A Multi-Threaded Debugger for Multi-Threaded
Applications

Diplomarbeit
von

Martin Karsten

aus
Kempen-Hiils, jetzt Krefeld

vorgelegt am
Lehrstuhl fiir Praktische Informatik IV
Prof. Dr. Effelsberg
Fakultat fiir Mathematik und Informatik

Universitat Mannheim

August 1995

Betreuer: Prof. Dr. Wolfgang Effelsberg

11

Vorwort / Preface

Diese Arbeit ist an der Universitat von Waterloo, Kanada, erstellt worden, in Kooperation
mit dem Lehrstuhl fur Informatik IV an der Universitat Mannheim, Deutschland.

Zuallererst mochte ich mich bei Professor Dr. Peter A. Buhr bedanken, fur die Moglich-
keit, diese Arbeit zu erstellen, sowie fur seine sorgfaltige Betreuung und Unterstitzung.
Zusatzlicher Dank gilt Professor Dr. Thomas Kunz und Dr. Bob Zarnke fur ihre wertvollen
Anregungen. Dankbar erwahne ich an dieser Stelle die Gastfreundschaft und finanzielle

Unterstutzung der Universitat Waterloo.

Im weiteren gebithrt mein Dank Professor Dr. Wolfgang Effelsberg und Professor Dr.

Reinhard Manner von der Universitat Mannheim fur ihre Kooperation und Unterstitzung.

Ein grosses “Dankeschon” geht an meine Familie, insbesondere an meine Eltern, Gisela

und Richard Karsten, und meine Tante, Ursula Karsten.

Schliesslich, ich hatte viel Spass hier und mochte mich bei einer Reihe von Freunden

dafur bedanken, mich immer wieder von der Arbeit abgelenkt zu haben.

This thesis was written at the University of Waterloo, Canada, in cooperation with the
“Lehrstuhl fur Informatik IV” at the University of Mannheim, Germany.

First and foremost, I wish to thank Professor Dr. Peter A. Buhr for the possibility
to write this thesis and his thorough supervision and support. Additionally, I want to
thank Professor Dr. Thomas Kunz and Dr. Bob Zarnke for providing valueable comments.
I gratefully acknowledge the hospitality and the financial support of the University of
Waterloo.

Furthermore, I want to thank Professor Dr. Wolfgang Effelsberg and Professor Dr.

Reinhard Manner from the University of Mannheim for their cooperation and support.

A big “thank you” goes to my family, especially to my parents, Gisela and Richard

Karsten, and my aunt, Ursula Karsten.

Finally, T had a good time and want to thank a number of friends for giving non-

technical support. (Biraj, Jenni, Martin, Stacy, that’s for you! :-))

11

Ehrenwortliche Erklarung

Hiermit versichere ich, die vorliegende Diplomarbeit ohne Hilfe Dritter und nur mit den
angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus den
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat
in gleicher oder ahnlicher Form noch keiner Pufungsbehorde vorgelegen.

Waterloo, den 13. August 1995

Martin Karsten

111

v

Abstract

An interactive source-level debugger is a tool that allows stepwise execution of an applica-
tion with possible modification of the execution path or data flow. This level of control is

essential to develop and verify hypotheses about faulty behaviour of an application.

Multi-threaded applications introduce two additional complications into debugging.
First, traditional sequential debuggers are unable to recognize the existence of different
threads of control in a program, and hence, are largely useless for concurrent debugging.
Second, data races can cause the program to alter its behaviour from execution to execu-

tion, making it difficult to reproduce failure cases.

The goal of this thesis is to identify the key aspects of interactive source-level debugging
of multi-threaded applications, which may execute in a shared address space or be spread
over multiple address spaces. Central issues are: independent control of every thread in
the target application, especially for shared-memory applications, and support for a broad

variety of application models.

A general design for a debugger for multi-threaded applications is presented. Further-
more, the debugger itself is a multi-threaded program, which allows every thread in the
target application to be controlled independently from the execution of other threads. It
can properly deal with simultaneous events by the multiple threads in the application be-
ing debugged and the interactive requests of the programmer debugging the application.
A prototype implementation for a debugger is constructed that fulfills these requirements.
It 1s built using pCi+, which extends CH with new language constructs for concurrency,
and 1t can be used to debug pCH applications. This debugger is intended to be used
stand-alone or to serve as a basis for a debugging environment that gives further support
to handle data races.

Trademarks

Ada is a registered trademark of of the U.S. Government (Ada Joint Program Office)
Alpha AXP is a registered trademark of Digital Equipment Corporation

DCE is a registered trademark of Open Systems Foundation, Inc

MIPS is a registered trademark of MIPS Technologies, Inc.

Motif is a registered trademark of Open Systems Foundation, Inc

Solaris is a registered trademark of Sun Microsystems, Inc.

SunOS is a registered trademark of Sun Microsystems, Inc.

SPARC is a registered trademark of Sparc International, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X Window System is a registered trademark of X Consortium, Inc.

Vi

Abbreviations

BFD Binary File Descriptor

COOL | Concurrent Object Oriented Language

CPU | Central Processing Unit

DCE | Distributed Computing Environment

EBBA | Event Based Behavioural Abstraction

GDB | Gnu’s Debugger

1P Internet Protocol

IPC Inter-Process Communication

RISC | Reduced Instruction Set Computer

TCP Transport Control Protocol

vil

viil

Contents

1 Introduction

1.1 Thesis Organization

2 Multi-Threaded Systems

2.1 Architectures e
2.2 Applications e
2.3 Debugging

3 Related Work

3.1 Static Analysis
3.2 Dynamic Analysis
3.3 Combined Static and Dynamic Analysis
3.4 Interactive Source-Level Debugging
3.5 Summary

4 Classification of Debuggers

4.1 Thread Types e
4.2 Address Space
4.3 Independent Target Thread Control
4.4 Comparison i e e e e
4.5 Technical Consequences
4.6 Summary e

X

- R L W

=}

10
11
11
12

5 Design Aspects

5.1 Solutions
5.1.1 Distributing the Debuggero 0oL
5.1.2 General Application Model00
5.1.3 Runtime System Cooperation

5.2 Portability

5.3 Imteroperability L

5.4 Additional Support
5.4.1 Operational Grouping L.
5.4.2 Behavioural Grouping Lo

5.5 Using GDB Code

6 Breakpoints in User Code

6.1 General Aspects L L

6.2 Restrictions on Breakpoints in User Code
6.2.1 Runtime System o
6.2.2 Leaf Procedures
6.2.3 A Race Condition
6.2.4 Re-using a Breakpoint Handler for a New Breakpoint

6.3 Saving/Restoring the Local State

7 The Debugger’s Design

7.1 Static Design
7.1.1 Symbol Access Modules
7.1.2 Kernel Thread Control
7.1.3 User-level Thread Control
7.14 Main Debugger
7.1.5 Communication Classes

22
22
23
26
27
28
29
30
30
31
31

33
33
35
36
36
37
38
39

10

7.1.6 User Interfaceo
7.1.7 Local Debugger
7.2 Dynamic Design of the Main Debugger
7.2.1 Changing Code in the Target Application
7.2.2 Setting/Resetting a Breakpoint
7.2.3 Encountering a Breakpoint/Continuing the Target
7.2.4 Deadlock Prevention
7.2.5 Migration of Kernel and User-Level Threads
7.3 Interaction with the X Window System
7.4 Interaction with GDB Code
Algorithms
8.1 Setting/Resetting a Breakpoint 0L,
8.1.1 Creating the Temporary Instructions
8.1.2 Implementing/Removing a Breakpoint
8.2 Stopping a Thread
8.3 Single Stepping L
8.4 Target Abort

User’s Guide

9.1 Starting a Debug Session Lo
9.2 Ending a Debug Session L oL oo
9.3 Target Abort
94 Main Window L
9.5 Task Window
9.6 Group Window e

Conclusions and Future Work

10.1 Summary
10.2 Future Work e

x1

59
99
60
62
64
66
67

68
68
69
69
70
73
78

A Overview of uCH+
B X Window System for uCH+

C Speed Tests

C.1 Traditional Breakpoints L0
C.1.1 Target o
C.1.2 Control Program

C.2 Local Trap Handling
C.2.1 Target
C.2.2 Control Program

C.3 Fast Breakpointso
C.3.1 Target
C.3.2 Control Program

Bibliography

xi1

83

85

88
88
88
89
91
91
92
93
93
95

97

List of Figures

2.1
2.2
2.3

4.1
4.2

5.1
5.2
9.3

6.1
6.2
6.3

7.1
7.2
7.3
74
7.5

8.1
8.2

Machine Models 3
Threads and Address Spaces 6
Threads on a Cluster 7
Example Problem 16
Multi-Threaded Debugger 18
Distribution of Work between Debugger and Target 24
Portable Design L 28
Interactive Debugging and Event Generation 30
Breakpoint Handling in User Code 34
Saving the Application’s State oL 39
Restoring the Application’s State 40
Changing Code in the Target Application 50
Setting a Breakpointo Lo 52
Encountering a Breakpoint 93
Interaction with X Window System 56
Accessto GDB Code 58
Temporary Code (general case) 61
Temporary Code (call instruction) 61

xiil

8.3
8.4
8.5

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

B.1
B.2

Temporary Code (branch instruction) 62

Implementing a Breakpoint oL 63
Stopping a Thread Lo 65
Main Window after Startup of Debugger and Target 69
Main Window after End of Target 70
Main Window showing Symbol Lookup 70
Dialog about Further Migration (uCluster) 72
Task Window showing Backtrace 73
Task Window showing Symbol Lookup 75
Breakpoint List 76
Task Window showing Running Task 7
Group Window L 78
Migration for X Library Calls 86
Callback Wrapper for Deadlock Prevention 87

xiv

List of Tables

2.1

4.1

5.1

8.1

Thread Types e 5
Properties of Interactive Source-Level Debuggers 19
Speed of Breakpoint Handling (in clock ticks) 26
Adjustments for Breakpoints on SPARC 61

p.9%

XVl

Chapter 1

Introduction

To use today’s computer resources efficiently, it 1s necessary to design solutions that take
advantage of concurrency and parallelism, either on a single machine, which may have

multiple processors, or on multiple machines, which are connected by a network.

While many approaches have been made to address multi-threaded programming and
debugging of multi-threaded programs, there is currently no consensus on how to deal
with concurrency in terms of programming languages and how to debug such programs
effectively. Parallelism is often expressed through library calls to create several threads
of control within a program or is achieved by writing several programs and having them

explicitly communicate via shared memory or message passing, like applications using the

TCP/IP protocol stack.

An alternate approach is to incorporate concurrency through new programming lan-
guage constructs. Probably the most popular example is Ada [38]. A newer example
is pC+ [6], which also is a successful approach to integrate concurrency and object-
orientation, a so-called Concurrent Object Oriented Language (COOL). The uCH++ project
extends CH++ with new language constructs to express parallelism and provides a run-
time system that runs programs concurrently or in parallel when appropriate hardware is

available.

Expressing concurrency through programming language constructs is useful and neces-
sary to make the development of large multi-threaded applications efficient and to produce
robust and maintainable software. This thesis deals with the problem of debugging concur-
rent applications programmed in a high-level concurrent programming language. While
the focus is on concurrent programming languages, the underlying principles, from the

standpoint of debugging, are applicable to several forms of parallelism.

2 CHAPTER 1. INTRODUCTION

1.1 Thesis Organization

Chapter 2 surveys different paradigms for multi-threaded systems and applications. The
major differences between debugging of sequential and concurrent applications are out-

lined. It also establishes some basic terms that are used throughout this work.

Chapter 3 surveys related approaches for debugging multi-threaded programs and

shows how this thesis fits in.

In Chapter 4, a classification of interactive source-level debuggers for multi-threaded
applications is presented. Previous approaches for interactive source-level debuggers are

examined and compared with the new ideas presented in this work.

General design goals are discussed in Chapter 5. The restrictions and additional com-
plexity resulting from these goals are shown and special aspects of a multi-threaded de-

bugger are discussed.

In Chapter 6, specific aspects of breakpoint implementation are described. As well,

Chapter 6 discusses low-level issues that vary for different platforms.

Chapter 7 presents the design of the implemented prototype. Static aspects like sep-
arating the debugger into multiple modules are presented in detail. Also, the dynamic
aspects, resulting from the fact that the debugger is itself a multi-threaded application,

are discussed.

The algorithms for the core operations of the debugger that deal with the aspects from
Chapter 6 are explained in Chapter 8. Because the presentation of these algorithms refers

to the design that is introduced in Chapter 7, it is presented in a separate chapter.

Chapter 9 contains the user’s guide for kdb, the prototype implementation built using
pCH, for debugging pCH+ applications.

Finally, Chapter 10 summarizes the thesis and gives ideas on how the this work can be

used in future debugging environments.

Chapter 2

Multi-Threaded Systems

2.1 Architectures

There exists a large variety of different machine architectures that support multi-threaded
programming. This variety ranges from uniprocessor machines, on which programs are
run concurrently via context-switching among different processes up to loosely coupled
networks, where an application can be distributed over different machines. Figure 2.1

gives an overview of the different architectures.

multithreaded applications

uni processor multiprocessor
dataparalel message passing shared memory
single machine network

Figure 2.1: Machine Models

A major issue in distinguishing the different architectures, from the standpoint of

debugging, is the type of inter-process communication (IPC) used to enable communication

4 CHAPTER 2. MULTI-THREADED SYSTEMS

among different threads of control. The two major approaches are message passing and

shared memory, which both need to be supported by debugging tools.

Support for message passing mechanisms is needed because there will always be situ-
ations where shared memory does not exist among computers that need to communicate.
Even if a distributed system provides a shared memory emulation, there will be situations
where the efficiency of the emulation is unacceptable. Hence, there will always be applica-
tions that use message passing, and therefore, debugging tools are needed to support the

development of those applications.

Whenever shared memory and a suitable synchronization environment is available,
it should be the programmer’s first choice for communication, because it provides the
same data exchange model (and usually interface) for multi-threaded programming as for
sequential programming. The general consensus is that a shared address space is the
better mechanism to support high-level language constructs, because programmers should
not be forced to deal with all the necessary communication details required by message
passing. An examination of these aspects as well as numerous arguments for both kinds

of communication can be found in [17].

In this work, shared memory is the focus, which either relies on hardware support or

on software emulation, but certain aspects of non-shared memory are also considered.

2.2 Applications

In the literature, the terms concurrent, parallel and multi-threaded are used to describe non-
sequential applications. A multi-threaded application creates and uses several threads of
control to solve a given problem. Very often this term is used to denote the fact that
the application resides in one address space and is executed by one hardware processor,
but there is no inherent reason to restrict the term in this way. Parallelism can only
occur when multiple hardware processors are involved in executing the application. Fi-
nally, concurrency denotes that an application appears to execute in parallel. However, all
parallel systems are also concurrent systems and all parallel and concurrent applications
contain multiple threads of control. Thus, the different terms do not denote differences in
the logical structure of the program’s control flow, and therefore, all three terms are used

synonymously in this work.

Multi-threaded applications comnsist of a set of concurrent or parallel running threads.
In this work, threads are distinguished by two properties: the creation level and the address

space. The creation level indicates how the thread is created. If a thread is created by

2.2. APPLICATIONS 5

the operating system kernel, it is called a kernel thread. If a thread is created by the
runtime system of a programming language or a thread package in the user address space,
it 1s called a user-level thread. The main difference is whether the operating system kernel
is involved in the context-switches among them. The address space property indicates if

multiple threads share the same address space.

H creation level | address space

UNIX processes kernel not shared
DCE threads user not shared
SunOS threads kernel shared
pCH- tasks user shared

Table 2.1: Thread Types

Table 2.1 shows typical examples for different combinations of threads and address
spaces. This table is not exhaustive nor exclusive. For example, multiple DCE threads
can be created in the same address space or an application can contain multiple pCH+
modules, which are spread over multiple address spaces and communicate via message

passing.

The address space of an application is usually separated into code memory and data
memory. Throughout this work, whenever this distinction is important, the term code
tmage 1s used to describe a separate section of code memory. If multiple threads share
the same code image, they usually also share their data address space. The reverse is not
necessarily true, multiple threads of control can have separate code images and share their
data sections. In UNIX, every process has its own code image, but multiple processes can

share their data memory.

On all systems, user-level threads are executed by kernel threads. The user-level threads
context-switch among themselves through the runtime system provided by the program-
ming language or the thread package, and the kernel threads context-switch among them-
selves in the operating system kernel. By time-slicing user-level threads across kernel
threads, the user-level threads share each kernel thread’s time-slice. In general terms,
every kernel thread executes a group of user-level threads. A kernel thread that does not

execute multiple user-level threads can be seen as executing only one user-level thread.

To achieve better performance or load-balancing among user-level threads on multi-

processor machines, n kernel threads may be aggregate in a logical unit, called a cluster.

6 CHAPTER 2. MULTI-THREADED SYSTEMS

Address Space | Address Space | Address Space 11
Thread 1 Thread 3 Thread 5 Thread 7 Thread 9
Thread 6
Thread 2 Thread 4 Thread 8
Cluster A Cluster B

Figure 2.2: Threads and Address Spaces

The kernel threads that belong to the same cluster share one data address space and
execute m user-level threads, where usually m > n. The kernel threads do not necessarily
share one code image, but all are created from the same executable file, and hence, they
have equal code images. Within a cluster, the distribution of user-level threads among the
kernel threads can change arbitrarily. If a kernel thread is not aggregated with any other

kernel thread, it can be seen as a cluster with only one kernel thread.

In general, an application consists of multiple user-level threads, groups of which exe-
cute on a particular cluster. At least one kernel thread is associated with each cluster and
executes the user-level threads. Multiple clusters can share one address space. This model

1s general enough to cover most of the existing application models.

Figure 2.2 depicts a sample application, showing the model of threads and address
spaces. The application consists of 9 user-level threads. Threads 1 and 2 are executing
on cluster A, threads 3—-5 are executing on cluster B, all of them sharing address space 1.
Thread 6 is executing alone in address space II. Within address space I11, the threads 7-9
are executing. The kernel threads that execute the user-level threads are not shown in this

picture.

Figure 2.3 shows how multiple user-level threads on a cluster are executed by kernel
threads in pCH++. A detailed description can be found in [6]. However, the internal
scheduling mechanism in a cluster depends on the runtime system, hence, no general

assumptions can be made about it.

