gz.

Jean-Marc Jézéquel, Michel Train, and Christine Mingins. Design Patterns
and Contracts. Addison-Wesley, 2000.

Raman Kannan. Managing continuous data feed with sub-
scriber/publisher pattern. SIGPLAN Notices, 30(10), October
1995. Retrieved September 20, 2000 from the OOPSLA 1995

database on the World Wide Web: http://www.cs.wustl.edu/
~schmidt/00PSLA-95/html/papers/part.ps.gz.

Jung Kim and Kevin Benner. Implementation patterns for the observer pat-
tern. In John M. Vlissides, James O. Coplien, and Norman L. Kerth, editors,
Pattern Languages of Programs Design, volume 2 of Software Patterns Series.

Addison-Wesley, 1996.

Charles D. Knutson, Timothy A. Budd, and Curtis R. Cook. Multi-
paradigm patterns of thought and design. In Joint Pattern Languages
of Programs Conference, Potpourri Workshop, 1996. Retrieved January
20, 2000 from the PLoPT™ 1996 database on the World Wide Web:
http://www.cs.wustl.edu/~schmidt/PLoP-96/knutson.ps.gz.

Martin Kobetic and Peter Neurath. Survey of object-oriented con-
current programming - focus on actors, 1995. Retrieved January 14,
2000 from the Comenius University database on the World Wide Web:
http://object.dcs.fmph.uniba.sk/object/uploads/Diploma theses/
1995 Kobetic Neurath/www/soocp/Soocp.htm.

R. Lavender and Douglas C. Schmidt. Active object: An object behavioural
pattern for concurrent programming. In John M. Vlissides, James O. Coplien,

and Norman L. Kerth, editors, Pattern Languages of Programs Design, vol-
ume 2 of Software Patterns Sertes. Addison-Wesley, 1996.

Doug Lea. Concurrent Programming in Java™ : Design Principles and Pat-
terns. The Java’™ Series. Addison-Wesley Longman, Inc., 1997.

Doug Lea. Concurrent Programming in Java™ : Design Principles and Pat-
terns. The Java’™ Series. Addison-Wesley, second edition, 1999.

106 BIBLIOGRAPHY

[77] Doug Lea. Patterns—Discussion FAQ. Doug Lea’s Home Page, December
1999. http://g.oswego.edu/d1/pd-FAQ/pd-FAQ.html.

[78] S.A. MacKay, W. M. Gentleman, D.A. Stewart, and M. Wein. Har-
mony as an object-oriented operating system. Technical Report NRC
29636, National Research Council of Canada, September 1988. Retrieved
February 19, 2001 from the NRC database on the World Wide Web:
http://wwwsel.iit.nrc.ca/abstracts/NRC29636.abs.

[79] Jeff Magee and Jeff Kramer. Concurrency: State Models and Java Programs.
John Wiley & Sons, 1999.

[80] Klaus Marquardt. Patterns for object transport. In Proceed-
ings of the Fifth FEuropean Conference on Pattern Languages of Pro-
grams, Design and Programming Workshop, 2000. Retrieved October

21, 2000 from the EuroPLoP™ 2000 database on the World Wide
Web:http://www.coldewey.com/europlop2000/papers.html.

[81] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders.
Forkjoin. Retrieved January 5, 2001 from the Pattern Language for
Parallel Application Programming database on the World Wide Web:
http://www.cise.ufl.edu/research/ParallelPatterns/PatternLanguage/
SupportingStructures/ForkJoin.htm.

[82] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders.
Patterns for parallel application programs. In Proceedings of the
Sizth Pattern Languages of Programs, The Group 1 Workshop.
Pattern Languages of Programs, 1999. Retrieved September 14,
2000 from the PLoP™ 1999 database on the World Wide Web:
http://st-www.cs.uiuc.edu/ plop/plop99/proceedings/massingill/
massingill.pdf.

[83] Paul McKenney. Selecting locking primitives for parallel programming. Com-
munications of the The Association for Computing Machinery, 39(10):75-82,
1996.

[84] Frank Metayer. Matcher-handler. In Proceedings of the Sixth
Pattern Languages of Programs, The Group 2 Workshop. Pat-

tern Languages of Programs, 1999. Retrieved January 3,
2001 from the PLoP™ 1999 database on the World Wide
Web: http://st-www.cs.uiuc.edu/ plop/plop99/proceedings/

Metayer/MatcherHandler.pdf.

BIBLIOGRAPHY 107

[85]

[89]

[90]

[91]

Regine Meunier. Pipes and filters architecture. In James O. Coplien and Dou-
glas C. Schmidt, editors, Pattern Languages of Programs Destgn, volume 1 of
Software Patterns Series. Adddison-Wesley, 1995.

