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Abstract

Programming languages often provide for various sorts of static type checking as a way of detecting

invalid programs. However, statically checked type systems often require unnecessarily speci�c

type information, which leads to frustratingly in
exible languages. Polymorphic type systems

restore 
exibility by allowing entities to take on more than one type.

This thesis discusses polymorphism in statically typed programming languages. It provides

precise de�nitions of the term \polymorphism" and for its varieties, \ad-hoc polymorphism", \uni-

versal polymorphism", \inclusion polymorphism", and \parametric polymorphism", and surveys

and compares many existing mechanisms for providing polymorphism in programming languages.

Finally, it introduces a new polymorphism mechanism, contextual polymorphism. Contextual

polymorphism is a variant of parametric polymorphism that is based on contexts, which are ab-

stractions of collections of declarations, and assertions, which link polymorphic routines to the

environments that call them. Contexts themselves provide a useful structuring mechanism for

software, because they represent the notions (and relationships between notions) that program-

mers have in mind when they design programs. Contextual polymorphism avoids many problems

associated with other polymorphism mechanisms, while preserving their bene�ts. The formal

de�nition of these language constructs is given in terms of an extension of F

!

, the !-order poly-

morphic typed lambda calculus. The practicality of the constructs is shown by a discussion of

Cforall, an extension of the programming language C that supports contextual polymorphism.
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Chapter 1

Introduction

Expressiveness and safety are two important criteria for judging programming languages. In-

formally, the expressiveness of a language measures the variety of useful programs that can be

written with it, and its safety measures the variety of meaningless programs that can not be

written with it. These attributes can con
ict with each other to some extent, and part of the art

of programming language design lies in balancing their demands.

Many languages provide strong type checking as a safety feature. Every data item has an

associated type, which de�nes the set of operations that can be applied to the data; if a program

attempts to apply an operation to data of the wrong type, the language's translator or run-time

system detects and reports the error (as opposed to silently allowing the program to attempt a

meaningless computation). Type checking can occur statically or dynamically. Static checking

occurs before program execution, based on information about the types of values deduced from

the text of the program. In some programming languages, the actual type of a value during

execution may di�er from its statically determined type. In those cases, a static type checker must

make conservative assumptions. Dynamic checking occurs during execution, and can use exact

type information. For some programs a programmer may be able to prove that a program will

encounter no type errors when it executes, even though that \theorem" is beyond the capabilities

of a static type checker for that programming language. In such cases, dynamic type checking

provides greater expressiveness. However, programmers rarely attempt proofs of dynamic type-

safety because of their di�cult nature, and programming errors are notoriously plentiful, so static

type checking provides greater safety.

This con
ict has led to a search for programming languages that are statically checkable but

1



CHAPTER 1. INTRODUCTION 2

less restrictive. Ideally, no useful, semantically well-de�ned computation would be statically type-

unsafe. Polymorphic languages aim for that goal by allowing programmers to de�ne computations

that are valid for operands of many di�erent types.

This thesis examines polymorphic languages in detail. The remainder of this chapter de�nes

some useful terms and gives some criteria for comparing languages. Chapter two reviews the

kinds of polymorphism, and surveys a number of existing polymorphism mechanisms. Chapter

three discusses a novel polymorphism mechanism, called contextual polymorphism. Chapter four

demonstrates contextual polymorphism in the context of Cforall, an extension of the C program-

ming language.

1.1 De�nitions and Notations

A set of values that can be represented by a computer and that is distinguishable from all other

such sets is a type. Di�erent languages use di�erent rules to distinguish between sets. One

programming language might allow a program to contain two types that implement the notion

of \complex number", each represented by a pair of 
oating-point numbers, but with one type

interpreted as rectangular coordinates and the other as polar coordinates. A di�erent language

might treat all such pairs as having the same type.

A type generator de�nes types, based on other types and values; for example, many languages

have an array type generator that de�nes array types based on an element type and bounding

values of an index type.

A notion is a concept, such as \cosine" or \dictionary" or \�le merge" or \six". An imple-

mentation is a programming-language text that de�nes computations that allow a computer to

provide the behaviour associated with a notion. An interface is a programming-language text

that provides information about the use and behaviour of implementations. Interfaces di�er from

types in that they may include extra information such as routine pre- and post-conditions; also,

some languages provide entities such as modules, which have interfaces but are not values and

hence do not have types.

An operation is a notion such as \add" or \sort", which de�nes the e�ect of a calculation.

An algorithm is a notion that describes a sequence of calculations that perform an operation. A

routine is an implementation of an algorithm; this includes pre-de�ned routines and operators

like \+" and abs.
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A group of programming-language statements that use an implementation is called a client of

the implementation.

Discussions that do not depend on a speci�c programming language will use the following

notation.

� e and e

i

denote arbitrary expressions.

� �, �

i

, � and �

i

denote arbitrary types.

� e : � means \the value of e has type �".

� The type �

1

!�

2

!� � � �

n

is the type of a routine taking an arguments of type �

1

; �

2

; : : : and

returning a value of type �

n

. The sine function has type real!real, and the real addition

function has type real!real!real.

� The expression �x

1

: �

1

��x

2

: �

2

� : : : � e, where e is an expression of type �

n

, is a routine

with type �

1

!�

2

!� � ��

n

and with parameters named x

1

; x

2

; : : :.

� Record types use the notation \h � � �� � � � i", so hf

1

: �

1

�f

2

: �

2

i is a record type with two

�elds named f

1

and f

2

, with types �

1

and �

2

, respectively.

� The expression \hf

1

:= e

1

; f

2

:= e

2

i" creates a record value.

� Inference rules have the form

p q : : : r

s

meaning that if p, q, : : : , and r can be proven, then s can be proven. For example, the

usual type-checking rule for routine calls is

e

1

: �

1

!�

2

e

2

: �

1

e

1

(e

2

) : �

2

or, in English, \if e

1

is a routine taking an argument of type �

1

and returning a value of

type �

2

, and if e

2

has type �

1

, then applying e

1

to e

2

results in a value of type �

2

". The rule

for record �eld extraction is

e : hf

1

: �

1

�f

2

: �

2

� : : :�f

n

: �

n

i

e:f

i

: �

i

The de�nitions of many other terms and notations appear at their �rst use. The index contains

an entry for every de�nition.



CHAPTER 1. INTRODUCTION 4

1.2 Desirable Properties

Many authors have listed many properties that they believed were characteristics of good pro-

gramming languages. Of those properties, the following seem particularly relevant to issues that

arise when comparing polymorphic programming languages.

E�ciency It should be possible to implement the features of a language e�ciently enough so

that programmers rarely feel the need to avoid them or work around them in the interests of

conserving computer resources.

\If anyone is to be allowed to introduce ine�ciency, it should be the user programmer,

not the language designer. The user programmer can take advantage of this freedom

to write better structured and clearer programs, and should not have to expend extra

e�ort to obscure the structure and write less clear programs just to regain the e�ciency

which has been so arrogantly pre-empted by the language designer." [28]

Strong Static Interface Checking

\The [programming language] should be designed to reduce as far as possible the

scope for coding error; or at least to guarantee that such errors can be detected by a

compiler, before the program even begins to run. Certain programming errors cannot

always be detected in this way, and must be cheaply detectable at run time; in no

case can they be allowed to give rise to machine or implementation dependent e�ects,

which are inexplicable in terms of the language itself." [28]

\Strong interface checking" extends the familiar concept of strong type checking: no operation

can be performed on data unless the behaviour of the operation is de�ned for that data. The

di�erence between strong type checking and strong interface checking is that checking is based on

the interfaces of data and operations. An interface might not provide complete type information:

for instance, many languages let programmers declare \incomplete" record types, which do not

specify the record's �elds, and records of these types can be operated on in certain restricted

ways. An interface might also describe properties that are not part of a language's type system,

such as a routine's preconditions.

Static checking (where possible) is preferable to dynamic checking because it guarantees that

certain classes of errors are not present in the program. If dynamic checking is used, that guarantee



CHAPTER 1. INTRODUCTION 5

can only be provided by exhaustive testing, which is at best slow and at worst impossible, or

by human veri�cation, which is expensive and error-prone. All other things being equal, the

more static checks a programming language provides for, the better it is, since a larger class of

errors is excluded. However, a language design must balance safety against e�ciency, because

some conceivable checks are infeasible or impossible: for instance, static veri�cation of routine

preconditions would in general require a full theorem prover.

Expressiveness A programming language is expressive if it can be used in a clear, uncontorted

way to implement a wide variety of notions. One language is more expressive than another if it

can express all of the notions that the other can, and other notions as well.

One aspect of expressiveness is 
exibility : the ability to express notions that are quite di�erent

from those foreseen by the language's designers. A second is support for polymorphic data. The

existence of polymorphic data follows from the principle of declaration correspondence, proposed

by Landin [31] and discussed extensively by Harland [26], who states it this way: \all options or

properties associated with declarations [should] be uniformly available." Hence, if programmers

can de�ne routines with parameters that can be bound to arguments with di�erent types, it should

be possible for them to de�ne data structures with �elds that can be bound to values of di�erent

types. For example, a program might contain a list of various geometric �gures, such as circles

and polygons; every element could have a di�erent type. The program could safely apply any

operation that is valid for any type of �gure to any element of the list.

A third aspect of the expressiveness of a programming language is its ability to describe

properties of notions. Notions have various properties, such as relationships between the types

of the operands of an operation; di�erent notions have di�erent properties. Consider the notion

min(a; b), which returns the smaller of two arguments. That notion has at least two important

properties.

� It is associated with the notion of \ordered values", which de�nes the types of its operands

and its returned value. An implementation of min should accept values from any of (and

only) those \ordered types" that implement \ordered values".

� The arguments of min do not just have ordered types; they must have the same type. If the

arguments belong to di�erent ordered types, there may not be an ordering de�ned between

them, even though each has its own de�ned ordering. Similarly, the value returned by min

is not just any ordered value; it has exactly the same type as the argument values. If a

program applies min to two integers, the result will be an integer. This information can be
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used to optimize the code that calls min. In general, this type matching can combine with

a language's type generators, so that the type of one argument must match the type of a

�eld of a record argument, and so on.

(As has been mentioned, the meaning of \the same type" depends upon the programming

language. In a language with an assignment operation that copies values into variables, \the

same type" may mean \the same representation". In another language, two values a and b

might have the same type if a single \<" routine exists such that a < b) :(b < a).)

These points illustrate two, more general forms of expressiveness: in the �rst case, the ability to

describe properties of a type; in the second, the ability to describe relationships between types.

Within a program, interfaces of implementations of notions must express these properties.

Perfectly precise interfaces state all of the notion's properties, and no others. A language that

lets programmers de�ne more precise interfaces is more expressive. An interface may fall short of

perfect precision in two ways. It may state extra properties: in these cases, the language lacks

generality (the ability to de�ne interfaces and implementations with the largest possible domain

of applicability possible), and some semantically well-de�ned computations are inexpressible. Al-

ternately, interfaces may be permissive: they may omit relevant properties, in which case uses of

the implementation can not be checked as carefully; in the best cases, potentially static checks

must be replaced by explicitly programmed dynamic checks. (In the worst cases, the checks never

occur. A \convention" comment that states what must or must not be done with some implemen-

tation is evidence of such a lack of precision; such unenforced conventions are dangerous, because

subtle errors often result when they are accidentally or intentionally violated.)

Separate Interfaces The de�nition of an implementation always de�nes an interface of that

implementation. Some programming languages provide no other way to de�ne interfaces; in

others, the implementation and its interface must reside in one textual unit. The designers of

Ada [57] took a di�erent approach. Ada source code is gathered into units called packages, which

are divided into two parts: the package speci�cation de�nes the interface of a package, and the

package body provides the implementation. Ichbiah [29] argued that this design has the following

bene�ts:

� Client programmers can be prevented from reading the implementation. This lets imple-

mentors keep the implementation con�dential, for instance by distributing only a compiled

form of the implementation along with the textual form of the interface.
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� Even if con�dentiality is not required, preventing client programmers from reading the

textual form of the implementation keeps them from inferring, and making use of, incidental

properties of the implementation that might be changed in the future. In other words, the

interface provides a contract that clients and implementations can be measured against.

� Implementations and interfaces can be separately compiled safely.

I would like to add three points to this list:

� Translators only need access to interfaces, instead of the entire implementation, when check-

ing client programs.

� It becomes easier to have several implementations corresponding to an interface, each suited

to di�erent clients.

� It becomes possible to have several interfaces to one implementation. One reason would be

to provide interfaces corresponding to di�erent levels of encapsulation, as in C++'s public

and protected class interfaces [55]. Another is to provide interfaces for di�erent sorts of

clients; for instance an implementation of a bu�er might provide \reader" and \writer"

interfaces.

Code Reuse As the programming community develops experience in a problem area, it dis-

covers new useful notions, and borrows old ones from other areas. These notions will be used in

many programs. For instance, the proportion of commercial data processing code that is made

up of such reusable notions is estimated to be 60% [32], or even 90% [4]. Hence, a programming

language should encourage production of reusable code, since reuse can greatly reduce the cost of

programming; Lanergan and Grasso believe that their approach to code and design reuse increase

productivity by 50% when new programs are written and greatly eases the task of program com-

prehension during maintenance, once programmers have become familiar with the reusable code

[32].

It is also important to provide support for di�erent forms of reuse. The implementation of a

notion can be used in many programs that need that notion, an implementation can be reused in

the construction of similar implementations, and an interface can be reused in the description of

similar interfaces.

The simplest way to reuse code is to copy and modify it. This is not a satisfactory form

of reuse, since maintaining many copies of similar code increases wasted e�ort and raises the

probability of errors and inconsistencies.
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Flexibility obviously encourages reuse. So does the separation of interfaces from implemen-

tations. A client that can not make use of hidden details is protected from changes in the im-

plementation of those details; this weakens the urge to use copy-and-modify as a defense against

such changes. The stronger the separation is, the more it will encourage reuse.

The ability to replace an interface or implementation with a more general version, without

a�ecting clients of the original, is called generalizability . Generalizability lets a programmer

replace a \minimum" routine de�ned for integer parameters with one de�ned for parameters with

any ordered type without requiring changes to any routine calls. This promotes reuse by reducing

the fear of \ripple e�ects" that can result from changes to reused code.

The ability to augment the domain of an interface or implementation without modifying it is

called incrementality [16]. Incrementality lets a programmer de�ne a \less than" routine for a type

that does not have one, perhaps so that instances can be passed to a \minimum" routine. This

promotes reuse by allowing programmers to adapt existing implementations to new domains.

Simple Base Language \The language should get as much mileage as possible out of its

de�nitional mechanism, never introducing something as a distinct language construct which can

better be explained in terms of the de�nitional mechanism" [27, p. 13]. Replacing programming-

language primitives with programmer-de�nable facilities leads to a smaller, simpler language, and

simplicity is generally held to be a virtue in programming languages (provided that simplicity is

not achieved at the expense of other desirable properties) [28, 65]. Furthermore, the existence of

a standard library of useful facilities written in a programming language provides evidence of the


exibility and expressive power of the language.

Shaw and Wulf [49] argue that programming languages pre-empt many decisions that could

be left open for programmers, and that this can result in contorted programs, can prevent op-

timization, and (because of lost e�ciency) can discourage the use of high-level languages. They

describe ways for programmers to retain control over concurrency, iteration, storage layout, and

even procedure invocation. For instance, programming languages often provide some way to dy-

namically manage objects in memory. In the C language, this capability is provided by standard

library routines such as malloc and free [2]. Programmers can replace these routines if they

need tracing or debugging features [7, 67], or garbage-collecting allocators [5], or allocators that

are tuned to their programs. In Pascal [30], storage management is provided by primitive new and

dispose routines. Since they are tied in to the compiler's run-time environment, replacing them

is usually di�cult or impossible. In this respect, C is more 
exible than Pascal. (Unfortunately,
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C's type system is such that the 
exibility is bought at the cost of a loss of type safety.) As

another example, Hil�nger shows that, with some extensions to Ada's abstraction mechanisms,

its exception handling and tasking facilities could have been provided by library packages [27].

1.3 Polymorphism

The type of a notion is often quite vague. Consider the notion of a \minimum" operation, which

returns the smallest of its arguments. This includes notions of operations that take numeric argu-

ments, or arguments from any ordered type. Similarly, the operation might take two arguments,

or an unbounded number of arguments, or a single argument that is a set of such values. Hence,

neither the types of the arguments nor the type of the notion \minimum" are rigidly de�ned.

Polymorphism allows languages to re
ect this vagueness. Strachey informally de�ned polymor-

phic routines and operations to be those that \have several forms depending on their arguments"

[54], and gave as an example the \+" operation, which in most programming languages works with

many combinations of numeric types. He also coined terms for two main sorts of polymorphism:

ad-hoc polymorphism and parametric polymorphism.

In ad-hoc polymorphism there is no single systematic way of determining the type

of the result from the type of the arguments. There may be several rules of limited

extent which reduce the number of cases, but these are themselves ad-hoc both in

scope and content. All the ordinary arithmetic operators and functions come into this

category. It seems, moreover, that the automatic insertion of transfer functions by the

compiling system is limited to this class.

Parametric polymorphism is more regular and may be illustrated by an example.

Suppose f is a function whose argument is of type � and whose result is of type �

(so that the type of f might be written � ) �), and that L is a list whose elements

are all of type � (so that the type of L is � list). We can imagine a function, say

Map, which applies f in turn to each member of L and makes a list of the results.

Thus Map[f,L] will produce a � list. We would like Map to work on all types of

list provided f was a suitable function, so that Map would have to be polymorphic.

However its polymorphism is of a particularly simple parametric type which could be

written

(� list; �) �) ) � list:

where � and � stand for any types.
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The polymorphism exhibited by \the ordinary arithmetic operators" might be what is now called

overloading , which allows several routines with distinct types but with the same name to exist

within a scope. For instance, Algol 68 [58] de�nes two not operations, one for boolean values

and one for bit strings. It also could cover what Strachey called dynamic type determination:

arguments contain a type tag, and polymorphic routines dynamically test the tag to decide what

to do.

Cardelli and Wegner introduced the term inclusion polymorphism for the sort of polymor-

phism found in \object oriented" languages, where \an object can be viewed as belonging to

many di�erent classes that need not be disjoint; that is, there may be inclusion of classes" [11].

They do not de�ne the term \class", which means di�erent things in di�erent object oriented

languages

1

. They group parametric and inclusion polymorphism together as forms of universal

polymorphism. Inclusion polymorphism is associated with polymorphic data structures, while

parametric polymorphism is associated with polymorphic routines.

These de�nitions are not precise, and the examples of ad-hoc polymorphism show that problems

arise when they are applied to concepts that developed later. Does not the type checking algorithm

of any compiler or run-time system constitute a \single systematic way" of determining the types of

expressions in its language? How \regular" must a rule be to exclude a polymorphism mechanism

from the ad-hoc category? Clearly it would be nice to have sharper de�nitions. One interpretation

emphasizes the behaviour of polymorphic routines:

ad-hoc polymorphism occurs when a function is de�ned over several di�erent types,

acting in a di�erent way for each type : : :parametric polymorphism occurs when a

function is de�ned over a range of types, acting in the same way for each type. [60]

Parametric polymorphism is obtained when a function works uniformly on a range of

types; these types normally exhibit some common structure. Ad-hoc polymorphism is

obtained when a function works, or appears to work, on several di�erent types (which

may not exhibit a common structure) and may behave in unrelated ways for each

type : : : In terms of implementation, a universally polymorphic function will execute

the same code for arguments of any admissible type, whereas an ad-hoc polymorphic

function may execute di�erent code for each type of argument. [11]

This view has two (related) di�culties. First, Strachey seems to be concerned only with types,

not with behaviour. Second, when the implementation of a polymorphic routine is hidden from

1

\Class" is not the same as \type", which they do de�ne.
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clients, \the way it acts" (and especially the code it executes!) is unobservable. It seems better

to de�ne polymorphism only in terms of types and interfaces; that is, the \common structure" of

arguments that is referred to above.

Note also that Strachey's terms apply to language mechanisms, not to the notions that are

implemented with them. A language can provide more than one polymorphism mechanism; a

notion might be implemented by an overloading of parametrically polymorphic and monomorphic

routines, and in that case it would not make sense to say that the notion (or its implementation)

exhibits parametric or ad-hoc polymorphism. The relevant property is the range of use of the

implementation: is it applicable to some �nite set of currently-de�ned types, or can it be used

with an in�nite set of types, including some that will be de�ned in the future? In the latter case,

the types can not be speci�ed directly; instead, the implementation of the notion must state some

common structure or interface that the types must possess.

The following de�nitions are reasonably precise, emphasize the importance of common struc-

ture and in�nite applicability, and refer to programming-language phenomena such as implemen-

tations and identi�ers, not to notions or to unobservable phenomena such as the behaviour of

implementations.

� polymorphism is the ability to implement a notion so that it applies to more than one type.

� ad-hoc polymorphism is present when an implementation has one or more interfaces that

are de�ned for a set of types which need not have any common structure.

This de�nition does not require any similarity in the types (or even the number of argu-

ments) of the interfaces associated with an identi�er, because it must cover the case of a

\minimum" notion that has interfaces de�ned for a single (set-valued) argument and for a

pair of arguments. Unfortunately, this also covers cases where the interfaces do not represent

the same notion. Many programming languages have a binary \-" operator, that represents

the notion of subtraction, and a unary \-" operator that represents the notion of arithmetic

negation.

� universal polymorphism is present when an implementation has a single interface that is

applicable to a potentially in�nite set of types de�ned by a common structure.

� A routine exhibits parametric polymorphism when the value of a parameter de�nes other

parts of the routine's interface. The parameterized interface de�nes a structure, and the

routine accepts any argument list (and only those lists) that possess that structure, but
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the lists can have a potentially in�nite number of di�erent types, corresponding to di�erent

parameter values.

� inclusion polymorphism is present when an identi�er can be bound to values from a poten-

tially in�nite set of types with a common structure.

The boundary between inclusion polymorphism and parametric polymorphism is thin. Con-

sider the � list parameter of Strachey's Map example. It can be bound to values of di�erent

types during di�erent calls, but it does not demonstrate inclusion polymorphism because its

value can only have one type: � list, for the current value of �. If inclusion polymorphism

was present, � list would only de�ne some, but not all, of the attributes of the value's

actual type, and the parameter could be bound to a list of any type that possessed �'s

attributes.

It is interesting to consider some boundary cases of these de�nitions. The language EL1 [63]

uses the type generator ONEOF(t1,t2) to de�ne the union of the types t1 and t2. A routine that

doubles an integer or a real number could be de�ned as follows.

DOUBLE1  EXPR( V:ONEOF(INT, REAL); ONEOF(INT, REAL))

BEGIN

V + V

END

Then DOUBLE1(3)would return a ONEOF(INT, REAL) value containing the integer 6, and DOUBLE1(3.5)

would return one containing the real number 7.0. By the \behavioural" de�nition, DOUBLE1 is

an example of parametric polymorphism because the routine body does not contain special cases

for the di�erent argument types. By the de�nitions used here, DOUBLE1 is an example of ad-hoc

polymorphism, because it does not use a required structure to de�ne the types of arguments it

accepts; it just lists a set of types. Both argument types have a \+" operation, but that does not

de�ne the set of legal argument types: DOUBLE1 will not accept a COMPLEX argument, even though

COMPLEX has a \+" operation.

EL1 also contains a GENERIC construct that allows routines to perform calculations based on

the dynamic types of arguments.

DOUBLE2  EXPR( V:ONEOF(INT, REAL); ONEOF(INT, REAL))

GENERIC(V)

[INT] ) FIXADD(V, V)
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[REAL] ) FLOATADD(V, V)

END

DOUBLE2 is an example of ad-hoc polymorphism by any de�nition, including Strachey's. However,

DOUBLE1 and DOUBLE2 have the same interface!



Chapter 2

Polymorphism Mechanisms

Chapter 1 discussed a number of desirable properties of programming languages, and de�ned

several broad classes of polymorphism. This chapter discusses speci�c mechanisms that have

been used to introduce polymorphism into languages, and evaluates the extent to which they

support for the desirable properties. It does not deal in great detail with deep semantic issues;

instead it concentrates on the pragmatic e�ects that these mechanisms have on programs that use

them.

2.1 Ad-Hoc Mechanisms

Recall the de�nition given in chapter 1: ad-hoc polymorphism is present when an implementation

has one or more interfaces that are de�ned for a set of types which need not have any common

structure. Ad-hoc polymorphism comes in three varieties: overloading, transfer functions, and

set-theoretic unions.

2.1.1 Overloading

\A construct in a typed programming language is said to be overloaded when there are several

di�erent implementations of the construct and the version appropriate to a particular case is

chosen using type information re
ecting its context within the program"[61]. For example, Algol

68 overloads the not operator: one version takes a boolean argument and returns a boolean value,

and the other takes and returns bit strings. Overloading is an ad-hoc mechanism because each

14



CHAPTER 2. POLYMORPHISM MECHANISMS 15

implementation has a di�erent interface, and the types mentioned in di�erent interfaces need not

have anything in common.

When an overloaded identi�er is used, one of its implementations must be selected. Statically

checked programming languages usually use static overload resolution: the language translator

attempts to choose one implementation of each overloaded identi�er in an expression, based on the

type rules of the language and the declarations of identi�ers in the context of the expression. If the

translator can not choose between two implementations, it judges the expression to be ambiguous

and rejects it. Consequently, a valid expression using overloading is equivalent to an expression

that uses unique identi�ers, so static resolution has no e�ect on generalizability, static checking,

strong checking, or separation of interfaces from implementations. It is also e�cient, since there

is no added run-time cost, and since the increased compilation cost should also be acceptable;

arguably, if a language de�nition makes overload resolution expensive, then overloading in that

language is too complex to be used e�ectively by programmers.