2.3. DEBUGGING 7

o e e - —

! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
1 |
! |
! |
|

| blocked user-level threads :
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
‘ |

— [I J [}
[J

ready user-level threads Q
e —

kernel threads

! |
|

Q user-level thread : l cluster kernel thread
|

Figure 2.3: Threads on a Cluster

2.3 Debugging

In this work, debugging is considered as a cyclic process that consists of two phases [1]:

e phase 1: developing a hypothesis about faulty behaviour of the program

e phase 2: verifying this hypothesis with successive confirmation or rejection

If an application does not show the expected or predicted behaviour, formal or non-
formal techniques are used to develop a hypothesis about the reason for the failure. Then,

attempts are made to verify this hypothesis, and if the hypothesis is confirmed, the error

8 CHAPTER 2. MULTI-THREADED SYSTEMS

is located and can be fixed. An interactive source-level debugger, referred to as a debugger,
is a tool that allows stepwise execution of an application with possible modification of the

execution path or data flow. It supports the programmer during both phases of debugging.

The major difference between debugging of sequential programs and debugging of
multi-threaded programs is that multiple threads of control are allowed to modify shared
data. Furthermore, since most applications do not run under strong real-time constraints,
the execution of each single thread is largely unpredictable due to clock tolerance, shared
device access, interrupts, etc. [19]. Therefore, access to shared data must be synchronized
properly to prevent data races. A data race occurs when at least two threads of control are

accessing the same piece of data concurrently and at least one access is a write operation.

Whenever synchronization is insufficient due to errors in the algorithm or the imple-
mentation of the program, the program becomes non-deterministic, i.e., a data race causes
the program to alter its behaviour from execution to execution. Therefore, it can be non-
trivial to reproduce an observed failure of the program. On the other hand, it must be
mentioned that there are a number of cases where non-determinism does not result from

failures, but is the intended behaviour.

When using a debugger to monitor or control the execution of an application, the
debugger itself usually influences the execution of a multi-threaded program, this phe-
nomenon is called the probe effect [10]. The probe effect might be large enough to mask
data races that only occur when the application is executing without a debugger. On the
other hand, it might also point to the existence of errors that do not occur without any
debugging activity. Even though the latter possibility can generate some surprising and
unintended help, both cases are serious problems faced by developers of multi-threaded

applications.

For the above reasons, the sole usage of an interactive source-level debugger may not
be sufficient during phase 1 of debugging of multi-threaded programs and may have to
be combined with some of the approaches that are discussed in Chapter 3. Nevertheless,
interactive source-level debugging is the only applicable approach for phase 2 debugging.
This work provides a new approach for the development of an interactive source-level
debugger for multi-threaded programs that attempts to deal with the general application

model described in Section 2.2.

Chapter 3

Related Work

There have been many different approaches for debugging multi-threaded programs. Usu-
ally the term distributed debugging is used to describe debugging of applications that are
spread over a network and parallel debugging is used to describe debugging of applications
that run on a single machine. However, a strict distinction between both definitions can-
not be made, therefore the terms debugging of multi-threaded applications or concurrent

debugging are used synonymously throughout this work.
A survey about debugging of multi-threaded programs is given in [21]. Approaches that

try to deal with data races and possible non-determinism are static analysis techniques,
event-based dynamic analysis techniques or combined approaches. Both approaches have
to be combined with traditional interactive source-level debugging to be useful in debugging

of multi-threaded programs.

3.1 Static Analysis

The term static analysis refers to the process of examining an application’s source code to

detect data races and coding schemes that are known to be dangerous, i.e., error-prone.

Emrath and Padua [8] present an approach to automatically detect non-determinism
in parallel programs. The approach uses an analyzer to check whether a program is deter-
ministic. If not, the analyzer tries to find the reasons for non-determinism. If eventually
the program is shown to be deterministic, all other errors can be addressed with an inter-
active debugger. However, if a program is intended to be non-deterministic, this approach

1s restricted to only those parts of the program that are supposed to be deterministic.

10 CHAPTER 3. RELATED WORK

The work of Schatz and Ryder [22] is another example of a static approach to detect
data races. The idea is to generate a parallel program dependency graph and perform
program slicing [39] on this graph to detect possible races. Static program slicing examines
the text of a program and includes all statements that could affect the value of a given
variable at a particular program point. Program slicing is done for any possible variable
that is suspected of being involved in a data race and the output is processed by an analyzer
module. Their approach contains a second step, symbolic execution of the program, using
the dependency graph, to verify the potential races. Symbolic execution accumulates
symbolic expressions for dedicated variables at any point along some program path. The

various generated expressions are subsequently used to verify a presumed data race.

In general, there are two major restrictions in using only static analysis:

e Examining the source code is not realistic for large programs, since it often takes

exponential time and/or space and produces huge amounts of output.

e Static analysis can give hints to error-prone parts of the program, but not everything

that is detected is an error, and, most importantly, errors may remain undetected.

Thus, static analysis tools can support the development of multi-threaded programs, but

are not powerful enough to be the only support for producing stable applications.

3.2 Dynamic Analysis

Dynamic analysis approaches try to overcome the influence of the probe effect and the
possibility of non-determinism of a multi-threaded program in a general fashion. Programs
are instrumented to generate events during communication operations and shared data
access. An analyzing tool is able to capture these events during execution time and analyze
them on-the-fly or post-mortem. Some tools are even able to simulate the environmental

events for any thread.

The basic concept for dynamic analysis is to devise a scheme for ordering captured
events [9] [19] to gain some insight about the causality of events, to collect information to
re-execute a program run and to compare the actual with the predicted behaviour of the

application.

Summers [28] presents an approach to reduce the huge amount of output generated

during event capturing. He presents an algorithm to aggregate events into abstract events,

3.3. COMBINED STATIC AND DYNAMIC ANALYSIS 11

thus reducing the number of events that are shown in the output. Another algorithm is
described that helps aggregating processes into groups of processes, called “clusters”. (The
term “cluster” is different in this context than discussed in section 2.2). In this work, the
corresponding term is group of threads. All communication among processes within a
“cluster” is not captured, which also reduces the size of the output. A realization of

cluster abstraction is presented by Kunz in [18].

EBBA [3] is a tool-set that uses behavioural abstraction. Based on events captured
from the application, behaviour patterns are recognized and compared with one or more

behaviour models that are specified by the user.

Taylor [37] presents an implementation for a graphical visualizer that displays the

events as points along time lines.

3.3 Combined Static and Dynamic Analysis

Zinn [40] proposed a combined approach of static and dynamic analysis that reduces the
time complexity of previous approaches significantly. However, it does not provide an

exact test for data races, and hence, only gives hints for locating a problem.

3.4 Interactive Source-Level Debugging

Several previous approaches exist that apply the interactive source-level debugging ap-

proach, as described in Section 2.3, to multi-threaded programs.

Node Prism

The Node Prism debugger [23] is targeted for massively parallel message-passing programs
running on a multi-processor machine. The target application consists of multiple ker-
nel threads, UNIX processes, each of them associated with one CPU. Each process is
controlled by a dedicated simplified debugger process, which executes on the same CPU.
A central debugger is running on another dedicated CPU. Each simple debugger controls
its corresponding target process on behalf of the central debugger, using the UNIX debug-
ging support. In the central debugger, processes can be aggregated into groups and debug
operations can be issued for a group of multiple processes using only one group command.
Node Prism features a partly graphical user interface with a scalable amount of detailed

output.

12 CHAPTER 3. RELATED WORK

LPdbx

Another approach is taken by the LPdbz debugger [25], a system that is targeted for
loosely coupled parallel processors. In this approach there is also one simple debugger
process attached to each target process and it controls the target process on behalf of a so-
called master debugger. This system lacks facilities to group target processes for debugging
purposes, but introduces a full graphical user interface with independent windows for each
target process. Hence, the master debugger can be seen as a multi-threaded application,
achieving concurrency by using the event handling facilities of the X Toolkit Intrinsics,

but it is not explicitly programmed as a multi-threaded application.

GDB

Gnu’s Debugger, GDB [26], also offers some support to debug multi-threaded applications.
GDB can recognize and deal with the existence of several kernel threads, which all share
the address space of exactly one UNIX process. In particular, breakpoints may be set for a
single thread and the target application is only stopped if this thread hits the breakpoint.

A Debugger for Multi-Threaded Applications

Jacobs [13] described and implemented a debugger for multi-threaded shared-memory ap-
plications, consisting of one kernel thread’s execution that is split up and used by multiple
user-level threads. With this debugger, it is possible to issue operations and set breakpoints

for individual user-level threads.

3.5 Summary

Debugging of multi-threaded applications turns out to be considerably different from de-
bugging sequential applications. The existing approaches for static and dynamic analysis
present new algorithms to deal with the possibility of data races, non-determinism and the
probe effect, as well as abstract views to deal with the huge amount of information these
algorithms generate. None of the presented approaches is sufficient to produce error-free
multi-threaded applications, neither does interactive debugging guarantee to find all errors
in an application. Static and dynamic analysis might be extremely helpful for develop-

ing a hypothesis about erroneous behaviour of a multi-threaded application. However, to

3.5. SUMMARY 13

effectively apply these approaches, there must always be an interactive source-level debug-
ger, so that it 1s possible to perform stepwise execution of a program and verify such a

hypothesis.

This work presents a design for an interactive source-level debugger that is not re-
stricted to a certain subset of multi-threaded applications and is intended to eventually

cooperate with tools that implement high-level analysis.

The surveyed debuggers from Section 3.4 are classified and discussed further in Chap-
ter 4.

Chapter 4

Classification of Debuggers

Besides the timing aspects of debugging multi-threaded programs as described in Sec-
tion 2.3, there i1s a need to distinguish approaches for debuggers based on certain technical
lines, resulting from different architectures and application paradigms that allow multi-
threaded programming. This chapter presents a classification of debuggers based on the
concurrent structure of the target application (see Section 2.2): thread creation level (ker-
nel or user) and address space (shared or non-shared). As well, one additional property is
added: support for independent target thread control, 1.e., the debugger must be able to
independently control the threads in the application, whether they are kernel or user-level
threads.

A debugger should have all these properties, so that it is a flexible tool to debug large,
heterogeneous applications that make use of different forms of parallelism and communica-
tion. The following sections explain how the fulfillment of these properties places certain
requirements on the design and implementation of a debugger. It is also examined whether

and how previous approaches fulfill each property.

4.1 Thread Types

A debugger should be able to control applications that use multiple kernel threads and
understand when the kernel threads are running multiple user-level threads. Furthermore,
if a runtime system aggregates user-level threads into clusters, as described in Section 2.2,
this also has to be dealt with by the debugger.

The traditional debugging primitives of UNIX are the ptrace [32] system call and the

newer /proc filesystem [31]. Initially, ptrace was only intended to operate on processes

14

4.2. ADDRESS SPACE 15

with one thread of control, but some work was done to enhance this functionality in Mach,
to support multiple kernel threads in one address space [7]. The /proc filesystem supports

multiple kernel threads in one address space.

With both mechanisms, even though multiple kernel threads can be recognized and
several operations can be issued on single kernel threads, there is no support for user-
level threads, since these mechanisms are part of the operating system kernel and cannot

anticipate the design of a user-level thread package.

LPdbx, NodePrism and GDB rely on the UNIX primitives, hence they only allow
debugging of applications consisting of multiple kernel threads and do not handle the
existence of user-level threads. Jacob’s system supports user-level threads, but is restricted
to one kernel thread. None of the surveyed approaches show any awareness about user-level

clustering mechanisms.

4.2 Address Space

To debug shared memory programs, a debugger has to deal with multiple threads that
execute in the same address space. In UNIX, a shared address space scenario can be
achieved by creating multiple user-level threads within a single process or having multiple
processes sharing parts or all of their address space using the mmap [30] system call. In the
Mach operating system, each “task” provides an address space and communication rights.
A kernel thread is a locus of control within a task. A UNIX process is represented by a
task with a single thread of control. Additional threads can be created within a task [4],
building an application where multiple threads share the same address space. Several
UNIX versions provide kernel thread libraries that follow the Mach model.

As well, a debugger should be able to control targets that are executing in multiple, non-
shared address spaces. As stated previously, multi-threaded applications may communicate
via message-passing as well as via shared memory to achieve optimal efficiency. It is
realistic to consider applications that are spread over different address spaces and still
have multiple threads of control executing in each address space. It is desirable to have
control for all threads aggregated for debugging purposes in one debugger instance. Hence,
a debugger should not be targeted for either shared or non-shared address spaces, but for
both. The requirement to support multiple address spaces, as well as sharing of address

spaces exists for the code images and for the data sections of an application.

GDB as well as Jacob’s debugger support multiple threads within one address space,

but do not support applications using multiple address spaces. LPdbx and NodePrism are

16 CHAPTER 4. CLASSIFICATION OF DEBUGGERS

targeted for message passing systems, hence they do not support multiple threads in one
address space but instead support multiple address spaces with one thread executing in

each.

4.3 Independent Target Thread Control

To interactively debug multi-threaded applications, it is necessary to have the ability
to handle the different threads of control independently, but through a single debugger.
Consider the following example, illustrated by Figure 4.1: Two threads, A and B, use a

dataexchange -----
thread A synchronization thread B
| o ___— 4 write
read <_________________ 1
_ 1 write
’/”///// = Vv
P e /”’/,,
read é,,/f’
,,Write
-~ suspected error
" - -V
read 4/”

Figure 4.1: Example Problem

binary semaphore to synchronize during execution, and each time B delivers data to A.
Initially the semaphore’s value is 0, and at a synchronization point, thread A calls the
P operation to wait for B. Thread B performs the V operation, whenever it can deliver

the appropriate data. Consider a hypothesis that there is a problem before a certain

4.3. INDEPENDENT TARGET THREAD CONTROL 17

synchronization point, related to the V operation executed by thread B. Then, a possible
debug approach is to start thread A and let it wait at the P operations. Meanwhile,
thread B is executed stepwise and the system’s behaviour can be inspected, since the
stepwise execution does not prohibit thread A from automatically resuming execution

whenever possible.

Hence, to debug concurrent applications, a debugger not only needs to be aware of the
different threads of control, but must allow interactive requests from the user to control
single threads or groups of threads, while other threads are executing. This objective could
be achieved by a sequential debugger that only handles one thread at a time or by having
copies of a sequential debugger controlling each target thread of interest. However, the
cleanest solution is for the debugger itself to be a multi-threaded application with different
threads managing the threads of the target application, so that a dedicated debugging
thread can be created for every target thread that is being inspected. As well, a single
thread in the debugger can control a group of threads in the target. The general design of

a multi-threaded debugger can be seen in Figure 4.2.

As an immediate consequence, the communication mechanisms between the debugger
and the target must be asynchronous at the application level, so that the necessary com-
munication for the control of a single thread neither blocks the whole debugger nor the
whole target application. On the other hand, the communication between a thread in the
target and the corresponding thread in the debugger can be synchronous or asynchronous,
depending on the actual situation. For example, the target thread’s communication is syn-
chronous, i.e., either the thread is stopped and waiting for incoming messages or running
and able to send messages. For the debugging thread of control, it is an advantage to have
asynchronous communication, so that certain operations can be issued on a running target
thread.

Unfortunately, the traditional debugging primitives of UNIX, the ptrace [32] system
call or the /proc filesystem [31], only offer a synchronous communication interface (see
Section 4.5 for details) at the application level. Hence, they are only partly suitable for a
multi-threaded debugger.

From the surveyed debuggers, only LPdbx allows independent control of every target
thread. Asynchrony is achieved with a dedicated UNIX process for each target process
that synchronously controls the target on behalf of the central debugger and communicates
with the central debugger in an asynchronous fashion, using UNIX sockets. There is no
indication, whether NodePrism allows to control different processes independently, but
since NodePrism also uses a dedicated debugging process for each target process, and

hence, overcomes the synchrony restriction of the UNIX primitives, it should be possible

18 CHAPTER 4. CLASSIFICATION OF DEBUGGERS

Debugger
thread | thread Il | thread IIl | thread IV
7 A
< ~
& S &
\(\Q Qa\?/ N 171
O NN
& S g
& & & 2
s Q %]
Target

An application is shown with 7 threads executing. Within the debugger, there are currently
4 threads, which control and examine selected target threads. Target threads 6 and 7 are
grouped for debugging purposes and controlled by debugging thread IV, whereas threads
3 and 5 execute independently of the debugger.

Figure 4.2: Multi-Threaded Debugger

to provide this capability.

However, the creation of a complete UNIX process for every thread in the target ap-
plication is an unsatisfying approach, especially in a shared environment, where multiple
users use the same machine and resources are limited. Instead, a debugger implemented

using user-level threads can provide independent target thread control more efficient.

GDB and Jacob’s debugger do not show any asynchrony at all, thus, there is no pos-
sibility to independently control target threads.

4.4 Comparison

Table 4.1 summarizes how each surveyed debugger fulfills the discussed properties. The
design that is proposed in the following chapter is able to fulfill each property, but the

implemented prototype does not completely support targets that are operating in multiple

4.5. TECHNICAL CONSEQUENCES 19

NodePrism | LPdbx | GDB | Jacobs | new prototype
user-level threads - - - . o
multiple kernel threads . ° . - °
multiple code images -) - - 0
multiple data sections . ° - - o
shared address space - - . ° °
independent control . . - - °

Table 4.1: Properties of Interactive Source-Level Debuggers

address spaces. In detail, applications that use multiple address spaces can be handled, if
all address spaces are on the same machine, but applications that are spread over multiple
machines cannot be handled by a single debugger instance. Instead, an instance of the
debugger has to be started on each machine. Partially achieving a property is denoted by

an empty circle.

4.5 Technical Consequences

In this section, it is shown how the discussed objectives for a debugger for multi-threaded

applications places certain requirements on the design of such a debugger.

All surveyed debugger solely rely on the usage of UNIX debugging primitives to com-
municate with the target application. The major reason for the usage of operating system
services for debugging is safety. It is considered to be a general requirement for a debug-
ger that neither code nor data of the debugger resides in the address space of the target
application. A debugger should be independent from the target application, otherwise a
bug in the application can cause the debugger’s data to be overwritten and can prohibit

further debugging.

It turns out that partial fulfillment of the postulated requirements is possible solely
through usage of the UNIX debugging primitives. The UNIX debugging primitives operate
on UNIX processes, hence, if an application consists of multiple code images generated
by multiple UNIX processes, multiple system calls are necessary to wait for events in the
target. Since these system calls are synchronous and events from multiple processes cannot
be multiplexed, this can only be handled by creating a dedicated control processes for each

target process, as done in LPdbx and NodePrism. However, in the case of threads sharing

20 CHAPTER 4. CLASSIFICATION OF DEBUGGERS

a code image, a debugger cannot communicate with those threads asynchronously, because
each access to the UNIX process stops all kernel threads, which in turn stops all user-level
threads, thus the threads cannot be controlled independently. Therefore, it is impossible

to support the full requirements without inventing new approaches.

