uProfiler: A Concurrent Profiler for
Concurrent C+ ((C+)

by

Justyna Gidzinski

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2007
(©Justyna Gidzinski 2007

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

| hereby declare that | am the sole author of this thesis. iSlagrue copy of the thesis, including
any required final revisions, as accepted by my examiners.

| understand that my thesis may be made electronicallyaaitto the public.

Abstract

A concurrent program, unlike a sequential program, hasiplelithreads of execution, resulting
in numerous advantages (e.g., faster execution), but mlsomplex and unpredictable interac-
tion. As a consequence, a concurrent program can easilyutitge available parallelism, and
performance can be extremely difficult for users to predict analyze on their own.

A profiler is a tool that can help a user identify as well as tegaotential performance prob-
lems in a program. Profiling is accomplished through momtpiof the program execution,
and analyzing and visualizing the collected performanda.dé profiler must display useful
information in a way that allows a user to effectively andadintly understand and analyze a
program’s behaviour.

This thesis describes the advancement in design and imptatian of uProfiler, a profiler
for sequential and concurrent programs writtepu@+. uC+ is a concurrent dialect of the C+
programming language, which executes in uni-processomatiil processor shared-memory en-
vironments. Major advancements to thyeRerofiler metrics are presented: the Execution State,
the Exact Routine Call-Graph and the Statistical Routine Geaph. The Execution State metric
charts each state for every thread over the entire execotitre program. With high overhead
and perfect accuracy, the Exact Routine Call-Graph metdeiges an exact call-graph profile
of the program’s dynamic execution, describing the corftoal among routines. With low over-
head and less accuracy, the Statistical Routine Call-Gregihic provides a statistical call-graph
profile of the program’s dynamic execution. For each meaidwancements were made through-
out the profiling process (i.e., monitoring, analysis argbglization), addressing goals such as
scalability, functionality, usability and performancehel metrics provide reasonable memory
overhead and, based on the comparison to related work,seecdtthe-art in functionality and
provide similar run-time performance.

Acknowledgements

First of all, | would like to sincerely thank my supervisor.DPeter Buhr for all his time, un-
derstanding and guidance. His efforts and active involvemreade this process a great learning
experience and my work all that much more enjoyable. | woiklel 1o thank my readers, Dr.
David Taylor and Dr. Steve MacDonald, for their valuablegestions and comments. | would
also like to graciously acknowledge funding from the Nat&@ences and Engineering Research
Council of Canada.

Many thanks go to Richard Bilson for his technical assistanith uC+ anduProfiler, for
his willingness to answer my many questions and give coastrisuggestions, and for his many
hours spent editing my thesis. |1 would also like to thank nheotab mates Ashif Harji and Roy
Krischer. Richard, Ashif and Roy made my time working in thb truly enjoyable.

Finally, special thanks go to my family and friends, espigciay parents. Undoubtedly,
| would not have made it this far without their unconditiom@ale and support. They always
believed | could do anything | set my mind to and they made nlie\eethe same.

Contents

1

Introduction 1
1.1 Performance of ConcurrentPrograms. 2
1.1.1 Locating Performance Problems 3
1.2 Definitions. 4
1.3 ThesisOrganization. e 5
Profiling 7
2.1 Instrumentation. 8
2.1.1 Directand Indirect Instrumentation 9
2.1.2 Instrumentationvialnsertion. L. 10
2.1.3 Instrumentation via Hardware Counters 11
2.2 MoNitoring e e e 11
2.21 ExactMonitoring 12
2.2.2 Statistical Monitoring 13
2.2.3 Hardware Counters and Monitoring. 13
2.3 Analysis. e e 14
23.1 Real-TimeAnalysis. 15
2.3.2 Post-Mortem Analysis 15
2.3.3 Combination. 16
2.4 Visualization 16

3 uProfiler 19

3.1 TargetEnvironment 19
311 pCH e 20
3.1.2 uCH+ Language Constructs. oo 20

3.2 DesignObjectives 22
3.2.1 ProfilingonaPer-ThreadBasis 22
3.2.2 Profiling at Different Levelsof Detail 22
3.2.3 Selective Profiling. 22
3.2.4 Support Different Forms of Visualization 23
3.25 Extendibility 23
3.2.6 Portability, Interoperability, and Maintainabylit 23

3.3 InstrumentationInsertion Lo 24
3.3.1 uC+H+ Kernel Instrumentation. 24
3.3.2 User Code Instrumentation. 24

3.4 uProfilerKernel. 25

3.5 wuProfilerMetrics 29
3.5.1 ExecutionMonitors 29
3.5.2 Analyzersand Visualizers 29
3.5.3 Alternative ProfilerDesign, 31

3.6 Accessing HardwareCounters. e 31

4 Execution State Chart 33

4.1 Initial ImplementationlIssues Lo 35

4.2 Advanced Implementation Lo 37
4.2.1 ImplementationDetails. 37
4.2.2 Addressing Initiallssues oL 41

4.3 ImplementationIssueso 43
43.1 ScrollbarScaling 43
43.2 X-AxisLabelling. 45

Vi

4.4 Other Considerations e 46

45 TaskDetails. 47
46 Performance e 49
46.1 TIME e e 49
4.6.2 SPACE. e 50
4.7 RelatedWork. e 52
471 HPVisual Threads 52
4.7.2 NetBeansProfiler. 55
4.7.3 Borland Optimizeit Thread Debugger. 57
4.7.4 CompariSon e 60
4.8 SUMMANY o e 62
Exact Call-Graph 63
5.1 Initial Implementationlissues.o oL 66
5.2 Advanced Implementation Lo 67
5.2.1 DataCollection 67
5.2.2 Visualization. 79
5.2.3 AddressingInitiallssues oL 86
5.3 Implementationlissues L 87
5.3.1 HandlingCoroutines 88
53.2 HandlingCycles. 89
54 RelatedWork. 91
541 gprof . . . e 92
542 IntelVTune. e 94
543 Comparison e e 97
55 Performance 99
551 TiMe e 99
5.5.2 Space. 100
5.6 Summary. e e 101

Vil

6 Statistical Call-Graph 103

6.1 |Initial Implementationlissues.o oL 105
6.2 Advanced Implementationo 106
6.2.1 DataCollection 106

6.2.2 Visualization. 111

6.2.3 Addressing Initiallssues L 116

6.3 Implementationlissues L 117
6.3.1 Dynamic Memory Allocation. 117

6.3.2 HandlingCycles. 118

6.4 RelatedWork. 120
6.41 HPCaliper. e 120

6.4.2 Sun Studio Performance Analyzer. 123

6.4.3 Comparison 125

6.5 Performance 127
6.5.1 TiMe e 127

6.5.2 Space. 129

6.6 Summary. 130
7 Conclusions and Future Work 131
7.1 Future Work. e 132
A Object-Oriented Notation 135
B Program Source Code 139
B.1 Call-GraphTestProgram 139
Bibliography 145

viii

List of Tables

4.1
4.2

5.1
5.2

6.1
6.2

Execution State Chart: Time PerformanceResults. 51
Execution State Chart: Comparison of Related Profilers 60
Exact Routine Call-Graph: Comparison of Related Pmsfile 97
Exact Routine Call-Graph: Time PerformanceResults 99
Statistical Routine Call-Graph: Comparison of Rel&®eafilers 126
Statistical Routine Call-Graph: Time PerformanceResu 128

List of Figures

2.1 Directand Indirect Instrumentation. 9
2.2 ExactMonitoring. 12
2.3 Statistical Monitoring 14
3.1 AuProfiler InstrumentationHook. Lo 25
3.2 Flow of Control for Routine-Level Profiling ipProfiler 26
3.3 Object-Oriented Design of theProfilerKernel 27
3.4 uProfiler StartupWindow 28
3.5 uProfiler Task/Coroutine Selection Window. 30
4.1 Initial Implementation: Execution State ChartDisplay. 34
4.2 Advanced Implementation: Execution State Chart Dyspla. 37
4.3 Advanced Implementation: MagnificationRange. 38
4.4 Advanced Implementation: User Adjustable Options 40
4.5 Advanced Implementation: Converting Between Time ardl®Rnits 44
4.6 Advanced Implementation: Execution State Task Delfagplay 48
4.7 Execution State Chart: Time Performance Test Program. 50
4.8 HP Visual Threads Main Window. 53
4.9 HP Visual Threads State Transitions Window. 53
4.10 NetBeans Profiler Threads Timeline. 56
4.11 NetBeans Profiler Threads Details. 56
4.12 Borland Optimizeit Thread Debugger Thread View. 58

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Call-Graph e 64
Initial Implementation: Exact Call-Graph Display. 65
Comparisonof DCTand CCT. 69
CCT Refinement. e 70
Advanced Implementation: Exact CCT Data Structures. 71
AddingBack-Edges 73
Advanced Implementation: Exact CCT Edge Path. 74
Advanced Implementation: Routine-EnterEvent. 76
Advanced Implementation: Exact Event-Selection Wmdo. 80
Advanced Implementation: Exact Task/Coroutine-8ele Window. 81
Advanced Implementation: Exact Call-Graph Windaw. 82
Advanced Implementation: Exact OptionsMenu. 84
Advanced Implementation: Exact Complete Call-Graphd®iv 85
Example Cycles 90
gprof FlatProfile. 93
gprof Call-Graph Profile. L 93
Intel VTune GraphTah 95
Intel VTune CallListTab, 95
Initial Implementation: Statistical Call-Graph Diggl. 104
Advanced Implementation: Statistical CCT Data Stmegtu 108
Advanced Implementation: CCT Call-Stack Paths. 110
Advanced Implementation: Statistical Event-SelecWindow. 112
Advanced Implementation: Sampling-Interval-SetacWindow. 113
Advanced Implementation: Statistical Task/Coroutdedection Window 113
Advanced Implementation: Statistical Call-GraphVéwd. 115
Advanced Implementation: Statistical OptionsMenu 116
Advanced Implementation: Example Call-Stack 120
HP Caliper HistogramTabh 122

Xi

6.11 HP CaliperCallGraphTab 122

6.12 Sun Studio Performance Analyzer FunctionsTab 124

6.13 Sun Studio Performance Analyzer Callers-Callees Tab. 124

A.1 Classand ObjectNotation. 135
A.2 Active ObjectNotation. 136
A.3 Inheritance Notation. 137
A.4 Aggregation Notation 138
A.5 Association Notation. L 138

Xii

Chapter 1
Introduction

Programming is divided into two forms: sequential and corent. A sequential program has
a single thread of execution, while a concurrent programmmasiple threads of execution (see
Sectionl.2). The transition from one to many threads significantly @ases programming com-
plexity across all dimensions of development and mainte@applications employ concur-
rency to get work done faster, to handle larger quantitiesark, or to simplify the structure of
the application HHO4].

Initially concurrency was a system-level programming teghe for use within operating
systems. Now, concurrency is a necessary user-level progiag technique used in many com-
mon user applications: database and web servers, Inte&aretsengines, web applications, and
graphical user interfaceXMN99]. The need for concurrent programming techniques and tools
is especially urgent given the changing direction of hamdwa&PU performance increases are
now the result of increasing hardware parallelism, via irthiteading and/or multi-core CPUS,
and not increasing CPU clock-speed, as a plateau has bedredea clock-speed. Concurrent
programming techniques and tools are required to sucdssgtilize the available parallelism
at both the system and user levels.

Many programming languages support user-level concuyren@nguages such as Ada
[Uni9Y], Java AGHOQ], and C# HWGO0J support user-level concurrency through built-in con-
currency constructs. Other originally sequential langsaguch as CHR88] and C+ [Str97

2 Chapter 1. Introduction

have been extended to support user-level concurrency. Bieguhge dialects such as Concur-
rent C [GR8Y, pC+ [MMB *94] and uC+ [BDS"92] are the result of such extensions.

1.1 Performance of Concurrent Programs

Although concurrency is an invaluable user-level prograngntool, the performance of concur-
rent programs can be extremely difficult for a user to preginct analyzeHILM95]. Concurrent
programs are inherently more complex than their sequettiahterparts and their performance
can be affected by a greater number of factdF.0g. However, it should be noted that predict-
ing and analyzing the performance of a sequential programalsa be a difficult task.

The factors affecting performance include nondeterminsynchronization, mutual exclu-
sion and context switching.

e Nondeterminism: Concurrent programs are inherently nondeterministiedts interact
with each other in unpredictable way§L0Q]. Synchronization and mutual exclusion
[BHOS5, §4] (described below) reduce the unpredictable behaviotigdn potentially cause
performance bottlenecks.

¢ Synchronization: Synchronization is used to make thread interaction prablieti.e., en-
sure operations happen in a certain temporal order. Syniation is achieved through
the blocking and scheduling of threads. One or more thresslblacked until the con-
straints on their execution order are satisfied. If threddskbtoo frequently or for too
long, performance in reduced.

¢ Mutual exclusion: A resource shared by multiple threads must be protectednathrit-
ical section (i.e., a piece of code manipulating the ressurdlutual exclusion restricts
the number and type of threads given access to a criticabseat any given time. If a
critical section is fully occupied (maximum number and typehreads), then any subse-
guent thread wanting to enter is blocked until other thrdeage the critical section. If a
critical section is large and frequently executed, the nemal threads awaiting entry and
the length of their wait increases, and again performancedisced.

1.1 Performance of Concurrent Programs 3

¢ Context switching: Each time a thread is blocked or preempted, a typically samatunt
of overhead is incurred to save its state and schedule antbitead. However, excess
context switching due to unnecessary synchronizatioresstee mutual exclusion, a poor
scheduling algorithm or an inappropriate time-slice valae cause a reduction in perfor-
mance.

1.1.1 Locating Performance Problems

To achieve a high-performance program (sequential or gogict), a user must identify potential
performance problems as well as locate the part of the pnograere the problems occur. Given
the complexity of concurrent programs and the number obfaaffecting performance, high-
level tools are essential for effective and efficient paerfance analysisHLM95]. These high-
level tools are called profilers, which monitor, analyze aisthalize the execution performance
of a program to help a user verify its expected behaviour|acate bottlenecks and hotspots.

e Expected Behaviour:A programmer has an expectation of how a program should leehav
during execution; however, expected and actual prograraviebr often differ. A profiler
provides a programmer with information about the prograantsial execution to compare
against the expectation. This comparison helps the pragemndentify the location of
any divergence.

¢ Bottlenecks: Bottlenecks are specific areas of a program that throttieopaance (i.e.,
rate determining steps). For example, bottlenecks inchrdas of resource contention.
A profiler can help identify bottlenecks, allowing a prograer to focus on areas of the
program that can significantly affect performance.

e Hotspots: Hotspots are areas of a program that are frequently executedexample,
hotspots include the specific routines in which the greaestunt of execution time is
spent. Although such areas may not be the direct cause of@ipance reduction, any op-
timization could significantly improve performance duetie tlisproportionate amount of

4 Chapter 1. Introduction

execution time spent in the areas. A profiler can help lodegsd hotspots, again allowing
a programmer to focus on areas of the program that can signifycaffect performance.

While the primary focus of a profiler is performance, anatgzand understanding the per-
formance of a concurrent program may help a programmerlestats correctness. This thesis
is mainly concerned with the performance side of profilingunirous concurrent debugging
tools, whose primary purpose is correctness, also eXN9§.

This thesis presents the design and implementation of aucaard profiler calleguProfiler.
uProfiler profiles concurrent programs writtenui€+ (a concurrent dialect of C+) and is itself
written in uC+.

1.2 Definitions

This section provides definitions for terms used extengitleloughout this thesis.
¢ A thread is an independent sequential execution path through a @mofisS07.

¢ A taskis a programming language object that contains a threadraagegution state (in-
cluding a stack). Tasks share a common memory and theirdfig@a called user threads.
User threads are implicitly scheduled across one or monmeekénreads provided by the
operating system.

¢ A coroutineis a programming language object that contains an execst&e (including
a stack). A coroutine uses the thread of its caller to advdas@avn execution state. What
differentiates a coroutine from a routine is that a coratian suspend its execution and
return to its callewithoutterminating. The caller can then resume the coroutine aea la
time and it restarts from the point where it suspended, naitg with the local state that
existed at the point of suspension.

¢ An execution stackstores information about the currently active routines ali as the
parameters, return addresses and local variables of tbosees. A stack is the major

1.3 Thesis Organization 5

component of a task and coroutine’s execution state. Tihe ‘®execution entity” refers to
any language entity with its own execution stack.

e Concurrency is the logical notion of threads executing simultaneouBK(5, §2]. Hence,
concurrency can occur on a uni-processor system by rapityieaved execution of multi-
ple threads on the single processor, or on a multi-procegstem by interleaved execution
of multiple threads across the processors.

o Parallelismis the physical notion of threads executing simultaneolBHO05, §2]. Hence,
parallelism can only occur on a multi-processor system w/itiereads execute simultane-
ously.

Hence, any multithreaded (multi-tasking) program is a corent program with the potential
for parallelism if run on a multi-processor system.

1.3 Thesis Organization

This thesis is organized as follows. Chaflgaresents a detailed description of profiling. Chap-
ter3 presents the design and implementatiopBfofiler, which is the profiling tool advanced for
this thesis, including a brief overview of theC+ programming language, which ggrofiler’s
target environment. The next three chapters present thar c@jtributions of this thesis through
three uProfiler metrics. Chaptet explains the Execution State Chart as part of the Execution
State metric, which charts each task’s states during execat the program. Chaptérexplains

the Exact Routine Call-Graph metric, which provides an egati-graph of a profiled program.
Chapter6 explains the Statistical Routine Call-Graph metric, whichvides a statistical call-
graph of a profiled program. Finally, Chapfésummarizes the contributions of this thesis and
presents possible directions for future work.

Chapter 2
Profiling

A profiler is a high-level tool to help a user understand a paogs run-time behaviour as well as
locate potential performance problems (e.g., bottlenankishotspots). Profiling is accomplished
through monitoring of the program execution, and analyznd visualizing the collected per-
formance data.

Profiling a program consists of three phases:

¢ Instrumentation insertion: instrumentation is inserted into a program to monitor itsru
time behaviour.

e Execution and monitoring of instrumented program: the instrumented program is run
and performance data (also called profiling data) is cadlct

¢ Analysis and visualization:the performance data is analyzed to extract useful infaonat
to be visually presented to a user.

Profiling is often an iterative process. Once a user analymesisualized performance data
for a profiled program, further data may be required to undadsthe performance, or changes
can be made to the problematic areas of the program. In be#fsca user profiles the program
again, possibly refining the instrumentation. The procesgicues until a program’s perfor-
mance is acceptable to a user.

8 Chapter 2. Profiling

2.1 Instrumentation

In the instrumentation insertion phase, additional co@delded at specific locations in a program
to generate performance data during execution. Instrustientcan be broken down into points,
primitives and predicate E§KM82, MCC*95]:

e An instrumentation point is a location in a program’s code where instrumentation is
inserted.

¢ An instrumentation primitive , a counter or timer with operations to change its value, is
used to collect performance data.

¢ An instrumentation predicate is a boolean expression that guards the execution of an
instrumentation primitive (e.g., afi statement).

For example, in the Exact Routine Call-Graph metric desctib Chapteb, a counter counts
the number of times a routine is called and a timer tracksithe spent executing a routine.
Hardware counters are also available to count hardwares\arch as the number of instructions
executed, over a given period. However, although a progray make the same number of
routine calls, for example, each time it is run, the numbepafine calls counted up to a specific
time in the program’s execution may differ between multiples of the program because of the
unpredictable interaction of tasks (nondeterminism) ie@carrent program.

An instrumentation primitive and instrumentation pretiéd@rm a hook, which is inserted at
various instrumentation points throughout the programetpiofiled.

Probe Effect

The insertion of instrumentation into a program resultsnmeerhead, with respect to both time
and space, called a probe effect. The extent of the probetéffdependent on the amount and
type of instrumentation inserted, the frequency at whigtrumentation is executed, as well as
the type of program being profiled (i.e., sequential or cora). The probe effect can change
the run-time behaviour and performance characteristiesppbgram; therefore, minimizing the

probe effect is an important goal for a profil&H85 MH89].

2.1 Instrumentation 9

In sequential programs, the probe effect results in an as& e running time for the program,
but no change in program behaviour, unless the programaJ@ir depends on time. However,
in concurrent programs, the probe effect can lead to theopdessrance of existing performance
problems or their movement to different (or unexpectedations. New performance problems
may also appeaHM93].

2.1.1 Direct and Indirect Instrumentation

Instrumentation is either direct or indirect. In directtimsnentation, code is placed at instrumen-
tation points (see Figur21). In indirect instrumentation, execution jumps from artinsienta-
tion point to a profiling routine, called a trampoline, antlras once the instrumentation code in
the trampoline executes (see Figar#). Although indirect instrumentation has a higher probe-
effect as a result of the routine-call-like jump, modularigthe instrumentation code reduces
code duplication and facilitates the dynamic insertiondification and removal of instrumenta-
tion.

Program Program

Trampolinel

Unprofiled Code Unprofiled Code

L—a] counter = counter + 1
entryTime = currentTime
return

counter = counter + 1

entryTime = currentTime jumpToTrampoIinel/

Profiled Code Profiled Code

Trampoline2

exitTime = currentTime
totalTime =
exitTime - entryTime

jumpToTrampoIineZ/

Unprofiled Code

Unprofiled Code

Direct Instrumentation

Indirect Instrumentation

exitTime = currentTime
totalTime =

exitTime - entryTime
return

Figure 2.1: Direct and Indirect Instrumentation

10 Chapter 2. Profiling

2.1.2 Instrumentation via Insertion

Instrumentation insertion can be done at almost any paantgaihe compilation/execution chain,
e.g., during program composition, preprocessing, coripilalinking, executable re-writing or
execution. If instrumentation is inserted higher in theicl{a.g., at program composition), it is
programming language dependent, but system/architeicidependent (as long as the language
is supported) $he99. If instrumentation is inserted lower in the chain (e.g/,dxecutable re-
writing), it is programming language independent, butesygarchitecture dependent.

The two broad categories generally considered for instntati®n insertion are static and
dynamic.

Static Insertion

Static insertion is instrumentation inserted at any poafible program executiozpk0(d. Static
insertion is used by the majority of profilers, as it is botkienand less time-consuming than
dynamic insertion, and it can collect performance data ithaery difficult to obtain by other
methods Den97. An example of such data is information regarding the calénd callees of a
routine, which is required when generating a call-grapim&anes instrumentation is inserted
at a point in a program that does not help in the location ofgperance problems, resulting in
unnecessary performance data and probe effect. Througkséhef instrumentation predicates
(see Sectior.l), statically inserted instrumentation can be disabledydwer, the instrumen-
tation (and hence the cost and effect) cannot be complegatpved without stopping program
execution and recompiling. Static insertion is best suitecghort to medium running programs
since long-running programs magnify the negative effettsioecessary instrumentation.

Dynamic Insertion

Dynamic insertion is instrumentation inserted during pamg executiontiol94]. In an iterative
process, algorithms are run by the profiler to determine whdrere and what type of instru-
mentation needs to be added to or removed from an executogygn. These decisions are
often related to how effective an instrumentation pointiweating a performance problem and
the movement of performance problems during executiore(@alty if the profiled program is

2.2 Monitoring 11

a concurrent program). Dynamic insertion is best suiteddiog-running programs as decisions
about insertion can take time, but the instrumentation easetective.

No Instrumentation
Profiling can be done without inserting any instrumentatida a program; instead the state of
the program is polled or sampled at regular intervals (seti@e2.2.2).

2.1.3 Instrumentation via Hardware Counters

Hardware counters can with low cost, and hence low prolbezgftollect information (e.g., the
number of CPU cycles elapsed) inaccessible by any otheradeathinstrumentation. Once
configured, hardware counters run in parallel with the ettegyrogram at the hardware level.
Therefore, the cost associated with hardware counterssalest entirely from the reading of
the counters, storing of the count values and writing of thenters.

2.2 Monitoring

Monitoring is the process of collecting, filtering and shgriperformance data generated by the
instrumentation during a program’s execution (filteringpgional, but can substantially reduce

profiling storage requirements by eliminating irrelevaataj. For a concurrent program, data
collection and storage is often done on a per-task basisgdata is stored according to the task
executing at the time the data is generated, rather tharegagigd across all tasks. This task
separation is carried forward into the analysis and viga#bn phases. Sometimes it is also
beneficial to collect and store performance data based @mn otimstructs such as coroutines or
objects. For a user, the separation of the performance tatesdor a more precise understand-

ing of a program'’s performance problems.

Monitoring is divided into two forms: exact and statistical

12 Chapter 2. Profiling

Program

Instrumentation

Instrumentation Profiling Monitor

Event Collection

\/

Instrumentation 7

Instrumentation

Figure 2.2: Exact Monitoring

2.2.1 Exact Monitoring

Exact monitoring (also called event-driven monitoring)lects data at each occurrence of all
relevant events. In this case, the profiling monitor is nedifivhen instrumentation associated
with a relevant event is triggered during program execufsae Figure.2). A routine call, for
example, is a relevant event when generating a call-graglcoBecting data at the occurrence
of each event, exact monitoring provides accurate perfoo@alata, but at the cost of high
overhead, both in time and space, and consequently a higblee{gffect. The amount of data
collected (i.e., space requirements) can be reduced hyctagj the scope of the monitoring (to
specific program segments), dynamically filtering unnesngsdata or by aggregating data on-
the-fly. Overall, exact monitoring is used to provide an aateievent trace for a short-running
application or short segment of a long-running applicatimna summary of execution rather
than a full trace.

2.2 Monitoring 13

2.2.2 Statistical Monitoring

Statistical monitoring (also called polling or samplingllects data only at specific intervals
called sampling intervals or periods. In this case, the fimgfmonitor polls the executing pro-
gram at these specific intervals to obtain information altbetprogram’s execution state (see
Figure2.3). The structure of the call-stack, for example, is statenmfation relevant when gen-
erating a call-graph. The sampling interval can be basethm(e.g., every 10 milliseconds) or
the occurrence of hardware events (see Se@i2r. By collecting data only at specific inter-
vals, statistical monitoring has lower overhead, bothrimetend space, and consequently a lower
probe-effect, but at the cost of less accurate performaatze dhe smaller the sampling inter-
val, the greater the accuracy and overhead of the informgtiowever, this approach can never
replace exact monitoring when complete accuracy or everdrage is essential. For example,
if statistical monitoring is used to trace a program’s stadasitions, the resulting trace does
not cover all transitions, resulting in anomalies like axiion from a blocked state to another
blocked state with no intervening execution.

2.2.3 Hardware Counters and Monitoring

Hardware counters are useful for both exact and statistn@alitoring. In exact monitoring,
hardware counters are used to determine the number of heg@wents that occurred during the
execution of a specific section of code by subtracting thentywalue read at the start of the
code section from the counter value read at the end of thessxt®n. In statistical monitoring,
the sampling interval can be based on the occurrence of #ispeamber of hardware events.

In general, hardware counters count from 0'fo-21, wherew is the architecture-dependent
width of the counters in bits. However, to generate a sargpliterval ofn events, the hardware
counter is set to a value of'2- n. When the count exceed¥ 2 1, an overflow signal is gener-
ated and delivered to the profiling monitor, which sampl@sgtogram’s execution state before
resetting the counter td"2- n. For a concurrent program, hardware-event counts arealized
across threads by storing/restoring the counters duringegbswitching.

14 Chapter 2. Profiling

Program

Profiling Monitor

Data Collection

A

Figure 2.3: Statistical Monitoring

2.3 Analysis

Performance data must be analyzed to extract useful intowmabout a program’s behaviour for
visualization. Before the data is analyzed, it can be opligtiiltered in order to reduce the size
of the data set, and hence, the time required for analysisotécalculations and/or algorithms
are performed on the data, and, if possible, the data is noldpaek to the program’s source code.
Once visualized, such processing results in informatia isymuch more understandable to a
user and conducive to locating performance problems. Aufdit preparation of the information
may be required depending on the format of visualizatiog. (summary view, detailed view).
Analysis of performance data for a concurrent program ugeassequential program, is more
complex because of the separation of the data by task (arstbposther constructs). Not only
does each separate group of data need to be individuallyzethlbut the data from the sepa-
rate groups should be compared so that performance proldeento their interactions can be

2.2 Analysis 15

discovered (such analysis can be left to the user during@ition).
Analysis can be done in real-time (also called on-the-flgstpnortem or a combination of
the two.

2.3.1 Real-Time Analysis

Real-time analysis is done during program execution. Twaathges of real-time analysis are
the ability to dynamically filter unnecessary performanatadnd the ability to process perfor-
mance data on-the-fly, in both cases reducing storage ssqgeairts for profiling. A further advan-
tage is that the information extracted during the analyasrsform the basis for decisions made
by the profiler or user regarding dynamic (i.e., decisioggrding the insertion and removal of
instrumentation) or static (i.e., decisions regardingehabling or disabling of instrumentation
predicates) instrumentation before the program has fidiskecution.