James Noble. Found objects. a pattern language for finding objects from
within designs. In Proceedings of the First European Conference on Pattern
Languages of Programs, Pattern Language Workshop, 1996. Retrieved Jan-

uary 21, 2000 from the EuroPLoP™™ 1996 database on the World Wide Web:
http://www.cs.wustl.edu/~schmidt/europlop-96/wwl-papers.html.

James Noble. Classifying relationships between object-oriented design pat-
terns. In Australian Software Enginnering Conference (ASWEC’98), May
1998. Retrieved January 16, 2001 from James Noble’s draft paper database
on the World Wide Web: http://www.mri.mq.edu.au/ kjx/drafts.html.

James Noble and Charles Weir. Proceedings of the memory preservation
society. In Proceedings of the Third European Conference on Pattern Lan-
guages of Programs, Patterns of Design Workshop, 1998. Retrieved Septem-

ber 14, 2000 from the EuroPLoP™™ 1998 database on the World Wide Web:
http://www.coldewey.com/europlop98/Program/Papers/Weir.ps.gz.

Jean-Lin Pacherie and Jean-Marc Jézéquel. The operator de-
sign pattern application to parallel computation. In Proceedings
of the Third Joint Pattern Languages of Programs, Concurrency
and Operating Systems Workshop, 1996. Retrieved January 20,

2000 from the PLoP™ 1996 database on the World Wide Web:
http://www.cs.wustl.edu/~schmidt/PLoP-96/jezequel.ps.gz.

Marta Patino, Francisco Ballesteros, Ricard Jiménez, Sergio Arévalo, Fabio
Kon, and Roy Campbell. CompositeCalls: A design pattern for effi-
cient and flexible client-server interaction. In Proceedings of the Sizth Pat-
tern Languages of Programs, Group Seven Workshop. Pattern Languages
of Programs, 1999. Retrieved September 14, 2000 from the PLoP™™
1999 database on the World Wide Web: http://jerry.cs.uiuc.edu/
~plop/plop99/proceedings/ballesteros/interpfim.pdf.

Luis Moniz Pereira, Luis Monteiro, José Cunha, and Joaquin N. Aparicio.
Delta Prolog: A distributed backtracking extension with events. In Ehud
Shapiro, editor, Third International Conference on Logic Programmaing, Lec-
ture Notes in Computer Science. Springer-Verlag, 1986.

108

[92]

[96]

[97]

[98]

[99]

BIBLIOGRAPHY

Dorina Petriu and Gurudas Somadder. A pattern language for improving
the capacity of layered client/server systems with multi-threaded servers.
In Proceedings of the Second European Conference on Pattern Languages
of Programs, Distribution Patterns, Munich, Germany: Siemens, 1997. (Eu-
roPLoP’97) Siemens Technical Report 120/SW1/FB. Retrieved September
19, 2000 from the EuroPLoP™ 1997 database on the World Wide Web:

http://www.riehle.org/events/europlop-1997/p23final.pdf.

Wolfgang Pree. Design Patterns for Object-Oriented Software. Addison-
Wesley, 1995.

Nat Pryce. Idiom or pattern. Portland Pattern Repository, 8 June 1999.
http://c2.com/cgi/wiki?IdiomOrPattern.

Irfan Pyarali, Tim Harrison, Douglas C. Schmidt, and Thomas Jordan.
Proactor: An architectural pattern for demultiplexing and dispatch-
ing handlers for asynchronous events. In Brian Foote, Neil Harrison,
and Hans Rohnert, editors, Pattern Languages of Programs Design,
volume 4 of Software Patterns Series, 1999. Retrieved January 20,
2000 from the PLoP™ 1997 database on the World Wide Web:
http://st-www.cs.uiuc.edu/users/hanmer/PLoP-97/Proceedings/
pyarali.proactor.pdf.

Irfan Pyarali, Carlos O’Ryan, and Douglas C. Schmidt. Patterns for effi-
cient, predictable, scalable, and flexible dispatching components. In Pro-
ceedings of the Seventh Pattern Languages of Programs, The Network of
Learning Workshop. Pattern Languages of Programs, 2000. Retrieved De-
cember 13, 2000 from the PLoP™ 2000 database on the World Wide Web:
http://jerry.cs.uiuc.edu/ plop/plop2k/Pyarali/Pyarali.pdf.

Michel Raynal. A simple taxonomy for distributed mutual exclusion algo-
rithms. Operating Systems Review, 25:47-50, April 1991.

John Hamilton Reppy. Higher-order Concurrency. PhD thesis, Department of
Computer Science, Cornell University, Ithaca, NY, 1992. Retrieved January
18, 2000 from the NECI Scientific Literature Digital Library database on the
World Wide Web: http://citeseer.nj.nec.com/104521 .html.