When using even the extended ptrace call [7] or the /proc filesystem [31], the entire
debugger is blocked when it is waiting to receive events from the target, like encountering
a breakpoint. It is impossible to asynchronously deliver such events to the debugger
and there is no mechanism for the debugger to poll for events in a non-blocking fashion.
Instead, the debugger has to issue either the wait system call [33] (when using ptrace)
or an ioctl system call [29] with a specific request, PIOCWAIT [31] (when using the /proc
filesystem). Although for /proc there is another request type to wait for a specific kernel
thread’s events, this does not solve the problem, since multiple system calls cannot be

multiplexed.

Besides the fact that ptrace and the /proc filesystem only offer a synchronous com-
munication interface and that they are bound to one UNIX process, they cannot properly
deal with the existence of user-level threads. Even a synchronous, thus sequential, debug-
ger can only handle user-level threads with major efficiency degradations. More details

regarding efficiency can be found in Chapter 5 and Appendix C.
Another significant problem exists if only UNIX debugging primitives are used. Tradi-

tional debuggers under UNIX create a breakpoint by inserting a special trap instruction
into the target code and saving the original instruction(s). When the target executes, the
debugger is blocked until some event happens in the target. Eventually, when a trap is hit
by the target, a trap signal is raised. Instead of delivering this signal to the target process,
the UNIX kernel stops the target, wakes up the debugger and notifies it about the event.
Afterwards, the debugger can examine the state of the target, in particular the program

counter register, to determine which breakpoint was encountered.

An efficiency problem exists when the target continues execution, but the breakpoint
remains in the code. To continue the target, the breakpoint code is replaced by the original
code and a breakpoint is set immediately at the next instruction, again by replacing and
saving the code. Then the target is continued and this temporary breakpoint is hit. Control
goes back to the debugger, which again replaces the temporary breakpoint and inserts the

original breakpoint. Now the target can continue normally.

This procedure is reasonable if encountering a breakpoint involves user interaction, as
it does for a sequential target. However, it i1s very inefficient for a multi-threaded target,

if multiple threads of control execute the same code image. In this scenario, a breakpoint

4.6. SUMMARY 21

might inadvertently be triggered very often before an appropriate thread hits the break-
point and the user is notified. Each time a breakpoint is triggered by an inappropriate
thread in the traditional scenario, several kernel context switches and code replacements
take place before execution can continue. This introduces an efficiency bottleneck in de-

bugging multi-threaded shared-memory applications.

4.6 Summary

The inability to debug multi-threaded shared-memory applications and control every
thread independently is the major restriction of all surveyed debuggers. This work closes

this gap.

To solve all these problems, another more flexible form of interprocess communication
must be used to notify the debugger about events in the target. This in turn requires
local code to be added to the target that can handle the necessary protocol. Future
operating systems may offer different mechanisms that make this addition obsolete, but
for this project a hybrid approach was chosen that distributes part of the debugger into
the application. This approach is presented in Chapter 5.

Chapter 5

Design Aspects

The design of the debugger should make the functionality, as postulated in Chapter 4,

possible. Furthermore, there are the following additional design goals:

e portability for different architectures and source languages
e interoperability with other debugging tools

e additional debugging support to handle a large number of threads

This chapter describes the design decisions made to accomplish these goals.

5.1 Solutions

Three new approaches are chosen to achieve the desired goals and to fill the gaps in previous

approaches:

1. distributing the debugger
2. support for a general application model

3. runtime system cooperation

Additionally, parts of GDB code are re-used to save implementation time and to achieve

portability with respect to symbolic data access.

22

5.1. SOLUTIONS 23

5.1.1 Distributing the Debugger

The traditional approach of debugging involves controlling and manipulating the target
application through operations provided by the operating system, like the ptrace system-
call for UNIX [32] or the functionality of the /proc filesystem [31]. Unfortunately, using
only these operations imposes significant problems, as discussed in Chapter 4, since these
operations are only suited for a sequential debugger. Specifically, a traditional sequential
debugger pauses when the application is running and vice versa, since the UNIX system

services do not support asynchronous communication between the debugger and target.

The solution to achieve efficient asynchrony between debugger and target, as well as
to deal effectively with user-level threads and shared memory applications, is a hybrid

approach, which splits the communication into two independent channels.

One channel is created by using the usual debugging primitives. It is mainly used to
remotely manipulate the target, like changing code or data, but it is not used to receive
events from the target application. It is important to mention that, in the case of ptrace,
this channel is only established temporarily, whenever an operation is requested. This
temporary connection is necessary, because as soon as the debugger takes control over a
target process using the PTRACE _ATTACH request, this target process cannot continue exe-
cution normally. Therefore, after the operation is finished, control of the target process is
released using PTRACE DETACH. A similar method is unnecessary for the /proc filesystem,
since an established connection via /proc does not prohibit the target process from con-
tinuing normal execution. However, it 1s not possible to asynchronously wait for events

from the target.

The second channel is established by distributing parts of the debugger into the target,
called the local debugger. The local debugger catches all debugging events from the target
application, like hitting a breakpoint, and reports them to the global debugger. As well,
the local debugger performs various operations on behalf of the global debugger, making
them more efficient than using remote access methods. The relationship between the global

debugger and the local debugger is illustrated in Figure 5.1.

The communication between the local debugger and the corresponding control instance
in the global debugger is by message passing through a socket. This communication
channel enables communication that does not block the whole debugger neither the whole
target. Therefore, it fulfills this important requirement for independent target thread
control. Since the local debugger is added to the target and does not reside in a separate
process, it can properly deal with shared memory applications. Applications that are

spread over multiple address spaces can contain an instance of the local debugger in every

24 CHAPTER 5. DESIGN ASPECTS

Debugger

target control

5 5

i o5

= = §

3 8|3

E [
" local debugger |
Target

Figure 5.1: Distribution of Work between Debugger and Target

address space and the different event streams from the target threads can be multiplexed

in the global debugger.

Using a local debugger allows many events that occur in the target to be handled in
user-level code, so that the number of kernel context switches between debugger and target
is decreased. This approach promises a significant increase in efficiency, which is important
for certain kinds of debugging operations. For example, a single breakpoint often applies
only to one or a small number of threads. However, in an application with many threads,
a breakpoint may be inadvertently triggered by other threads thousands of times. The
check to see if a breakpoint applies to the current thread can be done locally, and only if

the breakpoint is applicable is the global debugger notified.

An important aspect of efficiency is whether user interaction takes place. Since users
do not react in orders of microseconds, there is no need to have high efficiency when
executing user commands. But, if code i1s executed without any user interaction, as it is
the case in the described breakpoint scenario, the highest possible efficiency 1s deemed to be
important. However, the highest efficiency can only be achieved when neither inter-process
communication nor a context switch to the kernel is necessary.

Some restrictions arise when distributing parts of the debugger into the target appli-

cation. It must be possible to preclude any safety leaks, introduced by having code and

5.1. SOLUTIONS 25

data in the application’s address space. The best solution is for the runtime system to
provide a memory segment that can be used for the data of the local debugger and this
data must not be overwritten by the target application. If the debugger’s data cannot be
protected, the data segment must at least be separated from the rest of the application’s
data, so that integrity checks can be performed on it. Then, additional redundancy can

be introduced to recover from data losses.

A second restriction is the fact that on most platforms the hardware architecture
or the operating system do not allow a user program to change its own code. Since
breakpoints are mostly implemented by replacing a certain piece of code with a branch
to the breakpoint handler, this precludes the local debugger from inserting or removing
breakpoints. Therefore, the other communication channel, using the traditional operating
system’s primitives, is designated to perform these kinds of operations. A detailed and

more concrete discussion of these issues can be found in Chapters 7 and 6.

At a first glance, the distribution of work might seem to introduce additional depen-
dencies on the runtime system. But it increases portability, if many dependencies on the
runtime system can be hidden by the local debugger and the communication between local
and global debugger takes place on an abstract level. This approach might also seem to
increase the probe effect, but it is overall more efficient, compared to the alternative of
checking the applicability of a breakpoint in a different debugger process. Hence, the probe

effect is not increased, but reduced.

To trigger a call to the local breakpoint handler, there are two possibilities, which were
both considered and tested during the development of the debugger. The first alternative
is to insert a trap instruction and handle it locally. This mechanism still involves the op-
erating system kernel, but is approximately 36 times faster than checking the applicability
of a breakpoint in the global debugger. A second alternative is to use a branch instruction
to invoke the local breakpoint handler. This approach introduces some restrictions, but
since it produced an additional speedup factor of 66 on top of the local trap handling, this

approach is used in this project.

The speed tests for the two alternative mechanisms only simulate the case when a
thread is continued immediately, which happens if the encountered breakpoint is not valid
for this thread. Results of the speed tests can be seen in Table 5.1; details can be found
in Appendix C. The speed tests were done on only one architecture (Solaris 2.3), but
seem to have general applicability to different versions of UNIX. However, the design of
the debugger ensures that this part can easily be changed to another approach, if for some
architectures, the gains in speed do not justify the additional work that is necessary to

cope with the increased complexity.

26 CHAPTER 5. DESIGN ASPECTS

method H user time | system time | real time ‘ factor (real)
local branch 15 4 15 1
local trap handler 245 756 999 66
traditional 637 3839 36511 2434

Table 5.1: Speed of Breakpoint Handling (in clock ticks)

A similar approach, used in a different context, is described by Kessler in [15]. Kessler
also discusses the implications of implementing breakpoints in user-level code and presents
speed tests that confirm the enormous speedup that can be achieved by local breakpoint
handling. Differences among the breakpoint implementation presented in this work and

Kessler’s work are discussed in Section 6.1.

There is only one significant drawback for this approach: the maximum number of
possible breakpoints per code image has to be specified at compile time of the application
(the reasons are explained in Section 6.1). However, I do not believe this is a practical

restriction.

Furthermore, the distribution of work is an essential design objective, otherwise it is
impossible to realize the desired multi-threaded design in today’s UNIX systems, and even

in the future, it might never be possible for systems that create user-level threads.

5.1.2 General Application Model

As stated in Section 2.2, there is a large variety of application models for multi-threaded
programs. All surveyed debuggers address only a subset of the possible programs. For
example, GDB and Jacob’s debugger are not able to deal with multiple address spaces,
whereas LPdbx and NodePrism are not intended to debug shared-memory applications.
The distribution of work, as it is introduced in the previous section, allows the following
application view, which can handle most of the existing models, since it is not bound to

operating system constraints.

The debugger only deals with user-level threads. If a kernel thread is not split up into
several user-level threads, it i1s treated as executing only one user-level thread. User-level
threads can be aggregated in a cluster, which in turn can use an arbitrary number of
kernel threads to execute the user-level threads. Furthermore, it is guaranteed that all

kernel threads, and hence all user-level threads in a cluster, operate in the same address

5.1. SOLUTIONS 27

space with respect to data. Kernel threads either share a code image or have separated
code images. In the case of pC4+, each kernel thread is a UNIX process and has its own
code image. If the notion of clusters does not exist, then every code image is treated as
a cluster containing only one kernel thread. Finally, several clusters are aggregated into a
target entity. It is guaranteed that all members of a target entity operate in the same data
address space and that a target entity consists of only one executable file, and therefore
all code 1mages are the same. Also, every executable file contains an instance of the local
debugger, which shares the data address space of the target entity. The debugger can
handle an arbitrary number of target entities. In the following, some examples are given

of how real world applications can be mapped into this model.

For a data parallel application on a multiprocessor machine consisting of a number
of UNIX processes, every UNIX process is treated as a target entity that contains one
cluster. The cluster contains one kernel thread executing one user-level thread. The same
mapping can be used for a traditional networking application that consists of multiple

UNIX processes on different machines.

An application that consists of three UNIX processes, which all contain multiple kernel
threads given by a kernel thread library can be seen as an application consisting of three
target entities, which contain one cluster each. Each cluster executes a number of user-
level threads using the same number of kernel threads. All threads in one cluster share

the same code 1mage.

5.1.3 Runtime System Cooperation

To support user-level threads, a programming language or a thread package typically
provides a runtime system that executes user-level threads by time slicing one or more
kernel threads and performing context switches among the user-level threads. To effectively
debug an application employing such user-level threads, some cooperation is needed from
the runtime system. The most important aspects are the dynamic creation and destruction
of the entities that are introduced by the programming language, like user-level threads and
clusters. A cooperating runtime system must notify the debugger about such events during
the application’s execution, otherwise the debugger has to poll for them. A notification
should also happen when the dynamic associations among kernel threads, user-level threads
and clusters are changed, e.g., if a user-level thread is allowed to migrate from one cluster
to another. Finally, there must be a mechanism to prevent a user-level thread from being
scheduled for further execution when the thread is stopped at a breakpoint, as well as to

resume execution when it is eventually continued by the global debugger.

28 CHAPTER 5. DESIGN ASPECTS

The cooperation of the runtime system is necessary for an effective debugger, just as
it 1s necessary to have operating system support for kernel threads from the operating
system, even for a traditional, sequential debugger. The runtime system support can be
defined as an abstract protocol, partly matching the protocol between local and global
debugger. If there is a general scheme, i.e., which runtime events are reported to the

debugger, then this increases the generality and portability of the debugger.

5.2 Portability

Portability across different operating systems and architectures is important, as well as
portability for different source languages. Portability can be achieved by strict encapsula-
tion of dependent code. Figure 5.2 illustrates the separation of the debugger into multiple

modules to ensure certain portability aspects, which are discussed in this section.

User Interface

Symbol Information
Application Code Debugger

Symbol Information
Application Data

User-level Thread Control Layer |- -

Kernel Thread Control Layer

Tar get Runtime Syster? |

Figure 5.2: Portable Design

An important aspect of debugging is the availability of any debugging hardware sup-
port. Hardware support might be supplied for single-stepping, if a trace bit can be set in
the processor status register, so that a trap occurs after the execution of every instruction.
Another feature is monitoring memory access. In this case, a trap is raised on every access

of one or more memory addresses.

Unfortunately, a debugger cannot rely on the existence of such features or even on a

5.3. INTEROPERABILITY 29

common interface. Thus, the relevant code must be encapsulated so that it can be easily

adapted to different architectures and still achieve optimal efficiency on each.

Furthermore, if little or no hardware support is given, these facilities must be emulated
in software. Single-stepping can be achieved by setting a breakpoint after the current
instruction. The breakpoints in turn are either implemented as a special instruction that
raises a trap explicitly or as a call to a dedicated breakpoint routine. Monitoring memory

access can be simulated in a way similar to single-stepping.

The operating system might also provide services to control the behaviour of an ap-
plication, but again, the debugger can neither rely on their existence nor on a common
functionality. However, in general, the operating system is the provider of communication

services among kernel threads.

Clearly, code that controls kernel threads depends on the operating system, while
the code that controls the user-level threads relies on the runtime system. Hence, the
part of the debugger that communicates with the operating system, as well as the part
communicating with the runtime system, have to be strictly separated from the rest of the

debugger.

As well, the debugger works symbolically, therefore it must access the application’s
global symbol table and code debugging information, which is created during the compi-
lation of the source program. The format of this information may depend on the source
language as well as on the operating system. Thus, a separate module is designated for
parsing the symbol information. To be even more flexible, a distinction between code

symbols and data symbols is made, since they may require different treatment.

Finally, to let the debugger be flexible with regard to the desired user interface, the
implementation of the debugger is separated from the implementation of the user interface,

so that various styles of user interfaces can be built.

5.3 Interoperability

Event collection and graphical visualization of the behaviour of a concurrent program can
help understanding the program as well as help the programmer to reason about faulty
behaviour. Therefore it seems reasonable to integrate all these abilities into a debugging
environment. To support this, the local debugger must provide additional functionality to
report specified events or the results of statistical probes of the program’s state to analysis

or visualization tools.

30 CHAPTER 5. DESIGN ASPECTS

However, code for analysis and visualization and code for interactive debugging must
be able to interact, but be designed separately. Although this thesis deals mainly with
interactive source-level debugging, these compatibility issues have to be kept in mind.

Figure 5.3 shows the relationship between visualization and debugging.

Debugger Analysis/Visualization

interaction

target control event handling

)
o

Figure 5.3: Interactive Debugging and Event Generation

5.4 Additional Support

Since the number of target threads can grow very large, it is very convenient to aggregate
threads into a group and issue commands to a group of threads, as well as watch the
behaviour of a group of threads. Two different kinds of grouping are identified. An
operational group denotes aggregating multiple threads into a group for the purpose of
directing operations to all threads in the group. A behavioural group is a group of threads
where events in only a subset of these threads can have an impact on all threads in the
group. For example, if one thread hits a breakpoint, then all threads of this group are

stopped, regardless of where they are executing.

5.4.1 Operational Grouping

Threads can be arbitrarily grouped into an operational group, but certain commands can

be applied only if they all share the same source code. For example, without sharing the

5.5. USING GDB CODE 31

same source code, it would be meaningless to specify a breakpoint in the source code for

all members of the group.

Threads can belong to more than one group and do not lose their ability to be started
and stopped separately. Operational grouping is mainly a convenience facility to simplify

the task of applying the same command to a number of threads.

5.4.2 Behavioural Grouping

Threads can be arbitrarily grouped into a behavioural group, but no thread can belong to
more than one behavioural group of threads. It is possible to integrate groups into new
higher-level groups or decompose a group into multiple groups. When a thread belongs
to a behavioural group, it is no longer possible to start and stop this thread separately.

Instead, the state of the thread is always determined by the state of the whole group.

In Section 3.2, event-based approaches for debugging multi-threaded applications are
presented. Omne aspect of these approaches is to compare the expected and the actual
behaviour of an application on a higher level, where multiple threads that perform a
certain task are aggregated for debugging purposes. Behavioural grouping supports this
approach, for example, all threads in a group are stopped, if one thread encounters a

breakpoint.

No more attention is paid to behavioural grouping, since it is beyond the scope of this
work, which only attempts to establish basic support to effectively control the behaviour

of a multi-threaded application.

5.5 Using GDB Code

Access to code symbol information, as well as to data symbol information is encapsulated
by two separate modules to increase the portability of the debugger. To achieve the
highest level of portability and to avoid unnecessary implementation work, parts of the

GDB debugger [26] were re-used.

The code that accesses the symbol information in the executable file must be split into
two layers. The lower layer deals with the different file formats for executable files, like
a.out, elf, etc. and enables access to the global symbol table. Part of the GDB source
distribution is a library called libbfd [34], which is well-suited to provide this layer.