The major disadvantage of real-time analysis is the highavgseffect that results from per-
forming the analysis and the display of any visualizatiomtkermore, the analyzed information
may only be available after a delay, if the events genergtigrjormance data are occurring
quickly and/or the analysis and visualization is time-econgg; therefore, effective decisions
regarding instrumentation adjustment are difficult for gefiler and almost impossible for a
user to make, especially for short-running programs. Fisrrgason and the ability to reduce
storage requirements, real-time analysis is best suiteldrig-running programs.

2.3.2 Post-Mortem Analysis

Post-mortem analysis is done after the program has finiskesmigon, meaning the monitoring
process is the only contributor to the probe effect. Howeslgnamic filtering of unnecessary
performance data is impossible and no information is abbkildo make instrumentation ad-
justments. For these reasons, post-mortem analysis isbiéstl for short to medium running
programs. Finally, some profilers save performance datdite & allow post-mortem analysis
at any time, i.e., even after the visualizations of the penmce data have been terminated.

16 Chapter 2. Profiling

2.3.3 Combination

A combination of real-time and post-mortem analysis cao &ls used. For example, real-
time analysis can be done to allow for dynamic instrumeaniteldly the profiler and post-mortem
analysis can be done to process the collected data for uselization.

2.4 Visualization

Visualization is the last step in the profiling process. Thalgf visualization is to display the
performance data so that a user can understand it and wdtinmabke decisions regarding the
performance of a program. To achieve this goal, the visatin needs to effectively and clearly
convey all pertinent information without overwhelming a&us

As previously mentioned, for a concurrent program, datalkected, stored and analyzed
according to how it is separated (e.g., per appropriatetaaets). In general, the data needs to
be visualized in a similar manner to reflect the user’s higtel execution model. Because vi-
sualization can be complex, displaying summary informretay different groupings on a single
screen can help direct a user in choosing which group to examigreater detail. Performance
data can be visualized as tables, charts and graphs (fbefurisualization techniques refer to
[Tuf83)).

Tables
Tables, the simplest form of visualization, display disenealues (e.g., numerical data) arranged
in rows and columns, and are often used when significantladetads to be conveyed.

Charts

Charts are pictures or diagrams that display discrete sallike pictorial format makes trends
in a set of data (as well as among multiple data sets) easseto Examples are bar charts or
histograms, pie charts and Gantt chaMd82).

2.4, Visualization 17

Graphs

Graphs use points, lines and surfaces to represent maoig+iional relationsfjen97. Like
charts, graphs use a pictorial format to make trends easised, but unlike tables and charts,
graphs can display continuous values.

Chapter 3
uProfiler

uProfiler is a concurrent, object-oriented profiler for cament, object-oriented programs writ-
ten in uC+. uProfiler provides multiple metrics for displaying inforrm@t about the dynamic
behaviour of a program, where each metric is composed oftoramy, analyzing and visualiz-
ing one or more aspects of program performance. Initial vaorkiProfiler was done in 1997
by Robert Dendalen97. In 2000, Dorota ZakZak0(Q added a number of new metrics, and in
2005, Josh Lessard ¢s03 added hardware counters and metrics utilizing these eosint

This chapter describes the design and implementatiqurPobfiler, covering Robert, Dorota
and Josh’s previous work, in addition to changes | have madiegl the development of this
thesis.

3.1 Target Environment

A profiler can be loosely or tightly coupled with its executienvironment. Loose coupling
indicates a weak integration of the profiler with the targetguage(s) and run-time system;
hence, the profiler makes few (high level) or no assumptitwsisthe environment’s execution
model. On the other hand, tight coupling indicates a stromggration of the profiler with the
target language(s) and run-time system; hence, the prisfiéevare of and can access constructs
intrinsic to the environment’s execution model and provide-grained performance data based

19

20 Chapter 3uProfiler

on those constructs. Consequently, loosely-coupled prsefdan often profile programs written
in a variety of programming languages, whereas tightlypted profilers concentrate on a single
or very small subset of similar programming languages.

uProfiler is tightly-coupled with its target execution emnment; the profiler collects perfor-
mance data from the execution environment and expressdssriesterms of the environment’s
concurrent execution model, i.e., performance data isatgzhby and related back to the concur-
rency constructs in the environment. Tight coupling féaiés performance analysis and deeper
understanding by allowing a programmer to continue to tlmnierms of the specific execution
model used during program implementation.

This section describes the execution environment needadderstand the design and im-
plementation ofuProfiler presented in the remainder of this thesis.

3.1.1 uC+

The target environment fouProfiler is a concurrent extension of the C+ programming lan
guage Btr97 called uC+ [BDSt92, BS07. uC+ extends C+ with new language constructs
providing advanced control-flow, including lightweightrmurrency, on uni-processor shared-
memory computers (by interleaving task execution) andlighuexecution on multi-processor
shared-memory computers (by interleaving and true paexdtsution).

pC+H is implemented using a translator and a run-time libtegyled theuC+ kernel), and
provides an M:N user-to-kernel-thread model. The traosleads giC+ program containing
language extensions and transforms each extension intst@ements. A C+ compiler gen-
erates the program’s object code and links it to i@+ run-time library. TheuC+ kernel is
responsible for creating, managing and destroying the aeguage constructs as well as for
task scheduling.

3.1.2 uC+H+ Language Constructs

UCH provides its own execution model through the introductof six new language con-
structs that support concurrent execution. These corstane coroutines, monitors, coroutine-

3.1 Target Environment 21

monitors, tasks, virtual processors, and clusters. Ordycibroutine and task constructs are
relevant to this thesis (seB$07 for details on the other constructs).

3.1.2.1 Coroutine

A coroutine is a programming language object that contagmewn execution state (including
a stack). Like a routine, a coroutine does not have its owsatthiof control; it uses the thread
of its caller to advance its own execution state. Unlike dingy a coroutine’s execution can be
inactivated as control returns to its caller (task or carm)twithout terminating. Therefore, the
coroutine can be again activated at a later time and it tsstiam the point where it was last
inactivated (rather than from the beginning), continuinthvihe local state (i.e., local variables)
that existed at the point of inactivation.

A coroutine has one distinguished member routine catieah. Direct interaction with the
main routine is not permitted, so a coroutine can only be activaidirectly through a call to
one of its public member routines. A public member routinecexes a resume statement which
explicitly activategnain, at the point of the last inactivation, and execution of taket’s thread
moves from the caller’s stack to the activated coroutintsisks A coroutine can be inactivated
by executing a suspend statement and reactivating it ,catléy activating another coroutine
by calling one of its public member routines containing aines statement. In either case, exe-
cution of the currently active thread moves from the inadt#d coroutine’s stack to the activated
coroutine’s stack.

3.1.2.2 Task

Atask is a programming language object that contains itsexgcution state (as for a coroutine),
mutually exclusive execution of its member routines, asawn thread of control. A task has
a distinguished member routine calledin in which the new thread starts execution, and as for
a coroutine, interaction with the task is through public rbemroutines. A task’s thread can
execute on the task’s stack as well as on the stack of anotheutme. A task’s thread runs
concurrently with all other task threads in the same program

22 Chapter 3uProfiler

Tasks and coroutines are known as execution entities betamtk contain their own execu-
tion stack.

3.2 Design Objectives

The current implementation gfProfiler fulfills six main objectives. These objectives steam
pProfiler’s original design requirement®¢n97.

3.2.1 Profiling on a Per-Thread Basis

For a profiler to profile an individual thread or effectivelygregate data across threads, it must
be aware of how its execution environmepQ+ in the case ofiProfiler) handles thread man-
agement and scheduling. Per-thread profiling is essentiabhcurrent profilers because threads
form the basis of a concurrent language’s execution model.

3.2.2 Profiling at Different Levels of Detalil

Collecting, analyzing and visualizing performance datdiiérent levels of detail is required to
provide a user with the most helpful information as well asvde multiple perspectives of the
collected datauProfiler can profile at the cluster, virtual processor, taskoutine, object, and
routine levels, across a number of appropriate metrics.

3.2.3 Selective Profiling

Users may be interested in profiling only certain aspects,(specific tasks, routines etc.) of a
program, rather than the entire progrguiRrofiler provides selective profiling pfC+ programs
(i.e., instrumentation control) by allowing a user to speerhich program modules and which
tasks within the modules are profiled. Per-module profilsngnabled by compiling a module
with the profile flag, and profiled and unprofiled modules are compatible t&&profiling can

3.2 Design Objectives 23

be dynamically enabled and disabled for a task during el@cily calling theprofileActivate
andprofilelnactivate routines.

3.2.4 Support Different Forms of Visualization

Different metrics collect different performance data,leeequiring various forms of visualiza-
tion. Sometimes the same data needs to be presented in lmwags. uProfiler supports sev-

eral different visualization forms, from textual to grapdli and provides a custom Motif widget
[HF94] for each one.

3.2.5 Extendibility

Programs, and especially concurrent ones due to their @iyl often require a wide range
of metrics to measure the various performance problemsatiieg. Profilers provide a set of
built-in metrics, but when situations arise that cannot egaately handled by those metrics,
the profiler should allow users to add their own metrig®rofiler can be extended in this way
through inheritance, allowing a user to derive a new monéoalyzer and visualizer for a new
metric from a corresponding set of base classes. The newcneatr be attached tgProfiler
without recompilation.

3.2.6 Portability, Interoperability, and Maintainabilit y

UCH supports several operating system/architecture,paitis yProfiler currently running on
three of those operating system/architecture pairs. Hewewothing inuProfiler’'s design or
implementation prevents a port to any other systems.

Maintainability is an essential design considerationmyithe software development process
as it makes future corrections, improvements and adaptgasier. Maintainability has been
an important objective of the work done prProfiler for this thesis. Numerous new reusable
components have been developed, and consistency, in dattuseés and visualization, across
metrics has been greatly increased.

24 Chapter 3uProfiler

3.3 Instrumentation Insertion

uProfiler uses both direct and indirect instrumentationriti@e. For direct instrumentation,
hooks are inserted into theC+ kernel, and for indirect instrumentation, shared tralme calls
are inserted into the user code of {ln€+ program during compilation.

3.3.1 uCH+ Kernel Instrumentation

Hooks have been inserted at various locations inu@et+ kernel and are present whether or not
a target program is being profiled. However, a hook is onlygegred, and hence performance
data is only collected, if the instrumentation predicatarging its execution evaluates to true.
Figure3.1lis an example of aC+ kernel hook that can be triggered when a task changes its
execution state. This hook is triggered for the Executi@ieSmetric described in Chapt#rThe
if statement surrounding the routine call is the predicate jtarboolean expression must evalu-
ate to true in order for the hook to be triggered. The boolegnassion is true if thprofileActive
flag is true and iuProfiler::uProfiler registerTaskExecState is non-null. TheprofileActive flag
is true when profiling is enabled for the currently activektéise., the task changing state).
uProfiler::uProfiler _registerTaskExecState is a routine pointer that, if non-null, points to the
uProfiler::register TaskExecState member routineuProfiler::uProfiler _registerTaskExecState is
non-null when at least one module of the program is compilel the profile flag and at least
one metric requiring this hook is selected, i.e., that mistexecution monitor (see Secti8rb.])
has registered to receive notifications upon triggerind,u&+ kernel hooks are structured and
activated in the same way.

3.3.2 User Code Instrumentation

Shared trampoline calls are inserted into a target programngl compilation. Theprofile flag
tells theuC+ translator to activate théinstrument-functions flag, which in turn tells the C+
compilergcc [GC(Q to insert the trampoline callggcc inserts an entry trampoline call at each
routine entry and an exit trampoline call at each routing, éar each routine in a module. The

3.4 uProfiler Kernel 25

void uBaseTask::setState(uBaseTask::State s) {

if (profileActive && uProfiler::uProfiler_registerTaskExecState) {
(*uProfiler::uProfiler_registerTaskExecState)(uProfiler::profilerinstance, *this, state);

Figure 3.1: AuProfiler Instrumentation Hook

trampoline calls are passed the address of the routine leeiteged or exited, and the address
of the call site in its caller routine. These shared trammadiare inserted for the Routine Call-
Graph metrics described in Chapté&and6. Figure3.2 shows the execution of the trampoline
during a routine call in uC+ program. However, if theprofile statistical flag is specified all
profiling is activated except théirstrument-functions flag as trampoline calls are not required
for statistical metrics. By specifying therefile statistical flag, the large number of trampoline
calls is avoided, which has a positive impact on the runrime of a profiled program.

For modules with inserted trampolines, if routine-leveadfing is not enabled for at least one
active metric requiring it then the trampoline code is naaKred and execution returns to the
instruction immediately following the trampoline call. li@rwise, metric-specific data structures
are updated to reflect the new execution-state (i.e., refiecturrent state of the stack - a new
routine being entered or a routine being exited), data ciidie is performed and, if active, the
corresponding hook is triggered.

3.4 uProfiler Kernel

The uProfiler kernel provides the main functionality gProfiler. Figure3.3 shows, using the
object-oriented notation described in AppenAixthe relationship between theProfiler kernel

26 Chapter 3uProfiler

Entry Trampoline

/ __cyg_profile_func_enter {
* if routine-level profiling not needed, return
* update data structures
Target Program * collect performance data
* if routine-level hook active, trigger it
Rtn { }
i l—
call entry trampoline |

- |

Exit Trampoline

call exit trampoline

} B __cyg_profile_func_exit {
* if routine-level profiling not needed, return

* update data structures

* collect performance data
* if routine-level hook active, trigger it

Figure 3.2: Flow of Control for Routine-Level Profiling poProfiler

and the metrics’ execution monitors, analyzers and vigeedi TheuProfiler kernel consists of
the following objects:uProfiler, StartMenuWindow, uProfileTaskSampler, uExecutionMonitor,
Analyze, ProfilerAnalyze, andSymbolTable.

uProfiler is a task that acts as a propriet@gn81 p. 446] for all active metrics, handling
registration and management. Once created, the execubaitonfor each active metric regis-
ters itself withuProfiler, and registers for any required instrumentation hooks$setion3.5.1).
Monitors for metrics doing exact profiling are notified brofiler when their registered instru-
mentation hooks are triggered during program executiah¢ating to the monitor that an event
has occurred. Monitors for metrics doing statistical pnodjlare notified byuProfiler at specific
intervals, indicating it is time for the monitor to samplesthrogram’s execution state. Once

3.4 uProfiler Kernel 27

uProfiler Kernel

1 1
uProfileSampler on Symbol Table

uProfiler on
Metric
Monitor
uExecutionMonitor
Metric
Monitor
1
AddToL 1 > 1 _ _
Analyze ListSelectWindow

0o,n 0,1

. 1
ListSelectable 0.1

uVisualDevice

Metric
Analyzer

uProfiIeBarChartWidge]

! uTableWidget l

Figure 3.3: Object-Oriented Design of tp@rofiler Kernel

Window

Metric
Analyzer
Window

28 Chapter 3uProfiler

monitoring is completeyProfiler invokesProfilerAnalyze which creates and invokes an analyzer
(see SectioB.5.2) for each registered monitor.

Before the target program is executed, a user must selad¢siled metrics from the list of
available metrics presented on the startup window (seer&Ryd). StartMenuWindow creates
the startup window and also creates and invokes an exeaubaitor for each selected metric.

r:l uProfiler Version 1.3.0 (on plg2.math}) E“E“Er

Close Info

uProfiler

—5Statistical Profiling
[7 Routine Call Graph

Select Sampling Euent(s)+++|

—Exact Profiling
[T Execution State

o Fapyai-ieder Event Tracye (requires POET)
[7 Routine Call Graph
Select Euent(s)+++|

—Other Profiling
| Memary Uszage

| UNI¥ Resources Usage

Start |

Figure 3.4:uProfiler Startup Window

A uProfileTaskSampler is created for each profiled task and coroutine to store, in va
ious per-metric data structures, the related performarata dollected during monitoring.
uExecutionMonitor andAnalyze are abstract base-classes explained in Se8tin

When the target program is compiled, the compiler geneeateschitecture-dependent sym-
bol table. The program symbol table is accessible throughBinary File Descriptor (BFD)
Library [Cha9]. SymbolTable provides a high-level interface to the BFD library, abdiragthe

3.5 uProfiler Metrics 29

symbol table details and providing access to its infornmafég., routine names and locations in
files).

3.5 uProfiler Metrics

Reflecting the profiling process, (@Profiler metric consists of an execution monitor, analyzer
and visualizer. Firstly, an execution monitor, derivedhiirthe uExecutionMonitor abstract base-
class, collects performance data during the monitoringglad profiling. Secondly, an analyzer,
derived from théAnalyze abstract base-class, processes the performance datg theianalysis
phase of profiling. Finally, a visualizer, using a deviceyded by rProfiler or derived from the
uVisualDevice base class, displays the processed performance data @m sitneng the visual-
ization phase. In this way, work related to the various phasmains separated and each metric
becomes a separate entity allowing for easy extendibilityraaintenance.

3.5.1 Execution Monitors

UProfiler's execution monitors are passive objects that tooii target program’s run-time be-
haviour. A monitor registers with and is managed URtofiler, as described in Sectid4.
Furthermore, for those monitors which register for hookihwProfiler, the uExecutionMonitor
abstract base-class includes one hook-notification reditineach hook, which is defined by the
derived monitor and called when that particular hook isgeiged.

3.5.2 Analyzers and Visualizers

uProfiler does post-mortem analysis. Therefore, only aftenitoring (and program execution)
is complete doesProfiler invoke ProfilerAnalyze to create and invoke the analyzers for all reg-
istered monitors. TheExecutionMonitor base class has a virtual routine calledateAnalyze,
which is defined by the derived execution monitor and callgd tvfilerAnalyze to create the
analyzer object.

30 Chapter 3uProfiler

r:l Routine Call Graph, Task/Coroutine Selection E“E“E]
Close |
Tazk/Coroutine Time (=zeconds)

Mame (ID) Total Exec, Total Block

uBootTask (0x115360) 1400 0 A
uSystemTask (0x17cded) 0 0
uMain (0xFFbefE33) G, 449m 2,073
Philosopher (0xF32F33) 304, 5m 1.77
Philosopher (0xF33ccd) 303, 8m 1.77
Philosopher (0xF3F2E3) 301, Fm 1,763
Philosopher (0xF3Fd48) 302, 3m 1,762

Philosopher (0xF3e328) 301, 5m 1,766 ¥

-l 1= [l [P

Figure 3.5:uProfiler Task/Coroutine Selection Window

Once analysis is complete, visualization of data begina/gver, further analysis may occur
as a user makes selections or chooses certain options oartbas/visualization windows. Each
pProfiler analyzer creates an analyzer window (a selectiomeovi), derived from a common
base-class calledstSelectWindow. ListSelectWindow is useful for summary information, pro-
viding routines for left/right panes with selection for ldng down in the data. For example,
in Figure3.5, call-graph summary information is displayed for each pedftask and coroutine
listed on the left-hand pane. By clicking on a task or commitanother window is displayed pro-
viding specific information for that selection (e.g., the-peesk or per-coroutine call-graph). The
windows displaying specific information derive from a commb@ase-class, callddstSelectable,
and often also derive from the clagsxtIinfoWindow. TextInfoWindow is useful for detailed in-
formation, providing routines for creating and managingous types of window panes (e.g.,
hideable panes, clickable panes etc.). These powerfuldiasses are available poProfiler to
simplify construction of complex graphical user interface

3.6. Accessing Hardware Counters 31

3.5.3 Alternative Profiler Design

Other profiler designs exists to the one monitor, analyzdnasualizer metric-design described
for uProfiler. The alternatives decouple the monitors, anafyaed visualizers from one another
as opposed to the tightly-couple approacp Frofiler. Monitors would deposit performance data
into a common repository that is accessible to all the amatyand visualizers, allowing data to
be more easily analyzed and visualized in multiple ways dsageenabling the addition of new
metrics into a profiler. Clearly, this design is very diffet@and much more complex than the
currentuProfiler design, but is a potential long-term goal fd®rofiler.

3.6 Accessing Hardware Counters

uProfiler has support for hardware counters on three difteaierhitectures: the UltraSPARC
I/lI/N running Solaris, the x86 (including Intel PentiutdMX/Pro/ll/111/4 and AMD Athlon)
running Linux, and the IA-64 (Itanium 2) running Linux.

Each processor has a fixed number of hardware counters, etch set of countable hard-
ware events. Because the hardware counter properties lofoeacessor vary, this information
is encapsulated in per-processor event tables. Usuadlyydimber of hardware counters is fairly
small (e.g., only 2 counters for the UltraSPARC 18Un04) and a particular hardware event is
often bound to only a subset of those counters; therefoig aimited number of events can be
counted at any given time.

A substantial amount of fairly complex code must be execut@dder to cause the hardware
counters to count specific hardware events, but these wyidgidetails are encapsulated and
abstracted away by th#WCounters class Les0g. The HWCounters AP provides the program-
mer with routines to choose events to be counted as well &atbfrom and write to the various
counters counting those events. User-level events, syiseghevents, or both can be counted.
For metrics such as the Exact and Statistical Routine Calpemetrics described in Chaptérs
and6, a user can decide which level of events to count via an optionx.

Chapter 4
Execution State Chart

This chapter describes the advances mageRrofiler’s Execution State ChafESC) within the
Execution StateKS) metric.

The ESCdisplays the states of individual tasks during executiaruC+, a task can transi-
tion through five states during execution:

e start: the task has been created but has not started execution.

ready: the task is ready to execute but is not currently scheduleeidecution.

running: the task is executing on a processor.

blocked: the task is waiting for an event to occur.

end: the task has finished but has not been deleted.

The ES metric collects the required data through tracing: eade statered and the duration
of the state is recorded on a per-task basis. EBE€ uses a Gantt ChartMR82] to display
the states for every task over the entire execution of thgraro, i.e., one continuous line per-
task. An example display of the initial implementation iegented in Figurd.1L Each line is
subdivided into segments representing the states. Thercof@a segment indicates the type of
state, and the segment length indicates the duration oft#te. sThe statestart andend are

33

34 Chapter 4. Execution State Chart

in yellow, ready in blue, running in green, andlocked in red. The name of theC+ task
associated with each line appears to the left of the chadtflaa X-axis shows the elapsed time
of execution.

Execution State Transition Chart
Cloze Scale
uBootTask {_ljxlg.jg?ﬂ;l L ee-------- - A
uSystemTask (0x15d780)
uHai_h meFhEF.?Em HRNE | R TRNE T &
F'hi_l"cls!jpher‘ ED}:FﬁEﬁED} I N I S 1Y 1S L
F'.hilcrsﬁlpﬁerf EQ}:EE!E%‘EC@'} I I — RS
F'h'j:'bz'ﬂ':":'her {(]};Fijedﬁlj;l LT T BRI RN T
Philozopher {ngEEj_ﬂ['j.j I E— N
Philosopher (0xfeSfel) — Y R
Elapsed Time (msec) O 1 2 3 4
Legend
before / after thread execution
m eady
= running
m= blocked %
] I i

Figure 4.1: Initial Implementation: Execution State CHaigplay

A user is able to magnify the chart (i.e., zoom-in and zoor)-afiooming-in increases the
magnification, showing the chart in greater detail so eaghlpepresents a smaller duration
of execution time, and hence, each state (and line) expantngth. The duration of time
represented by one pixel is the scale ratio. In the initigdlamentation of th&SC[Zak0q, the

4.1 Initial Implementation Issues 35

scale ratio is updated as a user changes the scale factar i8¢hle” pull-down menu (see top
menu bar in Figurd.l). The scale factor is an integer value between 0 and 9. To atentpe
scale ratio the entire execution duration is divided by a Ip@nassociated with the current scale
factor. At scale factor O the number is 300, and the numbeeases to 30,000 by scale factor 9.
Therefore, the larger the scale factor, the smaller thesea#ib and the higher the magnification.

The overall goal of the advances discussed in this chaptedsvelopuProfiler'sES metric,
primarily theESC, into a state-of-the-art metric with good performance Healles to programs
of long duration and with large numbers of tasks and states.

4.1 Initial Implementation Issues

This section describes several issues arising in thelimt@ementation of th&SC. | addressed
each issue in the advanced implementation ofEB€ and the solutions are discussed in Sec-
tion4.2.2

The first issue involves scaling tiESC to programs with large numbers of tasks and long
execution. Inthe initial implementation, the entire cl{aet, the entire execution of the program)
is drawn, all at once, into an X-window drawing area. A usenthses the horizontal and vertical
scrollbars to move the window over the drawing area. HowexeX-window drawing area is
restricted to 32,000 x 32,000 pixels. Given this restrictid the number of tasks within a
program is sufficiently large, the drawing area cannot gallf accommodate a line for each
task, or if a line is sufficiently long (i.e., long execution lmgh magnification), the drawing
area cannot horizontally accommodate the entire line. ¢h Bome instances of the X-server,
which handles the display and input devices, terminate thélgr application if the drawing
area exceeds the X-server’s size restrictions, and heodafermation is displayed for a user.
The second issue involves a loss of information at lower rfi@mgtion. At lower magnification,
many states are represented by line segments too smalMipidra less than one pixel in width.
Such a loss of information can result in a chart that is vernfesing and misleading for a user.
For example, two distinct states of the same type can appeareacontinuous state if the states
occurring between them are not drawn because they are tdbedriee current magnification. In

36 Chapter 4. Execution State Chart

an attempt to deal with this problem, the initial implemeéiata always draws at least one pixel
for each line segment. However, this artificially length#resline, and consequently the elapsed
time of execution does not always correctly match with thaxs tick-marks.

The third issue involves the X-axis. In the initial implent&ton, the axis always shows the
elapsed time of execution in millisecond time units. Adzhglly, no fractional tick-mark inter-
vals (duration of time between two consecutive tick-mankghe axis) are used, and therefore,
the smallest tick-mark interval is one millisecond. M#ind time units are not always the best
choice. Using nanoseconds for programs of very short exetand at higher magnification, and
seconds for programs of longer execution and at lower magutiibn is much more appropriate,
intuitive and allows for greater precision. Similarly, thee of fractional tick-mark intervals al-
lows a more precise division of the axis so it is easy to asse@ position along a line with a
specific execution time.

The fourth issue involves the visibility of the legend ané task names. Both the legend
and the task names appear to the left of the chart, but arendraw/the same drawing area as
the chart itself (see Figur#el). Therefore, as a user moves the horizontal scrollbar toidjine
these items disappear from the window. The consequence ¢édglend no longer being visible
is often minimal. However, given a large number of tasks it ba difficult to remember which
line corresponds to which task. This forces a user to cotigtarove the horizontal scrollbar
between the region under examination and the far left side.

The final issue involves visualization performance. As tinber of states grows larger (e.g.,
several million states), the amount of time needed to psoties state data in order to display
the corresponding lines also becomes larger. The decliperfiormance is noticeable and can
be frustrating for a user (e.g., 5-30 seconds of delay whemaag as the entire set of state data
must be processed and redisplayed). This issue is sigrtibeaause programs that make several
million state transitions are common.

4.2 Advanced Implementation 37

4.2 Advanced Implementation

In addition to addressing the issues from the initial impatation of theESC, the advanced
implementation has also progressed in other areas. An dgahgplay is presented in Figude2.
The advanced display consists of two panes, the task pdilec@ataining the task names and
the chart pane (right) containing the states.

-

] Task Selection / Execution States (on plg2.math) EHE“EI
Clase Optionz #Readys/FunsBlocks /Elide)

12 uz 8108,7+0 100 200 300 400 L0 (1000] Lee] EIZIJCI

uBootTask {0x124d80) A

WSystemTaszk ((x1Bc738)
uain (xffbefEES)

Philosopher (0xfBETE95)
Philosopher (Oxfbd2d8)
Philozopher (Oxfc3878)
Fhilosopher {(xfcd4308)
Philosopher (0xfc29358) v

| =y = - -

Figure 4.2: Advanced Implementation: Execution State Cheplay

4.2.1 Implementation Details

Each pixel of a line in the chart pane corresponds to a spetifiation of execution time. As in
the initial implementation, the number of nanosecondsesponding to one pixel is represented
by a scale ratio. The scale ratio is a continuous (floatingtpwalue. Requiring a user to set
the scale ratio in order to adjust the magnification is pnolalic because a user is forced to
relate particular magnifications to long floating-pointued. Furthermore, the existence of a
large number of magnifications can clearly complicate uswraction. Therefore, | chose to
have a user indirectly control the magnification (i.e., thart detail) by adjusting either of the
two parameters, the scale factor or the magnification stepead of directly adjusting the scale

38 Chapter 4. Execution State Chart

[Task Selection j Execution States (on pIg2.m.’=|th)|Z||E|\Z|1 [Task Selection / Execution States (on pIg2.m.’=|th)|Z||E|\Z|1
Close Options (/Ready/FundBlocks /Elide) | Close Options (/Ready/FundBlocks /Elide) |

1 me 0040 510 15 20 25 30 3H 40 45 GO 35 ns 16601985, 7+0 5 10 15 20 25 20 25

uBootTask {0x124d80) I a uBootTask {0x124d80) =

uSystemTask (0x13c738) | uSystemTaszk (Ox18c738)

uMain {0xffbefEEs) 1 LT — uMain {0xffbefEEs)

Philosopher (0xfb7538) [T TR Philosopher {0xfb7538)

Philosopher (0xfbd2d3) o ___| Philosopher {Oxfbd2da)

Philosopher (0xfc3878)] Philosopher (0xfc2878) 0

Philosopher {Oxfcd358) || Philosopher (0xfcd358)

Philosopher (0xfc2333) | i Philosopher {Oxfc2938) 7

=i g . =i g >

(a) Minimum (b) Maximum

Figure 4.3: Advanced Implementation: Magnification Range

ratio, restricting adjustment to discrete integer valuéee purpose of the restriction is solely to
simplify user interaction by providing small, repeatabddues for controlling the magnification.