Overloading provides incrementality, since more overloadings can be added if they are needed.

It simpli�es the language, since notions like not can be presented as a library instead of a special

case of the language. It also increases expressiveness by reducing the severity of name clashes:

for instance, two libraries can declare the same identi�er, as long as the overloading rules allow

them to be distinguished. It provides type matching: consider two implementations of min, one

accepting a pair of integers and returning an integer, and the other accepting and returning real

numbers. The arguments and result must have the same type. Overloading also lets interfaces

de�ne their applicable notions, to a limited extent. However, it does little to increase generality;

a full description of the notion of \minimum" would require an in�nite number of overloadings.

Other drawbacks of overloading are due to its unconstrained nature. First, there is no guaran-

tee that all overloadings of an identi�er implement the same notion, and hence a small programmer

error can result in a call to a routine that does entirely the wrong thing. Second, many authors

feel that overloading can reduce program readability [23, 59]. This is partly because, in a case

where an identi�er represents more than one notion, it can be di�cult to determine which notion

the author of some code had in mind. But it is also due to a paradoxical e�ect: overloading

makes it easier to get a general understanding of code (\Aha! This code sums the elements of a

vector!"), but makes it harder to get a detailed understanding (\Aha! This code calls the addition

routine for quaternions!") These problems can be reduced if programmers have access to program

analysis tools, and if programmers use taste and discretion when overloading.
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2.1.2 Transfer Functions

One of Strachey's examples of ad-hoc polymorphism was the automatic insertion of a transfer

function. This is also known as implicit conversion and as coercion. Cardelli and Wegner de�ne

it as \a semantic operation that is needed to convert an argument to the type expected by a

function, in a situation that would otherwise result in a type error [11]". For instance, the sin

routine in Algol 68 takes a real argument. If it is called with an integer argument, the language

translator inserts a transfer function to convert the argument to a real value, and passes the result

to sin. In languages such as C++, programmers can de�ne new transfer functions to complement

programmer-de�ned types.

Note that, by this de�nition, a transfer function creates a new value of the desired type. In

certain cases, the bit patterns of the old and new values may be the same and no computation

is needed, but that is an optimization. (By some de�nitions, coercions merely change the type of

an existing value, without creating a new value or altering it in any way.) A call to a sin routine

that takes a real parameter will always return a real result, even if the argument is an integer.

If an integer result is needed, then another transfer function must be applied to the real result

to create it. In general, such inverse transfer functions may not exist, or successively applying

the transfer function and its inverse may result in the loss of information present in the original

value.

Transfer functions introduce polymorphism because routines like sin can be applied to many

di�erent types of arguments. The polymorphism is ad-hoc because the set of types is de�ned

by the set of available transfer functions, not by any properties of the types. It is di�erent

from other polymorphism mechanisms in that it adapts the arguments to suit the routines; other

polymorphism mechanisms produce routines that adapt to their arguments. Hence it has no e�ect

on interface precision or separation of interfaces from implementations, and does not provide a way

to simplify a language by replacing language constructs with programmer-de�nable abstractions.

An expression that uses transfer functions is equivalent to an expression where the transfer

functions are called explicitly, so implicit calls do not a�ect strong static checking and are no less

e�cient than explicit conversions. Programmer-de�ned transfer functions provide a weak form of

incrementality, since new transfer functions let old routines be applied to arguments of new types,

and may occasionally provide some generalizability, if a new, more general routine is accompanied

by a transfer function that converts old arguments to the new form. However, the potential loss of

type precision and of information makes transfer function polymorphism unsatisfactory in most

cases.
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2.1.3 Set-Theoretic Union Types

The EL1 ONEOF type used by the routines DOUBLE1 and DOUBLE2 on page 12 is an example of a

set-theoretic union type. More advanced versions of the idea have been proposed by Reynolds [45]

and Pierce [43]. These types are de�ned in terms of other member types; if a type is considered

to be a set of values, then the union type is the set of all values contained in those member

types. Consequently a value may belong to more than one type. Set-theoretic unions provide

polymorphism, because they allow identi�ers to be bound to values from the di�erent member

types. The polymorphism is ad-hoc because no common structure is needed among argument

types.

The GENERIC construct used by DOUBLE2 is an example of a conformity clause. A conformity

clause is similar to a case statement, but it examines the type of a data item instead of its

value. Each branch of the clause describes types that the data item might have, and statements

to execute if it has one of those types. If the branch speci�es a type constant, then strong static

checking is possible in the branch.

A language might provide dynamic overload resolution instead of conformity clauses. In such a

language, if an expression uses an overloaded routine identi�er, and an argument to the routine is a

union, then the member type that the value belongs to would be used to resolve the overloading.

In e�ect, an implicit conformity clause is used to call the appropriate implementation of the

overloaded routine. The overloaded routines in such languages are sometimes called multimethods.

Ghelli has described a strongly and statically checked type system for such a language [22].

Many languages provide unions that are not set-theoretic unions. In these languages a union

type is distinct from its member types, and special actions are needed to convert between values

of the union type and values of the member types. Consider the Algol 68 version of DOUBLE2.

mode ir = union(int, real);

proc double68 = (ir v) ir:

case v

in (int i): i + i,

(real r): r + r

esac;

double68(3);

double68(3.5)

Note that the case statement (the Algol 68 conformity clause) provides a name (i or r) to refer
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to the member-type value contained within the union parameter v. v can not be assigned to a

real variable or passed to a real parameter, even if it happens to contain a real value. This

shows that there is a distinction between a union value and the member value that it contains.

When a member value such as 3 is passed to double68, a uniting coercion implicitly converts it to

a union value. Hence, the polymorphism of double68 is actually transfer function polymorphism,

not union polymorphism.

Unions increase expressiveness in an interesting way: it becomes possible to handle data whose

exact type is not statically known. For instance, it may be impossible to statically decide whether

the argument of a call to DOUBLE1 is an INT or a REAL: the argument might be a ONEOF parameter

of a routine that calls DOUBLE1, or its value might depend on input to the program.

Unions provide a small amount of generalizability, since a union type can be expanded to

include more members: DOUBLE1 could be changed to have a parameter of type ONEOF(INT,

REAL, COMPLEX) without a�ecting its clients. They allow language simpli�cation; for instance,

polymorphic operators can be presented as library routines. They have no e�ect on incrementality

or on separation of interfaces and implementations. As an example of interface precision, consider

an EL1 \minimum" routine:

MIN  EXPR( A: ONEOF(INT, REAL); B: ONEOF(INT, REAL);

ONEOF(INT, REAL))

BEGIN : : : END

This example shows that unions prevent type matching: one argument of MIN could be an INT

while the other is REAL. Furthermore, if the arguments have the same type, the value returned by

MIN has that same type, but MIN's type does not express that fact. The example also shows that

unions do not provide full generality, since the arguments to a fully general MIN routine would

have to be unions of an in�nite number of ordered types.

Set-theoretic unions can have reasonable e�ciency. Typically, types are encoded as type tags.

Distinct types must have distinct tags. (This may be di�cult to arrange for some combinations

of computing environments and type systems.) Type tags have a space cost; in the worst case,

every value must contain a type tag, but a translator can often optimize away the tags of values

whose types are never in doubt. Since the exact size of a union value is unknown, enough space

must be allocated to hold the largest possible value, or values must be manipulated via pointers.
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The execution time cost of type tags is moderate; Steenkiste [53] studied an implementation for

the MIPS-X processor of Portable Standard Lisp, a dynamically-typed language. He concluded

that a collection of benchmark programs would spend 22% to 32% of their time processing tags.

2.2 Universal Mechanisms

The common feature of all ad-hoc polymorphism mechanisms is that the domains of implemen-

tations that use them are not de�ned by some common structure. In contrast, universal poly-

morphism uses a common structure to de�ne a single interface that is applicable to a potentially

in�nite set of types. It has two varieties: inclusion polymorphism lets programs bind identi�ers

to values from a set of types de�ned by a common structure, and parametric polymorphism lets

the interface of a routine depend on the value of one of its parameters, so that valid argument

lists must match a structure de�ned by the interface. Several polymorphism mechanisms exist for

each of these varieties of polymorphism.

2.2.1 Inclusion Polymorphism

Some programming languages de�ne a subtype relationship between types. If a type �

1

is a subtype

of another type �

2

(written �

1

� �

2

) then values of type �

1

can be used in certain situations that

require a value of type �

2

. The situations vary among languages, but typically they use the

following type-checking rule:
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Combining this with the function-checking rule on page 3 gives
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This is a universal polymorphism mechanism, because routines accept arguments with any of a

set of types that share a common structure de�ned by the language's subtype rules. It is inclusion

polymorphism because the parameters of the routine can be bound to arguments with di�erent

subtypes of the parameter type.

Subtyping can allow simpli�cation of the language kernel. Recall that the Algol 68 not operator

performs logical negation on boolean and bit string values. In a language with subtypes, this

could be expressed as a single routine that takes an argument of type \logical", which would be

a supertype of the boolean and bit string types.
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If every operation that is valid for values of a type is also valid for all subtypes of the type,

then subtyping preserves strong static checking. Subtyping has no e�ect on separation of imple-

mentations and interfaces. However, it does reduce the precision of interfaces, since it leaves no

static way to refer to the actual type of an argument to a polymorphic routine; only the name of

the supertype is known. Hence type matching vanishes: there is no way to declare statically that

two values have exactly the same type. Such information, if present at all, is given in comments,

and enforced at run-time, when it is too late to correct errors.

Subtypes can also provide polymorphic data structures, for instance if the language allows

record �elds declared to have type � to be bound to values of subtypes of � .

In�nite Unions

The simplest form of subtyping de�nes a type that is a supertype of every other data type, or in

other words, an in�nite set-theoretic union of all other types. (It is possible to have in�nite versions

of Algol 68's style of union, but they are not discussed in this section.) For instance, EL1 has

an ANY type, which can be combined with the type generators of the language to produce records

with �elds that can hold any value, parameters that accept any argument, and so on. Routines

that have parameters whose types involve in�nite unions exhibit inclusion polymorphism; the

\required structure" of the argument types is the set of properties common to all data types, such

as the ability to be assigned or instantiated. If an in�nite union is used in a type generator, then

the generator de�nes a more precise structure: the EL1 routine

NAME_OF  EXPR( S:STRUCT( NAME: STRING, VAL: ANY );

STRING)

BEGIN

S.NAME

END

will accept as an argument any record that has two �elds, the �rst of which is a string called

NAME, and the second of which is anything called VAL.

The implementation of in�nite unions can be much like the implementation of �nite unions,

except that when allocating space for an in�nite union variable, a compiler can not simply allocate

enough space to hold the largest member type. Consequently, indirection must be used in more

cases.
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Strong interface checking and static checking can be applied in the cases of operations that can

be performed on values of type ANY, and of operations that can be performed on every data type:

a typical example is computing a reference to a value. These operations are surprisingly useful.

For example, routines that implement operations on \collection" types such as lists often use

only those operations, since the routines reorganize values but do not operate on them directly.

Hence these languages allow safe, statically checkable implementations of collection types that

are independent of the collection's element types. This is an increase in both expressiveness and


exibility, and therefore in reusability.

ADD  EXPR( C:COLLECTION, V: ANY) : : :

Unfortunately, due to the absence of type matching, static type information about data that

passes through polymorphic routines or data structures vanishes. (A program can add an INT to

a collection, but when some operation retrieves the integer from the collection, its static type will

be ANY, not INT.)

In�nite unions allow smaller language kernels, since operations like the traditional cons, car,

and cdr operations on lists can be treated as library routines. However, routines can only replace

language primitives that take any value as an argument: a not operation should not be de�ned

this way, because \logical negation" is not a sensible operation for most types.

When a data item has static type ANY, its dynamic type of the data must be recovered before

any type-speci�c operation can be performed on it. This could be done with a conformity clause,

but the usefulness of this has limits because only a �nite number of tests can be performed.

Checking could also involve dynamic overload resolution, with its run-time costs and dynamic

checking. Another alternative is to pass the operations along with the data, as routine parameters

or as routine �elds of the value. This requires some care on the programmer's part, and still

requires dynamic type checking in general.

In�nite unions provide a form of generality, but not a useful form, because they do not allow

programmers to specify many sorts of restrictions on the values that a union may take on. For

instance, a truly polymorphic version of DOUBLE1 should accept any type that has a \+" operation,

but the ANY type does not provide a way to specify that only such values are acceptable. Similarly,

it provides only weak generalizability (a routine with an INT parameter can be replaced by one

with an ANY parameter) and incrementality (any new type is a subtype of ANY, and hence extends

the domain of routines with ANY parameters).
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Record Subtyping

Cardelli [1, 9] described subtype rules for routine and record types. A subtype of a record type

can add new �elds, and can change the type of an existing �eld to a subtype of the original �eld

type:
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In e�ect, this rule provides a looser version of structural equivalence for record types.

The rule for routines also allows changes in types: a subtype of a routine type can replace the

result type by a subtype, and can replace the argument type by a supertype.
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For instance, if a program uses two types Integer and Fraction, with Integer � Fraction,

then

Fraction ! Integer � Integer ! Fraction

and a routine with the �rst type can be passed as an argument to a parameter with the second

type. This pattern of replacement is known as contravariance, since the result and argument

types change in opposite ways. It follows naturally from the 
ow of data through routines: in

through the parameters and out through the result, with subtype-to-supertype transformations

at each point.

Unfortunately, many operations are naturally covariant. Consider the natural types of the

addition operations associated with Fraction and Integer:

+: Integer ! Integer ! Integer

+: Fraction ! Fraction ! Fraction

Since these operation's types exhibit covariance, neither's type is a supertype of the other's,

whether Fraction and Integer have some subtype relationship or not. Furthermore, there can

be no type T such T!T!T is a supertype of both. This makes it impossible to write a \double"

routine that would accept either \+" operation as an argument. This problem can not be solved

by using a covariant subtype rule, because covariant rules require dynamic type checking [13].

The best that can be done would give the two routines the types

+: Addable ! Addable ! Integer

+: Addable ! Addable ! Fraction
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where Addable is some supertype of Integer and Fraction; then both types would be subtypes of

Addable!Addable!T2, if T2 is a subtype of both Integer and Fraction. Clearly this approach

would lose type precision. It also would require two problematic types, Addable and T2, which

must be a supertype and a subtype, respectively, of all types with a \+" operation.

Record subtype languages have a second distinguishing feature: routines stored in �elds in

records can refer directly to the record itself, typically through the special identi�er self. In

e�ect, the record becomes an extra parameter of the routines that it contains. Programs that

use record subtyping would not implement \+" as an ordinary routine. Instead, programmers

implement types such as Fraction as records that bundle together a value and the routines that

operate on it. Built-in types such as Integer are treated as if they were records containing

routines. Polymorphic routines use record types as parameter types, and accept any argument

whose type is a subtype of the parameter type.

type Addable = hplus: Addable ! Addablei

-- assume Integer � Addable

type Fraction = hplus: Addable ! Fraction �

numerator: Integer � denominator: Integeri

-- Fraction � Addable.

double: Addable ! Addable = : : :

-- Double the fraction \one half"

double hnumerator := 1, denominator := 2,

plus:=�p:Addable �(: : : self.i : : :) i

This does not prevent the loss of static type information mentioned above: the plus routine for

Fractions still takes an Addable argument, not a Fraction, and the result of the call to Double

has static type Addable, not Fraction. However, this is an improvement over the situation

presented by in�nite union polymorphism, since routine and record types refer to Addable, not

to an overly-general type like ANY. Furthermore, the subtype rules let subtypes change the types

of routine �elds, as long as covariance is observed: the result type of the plus �eld changes

from Addable in the declaration of Addable to the more precise Fraction in the declaration of

Fraction. Consequently, programs have less need for conformity clauses or dynamic overload

resolution.

Subtyping provides generality: a routine will accept any argument that supports the opera-

tions de�ned by the routine's parameter's �elds. However, the contravariant subtyping rule for
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routines has the e�ect of limiting generality, as shown in [8] (where the problem arises in \negative

recursion" in routine �elds of recursive record types). Consider this attempt to de�ne a polymor-

phic min routine, which uses the notion of \ordered" values: values that provide a lt operation

that returns true if the value is less than or equal to lt's argument.

type Ordered = hlt: Ordered ! Booleani

min: Ordered ! Ordered ! Ordered

= �p:Ordered ��q:Ordered �if p.lt(q) then p else q

(Ordered serves a useful purpose, even though instances of it contain no data and its lt routine

�eld has not been implemented; it de�nes the interface of ordered values.) A programmer might

de�ne a String type, containing character strings, with a lt operation that compares strings in

lexicographical order:

type String = h: : : lt: String ! Boolean : : : i

However, min does not accept String arguments, even though String de�nes lt, because String

is not a subtype of Ordered. This can be demonstrated by contradiction: assume

String�Ordered.

Then the record subtyping rule and the types of their lt �elds gives

String!Boolean � Ordered!Boolean

and applying the routine subtype rule to the parameter types gives

Ordered � String

Combining this with the original assumption gives

Ordered = String

Which is clearly false. String would be a subtype of Ordered if it were de�ned as

type String = h: : : lt: Ordered ! Boolean : : : i.
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In this case, String � Ordered, but lt's parameter type is too general, and gives lt no �elds

with which to do the comparison! In cases like these, subtyping languages can not de�ne their

parameter types with full generality.

Note that routine types and record types can not have a subtype relationship; hence a poly-

morphic routine can not have a parameter that can accept both routine arguments and data

arguments. There are some notions for which this makes sense (see [16] for an example), but

these notions can not be implemented in their full generality.

The loss of type matching has one potentially bene�cial consequence: it allows \mixed mode"

operations. Since Integer and Fraction are both subtypes of Addable, the type-checking rules

let programmers add integers to fractions. This is not an unmixed blessing.

� The implementation of plus for fractions must do something sensible for any argument type

that is a subtype of Addable, even for types created after Fraction.

� Assume that the programming language provides a type that implements the real num-

bers and is a subtype of Addable. The result of adding a fraction to a real number

is a real number; in general, for any T�Addable, the result of adding a T to a fraction

might be a T, so Fraction's plus must have type Addable!Addable, not the more precise

Addable!Fraction

� Two types can have a common supertype, and yet mixed mode computations between them

may not make sense.

The last point requires an extended example. As an example, consider a program that also uses a

Name type that is a subtype of Ordered, but that has a lt routine that compares names in \phone

book" order instead of lexicographical order.

type Name = h: : : lt: Ordered ! Boolean : : : i

s: String = : : :

n: Name = : : :

min s n

min n s

Both calls are legal: Name and String are both subtypes of Ordered, so s and n are legal arguments

given the subtype-based type-checking rule. However, the calls could have di�erent results: \St.

John" comes before \Smith" in phone books. Since subtyping weakens the property of type
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matching, the programmer has no way to specify that the two types are actually incomparable.

This disagreement is arguably minor where min is concerned, but a sorting routine given a mixture

of Strings and Names might fail to terminate if this sort of ambiguity caused it to repeatedly swap

a Name value and a String value with each other.

A type de�nes operations that every subtype must provide, and hence represents a notion that

contains all of those subtypes. The name of the �eld provides a statically checkable (but weak)

indication of the semantics of the operation: a routine �eld named \plus" probably implements

addition. Record values implement the notion, and the record's routine �elds implement imple-

ment operations associated with that notion. For example, a program that performs geometric

calculations might use several types representing regions of the Cartesian plane, each of which

provides a contains operation that decides if the region contains a given point. The notion of

\region" can be represented as a type.

type Point = hx:Real � y:Reali

type Region = hcontains: Point ! Booleani

in_both: Point ! Region ! Region ! Boolean

= �p:Point ��r1:Region ��r2:Region �

(r1.contains p) ^ (r2.contains p)

Rectangles and circles are regions.

type Rect = htop_left:Point � bottom_right:Point

� contains: Point!Booleani

type Circle = horigin:Point � radius: Real

� contains: Point!Booleani

a_rect: Rect = : : :

a_circ: Circle = : : :

a_pt: Point = : : :

b: Boolean = in_both a_pt a_rect a_circ

Subtyping also provides polymorphic data, since identi�ers can be bound to instances of sub-

types of their declared types.

r: Region = if b then a_rect else a_circ

: : : r.contains a_pt : : :
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The call to r.contains is statically type-safe, because all regions have a contains �eld, but the

value of r determines whether the circle's or rectangle's routine gets called.

Subtyping provides generalizability: a routine can be replaced by a routine whose argument

types are supertypes of (and hence more general than) the original's types. It increases incre-

mentality: any new type extends the domain of routines that accept its supertypes as arguments.

Incremental extension does not work so well with existing types. Consider a record type T which

needs to be extended with an operation o to become a subtype of some other type. Writing a

routine called o with a T argument is not su�cient, because that does not change any subtype

relationships. Adding a new o routine �eld requires control of the de�nition of T. De�ning a new

type T2 containing a T instance and an o routine �eld requires T-to-T2 conversions wherever the

program uses an existing T value.

Statically Typed Object-Oriented Languages

Statically typed object-oriented languages make use of various forms of record subtyping. SIM-

ULA [18, 52], C++ [19], Ei�el [34] and Modula-3 [10] are typical of these languages. Such

languages generally refer to a record type as a class, a routine �eld as a message, and an imple-

mentation of a routine �eld as a method . Calling a routine �eld of a record is often called message

passing . Typically, classes do not just de�ne record types; they also de�ne the implementations of

the routine �elds. (In the simplest forms of record subtyping, record types merely declare routine

�elds, to which routines are assigned when instances of the record are created.)

Programmers can create class de�nitions incrementally through inheritance, which creates a

new child class from explicitly named parent classes by copying their de�nitions and possibly

adding, hiding, deleting, or replacing �eld de�nitions. A class's parents, grandparents, etc., are

collectively known as its superclasses, and its children, grandchildren, etc., are its subclasses.

Allowing a class to have more than one parent introduces many complications into a language,

and goes by the special name of multiple inheritance.

If a class has a routine �eld that does not have a de�ned implementation, it can not be instan-

tiated, for fear that the instance's routine �eld might be called. Such a class is called an abstract

superclass. An abstract superclass can act as an interface, for which non-abstract subclasses pro-

vide implementations. They can also provide guidance and assistance to the implementor of a

new class, who can search for an abstract superclass with an appropriate interface, de�ne the new

class by inheritance from it, and implement the appropriate routines. An abstract Collection

class might declare that it has insert and remove routines without implementing them; a Stack



CHAPTER 2. POLYMORPHISM MECHANISMS 28

subclass would de�ne implementations that provide last-in, �rst-out behaviour. A pure abstract

superclass provides nothing but unimplemented routine �elds, and exists only to de�ne an in-

terface. Inheritance from a pure abstract superclass reuses designs instead of code. An impure

abstract superclass implements some routines (in terms of other, implemented or unimplemented,

routines), and provides both design and code reuse; the implemented routines assist programmers

who must implement non-abstract subclasses.

Record subtyping rules were designed to provide clean semantics and a sound type checking

system for \object-oriented" languages, so it is not surprising that these languages can be viewed

as having a more or less restricted form of record subtyping. Many of these restrictions and

complications result from attempts to combine three concepts: encapsulation, subtyping, and

code reuse.

In C++ and Ei�el, classes provide encapsulation: clients of a class have access to some (but

not all) of the �elds of the instances of the class. The accessible �elds make up an interface of

the class. C++ classes have separate interfaces for clients that use class instances and for clients

that are subclasses. Plain record subtyping provides encapsulation through static scope rules, not

through record types: if a routine with return type T returns a value that is of a subtype of T,

any extra �elds de�ned by the subtype are inaccessible outside of the routine. This approach is

somewhat more 
exible because each such routine de�nes a di�erent interface for di�erent sorts

of clients: the number of interfaces is not �xed at one or two.

Inheritance provides code reuse, since subclasses inherit the �eld de�nitions and routine �eld

implementations of their superclasses unless they explicitly replace them. Multiple inheritance

leads to the possibility of inheriting a declaration of a �eld or an implementation of a routine �eld

from more than one parent. Di�erent languages use di�erent methods for resolving the resulting

con
icts. Some of these methods expose the implementation of classes in subtle ways, so that

changes in the implementation of a superclass force changes in subclasses or in clients [50]; this

weakens encapsulation and makes reuse more di�cult. A class may also inherit from a single

superclass along more than one \line of descent", and this also introduces con
icting de�nitions.

These problems do not arise with pure record subtyping, because record types are not constructed

by inheritance.

Inheritance also a�ects subtyping, since it de�nes the child's interface in terms of the parent.

In all four languages mentioned above, subclasses are automatically considered to be subtypes

of their superclasses. As a result, rede�nition of inherited �elds must be restricted to ensure

that subclasses truly are subtypes. (Ei�el uses a covariant rule for routine subtyping, and hence
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is not statically type safe [13].) In SIMULA, Ei�el, and C++, subclasses are the only subtypes

of superclasses. (If pure record subtyping provides a looser form of structural equivalence, then

explicit superclass declarations provide a looser form of name equivalence.) This makes the

subtype hierarchy explicit, and therefore rigid. If a program requires the de�nition of a new class

that must be a superclass of existing classes, or if an existing class must be made a subclass of

a class that is not one of its current superclasses, then existing inheritance declarations must be

rewritten. Modula-3 is less restrictive: a class is a subtype of its parent or of any class that has

the same �elds as its parent (and, transitively, of their supertypes), so programmers can insert

new classes into the class hierarchy without changing the de�nitions of old classes. Even this links

inheritance to subtyping: the names of a class's supertypes are not �xed, but the �elds that are

inherited at each level are �xed.