32 CHAPTER 5. DESIGN ASPECTS

If an executable file is build using the debug option (usually the -g flag in the command
line), it contains additional debug information. The upper layer deals with the format of
this additional debug information itself. Unfortunately, there is a large variety of differ-
ent formats and the format depends on the source language, the compiler and even the
assembler [2] [36]. Therefore, this second layer provides transparent access to the debug
information. Because GDB provides this access on a variety of different platforms and
configurations, GDB code is used to access the debug information, instead of doing a new

implementation.

Additionally, GDB code 1s used to look up the contents of variables and to interpret
the data on the execution stack of a thread. The output is captured and presented in the

debugger’s user interface.

GDB is not run as a separate process. Furthermore, all parts of GDB code that can
interfere with the main debugger by calling operating system functions to gain control
over a target’s UNIX process or to manipulate the target must not be called, so they are

removed.

There are two drawbacks of reusing GDB modules. The design of GDB is tightly
integrated, so it is non-trivial to use just the necessary parts of the code. This problem
is solved by creating a library that contains the needed source code and excludes all
potentially harmful code. The second problem is the size of this code and the necessity to

configure and compile GDB before the multi-threaded debugger can be built.

However, because of the following two advantages, this approach seems to be a reason-
able strategy. First, large parts of code are re-used, instead of doing a new implementation
for symbolic data access. Second, it is possible to benefit from future GDB development,
especially with respect to portability for different platforms. The idea for this solution is
based on a library providing the whole GDB functionality that is described in a document
distributed with the GDB sources [35]. Unfortunately this document is somewhat out-
dated and the library cannot be built. Hence, significant additional work was necessary

to accomplish this task.

Chapter 6

Breakpoints in User Code

6.1 General Aspects

As stated in Section 5.1.1, it is desirable to execute the first step of breakpoint handling,
1.e., deciding if the breakpoint is applicable, in user code. Figure 6.1 shows the first step
of local breakpoint handling in C-style and assembler pseudo code.

The basic idea is that breakpoints are realized by inserting a call to a dedicated break-
point routine. The original instructions at the breakpoint location are saved and if the
breakpoint is not applicable for the current thread, they are executed at the temporary
location. Using this scheme, there is no additional code replacement nor an address-space

context-switch necessary, if a breakpoint is not applicable.

To keep the call to the breakpoint handler as simple as possible, the breakpoint number
is not passed to the breakpoint handler. Instead, N dedicated breakpoint handler routines
like breakpoint_handler_N() are created, one for each breakpoint. If a breakpoint is set,
then a call to the appropriate breakpoint handler, depending on the breakpoint’s number,

is inserted in the application’s code.

To access the information about the applicability of a breakpoint as fast as possible,
the runtime’s data structure for a user-level thread is augmented with one additional field
that contains a bitmask for all possible breakpoints. If a breakpoint is applicable for the
thread, a bit is turned on by the local debugger. In the pseudo code, this is denoted by
the field bp_check in UserLevelThread.

To handle breakpoints, the user-level state of the thread must be saved, so that exe-

cution can eventually continue from the same state. This is mainly achieved by saving all

33

34 CHAPTER 6. BREAKPOINTS IN USER CODE

class UserLevelThread {
//

char bp_check[mazimum_bp_number / 8]; // assume a char takes 8 bit
/1
b

bool breakpointHandler(int no) {
sendMessage ToGlobalDebugger(no);
bool breakpoint_removed = receiveContinueMessageFromGlobalDebugger();
return breakpoint_removed; 10

}

void breakpoint_handler_N() {

saveApplicationState();

// this_thread is a pointer to the currently executing user-level thread

if (this_thread—>bp_check[N / 81 & (1 << (N % 8))) {

if (breakpointHandler(N)) {

// Decrease the return address to execute the restored code at its original location.
// SPARC specific: -8. RA denotes the register where the return address is stored. If
// the breakpoint is still implemented for other threads, it is triggered again, but 20
// since the bitmask is already changed, this just slightly delays execution.
asm(" sub RA, -8, RA ");
restore ApplicationState();
return;

}
}

restore ApplicationState();
asm("
! reserve as many NOP instructions as needed to store the temporary code
nop 30

! final return to jump back into the application
jmp address_after_breakpoint_code

n);

Figure 6.1: Breakpoint Handling in User Code

registers and loading them back immediately before execution continues. In Figure 6.1,
this is shown by a call to save_application_state(). Depending on the architecture, some

or all registers are automatically saved upon the branch to the breakpoint handler. Only

6.2. RESTRICTIONS ON BREAKPOINTS IN USER CODE 35

the rest of them are saved from within the breakpoint handler.

When a breakpoint is hit by any thread of the target application, the corresponding
nth breakpoint handler is called. Then, the nth bit is checked in the bitfield of the current
thread’s data structure. If it is set, the breakpoint is valid for the current thread, the
global debugger is notified by the call to breakpointHandler, and the target thread is
blocked from further execution.

When a continue command is issued for this thread or the breakpoint is not valid in the
first place, execution continues. If the breakpoint is removed in the meantime, the original
instructions are already restored at the original location, but the address that is used for
the return instruction does not match this value and has to be adjusted backwards. This
adjustment can be seen in line 22 of the pseudo code. The application’s state is restored
and execution continues. If the breakpoint is not removed, the original instructions have
to be executed within the local breakpoint handler.

Since an application can not easily change the size of its code segment in memory,
placeholders for the original instructions must be added at compile time. Therefore, every
breakpoint handler function reserves some assembler instructions to hold the original in-
structions, so that they can be executed at this temporary location. The fact that a fixed
number of breakpoint handler functions are added to the target application is the reason
why the maximum number of breakpoints is limited, but can be set arbitrarily when the

application is compiled.

To execute the instructions at the temporary location, the state of the target is restored
by a call to restore_application_state(), execution continues and a final jump transfers

control back into application code at the address following the call to the breakpoint
handler.

A similar approach for breakpoints handled in user code is presented and discussed by
Kessler in [15]. Kessler starts from the same precondition that is true for breakpoints for
a multi-thread application: Substantial gains in execution of the breakpoint code justify
spending more time on implementing and removing a breakpoint. Both approaches are

compared in the following two sections.

6.2 Restrictions on Breakpoints in User Code

This section decribes a number of restrictions when using local breakpoint handling that

does not involve the kernel, most of which forbid certain kinds of code optimization.

36 CHAPTER 6. BREAKPOINTS IN USER CODE

Nevertheless, the advantages in speed justify the restrictions and the additional effort

used to work around most of them.

6.2.1 Runtime System

Because breakpoint handling interacts with the part of the runtime system that handles the
scheduling of the user-level threads, this part of the runtime system can not be debugged
using these kind of breakpoints. This seems to be an acceptable restriction; a traditional

sequential debugger can be used to debug this part, if necessary.

6.2.2 Leaf Procedures

Implementing breakpoints by a call to a local handler places certain restrictions on the
target application. One aspect of Kessler’s approach [15] is that it uses the branch in-
struction of the SPARC processor [12], which cannot span the whole address range of the
processor. Kessler’s approach circumvents this by ensuring through the linking and load-
ing process that the breakpoint handler is reachable within the possible range. A similar
mechanism was considered during this work, but because of the debugger’s portability

goal, this additional intrusion into linking and loading was unacceptable.

Usually, a microprocessor offers a mechanism to transfer control to almost any position

in the addressable code memory. This mechanism is used for this work.

On the Alpha AXP microprocessor [24] this instruction is the jmp instruction and on
the MIPS architecture [14] the j instruction. On both architectures such a jump can be
used to branch to the local breakpoint handler, as well as to return back to the application
at the end of the handler. Both architectures provide a slightly different version of a jump
that stores the current program counter value (return address) in a dedicated register and

is used for normal routine calls.

Unfortunately, the SPARC architecture only provides the second type of jump, the
call instruction, which is used to realize subroutine calls. Therefore, the return address
of the call instruction is always stored in a dedicated register and can be used by a normal

subroutine to perform the return jump.

If a routine itself makes calls to other subroutines, it must store the contents of this
dedicated register on the stack and pop it off the stack, before the return instruction is
executed. Code for this is usually added by a compiler automatically for every routine in a

program. One usual optimization option is to identify leaf procedures, i.e., routines that do

6.2. RESTRICTIONS ON BREAKPOINTS IN USER CODE 37

not perform calls to subroutines, and remove the code for saving and restoring the contents
of the return address register from those routines. This optimization must not be used on
the SPARC, otherwise a breakpoint in an optimized leaf procedure would overwrite the
return address for the procedure, causing the program to fail. Another possibility would
be to disallow setting breakpoints in optimized leaf procedures, but this is not considered

in this work, since debugging happens on non-optimized code in most cases, anyway.

6.2.3 A Race Condition

On a RISC architecture, the target address for a control transfer instruction is either
calculated implicitly (SPARC, MIPS) and the instruction after the call is executed in the
delay slot, or the target address has to be calculated explicitly and given to the jump
instruction in a register (Alpha AXP). In both cases, to insert a call to a local breakpoint
handler, more than one instruction has to be changed. In case of delayed instructions,
the instruction after the jump has to be set to nop, in the other case it is obvious that
the target address calculation has to be implemented. This places slight restrictions on
the granularity of breakpoints, for example, it is impossible to set two breakpoints at two

consecutive addresses.

A more serious implication is a possible race condition. If any thread is executing in
between these instructions or if, because of time-slicing, a thread is interrupted in between
the instructions, when they are changed, the thread executes only a part of the changed
instructions after it is eventually resumed. This is likely to fail. This race condition exists
during implementation and removal of a breakpoint. Kessler proposes the use of the annul
bit of the SPARC processor to reduce the size of the jump to the breakpoint handler to one
instruction, which precludes this race condition, since one instruction is either completely
executed or not executed when a context switch happens or a UNIX process is stopped by
a debugger. If the annul bit is set in an unconditional branch instruction (ba,a), execution
of the instruction in the delay slot is suppressed. However, this solution is not sufficient,
because, as stated above, a branch cannot span the whole address range. Additionally,
on processors like the Alpha AXP the target address must be calculated explicitly, which
is not addressed by this approach, since it is only suited for architectures that execute
delay instructions while calculating the target address of a branch. Furthermore, even if
a RISC processor uses delayed branches, there is no guarantee that such an annulment
exists. For example, the MIPS architecture, that has delayed branches, does not provide

the possibility to annul instructions in the delay slot after an unconditional branch.

Therefore, another solution is used to handle this race condition: Every user-level

38 CHAPTER 6. BREAKPOINTS IN USER CODE

thread’s program counter is checked before a breakpoint is inserted or removed. If the
race condition is detected, the operation is refused and has to be tried again. The cur-
rent implementation automatically retries the operation. The error-and-retry approach
1s satisfactory, since the probability of this race condition occurring is very small and it
always exists only temporarily. A thread can be blocked through synchronization mecha-
nisms of the runtime system and because of an error in the program it may never continue
execution. However, in this case its execution location is within the runtime system and
breakpoints are not allowed to be set there (see section 6.2.1). Because the biggest part of
the check is done in the local debugger, it is not necessary to transfer the values of each
thread’s program counter between UNIX process boundaries, so it is efficient enough not

to introduce a significant delay into this operation, which is in response to user interaction.

The check requires support from the runtime system. In detail, for every user-level
thread that is not executed by a kernel thread the, program counter at which the last
context switch occured must be saved. The algorithm for the whole breakpoint insert and

removal procedure is explained in Section 8.1.

6.2.4 Re-using a Breakpoint Handler for a New Breakpoint

When a breakpoint is no longer valid for any thread, the code changes are undone and the
local handler can be used for another breakpoint. This reuse is necessary, since the number
of breakpoint handlers is finite, therefore new breakpoints must use the same handler

routines as previous ones. A problem can occur under the following circumstances:

1. Thread A encounters breakpoint X, calls breakpoint handler X and is blocked.
2. Breakpoint X is removed for all threads.
3. Breakpoint X is re-used for a different breakpoint.

4. Thread A is continued.

When the thread is eventually continued, expecting that the original instructions can be

executed at the temporary location, it executes the wrong instructions and the application

fails.

The following mechanism, which is also described in the comment in line 18 of Fig-
ure 6.1, prevents this from happening. When a thread is continued, a flag is sent to the

local debugger, indicating whether the last encountered breakpoint is reset for this thread.

6.3. SAVING/RESTORING THE LOCAL STATE 39

If the flag is set, the thread continues execution not in the local breakpoint handler, but
at the location where the breakpoint was set. If the breakpoint is completely removed,
then the original code is already restored and execution continues normally. If not, con-
trol is transfered back to the local breakpoint handler, but since the breakpoint bitmask
1s already changed, the thread is not blocked and the original code is executed at the

temporary location.

On the other hand, if a breakpoint handler is re-used for a new breakpoint, a race con-
dition is possible for the temporary code, if a thread is executing the temporary code and
the breakpoint was not valid for this thread in the first place. This race condition is similar
to the race condition for the instructions at the breakpoint’s address (see Section 6.2.3),
but it is even less probable, since it is unlikely that a breakpoint is re-used fast enough
to ever trigger it. However, this race condition is handled in the same way, i.e., a check
1s performed, mostly locally, if any thread is executing or blocked in the local breakpoint

handler and the operation is refused and retried when the situation is detected.

6.3 Saving/Restoring the Local State

As described in Section 6.1, the local state of the application must be saved upon entry of
the local breakpoint handler. On the SPARC, the normal register window is saved using
the save instruction, which is automatically inserted by the compiler at the start of each
function. Additionally registers must also be saved. This is done by the code shown in

Figure 6.2.

or ’%g0,%gl,%15 I save global register

ta ST GETCC I get condition codes

or %g0,%gl,%16 | save condition codes
rd %y,Al7 | save y register

Figure 6.2: Saving the Application’s State

The global register %g1 can be used by an application to store temporary data. There-
fore, it must be saved in the breakpoint handler. The trap instruction in line 2 gets the
condition code bits from the processor status register and stores them into %g1, which is
subsequently saved. Finally, the 4y register, which is used temporarily for multiplication

and division instructions, is saved. The local registers %15-%17 are not used in the local

40 CHAPTER 6. BREAKPOINTS IN USER CODE

breakpoint handler, thus they can be used to hold the application’s register values. If
the breakpoint is applicable and the local breakpoint handler calls into the local debugger
to notify the global debugger, these registers are saved using the normal SPARC window
mechanism. When the thread is continued, the reverse instructions are executed, before
control transfers back into the application or before the temporary code is executed. These

instructions can be seen in Figure 6.3.

wr %g0,%17,%y restore y register
or %g0,%16,%gl
ta ST SETCC

or %g0,%15,%gl

set condition codes
reinstall condition codes

restore global register

Figure 6.3: Restoring the Application’s State

Chapter 7

The Debugger’s Design

In this chapter, the following notions from pCH+ are used to distinguish abstract data

types with respect to concurrency.
A class denotes an abstract data type that has no concurrency properties.

A monitoris a class where the invocation of public member routines is guaranteed to
be mutually exclusive. Additionally, a monitor provides mechanisms to schedule threads

externally by controlling calls to mutex member routines or internally by condition vari-

ables.

A task is considered to be an active monitor, i.e., each task object has its own thread
of control associated with it. Since a task also has the mutual exclusion properties of a
monitor, member routines of a task can only be called when the task’s thread of control

accepts these member routines or blocks internally.

7.1 Static Design

The debugger is separated into different modules according to the outline show in Fig-
ure 5.2. Each module consists of a set of classes. An object-oriented design ensures the

re-usability of the abstract parts of the debugger.

7.1.1 Symbol Access Modules

The encapsulation of the address space property is done with respect to data sections

and code sections as stated in Section 5.2. In the current implementation, both classes

41

42 CHAPTER 7. THE DEBUGGER’S DESIGN

use the functionality of the AccessGDB monitor that hides the details of using GDB code.

AccessGDB serializes access to GDB code, since that code is not thread-safe.

CodeSymbols

An instance of class CodeSymbols represents a section of code in the target application
that is built from one executable file. This class provides methods to look up the memory
addresses of locations in the source code, specified either by a function name or by a source
file and a line number. It returns an object of class CodeAddress. The class CodeAddress
must be adapted to each target system to properly represent a code address. For example,
if an application is spread over multiple code images, it must contain information to identify
the code 1mage. In the case of pCi+, a CodeAddress object is just a plain pointer value,

since all code images are built from the same executable file.

DataSymbols

An instance of class DataSymbols has the corresponding functionality as CodeSymbols,
but delivers the memory addresses of data symbols in the target application. It also has
methods to look up the contents of objects in the application, as well as getting the stack
backtrace of a user-level thread. The latter methods rely on GDB code, but since GDB
cannot distinguish between different user-level threads, additional information has to be
supplied, which is used to let the stack of the chosen user-level thread appear to be the

only stack in the application, so that the correct information is returned.

7.1.2 Kernel Thread Control

The following classes are designed to provide an abstract interface for the low-level debug

operations to enhance the portability of the debugger, as outlined in Section 5.2.

KernelThread

An object of type KernelThread represents a kernel thread in the target application and
has the same lifetime. This class offers methods to control a kernel thread, like stop,
continue, kill. Additional methods are available to look up or change a kernel thread’s
registers, readRegisters and writeRegisters. The methods stop and continue keep

track of whether a kernel thread is already stopped, so that repeated attempts are not

7.1. STATIC DESIGN 43

made to stop a kernel thread. Nested calls to stop and continue are allowed, but the
number of continue requests must match the number of stop requests, before a kernel

thread is actually continued.

An object of KernelThread can be created in two variants. A flag, given upon creation,
indicates whether the kernel thread has its own private code image. If yes, it also provides
a set of methods to inspect and change code and data private to a kernel thread. If not, i.e.,
if the kernel thread shares the code image with other kernel threads, the following methods
have no effect. These methods are readCode, writeCode, readData and writeData. In
detail, these operations invoke the corresponding ptrace or /proc system calls, depending
on which service is available on the particular architecture. If the /proc filesystem is
available, it should be the first choice, since it is the newer mechanism and considered to
be more efficient [16].

The ability to create a restricted object of type KernelThread is used in the current
implementation to deal with the yCH+ uni-processor mode (see Appendix A), where the
runtime system creates and reports multiple data structures for kernel threads, but only
the first one 1s associated with an actual UNIX process. It might also be used for systems

that create multiple kernel threads that use the same code image.

Additionally, there is a method migrate that performs all necessary updates if a kernel

thread migrates from one cluster to another.