The scale factor is a unit-less integer value between 1 anaxégnmum. The maximum indi-
cates the number of magnifications between the minimum rfiegtion (i.e., at scale factor 1,
see Figuret.3(a), where each state is maximally compressed in length, anthéximum mag-
nification (i.e., at the maximum scale factor, see Figub), where each state is maximally
expanded in length. As the scale factor is increased, tHe satio decreases, and hence, the
magnification increases (see Equatéhf). The number of integral scale factors (i.e., the max-
imum scale factor) is determined by the magnification stdpe magnification step defines the
percentage change in magnification for each step in the fala. Defining the change in this
way allows a user to magnify more quickly, but still have for@ined control with the selection
of the magnification step. As a result, the scale ratio is avefse) exponential function of the
magSte@ndscaleFactor(see Equatiod.l). The lower the magnification step, the greater the
number of scale factors because each step in scale factesegys a smaller percentage change
in magnification; therefore, more steps are required tolrélae maximum magnification. For
example, a magnification step of 100% means that at each fstiep scale factor the magnifica-
tion is doubled. The chart displayed at the minimum and marinmagnifications is the same
regardless of the magnification step.

The scale ratio (and correspondingly the chart displaygdpdated given any change in the

4.2 Advanced Implementation 39

scale factorgcaleFactoy or the magnification stepr{agStejp The scale ratio is computed by
the following formula
totalDuration

scaleRatio= — . 4.1
magSte FealeFactor-1 . MinDisplayPixels (4.1)

The smaller the scale ratio, the higher the magnificatiombse each pixel represents a smaller
duration of execution time. The smallest scale ratio pbssMinScaleRatipis 0.1, meaning
that one nanosecond is represented by 10 pixels.

Solving forscaleFactorin Equatiord.1 gives the following formula for computing the scale

totalDuration
scaleFactor= |lo . — : 1 4.2
L gmags‘ef(scaleRatlcx MlnDlspIayPlerQJ * (4.2)

factor

The current scale factor is updated given a change in theifiegion step. The new magnifica-
tion step and updated scale factor are then used to commutedle ratio. The scale factor calcu-
lation attempts to preserve the current scale ratio (he.ctrrent magnification) while keeping
the scale factor an integer valulinDisplayPixelsis 100 and represents the number of pixels
used to display the entire chart at scale factor 1. Similéinly maximum scale factor is updated
given a change in the magnification step, but computed usjugion4.2 with MinScaleRatio
instead ocaleRatio However, the maximum scale factor does not always leacetonximum
magnification (i.e., the lowest scale ratdinScaleRatipbecause the scale factor is maintained
as an integer value. Therefore, in many situations, whemigw@mum scale factor is reached,
the corresponding scale ratio is still noticeably abMiaScaleRatio | considered having the
ability to reach the maximum magnification important, bueuired an exception to the scale
factor being an integer value. To avoid the fractional stadtor (just above the integral maxi-
mum) one extra scale factor is made available. The maximtegral scale factor followed by a
‘+’ sign is used to represent this value.

The magnification step has both a display and an internakvaline display value is the
percentage form of the internal value and that value is ptegeto and set by a user. The max-
imum magnification step, a display value which remains @mtsts computed by the following

40 Chapter 4. Execution State Chart

formula .
totalDuration

MinScaleRatio< MinDisplayPixels

maxMagSte p= (1) x 100 (4.3)

Setting the magnification step to the maximum results in viadability of only two scale factors,
i.e., it results in a maximum scale factor of 2. In this casdy @ne step is required to go from
the minimum magnification to the maximum magnification.

r:l Scale (on plg2.math) Er
dptions (1 - 363
scalesab 1
Magnification StepibOd
Horizontal Increment:l T | Eancell Help |
Task Creation
(a) Options Menu (b) Dialog Box

Figure 4.4: Advanced Implementation: User Adjustable Qi

As previously mentioned, a user can set both the scale facibrthe magnification step,
which is accomplished via a pull-down menu associated vigh‘Options” button on the menu
bar (see Figurd.2). This pull-down menu is presented in Fig4rd(a) The “Scale” option can
be used to set the scale factor between 1 and the current miexaeale factor (or maximum+ if
a final fractional part exists). Figuse4(b)shows the dialog box for setting a new scale factor.
Alternatively, the scale factor can be increased or deerkasquentially by one using keyboard
and mouse shortcuts (see Sectbd). The default scale factor is 5. The “Magnification Step”
option can be used to set the magnification step between hamdaximum magnification step.
The default magnification step is 50%. The current scal®factd magnification step values are
displayed beside their respective options in the pull-dovamu. In addition, the current scale
factor is displayed directly above the task pane on the igét ee Figurd.2, the scale factor is
12).

4.2 Advanced Implementation 41

4.2.2 Addressing Initial Issues

Whereas in the initial implementation every line and eveng’s entire execution duration is
drawn into the drawing area, in the advanced implementatibnthe lines and the execution du-
ration visible within the chart pane are drawn. Conseqyeiait each movement of the horizontal
scrollbar in the chart pane, the section of the chart s@etrihe execution time of the beginning
of the chart pane needs to be drawn for the length of the chag,p.e.chartWidthx scaleRatio
nanoseconds of time, whechartWidthis the width of the chart pane in pixels. By only render-
ing the section of the chart visible within the chart pane EBC now scales to programs of long
execution (hours and days) and to higher magnification (@xbseconds per pixel). As the verti-
cal scrollbar is moved, the chart is also redrawn to inclirkes| for the tasks that are now visible
and remove lines for the tasks that are no longer visiblegraotodating large numbers of tasks.
Programs with large numbers of tasks (e.g., 10,000 task®og)rare not unrealistic and do exist
in practice. While only displaying the visible lines and exton duration in the chart pane is
an obvious solution, it required a complete transformaticthe initial implementation with sig-
nificant complexity. For example, the explicit managemdrgame scrollbar functionality was
required to ensure the proper section of the chart is display all times.

To address the loss of information at lower magnificatiostest represented by line segments
too small to draw must still be addressed. When the durafiarstate is less than the scale ratio,
the corresponding line segment is considered tmwisible but is indicated in black on the line.
A black state signals that one or more states exist withindbeation of time, but at the current
magnification, further detail cannot be displayed. The elggives the black state the name
“Elided”, meaning information is being omitted. In the lideawing algorithm, the durations of
successivenvisible line segments are summed until a visible line segment iswerteced. At
that point, a black line segment is drawn to represeniriyisibleline segments, unless the black
line segment is less than one pixel in width. In this casexealps stolen from the front of the
upcoming visible line segment. Stealing a pixel from theblésline segment may in turn result
in that line segment becomingvisible and hence, also being represented within the current
black line segment. The advantage over the solution in tii@limplementation is that a line
is not artificially lengthened, so the elapsed time of executlways correctly matches with the

42 Chapter 4. Execution State Chart

X-axis tick-marks.

To address the issue of the static X-axis, the elapsed tinegezfution is no longer limited
to millisecond time units. Nanoseconds, microseconddisadonds, seconds, and kiloseconds
are all available as axis time-units. The most appropriaie unit is determined based on the
magnitude of the duration of time (i.€hartWidthx scaleRaticmanoseconds) visible within the
chart pane. Magnitudes of less thar? 18e nanoseconds, 3 1 — 1 use microseconds, 40
to 1° — 1 use milliseconds, £0to 102 — 1 use seconds, and ¥0or greater use kilo-seconds.
The selected time unit is displayed to the left of the axis sdrately followed by the starting
time of the currently drawn chart section and a ‘+’ sign (selWw the menu bar in Figuré.2,
‘us’ means microseconds). Adding the value of a tick-matielao the starting time gives
the elapsed time of execution for that chart position in theced time unit. The maximum
precision of the tick-mark interval (and the tick-mark I&)es 3 decimal places. The precision
of the starting time is equal to the precision of the tick-knaterval, with one exception. If the
tick-mark interval is an integer value the starting timd displays 1 decimal place.

To address the visibility of the legend and the task names, &@ no longer drawn into the
same drawing area as the chart. Therefore, the legend atastteames remain visible to a user
at all times. The legend appears in the menu bar after thad@gtbutton. The task names are
now drawn into a separate task pane (see left column in Fg@yeln addition to the task pane
maintaining a separate horizontal scrollbar, the line s the task pane from the chart pane
can be pulled to the left or right, adjusting the width of thek and chart panes. Both features
accommodate longer task names. The vertical scrollbalistxath the task pane and chart pane
at the same time.

To address the visualization performance issue, the datetste storing the states was al-
tered; states are now stored in blocks of equal size. Eadk Id®B2 kilobytes in size and stores
2046 states. Therefore, a line consisting of 1,000,00@statseparated into 489 blocks. The
maximum state duration is calculated and stored for eaatkbl®his information is then used
to improve the performance of the line-drawing algorithnefd@e each state within a block is
processed and drawn, the maximum state duration for theé lIidocompared against the scale
ratio. If the maximum state duration is less than the scdie,then the entire block isvisible

4.3 Implementation Issues 43

therefore, the individual states within the block do notdheebe processed and a black line seg-
ment (representing the duration of the block) can be drawe.ifhprovement in performance is
most apparent for programs with large numbers of stateitrans at the minimum magnifica-
tion, where the entire chart is drawn and consists entireipwsible line segments. Using the
example above, 489 blocks are processed rather than 1000§t&tes.

4.3 Implementation Issues

This section describes implementation issues | encouhtard solved during the writing of the
advanced implementation of tiSC.

4.3.1 Scrollbar Scaling

This issue involves scaling with respect to the horizontedltbar in the chart pane. A scrollbar
manages its position, representing the distance from tgai@g of execution, as well as a
width for the sliding bar and a maximum position. The mearofighe X-window scrollbar
values is up to the application, within the limits of a sigr8&dbit integer value. To simplify the
implementation, the scrollbar values are chosen to be tted @quivalent of the time values. For
example, the maximum position is given by the following foien

(4.4)

) totalDuration
maximums= | ——MM
scaleRatio

This formula computes the number of pixels needed to reptdke entire execution duration
(totalDuration) at the current scale ratio. Figude5illustrates the simple conversion between
time and pixel units:

Multiplying a position in pixel units by the scale ratio rétsun the corresponding time units;
dividing a position in time units by the scale ratio resuttshe corresponding pixel units. How-
ever, given a scale ratio of 5 nanoseconds per pixel and awtse duration of 1 minute, with
nanosecond precision, the maximum scrollbar positionxelpirequires more than 32 bits (in

44 Chapter 4. Execution State Chart

chart window

In Time Units
(floating-point)

(O ,/‘totalDuration
Total "\ multiply . divide K
Execution \\ by \ /! by ,/
f Il Task } scaleRatio \\)/ scaleRati ,/
or all Tasks N)
7 In Pixel Units
(64-bit integer)
0 scrollbar maximum scrollbar
position position

Figure 4.5: Advanced Implementation: Converting BetwerneTand Pixel Units

this example, 34 bits are required); hence, a 64-bit integeeeded to store this value in pixel
units. Unfortunately, an X-window scrollbar manages valas signed 32-bit integers, limiting
the scalability to programs of longer execution as well @&sahility to increase magnification.
Since the internal representations of the scrollbar cabaathanged, | adopted another solu-
tion: the scrollbar values are scaled. Given a change indalke satio, the maximum position
is computed (see Equatiend) and used to determineumShifts numShiftds the number of
bit shifts required to convert the maximum position (i.ae targest value given to the scrollbar)
into a signed 32-bit integer. Any value given to the scralisahifted to the right bpumShifts
and any value retrieved from the scrollbar is shifted to #feldy numShifts Consequently, a
numShiftsof 3, for example, means that a one unit move of the scrollbares the chart by
23 pixels (or 2 x scaleRaticnanoseconds) rather than 1 pixel. dsmShiftdecomes large, a
one unit move of the scrollbar can result in a large movemeétiiechart. If the movement is
greater than the width of the chart pane then some areas ch#drebecome inaccessible. For
example, if the visible area of the chart pane is 500 pixelsidth and a one unit move of the
scrollbar moves the chart by 512 pixels, then for every 5k2lIpithe last 12 are inaccessible.
However, such a situation can only occur for programs of lexecution at high magnification.
In the previous example, at a magnification of one nanosepengixel, the program must run
for 1099.5 seconds.

4.3 Implementation Issues 45

| also considered an alternative solution of keeping twasste numbers for each scrollbar
value. One number is maintained by the scrollbar and cansfghe 31 most-significant bits of
the whole value. The other number is maintained by the prognad consists of the remaining
least-significant bits of the whole value (i.aymShiftsits). This solution does overcome the
issue of inaccessible chart areas because the extra biwadescarded; however, it generates
significant complexity. Functionality currently handledlependently by the scrollbar needs to
be overridden because the scrollbar maintains only 31 bttseeowhole value. Before a decision
on an appropriate scrollbar action can be made, the 31 nigrgfisant bits need to be combined
with the remaining least-significant bits. The complexityroduced by the alternative solution
seemed greater than the benefit gained for the extreme cases Wwis needed, and therefore,
the previous solution was selected.

4.3.2 X-Axis Labelling

This issue involves the selection of appropriate tick-matkrvals and labels for the X-axis.
The length of the longest tick-mark label must be consideeshuse each label needs a certain
number of pixels for display; therefore, the tick-marks trhessufficiently spaced apart to allow
for the display of the longest label. Ideally, the tick-madhould be frequent. Yet, as the
elapsed time of execution increases, the labels becomeleegghy, resulting in fewer tick-
marks. To maintain frequent tick-marks the starting timehaf currently drawn chart section
is subtracted from the label values and, as previously roeedtl, displayed to the left of the
X-axis. The tick-mark labels and lengths are now limited® incremental increase of the tick-
mark interval. Therefore, the number of digits in the lorigesssible tick-mark label is equal to
the number of digits in the integer part of the duration ofdibeing represented within the chart
pane (converted into the selected time unit), plus one ®d#dtimal place and plus the maximum
allowable number of decimal places (i.e., 3). This maximemygth in digits is converted into
pixels (maxPixels) and used to compute the initial tick-mark interwatkint, as follows:

46 Chapter 4. Execution State Chart

// compute numTicks given length of longest label
unsigned int numTicks = (unsigned int)(chartWidth / maxPixels);

// compute tickInt given number of tick marks
double tickint = dur / numTicks;

// round tickint up to one significant digit
double exponent = floor(logl0(ticklnt));
double mantissa = tickInt / pow(10, exp);
tickInt = ceil(man) * pow(10, exp);

// recompute num Ticks
numTicks = (unsigned int)(dur / tickint);

The number of tick-marks along the X-axisnsmTicks. Theticklnt is rounded up to one
significant digit in order to provide a reasonable intentabwever, as a result of the rounding
the initial tick-mark interval may need to be iterativelycirased. IhumTicks is less than the
number of tick-marks possible given the longest label, itleiarks are increased (i.eickInt
x0.5) as long as the longest label can still be displayed. In thpnty of cases, at most one
increase is made. Overall, the procedure produces a wédledivX-axis.

4.4 Other Considerations

| also considered additional factors relating to the useedence in the advanced implementa-
tion of theESC.

One way to move the horizontal scrollbar in the chart pane aick the arrow button located
at each end of the scrollbar. The default action is that oi& off an arrow button moves the
scrollbar by one unit. The corresponding movement of thetcimgpixels, depends on the current
value ofnumShifts(see Sectior.3.1). However, users can use the “Horizontal Increment”
option in the pull-down menu associated with the “Optionsttbn to define the number of
units that the scrollbar moves given one click of an arrowtdsu{see Figuret.4), but again
the corresponding movement of the chart dependawnShifts This option allows users to

4.5 Task Details 47

precisely adjust the movement of the scrollbar accordinthéorequirements of their current
situation.

The mechanisms to control the interface to the data are tegp@amultiple forms to satisfy
different user preferences. The keyboard keys, the mousenisuand the scroll wheel can be
used as shortcuts to perform various actions. The ‘i’ key thiedmiddle mouse button can be
used to increase magnification; both increase the scalerflagtone. The ‘0’ key and the right
mouse button can be used to decrease magnification; botbasecthe scale factor by one. The
left/right arrow keys can be used to move the horizontallbzoin the chart pane by the user-
defined number of units, as can the scroll wheel, or by thehnaditthe chart pane if holding
the ‘control’ key. The up/down arrow keys can be used to mieevertical scrollbar by one
line, and the page up/down keys can be used to move the Vesticdlbar by the number of
lines currently visible. Similar control functionality ists for the task pane. For example, the
left/right arrow keys can be used to move the task names bpiaeé Scrolling through the task
names in the task pane, using the up/down arrow keys, alsoagutely scrolls the lines within
the chart and moves the vertical scroll bar on the right.

A single gridline, positioned at the middle-most X-axisktimark, is displayed behind the
lines in the chart pane (see gridline descending from 400garE4.2). A user can line-up any
state precisely at the gridline to aid in the reading of trerthrhe single gridline, as opposed to
a full grid, does not clutter the chart pane.

4.5 Task Details

By clicking on a task name in the task pane of EfeC, detailed information about the selected
task’s execution is displayed in a new window (see FiguBe The upper pane of the window
displays the execution summary information for the taske $hmmary information includes
the total lifetime of the task, the total duration of time sp@é various states, the minimum
and maximum state durations, and the creation and delétick times. The lower pane of the
window lists the task’s states, including details for eatattes The details include the start time
of the state, the duration of the state, the cumulative chratf the task’s execution at the time

48 Chapter 4. Execution State Chart

1 Execution State Data : Task Philosopher (0xfb7598) (on plg2.math]) g@@
Close Options
Execution Summary
(msec) 4] -
Life Time: 12,105 100,00 Clock Time; (HiM:5,MS,US)
ready 7L B0 E2.84 Creation 08:d43:52,432,572
running 1,412 11,66 Deletion 03:43:52,444 477
blocked 3,075 25,40
State Duration:
Hirimum 0,001
M mum 0,802 ?
=) [
-l_
States
Mo, State Start Time Durat.ion Cum, Duration State Entry
(mzec) (mzec) (mzec) Routine
1 start 4,746 0,004 0,004 *Funknown® ﬁ
2 ready 4,750 0,559 0,563 *unknown®
3 running 5,309 0,026 0,533 *unknown®
4 ready 5,335 0,820 1,409 Philosopher:imain
b5 running 6,150 0,010 1,413 Philosophertimain
E ready E,165 0,024 1,443 Philosopher:imain
¥ running 6,133 0,008 1,451 Philosophertimain
2 blocked E,197 0,034 1,485 uSemaphore::P
9 ready 6,231 0,852 2,337 uSemaphore: P
10 running 7.0a3 0,005 2,342 uSemaphore: :P
11 ready 7,088 0,052 2,394 Philosophertimain
12 running 7,140 0,006 2,400 Philosopher:imain
13 ready 7,146 0,796 3,196 Philosophertimain
14 running 7,942 0,007 3,203 Philosopher:imain
15 blocked 7,949 (1, 0G0 3,263 uSemaphore: P
i
- |~

Figure 4.6: Advanced Implementation: Execution State Tefails Display

the state is entered, and the name of the routine in whiclatikegntered the state. This window
was available in the initial implementation, but now int#sawith theESC (and vice versa).
Clicking on a state or scrolling in the state list resultsha ESC being scrolled horizontally to
the corresponding state location. Similarly, clicking oima segment in th&SC scrolls to and
highlights the corresponding state in the state list. Suwelttionality allows a user to quickly
obtain detailed information about any area of #®C. Additionally, a user can use the “File

4.6 Performance 49

Info” option in the “Options” pull-down menu to display, feach state, the file name (and path)
containing the routine in which the state was entered andirieeaumber corresponding to the
start of the routine within the file.

4.6 Performance

This section describes the performance of H&C with respect to both time and space. | was
unable to compare thESC, in these respects, to the related profiling tools (desdribeSec-
tion 4.7) because | did not have access to the tools or the enviromeguired to run them.

46.1 Time

To evaluate the time cost of a state transition, | constouatevorst-case test program (see Fig-
ure 4.7), profiled this program with th&S metric, and compared its running time to the same
test program run without profiling. Only the running time béttest program itself was mea-
sured, i.e., the time includes monitoring and data colbechiut not time spent during analysis or
visualization.

The test program simply calls the task yield routine, cagisistate transition from running to
ready; then the task is immediately scheduled (becauseheo taisks are in the system), causing
a state transition from ready to running. In other words,@aikto the yield routine results in two
state transitions. The test program is a worst-case scebacause it does no work, other than
change state by calling the yield routine. In most apploatj the cost of a task’s computation
would dominate the cost of its state transitions.

The test program was compiled with optimization (i.e., OB)fland run multiple times with
an increasing number of state transitions (2000 to 30008hle®.1 shows the results of the
performance testing on a per-transition basis (in microses).

The per-transition time is calculated by dividing the tatahning time by the number of
state transitions. As the number of state transitions as&s, the running time of the program
increases for both the profiling and no profiling cases; as sethe table, the time per-transition

50

Chapter 4. Execution State Chart
#include <uC++.h>

_Task Worker {
int loop;
void main() {
for (int i =0;i < loop; i +=1) {
yield();
} /) for
} // Worker::main
public:
Worker(int loop) : loop(loop) {} // Worker::Worker
Y, // Worker

void uMain::main() {
int loop = 1;
if (argc == 2) loop = atoi(argv[l]);
Worker w(loop);

} // uMain::main

Figure 4.7: Execution State Chart: Time Performance Tesgifam

remains relatively constant. However, the average timetraasition for the profiling case is

70% higher than that of the no profiling case, signifying tthet ES metric increases running

time by 70% in this worst-case program. Such an increaseasorable given the overhead
of creating the storage data structures, and at each ssaustion, collecting and storing the
necessary data.

4.6.2 Space

To determine the space cost of a state, the space cost ofeao$iject and a block (see Sec-
tion 4.2.2 needs to be considered. A state object stores data for anduodl state. Each state

object consists of a long integer to store the start time efsthte, an integer to store the type of
state and a pointer to the routine in which the state was esht@rherefore, in a standard 32 bit

system with 4 byte pointers, 4 byte integers and 8 byte lotegars, each state object requires
16 bytes of space.

4.6 Performance 51

No. State | No Profiler Time pProfiler Time | % Increase

Transitions| per-Transition (¢s) | per-Transition (¢s)
2000 0.81 1.42 76.09
4000 0.79 1.35 71.79
6000 0.78 1.33 71.01
8000 0.77 1.31 70.39
10000 0.75 1.30 72.05
12000 0.76 1.30 70.74
14000 0.77 1.29 68.40
16000 0.76 1.29 69.31
18000 0.75 1.29 72.58
20000 0.76 1.29 70.03
22000 0.75 1.29 71.80
24000 0.76 1.28 69.40
26000 0.75 1.28 70.46
28000 0.76 1.28 68.03
30000 0.76 1.29 70.02

Table 4.1: Execution State Chart: Time Performance Results

Each block object consists of a pointer to link the blockgdes information, and an array
of N state objects. The header contains an integer to stereumber of elements in the array,
4 bytes of padding to maintain proper data structure aligrijrend a long integer to store the
maximum state duration in the block. Therefore, each bldika requires 24 bytes of space in
addition to the space required for the state objects stordtkiblock’s array.

A block index is also created to provide random access angddorming searches. The
index (an array) has one entry for each block object conggif a pointer to the block object
and a long integer to store the maximum start time in the blo€kerefore, an index entry
requires 12 bytes of space and, in order to compute the peklobst, needs to be added to the
cost of a block object.

As previously mentioned each block object stores 2046 state the total space cost per-

52 Chapter 4. Execution State Chart

block is
Total space peblock= 12 bytest 24 bytest (2046x 16 byteg = 32, 772bytes (4.5)

All state objects equally share the cost of the block in whiay reside. To compute the space
cost per-state the above result is divided by 2046. Thesefara standard 32 bit system, the
space cost per-state is 16.018 bytes. In a standard 64 tetsygth 8 byte pointers, no padding

is necessary, leaving storage for 2045 states, so the spsicpear-state is 20.018 bytes.

4.7 Related Work

This section describes three current profiling tools theluitle execution-state charts. HP Visual
Threads HP04 provides profiling metrics for programs using a POSIX tlielbrary, includ-
ing C, CH, and Java; however, its use with Java applicai®hsiited. The NetBeans Profiler
[Nef] and Borland Optimizeit Thread Debugg®&dr03 both provide profiling metrics for mul-
tithreaded Java programs. Other profiling tools that inelagecution-state charts exist in the
literature HPOG ejt07, App, gra9q.

4.7.1 HP Visual Threads

The HP Visual Threads tool analyzes programs to detect @nobhssociated with multithread-
ing, including performance, data protection, and dead|bifk04. The profiling data undergoes
real-time analysis and visualization; therefore, thernmfation presented to a user is continuously
updated. The data can also be saved to a tracefile for latealiaation. Two visualizations pro-
vide the state data: the Main Window and the State TransitWimdow.

Main Window

The Main Window provides a high-level overview of the globaécution-state (see Figuded).
The displayed graph is generated by statistical profilireg,(ampling), so data is collected only
at specific time intervals (i.e., sampling interval). Thar shows the number of active threads

4.7 Related Work 53

ead 0oy =
File Miew Setup Help
State: Completed Program: Jusr/proj/vt/Examples/primes
Events: 7135 Reading File: fusr/proi/vt/Examples/primes.trc
89 Threads: ERunning Ready MEBlocked W'waiting W Terminated mEvents - 1900
- 500

)

Time: 16.27 wl o |ul= slow L fast

Figure 4.8: HP Visual Threads Main Window

& State Transitions !EH \
| Threads: | =] o E

4,350 4400 |

mRunning Ready mElocked mwWaiting mTerminated

Narme 4,100 4,150 4,200 4.250 4,300

default thread
threads[0]
threads[1]
threads[2]
threads[3]
threads[4]

Figure 4.9: HP Visual Threads State Transitions Window

54 Chapter 4. Execution State Chart

within the program over time. At any point in time, each baf@aour shows the portion of
the active threads in the associated state: running, ré#alyked, waiting, or terminated. The
states are defined similarly to those in 888C, with the addition of the waiting state indicating
a thread is blocked on an event such as a system call, paggdaulor on a condition variable,
rather than on a mutex object or lock as is the case in the btbstate. The sampling interval
is indicated by the X-axis tick-mark interval and can be gehby a user. All subsequently
graphed data is displayed using the new interval, so thewtiyrgraphed data is removed. The
connected line segments on the graph show the number ofsgymtessed per interval, where
events include acquiring a mutex object, a deadlock, ergest exiting a routine, etc. Severity
icons can be displayed at various times along the X-axisdate that a violation (e.g., of a
deadlock condition or performance threshold) has occurfsleral control buttons (i.e., fast
forward, play, pause, stop) are also available to a userdiatralling the profiling of a program.
For example, the play button allows a user to start, restaigsume profiling. The speed slider
allows a user to control how often the graph is updated with data.

State Transitions Window

The State Transitions Window displays an execution-stasetqsee Figurd.9). The chart is
generated by exact profiling, meaning all states are reddrdthe chart. The State Transitions
Window, like theESC, shows the elapsed time of execution across the top of tiv¢ ahd the
list of threads on the left. The colour coded states reptedan the chart are the same as those
described for the Main Window. Buttons are available to 8wetthreads by name or their current
state, to overlay colours on blocked states indicating lvinmzitex objects threads are blocked
on, and to zoom-in and zoom-out. Waiting and blocked stateskso sorted by the blocking
reason (e.g., the mutex object the thread is blocked on) didpday order of the threads changes
according to the sorting criteria as the chart is update@at-time (e.g., threads currently in a
particular state are grouped together). The highest magtidn is 2 milliseconds per pixel and
the lowest magnification is 12 seconds per pixel. Moving tvsa@r over a line segment displays
the text description of the corresponding state (and biagkeason if applicable) in the status
box below the chart. Horizontal and vertical scrollbarseio move through the chart. As new

4.7 Related Work 55

data is displayed in real-time, the chart is automaticathpked to ensure the new data is visi-
ble. As in the Main Window, several control buttons are ala# for controlling the profiling.
Clicking a line segment displays the Event Details Windowohtprovides information about
the event that caused the thread to enter the selected $tatenformation includes the event
type, the time the event occurred, the threads involvedaretrent, and a call-stack. Clicking
on a thread name displays the Object Details Window, whiokides general information about
the thread. The information includes statistics abouthineatd, related objects, and details such
as the thread ID.