Dirk Riehle. Bureaucracy-a composite pattern. In Proceedings of the
First European Conference on Pattern Languages of Programs, Other Pat-
terns Workshop, 1996. Retrieved January 21, 2000 from the EuroPLoP™M

BIBLIOGRAPHY 109

100]

[101]

[102]

[103]

[104]

[105]

[106]

1996 database on the World Wide Web: http://www.cs.wustl.edu/
~schmidt/europlop-96/ww3-papers.html.

Linda Rising. The Patterns Handbook: Techniques, Strategies, and Applica-
tions. Cambridge University Press, 1998. Collected and Introduced by Linda
Rising.

Antoénio Rito Silva, Joao Pereira, and José Alves. Object synchroniza-
tion patterns. In Proceedings of the First European Conference on Pattern
Languages of Programs, Distribution Workshop, 1996. Retrieved January

21, 2000 from the EuroPLoP™ 1996 database on the World Wide Web:
http://www.cs.wustl.edu/~schmidt/europlop-96/papers/paper09.ps.

Anténio Rito Silva, Joao Pereira, and Pedro Sousa. Local serialization pat-
tern. In Tenth Annual Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’95), volume 30(10). SIGPLAN
Notices, October 1995. Retrieved September 20, 2000 from the OOP-
SLA 1995 database on the World Wide Web: http://www.cs.wustl.edu/
~schmidt/00PSLA-95/html/papers/atomobj.ps.gz.

Hans Rohnert. The proxy design pattern revisited. In John M. Vlissides,
James O. Coplien, and Norman L. Kerth, editors, Pattern Languages of Pro-
grams Design, volume 2 of Software Patterns Series. Addison-Wesley, 1996.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modeling and Design. Prentice Hall, 1991.

Aamod Sane and Roy Campbell. Composite messages: A structural pattern
for communication between components. In Tenth Annual Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’95), volume 30(10). SIGPLAN Notices, October 1995. Retrieved
September 20, 2000 from the OOPSLA 1995 database on the World Wide
Web: http://www.cs.wustl.edu/~schmidt/00PSLA-95/html/papers/
aamod.ps.gz.

Aamod Sane and Roy Campbell. Resource exchanger: A behavioural pat-
tern for low-overhead concurrent resource management. In John M. Vlis-
sides, James O. Coplien, and Norman L. Kerth, editors, Pattern Languages
of Programs Design, volume 2 of Software Patterns Series, pages 461-473.
Addison-Wesley, 1996.

110

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

BIBLIOGRAPHY

Douglas C. Schmidt. Family of design patterns for application-level
gateways. Theory and Practice of Object Systems, 2(1), December
1996. Special issue on Patterns and Pattern Languages. Retrieved
January 20, 2000 from the ACE database on the World Wide Web:
http://www.cs.wustl.edu/~schmidt/PDF/TAPOS-00.pdf.

Douglas C. Schmidt. Applying patterns and frameworks to develop object-
oriented communication software. In Peter Salus, editor, Handbook of Pro-
gramming Languages, volume 1. MacMillan Computer Publishing, 1997.

Douglas C. Schmidt. Strategized locking, thread-safe interface, and scoped
locking: Patterns and idioms for simplifying multi-threaded C++ com-
ponents. C++ Report, 11(9), September 1999. Retrieved January 20,
2000 from the World Wide Web: http://www.cs.wustl.edu/~schmidt/
PDF/locking-patterns.pdf.

Douglas C. Schmidt. Monitor object—an object behavioral pat-
tern for concurrent programming. C++ Report, 2000. Re-
trieved September 20, 2000 from the World Wide Web:
http://www.cs.wustl.edu/~schmidt/PDF/monitor.pdf.

Douglas C. Schmidt and Timothy Harrison. Double-checked locking. an
object behavioral pattern for initializing and accessing thread-safe ob-
jects efficiently. In Robert C. Martin, Dirk Riehle, Frank Buschmann,
and John Vlissides, editors, Pattern Languages of Programs Design, vol-
ume 3 of Software Patterns Series. Addison-Wesley, 1997. Retrieved Jan-
uary 20, 2000 from the PLoP™ 1996 database on the World Wide Web:
http://www.cs.wustl.edu/~schmidt/PLoP-96/DC-Locking.ps.gz.

Douglas C. Schmidt, Carlos O’Ryan, Michael Kircher, Irfan Pyarali,
and Frank Buschmann. Leader/followers: A design pattern for effi-
cient multi-threaded event demultiplexing and dispatching. In Proceedings
of the Seventh Pattern Languages of Programs, The Network of Learn-
ing Workshop. Pattern Languages of Programs, 2000. Retrieved Decem-
ber 13, 2000 from the PLoP™™ 2000 database on the World Wide Web:
http://jerry.cs.uiuc.edu/ plop/plop2k/0Ryan/ORyan.pdf.