Cluster

When multiple kernel threads that are aggregated in a cluster (see Section 2.2) use private
copies of the code image, each operation that applies to code images, like altering code,
must be executed on each kernel thread’s private code image. Additionally, access to
multiple kernel threads in a cluster must happen consistently, so that all threads appear
to execute a single code image. Therefore, operations on a KernelThread object are not
invoked directly, but through corresponding methods of the appropriate Cluster object.

These methods are writeCode, readCode, writeData and readData.

When data is looked up or modified, this has to be done for only one kernel thread, since
according to the application model from Section 2.2 all kernel threads in a cluster share a
data address space. For looking up code it is also sufficient to perform this operation on
only one kernel thread, since all kernel threads belonging to the same target entity have
the same code images (see Section 5.1.2). However, modification of code has to be done

for all code 1mages to keep them consistent.

44 CHAPTER 7. THE DEBUGGER’S DESIGN

Before any code or data is looked up or changed, all kernel threads belonging to a cluster
are stopped to achieve consistency. This is automatically done when one of the methods is
called. However when a client of a Cluster performs multiple calls, it increases efficiency
significantly if the kernel threads are stopped and restarted only once. Therefore, the
public methods stopKernelThreads and contKernelThreads are available. Nested calls
to stopKernelThreads and contKernelThreads are allowed, because the KernelThread
class keeps track of the number of stop and continue requests. This allows for a high-level
function to explicitely stop and restart the kernel threads in a cluster for efficiency reasons,

even if subsequently invoked low-level functions call these methods again.

If a breakpoint is requested for multiple user-level threads in the same cluster, it must
be implemented only once. The methods setBreakpoint and resetBreakpoint keep
track of this. The details of implementing and removing a breakpoint are described in
Section 8.1.2.

The abstract data type Cluster is a major synchronization unit. To ensure that multi-
ple accesses to kernel threads do not interfere with each other, Cluster is implemented as
a monitor. A cluster can be acquired and released explicitly, using the methods Acquire
and Release. This allows multiple operations to be executed atomically, which is espe-
cially important if a client makes use of the possibility to stop and restart all kernel threads
once for multiple method calls. Calls to Acquire and Release can be nested, but their

number must match in order to release the Cluster.

On the other hand, this mechanism implies that multiple method calls are necessary,
after a thread has acquired the lock. Hence, Cluster is an owner monitor, i.e., the thread
that acquires the monitor is allowed to call in when the monitor, in principle, is closed.
This mechanism is also useful, because there are situations where a function is called from

within Cluster and subsequently calls back into Cluster.

Breakpoint_$architecture

The class Breakpoint $architecture (where $architecture is replaced with the ap-
propriate CPU name) is inherited from the Breakpoint class (see below) and hides the
breakpoint related details of the current machine architecture from the rest of the ap-
plication. It generates the correct breakpoint instructions, as described in Section 8.1.1.
It also looks up and stores the original code that is overwritten by the breakpoint code.
The results can be accessed in a generic way through the interface of the Breakpoint

superclass.

7.1. STATIC DESIGN 45

7.1.3 User-level Thread Control

In this part of the debugger, the main abstraction is a user-level thread. User-level threads
can be manipulated and controlled in the same way as UNIX processes in a traditional

debugging environment.

ULThread

ULThread is a task, instances of which represent a single user-level thread in the target
application. It provides the functionality to control the behaviour of the corresponding
target thread and encapsulates the details that depend on the runtime system. Basic
methods are step and next for single stepping, stop and cont to change the state of the
target thread, setBreakpoint and resetBreakpoint to set and remove breakpoints for the
corresponding target thread, as well as printBacktrace and requestSymbolInformation

to look up data.

Additionally, there are methods that are called by the TargetEntity (see Section 7.1.4)
task to deliver events from the local debugger. These methods are breakpointHit, called
when the target thread encounters a valid breakpoint and migrate, which is called when

the target thread migrates from one cluster to another.

All operations are executed with the thread of control of ULThread; this allows the
control and manipulation of different target threads independently. The general mecha-
nisms for methods of ULThread are presented in Section 7.2 and algorithms for complex

operations are discussed in Chapter 8.

An object of ULThread stores all data that is necessary to access and control the cor-
responding thread in the application. This includes a pointer to the appropriate Cluster
object and the current register contents. This information is updated by messages from
the local debugger when migration is reported or a breakpoint is encountered. Alterna-
tively, a snapshot can be taken from a running thread. Taking a snapshot of a running
task allows the lookup methods printBacktrace and requestSymbolInformation to be
invoked, even when the corresponding target thread is not stopped by the debugger. While
the use of this information is rather limited if the thread is executing, it is deemed to be
helpful, if a thread is blocked due to synchronization. Especially in a deadlock situation,
this information might help to gain insight about the reasons for the deadlock.

46 CHAPTER 7. THE DEBUGGER’S DESIGN

ThreadGroup

An object of task ThreadGroup is created whenever the user aggregates target threads
into a group. It provides a subset of methods from ULThread that are applicable to a
group of threads. Requests to a ThreadGroup are dispatched to the appropriate ULThread
objects using the thread of control of ThreadGroup. The class ThreadGroup implements

an operational grouping facility as described in Section 5.4.1.

AbstractThread

AbstractThread is an abstract base class for both ULThread and ThreadGroup. It declares

the common parts of the interface and implements common functionality.

Breakpoint

This class is an abstract base class that provides an interface to access all information
needed to implement and remove a breakpoint in the application. For every actual
breakpoint that is set in the target application, an object of the appropriate subclass
of Breakpoint is created. If the same breakpoint is set for multiple user-level threads,
only one object is created. To achieve this, Breakpoint objects are created and destroyed
by a dedicated server object. This functionality is available in the TargetBreakpoints

monitor (see below).

7.1.4 Main Debugger

The main debugger uses the abstract interface given by the user-level thread control classes.
It administers the relationship between entities in the target application and the corre-

sponding objects in the debugger. It also provides the main user interface.

DebuggerMain

There 1s only one object of task DebuggerMain, which is the main object of the debugger.
It creates a socket server object that accepts connections from local debugger instances.
Whenever a local debugger instance registers at the global debugger, a corresponding
TargetEntity object is created. A main user interface is provided that lists all user-level

threads that currently exist in the target application. DebuggerMain provides the thread

7.1. STATIC DESIGN 47

of control to serve requests from this user interface. From the list of target threads, single

threads or groups of threads can be selected and inspected separately.

TargetEntity

An object of task TargetEntity exists for every local debugger instance that registers
with the global debugger. It creates the objects that communicate with the local debugger,
SocketReceiver, EventBuffer, EventCourier for receiving data and SocketSender for
sending data. A TargetEntity object is an administrator with its own thread of control.
It dispatches all incoming requests to the appropriate objects in the debugger. It contains
a monitor of type TargetBreakpoints, which is a server object that manages the creation
and destruction of Breakpoint objects. Every object of type TargetEntity creates one
CodeSymbols and one DataSymbols object corresponding to the local debugger’s code

image and data address space.

7.1.5 Communication Classes

SocketSender

The monitor SocketSender is used to communicate with the local debugger. All objects
call the method sendToLocalDebugger to deliver their messages. If multiple messages
have to be sent and received without interference from other threads, this is supported
by the concept of an atomic operation. An atomic operation is invoked by calling the
startAtomicOperation method before the operation is started. finishAtomicOperation
1s called at the end. An atomic operation guarantees that no other thread of control can

send requests in the meantime.

Nested calls of startAtomicOperation are allowed, an internal counter keeps track of
the number. It is decreased on every call of finishAtomicOperation and has to reach 0

to eventually finish the atomic operation.

SocketReceiver

SocketReceiveris a task that reads incoming events from the socket. It stores the events
in a monitor object of type EventBuffer. A dedicated courier task, EventCourier takes
the events and delivers them to TargetEntity. The only exception is the confirmation
from the local debugger for an atomic operation, which is not enqueued in EventBuffer,
but delivered directly to the SocketSender object.

48 CHAPTER 7. THE DEBUGGER’S DESIGN

7.1.6 User Interface

The user interface is built by various objects, each of which represents a window in the
user interface. The three most important ones are MainInterface, the main user interface
that cooperates with DebuggerMain; ThreadInterface, of which an object is created for
every object of type ULThread; and GroupInterface that belongs to ThreadGroup. Each
interface object represents a window on the user’s terminal and delivers the user’s requests

from this window to the appropriate debugger objects.

7.1.7 Local Debugger

The concept of having a local debugger instance added to the target application is intro-

duced in Section 5.1.1. This section presents its realization.

The names of the classes follow the pC+ naming convention (prefix “u” followed by
a capital letter) to avoid name conflicts, since their code is linked with the application.

uLocalDebugger

One object of the class uLocalDebugger is created in each part of the target applica-
tion that is stored in a separate executable file. The following methods are called by the
runtime system: createCluster, destroyCluster for creation and destruction of clus-
ters, createKernelThread, destroyKernelThread for creation and destruction of kernel
threads, createULThread, destroyULThread for creation and destruction of user-level
threads, as well as migrateKernelThread and migrateULThread to notify the debugger
about migration of threads to different clusters. The corresponding messages are sent
to the global debugger and, if necessary, the calling thread is blocked until the global

debugger sends a response.

Another method, breakpointHandler notifies the global debugger about encountering
a breakpoint. It is called by the appropriate method of uLocalDebuggerHandler, if a
breakpoint is applicable for a user-level thread. The thread is stopped until the user issues

a continue command.

uLocalDebuggerTask

An object of task uLocalDebuggerTask belongs to a uLocalDebugger object, has its own

thread of control, and receives and dispatches the messages that are sent from the global

7.2. DYNAMIC DESIGN OF THE MAIN DEBUGGER 49

debugger. When a request for an atomic operation is sent by the global debugger, the task
sends a confirmation and enters a special state accepting the messages belonging to the
atomic operation and creating responses. During an atomic operation, uLocalDebugger

1s locked, so that no events for the global debugger are produced in the meantime.

uLocalDebuggerHandler

The class uLocalDebuggerHandler provides N methods named bp_handler n, corre-
sponding to the breakpoint handler N() function that is shown in Figure 6.1 in Chap-
ter 6, for N possible breakpoints, where the applicability of a breakpoint to a user-level
thread is checked. Calls to these methods are inserted in the application, if a breakpoint is
set. Space is reserved, by some NOP instructions, so that the original code replaced by the
call to the breakpoint handler can be stored and subsequently executed in these functions.
The source code for this class is created by a shell script, so that it can be adapted to any

maximum number of breakpoints.

7.2 Dynamic Design of the Main Debugger

In this section, some central mechanisms are described to demonstrate how certain actions
take place in the global debugger. For all figures that are shown in this section and the
following sections, double frames indicate that a thread of control is associated with an

object; a dashed outer frame denotes that the object is a monitor.

7.2.1 Changing Code in the Target Application

To implement and remove breakpoints in the target application, code has to be changed
using methods of the KernelThread class. If a breakpoint is set for a user-level thread,
the code has to be changed for all code images belonging to the corresponding cluster,
since the user-level thread can be executed by any kernel thread in the cluster. In pCH+,
every kernel thread is created by a UNIX process, and hence has a private code image, but
all code images the same. Also, code changes have to happen consistently and atomically.
Therefore, code change requests are executed through the Cluster object that represents

the cluster in the target application.

Figure 7.1 shows two ULThread objects that request a code change. Only one object

is allowed to call into the monitor Cluster. Inside of Cluster is a check whether this

50 CHAPTER 7. THE DEBUGGER’S DESIGN

target application

! ! !

process , process , process , process
! ! !
! ! !

7 R i
\

I \ |

I \ |

|

UNIX kernel
!' \\

i \

| \

\

Kernel Thread Kernel Thread Kernel Thread

UL Thread UL Thread

global debugger

Figure 7.1: Changing Code in the Target Application

breakpoint is already implemented, i.e., set for another user-level thread on this cluster. If
necessary, the code is changed for all kernel threads belonging to that cluster, before the
other ULThread is allowed to set a breakpoint. As discussed earlier, the actual change is
done using operating system services that are encapsulated by the KernelThread class.

In Section 6.2.3, a race condition is discussed that can occur during setting a breakpoint
in the target application. Section 8.1.2 presents the mechanism used to solve this problem.
Unfortunately, it turns out that this solution does not fit very well in the existing design,
since its implementation is dependent on the runtime system. To maintain portability, the

7.2. DYNAMIC DESIGN OF THE MAIN DEBUGGER 51

function that performs this check should belong to ULThread. On the other hand, direct
access to the kernel thread objects is needed, and from the dynamic point of view, the
function 1s only invoked if a Cluster object really changes code to implement a breakpoint.
Therefore, an internal method is added to Cluster that implements the test for this race

condition.

7.2.2 Setting/Resetting a Breakpoint

Figure 7.2 shows the insertion of a breakpoint in the target application. If a breakpoint
is removed, similar steps are applied in reverse order. During setting of a breakpoint, the
code in the application is only changed if necessary, i.e., if this breakpoint is not already
implemented for another user-level thread. A bitmask is used in the local debugger to
check for the applicability of a breakpoint to a user-level thread (see Section 6.1). When
a breakpoint is set, it is updated only in the global debugger. However, before the thread
1s continued, the updated bitmask is transferred and installed by the local debugger.

In detail, these are the steps to set a breakpoint:

1. The user request for setting of a breakpoint is delivered to the ULThread object.

2. The corresponding breakpoint is requested at the appropriate TargetBreakpoints

manager.

3. If no such Breakpoint object for this address exists, TargetBreakpoints creates

one.
4. The number of the breakpoint is delivered back to ULThread.

5. ULThread implements the breakpoint by a call to the Cluster object corresponding

to the cluster in which the user-level thread is currently executing.
6. The code and the address of the breakpoint is looked up.

7. If the breakpoint is not already implemented for this cluster, it is implemented now,

1.e., the code is changed in the target.

8. The implementation takes place using operating system primitives.

52 CHAPTER 7. THE DEBUGGER’S DESIGN

target application

= operating system services

uL ocal Debugger

i TargetBreakpoints : Breakpoint

global debugger

user
Figure 7.2: Setting a Breakpoint

7.2.3 Encountering a Breakpoint/Continuing the Target

Figure 7.3 shows the steps that are executed when a user-level thread in the application
encounters an applicable breakpoint, i.e., a breakpoint that was set for this thread. The
thread calls into the local debugger, which sends a notification to the global debugger and
blocks the thread until the local debugger receives a continue request. Steps 9-14 show
the steps that are performed to continue a user-level thread in the target application. The
continue request is received by the uLocalDebuggerTask object in the local debugger,

which subsequently schedules the continued thread for normal execution.

1. The thread calls the breakpoint handler in the local debugger.

7.2. DYNAMIC DESIGN OF THE MAIN DEBUGGER 93

target application

ON@
5 @

uL ocal Debugger

(3)

|- - - - - -~ | y 4 | |

. @ . .

|| EventBuffer < SocketReceiver - T SocketSender ||

e e
EventCourier

@ T TargetEntity =1 ULThread
global debugger

user

©)

Figure 7.3: Encountering a Breakpoint

2. The breakpoint handler determines whether the breakpoint is applicable to this
thread.

3. The local debugger sends a notification about hitting the breakpoint. This notifica-
tion message also contains the current register set, including the current address of

the stack pointer.

54 CHAPTER 7. THE DEBUGGER’S DESIGN

4. The appropriate SocketReceiver task reads the message from the socket and en-

queues it into EventBuffer.
5. The EventCourier takes the event from EventBuffer.
6. The event is delivered to TargetEntity.
7. TargetEntity notifes ULThread.

8. The state of the user interface is changed to indicate that this task encountered a
breakpoint. Additional information is provided to the user about the location of the

breakpoint at the source code level.
9. The user continues the target thread.
10. The request to continue the thread is delivered from the user interface.

11. A message is constructed and sent to the local debugger using the SocketSender
object. Among other information, this message contains the information about which

breakpoints are applicable for this thread in a bitmask.
12. The corresponding message 1s transmitted to the local debugger.
13. The local debugger applies the new bitmask to the thread and resumes its execution.

14. The thread continues execution.

7.2.4 Deadlock Prevention

Events that are sent from the local debugger, as well as events that are created due to
user interaction, are not synchronized. Since all tasks in the global debugger are mutex
objects, i.e., member functions can only be called when a task explicitly accepts them,
this can easily lead to a deadlock if two tasks try to invoke methods of each other. It can
be seen from Figure 7.3 that usually there is no synchronization needed between sending
to and receiving messages from the local debugger. This, together with queueing events
in a buffer, prevents deadlocks and allows certain operations, like printBacktrace on
an ULThread object, to be invoked safely even when the corresponding target thread is

executing.

The only exception is during an atomic operation, when the SocketReceiver directly
invokes a method of SocketSender to indicate that the local debugger has confirmed

7.3. INTERACTION WITH THE X WINDOW SYSTEM 95

an atomic operation, so messages for the atomic operation can now be sent to the local
debugger. However, this is also deadlock-safe, because once an atomic operation is started,
SocketSender only accepts this confirmation method before accepting or sending any other

messages. The dotted line in Figure 7.3 shows this synchronization.

7.2.5 Migration of Kernel and User-Level Threads

Kernel threads as well as user-level threads are allowed to migrate from one cluster to
another. If this happens, the target application synchronizes with the global debugger.
The thread of control that executes the migration in the target is blocked until the global
debugger has performed necessary updates. Besides updating of internal data structures,

the debugger has to ensure that all breakpoint implementations are changed appropriately.

If a kernel thread migrates from one cluster to another, all breakpoints that are set for
user-level threads on the old cluster are removed from the kernel thread and the breakpoints

that are set for user-level threads on the new cluster are implemented.

If a user-level thread migrates from one cluster to another, its breakpoints are reset
at the old cluster and set at the new cluster. Setting and resetting takes place using the
usual methods that are offered by the Cluster monitor, which ensures that code changes

are done if and only if they are appropriate.

7.3 Interaction with the X Window System

Preliminary work was necessary to create a modified X Window System package for pCH+.
An overview of this package is given in Appendix B. A detailed description can be found

in [5].

Since ULThread, ThreadGroup and DebuggerMain are task objects, i.e., they each have
their own thread of control, it would be appropriate to let them independently commu-
nicate with the X server. Unfortunately, the only mechanism offered by the X library to
achieve this includes the creation of a separate socket connection to the X server for each
object. Due to the large number of ThreadInterface objects that may be created during
a debugging session, this can easily become inefficient and resource-wasting. Therefore,
only one socket connection is created to the X server and a dedicated object with its own
thread of control, provided by a modified X Window System package for pCi+ is used to

receive events from the X server. This object is of type uXEventLoopTask.