4.7.2 NetBeans Profiler

The NetBeans Profiler tool is a profiler for the NetBeans Iratzl Development Environment
and provides CPU, memory and threads profiling as well ag Basa Virtual Machine monitor-
ing to analyze and solve memory and performance problé&eg.[The profiling data collected
undergoes real-time analysis and visualization; theegfitre information presented to a user is
continuously updated. The data can also be saved as snapshlater visualization. Two visu-
alizations provide the state data: the Threads Timelineafabthe Threads Details Tab.

Threads Timeline Tab

The Threads Timeline Tab displays an execution-state ¢baetFigurel.10. The chart is gen-
erated by statistical profiling, so thread states are deitkonly at specific time intervals. The
Threads Timeline Tab, like thESC, shows the elapsed time of execution across the top of the
chart and the list of threads on the left. The colour code@sta@presented in the chart are: run-
ning, sleeping, wait, and monitor. Here, the running stadams the thread is running or ready
to run, the sleeping state means the thread has called #pefslection, the wait state means the
thread is blocking on a condition variable in a monitor (iexecuting a wait function), and the
monitor state means the thread is waiting to enter a mondlat Iy another thread. Buttons are
available to zoom-in and zoom-out as well as to scale thet ¢hdit the window. The threads
can be filtered to display all threads, active threads, ostigd threads. Horizontal and verti-

56

2] wm TeIemetr};.f. x[?—i['Tﬁrea'd's. m] 4] x>l
@ @ '|.ﬁ.ll Threads .*0*
] T T T T T T T T T 1 T T T T T T T T T 1 T
Threads { 0:00 0:10 0:z [m:s]
O Image Fekcher 3 | |

[Signal Dispatcher
O AwT-Shutdowr

[Finalizer

I
O &WT-EventQuens-0 I LI N

[Attach Listener # I
I I T

O Reference Handler

[Image Fetcher 1 ==
O main F ==

L]
& il l =

= Rurning 3 SIgeping] whait [Monitor

_T_hr_equ:l_s {Timeline] | Threads (Details}l|

Figure 4.10: NetBeans Profiler Threads Timeline

O main [java.lang. Thread] (finished)

(I Thread that executes the "public static void main (3tring[] args)" methad of the Java application,

| General | Details

0:00,000: Started
0:00,000: Running
0 Eping

0:00.41 Runnin
0:00.711: Finished

1 I
0:00.000 0:00.250

1 1 * X X
0:00.500 [miis.ms]

Figure 4.11: NetBeans Profiler Threads Details

Chapter 4. Execution State Chart

4.7 Related Work 57

cal scrollbars exist to move through the chart, and the atigtate of a thread is indicated next
to the thread name using colour. Gridlines are also displagesase the reading of the chart.
Control buttons are available to stop the profiling and tamahe previous profiling command
(e.g., same program, same options). Double clicking a thdesplays the thread’s details in the
Threads Details Tab. Additionally, a VM Telemetry Tab désd a graph showing the number of
active threads within the program over time (separatedus&r and system threads).

Threads Details Tab

The Threads Details Tab provides detailed information aboelithreads (see Figudell). A
user can display the details for all threads, active threadished threads, or for particular
threads selected in the Threads Timeline Tab. The statefdinthe thread and a list of the
thread’s states (corresponding to the line), includingdtaet times of the states, is displayed
for each selected thread. Clicking a line segment in the dita¢ highlights the corresponding
state in the list. A pie chart illustrating the percentageimie the thread spent in each state is
displayed on the General Tab (chart not visible in Figlul) to provide a quick overview of
the thread’s activity. Finally, a short text descriptiortioé thread is provided.

4.7.3 Borland Optimizeit Thread Debugger

The Borland Optimizeit Thread Debugger tool reveals howva jaogram uses computer re-
sources, identifying thread contentions, thread stasmatinnecessary locking, and deadlocks to
understand and improve the performance and reliability &\ programBor03. The pro-
filing data collected undergoes real-time analysis andaligation; therefore, the information
presented to a user is continuously updated. The main vastiah that provides the state data
is the Thread View.

Thread View
The Thread View displays an execution-state chart (seer&yd?. The chart is generated
by exact profiling, meaning all states are recorded in thetcAde colour coded states repre-

58 Chapter 4. Execution State Chart

File Edit Program Tools Optimizeit Info

w| il = | EEEEE
Threads and monitors wirtual machine rinning
| Thread narne | owned {rBlocked O] 05.07.0 _ - 05:08.0 |
friain 0 |9Bms : : ; ; : : : =
ListenThread I
WDE Transaction Proce 0 18ms i
Threao-1 a i0ms _l
Signal Dispatcher 0 Oms [——————— p———
ExgcuteThread: 6 for 9/0 200 1 e —— e s —
ExecuteThread: '6'for g 0 0ms ') ; ' ' ' .
ExecuteThread: '4'for g 0 ms o N
ExecuteThread:'m'fnr?El Oms Y —— pe— Pe— _ _E
ExecuteThread: 1" for g 0 ms B B I
ExecuteThread: '0° for q?lil ms ; : ; ; ; ; ; .
ExeouteThread 7 or 0 so00ms - |
ExecuteThread: '0' for g 0 Oms _E
ExecuteThreat: 1'1or 40 oms = e
SpinnerRandomaurcet Is ——————— e
_ T o EF
RUMHINY s—— Blocking W Riting — Elocking (/0 _lf_{'jiUDdaT!?ED!'ttin.utlua_lﬁr

Figure 4.12: Borland Optimizeit Thread Debugger Threadwie

sented in the chart are: running, blocking, waiting, anakilag (1/0). Here, blocking means the
thread is waiting to enter a monitor held by another threaudtimg means the thread is blocking
on a condition variable in a monitor (i.e., executing a waitdtion), and blocking (I/O) means
the thread is not making progress as a result of waiting on@roperation. On the left, the

Thread View displays several columns of information forlettwead, in addition to the thread
name. The default information includes the number of maesitbe thread currently holds and
the length of time the thread has blocked for a monitor. A as@rdisplay further information

such as the number of times the thread has blocked for a maihiéconumber of times the thread
has waited in a monitor, etc. The information is aggregateclil monitors. A user can sort the

4.7 Related Work 59

threads in the chart on any of the available columns. Theah¥@ew shows the elapsed time of
execution across the top of the chart. Gridlines are algalisd to ease the reading of the chart.
Horizontal and vertical scrollbars exist to move throug thart. As new data is displayed in
real-time, the chart is automatically scrolled to ensueertbw data is visible. Several control
buttons (i.e., play, pause, stop) are available to a usezdiotrolling the profiling of a program.
For example, the play button allows a user to start or resuofdipg. A thread can be selected
by clicking anywhere on the thread’s state line and a timgearan be selected by highlighting
an area right on the chart. The selected thread or time ragtgendines the range of information
displayed in the other views. A Source Code Viewer is avélab display code related to a
detected event (e.g., routine where a thread is blocking).

Other Views and Displays

The Contention View provides information to understand wbgtention among threads occurs
for a monitor. The view displays a backtrace of routine ckdlding to the routine where a

thread is blocking. Upon selecting a contended monitogittetire provided explaining all the

threads involved in the contention. The Waiting View pr@sdnformation to understand why

a thread is not making progress (e.g., waiting in a monitacked on an I/O operation). The

view displays a backtrace of routine calls leading to thation of the thread’s stalled progress
and provides the wait time. The Monitor Enter View descrimdere a thread enters and holds
monitors to understand and correct unnecessary locking.vigw provides a backtrace of rou-

tine calls indicating locations where the thread entergouarmonitors. The number of times a
routine enters any monitor and the corresponding percerdhthe total entrances are provided
for each routine.

The Monitor Display provides deadlock detection by prowgla real-time graph showing
the relationship of threads and monitors within a deadlgaitec Selecting a relationship (e.qg.,
thread blocking on a monitor) in the graph displays the backt of routine calls resulting in
the relationship. The Monitor Usage Analyzer Display pdad warnings about possible unsafe
situations that can lead to deadlock and identifies the dsr@a/olved in the warnings. For
example, the lock and wait warning occurs when a thread £otez monitor and then waits for

60 Chapter 4. Execution State Chart

another monitor before releasing the first, possibly capdeadlock.

4.7.4 Comparison

Table4.2 summarizes and compares the relevant featurgegPobfiler'sES metric and the three
profiling tools discussed in the previous sections. Somé®ifrnportant features are discussed
in detalil.

uProfiler | HP Visual | NetBeans Borland
ES Metric | Threads | Profiler | Debugger

v v v
v

Real-time Analysis and Visualizatig
Aggregate Views

Exact Profiling Vv
Saving Tracefile or Snapshot
Blocking Reasons or Backtrace v/ (minimal)
State List

Thread Summary Information
Zooming-in and out
Fine-grained Zooming Control
Sorting or Filtering

Gridlines

Eliding

=]

< [

< S SR

NS <

SISO AN

Table 4.2: Execution State Chart: Comparison of Relatedl|r®

Using statistical versus exact profiling to generate an wx@a-state chart is an important
difference. The choice of profiling approach comes down tadeg-off between accuracy and
overhead. In statistical profiling, thread states are oallected at specific time intervals, so state
transitions occurring within the time interval are losgtéby reducing the accuracy of the chart.
Exact profiling provides complete accuracy because eatdtséasition is recorded as it occurs.
In statistical profiling, only collecting data at specifimg intervals gives a lower data collection
overhead, both in time and space, than in exact profiling andeguently a lower probe effect.
The NetBeans Profiler uses statistical profiling for its een-state chart. HP Visual Threads

4.7 Related Work 61

also uses statistical profiling, not for its executionestettart, but for its global execution-state
graph. In such a situation, the loss of accuracy may be legs isSue as the graph is only trying
to illustrate an overall view of the execution stgtgrofiler, HP and Borland use exact profiling
for their execution-state charts, choosing complete @ayuover a reduction in overhead.

Unlike the other profiling toolsProfiler'sES metric does not provide real-time analysis and
visualization. Real-time analysis and visualization isfuswhen a user pauses profiling (e.g.,
by using a control button or due to the interactive natur&efdrogram) and proceeds to examine
the data displayed up to that point. Otherwise, becauseishb&g is updated in real-time, a user
would be overwhelmed by the constantly changing data siraogymrograms generate hundreds
to thousands of state transitions per second.

Although two out of the three profiling tools provide magration (i.e., the ability to zoom-
in and out), theESC provides higher magnification and, unlike all the other pirggi tools,
fine-grained control. HP Visual Threads, for example, hasagmum magnification of only 2
milliseconds per pixel, whereas tliSC has the maximum magnification of 0.1 nanoseconds
per pixel. High magnification is essential for analyzing éxecution of threads with states of
short duration (e.g., micro or nanosecond duration). Stafeshort duration are common in
many concurrent programs. THESC additionally provides fine-grained control through the
“Magnification Step” option, allowing a user to control therpentage change in magnification
for each step in the scale factor.

The other profiling tools do not provide an elided state oilginfunctionality; therefore, at
lower magnification, states represented by line segmeatsrt@ll to draw are not drawn. The
loss of states at lower magnification can result in a chattitheery misleading and confusing
for a user because the chart is not accurate and may be lggicainsistent. A chart is logically
inconsistent when it displays adjacent states, resultiognfa loss of states in between them,
such that the second state is not logically reachable freniitst state.

Overall, uProfiler'sES metric provides many important features, and furthermodudes
new features unavailable in the other profiling tools. Soewures not currently provided in
uProfiler, such as aggregate views, saving tracefiles anthgpéare possible enhancements for
future work.

62 Chapter 4. Execution State Chart

4.8 Summary

The advancements madep@rofiler'sES metric have achieved the goals stated at the beginning
of the chapter. Firstly, based on functionality and the cargon to related workyProfiler'seS
metric is similar to state-of-the-art vendor executioatstmetrics. Secondly, the evaluation of
time and space costs reveals good performance in both &ieadly, theESC scales to programs

of long duration and with large numbers of tasks and states.

Chapter 5

Exact Call-Graph

This chapter describes the advancements magénofiler's Exact Routine Call-GraplECG)
metric.

The ECG generates an exact profile ofu+ program’s dynamic execution (called a call-
graph). The profile provides the dynamic calling relatiopstmong routines in the program and
gives a user some indication about the program’s control. fldwlynamic call-graph includes
only those routines called during a particular executiothefprogram, in contrast to a static call-
graph that includes all routines in a program (called or.nf)express the calling relationships
among routines, the parents and children of each routinedreated. The set of routines that
call a specific routine one or more times are that routinefeua or callers. The set of routines
that a specific routine calls one or more times are that reistechildren or callees. Figugelis a
graphical representation of a call-graph where A, B, C, Dn&Rrepresent routines. A directed
edge represents a call being made from one routine (the)dallanother routine (the callee). In
Figure5.1, routine A calls routine D; therefore, routine D has routfkes a caller and routine
A has routine D as a callee (as well as routine B). The routistasting at the root (i.e., routine
A), along the call-path leading to a specific routine are thatine’s ancestors (e.g., routines A
and D are ancestors of routine E). The routines having afspeautine as an ancestor are that
routine’s descendants (e.g., routines B, C, D, E and F areeddants of routine A). However,
if a routine is an ancestor of itself, then there exists a@alle in the call-graph. In Figurg.1,

63

64 Chapter 5. Exact Call-Graph

routines A, B and C are ancestors of routine B; thereforgjmeB is an ancestor of itself and
the call-graph includes a cycle, namely-BC — B.

B,/A\D

Figure 5.1: Call-Graph

For each routine, various data can be collected. The datancarde the number of calls
to a routine, the inclusive time of a routine, the self or astte time of a routine, the block
time of a routine, and the descendant time of a routine. &ndutime is the time spent for the
entire execution of the routine (i.e., total time betweeutiree enter and exit). The inclusive
time is the sum of the routines exclusive, block and desa#rtdaes. Exclusive time is the time
spent executing the routine itself and does not includeithe $pent blocking. Block time is the
time spent while the task executing the routine is blocketthéroutine itself. Descendant time
is the time spent executing the descendants of the routine.déscendant time is the sum of
the inclusive times of the routine’s callees. The total nemdif calls, inclusive time, exclusive
time, descendant time and block time for a routine can bedmalown by caller. Similarly, the
total descendant time for a routine can be broken down bgealt is also possible to measure
hardware events (e.g., number of completed instructiomsesponding to these times.

The exact nature of theCG implies profiling data is collected at each occurrence of a
relevant event; therefore, accurate information is predidt the cost of higher overhead (in
both time and space). For tB€G the relevant events include:

e routine enter: the routine is called by a parent routine and starts exegutin

e routine exit: the routine completes and execution returns to the paretine

Exact Call-Graph

voluntary yield or involuntary preemption).

¢ task unblock: the task starts executing when an event occurs.

e coroutine discontinue:the coroutine stops executing.

e coroutine continue: the coroutine starts executing.

65

task block: the task stops executing while waiting for an event to octelfding a

r:l Routine Calls : Task fred (0xc925e0) (on plg2.math) E“E“zr
Close Options |
REAL TIMES (msec) CPU TIMES (msec)
From/Ta Calls Average Minimum Mazx i mum Total Average Minimum Mazx i mum Total
ubachContext::invokeTask &
rediinain 1 2,289 2,289 2,289 2,289 0,110 0,110 0,110 0,110
uTreelter<mynode>:init 3 0,003 0,002 0,004 0,008 0,003 0,002 0,004 0,008
Treeimynode>3 top 3 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
fred: imain 1 2,289 2,289 2,289 2,289 0,110 0,110 0,110 0,110
uTreelter<mynode>:operatory> B3 0,013 0,005 0,149 0,816 0,003 0,002 0,008 0,188
Treeimynode>: {insert 20 (0,065 0,008 0,125 1,308 0,002 0,000 0,005 0,035
myrode s tmynods 20 0,002 0,002 0,008 0,044 0,002 0,001 0,005 0,031
uTreelter<mynode>: jover 3 0,005 0,004 0,008 0,016 0,003 0,002 0,004 0,008
Treednynode>: {insert 20 (0,065 0,008 0,125 1,308 0,002 0,000 0,005 0,035
Tree<mynode>: {insertNode 20 0,063 0,001 0,123 1,268 0,004 0,001 0,014 0,078
Tree<mynode’: $ inserthode 210 0,006 0,001 0,123 1,268 0,004 0,001 0,014 0,882
Tree<mynode’: {inserthode 150 0,006 0,001 0,117 1,148 0,004 0,001 0,007 0,804
TFriend::right 190 0,001 0,000 0,001 0,124 0,001 0,000 0,001 0,124
operator: 190 0,001 0,000 0,001 0,125 0,001 0,000 0,001 0,125
operator< 190 0,001 0,000 0,001 0,137 0,001 0,000 0,001 0,137 /
=
r—
Call Cycles
Cycle 13 uPostorderTreeGen<mynode’::findMextMode -> uPostorderTreeGen<mynode>::findMextNode :j
Cycle 23 ulnhorderTreeGen<mynoder::findNextMode > ulnorderTreeGen<mynode’::f indiextMode
£

=

Figure 5.2: Initial Implementation: Exact Call-Graph Desp

The initial uProfiler ECG implementation allows a user to display a call-graph forheac

task’s execution. An example display of the initial implertaion is presented in Figute2

The information provided in the display includes the nundferalls to the routine, the exclusive

time of the routine (called CPU time), the inclusive time loé troutine (called real time), and

the average, maximum and minimum of those vald&kD(d. This information is displayed for

each routine executed (totalled over all calls to it) as aeglior each callee routine of each caller

routine (totalled over all calls to the callee by the callén)addition to time, the information can

66 Chapter 5. Exact Call-Graph

be displayed in terms of hardware everiteg03. However, only the hardware events counted
during the execution of the routine itself (exclusive eggrire displayed, and no maximum or
minimum values are provided. The initial implementatiosoadlisplays a list of call cycles.

The overall goal of the advances discussed in this chaptedisvelopuProfiler'seCG met-
ric into a state-of-the-art metric with good performancat tbcales to programs of long duration
and complex behaviour, providing an environment condui@vaore thorough yet simpler user
analysis of a call-graph.

5.1 Initial Implementation Issues

This section describes several issues arising in the linitiplementation of theECG. | ad-
dressed each issue in the advanced implementation &Q@li& and the solutions are discussed
in Section5.2.3

The first issue involves thECG existing as two separate metrics. In the initial implemen-
tation, one version of the metric displays the call-grapkeims of time, and another version
of the metric displays the call-graph in terms of hardwamnés. Having two separate starting
points and displays for the same metric is an unnecessarglmation and confusing for a user.
Furthermore, as previously mentioned, the hardware-dvased version only displays a subset
of the information displayed in the time-based version. Batrsions of the metric can col-
lect and analyze the same type of profiling data, and thusiidle@nsistently display the same
information to a user.

The second issue involves the lack of separation betweés tasl coroutines. During a
task’s execution, the task may execute one or more coraufire, execute on one or more
coroutine stacks). In the initial implementation, each-fask call-graph combines information
regarding task routines (executed on the task’s stack) armliine routines (executed on the
coroutine stacks) without any indication of which routireres from which context. The lack
of separation between task and coroutine routines cantiiasuh increased amount of analysis
time for a user. Also, by only providing a per-task break dptlie call-graph for each coroutine
is split across the various per-task call-graphs, agaimpticating the analysis.

5.2 Advanced Implementation 67

The third issue involves the simplicity of the visualizatid' he display provided by the initial
implementation is very simple in nature, providing all infaation at once, in one format, in a
static window. There is no opportunity for a user to interacny way with the call-graph data.
One purpose of the call-graph is to give a user some indicatmut the program’s control flow;
however, such information can be made clearer if a user caanre way progress through and
view the call-graph step-by-step. Also, since only theemslof a routine are listed, a user must
analyze the entire call-graph in order to determine thefsedlters of any given routine.

The final issue involves the lack of scaling of the displayatues. All values displayed
are either in millisecond time units or un-scaled hardwarent counts. With respect to time,
millisecond time units are not always the best choice. Usiaigoseconds for routines of very
short duration and seconds for routines of longer durasomich more appropriate. With respect
to hardware events, the hardware-event counts need to leel $oaan appropriate unit, as event
counts can quickly become very large even for routines oftshaation. Appropriately scaled
values can make the call-graph much more readable as wedbas €0 understand and analyze.
Furthermore, there is only a limited amount of space on thelaw, and hence, displaying un-
scaled values of small or large magnitude uses up valuabtzesp

5.2 Advanced Implementation

While addressing the issues from the initial implementabbthe ECG, the advanced imple-
mentation has progressed in two major areas: the datawtesaised to store the profiling data
collected during monitoring and the visualization of thdexied data.

5.2.1 Data Collection

At each occurrence of the previously described relevantey@rofiling data is collected and
stored in specific data structures.

At any time during execution of the program, there exists leeicaallee routine pair (i.e.,
a call edge) corresponding to the current state of execufidme callee represents the routine

68 Chapter 5. Exact Call-Graph

executing at that time and the caller represents the rothatecalled the callee.

In the initial implementation of th&CG, the data structure consisted of a hash table. One
hash table was maintained for each task. Each hash-tabereptesented a caller routine (i.e.,
a routine with one or more callees) and it maintained a listatlee objects (one for each routine
called by the caller routine). The hash-table key was thénewaddress of the caller and each
callee in the caller’s callee list was also identified by wsitine address. The profiling data
collected during monitoring, at the occurrence of a releesent, was stored within the callee
object corresponding to the current state of executionoiediny profiling data could be stored,
the corresponding caller-callee routine pair needed tabed in the hash table. This involved
a hash-table look-up using the routine address of the cétibowed by a linear search of the
caller’s callee list comparing the routine address of tHkeeeaThe profiling data stored included
the number of calls to the callee from the caller as well agribkisive and exclusive time for
the callee when called by the caller. Furthermore, at eachiroence of the routine-enter event,
the corresponding caller-callee routine pair may need to$erted into the hash table (i.e., add
a hash-table entry for the caller and/or a callee objectaa#iler’s list for the callee).

The advanced implementation of tB€G replaces the hash table with a calling context
tree (CCT) FFMCO03. A CCT is a space-efficient refinement of a dynamic call tle€T),
which represents the calling behaviour of a progr&Bl[97]. In a DCT, a tree node represents
a routine activation and a tree edge represents a call fraraumtine to another routine (i.e.,
directed edge going from the caller routine to the callegine). In other words, a DCT adds a
new tree node and edge for every routine call (or activatemjhe size of a DCT is proportional
to the number of calls in the execution of the program. FiguBshows an example DCT and
the corresponding CCT. A CCT maintains unique calling cxistéi.e., the set of call-paths in
the CCT and DCT are identical) while removing the redundaité ¢h the DCT by reducing its
vertex set according to the following equivalence: two tiedes in a DCT are equivalent if they
represent the same routine and they have the same callertieth In the example in Figuge3,
the CCT maintains the two unique calling contexts for roeitth(i.e., M— A — C and M—

D — C), while discarding the redundant data present in the D@Dther words, in a CCT,
a tree node represents a routine, and tree nodes and edgegaigglata for multiple routine

5.2 Advanced Implementation 69

calls. The CCT was chosen over the DCT because it is a signiljcaore space-efficient data
structure than the DCT. However, aggregation in the CCT mdata on a per-routine-call basis
is lost, unlike the DCT. Fortunately, this data is not reqdifor theECG because it provides
information on a per-routine basis only.

M M
A D A D A A D
B C A B C C B B C C B C A C
Dynamic Call Tree Calling Context Tree

Figure 5.3: Comparison of DCT and CCT

A further refinement has been made to the CCT with the addafdrack-edgesABL97].
A back-edge is an edge from a specific routine to an ancestiwabfoutine; therefore, a back-
edge represents a call cycle. Figird shows a CCT with and without back-edges. There are
two advantages of back-edges. Firstly, back-edges camcedtie space requirements of a CCT
(i.e., provide a bound on the size of a CCT); given no backesdmd a recursive program, the
size of a CCT is unbounded. Secondly, back-edges indicatetations of call cycles in the
CCT, reducing the amount of time required for analysis. €heme also two disadvantages of
back-edges. Firstly, there is a small amount of additionalkwequired to determine when to
add a back-edge to the CCT (described in Sedi@nl.]). Secondly, back-edges can destroy the
context-uniqueness property of a CCT. Using a conservagygoach to path detection, some
call-paths fail to be detected. For example, in Figb#e the call-pathA+-B - C —-B —Dis
not detected in the CCT with back-edges; only the call-pAths B—+ D andA—B — C— B
are detected. On the other hand, a liberal approach to p&htaben can detect some call-paths
not executed. For example, in Figwel, the call-path A~ B — C — B — D is detected in
the CCT with back-edges even if only the call-pathsAB — D and A— B — C — B are

70 Chapter 5. Exact Call-Graph

executed. | chose the liberal approach to path detectiorttendonsequences of this and the
corresponding solutions are discussed in Sed@i82 | chose to include back-edges because |
felt the advantages outweigh the disadvantages.

A

|
"

CCT with back-edges CCT without back-edges

U= 0 «-— () - W0 =« >

Figure 5.4: CCT Refinement

In the advanced implementation, a CCT is a collection of noljects rooted at a single
node, where each node represents a routine. Each node imsiatpointer to its caller node
in the tree (i.e., the routine’s caller), except the rood arlist of callee edge objects (i.e., the
routine’s callees). Each edge maintains a pointer to iteesponding callee node in the tree. The
profiling data collected during monitoring is stored withine edge object corresponding to the
current state of execution. Figuseb illustrates the specific data structures composing the CCT.
The data objects are discussed in Sechi@hl.2

As just mentioned, the size of the CCT is bounded.rieé the number of routines executed
in the program. Since back-edges are used in the CCT, thé déite CCT is bounded bu.
For each node in the CCT, its number of callee edges (and memlss) is at most— 1 because
each callee represents a unique routine called from the anodlé the node calls itself that call
is instead represented by a back-edge. Thus at each depintiree, there can be at maost 1
nodes for each node at the previous depth in the tree. Simectrdh starts with one node at

5.2 Advanced Implementation 71

address

caller node

| callee edges
N —

callee edge
(callee 1)

data

data data
(task 1) (task 2)

callee edge
(callee 2)

data

callee node callee node

data data
(task 1) (task 2)

address

caller node
I callee edges

address

caller node

callee edges

Figure 5.5: Advanced Implementation: Exact CCT Data Stmast

the root and has a depth of the maximum number of nodes at the lowest depth of the tree is
(n—1)"~1. In other words, the breadth of the CCT is boundedpy 1)"1.

The use of a CCT is more appropriate than a hash table bedsustuicture mirrors the
calling structure or call-graph of a task’s execution inpinegram. The call-graph reconstructed
from a hash table is not as accurate; the hash table does matamaall the unique calling
contexts that a CCT does because it only maintains the azllere routine pairs rather than
entire call-paths. Furthermore, a CCT lends itself to treeafsfficient tree traversal algorithms
needed during analysis (e.g., depth-first-search algojith

72 Chapter 5. Exact Call-Graph

5.2.1.1 Creating and Updatinga CCT

During execution of the program, the edge associated wiletinrent state of execution is stored
and changes at each routine-enter and routine-exit evarg.etige represents the currently exe-
cuting caller-callee routine pair and provides accessecathrent node (i.e., node representing
the callee routine currently executing).

The structure of the CCT is formed during routine-enter &zewhen a routine-enter event
occurs, this means the routine represented by the currdethms made a call to another routine,
say routine N. A call to N can result in one of three mutuallglasgive actions:

1. One of the current node’s edges is reused. If the currate poeviously called routine N,
then there exists in its list of edges, one edge represeataad) to routine N. This edge is
reused.

2. A new back-edge is created. If a node representing robtiagpears as an ancestor of the
current node then a new edge representing a call to routiseblded to the current node’s
list of edges. This edge is marked as a back-edge and refsesgycle in the tree. Finding
an ancestor node requires following the caller pointer taamed by each node from the
current node up to the root node. At each node along this galroutine address of N
is compared to the routine address of the routine represdyt¢he node. More efficient
ways of finding an ancestor node are possible (e.g., using@nifilter [Blo70]); however,
in practice a call-path of length 16 is considered long andeal search along such a path
is reasonable.

3. A new node and edge are created. The new edge represerdaigta routine N (rep-
resented by the new node) is added to the current node’sflistiges. The new edge
maintains a pointer to the new node.

In all three cases, the reused or new edge becomes assoritite¢ke current state of execution

and is updated with the appropriate profiling data. The pngfdlata is stored at the edge objects,
rather than the node objects, because of back-edges in theShie a back-edge represents a
call from a node to one of its ancestor nodes, the routineesgmted by the ancestor node now

5.2 Advanced Implementation 73

O=- W = >

Gl

(a) Current Approach (b) Alternative Approach

-0 =+ 0 - >

Figure 5.6: Adding Back-Edges

has multiple callers. For example, in Figlrd, routine B has two callers: routine A and routine
C viathe back-edge. However, in a call-graph, data for aiBpeoutine needs to be broken down
by caller, so storing data at the edge objects provides asrdddeeping that data separated.