Uniting inheritance with subtyping contorts programs. Consider an operating system where

�les are associated with signi�cant data structures (perhaps containing data bu�ers, disk ad-

dresses, and such), and a program that implements notions of input �les, output �les, and in-

put/output �les with types InFile, OutFile, and IOFile. IOFile is a natural subtype of both

InFile and OutFile, but the most convenient implementation would implement the �le data

structures completely in IOFile, and de�ne the other two types by inheriting from IOFile and

removing the extra operations. In this case, subtyping and inheritance relationships run in oppo-

site directions.

2.2.2 Parametric Polymorphism

Universal Quanti�cation

Some programming languages allow the type of a routine to depend on the value of some of its

parameters. In the simplest case, an integer parameter might be used as an array bound in the

declaration of another parameter. In the more interesting cases, routines can have type parameters

that are used in the types of other parameters. Tennent [56] suggested adding them to Pascal (for

reasons based on language design principles) and gave this example of a procedure that applies a

routine to every element of an array, regardless of array bounds or element type.

procedure maparray(type ind, d;

var A: array[ind] of d;

procedure p(var :d)) =

for i: ind do p(A[i]);
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A typical use of maparray would be

procedure double(var i: integer) =

i := i + i;

type ix: 1..10;

ar: array[ix] of int;

var a: ar;

begin : : :

maparray(ix, int, a, double);

end

Various semantics have been proposed for languages with type parameters. The most popular

is that of Girard [24] and Reynolds [44], who de�ned a typed lambda calculus where type param-

eterization is an abstraction mechanism distinct from, but similar to, functional abstraction. The

identity routine on integers is written

id_int = �p:Integer �p

so that \id_int 3" has the value 3. Similarly, the polymorphic identity routine is written

id = �T ��p:T �p

and has the universally quanti�ed type 8T � T!T. The expression \id Integer 3" has the value

3 and type Integer.

Not all universally quanti�ed types are sensible and useful. To see this, consider the declara-

tion

thing: 8T � � (T) = �T � e

where � (T) is some type expression possibly involving T, and e is some appropriately-typed ex-

pression. What values could e have? The key observation is that e must have type � (T) for every

conceivable type T. This limits e to polymorphic identi�ers applied to T and monomorphic values

with no relevance to T. Hence

thing1: 8T � hl:Integer � r:Integeri = hl := 3, r := 4i

is valid, since the l and r �elds must contain integers, and 3 and 4 have type Integer.
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id: 8T � T ! T = �T ��p:T �p

thing2: 8T � hf: T ! Ti = hf := id Ti

is also valid, since f must contain a routine of type T!T for every possible T, and \id T" has that

type. However

pair: 8T � hl:T � r:Ti = �T � hl := 3, r := 4i

is not legal, because 3 and 4 do not have type T for every possible T. Consequently, 8T � hl:T

�r:Ti can not be used as the type of a data structure containing a pair of values of unknown

but identical type. In general, 8t � � can not be used as the type of a polymorphic data structure

containing a data item of type � .

Instead, universal quanti�cation provides polymorphic data in a more indirect form, by en-

coding it as a polymorphic routine [39, p. 39]. Recall the \region" example on page 26, with a

Region type and a Rect subtype.

type Region = hcontains: Point ! Booleani

type Rect = htop_left:Point � bottom_right:Point

� contains: Point!Booleani

a_pt: Point = : : :

a_rect: Rect = : : :

r: Region = a_rect

: : : r.contains a_pt

In a language with universal quanti�cation, Rect has a simple equivalent.

type Rect = htop_left:Point � bottom_right:Pointi

rect_contains: Rect ! Point ! Boolean = : : :

In the subtyping example, binding r to a_rect had the e�ect of forgetting a_rect's type. With

universal quanti�cation, the same e�ect can be created by hiding a_rect inside a routine. The

routine's type is the equivalent of Region. Computations on the hidden data can be performed by

packaging them as routines and passing them into the Region routine as arguments; the Region

routine simply applies the computations to the data and returns the result. Since the type of the

result is not known in advance, the Region routine must be polymorphic.
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type Region = 8res_t �(hcontains:Point!Booleani!res_t) ! res_t

r: Region = �res_t ��comp: hcontains:Point!Booleani ! res_t �

comp hcontains := (rect_contains a_rect)i

To use r, a program must pass it the result type and a routine that performs the desired compu-

tation.

r Boolean (�region:hcontains:Point!Booleani �

region.contains a_pt)

Clearly, some \syntactic sugar" is needed to make this approach palatable.

Since a type parameter is a name for a speci�c type, it provides type matching: a two-argument

min routine could be de�ned as

min: 8T �(T!T!Boolean) ! T ! T ! T

= �T ��lt:T!T!Boolean ��a:T ��b:T �

if lt a b then a else b

so that \min Integer (<) 3 5" would have the value 3. Universal quanti�cation also provides

great generality: a routine's interface speci�es exactly what types and operations it requires, and

can be applied to any set of arguments that supplies those types and operations. Furthermore,

these operation parameters do not have to follow the contravariant pattern required by subtyping

languages: universal quanti�cation has no di�culty specifying covariant patterns such as T!T!T.

Unfortunately, min must take the type Integer and the integer \less than" routine as an

explicit parameter. Most routines having type parameters require several operation parameters

that can be applied to instances of the type parameters, and perhaps some constants as well.

Cormack and Wright point out that

the existence of these extra parameters means that the greater the generality of an

abstraction, the greater the burden of use on the programmer, and directly con
icts

with our design criteria of generalizability and incrementality [16].

Consider a simple polymorphic \absolute value" routine would require a type argument, compar-

ison and subtraction operations, and a \zero" value. Passing them as separate parameters leads

to verbose routine calls and is a source of errors.
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abs: 8t �(T!T!Boolean) ! (T!T!T) ! T ! T ! T

= �t ��lt:T!T!Boolean ��sub:T!T!T ��zero:T ��x:T �

if (lt x zero) then (sub zero x) else x

: : : abs Integer (<) (-) 0 3

Passing them as routine �elds of record-type arguments is awkward in the absence of subtyping

because the set of �elds in the record argument type must be de�ned exactly; records must be

disassembled and reassembled when programs pass data to di�erent polymorphic routines that

require di�erent sets of operations.

min_rec: 8T � hv:T � lt:T!T!Booleani

! hv:T � lt:T!T!Booleani

! hv:T � lt:T!T!Booleani

= �T ��a:hv:T � lt:T!T!Booleani �

�b:hv:T � lt:T!T!Booleani � : : :

: : : min_rec Integer hv:=3, lt:=(<)i hv:=5, lt:=(<)i

A polymorphic routine may also be too general for some situations; for instance, a programmer

might want to pass it to a monomorphic parameter of another routine. In that case the program-

mer must create a specialization that binds some or all of the type and operation parameters:

fiddle: 8T �(T!T!T) ! T ! T ! T ! T

= �T ��f:T!T!T ��a:T ��b:T ��b:T �

f a (f b c)

min_int: Integer ! Integer ! Integer

= �x:Integer ��y:Integer �min Integer (<) x y

: : : fiddle Integer min_int 19 83 18 : : :

Universal quanti�cation does not a�ect separation of interfaces from implementations, since the

name it introduces is in some sense \just another parameter". Strong checking is also una�ected.

Incremental extension of data types is simple, compared to inclusion polymorphism: since data

types do not contain their operations as routine �elds, they do not have to be restructured to

contain new operations. However, generalizability is weak, because any attempt to generalize a

routine by adding type parameter or removing operation parameters will change its interface, and

hence require changes in all of its clients.
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Compared to inclusion polymorphism, then, type parameterization provides type matching,

generality, and incrementality, but not generalizability or convenience when passing operations

along with data.

F-Bounded Quanti�cation

F-bounded quanti�cation [8, 14] combines subtyping with universal quanti�cation. In this ap-

proach, type parameterization has the form �t � �

1

� e, and produces values of type 8t � �

1

� �

2

.

Any type argument passed to t must be a subtype of the type bound �

1

, which is a type expression

that may involve t. (F-bounded quanti�cation is a generalization of bounded quanti�cation [11],

where the type bound must not involve the type parameter.) This is parametric polymorphism,

despite the use of subtyping, because the type parameter of a polymorphic de�nition determines

the interface of the de�nition.

F-bounded quanti�cation allows the de�nition of a version of min with a precise, statically

checkable interface.

min:8T�hlt:T!Booleani �T ! T ! T

= �T�hlt:T!Booleani ��p:T ��q:T �

if p.lt(q) then p else q

type String = h: : : lt: String ! Boolean : : : i

s1: String = : : :

s2: String = : : :

s3: String = min String s1 s2

The call to min is legal because String is a subtype of hlt:String !Booleani, the type bound.

Inside min, p.lt(q) is legal because the type bound guarantees that T de�nes a lt taking a T

argument. The result of the call to min has type String.

F-bounded quanti�cation can pass operations to polymorphic routines by including them as

�elds of records, as is done with lt above. Consequently, passing operations is simpler than in

simple universal quanti�cation, but F-bounded quanti�cation shares record subtyping's di�culties

in incrementally extending data types.

Recall that inclusion polymorphism languages typically use the type checking rule

a : �

1

�

1

� �

2

a : �

2
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F-bounded quanti�cation provides polymorphism even without this rule, because the exact type

of any data argument can be passed as a type argument. A language without this type checking

rule provides type matching, as is shown by min above, but can only provide polymorphic data

by encoding it in a polymorphic routine, as described in the previous section.

However, a language might use the subtype-based type-checking rule, and provide both in-

clusion polymorphism and parametric polymorphism. This would provide the ability to de�ne

polymorphic data, but would weaken the properties of type matching, just as it did in record

subtype languages: in \min String s1 s2", the types of s1 and s2 might be di�erent subtypes

of hlt:String !Booleani, and the result could have any subtype of String.

Operation Inference

The discussion of universal quanti�cation above showed that explicit type arguments and oper-

ation arguments are, at best, verbose, and at worst, an impediment to programming. For this

reason, parametric polymorphism languages generally provide some form of argument inference,

which infers the values of some arguments from the types of other arguments.

Cormack's and Wright's language, ForceOne [66], provides overloading polymorphism. The

standard operators are associated with special overloaded routine identi�ers: the \less than"

operator is associated with the identi�er \'<'", and the expression \a < b" is treated as the

routine call \'<'[a, b]". ForceOne also provides parametric polymorphism: routines can declare

type parameters by preceding a parameter's type with a question mark. It also provides implicit

parameters, which follow a vertical bar in a parameter list. Calls to polymorphic routines do

not specify arguments corresponding to type parameters or implicit parameters. The compiler

infers type arguments from the types of the ordinary arguments. For each implicit parameter,

the compiler looks for a declaration with the same name and type (after substitution of type

arguments for type parameters) in the scope of the call, and passes the declared item as the

argument. As an example, consider a ForceOne implementation of the \minimum" notion.

min: [x,y:?T | '<':[T, T] routine T ] routine T ==

f if [x < y] x else y g

Here min[3, 5] is a legal call, with the integer type inferred for T and the integer comparison

routine inferred for '<', and returns the integer 3. Note that this form of parametric polymorphism

depends heavily on overloading: min can be applied to any type, so long as \<" has been overloaded

for it.
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The implicit parameter mechanism bears some resemblance to dynamic scoping, since the

identi�er \<" is bound to a value with that identi�er in the (dynamic) calling environment,

instead of the static environment of the routine body. It has the great advantage, compared to

normal dynamically scoped systems, of being statically checked. However, it does not provide

true dynamic scoping, because the inferred argument is found in the static environment of the

calling environment, not its dynamic environment.

Cormack and Wright described an inference algorithm for a ForceOne-like language in [16]. In

that language, universally quanti�ed types can not be passed as type arguments, but Bumbulis

has extended the inference algorithm to handle that case [6]. The algorithm infers type arguments

and implicit arguments. It also adapts the degree of polymorphism of arguments, if necessary.

A polymorphic routine can be specialized by binding a type to a type parameter or an implicit

argument to an implicit parameter. The inference algorithm automatically specializes routines if

some implicit parameter requires a less polymorphic version of the routine.

The process of implicit parameter binding does not necessarily terminate, since the argument

bound to an implicit parameter may itself have implicit parameters that need to be bound through

specialization. However, each iteration of this process corresponds to a parameter that would

have to be explicitly speci�ed otherwise. Hence non-termination corresponds to an in�nitely large

program in a language without argument inference, and long inference chains correspond to very

complex programs. Cormack and Wright simply place a limit on the number of iterations that

their algorithm is allowed to perform, and declare a program to be invalid if inference can not be

completed within that limit.

Cormack and Wright point out many advantages that operation inference has over other poly-

morphism mechanisms. Like all of the other parametric polymorphism mechanisms, it provides

type matching. It allows very general interface de�nitions, since implicit parameters state exactly

what operations a polymorphic routine requires. Operations are implemented as free-standing

routines, not as �elds of record types, so new operations can be implemented and old operations

can be reimplemented easily; this provides incrementality. Argument inference provides general-

izability: a routine can be replaced by a version that has a di�erent number of implicit parameters

or type parameters without a�ecting clients. If type parameters are added, the corresponding type

arguments will be inferred automatically, and if implicit parameters are added, the new version of

the routine can be accompanied by declarations that will serve as default values for the implicit

arguments.

ForceOne-style languages can have simple, e�cient implementations, such as the one devised



CHAPTER 2. POLYMORPHISM MECHANISMS 37

by Cormack and Wright [15]. In their scheme a type value is represented by an integer that

encodes the size and alignment of the type. Since equality comparisons between types are not

provided, there is no need to try to ensure that the representations of di�erent types are distinct.

A type parameter is passed like an integer parameter. A local variable whose type is not statically

known is implemented as a pointer to space that is allocated on the stack upon block entry and

(implicitly) deallocated upon block exit. A parameter whose type is not statically known is

implemented as a pointer to space allocated at the end of the parameter list. When a routine's

result type is not statically known, the returned value must always be returned on the stack,

instead of in a register. Performance su�ers, especially on RISC machines, whenever data is not

stored in registers.

(In many cases, a ForceOne compiler could implement a call to a polymorphic routine by in-

line substitution of the routine body at the call site. It could also instantiate the routine for any

given argument type or implicit argument by substituting the argument into the routine body.

These approaches do not work in general, because in some cases the values of inferred arguments

can not be known statically.

f: [ a_t:?T, n:int] routine void == f

temp: record[ x:T ] == : : :

if [n > 0] f[temp, n - 1];

g

: : : f['x', random[]] : : :

Here, at each recursive call to f the type argument inferred for T is a more deeply nested record

type, so the number of instantiations can not be determined until run-time.)

The main drawback of operation inference is that it does not provide any way to group together

meaningful collections of types and implicit parameters. A set of type identi�ers and implicit

parameters that are de�ned for those types de�nes a notion, much as an abstract superclass does,

and an abstraction mechanism would be a useful facility.

Descriptive Classes

Sandberg de�ned the language X2

1

[46, 47] in a deliberate attempt to provide the 
exibility of

dynamically typed-checked object oriented programming languages in a statically typed language.

1

also known as X-2
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X2's \classes" are record types, or record type generators with type parameters. Sandberg gives

as an example a homogeneous list class, where the element type is a parameter.

class list(T) is

first: T;

tail: list(T);

end class;

The type parameter allows stronger type checking of instances of list than does inheritance from

an abstract superclass, which is the equivalent operation in object oriented languages. However,

there is no notion of a subtype relationship between X2 classes, and X2 classes can not inherit

from other classes. They do not contain \methods"| ordinary routines are used instead|so

classes can not provide encapsulation; a separate module system restricts access to identi�ers. In

other words, X2 classes have little in common with the \classes" of object-oriented languages, and

I will call them \types" or \type generators" instead.

Polymorphic routines use simple type parameters, called free types, in their interfaces. The

values of the corresponding type arguments for a call are statically inferred from the calling

context. Given an \is_empty" routine that returns true if a list is empty, a routine that returns

the last element of a list, regardless of the list's element type, would be written and called as

follows.

procedure last(a:list(T)) returns T;

where T is free

begin

loop

if is_empty(a.tail) then

return(a.first);

end if

a := a.tail;

end loop;

end last;

var a: list(int);

b: list(real);

i: int;
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r: real;

begin : : :

i := last(a); -- T inferred to be int

r := last(b); -- T inferred to be real

(Note that the type parameter T can be used by itself or as an argument of a type generator.)

This provides parametric polymorphism equivalent to simple type parameters.

To avoid having to pass operations on type parameters as explicit routine parameters, Sandberg

introduced descriptive classes [46]. Simple descriptive classes have a type parameter, and specify

routine interfaces in terms of the type parameter. As an example, Sandberg de�nes a descriptive

class order that is one possible description of the notion of \totally ordered type".

descriptive class order(T) is

eq: proc(order(T), order(T)) returns bool;

grt: proc(order(T), order(T)) returns bool;

less: proc(order(T), order(T)) returns bool;

end class;

An instance statement states that a type satis�es a descriptive class by stating which routines

correspond to the routine interfaces declared by the descriptive class. For example, an instance

statement declares that int satis�es order by naming the three (built-in) routines that correspond

to the routine interfaces declared in order.

instance of order(int) is equal, greaterthan, lessthan;

Polymorphic routines can use descriptive classes in their interfaces, for example as parameter

types, with free types used as arguments of the descriptive classes. If a parameter's type is

a descriptive class, the corresponding argument in a call can be of any type that satis�es the

descriptive class. Routines declared by the descriptive class can be used in the routine body. The

min example could be written

procedure min(p:order(T); q:order(T))

returns order(T);

where T is free

begin

if p.less(p, q) then
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return p;

else

return q;

end if

end min;

var i, j, k: int;

begin : : :

k := min(i, j); -- valid: int satis�es order(T)

The presence of T in both parameters and the return type forces all three to have the same type,

thus providing type matching. Furthermore, X2 guarantees that min(i,j) and min(j,i) have

the same value, because the instance statement above stated that lessthan is the less operator

for all ints used as ordered values.

Descriptive classes are quite unlike types. For instance, they can not be instantiated. They

can also de�ne relationships between two types:

descriptive class collection(c, e) is

add: proc(e, c);

remove: proc(e, c);

: : :

end class;

This descriptive class declares routines that must exist if type c is a collection of elements of type

e. Hence, collection does not correspond to the element type or the collection type.

However, Sandberg treats descriptive classes as types. The min routine treats p as if it has

a �eld named less, which was declared in order. This suggests that p's type is order(T), not

T. Sandberg gives other examples that use order(T) as the type of a local variable and as an

argument of a type generator. \Relationship" descriptive classes like collection are treated

as types by arbitrarily equating the descriptive class with the �rst type argument. A routine

might have a parameter of type collection(f, g) (where f and g are free), and programs might

contain statements like instance of collection(list(int), int) to allow lists of integers to

be passed to that routine; within the routine, collection(c, e) would refer to list(int).

Another di�erence between descriptive classes and types is that instance statements can de�ne

if-and-only-if relationships among types. Sandberg describes a descriptive class pane, for panes in



CHAPTER 2. POLYMORPHISM MECHANISMS 41

a window system, and a type generator merge(f,g), which is a type of pane with two sub-panes of

types f and g. A single instance statement can declare that any instance of merge is a pane if and

only if its two argument types are panes. (Presumably, int is not a pane, and hence merge(int,

int) would be a legal type but would not be a pane.) This is an intriguing capability, but it is

hard to see how it can be used. If the arguments of merge are not panes, then how can routines

with merge parameters make use of them? Note that this is not a hypothetical example: it is

taken from a windowing system written in X2.

Descriptive classes resemble F-bounded quanti�cation in that collection(c, e) resembles

the type expression

type Collection[c, e] = hadd:e!c � remove:e!c � : : : i

An instance statement establishes a relationship that resembles subtyping. A routine to count

the elements in a collection has similar types in either system:

procedure count(p:collection(c, e)) returns int

where c, e are free

begin

: : :

end count;

count = �e ��c � Collection[c, e] ��p:c � : : :

Descriptive classes are like abstract superclasses in that they de�ne interfaces but not imple-

mentations. An instance statement corresponds to inheritance from an abstract superclass. A

polymorphic routine with descriptive class parameters can call routines declared by descriptive

classes, which provides dynamic binding, and the polymorphic routine can be applied to any type

that satis�es the descriptive class, which is similar to inheritance of methods de�ned in abstract

superclasses. Types can satisfy many descriptive classes, which is like using multiple inheritance,

but without the problem of resolving con
icts among inherited de�nitions (but only because no

class variables or methods are inherited).

Sandberg argues that descriptive classes and parameterized types lack many of the drawbacks

of class hierarchies. There is no �xed class hierarchy, just instance statements that relate types

and descriptive classes within a scope, so di�erent parts of a program can easily set up di�erent
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relationships. Descriptive classes can be de�ned independently of the types that satisfy them (and

can have smaller scopes); subclasses can not be de�ned before their superclasses.

Descriptive classes have two other points in their favor. First, programmers can extend types

with new routines at any point, so X2 has better incrementality than record subtype languages.

Second, operations declared in descriptive classes are naturally covariant instead of contravariant.

However, descriptive classes provide only a two-level hierarchy: types, and descriptive classes.

Descriptive classes can not be arranged in \subclass" hierarchies: there is no way to state that

a numeric descriptive class is like the ordered class, with extra arithmetic operations. Instead,

logically-related descriptive classes must contain identical copies of declarations, instead of sharing

them. Similarly, types that satisfy a class do not automatically satisfy classes at logically \higher"

levels, so programs must contain multiple instance statements to de�ne all of the relationships

that are needed.

Another di�erence is that descriptive classes do not provide any support for type de�nition via

inheritance. This is a restriction on reusability, but a minor one, since programmers can simulate

inheritance by declaring a �eld of the \parent" type inside the child.

Sandberg leaves a number of interesting questions undiscussed.

� What are X2's restrictions on type parameter inference? Are either of these legal?

procedure p(i:int) returns T where T is free

procedure p(i:int) returns order(T) where T is free

� Does X2 support polymorphic data? The method described on page 31 depends on the

ability to de�ne routine values that refer to non-local data; X2 may not provide that facility.

� A program may need a version of a polymorphic routine that has been specialized for a

particular type, for instance for use as a procedure argument or in an instance statement.

Must a programmer write this specialization, or can specialization happen implicitly?

� Can the parameter of a type generator be a descriptive class? This seems obviously desirable,

but if it is possible, then surely merge would be declared to take only pane parameters, and

then Sandberg would not have composed his \if-and-only-if" example.

Parameterized Modules

Many programming languages provide some form of module: a programming language construct

that contains de�nitions of routines, types, variables, constants, etc. This provides grouping and



CHAPTER 2. POLYMORPHISM MECHANISMS 43

also controls the \name space" of a program, since entities with the same name that are de�ned

by di�erent modules can be distinguished easily. Examples of modules include the Mesa program

module [37], the Ada package, the SML structure [36, 35], and the OBJ2 object [25, 21]:

obj PAIR is

extending INT, BOOL.

op x: -> Int.

op y: -> Int.

op lt: Int Int -> Bool.

vars i1, i2: Int.

eq: lt(i1, i2) = (i1 < i2).

eq: x = 5.

eq: y = 7.

endo

The module PAIR uses two other modules, INT and BOOL, which de�ne the types Int and Bool.

The lines beginning with \op" de�ne integer values named x and y and a routine named lt. The

vars line declares variables used in the de�nitions of lt. The �rst \eq" line declares that, for any

two integers i1 and i2, lt(i1, i2) has the value i1 < i2. The other eq lines de�ne the values

of x and y.

The other portions of a program use modules indirectly viamodule interfaces, which declare the

facilities that the modules make available. The items that are de�ned by modules but not declared

by any interface are inaccessible outside of their module; hence interfaces provide encapsulation.

An interface is called a de�nition module in Mesa, a package speci�cation in Ada, a signature in

SML, and a theory in OBJ2:

th LT_PAIR is

extending BOOL.

sort T.

op x: -> T.

op y: -> T.

op lt: T T -> Bool.

vars t1, t2: T.

eq: lt(t1, t2) = not lt(t2, t1).

endth
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This interface declares a type (a sort in OBJ2's terminology) called T, two values of type T called

x and y, an lt routine for type T, and a logical condition that lt must satisfy. When Int is used

for T, PAIR matches this interface.

Ada, SML, and OBJ2 also provide parameterized modules

2

Ada generic packages can have

data, routine, and type arguments. SML functors and OBJ2 parameterized objects take modules

as arguments, and use module interfaces as their \parameter types". The operation of instantia-

tion substitutes arguments for the parameters to produce an ordinary module. Instantiation is a

static process, not part of the execution of the program; all arguments must be constant.

Parameterized modules provide polymorphism at two levels. At the level of the module's

contents, a parameter of a module de�nes a common structure that all arguments must have, and

the contents of the module are well-de�ned for any such argument. In e�ect, the parameters of the

module become parameters of the contents, and the contents exhibit parametric polymorphism.