56 CHAPTER 7. THE DEBUGGER’S DESIGN

The X Toolkit Intrinsics library deals with user requests by registering callbacks for the
different kinds of events that occur due to user interaction. To catch user generated events
(buttons clicks, mouse movement, etc.), methods of the interface objects are registered
as callbacks. Incoming events from the X server are dispatched by the uXEventLoopTask
object to the appropriate user interface object using the X Toolkit Intrinsics callback
mechanism. Then, the events are directed to the different tasks, which subsequently

execute the requests using their own thread of control.

ULThread ULThread ThreadGroup DebuggerMain
v v v v
Threadl nterface Threadl nterface Grouplnterface Maininterface

s
-
Ve
s
N
N
N
N

uX EventLoopTask || | /

U\l
\ /

X [Intrinsics/ Motif libraries

A

X Server

Figure 7.4: Interaction with X Window System

Figure 7.4 shows the interaction of the uXEventLoopTask with the corresponding ob-
jects in the debugger. The interface objects are created by the corresponding debugger
tasks. They have methods that are registered as callbacks and those methods in turn

invoke the appropriate methods of the debugger tasks. In the figure, this is shown by solid
lines.

7.4. INTERACTION WITH GDB CODE 57

Whenever the debugger sends requests to the X server, for example when windows are
created or changed, the appropriate functions of the X libraries are called through the
interface objects and executed using the thread of control of the caller. This is shown in

Figure 7.4 by dashed lines.

7.4 Interaction with GDB Code

The cooperation with GDB code works as follows. A library, libgdb, is constructed that
contains the used GDB code. Access to this library is covered by the AccessGDB moni-
tor, mentioned in Section 7.1.1. GDB’s design provides the possibility to register a data
structure, target _ops, containing callbacks for a variety of actions, for example reading a
target’s registers. Usually, this mechanism is used within GDB to dynamically switch be-
tween different types of target programs, for example an executable file and a core file. The
same mechanism 1s used to let libgdb cooperate with the rest of the debugger. Callbacks

are registered for reading registers, reading code and data, and for printing output.

To 1dentify a specific thread, a request to AccessGDB is accompanied by the register set
for the thread and pointer to the Cluster object, corresponding to the cluster the thread
is currently executing in. Then, the callback functions use this data to serve requests from

libgdb. Figure 7.5 shows the interaction.
1. A request is made to AccessGDB. The register set and the pointer to the Cluster is
stored in AccessGDB.
2. The request is given to libgdb.
3. A callback is invoked, for example to read data from the target application.

4. The callback function uses the previously stored information to direct the request to

the appropriate Cluster object and provides the requested data.

5. The Cluster object in turn uses the discussed mechanisms to look up the data in

the target application.
6. Results are delivered back to AccessGDB.

7. AccessGDB transforms the results from GDB specific data structures into general

debugger data structures and delivers them to the requesting object.

58 CHAPTER 7. THE DEBUGGER’S DESIGN

target application

libgdb

Figure 7.5: Access to GDB Code

GDB code reconstructs a stack image from the given registers using the data lookup
through the Cluster object. Using this image, it can print a stack backtrace or look up

the contents of local variables, again by using the data lookup callback.

Chapter 8

Algorithms

In Chapter 6, the concept of having breakpoint handlers in the application’s code is pre-
sented and restrictions are discussed. This chapter presents the concrete algorithms im-

plemented in the prototype to deal with this complexity.

8.1 Setting/Resetting a Breakpoint

Setting a breakpoint for a user-level thread is split up in two parts. First, a call to the
local breakpoint handler is inserted in the application and the original instructions are
transferred into this handler. This step 1s done by the global debugger, using the ptrace
or /proc interface and happens once per breakpoint per cluster, even if a breakpoint is
specified for multiple threads. Second, the thread’s breakpoint bitmask is changed to
reflect that the breakpoint is valid for the thread. Usually, this changes happens in the
corresponding ULThread object in the global debugger and the bitmask is transferred to
the local debugger when the continue request for this thread is sent. The local debugger
installs the bitmask in the runtime system’s data structure for the thread. One exception
exists and is explained in Section 8.2. Inserting of a breakpoint in the code image is split
into two steps, creation of the temporary instructions and the code change. Both are

discussed in the following two sections.

Similar actions are performed when a breakpoint is removed. The bit in the task’s
bitmask is turned off and the code is changed back when the breakpoint is no longer
valid for any thread belonging to a cluster. The bitmask is transferred when the thread is

eventually continued.

99

60 CHAPTER 8. ALGORITHMS

8.1.1 Creating the Temporary Instructions

This section describes how the temporary instructions are generated for the SPARC pro-
cessor [12]. This mechanism is implemented in the class Breakpoint sparc as described
in Section 7.1.2.

General Case

When an object of type Breakpoint _sparc is created, it is given the address of the break-
point, the address of the breakpoint handler, as well as the cluster in which it is created.
The cluster is used to look up the original instructions at the breakpoint location. Then
they are checked against a table of instructions that need special treatment. In principle,
the instruction at the breakpoint address is replaced with a call instruction that points
to the appropriate breakpoint handler and the next instruction is replaced with a nop

instruction.

A problem can occur if a branch points to the address right after the breakpoint
address. If the branch is taken while the breakpoint is implemented, it does not transfer to
the breakpoint handler, but executes the nop instruction instead of the original instruction.
To prevent this from happening, the code of the current function is checked for branches to
this address, before the temporary instructions are generated in the local debugger. This
test 1s reasonably efficient, since the code can be looked up in the target’s executable file,
and even for a large function, the test is a simple a loop containing a compare statement
and this check happens in response to user interaction. If a branch is detected, the address
of the breakpoint is adjusted by +1. This is sufficient, because usually a compiler does

not produce assembler code, with a branch instruction spanning multiple functions.

At some instructions, a breakpoint cannot be set. Instead, it is adjusted to a location
either at the next or the previous address. These cases are listed in Table 8.1. While
adjusting the breakpoint address is slightly inaccurate from the assembler point of view,
experience shows that it does not cause major problems in real applications, since none
of the listed cases usually exists on statement boundaries of a high-level programming

language.

Figure 8.1 shows the code in the breakpoint handler in the general case. The restore
instruction restores the local state of the application, which lets the return address appear
in register o7, instead of the usual i7. The original instructions are executed and since
the return address is in register o7, a retl instruction is used to jump back into the

application.

8.1. SETTING/RESETTING A BREAKPOINT 61

at save adjustment by +1
before ret adjustment by +1
after ret adjustment by —1
at restore adjustment by —1
before call adjustment by +1
after call adjustment by —1
before branch | adjustment by +1
after branch | adjustment by —1

Table 8.1: Adjustments for Breakpoints on SPARC

restore ! redo save instruction state
original instruction 1
original instruction 2
retl ! jumps back into application

nop

Figure 8.1: Temporary Code (general case)

call Instruction

If a breakpoint is set at a call instruction, the argument of the call has to be adjusted
when the instruction is moved to the temporary location, since the target address for the
call is calculated relative to the program counter register. The temporary code is shown

in Figure 8.2.

call target address

restore I delay slot, executed before call
retl ! jumps back into application
nop

Figure 8.2: Temporary Code (call instruction)

The restore instruction is placed in the delay slot of the call, otherwise the call

itself would overwrite the register o7 that is used by the retl instruction to jump back

62 CHAPTER 8. ALGORITHMS

into the application.

The instruction in the delay slot of a call is not replaced by a nop, but remains at its
location, so that it is executed before the breakpoint call takes place. This guarantees the

correct relative execution order of the original instructions.

branch Instruction

If a breakpoint is set at a branch instruction, the argument has to be adjusted, since, as
with a call, the target address is calculated relative to the program counter register. The

temporary code i1s shown in Figure 8.3.

restore ! redo save instruction

branch if condition to line 6

original instruction 2

retl ! jumps back into application after branch
nop

call target address

nop
Figure 8.3: Temporary Code (branch instruction)

The same type of branch (conditional, annulment) as in the application is implemented
in the breakpoint handler. If the branch is taken, the call in line 6 transfers control to
the original target address of the branch. If the branch is not taken, the retl instruction
in line 4 jumps back in the application after the branch. The instruction in the delay slot
of the branch is treated the same way with regards to annulment as it would be treated

at the original location.

8.1.2 Implementing/Removing a Breakpoint

The mechanism described in this section detects the race condition discussed in Sec-
tion 6.2.3 and is applied when a breakpoint is implemented as well as when a breakpoint

is removed.

Two steps are necessary to implement or remove a breakpoint. A check must be

made if any user-level thread is executing the code that is to be changed before the code

8.1. SETTING/RESETTING A BREAKPOINT 63

SocketSenderx socket_sender;

bool Cluster::implementBreakpoint(int bp_number) {
bool result;
Acquire(); // nobody shall use the cluster
socket_sender—> startAtomicOperation();
stopKernel Threads();
// checkBreakpoint has to restart the single kernel thread in uni-processor to perform
// the local check, but preemption is turned off in the target during an atomic operation.
if (result = cluster—>checkBreakpoint(bp_number, cluster) {
ReallyImplementBreakpoint(bp_number);
)/
contKernel Threads();
socket_sender—> finishAtomicOperation();
Release(); // release the cluster
return result;
} // implementBreakpoint

Figure 8.4: Implementing a Breakpoint

change itself happens. Both operations have to be executed atomically, 1.e., it must be
ensured that none of the affected threads makes any execution progress between check and
implementation. Another source of complexity is the fact that pC++ programs can be run
in a single UNIX process, simulating the behaviour of the multi-processor environment

(see Appendix A). Pseudo code for implementing a breakpoint can be seen in Figure 8.4.

After the thread of control (which belongs to the corresponding ULThread object) that
executes the breakpoint insertion in the debugger has acquired access to the Cluster
object, a message is sent to the local debugger, indicating that an atomic operation is
started. The local debugger turns off preemption for its UNIX process and is subsequently
the only executing thread in this process. Then it sends a confirmation back to the global

debugger that the atomic operation can start.

The function checkBreakpoint performs the check for the race condition in two steps.
First, all user-level threads that are currently executed by kernel threads for this clus-
ter are looked up and their execution location is determined using the services of the
KernelThread class. The location is checked against the address where the breakpoint is
implemented. If this check is successful, a message is sent to the local debugger that con-
tains the range of code to be changed. The local debugger uses a list in the runtime system

to check for all user-level threads that are not currently executed by kernel threads for

10

64 CHAPTER 8. ALGORITHMS

the point where the last context switch occurred. This address is saved on every context
switch in a dedicated field of the data structure for the thread. Then, the local debugger
sends a response which indicates whether the check was successful. Finally, the atomic
operation is finished by notifying the local debugger, which in turn restarts preemptive
scheduling for its UNIX process. The result of the check is returned to the caller, and if

necessary, the caller retries the operation after a random delay.

8.2 Stopping a Thread

Two phases are necessary to stop a user-level thread. First, the current location is looked
up to find out where the thread is executing. Second, a breakpoint is inserted at the next
valid location and the bitmask of the thread is updated remotely, using the services of
the KernelThread class (inserting a breakpoint is discussed in Section 8.1, restrictions
in Section 6.2.1). The remote update of the bitmask is an exception, since usually the
bitmask is transferred when a stopped thread is continued. Figure 8.5 shows both phases

in pseudo code.

Both steps have to occur atomically, i.e., the thread must not make any execution
progress during the operations. Therefore, inserting a breakpoint to stop a thread is an
atomic operation. After the atomic operation is started and all affected kernel threads (i.e.,
those belonging to the cluster) are stopped, the current location of the user-level thread is
looked up. If the thread is executing in the runtime system, the next appropriate location
is determined by walking through the calling stack and finding the closest location where

a breakpoint can safely be inserted.

Then in the second step, the breakpoint is implemented and the breakpoint mask is
updated remotely, since there is no continue request, which could be used to transfer the
mask. Finally, the atomic operation is finished, and the application continues. As soon
as the user-level thread is scheduled for execution, it eventually hits the breakpoint and is

stopped.

The stop operation already starts and finishes an atomic operation, so the atomic
operation within implementBreakpoint must not have any effect. This is the reason, why

atomic operations can be nested (see Section 7.1.5).

8.2. STOPPING A THREAD 65

Clusterx cluster;
SocketSenderx socket_sender;
TargetBreakpoints* target_breakpoints;

StackBacktrace ULThread::getStackOfRunning() {
RegisterSet regSet = getRegisterSetOfULThread(); // eventually uses KernelThread
return createStack(regSet); // uses GDB code to build stack

} // getStackOfRunning

int ULThread::createStopBreakpoint() { 10
StackBacktrace stack = getStackOfRunning();
for (int i = 0;; i += 1) {
// indicate that no stopping is possible (which should not happen)
if (i >= stack—>getNoOfFrames()) return —1;
// check, if the address belongs to the runtime system
if (checkBreakpointAddress(stack—>getFrame(i).getPC())) {
return target_breakpoints—>createBreakpoint(stack—>getPC());
)/
} /] for

} // createStopBreakpoint 20

bool ULThread::stopULThread() {

bool result;

cluster—> Acquire(); // nobody else shall access the cluster
socket_sender—> startAtomicOperation(); // waits for confirmation from local debugger
cluster—> stopKernel Threads();

bp_no = createStopBreakpoint(); // determines the next address in application code

if (bpno < 0) {
return false;
} /it 30
if (result = implementBreakpoint(bp_no)) {
refreshBreakpointMask(); // remote refresh using services of Cluster class
)/
cluster—>contKernelThreads();
socket_sender—> finishAtomicOperation(); // done with this...
cluster—> Release(); // release cluster
return result;

} // stopULThread

Figure 8.5: Stopping a Thread

66 CHAPTER 8. ALGORITHMS

8.3 Single Stepping

Single stepping on a per user-level thread basis is achieved by inserting temporary break-
points in the target application, continuing the target and removing the breakpoints af-
terwards. For a single step, multiple breakpoints may actually be inserted and all are
removed afterwards. There are two operations for single stepping: nezt does not suspend

execution in subroutines, whereas step does.

In principle, single stepping operates only at the source-line level. At first, the assembler
code for the source line is looked up. A breakpoint is set at the beginning of the next line of
source code. Then, a check is done for three exceptional cases and additional breakpoints

may be implemented whenever such a case exists. The exceptional cases are:

e If a call instruction is detected in the line and the operation is next, a breakpoint
is set at the target address of the call.

o If a return instruction is detected in the line, a breakpoint is set in the caller’s

function after the call.

o If a branch instruction is detected and the target address is beyond the scope of the

current line, a breakpoint is set at the target address.

After the breakpoints are inserted, the thread is continued automatically until it hits a
breakpoint. As with a normal breakpoint, the thread is stopped in the local debugger and
the global debugger is notified. Subsequently, all temporary breakpoints are removed.

During a next operation, it is possible that a function is called and one of the normal
breakpoints is hit in the function. In this case, the temporary breakpoints are not removed
automatically, since the user may want to continue immediately and finish the next opera-
tion. Therefore, the breakpoints for the single step remain in the target until one of them
1s hit. On the other hand, if the user, instead of continuing at the normal breakpoint,
issues another single step command, the breakpoints set for the previous single step are

removed, before the new temporary breakpoints are inserted.

Another possible conflict occurs when any of the temporary breakpoints is generated for
an address where a normal breakpoint is already inserted for the same user-level thread. In
this case, the address is ignored during insertion and removal of the temporary breakpoints,

1.e., the normal breakpoint remains set after the single step operation is done.

8.4. TARGET ABORT 67

8.4 Target Abort

A variety of fatal errors usually causes an application to abort, for example a segmentation
violation. A traditional debugger that synchonously waits for events from the target, using
the UNIX primitives, is automatically notified about such an error. Subsequently, the user

can examine the target’s state to reason about the cause of the fatal error.

This mechanism does not work for the presented design, because the debugger never
uses the UNIX primitives to wait for events from the target. Instead, when a fatal signal
1s delivered to one of the target’s UNIX processes, the runtime system calls into the local
debugger and the global debugger is notified. Subsequently, the user can examine the state
of any thread that currently exists in the application and afterwards the user confirms the

abort. This releases the target, so it can shut down and dump its core image.

Chapter 9

User’s Guide

This chapter describes kdb, the prototype implementation that can be used to debug
pCH- [6] applications. pCH- applications can be compiled either in a uni- or a multi-
processor mode, which are both supported by the debugger. The user interface is based on
the X Window System and the Motif widget set. This chapter assumes an understanding
of the runtime entities of uCH+ (see Appendix A for a brief description).

All windows in the user interface can be resized arbitrarily from the window manager’s
border and the size of their window components is adapted automatically. Additionally,
the main window and the task window are divided into several panes, whose relative height

can be changed by using Motif’s Paned Window mechanism.

9.1 Starting a Debug Session

The debugger operates as a server at which the target application registers as a client.
When a pC++ application is started, the pCH+ runtime system starts the local debugger,
which is linked to the application when the compilation flag -debug is specified.

The local debugger checks for two environment variables, which denote the IP address
of the global debugger’s socket. If present, the local debugger connects to the global
debugger, which in turn takes control of the target application. A UNIX shell script can
be used to start debugger and target. It 1s invoked by calling:

kdb targetname [target arguments]

The debugger’s main window (see Figure 9.1) appears and the target application is started

and immediately stopped at the beginning of uMain: :main.

68

9.2. ENDING A DEBUG SESSION 69

uTask list Stop Tasks uCluster list uProceszor list

uMain Oxd2368 wiystenCluster Oxb1108 §10986 7 OxbllBc
ulzerCluster Qwc/70R 10939 /4 Oxc¥8al

il

Info Hom Dot Inspect Single Build Group Continue

Y PrettyPrint Examine: |}

Figure 9.1: Main Window after Startup of Debugger and Target
9.2 Ending a Debug Session

To terminate the debugger, the main window can be closed at any time by using the
appropriate mechanisms of the window manager to close the main window. If the target is

still executing at this time, the debugger releases control and the target continues normally.

If the target finishes execution, the debugger does not have to be restarted to proceed
with a new debugging session of the same or a new target program. When the target is
gone, the debugger’s main window enters the state shown in Figure 9.2. The only sensitive
button is New Target, which can be clicked on to prepare the debugger for a new target

program. Subsequently, a new target can be invoked using another shell script:

kdb_target targetname [target arguments]

9.3 Target Abort

If a fatal error occurs in the target application, for example a segmentation violation, a
window is popped up to indicate this to the user. Aftwards, the state of the target can
be examined using the normal mechanisms. When the OK button is clicked in the popup

window, the target finishes and dumps a core file.