An alternative approach exists for adding back-edges t€@ME (proposed by thesis reader,
David Taylor). A back-edge from the current node to an amcestde is added only if the
ancestor-node’s caller-routine, represented by itsicpienter, is the same as the routine repre-
sented by the current node. For example, given the callfathB — C — B — C, Figureb.6(a)
shows the resulting CCT for the current approach and Figd¢)shows the resulting CCT for
the alternative approach. The alternative approach deedt i one extra node being added to
the CCT for each cycle path, but now each node has a uniquéhedecaller (e.g., caller B for
routine C in Figuré.6(b). Therefore, data can be stored in the node objects and ¢feecdjlects
are no longer required. This alternative approach can bsidered for future work.

When a routine-exit event occurs, this means the routineeseited by the current node
has completed and execution is being transferred back taliesr routine. Therefore, the edge
associated with the current state of execution changesortiinfately, an issue arises given the
presence of back-edges, as this edge cannot always be aetdtoy following the caller pointer
of the current node. As previously mentioned a routine cas maultiple callers. The current
node’s caller may not be the routine represented by itsrqadi@ter, but may instead be a routine

74 Chapter 5. Exact Call-Graph

represented by a back-edge leading to the current nodee lexdémmple in Figur&.7, routine A
calls routine B, which then calls routine C, which then catiatine B. The routine represented
by B’s caller pointer is A (corresponding to,f); however, for this call-path, routine B’s caller
is actually routine C represented by the back-edge Ho solve this issue, | store an edge path
(an array of edges representing the current runtime stadgceated with the current state of
execution instead of one edge. This edge path (see Fagfrsimply represents the current call-
path in the tree. Therefore, when a routine-enter eventrecthe reused or new edge is added
to the end of the array and the array pointer is incrementelde\\a routine-exit event occurs,
the array pointer is decremented. At all times the arrayteoipoints to the edge associated with
the current state of execution.

Path AB BC CB

!

Current State

Figure 5.7: Advanced Implementation: Exact CCT Edge Path

The profiling data stored in an edge object, which represantaller-callee routine pair,
includes the number of calls to the callee from the catiatl§) and the total self or exclusive time
(totalExclTime, total block time {otalBlockTimég, and total inclusive timet¢tallnclTime for
the callee when called by the caller. The total descendar&-is computed according to the

5.2 Advanced Implementation 75

following formula:
totalDescTime-=totallnclTime— totalExclTime-totalBlockTime (5.1)

To compute the totals during monitoring, additional valesbcorresponding to each total are
required étartinclTime startExclTime startBlockTimg These variables keep track of the
starting times of the various relevant events. Since therinétion provided by th&CG can
be displayed in terms of hardware events as well as time, @&atle previously mentioned time
variables also exists in hardware-event count form andaddiutations are similarly executed.
One exception, discussed shortly, is the hardware-evemts@ssociated with the blocking pe-
riod.

Subsets of the variables are updated at the various relevants. At the routine-enter event,
profiling data is updated at two edges: the caller edge anddltee edge. Figurg.8illustrates
a CCT before (Figuré.8(a) and after (Figures.8(b) a routine-enter event where routine D
calls routine E. The caller edge represents the edge assbevith the current state of execution
before the routine call (e.g., edgg£in Figure5.8(b) and the callee edge represents the edge
associated with the current state of execution after thénewall, or in other words, after the
routine-enter event (e.g., edggEin Figure5.8(b). Therefore, the callee edge before a routine-
enter event occurs (e.g., edggFn Figure5.8(a) becomes the caller edge after the routine-enter
event occurs. For the callee edge, execution is startigg fer routine E), so number ahllsis
incremented and botstartincl TimeandstartExcl Timeare initialized to the current time. For
the caller edge, exclusive execution is temporarily stogpey., for routine D), stotalExclTime
is increased according to the following formula:

total Excl Time= totalExclTimet (current time— startExclTime (5.2)

At the routine-exit event, profiling data is also updatedatdaller edge and the callee edge.
The callee edge represents the edge associated with trentstate of execution before the
routine exit and the caller edge represents the edge assbaiath the current state of exe-
cution after the routine exit. Therefore, these edges spaord to the same edges as in the

76 Chapter 5. Exact Call-Graph
A
i EAB

A Caller Edge B Caller Edge
< 5 ()
B C D
Callee Edge Callee Edge

C D E
(D executing) (E executing)
(a) CCT Before Routine Enter (b) CCT After Routine Enter (D calls E)

Figure 5.8: Advanced Implementation: Routine-Enter Event

previous routine-enter event. For the callee edge, exatugi ending (e.g., for routine E), so
totalExclTimas increased (see EquatidrR) andtotallnclTimels increased (repladexcl with
Incl in Equation5.2). For the caller edge, exclusive execution is restarting. (éor routine D),
sostartExclTimas reinitialized to the current time.

At the task block and unblock events, profiling data is updiately at the callee edge, the
edge associated with the current state of execution. Atkabiask, exclusive execution is tem-
porarily stopping, seotalExclTimes increased anstartBlockTimds initialized to the current
time. At a task unblock, exclusive execution is restartsagtartExcl Timds reinitialized to the
current time andotalBlockTimas increased (repladexcl with Blockin Equation5.2). How-
ever, for the hardware-events, the event counts for thegepent blocking are not computed
because of the multi-processor environment. In a multe@ssor environment, each processor
has its own set of hardware counters with different hardvearent counts. When a task becomes
blocked, it does so on a particular processor, and so, itdvadord the current hardware-event
counts of that processor’s hardware counterst@ntBlockCount$or example). When a task be-
comes unblocked, it may do so on a different processor wiiffereint set of hardware counters.

5.2 Advanced Implementation 77

The current hardware-event counts for this processor ¢dr@ased to compute the event counts
of the blocking processor (e.gstartBlockCountsbecause these event counts are unrelated;
therefore the increase totalBlockCountgannot be computed. There is no analogous problem
for the time event because the system clock is global andhsgnized across the processors.
AlthoughtotalBlockCountss not computed, additional inclusive event-count comiomns are
required at the block and unblock events. Because of a bigakvent, a task may be running
on one processor when a specific routine starts, but on anutheessor when that routine ends.
Therefore, at a task blockptallnclCountss increased and at a task unblatlrtinclCountss
reinitialized to the current event counts for all activetioes (i.e., these computations are done
not only at the callee edge) because any of the active reautiag have started on a different pro-
cessor and execution eventually returns to each. To acesimtpis, the edge path representing
the current call-path in the tree is walked and these conipautaare done for each edge along
that path.

An alternative approach to walking up the edge path on eamtkldnd unblock event is to
carry an adjustment up on each routine return (proposed dgishieader, David Taylor). At
the block event, totallnclCounts is increased only at tHeeeadge, and at the unblock event,
startinclCounts is reinitialized only at the callee edgé&eAthe unblock event, the increment to
totallnclCounts is propagated up one level in the edge pgdlieanext routine-exit event. The time
between the unblock event and the routine-exit event (dfitstepropagation) and the time be-
tween routine-exit events (at each following propagatioo$t be added to the increment because
startinclCounts is only reinitialized for the callee edgjghe unblock event. The time of any sub-
sequent blocking periods must also be added to the increr@eming coroutine execution, the
current task may not exit all routines along the edge patbrbef coroutine-discontinue event oc-
curs (see Sectidn.3.1); however, the edge path is walked up at each coroutinexdiisaie event,
so the increment can be propagated all the way up to the rdbatatime. This approach does
require an additional variable (for the increment) to bentaaned and additional computations
to be made at each routine-exit event. The efficiency of eagheimentation approach depends
heavily on program behaviour. Programs that block infretjyeand have short call-paths (e.g.,
16 or less), but make frequent routine calls (as often odourbject-oriented programs), would

78 Chapter 5. Exact Call-Graph

benefit from the first implementation approach. Programshloek frequently and have long
call-paths, but make few routine calls, would benefit from $lecond implementation approach.
| believe the first category of programs are more common theuhetter, and hence, feel the first
implementation approach would be more efficient in general.

5.2.1.2 Coroutines

A CCT, and its associated edge path, is maintained for eagbuérn entity having its own
stack; i.e., one for each task and each coroutine. Howegeguse multiple tasks may execute
a single coroutine (i.e., multiple tasks’ threads may eteeonm a coroutine’s stack), a CCT must
keep profiling data separated by task. Therefore, each dajgetanaintains a list of profiling
data objects, one for each task executing along that edtfeerrdnan a single set of data (see
Figureb.5). For each per-task CCT, the lists consists of only one eh¢imecause only the task’s
thread may execute on the task’s stack.

Any execution entity can activate a coroutine (i.e., a task activate a coroutine and a
coroutine can activate another coroutine). When an exateitntity activates a coroutine (e.g.,
coroutine resume), the entity (i.e., the task’s thread @xeg the entity) begins execution of the
coroutine at the point of the last inactivation (e.g., ctirmelisuspend). During the coroutine’s
execution, routines may be called and executed until theutore becomes inactive. An inac-
tivation may occur anywhere within a routine. Thereforeg@iion of the coroutine can start
and end anywhere within a routine. Furthermore, the sulesgcactivation may be made by
an execution entity executed by a different task’s threaglammg execution of the coroutine
starts from the point of the last inactivation reached by»atetion entity executed by another
task’s thread. For this reason, a coroutine activationdatéd similarly to a routine call and
a coroutine inactivation is treated similarly to a routie¢urn. When a coroutine becomes ac-
tive, a coroutine-discontinue event occurs for the exeougintity activating the coroutine and a
coroutine-continue event occurs for the coroutine. Exeaumoves from the execution entity
and its stack to the coroutine and its stack. When a corotwemes inactive, a coroutine-
discontinue event occurs for the coroutine and a corouwtorginue event occurs for another
execution entity. Execution moves from the coroutine asdtiick to the execution entity and its

5.2 Advanced Implementation 79

stack.

Different actions are taken at a coroutine-discontinue arabroutine-continue event. A
coroutine-discontinue event is treated similarly to aire+exit event. Thereforéptal ExclTime
andtotallnclTimeare increased. A coroutine-continue event is treated aiiyito a routine-
enter event. ThereforastartExclTimeandstartinclTimeare reinitialized to the current time.
However, instead of incrementing the numbecalls, the number otontinueds incremented.
The name continues represents the continuation of execirtom the point of the last inactiva-
tion. The profiling data is updated, as just described, at#tiee edge (edge associated with the
current state of execution), but other edges, discussedatidd5.3.1, are also updated.

5.2.2 Visualization

The first step in running thECG metric involves selecting the events (i.e., time and/odivare
events) for which the profiling data is collected and subsatjy displayed. The event-selection
window is shown in Figur®.9 with the “Time” and “Completed Instructions” events seé&stt
As hardware events are selected the remaining hardwarésdvecome greyed out depending
on the number of hardware counters available and the capedf those counters, i.e., which
events they are able to courtgs0g. For hardware events, a user can also choose to have
profiling data collected while executing user and/or systeate (see upper right options box of
Figure5.9).

Once program execution and monitoring are completed, Hikédaroutine-selection window
is displayed (see Figurg.10). A user can select the call-graph for any task or coroutye b
clicking on a task or coroutine name in the left column. Treksaare listed above the dashed
separator line and the coroutines below it. Summary inféionabroken down for each event
selection from Figur®.9, is displayed for each task and coroutine. The summary nmtion
includes total execution-time or event-counts as well &d tdock-time for the time event. The
purpose of the summary information is to give a user sometiline as to which call-graph to
analyze first. For example, a task with a large time or couhteves a potential “hot-spot” of
execution.

80 Chapter 5. Exact Call-Graph

-

] Event Selection (on plg2.math}) E]

[Tine Options

[7 Completed Instructions I” Count. User Events

I CPU Cycles | Count System Events

I Instructionz / Cycle
I Instruction Cache Ref,
O] Zeugtrancilen Lol HiGs
I Instruction Cache Miss
I Data Cache Read Mizzes
I Data Cache Write Mizses
_| Taken Branch Mispred,
| Untaken Branch Mispred
L] Yatel Brasach Hiape o

(K, | Eancell Help |

Figure 5.9: Advanced Implementation: Exact Event-Sed&ctVindow

The call-graph window in Figurg.11is displayed after selecting a task in the task/coroutine-
selection window. Figur&.11 shows the call-graph window for task T1 from FiguelO.
The call-graph window contains several panes (from top toho: routine pane, callers pane,
callees pane, callees-visited pane, cycles pane and cweaglection pane. All data displayed
in the call-graph window is for a single selected event,(time or a hardware event). In Fig-
ure5.11 the call-graph is currently displaying the time-evenedat task T1.

The routine pane lists each routine executed by a task. Ftr eatine, the information
includes (left to right) the number of calls/continues te thutine as well as a histogram showing
that number as a percentage of the total, the self time ofdhéne as well as a histogram
showing that number as a percentage of the total, the descetiche of the routine, the block
time of the routine, and the routine name (optionally fokmirby a file and line number of the

5.2 Advanced Implementation 81

r:l Routine Call Graph, Task/Coroutine Selection (on plg2.math) E“E“ZF

Close |
Task/Coroutine Time [seconds) Instr, Count
Mame (ID) Total Exec, Total Block Total Exec,

uBootTask (0x126780) 117u 0 16,1k A
uSystemTask (Oxldeled) 0 0 0
uMain (OxffFhefE40) 2.43%m 15, 49m 360, 5k
T1 (OxcfBeal) b, 71dm 0 1.67H
T2 (OxcfSedl) 6,07 3m 0 1,804H
ulnorderTreeGen (OxcfIlal) 1,349 0 4EE,Ek
uPreorderTreeGen [0xcfI108) 1,365m 0 467, 1k
uPostorderTreeGen (OxcfI0700 4, 85Em 0 2,813

uPostorderTreeGen (OxcfBb40) 751u 0 282k ¥

-l = = I~

Figure 5.10: Advanced Implementation: Exact Task/Cormielection Window

routine source). All values displayed for a specific routinetotalled over all calls to the routine.
The percentage values are represented by histograms,radl@awser to quickly analyze and
understand the distribution of calls and time among theousrroutines. The routines are sorted
by self time and the currently selected routine is highkghih white (e.g., routinéndNextNode

in Figure5.11). Any routine in this pane can be selected by clicking oniite.l Once a routine
is selected, the callers and callees panes are updatectfeeldcted routine.

For each caller, the callers pane lists the number of calisittues and times attributed to the
caller by the selected routine. Therefore, the sum of theegabf the callers for each individual
field (calls, self, descendant and block) is equal to thel tathie displayed for the selected
routine in the routine pane. For each callee, the callees psis the times attributed to the
selected routine by the callee as well as the number of caflishues from the selected routine
to the callee. Therefore, the sum of the values of the caftweall time fields (self, descendant
and block) is equal to the total descendant time displayeth#oselected routine in the routine
pane. A caller or callee routine can be selected from thepeetive panes, by clicking on its
line, and this routine then becomes the selected routirtesindutine pane.

82

O

Close

Routine Call Graph: Task T1 (Oxcf8ea0) (on plg2.math)

Options

Chapter 5. Exact Call-Graph

== E)

Time - Secondz: E,.311lm

Calls + Continues % of Total Self % of Total Descendant Block Rout.ine
o2 122u BESu] mynode ¢ mynode A
8: 20 121u 4,470 0 Tree<mynode? s insert
9y 20 E5u o] o] Treeable:Treesble
10y 3 22u 120 i} uTreelter<mynode>:iinit
11y 3 22u LI i} uTreelter<mynode>; sover
12+ 3 120]] Tree<mynode’ ¢ ttop
13 41+0 [] 448y] 134y 0 ulnorder TreeGen<mynode ¢ 2 F indMextNode
14y 20 B8u 0 o TFriends:right
15y 20 BBu 0 o] TFriends:left
16: 1+20 | 15y a2y i} uTreelter<mynode>: tmain ri
= T
—
Callers of ulhorderTreeGen{mynoders sfindMextiode (Time - Seconds)
Calls + Continues Self Descendant Block Routine
163 1+20 241 T 0 uTreelter<mynode>: tmain S
13z 40+130 4240 1230 0 ulnorderTresGen<mynode’: 1 f indMextNode J
£
=] =
-'_
Callees of ulnorderTreeGen{mynoder::findNextMode (Time - Seconds)
Calls + Continues Self Dezcendant Block Routine
15 20 =00 0 0 TFriends;:left
13 404190 424u 123u o] ulnorderTreeGen<mynode’ ¢ : f indNextHode
14y 20 GBu 0 0 TFriends:right
] =

Callees Visited

uTreelter<mynoder* tnain
ulnorderTreeben<mynode’t tfindNextMode

I I

- =
i
Call Cycles
Cycle 1 Tree<mynoder:iinsertMode -> Treedmynode’::insertMode S
Cycle 2 ulnorderTreeGen<mynoder::findNextNode -» ulnorderTresGen<mynode>::findMextNode J
£
=] =
i
Coroutine Selection All | Maohe |
) A

L Ino Tr)]
uPreorderTreeben (0xcf3108)
uPostorderTreeGen (OxcfI0700

=] =

L

Figure 5.11: Advanced Implementation: Exact Call-Graphdiv

5.2 Advanced Implementation 83

The callees-visited pane keeps track of the current pattesliby a user in the call-graph. As
callee routines are selected the path increases (routieeslded to the visit pane list) because a
user is moving down the call-graph. As caller routines alecsed the path decreases (routines
are removed from the visit pane list) because a user is maonarige call-graph. This pane allows
a user to keep track of the position in the call-graph at ales.

The cycles pane displays all cycles detected in the capfgrdf no cycles exist the cycles
pane is not shown.

The final pane is the coroutine-selection pane. This patsedach coroutine executed by the
task. If the task executes no coroutines this pane is notishAwiser can select any number of
coroutines from the list by clicking on the coroutine namésoi the “All” and “None” buttons
allow a user to quickly select or deselect all coroutines.dBfault no coroutines are selected
because | cannot without user input determine which caonestio select. Once one or more
coroutines are selected, the coroutine’s routines exddtehe task are displayed below a sep-
arator line in the routine pane. The separator line provadelgar division between the task and
coroutine routines. The same information displayed fosk tautine is displayed for a coroutine
routine. The percentages represented by the histogranfeatask routines above the separator
line, percentages of the total for the task, and for coreutoutines below the separator line,
percentages of the total for the selected coroutines.

The coroutine selections also affect the total executio tilisplayed in the top title bar of
the routine pane. If no coroutines are selected, the topakesents the total execution time for
the task while executing task routines. If one or more conegtare selected, the total execution
time for the task while executing the selected coroutinestines is included in the total.

Various options are available from the pull-down menu asged with the “Options” button
(see Figuréb.12). The “Histogram” option allows a user to show or hide thédgsams in the
routine pane. The “File Info” option allows a user to show atehfile information for each
routine displayed in the routine, callers, callees andeg/planes. The file information includes
the file name (and path) containing the routine and the limabar corresponding to the start
of the routine within the file. The pull-down menu associateth the “Events” option allows
a user to choose the event for which the call-graph data pdagied. The events available are

84 Chapter 5. Exact Call-Graph

those events previously selected on the events-seleciimtow (e.g., “Time” and “Completed
Instructions” in Figures.9). If the event is changed from “Time” to “Completed Instriocis”,
then the data displayed in the call-graph window (Fidudel) changes from time to hardware-
event counts (i.e., the number of completed instructiond)en a hardware event is selected, the
“Block” field is hidden in the routine, callees and callersipa because this data is not collected
for hardware events (see Secti2.1).

Options

* Histogram
File Info

Events 1. Time

Complete Call Graph Completed Instructions

Figure 5.12: Advanced Implementation: Exact Options Menu

The final option, “Complete Call-Graph”, opens a completé-gaph window, displaying
caller and callee information for all routines rather thast ja selected routine (see Figaé3).
For each routine, the callers are listed above the routigetlaa callees are listed below the
routine. Information is displayed for all task routines @hd routines of the currently selected
coroutines. The complete call-graph window provides agotheans by which a user can view
the call-graph data; a user can see and analyze the entigraph at once. However, a user may
not wish to view the entire call-graph for all events at omeetj so from the “Options” menu on
the complete call-graph window, a user can show or hide datadividual events. As well, from
the “Options” menu the user can show or hide file informationdach routine. The routines
displayed in the complete call-graph window are sorted leyviddue of the “Weight” column.
For each event, a routine’s self time or hardware-eventtsp@as a percentage of the total for
the event, is computed. A routine’s weight is the averagegeage over the events currently
displayed in the window. For example, given two events digpdl, if a routine accounts for 20%
of the total for one event and 11% of the total for the otheng&vihen the routine’s weight is

5.2 Advanced Implementation 85

] Call Graph (on plg2.math}) E\@E\j
Cloze Options |
Time Completed Instructionsz
——Seconds—— ——Ewvents—
Wleight Calls + Cont, Self Dezcendant. Block Self Dezcendant. Routine
| 20 | 2B¥u 4,208m 0 | BE, 7k 1,224M | Treedmynoder ! finsert -
I 190 | 2,39%n 1.623m 0 | BOL,4k 558, 7k | Treetmynode> § $insertNode
43,29 1 210 | 2,661m 1.814m 0 | BEZ,1k E22.8k | Treedmynoder!!insertMode
I 190 | Bldu] 0 | 203, 7k 0 | operator<
| 190 | 591u 0 0 | 203, 2k 0 | operatars
I 130 | BO3u] 0 | 209,9k 0 | TFriend:iright
| 190 | 2.39%n 1.623m 0 | BOL.dk oha, 7k | Tree<mynode>: tinsertNode
I 1490 | Bldu 0 0 | 209,7k 0 | Tree<mynode’: inzertNode
11,65 1 180 | Bldu] 0 | 209,7k 0 | operatar<
I 190 | BOSu 0 0 | 209,59k 0 | Tree<mynode: : inzertNode i
11,61 1 190 | B03u] 0 | 09,9k 0 | TFriend;:right
I 190 | B51u 0 0 | 2032k 0 | Treetmynode>: : inzerthode
11,26 1 190 | B91u] 0 | 2032k 0 | operator>
| B3+E3 | BE4u] 0 | 05,8k 0 | fred:imain
11,1 | B3+63 | BEdu 0 0 | 205,8k 0 | uTreelter<mynoder:operators»
4,81 1 1 | 311u 5, 403m 0 | B9.75k 1,EH | fred:imain
| 20 | 1220 G5 0 | 33,46k 21,88k | myhodes: dmynode
| 20 | 121u 4,47 5m i | 33,41k 1,291M | Treedmynoder: finsert
I 3 | 22u L 0 | B,638k 9,322k | uTreelter<mynodes: over
| B3+GE3 | BEdu 0 0 | 205,8k i | uTreelter<mynode>: joperators>
£
= [P

Figure 5.13: Advanced Implementation: Exact Complete-Gadiph Window

15.5 (i.e.,(20+11)/2).

If a coroutine is selected on the task/coroutine-selectimuow (see Figur®.10), the call-
graph window displayed and the functionality of that windiewery similar to that for a task.
One difference is the presence of a task-selection paneaithsif a coroutine-selection pane.
This pane lists each task that executed the coroutine. b&eoroutine-selection pane, a user
can select any number of tasks from the list. By default sk$aare selected because | chose not
to initially display an empty window, since without user utp cannot determine which tasks to
select. The call-graph data displayed is aggregated fthekelected tasks. In other words, if a
coroutine’s routine is executed by more than one curremdlgcted task, the data displayed for
this routine is the summation of values for those tasks. tfidine is not executed by any of the
currently selected tasks the routine is not displayed irrdlgine pane. Also, the cycles pane

86 Chapter 5. Exact Call-Graph

only lists those cycles fully executed by the selected task® tasks are selected all panes are
empty.

5.2.3 Addressing Initial Issues

To address the existence of the initBCG as two separate metrics, both versions, time and
hardware-event based, have been combined into one methi@wingle starting point and dis-
play in the advanced implementation. From the event-gelegtindow (see Figur&.9), a user
can now select the time event as well as various hardwardsvafter profiling is completed
and a task or coroutine is selected, a single call-graph avin@ee Figurés.1]) is displayed
and a user can, via the pull-down menu associated with therisV option, choose the spe-
cific event to display. Such functionality provides a cotesisview across the various events, as
nothing changes in the call-graph window except the actalles. Furthermore, the complete
call-graph window now allows a user to easily analyze thégraph across any subset of the
selected events.

Whereas in the initial implementation coroutine inforroatis combined with information
associated with the task, in the advanced implementatiovutioes and tasks are cleanly sep-
arated in both the per-task and per-coroutine call-grafirs.the per-task call-graph window,
a user can select which coroutines to include/exclude flwandisplay and that information is
visually separated from that of the task. Such functiopaibows a user to more easily and ac-
curately analyze the execution of the task on each indiVielkecution stack (task or coroutine)
as well as the execution as a whole. On the per-coroutingycaih window, a user can again
select which tasks to include/exclude from the display. ISuactionality allows a user to ag-
gregate coroutine information across tasks in a singlegralbh window. Having both a per-task
and per-coroutine call-graph provides two means by whichew the call-graph data associated
with a specific coroutine. Multiple views can be invaluab&pdnding on the program and the
purpose of the analysis. The improvements all stem from &nefal separation of the task and
coroutine profiling data during monitoring (see Sectibrs1.2and5.3.7), allowing for analysis
on a per-task and per-coroutine basis.

5.3 Implementation Issues 87

To address the simplicity of the visualization, the cabiygn window was completely re-
designed with functionality, interactivity and understarg in mind (see Sectiob.2.2. The
window now provides a more interactive experience for a.uske ability to select coroutines
or tasks allows a user to control the amount of informati@pldiyed in the call-graph window.
Such control provides an environment more conducive tootigin analysis and understanding.
Also, a user can progressively move down and up the calllgbgpselecting routines in the
routine, callers and callees panes, with that movemenglieacked in the callees-visited pane.
Such functionality allows a user to better understand asdalize the program’s control flow.
Since multiple views are often beneficial, the complete-gediph window also provides a user
with the means to view the entire call-graph at once.

To address the lack of scaling in the initial implementabbthe ECG, the values displayed
in the call-graph window are no longer limited to millisectime units or un-scaled hardware-
event counts. In the advanced implementation, the scadéingas from nano units all the way
up to peta units, taking into account very small and verydarglues. All values are scaled on
an individual basis. The most appropriate unit is deterohimeessed on the size of the value. For
example, values of less thanuse nano units and values of #@r greater use peta units.
Such scaling allows the call-graph to be scalable to rost{aed programs) of short and long
duration. Also, scaling individual values makes the cadligh window much easier to read and
analyze given that the values displayed are often a mixtubeth smaller and larger size (e.qg.,
microseconds and milliseconds in Fig&d1).

5.3 Implementation Issues

This section describes implementation issues | encouhtard solved during the writing of the
advanced implementation of tiCG.

88 Chapter 5. Exact Call-Graph

5.3.1 Handling Coroutines

This issue involves the creation and maintenance of the@emtine CCT. | chose to store pro-
filing data related to coroutine execution in separate CGE€g Sectiorb.2.1.9. This choice
was made after considering an alternative solution. Thegradtive solution maintains one CCT
per-task only. The per-task CCT has multiple tree branchesubtrees), one representing exe-
cution on the task’s stack and one or more representing Bmaan the coroutine stacks of the
coroutines executed by the task. During monitoring, befoodiling data can be stored, a linear
search of the CCT'’s subtrees is required to find the subtssegded with the current execution.
However, as previously explained, multiple tasks may eteeome coroutine, and on a corou-
tine activation, a task may start execution of that corauihthe point of the last inactivation
reached by a different task. In other words, a task does rogtssarily execute the entire corou-
tine; therefore, on any particular coroutine activatitie, subtree corresponding to that coroutine
may not be structurally up-to-date in the task’s CCT. Thisngethat at each coroutine-continue
event, the corresponding subtree needs to be updated lbefppeofiling data can be stored. The
subtree either needs to be compared against the subtree t#sth which previously executed
the coroutine or a separate tree structure needs to be maitior the coroutine to store the
structure of the overall coroutine execution. Such a comparand subsequent update is a time
consuming and complicated process, which would substintiarease the profiling overhead,
and therefore, this solution was rejected.

Per-coroutine CCTs do require some additional work at eaobutine continue and discon-
tinue event, also because a task does not necessarily exbeuéntire coroutine. Updating is
required for all active routines. On a coroutine-continuerg, the edge path representing the
current call-path in the tree needs to be walked down fromrdbeto the current node. While
walking down the path, the data object at each edge corrdsgppto the task (i.e., the currently
executing task thread) needs to be initialized. Initidimais required because the current task
may not have executed along all the edges of the current gaiha coroutine’s routine exits, it
may exit into a routine never initialized for that task. lalization includes settingtartinclTime
to the current time. On a coroutine-discontinue event, tlyegath representing the current call-
path in the tree needs to be walked up from the current nodeetoobt. While walking up the

5.3 Implementation Issues 89

path, the data object at each edge corresponding to theitasktlfe currently executing task
thread) needs to be finalized. Finalization is required bgedhe current task may never actu-
ally exit all the routines along the edge path, leaving valimean incomplete state. Finalization
includes increasingotallnclTime When a coroutine continue or discontinue event occurs for
a task (update per-task CCT versus per-coroutine CCT), aciobns are taken not because the
path needs to be initialized or finalized (since only the'taglkead executes on the task’s stack),
but in order to maintain consistency across executioniestih terms of time calculations. In
other words, for any execution entity, the inclusive timedaoutine does not include the time
spent executing another execution entity.