Fred Schneider. On Concurrent Programmaing. Springer-Verlag, 1997.

Jean-Francois Selber and Gilles Le Goff. Task manager design pattern.
In Proceedings of the Fourth European Conference on Pattern Languages

BIBLIOGRAPHY 111

[115]

[116]

[117]

[118]

[119]

[120]

[121]

of Programs, Patterns of Design Workshop, 1999. Retrieved September
14, 2000 from the EuroPLoP™ 1999 database on the World Wide Web:
http://www.argo.be/europlop/Papers/Final/Goff.doc.

Mary Shaw. Some patterns for software architecture. In John M. Vlissides,
James O. Coplien, and Normal L. Kerth, editors, Pattern Languages of Pro-
grams Design, volume 2 of Software Patterns Sertes. Addison-Wesley, 1996.

J. A. Simpson and E. S. C. Weiner, editors. The Ozford English Dictio-
nary. Oxford University Press, 2 edition, 1989. Retrieved November 6,
2000 from The Oxford English Dictionary database on the World Wide Web:
http://daisy.uwaterloo.ca/~fwtompa/oed/oed-local/lookup.cgi.

Peter Sommerlad. Command processor. In John M. Vlissides, James O.
Coplien, and Norman L. Kerth, editors, Pattern Languages of Programs De-
sign, volume 2 of Software Patterns Series. Addison-Wesley, 1996.

Peter Sommerlad and Frank Buschmann. The manager design pat-
tern. In Joint Pattern Languages of Programs Conference, System Con-
figuration and Resource Management Workshop, 1996. Retrieved Jan-
uary 20, 2000 from the PLoP™ 1996 database on the World Wide Web:
http://www.cs.wustl.edu/~schmidt/PLoP-96/ sommerlad.ps.gz.

Peter Sommerlad and Michael Stal. The client-dispatcher-server design pat-
tern. In John M. Vlissides, James O. Coplien, and Norman L. Kerth, editors,
Pattern Languages of Programs Design, volume 2 of Software Patterns Series.

Addison-Wesley, 1996.

Michael Stal. The broker architectural framework. In Tenth An-
nual Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’95), volume 30(10). SIGPLAN Notices, Oc-
tober 1995. Retrieved September 20, 2000 from the OOPSLA 1995
database on the World Wide Web: http://www.cs.wustl.edu/~schmidt/
O0PSLA-95/html/papers/broker.ps.gz.

Darlene Stewart and W. Gentleman. Non-stop monitoring and de-
bugging on shared-memory multiprocessors. In Proceedings of the 2nd
International Workshop on Software Engineering for Parallel and Dis-
tributed Systems (PDSE °97). Institute of Electrical and Electronics
Engineers, Inc., 1997. Retrieved January 19, 2000 from the Na-
tional Research Council of Canada database on the World Wide Web:
http://wwwsel.iit.nrc.ca/abstracts/NRC40147.abs.

112 BIBLIOGRAPHY

[122] P.P. Tanner, S.A. MacKay, D.A. Stewart, and M. Wein. A multi-
taasking switchboard approach to wuser interface management. In
Proceedings of the 13th annual conference on Computer graphics (SIG-
GRAPH ’86), Computer Graphics, volume 20, 1986. Retrieved March 1,

2001 from the ACM Digital Library database on the World Wide Web:
http://info.acm.org/pubs/citations/proceedings/graph/15922/p241-tanner.

[123] Jean Tessier and Rudolf Keller. Manager-agent and remote operation:
Two key patterns for network management interfaces. In Proceedings of
the Third Joint Pattern Languages of Programs, Frameworks and Architec-
tures Workshop, 1996. Retrieved January 20, 2000 from the PLoP™™ 1996
database on the World Wide Web: http://www.cs.wustl.edu/~schmidt/
PLoP-96/keller.ps.gz.

124] Walter F. Tichy. Essential software design patterns. Retrieved November
g
10, 2000 from the World Wide Web: http://wwwipd.ira.uka.de/~tichy/
patterns/concurrency.html.

alter F. Tichy. catalogue of general-purpose software design patterns.
125] Walter F. Tichy. A log fg 1 f desig
In Proceedings of Technology of Object-Oriented Languages and Systems
(TOOLS 23). IEEE Computer Society, 1998. (invited paper).

[126] Allan Vermeulen. An asynchronous design pattern. Dr. Dobb’s Journal, 21(6),
1996.