Instantiation specializes the contents. At this level of polymorphism, the polymorphic minimum

routine would be placed in a parameterized module.

obj MIN[O::LT_PAIR] is

op min: T.O T.O -> T.O.

vars t1, t2: T.O.

eq: min(t1, t2) = if lt.O(t1, t2) then t1 else t2 fi.

endo

(OBJ2's \dot" notation reverses the usual convention: T.O is the sort T de�ned in parameter

O.) This di�ers from universal quanti�cation in that it is not part of the type system. The min

routine does not have a type, and in fact can not be used directly; a program that uses min must

�rst instantiate MIN with an argument module to produce a monomorphic routine, which can be

applied to data values.

The other form of polymorphism occurs at the higher, module, level: an SML functor or an

OBJ2 parameterized object is a function from objects to objects, and instantiation plays the

role of a routine call. Polymorphism at this level is used to build large programs by composing

them from smaller modules. The rules for matching modules and interfaces provide an inclusion

polymorphism mechanism that resembles record subtyping, and any object that matches the

parameter interface is a valid argument. In SML, curtailment allows a structure to match a

2

Most object-oriented languages use classes provide name space control, grouping, and encapsulation, and hence

do not support modules. Ei�el extends this approach and provides parameterized classes
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signature that lacks some of the structure's contents or that has weaker relationships between

them. In OBJ2, a view does the same, and also renames the object's contents to correspond to a

theory's contents names as well.

th T is

sorts U, V.

op x: -> U.

op y: -> V.

endth

view PAIR_T of PAIR as T is

sorts U to Int, V to Int.

endv

The view PAIR_T describes how module PAIR can match interface T: use x and y, ignore lt, and

use Int for U and V. This view of PAIR weakens the relationship between the types of x and y, and

hides lt. OJB2 also provides \default views" in cases where the correspondence between a theory

and an object is su�ciently obvious: the match between PAIR and LT_PAIR does not require an

explicit view statement.

Module-level polymorphism can be used to de�ne a \minimum" function on the contents of

an LT_PAIR object:

obj MIN_OBJ[O::LT_PAIR] is

op m: -> T.O.

eq m = if lt.O(x.O, y.O) then x.O else y.O fi.

endo

Recall that record subtyping weakens type matching. Similarly, module views weaken \theory

matching". This is important because, in programs built from layers of modules, it may be nec-

essary that middle-level modules share the same lower-level modules: a compiler would normally

require that its scanner module and parser module use the same token type. Without \theory

matching", this can not be done. Both SML and OBJ2 have extra facilities to solve this prob-

lem. SML provides a sharing declaration, which states that two modules, or two types de�ned

in module arguments, are the same. A compiler module written in SML would declare that its

scanner and parser arguments share their token types. OBJ2 provides parameterized theories for

the same purpose.
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th TOKEN is

sort Token.

endth

th SCANNER[T::TOKEN] is : : : endth

th PARSER[T::TOKEN] is : : : endth

obj COMPILER[T::TOKEN, S::SCANNER[T], P::PARSER[T]] is : : : endo

COMPILER takes as its �rst argument a module that matches TOKEN and substitutes it into SCANNER

and PARSER to produce the theories that S and P must match. Hence the scanner and parser

arguments must use the same Token sort. COMPILER exhibits parametric polymorphism at the

module level instead of at the module-contents level.

(SML provides a third level of polymorphism, independent of the module system. A routine

that returns the smaller of two data arguments can be written

fun min lt x y = if lt(x,y) then x else y;

This declaration omits type information, but the routine has a static type none the less. SML

systems infer the type from the body of the routine; in this case, min has a type parameter called

'a, and has type ('a !'a !bool) !'a !'a !'a, for any type 'a. SML systems also infer

type arguments: in the expression \min (op <) 5 7", inference gives 'a the value int. (\op <"

returns the \less than" operation for integers.) Mitchell and Harper [39] show that, at this level,

SML can be treated as an abbreviated form of an explicitly typed parametrically polymorphic

language, similar to Girard's and Reynold's lambda calculus, but with the restriction that routines

can not have polymorphic arguments; hence I will not discuss this level of polymorphism any

further.)

The greatest weakness of parameterized modules is that the polymorphism that they provide

is strictly a static phenomenon. There are no executable module-valued expressions: the \module

expressions" of SML and OBJ2 build new modules from old ones prior to program execution. All

entities involved in executable expressions are monomorphic, perhaps produced by instantiation.

SML provides no sharing declarations for values or routines, since it can not statically check

the equality of dynamically-computed values. Since there is no dynamic rebinding of module
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identi�ers, modules do not provide polymorphic data, even though views can hide information

about the types of a module's constants.

Given this limitation, parameterized modules still provide useful polymorphism. They al-

low strong static checking of types at the module-contents level and of module interfaces at the

module level. They are e�cient, because entities involved in executable expressions are monomor-

phic. They separate interfaces and implementations at the contents and the module levels. Type

matching exists at the contents level, and although it does not exist at the module level, SML and

OBJ2 provide other facilities to �ll the gap. At the contents level, parameterization allows much

the same language simpli�cations as was the case for universal polymorphism. Parameterized

modules provide high generality, since they can de�ne exactly the types and operations that they

need. They are somewhat generalizable, since a parameterized module can replace an existing

parameter interface with one that contains fewer declarations or has weaker relationships between

declarations, but it can not increase its generality by adding new declarations without a�ecting

clients. Finally, they lack incrementality, just as records do: incrementally extending a module to

match some theory would require building a new structure with extra declarations.

2.3 Summary

Polymorphism is the ability to implement a notion so that it applies to more than one type. Two

main categories of polymorphism mechanisms exist. Ad-hoc polymorphism is present when an

implementation has one or more interfaces that are de�ned for a set of types which need not have

any common structure. Universal polymorphism is present when an implementation has a single

interface that is applicable to a potentially in�nite set of types de�ned by a common structure.

Universal polymorphism in turn has two subcategories. A routine exhibits parametric polymor-

phism when the value of a parameter de�nes other parts of the routine's interface. Inclusion

polymorphism is present when an identi�er can be bound to values from a potentially in�nite set

of types with a common structure.

Three distinct mechanisms can provide ad-hoc polymorphism in a programming language.

Overloading lets programmers de�ne several implementations of a notion, and chooses among

them based on the context of each use of the notion. Transfer functions implicitly convert an ar-

gument in a routine call to the type of the routine's parameter. Set-theoretic unions are de�ned in

terms of member types, and can take on any value from those member types. All three are reason-

ably e�cient and allow strong static checking and separation of interfaces from implementations.
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All three provide, at most, modest increases in generality, generalizability, and incrementality.

Overloading and set-theoretic unions allow simpli�cation of programming languages, by allow-

ing the language to present certain notions as library facilities instead of as special language

constructs. Overloading allows precise interface de�nitions because it provides type matching in

interfaces. Expressiveness increases, because one name can be used for many implementations of

a notion. This lets programmers write algorithms in terms of those notions, instead of distinct

implementations of the notions.

However, programmer-de�ned ad-hoc polymorphism provides only modest improvements, be-

cause the set of applicable types must be explicitly speci�ed, and hence is �nite. (This is not

true for language-de�ned polymorphism. A language can implement a notion for an in�nite set of

types. Consider assignment, which works on an in�nite set of \assignable" types. For most lan-

guages the common structure of these types (if there is any) is not expressible in the language, so

ad-hoc polymorphism is present.) Hence, implementations of notions that use these mechanisms

will not necessarily be usable with types de�ned afterwards, even if the notion is appropriate for

those types. (DOUBLE1 can not be applied to a new COMPLEX type, even though fractions can be

doubled.)

Two mechanisms provide inclusion polymorphism. In�nite unions provide a type that contains

all values of all other types; the generality of this type means that almost nothing can be done

with instances of it. Hence any operations that must be performed on values passed to a para-

metric routine must be passed along with the value, as separate parameters or as �elds of a data

structure. Record subtyping de�nes subtype relationships among record types and among routine

types, and allows routine �elds of records to refer to the record through a special identi�er such as

self. The record �elds conveniently package values and operations on the values. This approach

provides strong static checking, separation of implementations from interfaces, generality and gen-

eralizability, simpler base languages, and polymorphic data, with reasonable e�ciency. However,

it provides only weak incrementality, and does not allow type matching. The subtype rule for

routines is contravariant, and this limits expressiveness. Languages based on record subtyping

often combine code reuse, encapsulation, and subtyping in the \class" construct, which further

limits expressiveness and 
exibility.

Parametric polymorphism also provides strong static checking, simple base languages, and sep-

aration of interfaces from implementations with reasonable e�ciency. The simplest form, universal

quanti�cation, allows routines to have type parameters. This provides generality, incrementality,

type matching, and polymorphic data (through an awkward encoding), but again it becomes awk-
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ward to pass operations along with the values they operate on. F-bounded quanti�cation speci�es

a type expression that type arguments must be subtypes of: this directly provides polymorphic

data, and allows programmers to package values and their operations, in the manner of record

subtyping, but with the advantage that the operations can exhibit covariance. However, this pack-

aging reduces incrementality and 
exibility, and subtyping reduces type matching. Both forms of

type quanti�cation lack generalizability. Automatic inference of type arguments and their asso-

ciated operations provides generalizability, while preserving the properties of incrementality and

type matching. Compared to the inclusion polymorphism languages, however, parametric poly-

morphism with argument inference lacks a mechanism for abstracting over types and operations.

The X2 language provides such a mechanism, in its descriptive classes; however, X2 attempts

to combine descriptive classes with types, and does not allow for hierarchies of abstractions. A

parameterized module is another such mechanism, but modules are completely static entities, and

(like the records that they resemble) they limit generalizability and incrementality.



Chapter 3

Contextual Polymorphism

This chapter proposes a new polymorphism mechanism, contextual polymorphism, that addresses

the weaknesses of the mechanisms described in the previous chapter. It is based on parametric

polymorphism, and therefore provides precise types, generality, incrementality and generaliz-

ability. It extends parametric polymorphism with contexts, which represent notions within the

programming language.

A context is an abstraction of a collection of declarations. Typically the declarations are

related in some way; they might declare operations and constants associated with some notion.

Contexts have type parameters, and if the type generators of the programming language can

take arguments whose types are ordinary data types, then contexts can have parameters of those

types; for instance, in a language with array types indexed by integers, contexts can have integer

parameters. Any form of declaration provided by the language might be allowed in the body of

a context; routine and object declarations are most useful, but there is no reason to exclude type

declarations.

An assertion produces a collection of declarations, typically by applying contexts to arguments.

It asserts that the declared identi�ers exist and have the declared types and kinds. Typically

assertions are used to declare that some type implements a notion.

3.1 De�nition of Contexts and Assertions

The sections that follow give a formal explanation of contexts and assertions in terms of F

3

!

, an

explicitly-typed polymorphic lambda calculus based on F

!

, which is a variant of Girard's in�nite-

50
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Kinds k; k

i

= � (the kind of term types)

j 8t : k

1

3� �k

2

(the kind of type generators)

Type variables t; t

i

Types �; �

i

= t (simple types)

j �

1

!�

2

(function types)

j 8t : k3� � � (universally quanti�ed types)

j �t : k � � (type generators)

j �

1

�

2

(type generator application)

j (� )

Environments �;�

i

= ; (the empty environment)

j x : � (term variable declarations)

j t : k (type variable declarations)

j �t : k �� (contexts)

j �� (context application)

j �

1

;�

2

(environment concatenation)

j (�)

Term variables x; x

i

Terms e; e

i

= x

j �x : � � e (functions)

j e

1

e

2

(function application)

j �t : k3� � e (polymorphic functions)

j e[� ] (type application)

j (e)

Figure 3.1: The abstract syntax of F

3

!
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order polymorphic lambda calculus [42]. The abstract syntax of F

3

!

is given in �gure 3.1. Each

rule of the syntax de�nes a grammar symbol, some syntactic variables that represent instances

of the symbol, and the productions for that symbol (if it has any). The unusual features of the

syntax are the two symbols 3, which introduces assertions and should be read as \such that", and

�, which introduces contexts.

The calculus has a number of rules for static checking. An expression that passes these checks

is evaluated by repeated application of two �-reduction rules, for function application and type

application:

(�x : � � e

1

)e

2

�!

�

e

1

[x := e

2

]

(�t : k3� � e)[� ] �!

�

0

e[t := � ]

where l[m := n] denotes the substitution of n for all free occurrences of m in l, with renaming

of variables in l to avoid the capture of variables that are free in n. � reduction corresponds to

execution of ordinary programs.

3.1.1 Types and Kinds

F

3

!

associates types with every value. Besides simple types, function types, and universally quan-

ti�ed types, F

3

!

has type generators, which are functions from types to types. The programming

language might provide pre-de�ned simple types such as Integer and prede�ned type generators

such as List, which would take a type argument and return the type of homogeneous lists of the

argument type. \List Integer" is an example of type generator application, and has as its value

the type of lists of integers.

F

3

!

also associates a kind with every type. Kinds provide information about the parameters

of type generators, and allow checking of type generator application in the same way that types

allow checking of function application. The kind \�" is the kind of the term types (types with no

parameters): every term has a type, and that type has kind �. For instance, the term 3 has type

Integer, which has kind �. Type generators take type arguments, so their kinds involve \8"

1

,

just as polymorphic routines take type arguments and have types that involve \8". List has kind

8t : �3; � �, since it takes a term type as an argument and returns a term type. (The signi�cance

of \3;" is explained below.)

1

In most lambda calculi, type generator kinds use ! instead of 8, in analogy with function types; List's kind

would be �!�. The 8 notation used here, inspired by [38], provides a name for the type parameter, and the

assertion can use that name.
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3.1.2 Environments, Contexts, and Assertions

An environment � relates term variables to their types, and type variables to their kinds. The

simplest environment is ;, the empty environment, which contains no information. Other envi-

ronments contain declarations. A declaration has the form t : k (which declares that type variable

t has kind k), or x : � where � : � (which declares that term variable x has type � ). The domain

of an environment, dom(�), is the set of type and term variables it declares.

The operation of environment concatenation combines two environments that have no variables

in common.

�

1

;�

2

= �

2

[ �

2

i� dom(�

1

) \ dom(�

2

) = ;

Concatenation associates left to right: �

1

;�

2

;�

3

� (�

1

;�

2

);�

3

. Since the two environments

declare distinct variables, certain absurdities caused by redeclaration of type variables can not

occur. For instance, \(t : �; x : t); t : 8u : �3; � �" is unde�ned, so the question of x's type in

that environment does not arise. (It might be possible to allow redeclaration of term variables

while forbidding redeclaration of type variables, but treating all variables consistently provides

simplicity.)

Despite this restriction on environment concatenation, lambda expressions may redeclare vari-

ables, because the type and kind checking rules allow consistent renaming of bound variables: the

expression �x : �

1

��x : �

2

�x is legal because �y : �

1

��x : �

2

�x is.

Contexts and assertions are the most complex environment components, and are the distin-

guishing features of F

3

!

. A context �t : k �� abstracts from the declarations in the environment

�, which may make use of the type parameter t

2

. Normally, the parameters of contexts have kind

\*", but higher kinds are allowed; in those cases, the argument must be a type generator instead

of a type.

An assertion 3� produces a collection of declarations, called assertion declarations, typically

by applying a context to a type. Polymorphic routines and type generators (and their types and

kinds) use them to constrain their arguments. The trivial assertion \3;" produces no declarations.

The type generator List has kind 8t : �3; � � because it takes a term type argument, places no

constraints on it, and produces a term type.

Contexts and context application play no part in the evaluation of F

3

!

expressions: like ordi-

nary environments, they are part of the static type-checking rules of the language. The \value"

2

Since type generators in F

3

!

only take types as arguments, contexts only have type parameters. A formal

explanation of contexts in languages where type generators also take type arguments might be based on the

Calculus of Constructions [41] instead of F!.
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of a context application (�t : k ��)� is the substitution �[t := � ]. Repeated application of this

substitution converts environments that contain context applications to normal forms that contain

only concatenated declarations:

NF (�

1

;�

2

) = NF (�

1

); NF (�

2

)

NF ((�t : k ��

1

)� ) = NF (�

1

[t := � ])

NF (�) = � otherwise

The following environment contains a context that abstracts some declarations associated with

the notion \boolean type", and uses it to produce declarations of those operations on the type

Bit.

Bit : �; (�t : � �and : t!t!t; or : t!t!t; not : t!t; true : t; false : t)Bit

For the sake of readability, most examples below use the context statement

context x = � in e

which means \e[x := �]".

context boolean = �t:* �and: t ! t ! t, or: t ! t ! t,

not: t ! t, true: t, false: t

in : : : �Bit:* 3 boolean Bit � : : :

3.1.3 Judgements

Environments are used to type-check F

3

!

programs. A type judgement has the form � ` e : � , and

means that e has type � given the environment �. Similarly, the kind judgement � ` t : k means

that type t has kind k given �.

Environments used in type and kind judgements must meet certain conditions: variables must

be declared only once, the type of every term variable must have a kind, and every context must be

applied to an argument of the right kind. Therefore F

3

!

needs a mechanism for checking the kinds

of context arguments, just as types and kinds allow for the checking of arguments of functions

and type generators. The mechanism is the context sort .

Context sorts 
; 


i

= 2 (the sort of environments)

j k!
 (the sort of contexts)

An environment that may be used in judgements has sort 2. By de�nition, ; has sort 2. A

context whose parameter is a type of kind k has the sort k!
.
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The sort judgement �

1

` �

2

:: 
 states that, given the environment �

1

with sort 2, environment

�

2

has the context sort 
.

The �rst two sort checking rules state that \t : k" is an environment, and that \x : �" is an

environment if � has kind �.

; ` t : k :: 2

�

1

` � : �

�

1

` x : � :: 2

The next two rules deal with context formation and application. They state that a type

argument of a context must have the same kind as the context's parameter, and that the parameter

is part of the environment of the context's body.

�

1

` � : k �

1

` �

2

:: k!


�

1

` �

2

� :: 


�

1

; t : k ` �

2

:: 


�

1

` �t : k ��

2

:: k!


The �nal rule applies to environment concatenation. Again, the concatenated environments

must declare distinct variables.

�

1

` �

2

:: 2 dom(�

1

) \ dom(�

2

) = ;

; ` �

1

;�

2

:: 2

3.1.4 Type Judgements

This section gives the type checking rules for terms. Recall that the environment � used in a type

judgement � ` e : t must have sort 2.

The �rst rule states that a term variable has the type given by the environment.

; ` � :: 2

� ` x : �

if x : � 2 NF (�)

The next rules de�ne the types of functions and function applications. They state that the

type of a function's argument must match the parameter type, and that the parameter declaration

is part of the environment of the function's body.

� ` e

1

: �

2

!�

1

� ` e

2

: �

2

� ` (e

1

e

2

) : �

1

�; x : �

1

` e : �

2

� ` (�x : �

1

� e) : �

1

!�

2
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Polymorphic functions �t : k3� � e use assertions to constrain the type (or type generator)

variable t by declaring identi�ers that use it in their types. The type checking rule for polymorphic

functions adds the assertion declarations to the environment of the function bodies.

�

1

; t : k;�

2

` e : �

�

1

` (�t : k3�

2

� e) : 8t : k3�

2

� �

(Note that, by the de�nition of concatenation, �

1

; t : k;�

2

` e : � requires that �

1

; t : k ` �

2

:: 2

and that �

1

, �

2

and t : k have no declarations in common.)

The rule for calls to polymorphic functions checks that the type argument has the same kind

as the function's parameter, substitutes the type argument for the function's parameter in the

assertion declarations, and checks that the resulting declarations exist in the environment of the

call.

�

1

` �

1

: k �

1

` e : 8t : k3�

2

� �

2

�

2

[t := �

1

] � �

1

�

1

` e[�

1

] : �

2

[t := �

1

]

When a polymorphic function applies a context to its type argument, and the calling environment

contains the assertion declarations, the type argument is said to satisfy the assertion.

Most examples below use the let statement \let x : � = e

1

in e

2

", which means \(�x :

� � e

2

)(e

1

)". Since � is always e

1

's type, many examples omit it when it is irrelevant, cumbersome,

or obvious from inspection of e

1

.

(The de�nition of the let statement uses function application, because the expression e

1

can

be calculated when the program is evaluated. In contrast, the de�nition of the context statement

uses substitution, because contexts are strictly compile-time phenomena and hence vanish before

function application occurs.)

Consider this example, which de�nes a polymorphic routine that doubles its argument.

context addable = �T:* �plus:T ! T ! T in

let plus = �x:Integer ��y:Integer �(x + y) in

let double = �T:* 3 addable T ��x:T �plus x x

in double[Integer] 5

Static checking requires the substitution of addable and application to its argument.

let plus = �x:Integer ��y:Integer �(x + y) in

let double = �T:* 3 plus:T!T!T ��x:T �plus x x

in double[Integer] 5
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A plus routine for Integer exists in the environment of the call to double, so Integer is a legal

argument for double. �-reduction of double and the �rst argument gives

let plus = �x:Integer ��y:Integer �(x + y)

in (�x:Integer �plus x x) 5

Note that, after this �-reduction, the use of plus in the body of the polymorphic routine refers

to the plus de�ned in the calling environment. The assertion has the e�ect of connecting the

routine's body to the calling environment.

Since substitution renames variables to avoid capture of free identi�ers, the declarations in a

context are una�ected by declarations in inner scopes. For instance, the perverse example

context c = �T:* �f:T ! Integer

in (�Integer:* ��T:* 3 c T � e)[Boolean]

rede�nes Integer. However, it is equivalent to

(�t_1:* ��T:* 3 f:T ! Integer �e)[Boolean]

and hence the rede�nition does not a�ect the use of Integer in c. In contrast, if contexts were

simply expanded like macros, the rede�nition would have a�ected the use of c.

3.1.5 Kind Judgements

This section gives the kind checking rules for types. Again, the environments used by kind

judgements must have sort 2.

The �rst three rules state that type variables have the kind given by the environment, and

that function types and universally quanti�ed types are term types.

; ` � :: 2

� ` t : k

if t : k 2 NF (�)

� ` �

1

: � � ` �

2

: �

� ` (�

1

!�

2

) : �

�

1

; t : k;�

2

` � : �

�

1

` (8t : k3�

2

� � ) : �

Type generators use assertions to constrain their arguments, just as polymorphic functions use

assertions to constrain their type arguments. The kind checking rules for type generators require
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that the argument of a type generator have the same kind as the type generator's parameter, and

that the environment of a type generator application contains the assertion declarations, much as

was the case for type applications.

�

1

; t : k

1

;�

2

` � : k

2

�

1

` (�t : k

1

3�

2

� � ) : 8t : k

1

3�

2

�k

2

�

1

` �

1

: k

1

�

1

` �

2

: 8t : k

1

3�

2

� k

2

�

2

[t := �

1

] � �

1

�

1

` (�

2

�

1

) : k

2

The type statement \type t = � in e" is a synonym for e[t := � ]. It does not provide an

abstract type facility, because it substitutes � into e before the type rules can be applied, and so

all implementation details are visible to e.

type SortedList: 8T:* 3 lt: T ! T ! Boolean �*

= �T:* 3 lt: T ! T ! Boolean �List T in

let primes: SortedList Integer = e

1

in e

2

The assertion declares that the argument of SortedListmust be a type with a lt function, so the

environment of the declaration of primesmust contain a declaration of lt:Integer!Integer!Boolean.

This constraint on type arguments resembles the \property lists" of parameters of the form type

generator in Alphard [48, p. 38], or the where clause of a parameterized Clu cluster [33].

Note that the declaration of primes does not bind the current value of lt into primes.

let insert = �T:* 3 lt: T!T!Boolean ��v:T ��l:SortedList T �

: : : (lt v (head l)) : : : in

let lt = �x:Integer ��y:Integer �(gt x y) in

in : : : insert[Integer] 7 primes : : :

Because of the rules of function application, the lt routine that is called by insert is the one

visible at the call site, which is actually an alias for gt, not the one visible at the declaration of

primes.

3.1.6 Specialization

The type-checking rules given above require that for each x : � in an assertion, there be an x : �

in the environment of the call, and that the two types match exactly (after the substitution of
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type arguments). It may happen that the environment contains an x that does not have type � ,

but does have a polymorphic type, and that binding some of its type parameters can create a

specialization to � . For instance,

let f = �T:* 3 g:T ! T ��p:T �e

1

in

let g: 8S:*3; � S ! S

= �S:*3; ��x:S � e

2

in f[Integer] 5

does not type-check because the g visible at the call site does not have type Integer !Integer:

instead, it is polymorphic. A programmer who wishes to use g must �rst specialize it for the type

Integer.

let f = �T:* 3 g:T ! T ��p:T �e

1

in

let g: 8S:*3; � S ! S = �S:*3; ��x:S �e

2

in

let g: Integer ! Integer = g[Integer]

in f[Integer] 5

(The call to g in the inner g is not a recursive call; g[Integer] is evaluated outside of the scope

of the inner declaration of g, by the de�nition of let.) If specialization must remove some type

parameter other than the �rst, a slightly more complex expression will su�ce.

let h: 8T1:*3; � 8T2:*3; �T1 ! T2

= �T1:*3; ��T2:*3; � e

1

in

let h: 8T1:*3; � T1 ! Integer

= �T1:*3; �h[T1][Integer]

in e

2

Specialization can remove assertion declarations as well as type parameters. In this example

the inner g removes x from the outer g's assertion by binding in a call to the polymorphic x. The

result can be passed to f, which requires an argument that has no assertion declarations.

let f = �g:8T:*3; �T ! T � e

1

in

let g: 8T:* 3 x:T ! T �T ! T

= �T:* 3 x:T ! T ��y:T � e

2

in

let x = �T:* 3 ; � T ! T.e

3

in

let g = �T:*3; �(let x:T ! T = x[T] in g[T])

in f g
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This situation is a modest improvement over the corresponding situation in programming

languages with plain universal quanti�cation, since in those languages the specialization must

appear as an explicit parameter. However, the necessity of creating the specialization still hampers

generalizability, since generalizing a routine may force many clients to create specializations.