In the per-coroutine CCT, a linear search is required whetatipg an edge in order to find
the data object associated with the executing task. A hdwdé tan be used instead of a list in
order to prevent linear searches. However, in general ibeglgorogramming practice to keep
the number of tasks executing a particular coroutine (oesging any shared resource) relatively
small to minimize contention, which can cause a program mcstowly and/or require complex
synchronization. If the number of tasks is large the linesrsh is at most compounding an
existing inefficiency rather than creating a new one.

5.3.2 Handling Cycles

This issue involves the handling of cycles during monitgrimnalysis and visualization. During
monitoring, the current call-path may include an edge of @&T multiple times (recursive
invocations). An edge can be recursively invoked giveneyduch as A+ A — A (recursive
invocation of edge k,) and A— B — C — A — B (recursive invocation of edge,g). A
variableinRoutineCounts used to detect recursive invocations to prevent douhlatiog of the
inclusive time at an edge. If an edge is recursively invokieel jnclusive times of all invocations
after the first are contained within the inclusive time ofttfiest invocation. inRoutineCount
is incremented at the end of the routine-enter event andasdented at the beginning of the
routine-exit event. At the routine-enter evestartincl Timeis initialized to the current time only
if inRoutineCounts zero, meaning this is not a recursive invocation so imedusme should be

90 Chapter 5. Exact Call-Graph

W - >

/\

C D

(@, T ; R R

(a) Call-Graph 1 (b) Call-Graph 2

Figure 5.14: Example Cycles

counted. At the routine-exit evertptalinclTimeis increased only ifnRoutineCountis zero,
meaning this invocation is the first in a recursive sequenc@&dt part of any recursion) so the
inclusive time should be added to the total.

During analysis, the CCTs are analyzed using a depth-féateti. During this search, if
a back-edge is detected, a cycle has been found. A cycle canlla@sed or the back-edge
can be ignored. The profiler gprof first introduced the notdrcollapsing cycles GKM82].
Collapsing a cycle involves reducing the cycle to a singldenor pseudo-routine. Therefore,
the number of calls and time totals for all members (i.e.tines) of the cycle are summed
together to arrive at totals for the single-cycle node. UWtioately, when a cycle is collapsed,
the execution behaviour of the cycle members is lost. Theeel chose to ignore back-edges
rather than collapse cycles. To compute the total inclusiae for each routine, the inclusive
time from each of the routine’s callers is summed togethexwéver, given a cycle, such as the
one in Figures.14(a) this summation can lead to double counting. In the exanpigine B has
two callers: routine A and routine C via a back-edge. Howetver inclusive time for routine
B, when called by routine A, already includes the inclusimeetfor routine B when called by
routine C; therefore, the inclusive times from all back-eslgre ignored.

One consequence of ignoring back-edges becomes apparany the analysis of the callers

5.4 Related Work 91

and callees of a given routine. The total descendant timedol routine is accurately computed
by subtracting the total exclusive and block times for aireufrom the total inclusive time for a
routine (see Sectioh.2.1.]). The total descendant time for a routine should also edngastim
of the descendant times of its callers as well as the sum abtbleisive, descendant and block
times for its callees (see Sectibr2.9. This is the desired result for each routine, includingstho
routines involved in a cycle. However, for a routine thattstand ends a cycle (e.g., routine B in
Figure5.14(a), this is not the case. In the example, the descendant tone ¢aller A and from
callee C includes routine B’s exclusive time when called ajfec C, leading to inflated values.
In this example (and other similar cycles), the exclusinestof the back-edge simply needs to be
subtracted from the descendant time of the cycle’s callge€#,z) and the cycle’s first callee
edge (E&¢).

Unfortunately, such adjustments are insufficient for altleg because back-edges are in-
cluded in the CCT. The inclusion of back-edges in a CCT prsveome call-paths from being
detected. In Figur&.14(b) the call-path A~ B — C — B — D cannot be detected. Only the
call-paths A—+ B — D and A— B —+ C — B can be detected. In this example, the descendant
time from both caller A and caller C includes the exclusivedifor routine D when routine D
is called through the call-path A» B —+ C — B — D; however, this double counting cannot be
adjusted given that the call-path-A B —+ C — B — D is not detected.

Since adjustments for routines that start and end cyclesmigrbe made for a limited group
of cycles, | chose not to make adjustments in any case; threxefior those routines, the total
descendant time does not add up. In order to bring the issuager’s attention on the call-graph
window, the descendant time of any routine which starts awad @ cycle is highlighted in green
on the routine pane (see descendant value 134u on line 18 notline pane of Figurg.11).

5.4 Related Work

This section describes two current profiling tools thatude exact call-graphs. gprof profiles C
and C+ programs, but provides limited support for mulgting. Intel VTune is programming
language and compiler independent, so it provides profiin@grics for programs, including

92 Chapter 5. Exact Call-Graph

multithreaded programs, written in C, C+, Java, Fortrash@her languages.

5.4.1 gprof

gprof uses a combination of exact and statistical calldgafiling [GKM82]. Each call made
to every routine is recorded, providing the exact call cewartd the structure of the call-graph.
However, the time spent in each routine is derived by sargpBamples are taken at a sampling
interval of approximately 10 milliseconds. By default, gbcombines the static and dynamic
call-graphs of the executing program. The profiling datdectéd is later processed, upon user
instruction, to produce a file containing a flat profile (listech routine) and a call-graph profile
(lists each routine with its callers and callees) of the ppag No graphical user interface is
available, but gprof does allow data from multiple profilings to be combined into one file.

Flat Profile

The flat profile lists each routine in the program in decregeiaer of self time (see Figugel15).
The information provided for each routine includes the sate of the routine as well as that
number as a percentage of the total, the cumulative selfaintige routine (i.e., self time of the
routine plus those routines above it), the number of calteéaoutine, and the per-call self and
total (or inclusive) time of the routine.

Call-Graph Profile

The call-graph profile lists each routine with the callerthefroutine listed above and the callees
of the routine listed below (see Figutelf. The total self and descendant times are provided
for the routine as well as the total number of calls and reeersalls to the routine. For each
caller of the routine, the self and descendant time atetbtiv the caller (from the routine) is
displayed as well as the number of calls from the caller tarthitine over the total number of
calls to the routine. For each callee of the routine, thea®df descendant time attributed from
the callee (to the routine) is displayed as well as the numobealls from the routine to the callee
over the total number of calls to the callee. The routinesarted by the percentage of the total

5.4 Related Work 93

granularity: each sample hit covers 4 byte(s) for 0.01% of 141.71 seconds

% cumulative self self total
t1me seconds seconds calls ms/call ms/fcall name
80. 4 113.96 113.96 internal_mcount [1]
9.9 128.05 14,09 1 14080.00 24130.00 _Z1Ev [7]

7.1 138.09 10.24 1000000000 0.00 0.00 _ZlFv [2]

2.6 141.71 3.62 _mcount (792)

0.0 141.71 0.00 76 0.00 0.00 nvmatch [1@]

0.0 141.71 0.00 44 0.00 0.00 _return_zero [383]
0.0 141.71 0.00 15 0.00 0.00 mutex_lock [11]

0.0 141.71 0.00 15 0.00 0.00 mutex unlock [12]
0.0 141.71 .0 =1 @.e0 0.00 .mul [12]

0.0 141.71 0.00 4 0.00 0.00 _fflush_u [384]

0.0 141.71 0.00 3 0.00 0.00 atexit [14]

0.0 141.71 0.00 3 0.00 0.00 get_mem [15]

0.0 141.71 0.00 2 0.00 0.00 ferror_unlocked [385]
0.0 141.71 0.00 2 0.00 0.00 _fflush_u_iops [386]
0.0 141.71 0.00 2 0.00 0.00 _gettimeofday [387]

Figure 5.15: gprof Flat Profile

granularity: each sample hit covers 4 bytel(s) for 0.01% of 138.09 seconds

called/total parents
index Ztime self descendents called+self name 1ndex
called/total children
=spontaneouss
[1] 82.5 113.86 0.00 internal mecount [1]
0.00 0.00 1/3 atexit [14]
0.00 24.13 1/1 _start [8]
[2] 17.5 0.60 24.13 1 main [2]
0.00 24.13 3l il _Zlav [3]
0.00 0.00 2/2 _gettimeofday [387]
0.00 0.00 1/1 printf [22]
0.00 24.13 1/1 main [2]
[2] 17.5 0.00 24.13 1 _Zlav [3]
0.00 24.13 1/1 _ZlBv [4]

Figure 5.16: gprof Call-Graph Profile

94 Chapter 5. Exact Call-Graph

execution time of the program accounted for by the inclusive of the routine. In gprof, cycles
are collapsed, and therefore, reduced to single pseudmesu

gprof provides options for a user to limit data collectiorsp®cific routines and their callees
during monitoring (i.e., instrumentation control), rene@pecific routines from calculations dur-
ing analysis, and prevent the output of data for specificimest(including routines that exist
only in the static call-graph) as well as specific edgesécalbllee routine pairs) in the produced
profiles.

5.4.2 Intel VTune

Intel VTune helps a user maximize application performancproviding various profiling met-
rics including an exact call-graph metric and a system-vgedgormance metric (which uses
sampling) [nt07]. A graphical user interface and command line version of M are available.
Profiling data can also be saved for later visualization. Vigaalizations provide the exact call-
graph (dynamic) data: the Graph Tab and the Call List Tab.

Graph Tab

The Graph Tab displays a flat profile and a call-graph in tremsf(see Figuré.17). The flat
profile lists the routines, which can be grouped by modulegat or class. The information
provided for each routine includes the number of calls tathsine, the self, total (or inclusive)
and block times of the routine, the number of callers to ariees of the routine, file informa-
tion about the routine as well as various average and pergenalues. A user can sort on any
column and show, hide or reorder columns of data. Clickingoautine highlights the routine
in the tree and updates the Call List Tab for that routine.

The tree provides a graphical and interactive view of thgam'’s call-graph. Each tree node
represents a routine and is colour coded. The nodes areediuntb colour groups according to
their self time (e.g., nodes with the highest self-time argti orange) and the colour scheme is
customizable. If a user chooses to view data by thread, émehd is represented as a separate
tree, otherwise each thread is represented as a separatd aosingle tree where routines exe-

5.4 Related Work 95
B WunE(TM) Performance Tools - Call Graph Results [localhost] - Thu May 17 12:09:09 2007 - Intel{R) Software Developm

File Edit Refactor Mavigate Search Project Tuning Run Window Help |
- EE 0N Q| A6 G

BT =\ = O|[MWelcome [O Call Graph Results llocathost] - Thu May 17 12:00:00 2007 & =1

& &P@Eﬁl I'iPru:ess: I.n’home.n’jagid.z\n.n’CaHCraphZ.!CCTests.I’a.our; Process ID: 19580; Size: 1 v

~ &3 Callgraph Activ — =
=l Function Calls Self Time | Total Time | Self Wait Time | Total Wait Time | Class
6,720,985 fhomefjz

6,720,985

/homefjz |-

o

@ %2 32 b ' [ShowTop:[50 ¥/ % Recalcuiate || Highiight: None

[+] ol
Graph | Call list|

Figure 5.17: Intel VTune Graph Tab

B WunE(TM) Performance Tools - Call Graph Results [localhost] - Thu May 17 12:09:09 2007 - Intel{R) Software Developm
File Edit Refactor Mavigate Search Project Tuning Run Window Help |
- EE 0N Q| A6 G
BT 2\ = O|[MWecome [Call Graph Results [localhost] - Thu May 17 12:09:00 2007 5¢ =1
& &P@Eﬁl I'iPru:ess: I.n’home.n’jagid.z\n.n’CaHCraphZ.!CCTests.I’a.our; Process ID: 19580; Size: 1 v
~ &3 Callgraph Activ =
=l Function Calls Self Time | Total Time | Self Wait Time | Total Wait Time | Class
6,720,985 fhomefjz
0 6,720,985 0 /homefjz |-
[IEX I i
Caller Function |Contribution © | Calls | Total Time | Wait Time | Class | Module | Module Path | Display Name | Source File

Callee Function Contribution *

Calls

Total Time | Wait Time | Class

Module

Module Path

|
|
[T

Graph | Call list|

Figure 5.18: Intel VTune Call List Tab

96 Chapter 5. Exact Call-Graph

cuted by multiple threads are displayed as a single nodeagigfnegated data. A user can show
or hide a node as well as show or hide various callers andesatiba node. Indicator buttons on
each node tell a user whether all, none or some of its caltetallees are currently displayed.
Information about a particular node or edge can be obtaigdtblsering over the node or edge
with the mouse. Red edges indicate the critical path (i.esttime-consuming call path on the
basis of self time), which is recomputed after any routinkidglen or shown. The critical path
to the root or to the bottom of the tree can be displayed fropranle. A user can zoom-in and
out as well as highlight specific nodes and edges (e.g., tod6s by self time, nodes involved
in a cycle etc.). A user can also define what percentage oinesito view at any time and this
percentage is used to determine which callees to displagdon node. Clicking a node in the
tree highlights the corresponding routine in the flat profile

Call List Tab

The Call List Tab displays information for the caller andiealroutines of the routine currently
selected in the flat profile on the Graph Tab (see Figui®. For each caller of the routine,
the percentage of the total time of the routine attributethéocaller is displayed as well as the
total and wait time attributed to the caller and the numberadis from the caller to the routine.
For each callee of the routine, the percentage of the tota &f the routine attributed from the
callee is displayed as well as the total and wait time atteitddrom the callee and the number
of calls from the routine to the callee. The data displayedhenCall List Tab can be further
broken down by call site. Therefore, instead of listing ogdyh caller and callee routine, the list
displays each call site in the individual caller and calleetines. Also, by right-clicking on a
routine and selecting “View Source”, a user can see the saade line of the call site. VTune
does not collapse cycles, and furthermore, does not makestaggnts in order to prevent double
counting.

VTune provides numerous profiling options. A user can panda@sume data collection for
the running program (but not perform real-time analysig)gisontrol buttons or an application
program interface (API). Also, VTune allows a user to setbetlevel of instrumentation (i.e.,
for which routines profiling data is collected). A user cama$e to instrument only specific

5.4 Related Work 97

routines as well as all routines in a particular module.

5.4.3 Comparison

Table5.1summarizes and compares the relevant featurg$odfilerseECG metric and the two
profiling tools discussed in the previous sections. Soméeifrmportant features are discussed
in detalil.

uProfiler | gprof Intel

ECG Metric VTune
Hardware Events Vv
Combine Profiling Runs Vv
Instrumentation Control Vv

No gprof Fallacy

Data Saved to File
Graphical User Interface
Interactive Caller-Callee Display
Interactive Tree with Critical Path

<
NSO

Cycles Information (via tree)
Complete Call-Graph (via tree)
Call-Graph Break Down Vv
Sorting Vv
Source Information Vv Vv

Callees Visited List
Histograms of %s

U S
<

Table 5.1: Exact Routine Call-Graph: Comparison of Rel&exfilers

The gprof fallacy is an assumption made by a profiler that tfme tspent in a routine is
independent of the routine’s caller (i.e., execution timalways the same). However, this as-
sumption is often incorrect as the amount of time spent irutime can depend on which routine
calls it, and making such an assumption can lead to mislga@isults. gprof, unlike the other
profiling tools, suffers from this fallacy because it estiesathe amount of time spent in a routine
when called by a particular caller from the number of callgh routine by that caller, regard-

98 Chapter 5. Exact Call-Graph

less of the time actually spent in the routift@{M82]. Neither of the exact call-graph metrics
of uProfiler or Intel VTune suffer from the gprof fallacy, and leenprovide a user with more
accurate call-graph information.

Although theECG does not allow a user to combine data from multiple profilings as
gprof does, theeCG can collect profiling data for multiple events (e.g., timeddrardware
events) during one run. gprof and VTune only provide the tawent. Also, in th&eCG, a user
can view and compare the data from the multiple events onghesthisplay (complete call-graph
window). Multiple events allow a user to view the call-grapformation from several different
perspectives. Furthermore, combining data from multipbéiling runs is not always appropriate
in a concurrent (or sequential) system as each run of theq@mogan produce a very different
pattern of execution.

Unlike gprof, theECG and VTune have a graphical user interface that providesrawite
an interactive environment. VTune also includes an interat¢ree which is used to present the
complete call-graph, call cycles, etc. to a user. E@G does not include such a tree, but does
instead provide a list of call cycles and a complete calpgravindow. Also, by providing a
callees-visited list, th&CG allows a user to keep track of the path in the call-graph. Alth
the two forms of visualization are different, they can bealyuwaluable. A tree does provide
a user with a quick visual representation of the call-grdqgwever, it is often easier to analyze
a call-graph presented in table form (e.g., complete aalply window in Figuré.13. In table
form, the data is visible in its entirety and a user does netrte highlight or select individual
tree nodes or edges in order to view the associated data.

Although all three profilers provide instrumentation cohtpProfiler only provides control
at the module and task level. gprof and VTune allow a user &blkernor disable instrumentation
at the routine level, allowing for more precise control cf thata collection.

Overall, uProfiler's ECG metric provides many important features, and furthermore,
cludes features unavailable in the other profiling toolsn8deatures not currently provided in
pProfiler, such as routine-level instrumentation contraljiisg data to file, sorting and critical
path display, are possible enhancements for future work.

5.5 Performance 99

5.5 Performance

This section describes the performance of @G with respect to both time and space.

55.1 Time

To evaluate the running time of tHeCG, | constructed a worst-case test program (see Ap-
pendixB.1), profiled the program with thECG metric, and compared its running time to the
same test program run without profiling. The program was alaavith gprof and Intel VTune
for a cross-profiler comparison. Only the running time of k&t program itself was measured,
i.e., the time includes monitoring and data collection hatttrme spent during analysis or visu-
alization.

The test program produces a call-graph of depth 8 (routingmsdugh H). Starting at routine
A, each routine calls 6 subsequent routines. Therefordin@@ calls routines B1, B2, B3,
B4, B5 and B6, each routine B1 through B6 calls routines C1, ©2 C4, C5 and C6, etc.
This calling process continues until routines G1 throughe@b6called. Routines G1 through G6
simply call routine H1 30,000 times. The test program is astroase scenario because it does
no work, other than make routine calls. Also, the depth aeadith of the call-graph is large.

The test program was compiled with optimization (i.e., OB)l&able5.2 shows the results
of the performance testing in milliseconds. The percentagease is with respect to the no
profiling case.

No Profiler uProfiler gprof Intel VTune
Time Time % Increasg Time % Increase Time % Increase
9349.69 | 2023384.23 21541.19 | 83387.16| 791.87 | 1811403.12 19273.94

Table 5.2: Exact Routine Call-Graph: Time Performance Resu

As seen in the table, the percentage increase over the ndingafase for theeCG and
the other profilers is large. Such an increase is to be exgppéotehis worst-case program be-
cause every routine call in the program is instrumented (®filing data is collected at each

100 Chapter 5. Exact Call-Graph

routine call). Furthermore, in thECG, each routine exit, task block, task unblock, etc. is also
instrumented. The percentage increase for gprof is coraitiesmaller because gprof is not a
completely exact call-graph profiler (see Sectiod.]); therefore, much of the work is done at
a less frequent sampling interval. As well, gprof instrutsesmly routine enter and not routine
exit. The percentage increase for 88G compared to Intel VTune is slightly larger (difference
of 2267.25%).

5.5.2 Space

To examine the total space cost of a CCT, the space costs ofdivtdual data structures (see
Section5.2.1) are examined. The data structures include the generadltjeet, the node object,
the edge object and the data object. The general tree obpatains a pointer to the root
node of the tree, an array (of size 240) of edge object pa@mepresenting the edge path and an
integer storing the position of the edge (in the path) assediwith the current state of execution.
Therefore, in a standard 32 bit system with 4 byte pointedsdahbyte integers, each tree object
requires 968 bytes of space (i.e4,bytesx 240) + 8 bytes.

Each node object consists of a routine address (a pointpginger to its caller node in the
tree and a queue of pointers to its callee edge objects. Aeguerjuires 8 bytes of space; and
therefore, each node object requires 16 bytes of space. deigehobject consists of a pointer to
link the edge object in a node’s queue, a pointer to its calteke in the tree, a boolean specifying
whether or not the edge is a back-edge and a queue of pointéssdata objects. Therefore,
given a 1 byte boolean (with 3 bytes of padding to maintairppralignment), each edge object
requires 20 bytes of space. Each data object consists ofniéepdo link the data object in an
edge’s queue, a pointer to the task associated with the ddttha variables storing the number
of calls, number of continues, times and hardware-evenitsod he variables include 4 integers,
6 long integers and 4 arrays of long integers (with one arragydor each hardware counter).
Therefore, given 8 byte long integers, the space cost of éathobject is computed according
to the following formula

Total space pedataobject= 72bytest+ 4 x (number of hardware countess8 byteg (5.3)

5.6. Summary 101

The test program used to evaluate the running time oE{B& creates one tree (single task
program) with 102,644 node objects, 102,643 edge object4@R,643 data objects. Assuming
the test program is run on a processor with 4 hardware cajritex total space cost for the tree
IS

Total space cost 968bytest (102644x 16 byteg + (102643x 20 bytes
+(102643x 200byteg = 24,224, 732bytes

(5.4)

The space cost of 23.10 MB is reasonable given the depth @adithr of the call-graph is signif-
icantly large, i.e., large number of node, edge and datactshje the tree.

5.6 Summary

The advances made tdProfiler'sECG metric have achieved the goals stated at the beginning
of the chapter. Firstly, based on functionality and the cangon to related workyProfiler's
ECG metric is similar to state-of-the-art vendor exact cabygt metrics. Secondly, the run-time
of the ECG metric compared to the related work shows similar perforreaend reasonable
space costs. Thirdly, thECG metric, through the careful collection, separation, asialand
visualization of profiling data, scales to programs of longation and complex behaviour. Fi-
nally, | believe the collective achievement of the goalsiitssn a call-graph metric providing an
environment conducive to more thorough and simpler usdysisa

Chapter 6

Statistical Call-Graph

This chapter describes the advances madeRrofiler’s Statistical Routine Call-Grap®&CG)
metric.

The SCG generates a statistical profile oftgC+ program’s dynamic execution. As in the
ECG, the profile provides the dynamic calling relationship agooutines in the program and
gives a user some indication about the program’s control. fldlwe statistical nature of the
call-graph metric implies that profiling data is collectexnt & sample is taken) only at specific
intervals, called a sampling interval; therefore, 8@G has a lower overhead (in both time and
space) at the cost of less accurate information. A samphegtecan be time or a hardware
event (e.g., completed instructions), and a user can cleoosstom sampling interval for each
sampling event (e.g., sample every 10ms and every 10,000leted instructions). The overall
structure of the call-graph is the same as described f&E@18, but the data is collected in terms
of samples taken versus exact time or exact hardware-evpant<

The initial uProfiler SCG implementation allowed a user to display a call-graph farhea
task’s execution. An example display of the initial implertaion is presented in Figu@l
The information provided in the display includes a histogrshowing the distribution of sam-
ples across the routines executed by the task, the coméitgraph for the task (similar to
the complete call-graph window in tHeCG) and a list of call cycleslfes0Y. The complete
call-graph shows the number of samples taken while exegtiia routine itself (self or exclu-

103

104 Chapter 6. Statistical Call-Graph

Routine Performance : Task Philosopher (0Oxe83fc0)

Figure 6.1: Initial Implementation: Statistical Call-@taDisplay

6.1 Initial Implementation Issues 105

sive samples) and the number of samples taken while exgctitehndescendants of the routine
(descendant samples). This information is displayed foheautine (totalled over all calls to
the routine) as well as for each of its caller routines (tethbver all calls to the routine by the
caller) and callee routines (totalled over all calls to th#ee by the routine). Whereas the com-
plete call-graph displays information for all hardwarermgeselected (as sampling events), the
histogram only displays samples for one hardware evenentlyrselected using the “Options”
menu. When a user chooses time as a sampling event, a disglaslly identical to Figures.1

is displayed; however, time and hardware sampling evemisatde simultaneously selected for
one profiling run.

The overall goal of the advances discussed in this chaptein ¢he ECG, is to develop
uProfiler's SCG metric into a state-of-the-art metric with good performatitat scales to pro-
grams of long duration and complex behaviour, providing avirenment conducive to more
thorough yet simpler user analysis of a call-graph.

6.1 Initial Implementation Issues

This section describes several issues arising in thelimt@ementation of th&CG. | addressed
each issue in the advanced implementation ofS& and the solutions are discussed in Sec-
tion 6.2.3 The issues are very similar to those of BHEG.

The first issue involves th8CG existing as two identical yet mutually exclusive metrics.
In the initial implementation, one run of the profiler canleot and display data for the time
event, but another run of the profiler is required to collew display data for the hardware
events. Having to run the profiler multiple times is an unseaey complication for a user. By
not combining the information into one display, a user mustch between two windows and
cannot easily compare the data. Furthermore, given a camrduyorogram and the statistical
nature of the metric, data from different runs can often motdmpared in detail.

The second issue involves the lack of separation betweks sl coroutines. This issue is
identical to the one described for tB€G in Section5.1

The third issue involves the simplicity of the visualizatioThe display provided by the

106 Chapter 6. Statistical Call-Graph

initial implementation is again very simple in nature, pding almost all the information at
once with little opportunity for a user to interact with thallegraph data. One purpose of the
call-graph is to give a user some indication about the prograontrol flow; however, as in
the ECG, such information can be made clearer if a user can in somepn@yess through
and view the call-graph step-by-step. Also, the displapc®nsistent as some information (e.g.,
complete call-graph) is displayed for all events selectbilerother information (e.g., histogram)
is displayed for only one event.

The final issue involves the unnecessary differences bettheamplementations of tHeCG
andSCGin terms of the visualization of profiling data and the datadtures used to store profil-
ing data. Unnecessary differences lead to maintainalsityes foruProfiler. Also, differences
in visualization lead to increased learning time for a user.

6.2 Advanced Implementation

While addressing the issues from the initial implementatb the SCG, the advanced imple-
mentation has progressed in two major areas: the datawtesaised to store the profiling data
collected during monitoring and the visualization of thdexied data.

6.2.1 Data Collection

When a sample is taken at each sampling interval, the prgfilta collected is stored in specific
data structures.

In the initial implementation of th8CG, the data structure consists of a list of sample objects.
One list is maintained for each processor, where a process@sponds to a kernel thread. Each
sample object maintains all the information for one sample information collected and stored
in each sample object includes an array of routine addrépsegram counters) representing the
call-stack at the time of the sample, a bitmask indicatirg ekient triggering the sample and
a pointer to the task executing at the time of the sample. eSsatnple objects for all tasks
executing on a particular processor are stored in one k$tre any analysis can take place, the

6.2 Advanced Implementation 107

list entries must be separated by task.

The advanced implementation of tBEG replaces the list with a calling context tree (CCT)
[FFMCO03. The CCT stores all call-stacks (routine addresses reptieg the entries in the call-
stacks) taken during sampling. Here, the CCT is referred tansapproximate CCT because it
is only being approximated through sampli?gS0d. In other words, since a full call-stack is
stored at each sample (versus just the executing callexecadutine pair), the call-graph rep-
resented by the CCT is connected, but not necessarily coengdesampling may not cover all
routines executed by a task.

In the advanced implementation, a CCT is a collection of noljects rooted at a single
node, where each node represents one call-stack entryofe.routine address). Each node
maintains a pointer to its caller node in the tree, exceptabg and a list of callee nodes. The
profiling data collected during monitoring is stored within@ node objects. Figu2illustrates
the specific data structures composing the approximate TKE data objects are discussed in
Section6.2.1.1

Unlike the CCT for theECG, the approximate CCT does not include back-edges. Adding a
back-edge requires the same process as described fBCBgi.e., searching ancestor nodes),
but the process must be executed for each entry in the ealksts it is being added to the
CCT, considerably increasing the time required at each EarBgcause th8CGis a statistical
metric there is an expectation that the profiling overheadl&ively low; therefore, the increase
in overhead related to back-edges is a major disadvantaga édnsequence of not including
back-edges, the profiling data can be stored within the nbfets, and hence, no edge objects
are required (see Secti®®2.1p. 71 for a comparison to thECG where the CCT stores data at
the edges). Although not including back-edges is opposite¢ goal of making the SCG and
ECG data structures consistent, in the case of a statistietic the reduction in overhead is of
primary importance to reduce the probe effect. If deemeéssary, back-edges can be added to
the CCT in the future.