[127] Allen Vermeulen, Gabe Beged-Dov, and Patrick Thompson. The pipeline
design pattern. In Tenth Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA’95), vol-
ume 30(10). SIGPLAN Notices, October 1995. Retrieved Septem-
ber 20, 2000 from the OOPSLA 1995 database on the World Wide
Web: http://www.cs.wustl.edu/~schmidt/00PSLA-95/html/papers/
quilt.ps.gz.

[128] Mauricio J. Vianna e Silva, Sergio Carvalho, and John Kapson.
Patterns for layered object-oriented applications. In Proceedings
of the Second FEuropean Conference on Pattern Languages of Pro-
grams, Distribution Patterns Workshop. (EuroPLoP’97) Siemens Tech-
nical Report 120/SW1/FB, 1997. Retrieved October 21, 2000
from the EuroPLoP™ 1997 database on the World Wide Web:
http://www.riehle.org/events/europlop-1997/p5final.pdf.

BIBLIOGRAPHY 113

[129]

[130]

[131]

[132]

[133]

[134]

[135]

John Vlissides. Pattern Hatching: Design Patterns Applied. The Software
Pattern Series. Addison-Wesley, 1998.

Eugene Wallingford. The sponsor-selector pattern. In Proceedings
of the Third Joint Pattern Languages of Programs, System Configura-
tion and Resource Management Workshop, 1996. Retrieved January
20, 2000 from the PLoPT™ 1996 database on the World Wide Web:
http://www.cs.wustl.edu/~schmidt/PLoP-96/wallingford.ps.gz.

Charles Weir. Architectural styles for distribution. In Proceed-
ings of the Second FEuropean Conference on Pattern Languages of Pro-
grams, Distribution Workshop, 1997. Retrieved January 21, 2000
from the EuroPLoP™ 1997 database on the World Wide Web:
http://www.riehle.org/events/europlop-1997/p21ifinal.pdf.

Gregory V. Wilson. Practical Parallel Programming. MIT Press, 1995.

Kirk Wolf and Chamond Liu. New clients with old servers. In James O.
Coplien and Douglas C. Schmidt, editors, Pattern Languages of Programs
Design, volume 1 of Software Patterns Series. Adddison-Wesley, 1995.

Bobby Woolf. The object recursion pattern. In Proceedings of the Fifth
Pattern Languages of Programs, Site Repair Workshop, 1998. Retrieved
October 21, 2000 from the PLoP™ 1998 database on the World Wide
Web: http://jerry.cs.uiuc.edu/~plop/plop98/final submissions/
P21.pdf.

Walter Zimmer. Relationships between design patterns. In James O. Coplien
and Douglas C. Schmidt, editors, Pattern Languages of Programs Design,
number 1 in Software Patterns Series, pages 345-364. Addison-Wesley Pub-
lishing Company, Inc., 1995.

Index

abortable interaction, 25
acceptor, 51
actions triggered by events, 28
active object, 47
actor, 47
concurrent object, 47
serializer, 47
actor, 31, 47
actor-agent-supplier, 57
actor-supplier, 57
actor-agent-supplier, 57
adapter, 36
adapter broker, 41
administrator, 38, 48, 53
observer, 71
announcer/listener, 71
broadcast, 71
broadcaster /listener, 71

broadcasting sequential processes,

71
caller /provider, 71
component bus, 71
dependency, 71
dependent, 71
handler, 71
listener, 71
notification server, 71
notifier, 71
propagator, 71
provider /observer, 71
publisher-subscriber, 71

spy, 71
subscriber/publisher, 71

update, 71
valuemodel, 71
propagator, 73
adaptive, 73
backward, 73
eager, 73
forward, 73
immediate, 73
lazy, 73
optimistic, 73
strict, 73
strict, with failure, 73
update on demand, 73
ambassador, 37
remote proxy, 37
announcer/listener, 71
any to one, 22
architectural pattern, 4
broker, 4
communicating processes, 27
Model-View-Controller, 5

assassin, 54

asynchronous communication, 21, 27

authenticator, 37, 40
protection proxy, 37

balking, 28
batch communication style, 27
blackboard, 50, 60

production system, 61

INDEX

repository, 61
bodyguard, 40, 45
warden, 45
broadcast, 22, 71
broadcaster/listener, 71
broadcasting sequential processes, 71
Broker, 4
broker, 8, 40, 72
adapter, 41
callback, 41
direct communication , 41
divorce attorney, 42
entity, 44
going postal, 42
going to court, 42
going to the chapel | 43
intermediary, 42
matchmaker, 43
centralized clearing house, 43
patch panel, 43
message passing, 41
trader, 41
transceiver-parcel, 42
broker as divorce attorney, 42
broker as intermediary, 42
builder, 47
bureaucracy, 69
bureaucrat, 69