70 CHAPTER 9. USER’S GUIDE

uTask list I Stop Tasks uCluster list uProceszor list

Info E Mew Target I byopweed tymis

2 PrettyPrint Examine: |}

Figure 9.2: Main Window after End of Target

uTask list I Stop Tasks uCluzter list UProceszor list

SystemCluster Oxb1108 10936 / OxbllBc
Philozopher O OxdabGd lzerCluster (xof708 10983 / Owci8ad
Philosopher 2 OxeafBd
Philozopher 4 Oxfb3E3

il

Info Ham Do owt Inzpect Single Build Group Continue

21 PrettyPrint Examine:l Table::pickup

1: Tableripickup = {woid O3F Oxleeac <Table:ipickuplinti>

Figure 9.3: Main Window showing Symbol Lookup
9.4 Main Window

This section discusses the debugger’s functionality and how to access it through the main

window (see Figure 9.3).

9.4. MAIN WINDOW 71

The main window has 3 panes (number 1-3 from top to bottom). Their relative height
can be adjusted by using the adjustment box on the horizontal separator lines between

the panes.

e Pane 1 contains the list of tasks, clusters and processors that currently exist in the

application.

e Pane 2 contains a row of debugger control buttons, a text field where symbol names

can be typed in and a toggle button to structure the output.

e Pane 3 contains a text field that is used to show output.

The Info button in Pane 2 pops up a short copyright note (and may provide help infor-

mation in the future).

uTask list

Tasks are identified by their name and memory address in the target application. While
pCH- allows the name of a task to change dynamically, the debugger only uses the name
given when a task is created. Normally, a newly created task is stopped at the beginning
of its main member routine and remains stopped until it is continued by the user. In
certain situations, the user might not be interested in debugging new tasks. Therefore, if
the toggle button Stop Task i1s turned off, subsequently created tasks continue execution

immediately, after they are registered at the global debugger.

One or multiple tasks can be selected from the task list for further examination by
clicking on the task’s entry. Clicking on the Inspect Single button causes a dedicated task
window to pop up for every selected task. Double-clicking on a single entry of the task
list does the same as selecting a task and clicking Inspect Single. Clicking on Build Group
forms a group of all selected tasks and pops up one window, where commands can be
issued on all tasks that belong to the group. Finally, the Continue button is a convenience
function, that continues execution of all selected tasks. If some of the tasks are already

running, the continue request is ignored for these tasks.

uCluster list

There i1s one operation available for clusters. By double-clicking on an entry in the cluster

list, a window (see Figure 9.4) pops up to control whether the global debugger is notified

72 CHAPTER 9. USER’S GUIDE

_migration_ignore_popup

Ignore Migration fromAto uCluster uSysztemCluster Oxb1070 7

Figure 9.4: Dialog about Further Migration (uCluster)

when tasks migrate to and from this cluster. Selecting Yes means the global debugger
ignores further task migration and No means the global debugger is notified about further

task migration.

As discussed earlier, every migration of a task involves overhead, since it has to be
reported to the global debugger and code in the target’s UNIX processes may have to
be changed. Hence, with a good understanding of the application and the underlying
UNIX and pCH+ principles, there can be situations where ignoring of migration improves
performance. However, this mechanism should be used only by experienced users to pre-
vent problems, since it 1s not coordinated with the rest of the debugger’s operations. The

default settings are carefully chosen to provide the best efficiency in most situations.

uProcessor list

The only operation available for processors is a similar mechanism to ignore migration of
processors among clusters by the global debugger. Again, this is an insecure optimization

mechanism that should just be used by experienced pCi+ software developers.

Global Symbol Lookup

In the text field in Pane 2, right beside the label Examine, global symbol names can be
specified, and on pressing Return in the text field the symbol’s contents are displayed in
the text field in Pane 3 (see Figure 9.3). If Pretty Print is turned on, the contents of

complex data types are shown in a structured way, which usually results in longer output.

9.5. TASK WINDOW

9.5 Task Window

73

This section discusses the debugger’s functionality for examining and controlling a specific

task through a dedicated task window (see Figure 9.5).

Philosopher 3 Oxf3168.

Source Files

Stopped Pozition

Sudusystenszof tware/u++-4 37 inc/uSenaphore b

if ¢ times

walue += times:
T A7 uSemaphore: sl

void uPf int times = 1 3 £
#ifdef __U_DEBUG__ _

A increment the semaphore

AF wait on a zemaphore

Break

Continue

Return Step Hext

Step

21 PrettyPrint Examine:

k d Frame Backtrace I

Breakpuintsl

#1 0x1F393 in uSemaphore::uP (this=0xdablc, times=1) at Sufusystemssoftwaresu++-4,37inc u
#2 Oxleecc in Tablei:pickup {this=twxdablt, me=3» at Philosopher.cc:?h
#2 Owleb30 in Philosophertimain (thiz=0xf3168» at Philozopher,coilil
#4 0x21080 in uMachContext:iulnvoke (Thiz=0xfF3163) at Aulusystemssoftwares/ur+—4, 2/ inc/uC+

Figure 9.5: Task Window showing Backtrace

A task window has 4 panes (number 1-4 from top to bottom) Their relative height can

be adjusted by using the adjustment box on the horizontal separator lines between the

panes.

Pane 1 contains two buttons to select which source code is currently shown in Pane 2,

as well as the filename and the line number of the currently highlighted line in Pane 2.

e Pane 2 contains a text field that shows a source code file.

Pane 3 contains various control buttons and input fields.

e Pane 4 contains a text field that is used to show output.

74 CHAPTER 9. USER’S GUIDE

Every task that is selected for examination is controlled independently by a dedicated
window. When a task window pops up, it shows the last know position of the corresponding
task by highlighting that line in Pane 2. The corresponding source file name and line
number appear in Pane 1. If the task is executing when the task window is created,
a snapshot of the current execution stack is taken and used to determine the position
of the highlighted line. The last known position of a running task can be refreshed by
selecting the task again from the main window or by double-clicking on the Backtrace
button. Clicking the button Stopped Position always switches Pane 2 back to the last
known execution position. The highlighting bar in Pane 2 can be moved using the cursor

keys or by clicking on a line of source code.

The Backtrace button produces a backtrace of the calling stack for the task and shows
it in Pane 4. This can be seen in Figure 9.5. The arrow buttons to the left and right of
the label Frame in Pane 3 can be used to step up and down the calling stack, which also
causes the text field in Pane 2 to switch to the corresponding source file and line number.
All symbol names are resolved relative to the selected frame when looking up the contents

of variables.

Symbol Lookup

To look up symbol information, the same mechanism is used as in the main window.
Beside the Examine label in Pane 3, symbol names can be typed in, and on pressing
Return the appropriate contents are displayed in Pane 4. Names are looked up relative to
the current frame, e.g., in Figure 9.6, the name this refers to the object on which the class
method pickup is invoked. There is also a Pretty Print option that formats the output in

a structured way.

Control Buttons

The control buttons in Pane 3 (see Figure 9.5 or Figure 9.6) are used to control execution of
a task. Execution of other tasks in the application is not affected, other than through syn-
chronization that is implemented in the target application. To set a breakpoint, position
the highlighting bar at the desired line of source code and click on Break. A breakpoint is
removed by clicking on Clear when the breakpoint’s location is highlighted. Clicking the

Continue button resumes execution of the task.

Clicking Next executes a line of source code. If this line contains function calls, the

functions are completely executed. This is different from Step, which also executes a line

9.5. TASK WINDOW 75

hilosopher 3 0xf316

Source Files Stopped Position || Philosopher,co

void pickupt int me » £

ztatelme] = HUMGEY:
TestBesidet me »:

Breal Clear Continue S Feturn Step Step

I PrettyPrint Examine: I*thiSI g k d Backtrace Br‘eakpuiniﬂ

1: #thiz = {
settings = B,
state = Owxcfrald,
self = Oxdad7i,
lock = 1
ulestruct = uYes,

Figure 9.6: Task Window showing Symbol Lookup

of source code, but steps into each function call and stops execution at the beginning of the
function. For both Next and Step button, a number can be specified in the corresponding

text field right beside each button to perform multiple operations.

Clicking on Return Step causes the task to continue execution until the end of the

current function is reached. Execution stops after the caller’s function call.

Source File Selection

To examine any of the source files associated with this application and its runtime li-
braries, click on Source Files and a window showing a list of all source files for the current
application pops up. In this window, a source file can be selected, which is subsequently
examined in the task window. To select a source file, either double-click on its name or
click on its name and the OK button.

76 CHAPTER 9. USER’S GUIDE

Breakpoint Selection

The Breakpoints button pops up a window (see Figure 9.7) that contains a list of all
breakpoints that are currently set for this task. A breakpoint is selected by double-clicking
on its list entry or typing the breakpoint number in the selection window and the source
file containing it appears in Pane 2, positioned at the breakpoint’s location. Additionally,
breakpoints can be deleted by clicking on a breakpoint’s entry in the list and the Clear
button of the breakpoint window.

ialog_breakpoints_popup

Current Breakpoints for Philosopher 1 OxeZd63

(0t Philozopher,cc 98
1: Philozopher,cc 110
2t Philozopher,cc 84

Selection

Figure 9.7: Breakpoint List

Examining a Running Task

When a task 1s running, the task window switches over to the state shown in Figure 9.8. At
this point, all control buttons become inactive, whereas the Stop button becomes active.
Clicking Stop stops the task at the next possible location. However, if a task is currently
blocked in the application (for example, if a task is waiting on the entry queue of a mutex

object), the stop request does not take effect until the task is eventually made active again.

Additionally, it is possible to monitor the current execution of a running task by clicking
on the Backtrace button. This gives a snapshot of the current execution stack (see Pane 4

in Figure 9.8) and is especially helpful if an application runs into a deadlock.

9.5. TASK WINDOW (s

Source Files Stopped Pozition || Au/usystem/software/ut+—4,4/src/kernel /uProcesso

ukernelfodule: tullizablelntCnt += 13 A increment number of disablings

UCode = 0f
WPrewlock = 1
uContextSwt A not uResume because entering ke

i S HETTE R ST Fabegy nhen Mgt “er :
21 PrettyPrint Examine: |i Frame Eacktracel

#1 0x53%c in uBaseCoroutine:iuContextSw (thiz=0x3edb0} at Afufusystemdsoftwaresdut+-4,.4/sr
#2 0x5d204 in uProcessorkernel:iuSchedule (this=0x9e450, 1=0xdalb3} at Aususystemszoftwar
#3 0x20404 in uSerial:iiuBEnter {this=0xda0bd, entry=Eldxdalddc, flag=1) at Aususystemssoftwa
#4 Oxlfcbc in uSeriallestructor:iuSeriallestructor (this=0xd38d3. f=u¥es, ==@0wxdalbl. =@

#o 0x1e934 in Philozopher::™Philozopher (this=(xdal20 in_chrg=3} at Philozopher,.ccill

[—

Figure 9.8: Task Window showing Running Task

Initially, the frame arrow buttons and the symbol lookup field is inactive, because
looking up variables of a runnning task might display stale information and cause confusion.
On double-clicking the Backtrace button these buttons are made active and a new snapshot
is taken from the task’s execution stack. This snapshot is used for subsequent examination
of variables. It is possible to walk through this execution stack snapshot using the frame
arrow buttons. Variables of a running task can be looked up relative to the selected frame
in the same way as for a stopped task. Again, this facility is deemed helpful in case of a

deadlock, when the tasks are blocked, so the stack frame and variables are not changing.

It i1s also possible to view different source files when a task is running, but as soon as

the task encounters a breakpoint, Pane 2 shows the current stopped location.

78 CHAPTER 9. USER’S GUIDE

9.6 Group Window

This section describes the functionality of the debugger that is available for a group of
tasks through the group window (see Figure 9.9).

Philosopher O (:d3beS
4 OxFa3En break Philozopher,cc 98

Philozopher
Philozopher 1 (xeldsd
Philozopher 2 (xe3FfE3
Philozopher 3 Oxf2163

Enter your command

cont]

Figure 9.9: Group Window

For the user’s convenience, tasks can be grouped together and operations can be issued
on a group of tasks. To form a group, multiple tasks are selected from the task list in the
main window and a click on the button Build Group (see Figure 9.1 or Figure 9.3) pops up
the interface for a group of tasks. In this window, the following commands can be entered

and the corresponding operations are performed on all members of the group:

e Set a breakpoint:

break sourcefilename linenumber
break functionname

e Remove a breakpoint:

clear sourcefilename linenumber

clear functionname

e Stop execution:

stop

9.6. GROUP WINDOW 79

e Continue execution:

cont

e Perform a number of single steps with automatic execution of subroutine calls:

next [number/

e Perform a number of single steps without automatic execution of subroutine calls:

step [number]

In general, if a command is not applicable to one of the tasks, e.g. stop for an already
stopped task, the command is silently ignored. Grouping tasks together does not affect
the ability to control every task separately and reactions to the commands issued in the
group windows, such as the encountering of a breakpoint, become visible in each task’s

window.

Chapter 10

Conclusions and Future Work

The goal of this thesis was to identify the key aspects for the design of a multi-threaded
interactive source-level debugger. It should be flexible with regard to different paradigms
for multi-threaded programming and communication, and provide independent control

over each thread in the target application.

10.1 Summary

It turns out that debugging multi-threaded applications is considerably different from
debugging sequential programs. The different forms of parallelism and the limited debug-
ging support given by the UNIX operating system place significant restrictions towards

controlling multiple threads that share a single code image.

The presented design overcomes these restrictions with partly distributing the debug-
ger’s work into the target application and using fast user-level breakpoint handling. Thus,
the debugger fulfills the aspired goals. It is a multi-thread application and allows the user
to control each thread independently of other threads.

A prototype is implemented for two UNIX versions, SunOS 4.1 and Solaris 2.3. This
prototype shows that another goal for the debugger, portability, is also achieved, since
both versions of UNIX differ significantly in two areas that are important for debugging:
the format of executable files and the operating system access to another UNIX process.
The different formats of executable files is handled by the GDB library that was built.
The different access methods to control another UNIX process are handled by having two
implementations of class KernelThread, which results in approximately 200 lines of code

that differ between both versions.

80

10.2. FUTURE WORK 81

The prototype was used by students for course work, who found it a useful tool to debug
their assignment projects. It was also used during development of the debugger itself. It
will be used for future course work and will be made publicly available for debugging pCH+
applications. The prototype shows itself to be efficient enough to be used in a multi-user

academic environment.

10.2 Future Work

Future work should be directed towards 3 areas: portability, functionality and interoper-
ability.

The design of the debugger supports portability for different architectures, but an
implementation only exists for two UNIX versions that run on SPARC architectures. Ad-
ditional ports should be done to different processor types to show the general applicability
of the concept of user-level breakpoint handling. As well, the debugger could be extended
to support multiple user-level packages and/or to support heterogenous applications to

demonstrate this aspect of portability.
Functionality can be extended to fully support multiple address spaces and to debug

programs that are spread over different machines. To support this, a debugging stub
module would run on each machine, which performs a small number of requests, like code
changes, on behalf of the global debugger. A protocol for communication between global
debugger and debugging stub module has to be designed. However, most of the debugger’s
activities are already set up to support remote debugging, since everything that is handled
by the local debugger is reported to the global debugger using a socket and this mechanism

can easily be extended to communicate across machine boundaries.

The prototype implementation was only intended to be a proof of concept that the
proposed design for a debugger is realistic and useful. Since it is already reasonable stable
and efficient, which was an unexpected bonus, the decision was made to release it for
public availability. The user interface should be revised considering feedback from future

users. As well, users may request additional commands, different data presentation, etc.

Probably the most challenging future work is the task of integrating high-level analysis
approaches, such as the ones surveyed in Chapter 3, with this source-level debugger. This
can generate a comfortable debugging environment for the development of multi-threaded

applications and increase the overall efficiency and applicability of parallel computing.

82

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

Appendix A

Overview of uCH

The pCH-[6] project introduces concurrency into the object-oriented language CH+[27].
To achieve this goal, a set of programming language abstractions are added to CH+ that
provide concurrency and synchronization. The synchronization features of pC4++ are not

discussed here, since they are not important from the standpoint of building the debugger.

pCH- consists of a translator and a runtime library. The translator transforms the
additional language constructs into CH++ code. After the source code is compiled, the
runtime library is linked to the application and provides user-level scheduling for multiple
threads of control. The runtime system also provides mechanisms to perform lightweight-

blocking I/0O operations.
A thread of control can be created by declaring a class-like data type, called uTask.

Each task data type must contain a member routine main, which is invoked concurrently
to when an object is created. There is a dedicated task type uMain of which one object is
created initially. This replaces the usual main routine of a CH+ program. The application
programmer implements the main routine of uMain, which is invoked during startup and

subsequently additional tasks can be created using the described mechanism.

Applications are not restricted to one UNIX process. To make use of multiple CPUs in
a shared-memory computer, several processes can be created by creating objects of type
uProcessor during runtime to achieve parallelism. Tasks and processes are related through
objects of type uCluster. Each uCluster contains a number of tasks and processes, and
tasks are automatically scheduled to be executed by the processes associated with that
cluster. The scheduling mechanism guarantees load balancing among UNIX processes for
each cluster, but there is no load balancing among clusters. Both tasks and processes can

migrate from one cluster to another.

83

84 APPENDIX A. OVERVIEW OF pCi+

The memory model is a single address space that is shared among all tasks in the
application. In the multiprocessor case, the address space of all UNIX processes is mapped

into this single data address space.

1 CH- provides a uni-processor mode, in which the environment of the multi-processor
mode 1s simulated, but the application is restricted to one UNIX process and concurrency
is achieved only by user-level context switching. This mode can be used to reduce resource

usage on a multi-user system.

There is no inherent restriction to the number of tasks, processes or clusters that exist

in an application besides the resource limits of the operating system and machine.

Appendix B

X Window System for uCH

Version 11, release 6 of the X Window System [11] [20] is the first release that is intended
to support client applications that work in a multi-threaded environment. While the
client libraries are configured to work with the thread libraries of multiple vendors, some
additional work was necessary to make them compatible with pCi++. A short overview is
given here, suitable for a reader who is already familiar with multi-threading in X11/R6.
A detailed description on how to create concurrent X applications can be found in [11]
and [20], which are both distributed with the X source distribution. Information special
to X and pCH+ can be found in [5].

As a first step, wrapper functions were written, so that the X libraries, which are
programmed in C, can internally use the ulock and the uCondition classes of uCH+.
All locks in X are owner locks, i.e., they can be re-acquired by the thread of control
that currently holds the lock, but they have to be released exactly as often as they were

acquired.