Another consequence of not including back-edges relatédsetsize of the CCT. No back-
edges means the depth of the CCT is bounded by the length ddrijest call-stack observed
during program execution which, given recursion, can bemgreater than the number of rou-

108 Chapter 6. Statistical Call-Graph
P ——
node
address
caller node
data data data
™ I d (task 1) (task 2)
callee nodes
\\:j
(g;\ P ——
S
node node
(callee 1) (callee 2)
address address
caller node caller node
data data data data
" d I d (task 1) (task 2)
callee nodes callee nodes
Y. Y.

data data || o ...
(task 1) (task 2)

Figure 6.2: Advanced Implementation: Statistical CCT Cattaictures

tines executed in the program. Lebe the depth of the CCT andbe the number of routines
executed in the program. For each node in the CCT, its numibeallee nodes is at most
because each callee represents a unique routine calledtionode. Thus, at each depth in the
tree, there can be at mashodes for each node at the previous depth in the tree. Siedecd
starts with one node at the root and has a depth tife maximum number of nodes at the lowest
depth of the tree is%~1. In other words, the breadth of the CCT is boundeaby?.

6.2.1.1 Creating and Updatinga CCT

At each sample, the call-stack at the time of the sample ested into the CCT. Insertion starts
at the root of the CCT and moves downward with the last nodeablgidded representing the

6.2 Advanced Implementation 109

address of the routine executing at the time of the sampleveer, as call-stacks are inserted
into the CCT, subsequent insertions may require the additidewer or no node objects due to
existing entries.

Inserting a call-stack into the CCT requires three steps:

1. The longest prefix of the call-stack already in the CCT gnfih The first address on
the call-stack (i.e., root entry of the call-stack) is comgobto the addresses represented
by the callee nodes of the root of the CCT. The root itself @spnts a null address to
allow for the possibility of call-stacks rooted at diffetextddresses. Once a node with an
identical address is found, the second address on thetaak+4s compared to the addresses
represented by the callee nodes of that node. This processges until, at a particular
node along the path, no address identical to the currenstadk address is found among
its callees or the end of the call-stack is reached (indigatie call-stack already exists in
the CCT). The node at which the process terminates repsegentongest prefix.

2. Ifthe longest prefix found in the first step is not the entail-stack, the remaining portion
of the call-stack (suffix) is inserted into the tree star@ghat terminating node. One new
node is created for each address in the suffix of the calkstad becomes a callee of the
preceding node (i.e., added to the preceding node’s lishltde nodes).

3. The last node found or added is updated to indicate thatl-steak terminating at the
address represented by this node was sampled (i.e., addrdss routine executing at
the time of the sample). The update involves incrementingumter associated with the
sampling event triggering the sample. An array of counsensaintained with one entry for
the time event and one entry for each of the hardware coumsexsto count the hardware
events.

A CCT is maintained for each execution entity having its ovatk; i.e., one for each task and
each coroutine. As for thECG, multiple tasks may execute a single coroutine (i.e., rpldti
tasks’ threads may execute on the coroutine’s stack), s€@ must keep profiling data sep-
arated by task. To handle this issue, each node object nraradist of profiling data objects,

110 Chapter 6. Statistical Call-Graph

data *

data data *

B
i
i

D
data *

Figure 6.3: Advanced Implementation: CCT Call-Stack Paths

rather than a single set of data (see Figu®. Each data object consists of the array of counters
described above. For each per-task CCT, the lists consat st one element because only
the task’s thread may execute on the task’s stack.

Every call-path (i.e., path from the root to any node) in thHeTCrepresents a call-stack;
however, every call-path does not represent a call-stacipleal during profiling. Each path
of nodes in the CCT, starting at the root and ending at a notle avie or more data objects,
represents a call-stack sampled at least once during popfiliherefore, an empty list at a node
means that a call-stack terminating at the address reqeesby this node was never sampled.
In the example CCT in Figur@.3 (a simplified representation of a CCT), each node marked with
an “*” has a list with one or more data objects. Therefore,ghths in the CCT that represent
sampled call-stacks are: AB,A—+B —+C—D,A—-E—~FandA— E— G.

6.2 Advanced Implementation 111

The CCT is a more space efficient data structure than thenlite initial implementation.
Whereas the list stores every call-stack in its entiretye(fmm each sample), the CCT stores the
common prefixes of the various call-stacks only once withnters indicating the number of
times and for which sampling events the call-stack is sadiplé&e simultaneous occurrence of
multiple sampling events is detected. As a consequenckei@CT, profiling data for duplicate
call-stacks is aggregated during monitoring, significargiducing the number of call-stacks to
be analyzed, and hence, the time needed for analysis. Vtisthanalysis is required for every
call-stack including duplicate call-stacks. However,cgafficiency and reduced analysis time
are achieved at the cost of increased monitoring time. The tequired to insert a call-stack
into the CCT (as previously described) is greater than the tiequired to add a call-stack to the
end of a list. Also, storing call-stacks in a list preserves temporal ordering of the samples.
The temporal information can be useful during analysis; e, this information was not used
in the initial implementation.

6.2.2 Visualization

The first step in running th8CG metric involves selecting the sampling events (i.e., time/ar
hardware events) for which samples are taken. The evesdttg®t window, similar to that of the
ECG, is shown in Figur&.4 with the “Time” and “Completed Instructions” events seéztt

By clicking the “Sampling Periods” button at the bottom, @usan choose a custom sam-
pling interval for each selected event. For example, in @@ a user has specified samples are
taken every 10 ms. and every 10,000 completed instructkorsthe time event, the interval can
range from a minimum value dependent on the operating syst#otk resolution to 1000 ms.,
and for the hardware events, the interval must be greaterzd®, although very small intervals
may cause problems because of the high number of internuptssfgnals specifying a sample
is to be taken). If a user enters an invalid interval the texils highlighted in red, signalling an
error.

Once program execution and monitoring are completed, Hikédaroutine-selection window
is displayed (see Figu&6). A user can select the call-graph for any task or coroutyndibking

112 Chapter 6. Statistical Call-Graph

-

] Event Selection (on plg2.math}) |E|W

[Tine Options

[7 Completed Instructions I” Count. User Events

I CPU Cycles | Count System Events
 Iranracnions O Ducle

I Instruction Cache Ref,

O] Zeugtrancilen Lol HiGs

I Instruction Cache Miss

I Data Cache Read Mizzes

I Data Cache Write Mizses

_| Taken Branch Mispred,

| Untaken Branch Mispred

L] Yatel Brasach Hiape o

0K | Sampling

Periods -enzel

Help

Figure 6.4: Advanced Implementation: Statistical EveeleStion Window

on atask or coroutine name in the left column. The tasks stediabove the dashed separator
line and the coroutines below it. The total number of samfaken, totalled over all sampling
events, is displayed for each task and coroutine. The pampiabis information is to give a user
some direction as to which call-graph to analyze first. Fangple, a task with a large number
of samples is a potential “hot-spot” of execution.

The call-graph window in Figuré.7 is displayed after selecting the task T1 on the
task/coroutine-selection window. All data displayed ie t@all-graph window is for a single
selected event (i.e., time or a hardware event). The calpgrin Figuret.7, is currently dis-
playing the completed-instructions data for task T1. Thiegraph window contains several
panes (from top to bottom): routine pane, callers panegeslpane, callees-visited pane, cycles
pane and coroutine-selection pane. The panes and the Iduaretionality of the window is

6.2 Advanced Implementation

Time (10 - 1000 ms)

Completed Instructions

1

10006

r|:| Sampling Period Selection (on plg2.math}) EIW

| w |

Eancell

Help |

rl:l Routine Performance, Task/Coroutine E“E“Er

Figure 6.5: Advanced Implementation: Sampling-InterSalection Window

Close
Task/Coroutine Mame (ID) Samples
uMain (OxffbefB40) 43 =
T1 (Oxcf3eal) 15
T2 (OxcfSedl) 11
uBootTask (0x1265730) 9q
uSystemTask (Oxldeled) 0
uPostorderTreeGen (OxcfI0700 248
uPostorderTreeGen (OxcfBb40) 11
uPreorderTreeGen [0xcfI108) 11
ulnorderTreeGen (OxcfIlal) 11 ¥

=

Samples taken 364 and lost 2

Figure 6.6: Advanced Implementation: Statistical TaskdDtine-Selection Window

113

114 Chapter 6. Statistical Call-Graph

nearly identical to that of thECG described in Sectiob.2.2 therefore, only the differences are
examined in this section.

The main difference is that the data displayed in the roytenge (as well as the callers and
callees panes) is presented in terms of samples taken \@acistime or exact hardware-event
counts. For each routine, the information includes (leftigit) the number of self samples
for the routine as well as a histogram showing that number peareentage of the total and a
percentage of the maximum (for any routine), and the numbeselb plus descendant samples
for the routine as well as a histogram showing that numbepas@entage of the total. All values
displayed for a specific routine are totalled over all call$hte routine. The routines are sorted
by the number of self samples, and as inBE@G, all individual values are scaled.

The callers pane lists, for each caller, the samples até&tibto the caller by the selected
routine (highlighted in the routine pane). Therefore, thmf the samples of the callers for
each individual field (self and descendant) is equal to the t@lue displayed for the selected
routine on the routine pane. The callees pane lists, for ealtbe, the samples attributed to the
selected routine by the callee. Therefore, the sum of the@kesnof the callees for all fields (self
and descendant) is equal to the total number of descendaipiessidisplayed for the selected
routine on the routine pane.

There is also one additional option called “Format” avd#éaibom the pull-down menu as-
sociated with the “Options” button (see Figued). This option allows a user to choose the
format to display the data in the call-graph window. The fatsnavailable are uninterpreted
samples and samples interpreted by the sampling peried/ait The uninterpreted samples
format, currently chosen for the call-graph window in Figér7, simply displays all the data
as the number of samples. If the samples interpreted by thelsa period/interval format
is chosen, the number of samples is multiplied by the sampfiterval, changing the units of
the data to the number of events executed (for hardware ®venthe time spent (for the time
event). Therefore, in Figui@7, the fields displaying 1 sample, for example, would insteae d
play 10,000 completed instructions (i.ex10,000) in the alternate format (and scaled to 10k).
If the call-graph window is displaying data for the CPU cycévent, then there is one additional
format, called CPU cycles time, available. When this forrmahosen the following calculation

-

6.2 Advanced Implementation

] Routine Call Graph: Task T1 (0xcfBeal) (on plg2.math)

Cloze Options

115

[=)Elx]

Completed Instructions (=ample period 10000 ewvents) - Samples: 1B

% of Max & of & of
Self Self Total Self+lesc, Total Routine
2t 3 b} uBazeloroutinet jcontextSw? Y
3 2 2 ubachContext: tverify
4: 1 1 Treeables::Treeable
h: 1 1 uHeapManager: textend
E: 0 9 Treeimynoder: tinzert
Fi0 15 s fred:imain
a0 1 mynode? :mynode
9: 0 3 operators
103 O 1 operator: Fi
- I -
J_
Callers of fred:imain (Completed Instructionsz - Samples)
Self lescendant. Foutine _
13 0 15 uMachContext: rinvokeTask j
Fi
= |~
-l_
Callees of fred:imain (Completed Instructionsz - Samples)
Self lescendant. Foutine
G 0 9 Treeimynoder: tinsert
g 0 1 mynode? tmynode
1dx 0 b uTreel ter<mynode’: roperator:
=)

Callees Visited

uMachContextt:invokeTazk
fred: tmain

=
J_
Call Cycles
Cycle 23 Treeimynoder::inzertMode - Treedmynoder::inzertMode ::l
=) [
J_

LPoztorderTre

Coroutine Selection I Mohe I

Figure 6.7: Advanced Implementation: Statistical Cala@r Window

116 Chapter 6. Statistical Call-Graph

Options
" Histogram
File Info
Farmat F s Uninterpreted Sanples
Events Interpreted Sanples (by sample period)

Complete Call Graph

Figure 6.8: Advanced Implementation: Statistical Optibenu
is executed to convert the number of samples into a correlspgtime value
time value= (number of samples sampling interva) / processor speed (6.1)

where theprocessor speet$ the number of cycles executed per-second. This caloulaglies
on the assumption that the CPU cycle rate is constant. Wiigdg true for many microproces-
sors, some do vary the cycle rate (e.g., to conserve powehe program is sampled during an
interval of variable clock speed, the time values calcdaie inaccurate.

Finally, there is also a complete call-graph window avadaimilar to that of theECG. A
user can show or hide data for individual events, changedhadt of the data for individual
events, etc. The routines displayed in the complete calblywindow are sorted by the value of
the “Weight” column. For each event, a routine’s number ¢ff sEmples as a percentage of the
total for the event can be computed. A routine’s weight isaterage percentage over the events
currently displayed in the window.

6.2.3 Addressing Initial Issues

In the advanced implementation, to address the existentieeahitial SCG as two mutually
exclusive metrics, one run of the profiler can now collecadat both the time and hardware
events, providing more comparable data. After profilingaosmpleted and a task or coroutine

6.3 Implementation Issues 117

is selected, a single call-graph window (see Figbrd is displayed and a user can, via the
pull-down menu associated with the “Events” option, chabsespecific event to display. Such

functionality decreases the number of windows a user neadahage and allows a user to easily
compare all the available data via the complete call-graipidowv.

The issue of the lack of separation between tasks and cossuith the initial implementa-
tion is addressed identically to that of tB€G in Section5.2.3 Again, the improvements all
stem from the careful separation of the task and coroutioglimg data during monitoring (see
Section6.2.1.), allowing for analysis on a per-task and per-coroutineshas

To address the simplicity of the visualization, the cabygn window was completely re-
designed in the same fashion as the call-graph window oEtb& (see Sectiorb.2.3. The
call-graph window is now interactive, conducive to thorbwanalysis and understanding, and
consistent.

The changes made to data collection and visualization iratlvanced implementations of
theECG andSCG have resulted in greater consistency between the metni¢selinitial imple-
mentations, the data structures used were very differdrdagha table versus a list), but now both
metrics use a CCT, although slightly different forms. Thasistency in visualization decreases
the amount of time a user needs to become familiar with theicsednd also allows a user to
employ similar approaches in the analysis of the call-gsaph

6.3 Implementation Issues

This section describes implementation issues | encouhtare solved during the writing of the
advanced implementation of tIs&CG.

6.3.1 Dynamic Memory Allocation

At the time a sample is taken, memory often needs to be a#ddat store the profiling data.
For example, memory is required to store the nodes of the Eloever, conditions related
to the behaviour and state of tiwC+ kernel and task can preclude the successful execution of

118 Chapter 6. Statistical Call-Graph

this action Les03. Since dynamic memory allocation is a potentially blogkimperation in a
concurrent system, a task requesting memory may need t@blkdd and another task may need
to be scheduled. When a sample is taken, and the collectaséatls to be stored, a task may be
executing in the kernel; however, tp€+ kernel cannot block. Also, when a sample is taken, a
task may be holding a spinlock (used by &+ kernel to protect critical data-structures) and in
this case a task cannot enter the kernel and block. Therafdveth of these situations blocking
is impossible, and hence, dynamic memory allocation is eanjgted.

If dynamic memory allocation is not permitted at the time saanple, then the sample is lost
(i.e., the profiling data collected for the sample is notetipr In order to substantially reduce
the number of lost samples, | created a node pool and a dataPewtask pools were chosen
because they exclude the need for mutual exclusion, anceh#mere is no corresponding con-
tention. Each task maintains an array of node objects (CQEsjoand an array of data objects
(per-task objects at each node) representing the poolsaifags (of size 20) are initialized with
dynamically allocated node and data objects during creaifahe task’s metric specific data
structures. At the time of a sample, the nodes in the pool sed if the addition of nodes to the
CCT isrequired, but dynamic memory allocation is not petexit If dynamic memory allocation
is permitted, then the nodes are simply dynamically alledatt the time of the sample and the
pool is replenished. The possibility of a lost sample skilsts because the number of nodes to
be added to the CCT may be greater than the number of nodestiyravailable in the pool.
The data pool is used in the same way.

The number of lost samples depends on the machine as wek asritbunt of time the pro-
gram spends in the run-time system. The total number of ksiptes is reported, in addition
to the total number of samples taken, at the bottom of thédasbutine-selection window (see
Figure6.6).

6.3.2 Handling Cycles

This issue involves the handling of cycles during analydis.the initial implementation, all
cycles are collapsed (i.e., reduced to a single node or pseudine) Les0g. Unfortunately,

6.3 Implementation Issues 119

when a cycle is collapsed, the execution behaviour of thieeepembers is lost; therefore, in the
advanced implementation, | chose not to collapse cycles.

During analysis, each CCT is analyzed using a depth-fietebe Each sampled call-stack
(i.e., each node path representing a sampled call-staek$Seetion6.2.1.9 in the CCT is tra-
versed from its lowest node in the tree (i.e., the node reptesy the routine executing at the
time of the sample) up to the root node. Walking up the patipkimequires following the caller
pointer maintained by each node object up to the root nodanBthis analysis, self and descen-
dant samples are assigned to the routines, represented bypdes along the path. In the usual
case (without a cycle), the lowest node in the tree is asdigreelf sample and every other node
is assigned a descendant sample. While assigning a sangleoie, a counter is incremented
corresponding to the node’s current caller (the node alionehe call-stack, except for the root)
and corresponding to the node’s current callee (the nodmabielin the call-stack, except for
the lowest node). The value of each counter equals the nuofilsamples assigned to a routine
that must be attributed to the counter’s associated catlealbee. These counters allow for a
routine’s assigned samples to be properly attributed tcallers and callees in the visualization
(i.e., to populate the callers and callees panes of Figuféor a routine). For example, while
examining the lowest node of the path in Fig6t8, a self sample is assigned to routine B and
one self sample is counted for routine D as a caller of rouBn&lo sample is counted for a
callee of routine B because routine B is executing at the tfhtee sample.

When the call-graph includes a cycle, the traversal maywmeo more than one node repre-
senting the same routine (e.g., routine B in Figeu®. In this case, some nodes are not assigned
descendant samples in order to prevent double countindp disinct routine, represented along
the path, is assigned only a single sample, and therefomegsit only one caller and one callee
counter is incremented. In the example, routine B is assigreelf sample (as described above),
and therefore, does not get a descendant sample when eaaxlfbr the second and third
times in the path. These conditions ensure that the totakdesint samples for a routine equals
the sum of the descendant samples for its callers as welleasutin of the self and descendant
samples for its callees. In tHeCG, similar adjustments were often impossible because of the
presence of back-edges in the CCT (see Se&idr).

120 Chapter 6. Statistical Call-Graph

S

B A S

A i

‘ Direction of B

B Analysis /\
D A D
B

Path (Call-Stack) from CCT Corresponding Call-Graph

Figure 6.9: Advanced Implementation: Example Call-Stack

6.4 Related Work

This section describes two current profiling tools thatude statistical call-graphs. HP Caliper
provides profiling metrics for C, C+, Java, Fortran and Agsly programs, including multi-
threaded programs. Sun Studio Performance Analyzer mdii|leC+, Fortran and Java pro-
grams, also supporting multithreaded programs.

6.4.1 HP Caliper

HP Caliper is a general-purpose performance analysishabhielps a user understand the exe-
cution performance of a prograrilP07. A graphical user interface and command line version
of Caliper are available. Profiling data is saved in datab&selater visualization. Two visual-
izations provide the statistical call-graph (dynamic)edaiftthe Sampled Call-Graph metric: the
Histogram Tab and the Call Graph Tab.

6.4 Related Work 121

Histogram Tab

Caliper uses a CPU cycles hardware event to trigger samaliagiser defined interval. The His-
togram Tab provides information on a process, module, thoeaoutine basis (see Figuel0).

The per-routine data displayed includes the total numbesetifsamples and self time for the
routine, the total number of calls to the routine and the thelé per-call. The data can be dis-
played as raw numbers or as percentages of a grand totdl téoab(e.g., with respect to the
current process, module or thread) or cumulative total. Jéreentages are shown as numbers
as well as histograms within the individual table fields arsktparate bar graph. The table can
be sorted on any column.

Call Graph Tab

The Call Graph Tab also lists each routine, and for the reuturrently selected in the list, it
updates a callers and callees pane (see F@LB. The information displayed for each routine
includes the number of self plus descendant samples footitene as a percentage of the total,
the number of self samples for the routine as a percentageedbtal, the percentage of self
samples relative to self plus descendant samples and thbamnuwh calls (and recursive calls)
to the routine. The percentages are again displayed as rabars and histograms. For each
caller of the selected routine, the total number of sampléseoroutine attributed to the caller is
displayed as well as the number of calls from the caller tartheine over the total calls to the
routine (as a percentage and fraction). For each calleeeddlected routine, the total number of
samples of the routine attributed from the callee is dispiegs well as the number of calls from
the routine to the callee over the total calls to the callsea(percentage and fraction). A Callees
Visited pane keeps track of the current path in the calldgrap

Sampling

At each sample, the Sampled Call-Graph metric stores a cgme doranch-trace-buffer (BTB).
The BTB is a circular buffer of size 8 implemented in hardwamehe Itanium 2 processor. Two
addresses are stored in the buffer for each routine call, aayaime at most 4 routine calls exist
in the buffer. Therefore, routine addresses can be ovedenrit the buffer before a sample is

122

Chapter 6. Statistical Call-Graph

= = EEa
Hle B E) Conmct) Praeci Clilea Window Hiiein |
M E|e | 0n & | B
P Projects 22 | = Cdaect[@s Sampled Call Graph Run (limerock, expnet, 5/17/07 11:55 AM) &2 | 5L
puy (1) ¥ | Process: a.out (19327) Thread: all Load Module: all Gl HE W IE| e S | =
b disSampled Call ¢}
b (= Sampled Call ¢ = Sl (e Pecart
b (= Sampled Call ¢ per Call of Grand Totals
b (=Sampled Call € 0-0 0 39% 78%
b (s Sampled Call € Functions
b E=Sampled Call € ||| a.0ut:QQ 1 0 o | |(N
b #=Sampled Call ¢| ||| a.out:R(Q B aa 2 0 0
b (IaSampled Call ¢| || |d-inux-ia64.50.2::... 6 0 0 0
b @Sampied Call ld-inux-iab4.s0.2:0... 4 0 0 0
= (laSampled Call ¢| ||| ld-inux-ia64.50.2::... 3 0 0 0
(1 Collection 5 ld-linux-ia64.s0.2::... 3 0 0 0
Run Summaz |d-linux-ia64.s0.2::... 2 0 0 0 =
T ﬁui:rmnmjﬂ Biatnanne] Erinchitins
Figure 6.10: HP Caliper Histogram Tab
=3 HPC = -OX
Hle B E) Conmct) Praeci Clilea Window Hiiein |
|| |08 8 | B
e Projects 22| = B|[collect| @ Sampled Call Graph Run (imerock expret, 5/17/07 1155 AM) R | <0 = | o [[aout 1032y »[¥ =1
By GF 7 Process: a.out (19327) Function: a.out:;:Q()
b (s Sampled Call ¢/ /|| [=iHistogram <Call Graph |
b (s Sampled Call ¢ | Callees Visited
b (ks Sampled Call ¢ > J a.out:Q0
b (%= Sampled Call € .
b @ Sampled Call ¢| ||| SNCHOR
b ({=Sampled Call ¢
b (sSampled Call ¢ f‘”_m”R_O _
b @ESampled calc dHinux-iab4.50.2:;__umoddi3 L il 0|~
b =Sampled Call € Callers of a.out::QQ) % Hits Under Caliel| Calls/Total Call | % of Call Total
= (= Sampled Call ¢
() Collection S |
Run Summa Callees of a.out:Q0 % Hits InfUnderCaJ| Calls/Total Call | % of Call Total
= e |
7] v

Figure 6.11: HP Caliper Call Graph Tab

6.4 Related Work 123

taken; such routines may go unreported in the call-graphCHlliber now has a new statistical
call-graph metric called the Sampled Call-Stack Profile.eAth sample, instead of storing a
copy of the BTB, a copy of the full call-stack is stored. Thmaeievent triggers sampling and
the visualization is similar to that of the Sampled Call-@rametric. The Sampled Call-Stack
Profile is currently only available for the HP-UX operatingtem, which | do not have access
to; therefore, the Sampled Call-Stack Profile is not disedigarther.

6.4.2 Sun Studio Performance Analyzer

Sun Studio Performance Analyzer helps a user identify pistigrerformance problems, and lo-
cate the part of the program where the problems oc8unp3j. A graphical user interface and
command line version of the Performance Analyzer are availaProfiling data is also saved
(as experiments) for later visualization. Two visualiaas provide the statistical call-graph (dy-
namic) data: the Functions Tab and the Callers-CalleesOata from multiple experiments can
be combined and viewed on one tab.

Functions Tab

The sampling events available in the Performance Analyrdude time and various hardware
events (e.g., CPU cycles, completed instructions, cacksasj etc.). A user can define a custom
sampling interval for each event. The Functions Tab lisésrtutines and displays the self and
total (self plus descendant) time or hardware-event cdontsach routine (see Figu6el?). The
information on the Functions Tab is displayed for each samgpmvent selected by a user. The
top routine represents the entire program, and hence,Isetveatotal time or hardware events
executed during the running of the program. The data can teeefdl by process, module or
thread, and individual routines can be hidden. Furtherpeteser can modify the presentation
of the tab. A user can sort on any column, display the datayrcalumn as raw numbers or per-
centages, and show or hide columns of data. The Callerg€3allab is updated for the routine
selected on the Functions Tab.

124 Chapter 6. Statistical Call-Graph

[Filesystems
@ =@ fufagidzing sunstudio 0

@-l o
Cot
CallGraph ST
CallGraphz2 B
Fortran " £, ¥ "
Tutarials g !
na{i\fecomedor il I
s : . _
test1er 5 i i -

test2er

PP ? ‘?

Eﬁ@ﬁﬁﬁl

T
[

Figure 6.12: Sun Studio Performance Analyzer Functions Tab

i zing sUnstuciod 0

)
o

Tt
CallGraph

CallGraph2 z i
Fartran E 0.100 1.500 mai - 2:0x00000778
Tutorials
na{i\fecomedor L {unknowm)

oo .
testco : 0.200 1.200 B{) =
testder T =

test2er

PPPPPPY
FESoLDnonon

Figure 6.13: Sun Studio Performance Analyzer Callerse@allTab

6.4 Related Work 125

Callers-Callees Tab

The Callers-Callees Tab displays the callers and callegbdcselected routine (see Figd3.
The selected routine, with its corresponding informatis@a)so displayed in between the Callers
and Callees panes. For each caller of the selected rouimtgtal time or hardware-event counts
for the routine attributed to the caller are displayed ad a®lthe self and total values for the
caller routine as a whole. For each callee of the selectettheuhe total time or hardware-event
counts for the routine attributed from the callee are digpiigas well as the self and total values
for the callee routine as a whole. Similar to the Functiorts &user can modify the presentation
of the Callers-Callees Tab.

Other Tabs
Sun Studio Performance Analyzer provides some furthemubiggbrmation in other tabs. The
Source Tab shows the file containing the source code of teetsel routine, annotated with pro-
filing data for each line. The Timeline tab shows a chart ofsé@pling points recorded during
monitoring as a function of time. Clicking a sampling poirgalays the data for that sample in
the Event Tab. The Event Tab displays information such asirtiethe sample was taken, the
duration of time since the previous sample, and a colouedodpresentation of the call-stack at
the time of the sample.

A user can also pause and resume data collection for thengipmogram (but not perform
real-time analysis) using control buttons or an applicapioogram interface (API).

6.4.3 Comparison

Table6.1summarizes and compares the relevant featurggobfiler'sSCG metric and the two
profiling tools discussed in the previous sections. Soméeifrmportant features are discussed
in detalil.

HP Caliper's Sampled Call-Graph metric, like gprof, doefesurom the gprof fallacy (see
Section5.4.3. Also, as a consequence of storing a copy of the BTB at eanplsathe resulting
call-graph may be disconnected. Compared to a full catlkstdhe BTB only provides the last

126 Chapter 6. Statistical Call-Graph

four call-stack entries (or caller-callee routine pait®nce, routines and routine calls existing
elsewhere in the call-stack are not recorded. Thereforgemneral HP Caliper's Sampled Call-
Graph metric provides less accurate call-graph inforrmathan the statistical call-graph metrics
of uProfiler and Sun Studio Performance Analyzer.

uProfiler HP Sun Studio
SCG Metric| Caliper Perf. Analyzer
Hardware Events Vv
Combine Profiling Runs
Instrumentation Control
No gprof Fallacy
Data Saved to File
Graphical User Interface
Interactive Caller-Callee Display
Multiple Formats
Cycles Information
Complete Call-Graph
Call-Graph Break Down
Sorting
Source Information
Callees Visited List
Histograms of %s

(side-by-side display

NN

U S
U R B

Table 6.1: Statistical Routine Call-Graph: Comparison elfd®ed Profilers

Both theSCGand Sun Studio Performance Analyzer have multiple samplnegts available
for a user (e.g., time and various hardware events). HP €abiply provides a single hardware
event of CPU cycles. The Performance Analyzer displaysaa#l ds hardware-event counts or as
time. Caliper displays all data as time by converting the @ptles. However, unlike the other
profiling tools, theSCG allows a user to view the call-graph data in multiple fornsatsh as the
number of samples taken, time or hardware-event countstipuformats allow users to view
the call-graph information from several different perdpes as well as choose which format
best suits their analysis.