(Furthermore, since the routine does not appear as an explicit argument, locating these clients

will be di�cult.)

3.1.7 Argument Inference

F

3

!

as de�ned above requires that type arguments of polymorphic functions appear explicitly,

and it requires explicit de�nition of specializations. It also does not allow overloading of term

variables. All three of these restrictions can be removed by applying an algorithm like the one for

ForceOne-style languages described by Cormack and Wright and Bumbulis, which was mentioned

in section 2.2.2. Programs written in F

3

!

can be converted to the desired form by rewriting their

assertion declarations as implicit parameters, and then the Cormack-Wright-Bumbulis algorithm

can be applied to the result.

Once overloading is allowed, the de�nition of environment concatenation reduces to simple set

union. If two environments being concatenated declare the same term variable with the same type

(or the same type variable with the same kind), the union operation combines the declarations.

If they declare the same variable with di�erent types (or kinds), the union operation preserves

both declarations, and overload resolution distinguishes between them.

Type argument inference emphasizes the di�erence between �-binding and �-binding of type

parameters: arguments to �-bound parameters may be inferred, but arguments to �-bound pa-

rameters must always be speci�ed explicitly.

3.2 Use of Contexts and Assertions

3.2.1 Guidance

A programming system that provides contexts will, over time, build up a library of contexts that

represent useful notions. These contexts can guide programmers who wish to implement other,

related notions. This guidance has three aspects.

� It speci�es the complete set of operations that are necessary to implement the notion.
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� It gives the required names and types of the operations. This information is crucial in a

polymorphism system based on overloading.

� It gives information about programming style. Consider the notion \stack of integers", and

a possible implementation in the C programming language that uses linked lists.

struct element f

int i; /* A value on the stack */

struct element *next; /* Next stack element */

g;

typedef struct element* IntStack;

The push operation might be implemented in a \functional" style, where it returns a new

stack with a new value on top.

IntStack push(IntStack s, int v) f

IntStack newelt = malloc(sizeof(struct element));

newelt->i = v;

newelt->next = s;

return newelt;

g

It might also use an \object-oriented" style, where it modi�es an existing stack and returns

nothing.

void push(IntStack *sp, int v) f

IntStack newelt = malloc(sizeof(struct element));

newelt->i = v;

newelt->next = *sp;

*sp = newelt;

return;

g

These styles produce di�erent contexts, since the types of the operations di�er. If program-

mers stick to the style described by available contexts when they implement related notions,

more opportunities for reuse will occur.
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3.2.2 Abstract Superclasses

Contexts resemble pure abstract superclasses in that they de�ne interfaces of instances of types,

not implementations of types. An assertion that a type satis�es a context serves many of the

same purposes as a declaration that a class inherits from an abstract superclass. However, type

declarations do not explicitly list the contexts that they satisfy, so new contexts can be added

to describe existing types, and new operations can be added to allow existing types to satisfy

existing contexts. Also, contexts do not force operation types to follow a contravariant pattern.

Given the context

context addable = �T:* �plus:T ! T ! T

the assertions addable Integer and addable Fraction would produce the covariant declara-

tions

plus:Integer ! Integer ! Integer

plus:Fraction ! Fraction ! Fraction

Contravariant routine subtype rules force abstract superclass-based system to use imprecise dec-

larations:

Addable = h: : : plus:Addable ! Addable : : : i

Integer = h: : : plus:Addable ! Integer : : : i

Fraction = h: : : plus:Addable ! Fraction : : : i

The subtype-style declarations also allow mixed-mode operations, with their bene�ts and di�-

culties. The addable context does not; mixed-mode addition operations would require a more

complex, multi-parameter context.

Contexts and polymorphic routines can be used in the manner of impure abstract superclasses

to help programmers to provide full implementations of notions. Consider collection, which

declares useful operations and values for collection types C with element type E.

context collection = �C:* ��E:* �

nil: C, -- An empty collection.

is_empty: C ! Boolean, -- Is the collection empty?

add: C ! E ! C, -- Add an element to a collection.
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drop: C ! C, -- Remove front from the collection.

front: C ! E, -- Return an arbitrary element.

map: C ! (E ! E) ! C -- Apply a function to every element.

The map operation can be implemented using the other operations. The basic operations can

be abstracted into a second context, collection_base, and a polymorphic map routine can use

collection_base.

context collection_base = �C:* ��E:* �

nil: C,

is_empty: C ! Boolean,

add: C ! E ! C,

front: C ! E,

drop: C ! C

in let map = �C:*3; ��E:* 3 collection_base C E �

�c:C ��f:E ! E � e

1

in e

2

A programmer implementing a new collection type would only have to write the routines named

by collection_base; the type would satisfy collection because the polymorphic map can be

specialized for it. (The programmer might still choose to write a type-speci�c version of map for

e�ciency reasons.)

In a class-based language, a programmer can use multiple inheritance from several abstract

superclasses as a way of de�ning a class that has several interfaces. Each interface provides a

di�erent view of instances of the class, for use by di�erent clients. The equivalent situation in

F

3

!

is a type that simultaneously satis�es many contexts. A bu�er type could satisfy \producer"

and \consumer" contexts; a library type could have di�erent views for clients that use the type

directly, and for clients that extend the type to create new types. In the case of the class, the

set of interfaces is limited by the set of superclasses in the class's declaration, while in F

3

!

an

existing type can satisfy newer contexts. Furthermore, when multiple inheritance is used, the

problem of multiple inherited implementations of a single entity arises. This problem does not

occur with contexts, because contexts only contain declarations; there is no need to select or

combine implementations.

Finally, the collection context above describes a relationship between two types: \instances

of type C contain elements of type E". It does not correspond to any single abstract superclass;
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instead it corresponds to a family of abstract superclasses with distinct element types. An object-

oriented language with parameterized classes could imitate collection by declaring a parameter-

ized abstract superclass for collections (corresponding to collection's C parameter) that takes

an element type (corresponding to the E parameter) as an argument. However, contexts can

describe relationships among types that parameterized classes can not express in a natural way.

One example is a \transitive conversion" relationship.

context tcvt = �A:* ��B:* ��C:* � cvt: A ! B, cvt: B ! C in

let cvt = �A:*3; ��B:*3; ��C:*3 tcvt A B C �

�a:A �cvt (cvt a)

\Position" and \o�set" types provide a second example. A position value marks a place along

a dimension. An o�set value represents the distance between two positions. Calendar dates are

position values, where the o�sets represents a number of days. Similarly, memory addresses are

position values, where the o�sets represent numbers of bytes. Only certain operations between

positions and o�sets are meaningful.

context dimension = �Position:* ��Offset:* �

+: Position ! Offset ! Position,

+: Offset ! Position ! Position,

-: Position ! Offset ! Position,

-: Position ! Position ! Offset in

: : : dimension Date Day : : :

: : : dimension Address Integer : : :

3.2.3 Context Hierarchies

Since assertions are environments, they can sensibly appear in the bodies of contexts. For example,

collection can be rewritten as

context collection = �C:* ��E:* �

collection_base C E,

map: C ! (E ! E) ! C

This produces the same set of declarations as the original version of collection. (It produces

a set, not some sort of nested structure, because the \," concatenation operation produces the

union of its operands.)
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The use of one context in another creates hierarchies of contexts, which re
ect relationships

between the corresponding notions. This resembles the use of inheritance in object-oriented

languages to create hierarchies of abstract superclasses. The \child" context contains (and hence

reuses) the declarations in the \parent" contexts. Multiple inheritance corresponds to the use of

more than one assertion, but once again, the problem of multiple inherited implementations of an

entity does not arise.

3.2.4 Abstract Types

Recall that the type statement does not provide an abstract type facility. However, within the

body of a polymorphic function �t : �3; � e, the type t appears to be a primitive type, even

though the type argument passed to it need not be. Reynolds [44] used this as the basis of an

abstract type facility. A program that uses an abstract type is treated as a polymorphic routine,

parameterized by the abstract type. Operations on the type are treated as function parameters

of the program. The implementation of the abstract type and the routines that implement its

operations are passed as arguments to the program. The program

abstype Complex with plus:Complex ! Complex ! Complex

in let c1: Complex = : : : in

let c2: Complex = : : : in

: : : plus c1 c2 : : :

is hre:Real � im:Reali

with plus = �x: Complex ��y: Complex �e

1

would be modeled in F

3

!

by

(�Complex:*3; ��plus:Complex ! Complex ! Complex �

let c1: Complex = : : : in

let c2: Complex = : : : in

: : : plus c1 c2 : : :)

[hre:Real � im:Reali]

(�x:hre:Real � im:Reali ��y:hre:Real � im:Reali � e

1

)

Assertions allow a modi�ed version of this scheme. The abstract type is still represented as

a type parameter, but its operations are declared by an assertion, which de�nes operations that

can be performed on the abstract type; it is similar to an import statement.
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abstype Complex 3 addable Complex

in let c1: Complex = : : : in

let c2: Complex = : : : in

: : : plus c1 c2 : : :

is hre:Real � im:Reali

with plus = �x: Complex ��y: Complex �e

1

The translation of this sort of program into F

3

!

is more complex, because the type parameter

must be passed to the program within a scope where the assertion declarations are de�ned. It

would be modeled by

let plus = �x: hre:Real � im:Reali �

�y: hre:Real � im:Reali � e

1

in (�Complex:* 3 addable Complex �

let c1: Complex = : : : in

let c2: Complex = : : : in

: : : plus c1 c2 : : :)

[hre:Real � im:Reali]

3.2.5 Existential Types

Mitchell and Plotkin [40] describe a connection between abstract types and existential types,

which have the form 9t � � . The intuitive meaning of x : 9t � � is that some unknown type with

kind � exists such that, if it were named t, then x would contain a value of type � . Mitchell and

Plotkin treat t as an abstract type, and use a tuple (or unlabeled record) type for � ; then the

tuple �elds are operations on (and values of) the type. A data algebra is a value that has an

existential type. It contains implementations of the abstract type and the values and operations

in � . A pack expression creates data algebras out of implementations of the abstract type and

the tuple �elds. A variant of abstype explodes data algebras and gives a name to the type and

to each tuple �eld. Using these facilities, the complex example used above becomes

abstype Complex

with plus:Complex ! Complex ! Complex

in let c1: Complex = : : : in

let c2: Complex = : : : in
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: : : plus c1 c2 : : :

is pack hReal � Reali,

�x: hReal � Reali ��y: hReal � Reali � e

1

to 9t � ht ! t ! ti

Data algebras are �rst class values that can be passed as parameters or returned from functions.

In the example above, the pack expression could be replaced by an expression that returns either

a polar or a Cartesian implementation of complex numbers, depending upon circumstances.

Universally quanti�ed types can encode existential types, using the technique mentioned on

page 31:

let p: 9t � �

1

= pack �

2

, e to 9t � �

1

becomes

let p: 8r:*3; � (8t:*3; � �

1

! r) ! r

= �r:*3; ��o:(8t:*3; � �

1

! r) �o[�

2

] e

The abstype statement has a more complex equivalent. If the result of the statement

abstype a with x:�

2

in e

1

is e

2

has type �

1

and e

2

has type 9t � �

2

, the equivalent is

e

2

[�

1

] (�a:*3; ��v:�

2

� e

1

)

except that any reference to x in e

1

must be replaced by an expression that extracts the correct

�eld from v.

Given this equivalence, it seems natural to use a slightly di�erent form of existential type that

uses assertions.

9t : k3� � �

1

� 8r : �3; � (8t : k3� � �

1

!r)!r

pack �

2

; e

1

to 9t : k3� � �

1

� �r : �3; ��o : (8t : k3� � �

1

!r) � o[�

2

]e

1

abstype t : k3� with x : �

1

in e

3

is e

2

� e

2

[�

3

](�t : k3� ��x : �

1

� e

3

)

where �

1

is the type of the contents of the data algebra, �

2

is the hidden type, and �

3

is the result

type of the abstype statement. The assertion declarations produced by � declare operations on
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and values of the unknown type t, just as some of the �elds of a tuple type do in the traditional

existential type. �

1

is made up of the remaining �elds from the tuple; it can be viewed as a value

held inside the data algebra. For instance, a value of type 9t:*3addable t �t contains a value

with a type that is unknown, but is known to have a plus routine.

The type and kind checking rules for existential types and data algebras follow from those for

universal types and polymorphic functions, and in fact are the same as those given by Mitchell

and Plotkin if the parts that deal with contexts, assertions, and kinds are ignored. An existential

type is a term type, because the equivalent universal type is.

�

1

; t : k;�

2

` �

1

: �

�

1

` (9t : k3�

2

� �

1

) : �

The type-checking rule for the pack statement follows from the rules for the equivalent �

expression. The environment of a pack statement must contain the assertion declarations. This

is analogous to the way that assertion declarations are checked against the calling environment

when a type is passed to a polymorphic function.

�

1

` �

2

: k �

1

` e

1

: �

1

[t := �

2

] �

2

[t := �

2

] � �

1

�

1

` (pack �

2

; e

1

to 9t : k3�

2

� �

1

) : 9t : k3�

2

� �

1

Similarly, the type rule for abstype follows from the rules for the equivalent type application.

The abstype statement has an assertion that adds the assertion declarations to the environment

of its body, just as the assertion in a polymorphic function adds to the environment of the function

body. It also declares a name for the value held in the data algebra.

�

1

` e

2

: 9t : k3�

2

� �

1

�

1

; t : k;�

2

; x : �

1

` e

3

: �

3

�

1

` (abstype t : k3�

2

with x : �

1

in e

3

is e

2

) : �

3

(As in [40], t must not be free in �

1

or in the type of any variable other than x in e

1

, to ensure

that the representation of the abstract type does not escape from the abstype statement.) The

semantics of the modi�ed pack and abstype statements are that the values bound to the assertion

declarations in the environment of pack are implicitly packaged in the data algebra, and made

available in the body of abstype. In Mitchell and Plotkin's original version, those values had to

be explicitly packed and unpacked.

Existential types with assertions are not fundamentally di�erent from ordinary existential

types, but they encourage a di�erent interpretation. 9t � h : : : i can be thought of as the type of (or

the interface of) a module; the �elds of the tuple type are the operations and values declared by

the module, and a data algebra with that existential type implements the module. The separation

of assertion declarations from the \data" portion of 9t : �3� � t suggests treating it as an unknown
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type t that is known to support the operations and constants in �; it de�nes a polymorphic

data type (whereas 8t : �3� � � de�nes a polymorphic routine type). Between these two views lie

existential types with non-trivial assertions and with non-trivial bodies that reveal some structure:

given the declaration

x:9T:* 3 addable T � hT � Ti

we do not know the type of the �elds of x, but we know that they have exactly the same type,

and that they can be added together.

A data algebra with a trivial body, 9t : �3� � t, has an unknown type but a known set of oper-

ations, and therefore resembles an object in an object-oriented language. This can be combined

with other type generators. For instance, List 9t:*3addable t �t is a polymorphic list type,

where every element has an addable type, but di�erent elements can have di�erent actual types.

Programs that compute with data algebras tend to unpack, manipulate, and repack them

without making any mention of the hidden type. For instance, values of an existential addable

type can be doubled by the routine

let double: (9T:* 3 addable T �T) ! (9T:* 3 addable T �T)

= �x:(9T:* 3 addable T � T) �

abstype s with y: T in

pack s, (plus y y) to 9T:* 3 addable T �T

is x

The verbosity of this example suggests that an abbreviation would be useful. The following open

statement rebinds the name of a data algebra so that it refers to the contents of the algebra and

repacks the result of an expression using the contents.

�

1

` x : 9t : k3�

2

� �

1

�

1

; t : k;�

2

; x : �

1

` e : �

2

�

2

` (open x in e) : 9t : k3�

2

� �

2

let double: (9T 3 addable T �T) ! (9T:* 3 addable T �T)

= �x:(9T:* 3 addable T � T) �

open x in (plus x x)
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3.2.6 Inheritance

Assertions, when used with type declarations, provide a facility similar to subtyping. The \class"

construct of object-oriented languages provides a second facility: inheritance of routines and

�elds. Assertions can provide some support for inheritance-like facilities by using them with type

de�nitions.

Classes can be simulated by record types, and �eld inheritance by having the \child" record

type contain an instance of the \parent". Routine inheritance can be simulated by writing a

\cover" routine for the child type that extracts the parent �eld and passes it to the inherited

routine.

type Region = horigin:Pointi in

let move: Region ! Point ! Region

= �r:Region ��p:Point � : : : in

type Rect = hparent:Region � bottom_right:Pointi

let move = �r:Rect ��p:Point �move r.parent p

This can be automated by interpreting an assertion in the scope of a type de�nition to be a

declaration of routines that must be de�ned in the scope of the de�nition. If the programmer

leaves some of the routines unde�ned in that scope, then the language must construct cover

routines from similar routines that exist for its �elds type.

context region = �T:* �move:T ! Point ! T in

type Region = horigin:Pointi in

let move = �r:Region ��p:Point � : : : in

type Rect 3 region Rect = hparent:Region � bottom_right:Pointi

In this case, the move routine for Rect would be created automatically, because the assertion

region Rect requires that it exist. This is akin to the default de�nition of certain common

operations (such as assignment, or equality comparisons), to the way that Ada de�nes derived

routines for derived types [57, x3.4], and to Wirth's record extensions [64].

3.3 Contexts and Polymorphism

Notions such as \collection" are useful because of the operations that can be performed on them.

Types that implement some version of the notion will implement the operations with routines,
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and corresponding routines will have the same name, and will have types that share a pattern of

argument and result types. The declarations of these routines can be abstracted into a context. In

that case, the context is a programming-language representation of the notion, and an assertion

that a type satis�es the context also asserts that the type implements the notion. Hierarchical

connections among contexts re
ect connections among the corresponding notions.

Contextual polymorphism is a form of parametric polymorphism, where assertions de�ne the

structure that arguments are required to have. It allows precise, general de�nitions of interfaces,

since assertions can describe exactly what operations a polymorphic routine needs, and because

the use of named type parameters provides type matching. An automatic type argument inference

and specialization mechanism, similar to that of ForceOne, provides generalizability and incre-

mentality. Contexts do nothing to hinder the separation of routines and routine interfaces, and

provide a way to specify type interfaces separately from types, by specifying operations supported

by the type. Among its drawbacks are a lack of support for data and routine inheritance, and a

lack of direct support for polymorphic data. Polymorphic data can be provided indirectly, through

the encoding discussed in section 2.2.2, or through some other facility, such as an existential type

mechanism.

3.3.1 Subtypes and F-Bounded Quanti�cation

Contextual polymorphism does not involve any notion of subtyping. However, assertions are

related to the concept of \subtyping". If a context has one type parameter, then all of the types

that satisfy it are in some sense subtypes of an imaginary type containing all of the values of

those types. If this imaginary type is identi�ed with the context, then an assertion that a type

satis�es the context resembles a declaration that the type is a subtype of the imaginary type.

However, this analogy breaks down for contexts with more than one parameter. Contexts can

express relationships that are more complex than \is a subtype of".

Contexts and assertions resemble F-bounded quanti�cation's type functions and type bound

expressions: compare

context ordered = �T:* �lt:T ! T ! Boolean in

let min = �T:* 3 ordered T ��x:T ��y:T �

if (lt x y) then x else y

in e

and
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Ordered[T] = hlt: T ! Booleani

min = �T � Ordered[T] ��x:T ��y:T �

if (x.lt y) then x else y

Both mechanisms constrain the types that are acceptable as arguments to the polymorphic rou-

tines, both allow static type checking by de�ning a set of available operations and values for the

type, and both provide dynamic binding. The types of the declared variables in the two cases

are similar, considering that a record is an implicit parameter of its routine �elds; generally, the

record type corresponds to the type parameter of the context.

However, assertions are not record types; they constrain argument types by de�ning declara-

tions that must exist in the environment, instead of �elds that a record must have. Hence the

declared variables are directly available through normal binding mechanisms, instead of through

�eld selection from a data parameter or a value that can be computed from a data parameter.

Consider the meaning of a plus operation on lists of integers. It might concatenate its arguments,

or it might perform pairwise additions on the list elements.

let l: List Integer in

let plus: List Integer ! List Integer

= : : : (concatenate arguments) : : :

in double l -- concatenates l to itself.

let plus: List Integer ! List Integer

= : : : (add elements together)

in double l -- doubles each element.

In F-bounded quanti�cation, plus must be a �eld of the List type. The implementor of List

must choose one implementation for plus, and either choice will be wrong for some client of List.

In fact, using contextual polymorphism, a list could be concatenated to itself in one part of a

program and doubled element-wise in another. An equivalent program written using F-bounded

quanti�cation would have to de�ne a new type with a rebound plus, convert the list to the new

type (so that the new plus operation will be available), and convert the result back to the original

type. (The conversion process becomes even more complicated when an operation on the elements

of a data structure must be rebound.) This di�erence means that there is no direct translation

of a contextual polymorphism program into an F-bounded quanti�cation program, even though

assertions can be translated into record types fairly easily, because data arguments may require
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extensive repackaging. It also means that contextual polymorphism has an advantage over F-

bounded quanti�cation in 
exibility and incrementality, because programs can more easily rebind

or add operations to meet local needs.

F-bounded quanti�cation can not specify interfaces as precisely as contextual polymorphism,

because subtyping weakens the property of type matching. Contextual polymorphism may have

a small advantage in e�ciency because of this, and also because entities declared by assertion

declarations are directly accessible, while the �elds of a record type are only available indirectly

via �eld selection.

3.3.2 Parameterized Modules

Contexts resemble OBJ2's theories and SML's signatures. The declarations in a context's body

correspond to the \op" declarations in a theory, and the type parameter of a context corresponds

to a sort declaration in a theory. Applying a context in a routine corresponds to using a theory

in a parameterized object that de�nes the routine. The type-checking rules that look for assertion

declarations in the calling environment corresponds to the use of a default view, and an explicit

view corresponds to a set of declarations that rename values. As an example, the ordered context

given above corresponds to the theory

th ORDERED is

extending BOOL.

sort T.

op lt: T T -> Bool.

endth

obj MIN[O::ORDERED] is

op min: T.O T.O -> T.O.

vars t1, t2: T.O.

eq: min(t1, t2) = if lt.O(t1, t2) then t1 else t2 fi.

endo

view INT_ORDERED of INT as ORDERED is

sort T to Int.

vars i, j: T.
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op: lt(i, j) to i < j.

endv

(At �rst glance, it seems that context parameters should correspond to theory parameters

instead of sort declarations, but that approach is needlessly complex. If ORDERED took a parameter

and de�ned lt in terms of the parameter's sort, then MIN would need two parameters: one called

T to provide the sort, and the other (matching ORDERED[T]) to provide lt.)

Both contexts and theories can describe relationships between types. However, a theory de-

scribes the interface of a single argument module, while a context can be applied to several type

arguments. This means that OBJ2 programs must sometimes construct modules solely to match

theories. Consider how the two systems would implement a routine to sum the elements of a

collection.

context sum_collection = �C:* ��E:* �

plus: E ! E ! E,

front: C ! E, -- Return an arbitrary element.

: : :

in let sum: 8C:* 3 ; � 8E:* 3 sum_collection C E �C ! E = : : :

th SUM_COLLECTION is

sorts C E.

op plus: E -> E -> E.

op front: C ! E.

: : :

endth

obj SUM[SC::SUM_COLLECTION] is

op sum: C.SC -> E.SC.

: : :

endo

Now consider an OBJ2 program with a POINT module that provides a Point type, a POINTSET

module that provides a PointSet type, and a POINTPLUS module that provides a plus operation

on points. To sum a set of points, an OBJ2 program must create a new module that combines

POINTSET and POINTPLUS and can be viewed as a SUM_COLLECTION. A contextual polymorphism

program would just pass Point and PointSet to sum.
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The main di�erence between contexts and theories is the level that they operate on. Theories

operate at the level of modules, and are compile-time phenomena. Contexts operate at the level

of types, and although they also are statically checked, the types that they constrain are dynamic

values. The routines that use them can be called through statically-unpredictable paths, or can

even be recursive; OBJ2 and SML do not allow recursive modules.

3.3.3 Descriptive Classes

Contexts closely resemble X2's descriptive classes. Compare the ordered context above to

descriptive class ordered(T) is

lt: proc(ordered(T), ordered(T)) returns ordered(T);

end class;

procedure min(x:ordered(T), y:ordered(T)) returns ordered(T);

where T is free

begin

if x.less(x, y) then

return x;

else

return y;

end if

end min;

Both systems allow the same \abstract superclass" style of programming, and both have the

same advantages with respect to the lack of a �xed inheritance hierarchy, the ease of adding new

contexts and new operations, and the avoidance of multiple inheritance's problems.

X2 uses an explicit instance statement, where contextual polymorphism implicitly checks

assertions against the calling environment. Hence contextual polymorphism can not match the

instance statement's ability to state if-and-only-if relationships among types. An instance state-

ment also provides useful documentation, and provides a way to rename routines; however, the

sort_list example of the previous section shows that renaming is simple in F

3

!