cache proxy, 36

callback broker, 41

caller/provider, 71

caretaker, 49

central coordinator, 31

centralized clearing house
matchmaker, 43

chain of respounsibility, 69
bureaucracy, 69
bureaucrat, 69

115

event handler, 69

matcher-handler, 69

responder, 69
client-server interaction patterns, 65
client-server-service, 53, 62

thread pool, 53
client-side design patterns, 35
client-side patterns, 35
collection-worker, 60
command, 29, 52

interruptible, 29

override current processing, 29
command processor, 51

controller-command, 52
communicating processes architectural

pattern, 27

communication patterns, 21

actions triggered by events, 28

asynchronous, 21, 27

batch communication style, 27

balking, 28
direction of information flow, 21,
23

abortable interaction, 25
backward, 24
forward, 24
handshaking, 25
inward, 24
monitorable interaction, 25
opaque interaction patterns, 23
outward, 24
pull, 24
push, 24
round robin polling, 23
events, 28
heartbeat, 26
interacting peers, 25
number of participants, 21
any to one, 22

116

broadcast, 22
many to many, 22
multicast, 22
one to many, 22
one to one, 22
pipe, 26
polling, 28
probe/echo, 26
simplification, 28
command, 29
composite call, 29
composite message, 29
distributed symmetric IPC, 28
synchronous, 21, 27
completion callback, 19
callback, 19
named reply, 19
SASE, 19
self-addressed stamped envelope, 19
completion token, 17
asynchronous completion token, 17
magic cookie, 17
component bus, 71
composite, 70
composite call, 29
composite message, 29
concurrent object, 47
active object, 47
connector, 51
controller-command, 52
coordinator, 32
counting proxy, 36
courier, 38, 54
critical section, 30, 32
crystalline model, 57
single program, multiple data, 58
curried object, 44

daemon, 46

INDEX

data filter, 40

death proprietor, 54

delegation, 53

demon, 46

demultiplexer, 45, 47

dependency, 71

dependent, 71

design pattern
observer, 4

direct communication broker, 41

director, 54

dispatcher, 43, 64

distributed bag of tasks, 55

distributed symmetric IPC, 28

double-checked locking, 31
lazy initialization, 32
virtual proxy, 32

embarrassingly-parallel, 59
master-worker, 59
task queue, 59
emissary, 39
entity broker, 44
event channel, 39
event goal, 18
event handler, 69
event-based integration, 72
events, 28
evictor, 54
death proprietor, 54
undertaker, 54
vulture, 54
executive, 47

facade, 44

factory callback, 46

federation of lookup services, 49
filter, 22

firewall proxy, 36

INDEX

forwarder, 38
forwarder-receiver, 38
framework, 5

future, 37

gaggles, 57
Gang of Four, 3
gateway, 38, 39

proxy, 38
ghost pattern, 36
GOF, 3
going postal broker, 42
going to court broker, 42
going to the chapel broker, 43
guarded methods, 30
guardian, 47, 50

handle-body idiom, 36
handler, 71
handshaking, 25
heartbeat, 26
host-helper, 56

idiom, 3
handle-body, 36
interacting peers, 25
centralized, 25
ring, 25
symmetric, 25
interaction patterns
abortable interaction, 25
handshaking, 25
monitorable interaction, 25
opaque 1nteraction, 23
round robin polling, 23
intermediary
curried object, 44
dispatcher, 43, 64
facade, 44
mailbox, 45

pass through, 43
proactor, 45
proxy, 36
reactor, 46
router, 45

intermediary design patterns, 35
interruptible command, 29

override current processing, 29

lazy initialization, 32

double-checked locking, 32

leader /followers, 60
leasing, 49

library, 50

listener, 71
listener-based object, 47

builder, 47
demultiplexer, 47
executive, 47
guardian, 47
object adapter, 47
parser, 47
reactor, 47
skeleton, 47

local atomicity, 32
local serialization, 32

critical section, 32
local atomicity, 32
object concurrency control, 32

lock manager, 31

lock server, 49

lock patterns, 33

queued, 33
reader/writer, 33
counted, 34
distributed, 34
reader/writer lock
queued, 34
strategized locking, 34

117

118

test-and-set, 33
lock server, 31, 49

lock manager, 49
lookup, 49

federation, 49

mailbox, 45
manager, 49
lock, 31
manager-agent, 43, 50, 56
many to many, 22
master-slave, 56, 57
actor-agent-supplier, 57
blackboard variant, 62
crystalline model, 57
gaggles, 57
host-helper, 56
master-slave for parallel compute
services, 57
object group, 56
operator, 57
slaves as threads, 57
supervisor-worker, 58
master-slave for parallel compute ser-
vices, 57
master-worker
embarrassingly-parallel, 59
matcher-handler, 69
matchmaker, 43
centralized clearing house, 43
patch panel, 43
mediator, 38, 64
administrator, 38
bodyguard, 45
broker, 40
adapter, 41
callback, 41
direct communication , 41
divorce attorney, 42