Another feature only available in thHeCG is a complete call-graph. By not including a

6.5 Performance 127

complete call-graph, Caliper and Performance Analyzéitdgorovide a user with a means of
viewing and analyzing the entire call-graph at one time.

Overall, uProfiler's SCG metric provides many important features, and furthermaore,
cludes features unavailable in the other profiling toolsm&deatures not currently provided
in uProfiler, such as routine-level instrumentation contraVjisg data to a file and sorting, are
possible enhancements for future work.

6.5 Performance

This section describes the performance of 8@ with respect to both time and space.

6.5.1 Time

To evaluate the running time of teCG, | constructed a worst-case test program (see Ap-
pendixB.1), profiled the program with th8 CG metric, and compared its running time to the
same test program run without profiling. The program was alsowith HP Caliper and Sun
Studio Performance Analyzer for a cross-profiler comparigonly the running time of the test
program itself was measured, i.e., the time includes mangand data collection but not time
spent during analysis or visualization.

The test program is the same program used to evaluate themgime of theECG (see Sec-
tion 5.5) except Routines G1 through G6 call routine H1 2,100,00@sigversus 30,000 times).
The test program was compiled with optimization (i.e., OB)fland run multiple times with a
decreasing sampling interval (i.e., increasing numbenofes). Testing for th6CG and HP
Caliper was done on one machine (Itanium 1l 1499 Mhz) andnigg$or the Sun Studio Perfor-
mance Analyzer was done on a different machine (UltraSPARTD62 Mhz). Unfortunately,

a direct comparison betwegrProfiler and Sun Studio on the same UltraSPARC architecture
was impossible becaugeProfiler is only ported to the hardware-event interface fier $olaris-
8 operating system and Sun Studio only runs on Solaris-1@&ingquProfiler to Solaris-10 is
future work. Tables.2 shows the results of the performance testing in microsexohlde CPU-

128 Chapter 6. Statistical Call-Graph

uProfiler HP Caliper Sun Studio Analyzer
Sampling Time per % Time per % Time per %

Interval (ms)| Sample [1S) | Increase Sample [1s) | Increasel Sample [i1s) | Increase
10.00 28.80 0.29 9.80 0.10 83.777 0.92
7.80 24.32 0.31 9.76 0.13 50.84 0.96
5.60 19.93 0.36 8.24 0.15 45.56 1.13
1.10 19.72 1.77 2.73 0.25 28.08 2.52
0.78 19.45 2.50 2.31 0.30 27.97 3.57
0.56 19.97 3.59 2.13 0.38 27.81 4.95
0.33 19.47 5.84 2.40 0.72 27.70 8.17
0.22 18.96 8.53 2.52 1.13 27.86 12.29
0.11 19.05 17.14 2.26 2.03 28.01 25.60
0.06 18.87 33.99 2.02 3.64 27.92 53.13

Table 6.2: Statistical Routine Call-Graph: Time Perforoc@Results

cycles hardware event was used as the sampling event, asdrtipting intervals in the table are
computed by converting CPU cycles to millisecond time unltise percentage increase is with
respect to the no profiling case.

The per-sample time is calculated by dividing the diffeeebetween the profiled running
time and corresponding no-profiler running time by the nundfesamples taken. As the sam-
pling rate increases (i.e., the sampling interval deci®aslee running time of the program in-
creases for all profilers as seen in the table with the incrgg®rcentages. The time per-sample
quickly stabilizes as the sampling rate increases for allilers. Although the test program was
run for a sufficient duration for stabilization to occur agsall rates, when fewer samples are
taken the time per-sample values are higher. Further expets have revealed that this is the re-
sult of a lower data cache hit-rate, which slows the entiogpam. The numbers for HP Caliper
are significantly lower than those for t8&Gand Sun Studio Performance Analyzer because the
metric does less work at each sample and provides a muchdegsate call-graph. Compared
to the Sun Studio Performance Analyzer, the time per-saanpdepercentage increase numbers
for the SCG are somewhat lower. However, it must be noted again thaettves profilers run
on different machines, and hence the numbers may not belgioecnparable. The percentage

6.5 Performance 129

increases for th8CG, for this worst-case program, are reasonable given théneaerof creating
the storage data structures and, at each sample, collectthgtoring the necessary data.

6.5.2 Space

To examine the space cost of a CCT, the space costs of thedadivdata structures (see Sec-
tion 6.2.1) are examined. The data structures include the generabbjeet, the node object

and the data object. The general tree object maintains agodothe root node of the tree, an
array (of size 240) of routine addresses (pointers) repteggthe call-stack at the last sample,
an integer to store the size of the last call-stack, an imtieggtore the sampling event triggering
the last sample and a boolean specifying whether or not gteséanple was lost. Therefore,
in a standard 32 bit system with 4 byte pointers, 4 byte imegead a 1 byte boolean (with 3

bytes of padding to maintain proper alignment) each treeatlbgquires 976 bytes of space (i.e.,
(4 bytesx 240) + 16 bytes.

Each node object consists of a pointer to link the node olajeatnode’s queue, a routine
address (a pointer), a pointer to its caller node in the tiapjeue of pointers to its callee node
objects and a queue of pointers to its data objects. A quemgres 8 bytes of space; and
therefore, each node object requires 28 bytes of space. dadalobject consists of a pointer to
link the data object in a node’s queue, a pointer to the tasticieted with the data and an array
of integers (with one array entry for the time event and eai\ware counter). Therefore, the
space cost of each data object is computed according to tbevitog formula

Total space pedataobject= 12bytest (number of hardware countess4 byteg (6.2)

Each task maintains a node pool which consists of an arra@ pbihters to node objects and
a data pool which consists of an array of 20 pointers to dgcth For each array, two integers
are required to store the size of the array and the numberaifable objects. Therefore, the
space cost for the pools is computed according to the fatigiiermula

Total space for pools: 24 bytest (20x 28 byteg + (20 x size of a dataobjegt (6.3)

130 Chapter 6. Statistical Call-Graph

The test program used to evaluate the running time oBiB& creates one tree (single task
program) with 102,644 node objects and 102,644 data obj8dte humber of node and data
objects is for a worst case scenario where the tree inclutlgossible sampled call-stacks.
Assuming the test program is run on a processor with 4 haele@unters, the total space cost
for the tree is

Total space cost 976bytest (102644x 28 byteg + (102644x 28 bytes
+ 584+ (20x 28) = 5,750, 184bytes

(6.4)

The space cost of 5.48 MB is reasonable given that the demthberadth of the call-graph
is large, i.e., large number of node and data objects in #ee tFor theECG, the space cost is
approximately 4.2 times larger (see Sectab.2p. 101) as a result of the size of the data objects;
200 bytes for th&CG compared to 28 bytes for tH&CG.

6.6 Summary

The advances made tdProfiler'sSCG metric have achieved the goals stated at the beginning of
the chapter. Firstly, based on functionality and the corisparto related workgProfiler'sSCG
metric is similar to state-of-the-art vendor statisticall-graph metrics. Secondly, the run-time
of the SCG metric compared to the related work shows similar perforreaand space costs
are reasonable. Thirdly, theCG metric, through the careful collection, separation, asialy
and visualization of profiling data, scales to programs aflduration and complex behaviour.
Finally, | believe the collective achievement of the goalsuits in a call-graph metric providing
an environment conducive to more thorough and simpler usaysis.

Chapter 7
Conclusions and Future Work

This thesis focused on profiling user threads in concuradjéct-oriented programs running in
a shared-memory, uni/multi-processor environment. Rngfis accomplished usingProfiler, a
concurrent object-oriented profiler writtenurC+-, a concurrent dialect of the C+ programming
language.

The contributions of this thesis include major advanceséofbllowing pProfiler metrics:
the Execution State Chart as part of the Execution Stateiendie Exact Routine Call-Graph
metric and the Statistical Routine Call-Graph metric.

The Execution State metric charts each task’s states dexegution of the program. By
only drawing the visible area of the chart, the Executiorte&S&hart is now scalable to programs
of long duration and with large numbers of tasks and statédge chart provides high magni-
fication as well as fine-grained control through options saglhe “Magnification Step”. The
introduction of the “Elided” state ensures the chart is gfsvaccurate and logically consistent.
The dynamic nature of the X-axis provides a precise divisidhe axis, allowing for more exact
reading of the chart. Furthermore, the evaluation of time space costs reveals good perfor-
mance, and a cross-profiler comparison indicates the mefiinctionally state-of-the-art.

The Exact Routine Call-Graph metric and the Statistical tReuCall-Graph metric both
provide a call-graph profile of the program’s dynamic exesut The exact metric provides
higher accuracy at the cost of higher overhead, whereastdlfistisal metric provides lower

131

132 Chapter 7. Conclusions and Future Work

overhead at the cost of lower accuracy. For both metricspmagvances were made to the
data structures storing the profiling data and the visuiidizaf the data. A space efficient data
structure called the context calling tree now stores thélprg data. The visualization provides
an interactive experience, allowing a user to display datafparticular event, and for specific
coroutines (coroutine-selection pane on per-task calpigy or tasks (task-selection pane on per-
coroutine call-graph). Also, a user can progress througlt#fl-graph step-by-step by selecting
routines in the various panes, with that movement beindé@ the callees-visited pane. The
per-task and per-coroutine call-graphs provide separatialata and multiple perspectives for
analysis. Furthermore, cross-profiler comparisons resrealar run-time performance and state-
of-the-art functionality.

To ensureuProfiler is well-designed and includes common features aepleby profiler
users,uProfiler was compared to several vendor profilers to estaklibaseline for both fea-
tures and performance. Through this comparison, it wasddhbat uProfiler has some unique
functionally unavailable in other commonly used profilestgggesting some advancement in the
state-of-the-art.

Overall, for a user, the advances have resulted in more polvecalable, functional and
intuitive metrics with good performance, yet at the sameetim@sulted in simpler analysis. A
user can spend less time and effort learning the metricdewpending their analysis time more
effectively and efficiently.

7.1 Future Work

There are a number of possible directions for future work.®rofiler. Currently, performance
data cannot be saved to or loaded from a file. Saving and Igattita to/from a file gives
a user easy access to the performance data for later an@lgsigfter the visualizations of the
performance data have been terminated). Such functigmaparticularly important because the
nondeterministic nature of concurrent programs makegficdit to reproduce specific results by
simply re-running and re-profiling a program. AlgdRrofiler currently does not do any real-time
analysis; all data is analyzed and visualized post-morteeal-time analysis and visualization

7.1 Future Work 133

could be beneficial for some metrics, especially given aetygoes of long running programs, as
a user would not have to wait for the program to finish to stestving performance data.

For theEST metric, the addition of an aggregate view, such as the oneded by some of
the related execution state profiling tools, would provideser with a high-level overview of the
global execution-state of their program. Also, given adangimber of tasks displayed on the
ESTC, it would be advantageous to be able to sort the tasks byusdoteria.

A number of improvements can also be made toEK&> metric. Routine-level instrumen-
tation control would allow a user to selectively choose whigutines are profiled, and hence,
allow a user to precisely focus the analysis. Also, by onBtruntmenting certain routines in a
program, the probe effect can be reduced. Given a large nuohlpeutines displayed, it would
also be advantageous to sort the routines by various eritérisimple graphical tree represen-
tation of the call-graph could also be beneficial. By highligg the paths in the tree where the
program is consuming the most time, a user could quickly$dbe analysis.

In the SCG metric, in addition to instrumentation control, sortingleangraphical tree, im-
provements related to the sampling interval and hardwagetselection can be made. Currently,
a user is presented with general defaults for the sampliegvals; however, it would be valuable
to provide customized defaults based on certain critedh a8 characteristics of the program be-
ing profiled. Also, because a processor has only a limitedoauraf hardware counters and each
of those counters can count only certain hardware eventsgracan simultaneously select only
a limited number of hardware events. Multiplexing (or tinh@asng) can mitigate this restriction
by having different counters count different events dudifterent periods of time. Future work
should explore the multiplexing of hardware counters ferBCG andSCG metrics.

Finally, for both theECG and SCG metrics, another possible enhancement is object-based
profiling. For exampleuC+ monitor objects could form a call-graph, in addition e tper-
task and per-coroutine call-graphs. A per-monitor cadlpyr would include data related to the
execution of the particular monitor and its routines. ThigHer breakdown provides yet another
perspective for a user when analyzing a call-graph.

Appendix A

Object-Oriented Notation

The notation described in this appendix is based on the bbjegented design notation of Peter
Coad and Jill NicolaCN93. The original notation has been simplified and extendeddtude
objects specific tuC+. The design of theiProfiler kernel in Chapte8 and the design of the
data structures in Chaptesand6 are illustrated using this notation.

Abstract Class Symbol Class/Object Symbol
N\ ()
Class Name [Class Name J
J
_ J
or or
<
Class Name (Class Name 1
Attribute 1 Attribute 1
Attribute 2) Attribute 2
9 J

Figure A.1: Class and Object Notation

Figure A.1 shows the symbols used to illustrate classes and objectslass defines the
behaviour and properties of all objects instantiated friparid therefore, an object is an instance

135

136 Appendix A. Object-Oriented Notation

of aclass. The Abstract Class symbol represents an abslizast one that cannot be instantiated.
The Class/Object symbol represents a class that can betiastéal with one or more objects
instances. The inner rounded rectangle represents the dtdmition and the outer rounded
rectangle represents the instances of that class. Eaclesd# #fymbols contains the name of the
class and below the name are the class attributes. Onlipats relevant to the design being
described are included, if any at all.

Active Object Symbol

Class Name

Figure A.2: Active Object Notation

UCH has active objects, such as tasks, containing a threemhtrfol and an execution state.
The Active Object symbol shown in Figufe2 is not part of Coad and Nicola’s original notation,
but was introduced by Dorota ZaKk0Q.

There are three types of relations that can be indicateddegtwlasses and objects: inher-
itance, aggregation and association. The inheritancéioelés represented by a line with a
semicircle drawn between classes (see Figudg. The derived classes, connected to the bottom
of the semicircle, inherit the attributes and routines eflase class, connected to the top of the
semicircle. A derived class “is-a” base class with addai@pecialization. Because inheritance
occurs between classes, and not objects, the lines areaedn® the inner rectangle of the
Class/Object symbols. Derivation can occur from an absbase-class (abstract derivation) or
a concrete base-class (concrete derivation).

The aggregation relation is represented by a line with agteadrawn between objects (see
FigureA.4). The triangle points away from a member object and towarcisndaining object.
The containing object “has-a” member object as an attribBecause aggregation occurs be-
tween objects, and not classes, the lines are connected tutér rectangle of the Class/Object
symbols.

Object-Oriented Notation 137

Abstract Base Base

Class Name Class Name

Derived Derived Derived
Class Name Class Name Class Name
(a) Abstract Derivation (b) Concrete Derivation

Figure A.3: Inheritance Notation

The association relation is represented by a line drawn dmvobjects (see Figu.5).
Each object “uses” (or is “aware of”) the other object. Bessaassociation occurs between ob-
jects, and not classes, the lines are connected to the eatangle of the Class/Object symbols.

The aggregation and association relations display cdityirsymbols next to each object,
representing how many objects of one class are connectedviartany objects of the other
class. In Figuré.4, the containing object contains zero or more instancessofritdmber object,
and each member object is contained by only one containijegbhbn FigureA.5, an object of
class A is associated with one object of class B, and an obfedass B is associated with one
or more objects of class A.

138 Appendix A. Object-Oriented Notation

Containing
Class Name

0o,n

1

Member
Class Name

Figure A.4: Aggregation Notation

(o)

1

1,n

==

Figure A.5: Association Notation

Appendix B

Program Source Code

B.1 Call-Graph Test Program

include <uC++4.h>

void A();

void B1(); void B2(); void B3(); void B4(
void C1(); void C2(); void C3(); void C4(
void D1(); void D2(); void D3(); void D4
; void E2(); void E3(); void E4(
); void F4(
(); void G4

N—r

void B5(); void B6();
; void C5(); void C6();
); void D5(); void D6();
; void E5(); void E6();
; void F5(); void F6();
); void G5(); void G6();

7
7

N e

7
7

0

void F1(); void F2(); void F3(
0
0

N N

; void G2(); void G3

139

140 Appendix B. Program Source Code

B6();
Y/ A

void B1() {

void B6() {
C1();
C2();
30);
4();
()
()
6

Qe

C5();
Co();
}// B

void C1() {
D1();
D2();

141

B.1. Call-Graph Test Program

e L e e e U
TN TN TN TN N S
e N N S N N

AN TN TN N N S

Appendix B. Program Source Code

AN TN TN N N S
e N e N N N

AN TN TN N N
e N e N N N

AN TN TN N N S
e N e N N N

B.1. Call-Graph Test Program 143

void F6() {
G1();
2();
3();
()
()
()

O O o

4();
5();
6();
} // F6

[N

void G1() {
for (int i = 0; i < 30000; i++) { H1(); }
}// Gl

void G6() {
for (int i = 0; i < 30000; i++) { H1(); }

144

}// G6

void H1() {
}// HI

void uMain::main() {

AQ);
} // uMain::main

Appendix B. Program Source Code

Bibliography

[ABLO7]

[AGHOO0]

[App]

[AS00]

[BDS192]

[BHO5]

[Blo70]

G. Ammons, T. Ball, and J.R. Larus. Exploiting hardme performance counters
with flow and context sensitive profiling. lRroceedings of the SIGPLAN Confer-
ence on Programming Language Design and Implementatiages 85-96, 1997.
68, 69

K. Arnold, J. Gosling, and D. Holme3he Java Programming Languag&ddison-
Wesley, 2000.1

AppPerfect. AppPerfect Java Profiler Data Sheetttp://www.appperfect.com/-
products/devsuite/jp.html. Last accessed May 2087 .

M. Arnold and P.F. Sweeney. Approximating the caloontext tree via sampling.
Research report, IBM Research Division, 20007

P.A. Buhr, G. Ditchfield, R.A. Stroobosscher, B.M. Yoengand C.R. Zarnke.
pC++: Concurrency in the object-oriented language CSeftware - Practice and
Experience22(2):137-172, 19922, 20

P.A. Buhr and A.S. Harji. Concurrent urban legen@ancurrency and Computa-
tion: Practice and Experien¢dl7(9):1133-1172, 20052, 5

B.H. Bloom. Space/time trade-offs in hash codinghaallowable errorsCommu-
nications of the ACM13(7):422-426, 197072

145

146

[Bor03]

[BSO7]

[Cha91]

[CLOO]

[CNO3]

[Den97]

[ejt07]

[FFMCO3]

[GCC]

Bibliography

Borland. Borland Optimizeit 6 Thread Debugger 1.4 User’s Gyide03. http://-
info.borland.com/techpubs/optimizeit/optimizeit@lex1280x1024.html. Last ac-
cessed May 200752, 57

P.A. Buhr and R.A. StroobosscheeC++ Annotated Reference Manual, Version
5.4.1 David R. Cheriton School of Computer Science, University\aterloo,
2007. ftp://plg.uwaterloo.ca/pub/uSystem/uC++.pslgist accessed May 2007.
4,20,21

S. ChamberlainLIB BFD, the Binary File Descriptor Library Cygnus Support,
first edition, 1991.28

S. Choi and E.C. Lewis. A study of common pitfalls inmgle multi-threaded
programs. IrProceedings of the 31st SIGCSE Technical Symposium on Gempu
Science Educatigrpages 325-329. ACM Press, 200D.

P. Coad and J. NicolaObject-Oriented ProgrammingPrentice Hall PTR, 1993.
135

R.R. Denda. Profiling concurrent programs. Dipldoedt, Fakultat fur Mathematik
und Informatik, Universitat Mannheim, 1997. ftp://plguaterloo.ca/pub/theses/-
DendaThesis.ps.gz. Last accessed May 20y 17, 19, 22

ej-technologies. JProfiler Manual 2007. http://resources.ej-technologies.com/-
jprofiler/help/doc/help.pdf. Last accessed May 2062.

N. Froyd, R. Fowler, and J. Mellor-Crummey. Loweokiead call path profiling
of unmodified, optimized code. IRroceedings of the 19th Annual International
Conference on Supercomputjnpges 81-90, 200368, 107

GCC.The GNU Compiler Collectiarhttp://gcc.gnu.org. Last accessed May 2007.
24

Bibliography 147

[Gen81]

[GKM82]

[GR89]

[gra96]

[HF94]

[HHO4]

[HLMO5]

[HMO3]

[Hol94]

W.M. Gentleman. Message passing between seguert@esses: The reply primi-
tive and the administrator concef@oftware - Practice and ExperienceL(5):435—
466, 1981. 26

S. Graham, P. Kessler, and M. McKusick. gprof: A agithph execution profiler.
In Proceedings of the 1982 ACM SIGPLAN Symposium on Compilestéimtion
pages 120-126. ACM Press, 1982.90, 92, 98

N. Gehani and W.D. Roomé&he Concurrent C Programming Languag®ilicon
Press, 19892

University of Glasgow, Functional Programming oo GranSim User’s Guide
1996. http://www.dcs.gla.ac.uk/fp/software/gransisefily.htmI#SECA47. Last ac-
cessed May 200752

D. Heller and P.M. FergusorMotif Programming Manual for OSF/Motif Release
1.2 O'Reilly & Associates, Inc., second edition, 19923

C. Hughes and T. Hughe%he Joys of Concurrent Programmingddison-Wesley,
2004. 1

J.K. Hollingsworth, J.E. Lumpp, and B.P. Miller. €eniques for performance mea-
surement of parallel program$arallel Computers: Theory and Practicpages
225-240,1995.2, 3

J.K. Hollingsworth and B.P. Miller. Dynamic controlf performance monitoring
on large scale parallel systems.Rroceedings of the 7th International Conference
on Supercomputingages 185-194. ACM Press, 1993.

J.K. Hollingsworth. Finding Bottlenecks in Large Scale Parallel Programs
PhD thesis, Computer Sciences Department, University acivisin - Madison,

1994. ftp://ftp.cs.wisc.edu/paradyn/papers/Hollingsw94Dissertation.ps. Last
accessed May 200710

148

[HPO4]

[HPO6]

[HPO7]

[HWGO3]

[IntO7]

[JFLO8]

[KRS8]

[LesO5]

[LP85]

Bibliography

HP. HP Visual Threads Online He]J®004. http://h21007.www2.hp.com/dspp/-
files/unprotected/visualthreads/doc/help2004/htrpllivehtml. Last accessed May
2007. 52

HP. HPjmeter 2.1 User’s Guide2006. http://www.hp.com/productsl/unix/java/-
hpjmeter/infolibrary/useguide.pdf. Last accessed May 20052

HP. HP Caliper User Guide 2007. http://h21007.www2.hp.com/dspp/files/-
unprotected/caliper/caliper-user-guide.html. Laseased May 2007120

A. Hejlsberg, S. Wiltamuth, and P. GoldeThe C# Programming Language
Addison-Wesley, 20031

Intel. VTune Performance Environment User’s Gyide07. http://www.intel.com/-
software/products/documentation/vlin. Last accessey 2M®7. 94

M. Ji, E.W. Felten, and K. Li. Performance measunetséor multithreaded pro-
grams. InProceedings of the 1998 ACM SIGMETRICS Joint Internati@uaifer-
ence on Measurement and Modeling of Computer Systeages 161-170. ACM
Press, 19982

B.W. Kernighan and D. RitchieThe C Programming LanguagePrentice Hall,
1988. 1

J. Lessard. Profiling concurrent programs usingware counters. Master’s thesis,
School of Computer Science, University of Waterloo, 20@5./fplg.uwaterloo.ca/-
pub/theses/LessardThesis.ps.gz. Last accessed May 20031, 66, 79, 103 118

C.H. LeDoux and D.S. Parker. Saving traces for Adaudeling. InProceedings
of the 1985 Annual ACM SIGAda International Conference oa, Adges 97-108.
Cambridge University Press, 1988.

Bibliography 149

[MCC*95]

[MH89]

[MMB *+94]

[MR82]

[Net]

[PN93]

[She9g]

[Stro97]

[Sun04]

[Sun05]

B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollysworth, R.B. Irvin, K.L.
Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyalfel performance
measurement tool$EEE Computer28(11):37-46, 19958

C.E. McDowell and D.P. Helmbold. Debugging concunrerograms ACM Com-
puting Surveys21(4):593-622, 19898

A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, andddiB. Performance
Analysis of pC+: A portable data-parallel programmingsysfor scalable parallel
computers. IProceedings of the 8th International Parallel Processirygnposium
(IPPS) Cancun, Mexico, 19942

M.F. Morris and P.F. Roth.Computer Performance Evaluation: Tools and Tech-
niques for Effective Analysid/an Nostrand Reinhold, New York, 1982.6, 33

NetBeans. NetBeans IDE Profiler Online Documentation http://-
profiler.netbeans.org/docs/help/index.html. Last asm#sMay 2007. 52,
55

C.M. Pancake and R.H.B. Netzer. A bibliography ofgtiet debuggers. IdPro-
ceedings of the 1993 ACM/ONR Workshop on Parallel and Disteid Debugging
pages 169-186. ACM Press, 1993.

S. Shende. Profiling and tracing in Linux. Rroceedings of the Extreme Linux
Workshop #2Monterey, CA, 1999.10

B. StroustrupThe C++ Programming Languageiddison-Wesley, 19971, 20

Sun MicrosystemdJltraSPARC 11l Cu User’s Manual, Version 2.2.2004. ftp://-
www.sun.com/processors/manuals/USllv2.pdf. Last see¢ May 2007.31

Sun Microsystems. Sun Studio 11: Performance Analyze2005. http://-
docs.sun.com/app/docs/doc/819-3687. Last accessed 00ay 223

150

[Tuf83]

[Uni95]

[XMNO9]

[Zak00]

Bibliography

E.R. Tufte.The Visual Display of Quantitative Informatiosraphics Press, 1983.
16

United States Government. Ada Reference Manual 1995. http://-
www.adapower.com/rm95.php. Last accessed May 2007.

Z. Xu, B.P. Miller, and O. Naim. Dynamic instrumertiian of threaded applications.
In Proceedings of the 7th ACM SIGPLAN Symposium on Principld$aactice of
Parallel Program pages 49-59. ACM Press, 1999.

D. Zak. Analyzing multi-threaded program performoa with pyProfiler. Mas-
ter’s thesis, School of Computer Science, University of &lab, 2000. ftp://-
plg.uwaterloo.ca/pub/theses/ZakThesis.ps.gz. Lasisaed May 200710, 19, 34,
65, 136

	Introduction
	Performance of Concurrent Programs
	Locating Performance Problems

	Definitions
	Thesis Organization

	Profiling
	Instrumentation
	Direct and Indirect Instrumentation
	Instrumentation via Insertion
	Instrumentation via Hardware Counters

	Monitoring
	Exact Monitoring
	Statistical Monitoring
	Hardware Counters and Monitoring

	Analysis
	Real-Time Analysis
	Post-Mortem Analysis
	Combination

	Visualization

	Profiler
	Target Environment
	C++
	C++ Language Constructs
	Coroutine
	Task

	Design Objectives
	Profiling on a Per-Thread Basis
	Profiling at Different Levels of Detail
	Selective Profiling
	Support Different Forms of Visualization
	Extendibility
	Portability, Interoperability, and Maintainability

	Instrumentation Insertion
	C++ Kernel Instrumentation
	User Code Instrumentation

	Profiler Kernel
	Profiler Metrics
	Execution Monitors
	Analyzers and Visualizers
	Alternative Profiler Design

	Accessing Hardware Counters

	Execution State Chart
	Initial Implementation Issues
	Advanced Implementation
	Implementation Details
	Addressing Initial Issues

	Implementation Issues
	Scrollbar Scaling
	X-Axis Labelling

	Other Considerations
	Task Details
	Performance
	Time
	Space

	Related Work
	HP Visual Threads
	NetBeans Profiler
	Borland Optimizeit Thread Debugger
	Comparison

	Summary

	Exact Call-Graph
	Initial Implementation Issues
	Advanced Implementation
	Data Collection
	Creating and Updating a CCT
	Coroutines

	Visualization
	Addressing Initial Issues

	Implementation Issues
	Handling Coroutines
	Handling Cycles

	Related Work
	gprof
	Intel VTune
	Comparison

	Performance
	Time
	Space

	Summary

	Statistical Call-Graph
	Initial Implementation Issues
	Advanced Implementation
	Data Collection
	Creating and Updating a CCT

	Visualization
	Addressing Initial Issues

	Implementation Issues
	Dynamic Memory Allocation
	Handling Cycles

	Related Work
	HP Caliper
	Sun Studio Performance Analyzer
	Comparison

	Performance
	Time
	Space

	Summary

	Conclusions and Future Work
	Future Work

	Object-Oriented Notation
	Program Source Code
	Call-Graph Test Program

	Bibliography