.

The two mechanisms di�er most in that assertions are not used as types; they constrain type

parameters, instead of serving as parameter types. This resolves some questions left unanswered

in the discussion of X2. The X2 declarations
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procedure p(i:Integer) returns order(T) where T is free

l:list(order(T))

may or may not be legal, but F

3

!

does not present these problems because contexts and types

are distinct entities. Furthermore, F

3

!

allows hierarchies of contexts and de�nes the meaning

of assertions applied to the parameters of type generators. X2 does not allow hierarchies of

descriptive parameters, and Sandberg does not discuss the use of descriptive types with type

generators.

3.4 Summary

This chapter has described a variation of parametric polymorphism called contextual polymor-

phism. This form of polymorphism provides a larger role for environments within a programming

language. Environments contain declarations of types and terms. Contexts are abstractions of

environments, in the same way that routines are abstractions of terms. Assertions apply contexts

to arguments to produce declarations. Contextual polymorphism uses assertions to constrain the

type parameters of polymorphic routines and type generators; the items declared by an assertion

must exist in the environment of a call to the polymorphic routine or a type generator application.

Inference algorithms infer type arguments of, and generate specializations of, polymorphic rou-

tines. Assertions can be extended to other programming language mechanisms, such as abstract

types and existential types.

Contextual polymorphism preserves the desirable properties of other parametric polymorphism

variants: strong static checking, separation of interfaces from implementations, precise interfaces

(including type matching within an interface), generality, generalizability, and incrementality.

Contexts also provide an abstraction mechanism that, like the supertype relationships of inclu-

sion polymorphism, provides hierarchical descriptions of notions, and guidance and assistance to

programmers. Contexts can also describe relationships among types, such as \type C is a collection

of elements of type E".



Chapter 4

Notes on Cforall

If new ideas about programming languages are to be tested, or even e�ectively demonstrated, they

must be embedded in a language. This is often done by creating a new language. This shows the

ideas o� to their best advantage, and provides the language designer with all of the satisfactions

that come from designing a new thing from scratch. However, new languages only rarely gain

wide-spread acceptance. A second approach uses the ideas to extend an existing language. This

helps people examine the new ideas, because they can bring their knowledge of the base language

to bear. It also exposes the new ideas to a somewhat hostile environment, so their 
aws will be

more readily apparent.

This chapter discusses some features of Cforall, a \test bed" for contexts, assertions, and

related ideas, that extends ANSI standard C [2]. The purpose of Cforall's design is to show that

contexts and assertions provide a practical and e�cient form of polymorphism, and that these

ideas lead to a smaller, simpler language kernel. The choice of C as a base language is somewhat

arbitrary. Many statically-typed imperative languages could serve as a base for this work, but

C's traditional emphasis on e�ciency is an important constraint, its history of other extensions

(such as C++ [19] and Objective-C [17]) provides interesting comparisons, and the availability

of source code for high-quality C compilers (such as gcc [51] and lcc [20]) will ease the job of

implementation.

77
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4.1 Overloading

Contextual polymorphism depends crucially on overloading: related notions are implemented

by declarations of the same identi�er with related types, and contexts abstract out the pattern

common to the types. Hence Cforall must allow extensive overloading of routine and object

identi�ers. C's semantics restrict (and encourage) overloading in certain ways.

Two declarations of an identi�er that have overlapping scopes overload each other unless

� they have compatible types, according to C's type compatibility rules.

� one declares a routine, and the other declares a pointer to a compatible routine type. (Since

C technically treats routine identi�ers as pointers to routines in expressions, the two cases

are indistinguishable.)

� one declares an array type, the other declares a pointer type, and the element type and the

pointed-at type are compatible. (Since C treats arrays as pointers in expressions, the two

cases are indistinguishable. This is a restriction, since it is conceivable that a programmer

might want to de�ne an operation for pointers and for the elements of an array.)

� one declaration declares a type or typedef name. (C's grammar requires that type names

be distinct from other identi�ers. This is a restriction, since it would be convenient to use

the same identi�er for a type and for a routine that constructs values of the type.)

If one of these conditions holds, and the declarations occur in di�erent scopes, the inner one hides

the outer one; otherwise, the declarations are illegal.

Cforall programmers can overload most of C's operators by declaring routines with special

identi�ers; for instance, the identi�er \?+?" represents the addition operator, and the expression

\a + b" is considered to be syntactic sugar for the routine call \?+?(a, b)". (The question marks

represent the routine's operands: the identi�er for the unary \+" operation is \+?".) Programmers

can not overload the \
ow of control" operators \&&" (short-circuit \and"), \||" (short-circuit

\or"), and \?:" (the conditional expression) because, unlike routines, they do not always evaluate

their operands.

The constants \0" and \1" are important to the semantics of C. Besides their normal roles as

arithmetic identities, \0" represents the null pointer and the boolean \false" constant, and plays

a role in the de�nitions of the logical operators, while \1" represents the \true" constant and is

involved in the de�nition of many arithmetic operators, including pointer arithmetic. Along with
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\!=", they de�ne the unoverloadable 
ow-of-control operators: \&&" returns 1 if both operands are

unequal to 0, and returns 0 otherwise. Consequently, overloading \0" and \1" is highly desirable,

and Cforall allows it by treating those tokens as special identi�ers.

C and Cforall use the word object to mean a contiguous region of a computer's data memory.

Variables, arrays, structures, and structure �elds are all objects, but routines are not. Unlike

Ada, Cforall allows overloading of object identi�ers, because the names of constants like \0" and

\1" overloadable, and a convenient way to implement a constant for some type T is to declare an

object of type const T. Unlike C++, Cforall allows an identi�er to be overloaded for two routine

types that di�er only in their result types; it did not seem sensible to allow T1 foo and T2 foo,

and then forbid T1 bar(void) and T2 bar(void).

C considers all enumeration constants to have type int. Therefore, enumeration constants

can not be overloaded in Cforall, and enumeration types are considered to be compatible with

int

1

. Furthermore, C and Cforall consider all character literals to have type int, not char. These

decisions restrict overloading severely. C++ does not have to follow C as closely as Cforall does,

and in this situation C++ treats enumeration types as distinct types, enumeration constants as

values of their enumeration types, and character literals as char values.

Cforall treats C's overloadable operators and \0" and \1" constants as a group of prede�ned

routines and objects. They are treated as being de�ned in each translation unit, so that com-

pilers can perform optimizations such as in-line expansion on a translation unit (as opposed to

program-wide) basis. They have addresses (although the result of comparing pointers to them is

implementation dependent), and can be passed as parameters to other routines.

4.2 Lvalues

The expressions of F

3

!

only dealt with values. C and Cforall also provide lvalue expressions, which

designate a region of data storage. Lvalues usually occur in assignment, subscripting, and pointer

dereference expressions. Contextual polymorphism must handle lvalues as well as ordinary values.

The simplest way to deal with an lvalue is to eliminate it and use a pointer value instead.

For instance, Cforall allows programmers to overload assignment, using the identi�ers \?=?" for

simple assignment, \?+=?" for increment, and so on. The �rst parameter of an assignment

routine points to the lvalue to be modi�ed. The assignment expression \a=b" is equivalent to

1

ANSI C requires that enumeration types be compatible with some integer type, but not necessarily int.
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the routine call \?=?(&a,b)", where the \address-of" operator \&" returns a pointer to a. This

guarantees that a is an lvalue, since only lvalues have addresses. However, this scheme does not

handle assignments to register variables or to bit �elds, since Cforall has no \pointer to register"

or \pointer to bit �eld" types. For those sorts of lvalues, Cforall uses the programmer-de�ned

assignment operator to assign to a temporary variable, then copies the temporary to the lvalue.

The subscript and dereference operators return lvalues, and can not be easily rewritten to use

pointer values instead. These cases can be handled by an \lvalue" type generator. Cforall provides

this through an lvalue type quali�er. For example, a programmer who created a Flex type that

implements an expandable array of integers would want to overload the subscript operator as

follows:

lvalue int ?[?] (Flex array, int index);

The lvalue quali�er indicates that the result of subscripting a Flex is an integer lvalue, not just

an integer value.

4.3 Polymorphism

4.3.1 Type Abstraction

Cforall provides a forall speci�er that provides type abstraction, like �T � � in a polymorphic

lambda calculus. A polymorphic swap routine can be written as

forall(type T)

void swap(T* t1, T* t2) f

T temp = *t1;

*t1 = *t2;

*t2 = temp;

g

int i1, i2;

struct f double x,y; g s1, s2;

swap(&i1, &i2);

swap(&s1, &s2);
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Here, \type T" declares a parameter identi�er, T, which denotes a type within the declaration of

swap. The compiler infers the corresponding type argument from the data arguments in calls to

swap. T takes on the values int and struct f double x,y; g in the two calls shown.

Cforall has no equivalent of the lambda calculus's e[� ] type application term. The compiler

must always infer all type arguments. Cforall restricts the form of forall declarations to make

this possible. The body of the declaration (the equivalent of � in �t � � ) must have a routine

type, and every type parameter must be inferable from the \ordinary" parameters: it must be

used in the type of at least one ordinary parameter (or, as is discussed below, in the type of an

assertion declaration whose type mentions some other inferable type parameter). Besides making

inference possible, this restriction sidesteps questions about the legality of polymorphic data type

declarations like

forall(type T) struct f T a, b; g;

type is not a type speci�er, so there are no such types as \pointer to type", \array of type",

or \routine returning type", and no variables or structure members of type type. Cforall provides

no operations on instances of type; in particular, types can not be assigned or compared. These

restrictions allow simple, e�cient implementations of polymorphic routines. Their �rst conse-

quence is that a type speci�er such as T always refers to the same type value during the lifetime

of any of its instances. Hence a Cforall compiler can statically keep track of the types and type

identi�ers used to declare any object, and can reconstruct its type when necessary. This means

that objects and values do not have to contain type tags. The second consequence is that type

values can have a simple representation, such as the one described for the language ForceOne in

section 2.2.2.

In contrast, T does act as a type speci�er. It can be used in declarations: for instance, \pointer

to T", \array of T", and \routine returning T" are legal types. It can also be used as the operand of

sizeof. Instances of T can be passed as parameters, assigned to each other, initialized, and used as

the operands of sizeof or \&", but no other operations for type T exist by default. Consequently,

the value referred to by a type identi�er must be an object type (a type that describes an object).

This excludes

� type (which can not occur in pointer or structure declarations), bit �eld types (which can

only occur in structure declarations), and routine types. (\Pointer to routine" types are not

excluded.)
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� incomplete types: void, unbounded array types, and structure types that have been de-

clared, but whose members have not been declared. Fortunately, unbounded arrays types

do not come up in practice, because C converts \array of type T" to \pointer to type T"

in expressions. Unfortunately, this restriction makes it impossible to write a polymorphic

routine that accepts a pointer to any data type, and uses the pointed-at type to relate the

types of parameters or the return type. The only alternatives have the form

forall(type T) T* f(T*, T*);

which will not accept pointers to incomplete types, or

void* f(void*, void*);

which does not preserve type information.

� type quali�ers: const and volatile. In a sense, they qualify objects, not types. They can

not be part of type values, because they a�ect the semantics of objects declared with those

type values: volatile a�ects the storage and retrieval of objects, and const a�ects the

set of legal operations. As a result, programmers must often overload polymorphic routines

that operate on pointers for all four combinations of quali�ers, so that the result type will

match the argument type.

forall(type T) const volatile T* f(const volatile T*);

forall(type T) volatile T* f(volatile T*);

forall(type T) const T* f(const T*);

forall(type T) T* f(T*);

4.3.2 Contexts and Assertions

Cforall's context declaration is the equivalent of the context statement de�ned for F

3

!

. A simple

context declaration looks like

context addable(type T) f

T ?+?(T, T);

const T 0;

g;

A context for a notion of a homogeneous list type is
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context list_of(type List, type Element) f

Element car(List);

List cdr(List);

List cons(Element, List);

List nil;

int is_nil(List);

g;

The body of a context can contain any object or routine declaration. Contexts must have at

least one parameter, and all of the parameters must be types. (At present, contexts can not have

data parameters because they would have little use: the only data values that appear in type

expressions are the integer bounds of array types, but C treats array types as pointer types and

performs no array bound checking, so the type system ignores the array bounds.)

Assertions have the form \| list_of(Int_list, int)". They are clauses that can be at-

tached to any type declaration. When they are attached to type declarations in context declara-

tions, they build context hierarchies, and provide the equivalent of the environment concatenation

operation from F

3

!

. For instance,

context list_of_addable(type L,

type E | addable(E) | list_of(L, E)) f g;

describes the notion of homogeneous lists of some addable type, and is equivalent to

context list_of_addable(type List, type Element) f

Element ?+?(Element, Element);

const Element 0;

Element car(List);

List cdr(List);

List cons(Element, List);

List nil;

int is_nil(List);

g;

Assertions usually appear in forall speci�ers.

forall(type L, type E | list_of_addable(L, E))

E sum(L list) f
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E total = 0; /* E's 0, not the int 0! */

while (!is_nil(list)) f

total = total + car(list);

list = cdr(list);

g

return total;

g

Int_list a_list;

int car(Int_list);

Int_list cdr(Int_list);

Int_list cons(int, Int_list);

Int_list nil;

int is_nil(Int_list);

: : :

int i = sum(a_list);

Given the call to sum, a Cforall compiler would infer from the type of a_list that L is Int_list.

It would also �nd appropriately typed car, cdr, cons, nil, is_nil, \0", and \?+?" declarations

in the environment of the call, and infer from the assertion declarations that E is int.

Cormack and Wright suggest implementing polymorphic routines by passing the routines and

constants associated with the type parameters to the routine as extra, invisible arguments. The

presence of contexts in Cforall suggests a somewhat di�erent scheme; once the compiler has

determined that Int_list and int satisfy list_of_addable, it can generate a table of the

assertion declarations produced for them by list_of_addable. This table can be passed as a

single invisible argument to sum, and to any other routine that uses that assertion. In many cases,

the table can be created at compile time. This technique reduces the cost of calling polymorphic

functions, but increases the cost of operations within the polymorphic functions. The tables

resemble the \virtual function tables" created by some implementations of C++ [19, p. 227], and

the \maps" created by the SELF compiler [12].

4.3.3 Local Routines

Cforall programs must sometimes contain routine de�nitions that are local to a scope. The sim-

plest case occurs when a programmer must rename a routine to satisfy a context, or to temporarily
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replace the default version of an operation. For example, assume that Int_list has an append

routine. If the programmer renames append to \?+?", and provides a \0" list, sum can be used to

concatenate all of the elements in a list of Int_lists. Fortunately, C and Cforall treat routines

as pointers to routines; hence an initialized local pointer su�ces for renaming.

Int_list append(Int_list, Int_list);

void foo(Int_list_list l) f

Int_list ?+?(Int_list, Int_list) = append;

const Int_list 0 = nil;

: : : sum(l) : : :

g

Specialization can also create local routines, without programmer intervention. In this exam-

ple, the compiler must create a specialization of length inside g in order for Int_list to satisfy

c.

context c(type T) f int length(T); g;

forall(type T | c(T)) void f(T);

forall(type L, type E | list_of(L, E)) int length(L);

forall(type L, type E | list_of(L, E)) void g(L a_list) f

f(a_list);

g

Specialization is highly desirable; without it, the usefulness of polymorphic routines like length

would be greatly reduced. However, as this example shows, the values specialized upon may be

parameters of the routine body that contains the specialization. One way to implement this is to

have the compiler create a local, specialized routine that passes its arguments, with extra type

information, to the general routine. This implies the existence of nested routines in the style of

Algol 60 or Pascal. This in turn a�ects the calling conventions and entry and exit code of Cforall

routines.

4.4 Overload Resolution

Cforall's overload resolution rules were carefully designed so that the same rules apply to over-

loaded routines and overloaded operators, and so that a set of prede�ned \operator" routines can
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provide much of C's expression semantics. The rules are based on four ideas: implicit conversions,

safe conversions, conversion cost, and degrees of polymorphism.

4.4.1 Implicit Conversion

C de�nes a large number of implicit conversions. The rules governing conversions can vary among

C compilers, because on di�erent computers the range of values of some types may be contained

in or may only overlap the range of other types, and the conversion rules attempt to preserve the

converted value in the largest number of cases. The rules are:

� Values of certain \small" types (char, signed char, unsigned char, short int, and

signed and unsigned int bit-�elds) are converted to int or unsigned int values by the

integral promotions. If an int can contain all values of the original type, then the result is

an int; otherwise the result is an unsigned int.

� An argument of a routine call undergoes a default argument promotion if the type of the

corresponding parameter is unknown. (This happens when the routine has not been declared

with a prototype, or when the routine accepts a varying number of arguments.) The default

argument promotions apply integral promotions to integral arguments and convert float

arguments to double.

� Arithmetic types can all be interconverted during assignment, and during parameter passing

when the type of the corresponding parameter is known.

� Pointers can be converted to and from pointers to void, and type quali�ers can be added

to the pointed-at type.

� Values of type \array of type T" are converted to \pointer to type T" unless they are

operands of sizeof or \&", or are (wide) character literals used in initializers. Routine

designators are converted to pointers to routines unless they are operators of sizeof or \&".

Hence, these types never actually appear in expressions, and can be ignored.

� Binary arithmetic operators make use of what are called the usual arithmetic conversions,

in which the arguments are converted to a common type, which is the type of the result.

The following ordering is de�ned on the arithmetic types:

long double > double > float > long unsigned int

long unsigned int > long int > int

long unsigned int > unsigned int > int:



CHAPTER 4. NOTES ON CFORALL 87

Furthermore, in implementations where long int can contain all of the values of type

unsigned int,

long int > unsigned int

The �rst step in determining the type of the result of a binary operator in C is to apply the

integral promotions to any operands that are values of a \small" type. Then, the least type

that is equal to or greater than both operands' types is chosen as the result type, and the

operands are converted to that type.

4.4.2 Safe Conversions

Consider de�ning a set of Cforall routines that mimic C's semantics as they apply to the multipli-

cation operator. Clearly, one monomorphic routine will not do, since the result type depends on

the operand types. One polymorphic routine will not do, because it would accept non-arithmetic

types (unless contexts were used to restrict the set of operand types; but that leads to circular

de�nitions, because the contexts would naturally be phrased in terms of arithmetic operations).

One monomorphic routine per combination of operands is not satisfactory: the number of routines

needed is large, and the exact set would be implementation dependent because of implementation-

dependent conversions. Besides, the individual conversions will still be present in the language,

because they can be applied to arguments of non-operator routines. It is better to de�ne one

multiplication routine for each arithmetic type, and make use of the existing implicit conversions

when the operands are of di�erent types.

In most cases, if there is a conversion from type T1 to type T2, there is also a conversion

from T2 to T1. This leads to an ambiguity: when an int is multiplied by a long, either operand

could be converted to the other's type. Cforall solves this by designating the usual arithmetic

conversions, conversions to void, pointer conversions that add type quali�ers to the pointed-at

type, and conversions of \pointer to T" to \pointer to void" to be safe conversions, and gives

them preference during overload resolution. Other conversions are unsafe conversions.

Cforall must allow unsafe conversions because C allows them: a float argument can be passed

to a routine with an int parameter. The usual arithmetic conversions and conversions to void

are \safe" because they are built into the de�nition of C expression and statement semantics;

preferring the int-to-long conversion over the reverse means that, when an int is multiplied by

a long, the int will be converted, as is the case in C. The pointer conversions are \safe" because

nothing can be done to the pointed-at value through the converted pointer that could not be
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done through the original pointer; allowing these conversions reduces the number of overloadings

of polymorphic routines on pointers, since all of the pointer arguments will be converted to the

safest operand type.

4.4.3 Conversion Cost

Cforall mimics C's behaviour in applying the usual arithmetic conversions to binary operations

by associating a conversion cost with each safe conversion, and by preferring overload resolutions

with low costs. The following direct safe conversions have a cost of 1:

� from any object type or incomplete type to void;

� from a pointer to any non-void type to a pointer to void;

� from a pointer to any type to a pointer to a version of the type with more type quali�ers;

� an integral promotion;

� from int to unsigned int, and to long int;

� from unsigned int to long unsigned int;

� from unsigned int to long int, if a long int can represent all values of an unsigned

int;

� from long int to long unsigned int;

� from long unsigned int to float;

� from float to double;

� from double to long double.

The cost of any other safe arithmetic conversion is the minimum number of direct safe conversions

needed to produce the same result type (and hence is implementation dependent). For example,

a long int to long double conversion has a cost of 4, because it corresponds to safe conversions

from long int to long unsigned int, then to float, then double, and �nally to long double.
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4.4.4 Degrees of Polymorphism

Cforall de�nes one routine to be less polymorphic than another if it has fewer type parameters,

or if it has the same number of type parameters and fewer of its explicit parameters have types

that depend on a type parameter.

forall(type T, type U) void f1(T, U); /* polymorphic */

forall(type T) void f2(T, T); /* less polymorphic */

forall(type T) void f3(T, int); /* least polymorphic */

Among calls that require only safe conversions, the overload resolution rules prefer calls to less

polymorphic routines over calls to more polymorphic routines, because polymorphism may have

some run-time cost, and because a less polymorphic routine is presumably better tuned to its

arguments. However, calls to more polymorphic routines are preferred to calls to less polymorphic

routines that involve unsafe conversions.

4.4.5 Overload Resolution Rules

Cforall's overload resolution rules can be explained as a bottom-up pass over an expression tree

that selects an interpretation of the expression. It is similar to the overload resolution algorithm

described for Ada by Baker [3], but is extended here to handle polymorphic routines and arithmetic

conversions.

Each expression must have at least one interpretation. Each interpretation has a value and

type.

� Each overloading of an identi�er provides one interpretation of the identi�er.

� The interpretations of expressions involving the overloadable operators are found by treating

them as routine calls, as was explained in section 4.1

� Routine calls have one interpretation for each valid combination of routine interpretations

and argument interpretations, where a combination is valid if the routine's interpretation

accepts the number of arguments given, every argument expression can be implicitly con-

verted to the type of the corresponding parameter, and the environment of the call contains

declarations matching any assertion declarations made by the routine.
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� \s.m" has one interpretation for each valid combination of the interpretations of s and m,

where a combination is valid if s's interpretation is a structure or union with a member

named m.

� \p->m" has one interpretation for each valid combination of the interpretations of p and m,

where a combination is valid if p's interpretation is a pointer to a structure or union with a

member named m.

An expression may have many interpretations, but the interpretations must have distinguish-

able types. If two or more interpretations of \s.m" or \p->m" have compatible types, then they

are replaced by a single ambiguous interpretation. If two or more interpretations of a routine call

have compatible types, the \best" of those interpretations is chosen and the rest are discarded.

� The best interpretations use the fewest unsafe conversions.

� Of these, the best are those that call the routines that are the least polymorphic.

� Of these, the best have the lowest total conversion cost, including all implicit conversions in

the argument subexpressions.

� Of these, the best have the lowest total conversion cost, excluding the implicit conversions

(if any) used to convert the argument expressions to the corresponding parameter types.

If a routine call has no single best interpretation, all of the compatible interpretations are replaced

by a single ambiguous interpretation.

All interpretations of a subexpression are potential operands of higher-level expressions in the

tree. Various situations select some of these interpretations.

� In a cast expression \(t)e", if the expression e has an interpretation that has type t,

that interpretation is selected. Otherwise, e must have some interpretations that can be

converted to type t, and one of them must have a conversion cost lower than any of the

others, with unsafe conversions considered to have in�nite cost. That interpretation must

be unambiguous, and it is selected and converted.

� An expression that is used as a statement, or as the �rst operand of a comma expression,

or as the initializing expression or incrementing expression of a for loop, is implicitly cast

to void.
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� An argument of a routine call is implicitly cast to the type of the corresponding routine

parameter. If the type of the parameter is not known, the argument must have exactly

one interpretation, which must be unambiguous, and which undergoes a default argument

promotion.

� The expression in a return statement is implicitly cast to the return type of the routine.

� Expressions used in initializers are implicitly cast to the type of the object or aggregate

element being initialized.

� An expression e used to control a loop, if statement, or \?:" expression, or used as an

operand of \&&" or \||", is treated as \(int)((e)!=0)". This mirrors the semantics of C,

and compensates for C's lack of a boolean type, while taking advantage of the ability to

overload \!=" and \0".

� The controlling expression of a switch statement must have exactly one interpretation with

an integral type, which must be unambiguous.

� Expressions that are operands of sizeof or \&" must have exactly one interpretation, which

must be unambiguous.

Given the above rules, the C semantics of multiplication expressions can be speci�ed by a set

of seven prede�ned multiplication routines:

int ?*?(int, int); /* ?*?

i

*/

unsigned int ?*?(unsigned int, unsigned int); /* ?*?

ui

*/

unsigned long ?*?(unsigned long, unsigned long); /* ?*?

ul

*/

long int ?*?(long int, long int); /* ?*?

l

*/

float ?*?(float, float); /* ?*?

f

*/

double ?*?(double, double); /* ?*?

d

*/

long double ?*?(long double, long double); /* ?*?

ld

*/

(The subscripted names given in the comments are used to distinguish between the di�erent

routines in the examples that follow.) In the Cforall code:

long int a, b;

a * b;
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\a" and \b" each have one interpretation. The multiplication expression has seven possible

interpretations, one for each interpretation of \*":

?*?

i

( (int)a, (int)b);

?*?

ui

( (unsigned int)a, (unsigned int)b);

?*?

ul

( (unsigned long int)a, (unsigned long int)b);

?*?

l

( (long int)a, (long int)b);

?*?

f

( (float)a, (float)b);

?*?

d

( (double)a, (double)b);

?*?

ld

( (long double)a, (long double)b);

Of these, the �rst three involve unsafe conversions. The fourth has conversion cost 0. The �fth

has cost 2 (two conversions from long int to float), and the sixth and seventh have costs 4 and

6. The expression is implicitly cast to void, since it occurs as a statement. This adds 1 to each

interpretation's conversion cost, and produces seven interpretations with type void. The best of

these is the fourth, since it has no unsafe conversions and has the lowest total cost. Hence, the

interpretation of the statement is (void)?*?

l

( (long int)a, (long int)b).