INDEX

entity, 44
going postal, 42
going to court, 42
going to the chapel | 43
intermediary, 42
matchmaker, 43
message passing, 41
trader, 41
transceiver-parcel, 42
courier, 38
data filter, 40
emissary, 39
event channel, 39
forwarder, 38
forwarder-receiver, 38
gateway, 39
manager-agent, 43
mediator-worker, 39
name server, 38
object filter and access control, 40
relay, 38
shopper, 39
waiter, 38
warden, 45
mediator-worker, 39
message passing broker, 41
meta-pattern, 2
metapattern, 2, 5, 16
Model-View-Controller, 5
model-view-controller, 62
monitor object, 35
monitorable interaction, 25
multicast, 22
multiversion two-phase locking trans-
action, 33
mutual exclusion, 17, 30
double-checked locking, 31
guarded methods, 30

implementation

INDEX

lock patterns, 33

transaction, 32
local serialization, 32

critical section, 32

local atomicity, 32

object concurrency control, 32
lock patterns, 33
single threaded execution, 31
synchronizer, 30, 32

actor, 31

central coordinator, 31

lock manager, 31

lock server, 31
transaction, 30, 32

multiversion two-phase locking,

33
optimistic, 32
two-phase locking, 32

name server, 38

notification server, 71
notifier, 54, 71

object adapter, 47
object concurrency control, 32
object filter and access control, 40
object group, 56
object synchronization pattern, 19
object concurrency control, 19
object serialization, 19
observer, 4, 8, 46, 70, 71, 77
announcer/listener, 71
broadcast, 71
broadcaster /listener, 71
broadcasting sequential processes,
71
caller/provider, 71
component bus, 71
dependency, 71

119

dependent, 71
handler, 71
listener, 71
notification server, 71
notifier, 71
propagator, 71
provider /observer, 71
publisher-subscriber, 71
spy, 71
subscriber/publisher, 71
update, 71
valuemodel, 71
one to many, 22
one to one, 22
opaque interaction patterns, 23
operator, 57
ubiquitous agent, 57
optimistic transaction, 32
override current processing, 29
overseer, 54

parser, 47
patch panel, 43
matchmaker, 43
pattern
architectural, 4
catalog, 15
client-server interaction, 65
client-side, 35
intermediary, 35
communication, 21
definition, 1
design, 4
idiom, 3
interaction
pipeline, 65
intermediary, 35
locks, 33

meta-pattern, 2

120

metapattern, 2, 5
mutual exclusion, 30
server-side, 35
strategic, 9
synchronization, 20
completion callback, 19
completion token, 17
object synchronization pattern,
19
remote procedure call, 18
rendezvous, 17
services waiting for, 17
termination synchronization, 18
system, 15
tactical, 9
taxonomies, 3
pattern catalog, 15
pattern definition, 1
pattern system, 15
pattern taxonomies, 3
patterns
opaque 1nteraction, 23
pipe, 22, 26
circular, 26
closed, 26
open, 26
pipeline, 26, 65, 66
chain of respounsibility, 69
bureaucracy, 69
bureaucrat, 69
event handler, 69
matcher-handler, 69
responder, 69
flow network, 68
network, 69
pipes and filters, 66
producer-consumer, 66
readers and writers, 68
program chaining, 69

INDEX

remover, 66
source, 66
stream, 66
tee and join, 69
transformer, 66
translator, 66
pipes and filters, 66
polling, 28
presentation-abstraction-control, 63
proactor, 45
probe/echo, 26
process control, 47
producer-consumer, 66
producer-intermediary-consumer, 68
producer-repository-consumer, 68
producer-sensor-consumer, 68
shopper, 68
production system, 61
blackboard, 61
program chaining, 69
propagator, 71, 73
adaptive, 73
backward, 73
eager, 73
forward, 73
immediate, 73
lazy, 73
optimistic, 73
strict, 73
strict, with failure, 73
update on demand, 73
proprietor, 48
acceptor, 51
caretaker, 49
command processor, 51
connector, 51
death, 54
guardian, 50
leasing, 49