At the Xlib level, locking is performed automatically for every connection to the X
server, 1.e., for every display that is opened. When using the Intrinsics library, several
application contexts can be created, each of which has own display connections, and locking
occurs on an application context. Additionally, a global lock for the whole application can

be used by widget developers, if global data has to be protected.
Since the X libraries use data that is private to each UNIX process, like file descriptors,

etc., a dedicated uI0OCluster (see [6] for a description) is created in an X application and
a class uXwrapper is provided, which migrates the executing task to this cluster when an
object i1s created, and migrates it back when the object 1s destroyed. This class can be used

for automatic migration in every function that calls X library functions, like in Figure B.1.

85

86 APPENDIX B. X WINDOW SYSTEM FOR pC+-

#include <uXlib.h>
Display *dpy;

void createInterface() {
uXwrapper dummy; // automatic migration

dpy = XOpenDisplay(NULL);

/] .. 10

} // automatic migration back on destruction of dummy

Figure B.1: Migration for X Library Calls

In a pC+ application, timer interrupts are used to realize preemptive scheduling.
Certain UNIX system calls return a failure value and set the error number when a timer
interrupt occurs while the system call is executed. This is partly handled in the Xlib,
except for initialization of the socket connection with the X server. To prevent obscure
error messages, preemption of uCi+ is turned off, whenever a connection is established.

Again, this mechanism is planted into the X1ib using wrappers from CH to C.

Unfortunately, the Motif widget library is not thread-safe. Therefore, every call that
accesses a Motif widget has to to acquire mutual exclusion across the entire X, Intrinsics
and Motif libraries, hence the internal locking mechanisms of the Intrinsics library are
largely obsolete. This problem can be seen in the function changeValue in Figure B.2.
Furthermore, when a callback function is called, the lock for the application context and
the global lock are already acquired. If a callback contains a call to a mutex member of
a task, this can lead to deadlock situations if the task also tries to acquire the X locks
to perform any changes in the interface. To handle this situation, another wrapper class,
uXmCBwrapper is provided to release the owner locks and re-acquire them when the callback
routine completes. This problem can be seen in the function anyCallback in Figure B.2.
One should be aware that between creation and destruction of a callback wrapper no lock

is held and therefore no call can safely be made that accesses Motif data.

87

tinclude <uC++.h>
#include <uXlib.h>
#include <X11/Intrinsic.h>

void anyCallback();
void changeValue(int);

uTask ULThread {

void main() { 10

changeValue(15);
}

public:
void wvalueNotification(int);

b
20
ULThread+ thread;
XtAppContext app;
void anyCallback() {
int value;
XtVaGetValue(my_widget, XmNuvalue, &value, NULL);
uXmCBwrapper dummy; // releases the process lock and the application context lock
thread—>valueNotification(wvalue);
} // dummy’s destructor automically reacquires application context lock and process lock
30

void changeValue(int z) {
XtAppLock(app);
XtProcessLock();
XtVaSetValues(my_widget, XmNvalue, z, NULL);
XtProcessUnlock();
XtAppUnlock(app);

Figure B.2: Callback Wrapper for Deadlock Prevention

Appendix C

Speed Tests

The following tests are just rudimentary simulations for the real scenario of a thread
checking if a breakpoint applies to it. None of the tests actually check for applicability
of a breakpoint, because once the breakpoint is identified, this would be similar in all
methods. In a real debugger, the first two tested methods would have to perform an
additional test to find out which breakpoint was triggered, but since the results of the
tests are impressive enough, this was not implemented. This search is not necessary for
fast breakpoints, since a dedicated handler exists for every breakpoint number, therefore,

when it is executed, i1t is implicit which breakpoint is triggered.

The focus for the tests is the time needed to resume execution of a target thread, after
the applicability test fails. The measured time is the real time that is used by the target

application.

Every program was run 10 times, the number of loops was set to 100,000. The average

results are shown in Table 5.1.

C.1 Traditional Breakpoints

C.1.1 Target

After the breakpoint is implemented in function, it is triggered n times as specified in

the command line.

The following is the source code for the simulated target program:

88

C.1. TRADITIONAL BREAKPOINTS 89

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/times.h>
#include <limits.h>

void function() {
asm("nop");
asm("nop");

}

int main(int arge, charsx argv) {
int 7, loops = 1,
printf("PID : %d\n",getpid());
printf("function's nop : %d\n",(longx)function + 1);
getchar();
if (arge > 1) {
loops = atoi(argv[1]);
}
clock_t start_time, end_time;
struct tms buffer;
start_time = times(&buffer);
for (i = 0; 7 < loops; i += 1) {
function();
}
end_time = times(&buffer);
printf("real time (ticks) : %d\n",end_time — start_time);
printf("system time (ticks) : %d\n",buffer.tms_stime);
printf("user time (ticks) : %d\n",buffer.tms_utime);

C.1.2 Control Program

A breakpoint is implemented using the /proc filesystem. Afterwards, the target is con-
tinued and the control program waits for events from the target. When the breakpoint is
hit, its code is changed back and another breakpoint is implemented at the next assem-
bler instruction. When this breakpoint is hit, it is removed and the original breakpoint
i1s implemented again. As stated previously, the control program would normally have
to perform a search through all breakpoint locations to find out which breakpoint was

triggered.

The following is the source code for the simulated control program:

10

20

30

90

APPENDIX C. SPEED TESTS

#include <sys/types.h>
#include <sys/procfs.h>
#include <fentl.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

unsigned long old_value, address, breakpoint_value = 0x91d02001;

int pid, fd; 10
stgset_t stgs;

PTTUN cont_pars;

prgregset_t regs;

void set_break() {

}

Iseek(fd, address, SEEK_SET);

read(fd, &old_value, 4); /* reading old value */

Iseek(fd, address, SEEK_SET);

write(fd, &breakpoint_value, 4); /* setting new value */

ioctl(fd, PIOCRUN, &cont_pars); /* continue without signal */ 20

void wait_break() {

ioctl(fd, PIOCWSTOP, 0); /* wait for stop */
ioctl(fd, PIOCGREG, ®s); /* read registers */
/* usually: figure out which breakpoint was hit %/

Iseek(fd, address, SEEK_SET);

write(fd, &old_value, 4); /* write original value x/
}
30
int main(int arge, char sxargv) {
if ((arge < 3) {
forintf(stderr, "usage : %s pid address\n", argv[0]);
exit(—1);
}
cont_pars.pr_flags = PRCSIG; /* used in set_break x/
address = atoi(argv[2]); /* used everywhere */
char filename[128]; 40

sprintf(filename, "/proc/%d", atoi(argv[1]));
fd = open(filename,O_.RDWR); /* attach to process x/

C.2. LOCAL TRAP HANDLING 91

ioctl(fd, PIOCSTOP, 0); /* stop process */
printf("go ahead\n");

premptyset(&sigs);
praddset(&sigs, SIGTRAP);

ioctl(fd, PIOCSTRACE, &sigs); /* register for SIGTRAP x/
while(1) {

set_break(); wait_break(); address += 4;

set_break(); wait_break(); address —= 4;
}

C.2 Local Trap Handling

C.2.1 Target

The function sig handler simulates a local breakpoint handler. In order to be complete,
the replaced instruction would be implemented at a temporary location and the PC register
would be changed to point at this temporary location. The same search for the number
of the triggered breakpoint would also apply for this case, as for traditional breakpoint
handling.

The following is the source code for the simulated target program:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/times.h>
#include <limits.h>
#include <ucontexrt.h>
#include <signal.h>

void function() {
asm('"nop");
asm("nop");

}

void sig_handler(int signo, siginfo_t *sfp, void *cat) {
((ucontext_tx) cat)—>uc_mcontexrt.gregs| REG_PC| += 4;

50

10

92

}

int main(int arge, charsx argv) {

int 7, loops = 1;

struct sigaction act;
printf("PID :
printf("function's nop :

act.sa_flags = 0;

%d\n",getpid());
%d\n",(longx)function + 1);

APPENDIX C. SPEED TESTS

(void (x)(int signo, siginfo_t xsfp, void xcxzt))act.sa_sigaction = sig_handler;

sigemptyset(&act.sa_mask);
sigaction(SIGTRAP, &act, NULL);

getchar();
if (arge > 1) {

}

clock_t start_time, end_time;

loops = atoi(argu[l]);

struct tms buffer;

start_time = times(&buffer);
for (i = 0; 7 < loops; i += 1) {

function();

}

end_time = times(&buffer);

printf("real time (ticks) : %d\n",end_time — start_time);

printf("system time (ticks) : %d\n",buffer.tms_stime);
printf("user time (ticks) : %d\n",buffer.tms_utime);

C.2.2 Control Program

The breakpoint is implemented only once and never removed. Afterwards, the control

program finishes, since it is not needed any more for test purposes.

The following is the source code for the simulated control program:

#include
#include
#include
#include
#include
#include
#include

unsigned long

< sys/types.h>
< sys/procfs.h>
<fentl.h>
<unistd.h>

< signal.h>

< stdlib.h>
<stdio.h>

old_value, address, breakpoint_value = 0x91d02001;

20

30

40

C.3. FAST BREAKPOINTS

int pid, fd;

stgset_t stgs;

prrun cont_pars;
prgregset_t regs;

int flags = PR_RLC,;

int main(int arge, char sxargv) {

if ((arge < 3) {

forintf(stderr, "usage : %s pid address\n", argv[0]);

exit(—1);
}
cont_pars.pr_flags = PRCSIG; /*
address = atoi(argv[2]); /*

char filename[128];
sprintf(filename, "/proc/%d", atoi(argv[l]));
fd = open(filename,O_.RDWR); /*

ioctl(fd, PIOCSET, &flags);
ioctl(fd, PIOCSTOP, 0); /*

Iseek(fd, address, SEEK_SET);

read(fd, &old_value, 4); /*
Iseek(fd, address, SEEK_SET);

write(fd, &breakpoint_value, 4); /*
ioctl(fd, PIOCRUN, &cont_pars); /*

used in set_break */
used everywhere */

attach to process */

stop process */

reading old value */

setting new value x/
continue without signal */

C.3 Fast Breakpoints

C.3.1 Target

The breakpoint handler (named bp_handler) just simulates saving and restoring of the

state of the application. The necessary save and restore instructions are automatically

inserted by the compiler.

The following is the source code for the simulated target program:

tinclude <unistd.h>
tinclude <stdlib.h>
tinclude <stdio.h>

10

20

30

94 APPENDIX C.

#include <sys/times.h>
#include <limits.h>

void function() {
asm('"nop");
asm("nop");

}

void bp_handler() {
asm("rd %y,%15");
asm("mov Y%g1l,%16");
asm("ta 32");
asm("mov Y%gl,%17");
asm("wr %g0,%15,%y");
asm("mov %17,%gl");
asm("ta 33");
asm("mov %16,%gl");

}

int main(int arge, charxx argv) {
int 4, loops = 1;
printf("PID : %d\n",getpid());
printf("function's nop : %d\n",(longx)function + 1);
printf("bp_handler is at : %d\n",bp_handler);
getchar();
if (arge > 1) {
loops = atoi(argv[1]);
}
clock_t start_time, end_time;
struct tms buffer;
start_time = times(&buffer);
for (i = 0; 7 < loops; i += 1) {
function();
}
end_time = times(&buffer);
printf("real time (ticks) : %d\n",end_time — start_time);
printf("system time (ticks) : %d\n",buffer.tms_stime);
printf("user time (ticks) : %d\n",buffer.tms_utime);

SPEED TESTS

10

20

30

40

C.3. FAST BREAKPOINTS

C.3.2 Control Program

The control program implements the breakpoints and finishes execution, since it is not

needed afterwards.

The following is the source code for the simulated control program:

#include <sys/types.h>
#include <sys/procfs.h>
#include <fentl.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

unsigned long

int pid, fd;

stgset_t stgs;

prIUN cont_pars;
prgregset_t regs;

int flags = PR_RLC,;

int main(int arge, char sxargv) {

if (arge < 4) {

forintf(stderr, "usage : %s pid address handler_address\n", argv[0]);

exit(—1);
}
cont_pars.pr_flags = PRCSIG, /*
address = atoi(argv[2]); /*

handler_address = atoi(argv[3]);
breakpoint_value[0] = (1 << 30) | ((handler_address
breakpoint_value[l] = (1 << 24);

char filename[128];
sprintf(filename, "/proc/%d", atoi(argv[1]));
fd = open(filename,O_.RDWR); /*

ioctl(fd, PIOCSET, &flags);
ioctl(fd, PIOCSTOP, 0); /*

Iseek(fd, address, SEEK_SET);
read(fd, old_value, 8); /*
Iseek(fd, address, SEEK_SET);

handler_address, address, old_value[2], breakpoint_value[2];

used in set_break */
used everywhere */

— address) | 4);

attach to process */

stop process */

reading old value */

10

20

30

96

write(fd, breakpoint_value, 8);
ioctl(fd, PIOCRUN, &cont_pars);

APPENDIX C. SPEED TESTS

/* setting new value */
/* continue without signal */

40

Bibliography

1]

K. Araki, Z. Furukawa, and J. Cheng. A General Framework for Debugging. IEEE
Software, 3:14-20, May 1991.

AT&T. System V Application Binary Interface. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey 07632, 1990.

Peter C. Bates. Debugging Heterogeneous Distributed Systems Using Event-Based
Models of Behavior. ACM Transactions on Computer Systems, 13(1):1-31, February
1995.

David L. Black. Scheduling Support for Concurrency and Parallelism in the Mach
Operating System. Technical Report CMU-CS-90-125, Carnegie Mellon University,
1990.

Peter A. Buhr and Martin Karsten. pC++ Monitoring, Visualization and Debugging
Annotated Reference Manual, Version 1.0. Technical report, Department of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, September
1995.

Peter A. Buhr and Richard A. Stroobosscher. pC++ Annotated Reference Manual,
Version 4.3. Technical report, Department of Computer Science, University of Wa-

terloo, Waterloo, Ontario, Canada, N2L 3G1, February 1995.

Deborah Caswell and David L. Black. Implementing a Mach Debugger for Multi-
threaded Applications. Technical Report CMU-CS-89-154, Carnegie Mellon Univer-
sity, 1989.

Perry A. Emrath and David A. Padua. Automatic Detection of Nondeterminacy in
Parallel Programs. In Proceedings of the ACM SIGPLAN/SIGOPS Workshop on
Parallel and Distributed Debugging, published in ACM SIGPLAN Notices, volume 24,
pages 89-99, Januar 1989.

97

98

[9]

[10]

[11]

[12]

[14]

[15]

[18]

[19]

[20]

BIBLIOGRAPHY

C. J. Fidge. Partial Orders for Parallel Debugging. In Proceedings of the ACM
SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, published in
ACM SIGPLAN Notices, volume 24, pages 183-194, January 1989.

J. Gait. A Probe Effect in Concurrent Programs. Software Practice and Ezperience,
16(3):225-233, March 1986.

James Gettys and Robert W. Scheifler. Xlib - C Language Interface. electronic

document.

SPARC International. The SPARC Architecture Manual. Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey 07632, 1992.

Rory Alan Jacobs. A Debugger for Multi-Threaded Applications. Master’s thesis,
The University of Waterloo, 1994.

Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey 07632, 1992.

Peter B. Kessler. Fast Breakpoints: Design and Implementation. In Proceedings of
the SIGPLAN 90 Conference on Programming Language Design and Implementation,
published in ACM SIGPLAN Notices, volume 25, pages 78-84, June 1990.

T.J. Kilhan. Processes as Files. In Proceedings of the USENIX Conference, pages
203-207, Summer 1984.

David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong Lim.
Integrating Message-Passing and Shared-Memory : Early Experience. In Proceedings
of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, published in ACM SIGPLAN Notices, volume 28, pages 54—63, July 1993.

Thomas Kunz. Process Clustering for Distributed Debugging. In Proceedings of
the ACM/ONR Workshop on Parallel and Distributed Debugging, published in ACM
SIGPLAN Notices, volume 28, December 1993.

Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558-565, July 1978.

Joel McCormack, Paul Asente, and Ralph R. Swick. X Toolkit Intrinsics - C Language

X Interface. electronic document.

BIBLIOGRAPHY 99

[21]

[22]

23]

[24]

[25]

Charles E. McDowell and David P. Helmbold. Debugging Concurrent Programs. ACM
Computing Surveys, 21(4):593-622, December 1989.

Emmi Schatz and Barbara G. Ryder. Directed Tracing to Detect Race Conditions. In
Proceedings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed
Debugging, published in ACM SIGPLAN Notices, pages 260-262, Santa Cruz, Cali-
fornia, May 1991. [Extended abstract].

Steve Sistare, Don Allen, Rich Bowker, Karen Jourdenais, Josh Simons, and Rich
Title. A Scalabe Debugger for Massively Parallel Message-Passing Programs. IEEE
Parallel & Distributed Technology, 1(2):50-56, Summer 1994.

Richard L. Sites. Alpha Architecture Reference Manual. Digital Press, 1992.

Pierre E. Sorel, Mariano Fernandez, and Sumit Gosh. A Dynamic Debugger for
Asynchronous Distributed Algorithms. IEEE Software, 11(1):69-76, January 1994.

Richard M. Stallman and Roland H. Pesch. Debugging with GDB. Free Software
Foundation, 675 Massachusetts Avenue, Cambridge, MA 02139 USA, 1995.

Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, second edition,
1991.

James Alexander Summers. Precedence-Preserving Abstraction for Distributed De-
bugging. Master’s thesis, The University of Waterloo, 1992.

Sun. ioctl(2). manual page.
Sun. mmap(2). manual page.
Sun. proc(4). manual page.

Sun. ptrace(2). manual page.

Sun. wait(2). manual page.

Cygnus Support. Libbfd, the Binary File Descriptor Library. electronic document.
Cygnus Support. Libgdb. electronic document.

Cygnus Support. The “stabs” debug format. electronic document.

100 BIBLIOGRAPHY

[37] David Taylor. A Prototype Debugger for Hermes. In Proceedings of the 1992 CAS
Conference, volume 1, pages 29-42, Toronto, Ont., Canada, November 1992. IBM
Canada Ltd. Laboratory, Centre for Advanced Studies.

[38] United States Department of Defense. The Programming Language Ada: Reference
Manual, ANSI/MIL-STD-1815A-1983 edition, February 1983. Published by Springer-
Verlag.

[39] Mark Weiser. Program Slicing. [EEE Transactions on Software Engineering, SE-
10(4):352-357, July 1984.

[40] Ronald Scotte Zinn. Efficient Event Generation for Race Detection. Master’s thesis,
The University of Waterloo, 1993.