Note that the C rule that applies integral promotions to \small" operands is no longer needed; it

is implied by the absence of routines that have \small" parameter types. Conversely, programmers

can de�ne operators for them if they are needed.

Now, consider the bitwise complement operator, \~", which is associated with the special

identi�er \~?" and the following prede�ned routines:

int ~?(int); /* ~?

i

*/

unsigned int ~?(unsigned int); /* ~?

ui

*/

long int ~?(long int); /* ~?

l

*/

unsigned long ~?(unsigned long); /* ~?

ul

*/

Given

void f(unsigned long int);

int i;

f(~i);

the subexpression ~i has four interpretations:
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~?

i

( (int)i ) ); /* cost 0 */

~?

ui

( (unsigned int)i ) ); /* cost 1 */

~?

l

( (long int)i ) ); /* cost 1 */

~?

ul

( (unsigned long int)i ) ); /* cost 2 */

Each interpretation must be converted to unsigned long int to be used as the argument of f.

Conversions from int have cost 2 and from unsigned and long have cost 1, so all four possibilities

for the argument of f contain no unsafe conversions, call no polymorphic routines, and have a

total conversion cost of 2. Here the �nal rule (that excludes any implicit conversion applied to

argument expressions) comes into play and chooses the interpretation

f( (unsigned long int) ~?( (int)i ) )

because it has the lowest conversion cost when the conversion to unsigned long int is ignored.

The e�ect of this rule is to move conversions from routine arguments to routine results; C's

expression semantics have the same e�ect.

This �nal rule is only necessary because all interpretations with distinct types are preserved for

possible use in the next higher expression in the expression tree. An alternate overload resolution

would preserve only the best of the interpretations, and would not have this rule. In the case of

f(~i), only the �rst interpretation of ~i would be kept. However, in the case of programmer-

de�ned overloaded routines, that scheme would not minimized conversion costs, and would even

lead to unsafe conversions, as the following example shows.

void f(float);

double g(int); /* g

i

*/

long int g(long int); /* g

l

*/

int v;

f(g(v));

In this case, g

i

(v) has cost 0, and g

l

(v) has cost 1. If g

l

(v) was discarded because it has higher

cost, then an unsafe conversion from double to float would be required in the call to f. Instead,

since g

l

(v) is preserved, it is used as the argument to f, and no unsafe conversions are needed.

Routines that provide operations on pointers are polymorphic. Subtraction on pointers is

de�ned by �ve routines. (ptrdiff_t is an implementation-dependent type de�ned by the ANSI

C standard to be some integral type that can represent the di�erence between any two pointers.)
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forall(type T) const volatile T*

?-?(const volatile T*, ptrdiff_t); /* ?-?

cv

*/

forall(type T) volatile T*

?-?(volatile T*, ptrdiff_t); /* ?-?

v

*/

forall(type T) const T*

?-?(const T*, ptrdiff_t); /* ?-?

c

*/

forall(type T) T*

?-?(T*, ptrdiff_t); /* ?-?

;

*/

forall(type T) ptrdiff_t

?-?(const volatile T*, const volatile T*);

Recall that in calls to polymorphic routines, type parameters are bound to unquali�ed object

types deduced from the explicit parameters. In the case of

volatile int* ip;

ptrdiff_t d;

ip - d;

the compiler infers that the type argument is int. There are no implicit conversions between

pointer types and integral types, so the subtraction expression has only four possible interpreta-

tions:

?-?

cv

( (const volatile int*)ip, (ptrdiff_t)d);

/* returns const volatile int* */

?-?

v

( (volatile int*)ip, (ptrdiff_t)d);

/* returns volatile int* */

?-?

c

( (const int*)ip, (ptrdiff_t)d);

/* returns const int* */

?-?

;

( (int*)ip, (ptrdiff_t)d);

/* returns int* */

The last two of these apply unsafe conversions to ip, so they are eliminated. The �rst two

are equally polymorphic, so the choice between them depends on conversion cost. The �rst

interpretation has conversion cost 1 (because of the implicit safe conversion from volatile int*

to const volatile int*) and the second has cost 0, so the second is chosen. The result has

type volatile int*; type matching, which is provided by the use of the type parameter T in
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the argument and result types, preserved the int type, while overloading preserved the volatile

quali�er.

C's semantics do not allow pointer subtraction on pointers to void, or on pointers to incomplete

types. In Cforall, this restriction is a simple consequence of the use of polymorphism, since void

and incomplete types can not be inferred as the values of type parameters. However, type quali�ers

are not part of inferred type arguments, either, so four overloaded routines are needed, one for each

combination of type quali�ers in the return type, to de�ne subtraction of integers from pointers. A

more serious problem is that polymorphic routines can not be used to de�ne comparisons between

pointers to incomplete types.

4.4.6 Summary of Overload Resolution

This section has discussed a set of overload resolution rules and a set of prede�ned routines

and constants that mimic several aspects of C's expression semantics. Polymorphism allows the

description of pointer operations. The application of integral promotions to operands of unary

operators and usual arithmetic conversions to operands of binary operations becomes a conse-

quence of the use of implicit conversions in routine calls. Restrictions on the set of legal operand

types for operations like \~" are re
ected directly by the set of overloadings, while restrictions

that certain pointer operations apply only to pointers to object types follow from the rule that

type arguments must be object types. Parametric polymorphism preserves type information in

pointer operations, while overloading preserves type quali�ers. The overload resolution rules are

simple compared to, for instance, those of C++, and apply uniformly to both \operators" and to

programmer-de�ned routines.

Since C has a richer and more complicated set of conversions, operations, and data types

than most other languages (thanks in part to implementation-dependent conversions), this design

should be widely applicable. In fact, irregularities caused by type quali�ers, by incomplete types,

and by the lack of a boolean type would not occur in other languages.

4.5 Opaque Types

Recall the principle of declaration correspondence, which states that all options or properties asso-

ciated with declarations should be uniformly available. If this principle is applied to Cforall, type

parameter declarations must be complemented by type identi�er declarations. The semantics of

Cforall's type parameters leads immediately to the following conclusions:
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� type declarations declare identi�ers that are names of object types.

� The \value" of such an identi�er is constant throughout its lifetime.

� By default, instances of the type can be initialized, passed as parameters, assigned to each

other, and used as operands of sizeof or \&". No other operations exist by default.

� A type declaration that contains an initializer is a type de�nition. The initial value can be

any unquali�ed object type.

� Identi�ers declared by type declarations denote types that are distinct from each other, and

from their initializing type. This distinguishes them from identi�ers declared by typedef

declarations, which are synonyms for other types.

A simple example of a type declaration would be

type Complex = struct f double real, imaginary; g;

which would create a new type distinct from all others (including struct f double real,

imaginary; g). Since some way to create Complex values is needed, Cforall de�nes implicit, safe,

unit-cost conversions between Complex and its initializing type. Since assignment of Complex

values is allowed, Cforall uses the assignment operation of the initializing type as the default

assignment operation for Complex.

The principle of declaration correspondence also requires that type identi�ers obey the same

linkage rules as ordinary identi�ers. Hence it must be meaningful to have the following declarations

at the �le scope of a translation unit:

type T1 = struct f int a, b; g;

static type T2 = struct f int a, b; g;

extern type T3;

The meanings of these declarations follow from the semantics of C storage class speci�ers. All

three have static duration: the identi�ers are bound to values that exist throughout the execution

of the program. T1 is an identi�er with external linkage; it can be referred to in other translation

units. T2 is declared with internal linkage; it can be used within the translation unit that declares

it, but is not visible outside of it. T3 is also declared with external linkage, but the de�nition and

initialization of T3 occurs in some other translation unit. Within the scope of this declaration,

the implementation of type T3 is unknown; T3 is an opaque type.
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Cforall's opaque types can have simple implementations. The simplest implements them as

integer variables that contain the encoding of the size and alignment of the type's implementation.

The variable's storage duration and external linkage are determined by the type declaration.

When the type's implementation is a compile-time constant, the Cforall compiler can initialize

the variable directly. On a computer with no alignment requirements and 4-byte integers, a

compiler would transform the declarations above to the equivalent of

int T1 = 8;

static int T2 = 8;

extern int T3;

In a C program, the initializer of a static de�nition must be a compile-time constant. For

maximal simplicity, Cforall could extend this rule so that the initializer of a static type de�nition

must also be a compile-time constant. Unfortunately, opaque types are not compile-time constants,

because their size and alignment are not known where they are used. Hence a type de�nition with

static duration would not be able to use opaque types in its initializer. (A pointer to an opaque

type would be considered to be a compile-time constant type, and would be allowed.) This is a

severe restriction: opaque types would not be able to build on other opaque types. However, it

does eliminate the possibility of erroneous, mutually recursive opaque type de�nitions.

Cforall could avoid this restriction by removing the C rule that initializers in static-duration

declarations must be compile-time constants. There are two ways to implement this. The tradi-

tional method generates a piece of code for each translation unit that initializes the static-duration

storage de�ned in the unit, including the \type" variables that contain encoded sizes and align-

ments. The order in which the pieces are executed depends on the way in which translation

units refer to each other; if the graph de�ned by the inter-unit references contains a cycle, then

the program is malformed. The linker is in the best position to determine the correct order for

initialization, but typical linkers do not provide this ability.

A simpler method (suggested by C. R. Zarnke) avoids the problem of initializing type encodings

by implementing each opaque type de�nition as a routine that calls other \type" routines as

necessary. The routine would have a \number of instances" parameter, so that an array of

instances could be allocated with one call. The routine could simply return the encoded size

and alignment. It could also allocate memory itself. The allocated memory could come from the

heap; in that case memory must be scavenged when blocks exit. The routine could also allocate

memory in the stack frame of the calling routine directly. The Unix alloca() library routine does
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exactly that; in e�ect, the \type" routine would be a version of alloca(), specialized for the size

to be allocated. This routine would be a sensible place to put (or call) type-speci�c initialization

code, as well. In any case, each translation unit still needs initialization code to allocate space for

instances of opaque types that have static duration.

4.5.1 Assertions and Type Declarations

Type declarations can contain assertions. In the simplest case, assertions appear in opaque type

declarations, and mean that the objects and routines declared by the assertion exist.

extern type Complex | addable(Complex);

declares that a complex has a 0 object and a \+" operator; it has the same e�ect as

extern type Complex;

extern const Complex 0;

extern Complex ?+?(Complex, Complex);

Assertions on type de�nitions have a more complicated meaning. The type de�nition

type T | addable(T) = T1;

declares that T has a 0 object and \=" and \+" operators, as well as having the type T1 for its

implementation. The de�nitions of \0", \=", and \+" must occur in the scope of T's de�nition if

they are to have access to T1. But what if they do not? Cforall uses this as an opportunity to

implement inheritance, as discussed for F

3

!

. If an identi�er is declared by an assertion declaration

and is not de�ned by the end of T's scope, Cforall attempts to build one from an object or routine

with the same identi�er and a similar type that is de�ned for T1. This is normally the case for

assignment: T's \=" calls T1's \=". If there is no such identi�er, and T1 is a structure and exactly

one member has an appropriate object or routine de�ned, that object or routine is used. In any

other case, the Cforall translator will report an error.

Consider a graphics library that provides a shape context that describes shapes that can be

drawn, a Rect type that represents rectangular shapes, a Pattern type, and a fill routine that

�lls screen areas with a pattern.
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extern type Point;

context shape(type T) f

void draw(T); /* Draw a shape. */

T init(Point c, /* Create a shape centered at c, */

Point p); /* with p on its perimeter. */

Point center(T); /* Return the shape's center. */

g

extern type Rect | shape(Rect);

extern type Pattern;

extern void fill(Point pt, Pattern ptn);

A solid black box shape should inherit the implementation of Rect.

extern Pattern black;

type Black_box | shape(Black_box) = Rect;

void draw(Black_box b) f

draw( (Rect)b );

fill( center(b), black);

g

Black_box has an explicitly-de�ned draw routine. Note that the semantics of the cast operator

provide access to Rect's draw: \(Rect)b" converts b to a rectangle, and then overload resolution

�nds the appropriate draw. Another way to achieve same e�ect is to declare a routine pointer

that renames Rect's draw.

void draw(Black_box b) f

void (*rect_draw)(Rect) = draw;

rect_draw(b);

: : :

init and center are not de�ned for Black_box, so Cforall creates them, in e�ect de�ning

Black_box init(Point c, Point p) f return (Rect) init(c,p); g

Point center(Black_box b) f return center( (Rect)b ); g

Rect could be used as the base for a new type, Filled_rect, which is a rectangle that is �lled

by a default pattern.
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extern Pattern current_pattern;

type Filled_rect | shape(Filled_rect) = struct f

Rect r;

Pattern fill_pat;

g;

Filled_rect init(Point c, Point p) f

Filled_rect f;

f.r = init(c,p);

f.fill_pat = current_pattern;

return f;

g

void draw(Filled_rect fr) f

draw(fr.r);

fill(center(fr), fr.fill_pat);

g

Filled_Rect overrides the default versions of init and draw. (\draw(fr.r)" is used to call

Rect's draw inside Filled_rect's draw.) Cforall creates a center routine, in e�ect de�ning

Point center(Filled_rect fr) return center(fr.r);

4.6 Context Examples

4.6.1 C Types

This section gives examples of contexts for some groups of types that are important in the C

language, in terms of the prede�ned operations that can be applied to those types.

Scalar, Arithmetic, and Integral Types

The pointer, integral, and 
oating-point types are all scalar types. All of these types can be

logically negated and compared. The assertion \scalar(T)" should be read as \type T is scalar".

context scalar(type T) f

int !?(T);
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int ?<?(T, T), ?<=?(T, T), ?==?(T, T);

int ?>=?(T, T), ?>?(T, T), ?!=?(T, T);

g;

The integral and 
oating-point types are arithmetic types, which support the basic arithmetic

operators. The use of an assertion in the context's parameter list declares that, in order to be

arithmetic, a type must also be scalar (and hence that scalar operations are available).

context arithmetic(type T | scalar(T) ) f

T +?(T), -?(T);

T ?*?(T, T), ?/?(T, T), ?+?(T, T), ?-?(T, T);

g;

The enumerated types, the signed, unsigned, and plain char types, and signed and unsigned

long, short, and ordinary-length int types make up the integral types. They support the modulus

operator and various bit-wise operations.

context integral(type T | arithmetic(T) ) f

T ~?(T);

T ?&?(T, T), ?|?(T, T), ?^?(T, T);

T ?%?(T, T);

T ?<<?(T, T), ?>>?(T, T);

g;

Modi�able Types

The only overloadable operation that can be applied to all modi�able lvalues is simple assignment.

In Cforall terms, then, a modi�able type is one with an assignment operator.

context m_lvalue(type T) f

T ?=?(T*, T);

g;

Modi�able scalar lvalues are scalars and are modi�able lvalues, and assertions re
ect those

relationships. Modi�able scalar lvalues support the operations of scalars and modi�able lvalues,

and can also be incremented and decremented.
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context m_l_scalar(type T | scalar(T) | m_lvalue(T) ) f

T ?++(T*), ?--(T*);

T ++?(T*), --?(T*);

g;

Modi�able arithmetic lvalues are both modi�able scalar lvalues and arithmetic. Note that this

results in the \inheritance" of scalar along both paths.

context m_l_arithmetic(type T | arithmetic(T)

| m_l_scalar(T) ) f

T ?/=?(T*, T), ?*=?(T*, T);

T ?+=?(T*, T), ?-=?(T*, T);

g;

context m_l_integral(type T | integral(T)

| m_l_arithmetic(T) ) f

T ?&=?(T*, T), ?|=?(T*, T), ?^=?(T*, T);

T ?%=?(T*, T), ?<<=?(T*, T), ?>>=?(T*, T);

g;

Pointer and Array Types

Array types can barely be said to exist in ANSI C, since in most cases an array name is treated

as a constant pointer to the �rst element of the array, and the subscript expression \a[i]" is

equivalent to the dereferencing expression \(*(a+(i)))". Technically, pointer arithmetic and

pointer comparisons other than \==" and \!=" are only de�ned for pointers to array elements,

but the type system does not enforce those restrictions. Consequently, there is no need for a

separate \array type" context.

Pointer types are scalar types. Like other scalar types, they have \+" and \-" operators, but

the types do not match the types of the operations in arithmetic, so these operators cannot be

consolidated in scalar.

context pointer(type P | scalar(P) ) f

P ?+?(P, long int), ?+?(long int, P);

P ?-?(P, long int);
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ptrdiff_t ?-?(P, P);

g;

Modi�able lvalue pointers support the \normal" assignment operator (provided here by \m_l_scalar(P)"),

increment and decrement operators, and assignment to and from void*.

context m_l_pointer(type P | pointer(P) | m_l_scalar(P) ) f

P ?+=?(P*, long int), ?-=?(P*, long int);

P ?=?(P*, void*);

void* ?=?(void**, P);

g;

Contexts that de�ne the dereference operator (or subscript operator) require two parameters,

one for the pointer type and one for the pointed-at (or element) type. The assertion \ptr_to(Ptr,

int)" should be read as \type Ptr acts like a pointer to int".

context ptr_to(type P | pointer(P), type T) f

lvalue T *?(P);

lvalue T ?[?](P, long int);

g;

A pointer type can include type quali�ers in the pointed-at type. Since type arguments do not

include type quali�ers, each set of quali�ers requires a di�erent context. \ptr_to_const(CPtr,

int)" should be read as \type CPtr acts like a pointer to const int".

context ptr_to_const(type P | pointer(P), type T) f

const lvalue T *?(P);

const lvalue T ?[?](P, long int);

g;

context ptr_to_volatile(type P | pointer(P), type T) g

volatile lvalue T *?(P);

volatile lvalue T ?[?](P, long int);

g;

context ptr_to_const_volatile(type P | pointer(P), type T) g

const volatile lvalue T *?(P);
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const volatile lvalue T ?[?](P, long int);

g;

Assignment to pointers is more complicated than assignment for other types, because the

target's type can have more type quali�ers in the pointed-at type than the source's type does.

A \const T*" can be assigned a \T*" or a \const T*", but not a \volatile T*" or a \const

volatile T*". Contexts can model this by taking advantage of implicit conversions: there is a

conversion from \T*" to \const T*", but not vice versa.

context m_l_ptr_to(type P | m_l_pointer(P),

type T | ptr_to(P,T)) f

P ?=?(P*, T*);

T* ?=?(T**, P);

g;

context m_l_ptr_to_const(type P | m_l_pointer(P),

type T | ptr_to_const(P,T)) f

P ?=?(P*, const T*);

const T* ?=?(const T**, P);

g;

context m_l_ptr_to_volatile(type P | m_l_pointer(P),

type T | ptr_to_volatile(P,T))

P ?=?(P*, volatile T*);

volatile T* ?=?(volatile T**, P);

g;

context m_l_ptr_to_const_volatile(

type P | ptr_to_const_volatile(P),

type T | m_l_ptr_to_const(P,T)

| m_l_ptr_to_volatile(P)) f

P ?=?(P*, const volatile T*);

const volatile T* ?=?(const volatile T**, P);

g;

Consider \m_l_ptr_to_const(Ptr, int)", meaning \Ptr is a modi�able type that acts like a
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pointer to const int". The assertion produces the declarations

Ptr ?=?(Ptr*, const int*);

const int* ?=?(const int**, Ptr);

The �rst allows assignment from const int* to Ptr. It also allows assignment from int*, because

an implicit conversion from int* to const int* exists, but it does not allow assignment from

a volatile int*, because no const int* to volatile int* conversion exists. The second

declaration allows assignment of a Ptr to a const int*. Assignment to a const volatile int*

is de�ned by m_l_ptr_to_const_volatile, since that assignment must have a const volatile

int* result.

Note the regular manner in which type quali�ers appear in the parameter lists of the assignment

operators above. An alternative context can make use of the fact that quali�cation of the pointed-

at type is part of a pointer type to capture that regularity.

context m_l_ptr_like(type MyP | m_l_pointer(MyP),

type CP | m_l_pointer(CP) ) f

MyP ?=?(MyP*, CP);

CP ?=?(CP*, MyP);

g;

The assertion \| m_l_ptr_like(T, const int*)" should be read as \T is a pointer type like

const int*". This de�nes a relationship between two types that is quite unlike the \collection

of" example used in previous chapters.

The single m_l_ptr_like context can replace the previous four, but compared to them it

has two defects: there is no guarantee that dereferencing a MyP produces an lvalue of the type

that CP points at, and the \m_l_pointer(CP)" assertion provides only a weak assurance that the

argument passed to CP really is a pointer type.

4.6.2 Relationships Between Operations

Di�erent C operators often have related meanings; for instance, \+" adds two operands, \+="

increments a variable by some amount, and the two versions of \++" increment a variable by 1

and return the variable's value before or after the increment, respectively. Languages like C++

and Ada allow programmers to de�ne these operators for new types, but do not require that these
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relationships be preserved, or even that all of the operators be implemented. Completeness and

consistency is left to the good taste and discretion of the programmer. It is possible to encourage

these attributes by providing (in Ada) generic operator routines, or (in C++) member functions

of abstract superclasses, that are de�ned in terms of other, related operators.

In Cforall, polymorphic routines provide the equivalent of these generic operators, and contexts

explicitly de�ne the minimal implementation that a programmer should provide. This section

shows a few examples.

Relational and Equality Operators

The di�erent comparison operators have obvious relationships, but there is no obvious subset of

the operations to use in the implementation of the others. However, it is usually convenient to

implement a single comparison routine that returns a negative integer, 0, or a positive integer if

its �rst argument is respectively less than, equal to, or greater than its second argument; the C

library routine for character string comparison, strcmp, is one such routine. These routines can

serve as the base for generic comparison routines. (Note that, compared to other programming

languages, C and Cforall have an extra, non-obvious comparison operator: \!", logical negation,

returns 1 if its operand compares equal to 0, and 0 otherwise.)

context comparable(type T) f

const T 0;

int compare(T, T);

g

forall(type T | comparable(T)) int ?<?(T l, T r) f

return compare(l,r) < 0;

g

/* : : : similarly for <=, ==, >=, >, and !=. */

forall(type T | comparable(T)) int !?(T operand) f

return !compare(operand, 0);

g
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Arithmetic and Integer Operations

A complete arithmetic type would provide all of the arithmetic operators and the corresponding

assignment operators. Of these, the assignment operators are more likely to be implemented

directly, because it is usually more e�cient to alter the contents of an existing object than to

create and return a new one. Similarly, a complete integral type would provide integral operations

based on integral assignment operations.

context arith_base(type T) f

const T 1;

T ?+=?(T*,T), ?-=?(T*,T), ?*=?(T*,T), ?/=?(T*,T);

g

forall(type T | arith_base(T)) T ?+?(T l, T r) f

return l += r;

g

forall(type T | arith_base(T)) T ?++(T* operand) f

T temporary = *operand;

*operand += 1;

return temporary;

g

forall(type T | arith_base(T)) T ++?(T* operand) f

return *operand += 1;

g

/* : : : similarly for -, --, *, and /. */

context int_base(type T) f

T ?&=?(T*, T), ?|=?(T*, T), ?^=?(T*, T);

T ?%=?(T*, T), ?<<=?(T*, T), ?>>=?(T*, T);

g

forall(type T | int_base(T)) T ?&?(T l, T r) f

return l &= r;
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g

/* : : : similarly for |, ^, %, <<, and >>. */

Note that, although an arithmetic type would certainly provide comparison routines, and an

integral type would provide arithmetic operations, there does not have to be any relationship

among int_base, arith_base and comparable. Note also that these declarations provide guid-

ance and assistance, but they do not de�ne an absolutely minimal set of requirements. A truly

minimal implementation of an arithmetic type might only provide 0, 1, and ?-=?, which would

be used by polymorphic ?+=?, ?*=?, and ?/=? routines.



Chapter 5

Conclusions

Chapter 1 de�ned a number of terms used in this thesis. The most important of these is \no-

tion", since programs contain implementations of notions that programmers �nd useful for solving

various problems. The expressiveness of a programming language is related to the variety of no-

tions that it can implement. The de�nitions were followed by a list of criteria that are useful

for comparing programming languages: e�ciency; support for strong, static interface checking;

expressiveness and 
exibility; precise interfaces, including generality and type matching; support

for polymorphic data structures; separation of interfaces from implementations; support for code

reuse, including generalizability and incrementality; and simplicity of the basic language.

Chapter 2 reviewed Strachey's original use of the term \polymorphism" and discussed several

varieties of polymorphism. It gave the following de�nitions:

� Polymorphism is the ability to implement a notion so that it applies to more than one type.

� Ad-hoc polymorphism is present when an implementation has one or more interfaces that

are de�ned for a set of types which need not have any common structure.