INDEX 121

lock server, 49 remote invocation, 18
lookup, 49 remote proxy, 18
manager, 49 RPC, 18
manager-agent, 50 remote proxy, 36
repository, 50 ambassador, 37
blackboard, 50 proxy-original, 37
library, 50 remote procedure call, 18
resource exchanger, 51 RPC client, 37
service configurator, 51 transparent remote access, 37
super-server, 51 rendezvous, 17
task manager, 50 binary, 17
view handler, 52 extended, 17, 33
protection proxy, 36 multiway, 17
authenticator, 37 simple, 17
provider /observer, 71 transaction, 18
proxy, 36 repository, 50, 61, 66, 68
adapter, 36 blackboard, 50, 61
cache, 36 library, 50
counting, 36 resource exchanger, 51
firewall, 36 resource pool, 53
gateway, 38 client-server-service, 53
ghost pattern, 36 thread pool, 53
protection, 36 responder, 69
remote, 18, 36 round robin polling, 23
surrogate, 36 router, 45
synchronization, 36 RPC, 18
virtual, 32, 36 RPC client, 37, 40
proxy-original, 37 remote proxy, 37

remote proxy, 37
7 secretary, 54

queued lock, 33 sender-pass through-receiver, 43
serializer, 47

reactor, 46, 47 active object, 47

reader/writer lock, 33

‘ server
readers and writers, 68 administrator. 48. 53
relay, 38 lock, 31

remote invocation, 18
remote procedure call, 18, 27
event goal, 18

notification, 71
proprietor, 48
acceptor, 51

122

caretaker, 49
command processor, 51
connector, 51
guardian, 50
leasing, 49
lock server, 49
lookup, 49
manager, 49
manager-agent, 50
repository, 50
resource exchanger, 51
service configurator, 51
task manager, 50
view handler, 52
server-side patterns, 35
service configurator, 51
super-server, 51
services waiting for, 17
shell task, 55
shopper, 39, 68
simplification of communication
command, 29
interruptible, 29
override current processing, 29
composite call, 29
composite message, 29
distributed symmetric IPC, 28
single program, multiple data
crystalline model, 58
single threaded execution, 31
sink, 66
skeleton, 47
slaves as threads, 57
source, 66
spy, 71
strategic patterns, 9
strategized locking, 34
strategy, 70
stream, 26, 66

INDEX

subscriber/publisher, 71
super-server, 51
supervisor-worker, 55, 58
surrogate, 36

proxy, 36
switchboard, 44
synchronization, 17
synchronization design patterns, 20

completion callback, 19

completion token, 17

object synchronization pattern, 19

remote procedure call, 18

event goal, 18
remote invocation, 18

rendezvous, 17

services waiting for, 17

termination synchronization, 18
synchronization proxy, 36
synchronizer, 30, 32

actor, 31

central coordinator, 31

lock manager, 31

lock server, 31

single threaded execution, 31
synchronous communication, 21, 27

tactical patterns, 9
task manager, 50
task queue
embarrassingly-parallel, 59
taxonomies, 3
tenant task, 55
termination synchronization, 18
fork join, 19
thread join, 19
test-and-set lock, 33
thread
per object, 31
per request, 31

INDEX

thread per object, 31
thread per request, 31, 53
thread per session, 53
thread pool, 53
client-server-service, 53, 62
resource pool, 53
thread-safe passive object, 35
timer, 54
trader, 41
transaction, 18, 30, 32
coordinator, 32
extended rendezvous, 33
multiversion two-phase locking, 33
optimistic, 32
two-phase locking, 32
transceiver-parcel broker, 42
translator, 66
transparent remote access, 37
remote proxy, 37
two-phase locking, 32
two-phase locking transaction, 32

ubiquitous agent
operator, 57

undertaker, 54

update, 71

valuemodel, 71

view handler, 52

virtual proxy, 32, 36
double-checked locking, 32

vulture, 54

waiter, 38
warden, 45
bodyguard, 45
work crew, 55
worker, 39, 53
assassin, 54
courier, 54

123

directory, 54

evictor, 54
death proprietor, 54
undertaker, 54
vulture, 54

notifier, 54

overseer, 54

secretary, 54

shell, 55

tenant, 55

thread per request, 53

thread per session, 53

thread pool, 53
client-server-service, 53, 62
resource pool, 53

timer, 54

workers

blackboard, 60

collection-worker, 60

distributed bag of tasks, 55
agenda parallelism, 55
process farm, 55
replicated worker, 55
supervisor-worker, 55

embarrassingly-parallel, 59

leader/collaborator /collaboration,

62

leader /followers, 60

manager-agent, 56

master-slave, 56, 57
actor-agent-supplier, 57
blackboard variant, 62
crystalline model, 57
gaggles, 57
host-helper, 56
master-slave for parallel compute

services, 57

object group, 56
operator, 57

124 INDEX

slaves as threads, 57
supervisor-worker, 58
master-worker
embarrassingly-parallel, 59
task queue, 59
work crew, 55