� Universal polymorphism is present when an implementation has a single interface that is

applicable to a potentially in�nite set of types de�ned by a common structure.

� A routine exhibits parametric polymorphism when the value of a parameter de�nes other

parts of the routine's interface.

� Inclusion polymorphism is present when an identi�er can be bound to values from a poten-

tially in�nite set of types with a common structure.

109
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These de�nitions have the advantages of being reasonably precise and of being de�ned in terms

of observable parts of programming languages, instead of notions or program behaviour.

The de�nitions were followed by a survey of a number of polymorphism mechanisms. The

ad-hoc mechanisms surveyed were overloading, transfer functions, and set-theoretic unions. Set-

theoretic unions did not appear in Cardelli and Wegner's taxonomy of polymorphism, perhaps

because it is easily confused with transfer function polymorphism. All three are reasonably e�-

cient, preserve strong static checking and separation of interfaces, and produce modest increases

in generality, generalizability, and incrementality. Set-theoretic unions and overloading allow sim-

pli�cation of programming languages. Overloading provides type matching, while set-theoretic

unions provide a weak form of polymorphic data. However, any improvements are modest be-

cause programmer-de�ned ad-hoc polymorphism applies only to an explicitly speci�ced, �nite set

of types.

Universal polymorphism mechanisms fall into two camps: inclusion polymorphism and para-

metric polymorphism. Inclusion polymorphism includes in�nite set-theoretic unions and record

subtyping. Their main drawback is that there is no way to specify precise relationships among the

types of polymorphic items, since there is no name for the actual type of an argument to a poly-

morphic routine. Record subtyping provides greater precision than in�nite unions, and provides

strong static checking, separation of implementations from interfaces, generality and generalizabil-

ity, simpler base languages, and polymorphic data, with reasonable e�ciency. Unfortunately, it

provides only weak incrementality, and contravariant routine subtyping rules limit expressiveness.

Parametric polymorphism includes universal quanti�cation, descriptive classes, and F-bounded

quanti�cation. All three provide strong static checking, simple base languages, separation of in-

terfaces from implementations, generality, incrementality, and type matching, with reasonable

e�ciency, and even polymorphic data, encoded as a polymorphic routine. F-bounded quanti�-

cation conveniently packages data values with their operations, at the expense of incrementality.

Descriptive classes provide greater expressiveness and incrementality than F-bounded quanti�ca-

tion, because routines are separate from the data they manipulate and therefore can be overridden

more easily. However, descriptive classes themselves are not well de�ned and lack the ability to

de�ne hierarchies of abstractions. For all forms of parametric polymorphism, argument inference

and automatic specialization increase generality.

Chapter 3 gave precise semantics for contextual polymorphism in terms of F

3

!

, a variant of

the polymorphic typed lambda calculus F

!

. Like F

!

, it is based on the concepts of environments,

types, type generators, kinds, routines, and universally quanti�ed types. It introduced three new
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concepts:

� contexts, which are abstractions of environments;

� assertions, which produce declarations by applying contexts to operands; and

� context sorts, which are analogous to routine types and type generator kinds, to control

context application.

Assertions link the bodies of polymorphic abstractions to their calling environments by producing

declarations that must exist in the calling environment, and provides statically checked dynamic

scoping. Type generators can also use assertions to state requirements on operand types.

Contextual polymorphism provides strong static checking, separation of interfaces from imple-

mentations, precise interfaces (including type matching within an interface), generality, generaliz-

ability, and 
exible. It has greater incrementality than F-bounded quanti�cation, because routines

can be overridden easily. Data polymorphism can be added gracefully through mechanisms such as

existential types without losing precision in interfaces. Contexts naturally describe relationships

among types, whereas F-bounds naturally describe properties of a single type. Compared to de-

scriptive classes, contextual polymorphism provides hierarchies of contexts, and is better de�ned;

it cleanly distinguishes types from contexts, and shows where each can be used meaningfully.

Chapter 4 discussed Cforall, an extension of the C programming language to demonstrate con-

texts and assertions. Cforall allows identi�er overloading, with fewer restrictions on overloadable

types than comparable languages. Most built-in operators are considered to be overloaded rou-

tines, and 0 and 1 are overloadable constants. The forall speci�er de�nes polymorphic routines

and uses assertions to constrain their argument types. Algorithms created by Cormack, Wright

and Bumbulis are used to infer type arguments to polymorphic routines and to specialize poly-

morphic routines automatically when necessary. The existence of type parameters in polymorphic

routines leads naturally to an opaque type facility.

Cforall's overload resolution rules are based on the concepts of safe conversions, conversion

cost, and degrees of polymorphism. When an expression contains overloaded identi�ers, the in-

terpretation chosen minimizes the number of unsafe conversions, the degree of polymorphism of

functions, and the conversion cost of the expression. The overloading rules apply uniformly to

operators and ordinary routines, and were designed so that most of C's operators can be de�ned as

a set of overloaded routines. Polymorphism is required for the de�nition of pointer routines. The

resolution rules and de�nitions mimic complicated aspects of C's semantics: the integral promo-

tions applied to instances of \small" data types in expressions, the \usual arithmetic conversions"
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applied to the operands of binary operators, promotion of the results of unary operators rather

than the arguments, and the operand types of the operators, including the absence of operators

for pointers to incomplete types. This demonstrates the expressive power of Cforall, and is an

example of the use of a small base language to de�ne what are primitive facilities of a larger

language.

5.1 Future Work

The obvious next step is to implement Cforall, to allow a \trial by �re" of contextual polymor-

phism. The most likely course of action would base a Cforall compiler on the GCC-2 C compiler,

since that compiler provides high-quality code, portability to a number of computers, and access

to a wide community of potential users. The GCC-2 compiler already extends the C language with

nested routines and variable-sized arrays, which will be helpful when implementing specializations

and type parameters.

A Cforall implementation should include a collection of prede�ned contexts and polymorphic

routines. Some of the examples in section 4.6 could form the basis of this design.

The Cforall implementation will probably force changes in the language's design. Some changes

will be small. For instance, the set of prede�ned operators might change to accommodate the

prede�ned contexts. The de�nitions of the di�erent \?*?" routines might be replaced by a single

polymorphic routine that uses the arithmetic context and the \?*=?" operator. This change

might increase the e�ciency of programs that use complex, programmer-de�ned types: a compiler

might perform inline substitution and temporary variable elimination to convert \a*b*c" to \t=a;

t*=b; t*=c".

Other possible changes would deal with weaknesses in the current design.

� Cforall currently makes no provision for automatic initialization or �nalization code for

instances of programmer-de�ned types.

� Cforall does not provide type generators. If it did, polymorphic routines and type inference

would combine nicely with type generators:

extern type Stack(type Element);

forall(type Element) extern void push(Stack(Element) *s);
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� Cforall does not provide polymorphic data gracefully. The lambda-calculus approach that

hides data inside polymorphic routines is graceless at best, and all but requires a \lambda

expression" facility (which Cforall does not have) to express operations on polymorphic data.

An existential type facility based on the open statement of section 3.2.5 may be workable.

� C has three main classes of types: object types, incomplete types, and routine types. In-

complete types and routine types do not have instantiation or assignment operations, but

they can be pointed at by pointer types. Cforall's type identi�ers only designate object

types. This restricts polymorphism, since polymorphic routines can not operate on pointers

to any incomplete type or to any routine types, and it increases the cost of polymorphism,

since every type parameter provides instantiation and assignment even if the routine does

not need them.

Cforall could be extended with \data types" (the object and incomplete types) and \all

types" (the data types and routine types). Polymorphic routines using parameters from

these type classes would be more 
exible and more e�cient than equivalent routines using

type. This extension would also allow even more of C's operators to be de�ned as Cforall

routines; the equality and inequality comparisons are polymorphic over pointers to all types,

and the relational operators are polymorphic over pointers to all data types.



Bibliography

[1] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. Technical Report 62,

Digital Equipment Corporation Systems Research Center, 130 Lytton Avenue, Palo Alto,

California 94301, August 1990.

[2] American National Standards Institute, 1430 Broadway, New York, New York 10018. Amer-

ican National Standard for Information Systems { Programming Language { C, December

1989. X3.159-1989.

[3] T. P. Baker. A one-pass algorithm for overload resolution in Ada. ACM Transactions on

Programming Languages and Systems, 4(4):601{614, October 1982.

[4] Paul G. Basset. Frame-based software engineering. IEEE Software, 4(4):9{16, July 1987.

[5] Hans-J. Boehm and Mark Weiser. Garbage collection in an uncooperative environment.

Software|Practice and Experience, 18(9):807{820, September 1988.

[6] Peter Bumbulis. Towards making signatures �rst-class. personal communication, September

1990.

[7] Conor P. Cahill. debug malloc. comp.sources.unix, volume 22, issue 112.

[8] Peter Canning, William Cook, Walter Hill, Walter Oltho�, and John C. Mitchell. F-bounded

polymorphism for object-oriented programming. In Fourth International Conference on Func-

tional Programming Languages and Computer Architecture, pages 273{280, September 1989.

[9] Luca Cardelli. A semantics of multiple inheritance. In G. Kahn, D. B. MacQueen, and G. D.

Plotkin, editors, Semantics of Data Types, pages 51{67. Springer-Verlag, 1984. Lecture Notes

in Computer Science v. 173.

114



BIBLIOGRAPHY 115

[10] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg Nelson.

Modula-3 report. Technical Report 31, Systems Research Center, 130 Lytton Avenue, Palo

Alto, California 94301, August 1988.

[11] Luca Cardelli and Peter Wegner. On understanding types, data abstractions, and polymor-

phism. ACM Computing Surveys, 17(4):471{522, December 1985.

[12] Craig Chambers, David Ungar, and Elgin Lee. An e�cient implementation of SELF, a

dynamically-typed object-oriented language based on prototypes. In Norman Meyrowitz,

editor, OOPSLA '89 Conference Proceedings, pages 49{70, New Orleans, Louisiana, October

1{6 1989. Association for Computing Machinery, SIGPLAN Notices 24(10).

[13] W. R. Cook. A proposal for making Ei�el type-safe. The Computer Journal, 32(4):305{311,

1989.

[14] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In

Conference Record of the ACM Symposium on Principles of Programming Languages, pages

125{135. Association for Computing Machinery, 1990.

[15] G. V. Cormack and A. K. Wright. Polymorphism in the compiled language ForceOne. In

Proceedings of the 20th Hawaii International Conference on Systems Sciences, January 1987.

[16] G. V. Cormack and A. K. Wright. Type-dependent parameter inference. SIGPLAN Notices,

25(6):127{136, June 1990. Proceedings of the ACM Sigplan'90 Conference on Programming

Language Design and Implementation June 20-22, 1990, White Plains, New York, U.S.A.

[17] Brad J. Cox. Object-oriented programming; an evolutionary approach. Addison-Wesley, 1986.

[18] O-J Dahl, B. Myhrhaug, and K. Nygaard. Simula67 Common Base Language. Norwegian

Computing Center, Oslo Norway, October 1970.

[19] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison

Wesley, �rst edition, 1990.

[20] Christopher W. Fraser and David R. Hanson. A retargetable compiler for ANSI C. SIGPLAN

Notices, 26(10):29{43, October 1991.

[21] Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and Jos�e Meseguer. Princi-

ples of OBJ2. In Conference Record of the 12th Annual ACM Symposium on Principles of

Programming Languages, pages 52{66, January 1985.



BIBLIOGRAPHY 116

[22] Giorgio Ghelli. A static type system for message passing. In Andreas Paepcke, editor,

OOPSLA '91 Conference Proceedings, pages 129{145, Phoenix, Arizona, October 6{11 1991.

Association for Computing Machinery, SIGPLAN Notices 26(11).

[23] Carlo Ghezzi and Mehdi Jazayeri. Programming Language Concepts. Wiley, 1982.

[24] J.-Y. Girard. Interpretation fonctionelle et elimination des coupures de l'arithmetique d'ordre

superieur. PhD thesis, Universite Paris, 1972.

[25] Goseph A. Goguen. Parameterized programming. IEEE Transactions on Software Engineer-

ing, SE-10(5):528{543, September 1984.

[26] David M. Harland. Polymorphic Programming Languages: Design and Implementation. Com-

puters and their Applications. Ellis Horwood, Market Cross House, Cooper Street, Chichester,

West Sussex, PO19 1EB, England, 1984.

[27] Paul N. Hil�nger. Abstraction Mechanisms and Language Design. ACM Distinguished Dis-

sertations. MIT Press, 1983.

[28] C. A. R. Hoare. Hints on programming language design. Technical Report CS-73-403,

Stanford University Computer Science Department, December 1973. Reprinted in [62].

[29] Jean D. Ichbiah. On the design of Ada. In R. E. A. Mason, editor, Information Processing

83, pages 1{10. IFIP, North-Holland, September 1983.

[30] Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report. Springer{Verlag, third

edition, 1985. Revised by Andrew B. Mickel and James F. Miner, ISO Pascal Standard.

[31] P. J. Landin. The next 700 programing languages. Communications of the ACM, 9:157{164,

1966.

[32] Robert G. Lanergan and Charles A. Grasso. Software engineering with reusable designs

and code. In Workshop on Reusability in Programming, pages 224{234. ITT Programming,

September 1983.

[33] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Scha�ert, Robert Schei-


er, and Alan Snyder. CLU Reference Manual, volume 114 of Lecture Notes in Computer

Science. Springer-Verlag, 1981.

[34] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall International Series

in Computer Science. Prentice-Hall, 1988.



BIBLIOGRAPHY 117

[35] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press, Cambridge,

Massachusetts, U. S. A., 1991.

[36] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MIT Press,

Cambridge, Massachusetts, U. S. A., 1990.

[37] James G. Mitchell, William Maybury, and Richard Sweet. Mesa language manual. Technical

Report CSL{79{3, Xerox Palo Alto Research Center, April 1979.

[38] John C. Mitchell. Toward a typed foundation for method specialization and inheritance. In

Conference Record of the Seventeenth Annual ACM Symposium on Principles of Programming

Languages, pages 109{124. Association for Computing Machinery, January 1990.

[39] John C. Mitchell and Robert Harper. The essence of ML. In Conference Record of the ACM

Symposium on Principles of Programming Languages, pages 28{46, 1988.

[40] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM Trans-

actions on Programming Languages and Systems, 10(3):470{502, July 1988.

[41] C. Paulin-Mohring. Extracting Fw's programs from proofs in the calculus of constructions.

In Conference Record of the 16th Annual ACM Symposium on Principles of Programming

Languages, pages 89{104, Austin, TX, January 1989.

[42] Benjamin Pierce, Scott Dietzen, and Spiro Michaylov. Programming in higher-order typed

lambda calculi. Technical Report CMU-CS-89-111, School of Computer Science, Carnegie

Mellon University, Pittsburg, PA 15213-3890, March 1989.

[43] Benjamin C. Pierce. Programming with intersection types, union types, and polymorphism.

Technical Report CMU-CS-91-106, Carnegie Mellon University, February 1991.

[44] John C. Reynolds. Towards a theory of type structure. In B. Robinet, editor, Colloque sur la

Programmation, pages 408{423. Springer-Verlag, 1974. Lecture Notes in Computer Science,

v. 19.

[45] John C. Reynolds. Preliminary design of the programming language Forsythe. Technical

Report CMU-CS-88-159, Carnegie Mellon University, June 1988.

[46] David Sandberg. An alternative to subclassing. SIGPLAN Notices, 21(11):424{428, Novem-

ber 1986.

[47] David W. Sandberg. The design of the programming language X-2. Technical Report 85-60-1,

Oregon State University, Department of Computer Science, Corvallis, Oregon, 97331, 1985.



BIBLIOGRAPHY 118

[48] Mary Shaw, editor. ALPHARD: Form and Content. Springer-Verlag, 1981.

[49] Mary Shaw and Wm. A. Wulf. Toward relaxing assumptions in languages and their im-

plementations. Technical report, Carnegie-Mellon University, January 1980. Reprinted in

[48].

[50] Alan Snyder. Encapsulation and inheritance in object-oriented programming languages. SIG-

PLAN Notices, 21(11):38{45, November 1986.

[51] Richard M. Stallman. GCC. Free Software Foundation, Cambridge, MA.

[52] Standardiseringskommissionen i Sverige. Databehandling { Programspr�ak { SIMULA, 1987.

Svensk Standard SS 63 61 14.

[53] Peter A. Steenkiste. The implementation of tags and run-time checking. In Peter Lee, editor,

Topics in Advanced Language Implementation, chapter 1, pages 3{24. The MIT Press, 1991.

[54] C. Strachey. Fundamental concepts in programming languages. In Lecture Notes for the

International Summer School in Computer Programming, Copenhagen, August 1967.

[55] Bjarne Stroustrup. What is \object-oriented programming"? In Proceedings of the First

European Conference on Object Oriented Programming, June 1987.

[56] R. D. Tennent. Language design methods based on semantic principles. Acta Infomatica,

8(2):97{112, 1977. reprinted in [62].

[57] United States Department of Defense. The Programming Language Ada: Reference Manual,

ANSI/MIL-STD-1815A-1983 edition, February 1983. Published by Springer-Verlag.

[58] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M. Sintzo�, C. H.

Lindsey, L. G. L. T. Meertens, and R. G. Fisher. Revised report on the algorithmic language

ALGOL 68. SIGPLAN Notices, 12(5):1{70, May 1977.

[59] D. Le Verrand. Evaluating Ada. North Oxford Academic, 1985.

[60] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In Confer-

ence Record of the ACM Symposium on Principles of Programming Languages, pages 60{76.

Association for Computing Machinery, 1989.

[61] Peter J. L. Wallis and Bernhard W. Silverman. E�cient implementation of the Ada over-

loading rules. Information Processing Letters, 10(3):120{123, April 1980.



BIBLIOGRAPHY 119

[62] Anthony I. Wasserman, editor. Tutorial: Programming Language Design. Computer Society

Press, 1980.

[63] B. Wegbreit. The treatment of data types in EL1. Communications of the ACM, 17(5):251{

264, May 1974.

[64] N. Wirth. Type extensions. ACM Transactions on Programming Languages and Systems,

10(2):204{214, April 1988.

[65] Niklaus Wirth. On the design of programming languages. In Information Processing 74,

pages 386{393. North Holland Publishing Company, 1974. Reprinted in [62].

[66] Andrew K. Wright. Design of the programming language ForceOne. Technical Report CS-

87-10, University of Waterloo, February 1987.

[67] Benjamin Zorn and Paul Hil�nger. A memory allocation pro�ler for C and lisp programs. In

Summer 1988 USENIX proceedings, 1988.



Index

� (the kind of term types), 52

2 (the sort of environments), 54

�t � � � e (F-bounded quanti�cation), 34

�t � e (type parameterization), 30

�;�

i

(environments), 53

�

1

;�

2

(environment concatenation), 53

8t � �

1

� �

2

(bounded universal quanti�ca-

tion), 34

8t � � (universally quanti�ed type), 30

� reduction, 52

p q

r

(inference rule), 3

�x : � � e (routines), 3


; 


i

(context sorts), 54

�

1

` �

2

:: 
 (sort judgements), 54

� ` e : � (type judgements), 54

� ` t : k (kind judgements), 54

; (empty environment), 53

h � � �� � � � i (record types), 3

hf := e; : : : i (record values), 3

�; �

i

; �; �

i

(types), 3

9t � � (existential type quanti�cation), 66

�t : k �� (contexts), 53

3 (such that), 52

3� (assertions), 53

� (subtype of), 19

�

1

!�

2

(routine types), 3

e : � (has type), 3

k!
 (the sort of contexts), 54

l[m := n] (substitution), 52

t : k (has kind), 53

abs, 33

absolute value, 32

abstract superclass, 27, 28, 37, 38, 41, 62, 65,

75, 106

abstract type, 58, 65, 66

abstype, 65{67

ad-hoc polymorphism, 11, 12, 14

according to Strachey, 9

behavioural, 10

Ada, 6, 9, 43, 44, 70, 79, 89, 105

addable, 23, 25, 56, 62, 65, 68, 69, 82, 83, 98

Algol 68, 10, 14, 16, 17, 19, 20

algorithm, 2

alloca, 97

Alphard, 58

ambiguous interpretation, 90

ANY, 20, 23

arithmetic types, 101

assertion, 53, 56, 57, 62, 64, 65, 67, 70, 83,

98

assertion declarations, 53, 56, 58, 66, 68, 73,

81, 84, 89, 98

C, 8, 61

C++, 7, 16, 27, 28, 77, 79, 84, 95, 105

child class, 27

120



INDEX 121

Circle, 26

class, 27

client, 3

Clu, 58

coercion, 16

collection, 21, 40, 41, 62, 64

comparable, 106, 108

COMPILER, 46

Complex, 12, 18, 65, 66, 96, 98

conformity clause, 17, 21

context, 53, 82, 100

context sort, 54, 55, 57

context statement, 54, 56, 82

contravariance, 22, 23, 32, 42, 48, 62

conversion cost, 90

covariance, 22, 23, 28, 32, 42, 62

curtailment, 44

cvt, 64

data algebra, 66

declaration, 53

declaration correspondence, 5, 95, 96

default view, 73

de�nition module, 43

degree of polymorphism, 36, 89

descriptive classes, 39, 75

dom(�) (domain), 53

double, 23, 72

DOUBLE1, 12, 17, 18

DOUBLE2, 12, 17

double68, 17

dynamic checking, 1

dynamic overload resolution, 17, 21

dynamic scope, 36

dynamic type determination, 10

e; e

i

(expressions), 3

Ei�el, 27, 28, 44

EL1, 12, 17

environment, 53

environment concatenation, 53, 55, 60, 83

existential types, 66, 113

expressive, 1, 5, 8, 15, 18, 21, 48

F

!

, 50

F

3

!

, 50, 79

F-bounded quanti�cation, 34, 41, 71, 110

�elds, 3


exibility, 5, 8, 21, 28, 48, 73

ForceOne, 35, 60, 81

Fraction, 22, 23, 25, 62

free types, 38

functors, 44

generality, 6, 23

generalizability, 8, 27, 36

generic packages, 44

implementation, 2

implicit conversion, 16

implicit parameters, 35

import, 65

inclusion polymorphism, 12

Cardelli and Wegner, 10

incomplete types, 82, 95, 113

incrementality, 8, 27, 36, 42, 73

inference rules, 3

InFile, 29

inheritance, 27, 70, 71

instantiation, 44

integral types, 101

interface, 2



INDEX 122

interpretation, 89

IOFile, 29

judgements, 54

kind, 52

kind judgement, 54, 57

lambda calculus, 30, 46, 50

less polymorphic, 89, 90

let statement, 56

Lisp, 19

List, 38, 40, 52, 53, 58, 69, 72, 76

list of, 83

list of addable, 83

LT PAIR, 43{45

lvalue, 79, 80, 101, 105

map, 9, 12, 63, 64

maps, 84

Mesa, 43

message, 27

message passing, 27

method, 27

min, 5, 15, 24, 25, 32{35, 39, 44, 46, 71{73,

75

min int, 33

MIN OBJ, 45

min rec, 33

mixed mode operations, 25, 62

Modula-3, 27

module, 42

module interfaces, 43

multimethods, 17

multiple inheritance, 27, 28, 41

name equivalence, 29

NF (�) (normal form), 54

normal form, 54

notion, 2, 71

OBJ2, 43{46, 73, 74

object, 43, 79, 81

object type, 81

Objective-C, 77

op, 43, 73

opaque type, 96, 98

operation, 2

ordered, 71, 73, 75

OutFile, 29

overloading, 10, 14, 17, 35, 60, 78, 82, 85, 89

pack, 66, 67

package, 43

package speci�cation, 43

PAIR, 43, 45

PAIR T, 45

pane, 40, 42

parameterized theories, 45

parametric polymorphism, 11, 46, 71

according to Strachey, 9

behavioural, 10

parent classes, 27

PARSER, 46

Pascal, 8, 29, 85

plus, 23, 56, 62, 65, 72, 74

Point, 26, 70

polymorphic data, 5

polymorphism, 11

precise interfaces, 6

program module, 43

record, 3



INDEX 123

record type, 3

Rect, 26, 70

Region, 26, 70

routine, 2, 3

routine type, 3

safe conversions, 87, 90, 96

satisfy, 39, 56, 62, 71

scalar types, 100

SCANNER, 46

SELF, 84

self, 23

set-theoretic union, 17, 20

sharing declaration, 45

signature, 43, 73

SIMULA, 27, 29

sin, 16

sizeof, 61, 81, 86, 91, 96

SML, 43{46, 73

sort, 44, 73

sort judgement, 55

specialization, 33, 36, 44, 59, 60, 85

stack, 61

static checking, 1

static overload resolution, 15

structural equivalence, 22, 29

structure, 43

subclasses, 27, 42

substitution, 52, 54, 56{58

subtype, 19

sum, 83

superclasses, 27, 42

tcvt, 64

theory, 43, 73

TOKEN, 46

transfer function, 9, 16, 18

tuple, 66, 68

type, 2

type de�nition, 96

type generator, 2, 20, 38, 52, 57, 80

type judgement, 54, 55

type matching, 6, 15, 25

type parameters, 29

type quali�er, 80, 82, 86{88, 103, 105

type statement, 58, 65

union types, see set-theoretic unions

uniting coercion, 18

universal polymorphism, 11

Cardelli and Wegner, 10

universal quanti�cation, 44

universally quanti�ed type, 30, 36, 60, 80

unsafe conversions, 87, 93

view, 45, 73

X2, 37, 49, 75


