
Pro�ling Concurrent Programs

Diplomarbeit

von

Robert R. Denda

aus

Emmelshausen

vorgelegt am

Lehrstuhl f�ur Praktische Informatik IV

Prof. Dr. E�elsberg

Fakult�at f�ur Mathematik und Informatik

Universit�at Mannheim

September 1997

Betreuer: Prof. Dr. Wolfgang E�elsberg

Acknowledgements

The underlying work of this thesis was done during multiple sojourns at the University

of Waterloo, Canada, where I was provided with an excellent working environment.

First of all, I would like to give a special note of thanks to Professor Dr. Peter Buhr for

his splendid assistance and guidance throughout my work on this thesis. It was mainly due

to his e�orts that my work was very enjoyable.

Furthermore, I would like to thank Professor Dr. Wolfgang E�elsberg as my supervisor

at the University of Mannheim, Germany, for his patience in supporting a remotely written

Diplomarbeit.

I also wish to thank Professor Dr. Stephen Mann and Professor Dr. Thomas Kunz for

many valuable suggestions and helpful comments.

\Danke" goes to my parents and family for making this stay possible and being a great

source of support and non-technical help.

Last but also foremost, I thank all my Canadian, German and Spanish friends for a

wonderful time in Canada and for providing me with the necessary distraction from work. In

particular, I wish to thank my friends B�arbara Eizaga Rebollar, Allan Baril, Marcus Michael

Burth, P. Angelika Engelmann, Ian Hayes, J�urgen Heilig, Dr. Jos�e \Capullo" Medina, and

Jim \Bosius" Slezak.

i

Ehrenw�ortliche Erkl�arung

Hiermit versichere ich, die vorliegende Diplomarbeit ohne Hilfe Dritter und nur mit den

angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus den Quellen

entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher

oder �ahnlicher Form noch keiner Pr�ufungsbeh�orde vorgelegen.

Waterloo, den 10. September 1997 Robert Denda

iii

Abstract

The larger and more complex a program becomes, the greater the need to understand its

dynamic behaviour, both to locate problems and to optimize performance.

One of the most important tools for locating dynamic problems and performance bot-

tlenecks is a pro�ler. A pro�ler monitors a program's dynamic behaviour and reveals in-

formation about the program's execution, possibly at multiple levels of abstraction. For

example, one essential step in performance optimization is to detect a program's \hot spots"

for potential optimization. Detecting these spots is usually non-trivial and time consuming

without appropriate performance tools.

Concurrency adds substantially to the complexity of a program. Pro�ling concurrent

programs entails many problems not present in sequential programs, such as thread commu-

nication and access to shared resources. A pro�ler has to deal with these multiple executing

threads of control, all potentially introducing errors and performance problems.

In this thesis, the important aspects and problems of pro�ling are discussed, and an im-

plementation of a prototype pro�ler called �Pro�ler for the �C++ thread library is presented,

which provides multiple performance metrics on a per-thread basis in a shared-memory con-

current environment.

v

Trademarks

Ada is a registered trademark of of the U.S. Government (Ada Joint Program O�ce).

AIX is a registered trademark of International Business Machines Corporation

IRIX is a registered trademark of Silicon Graphics, Inc.

Java is a registered trademark of Sun Micosystems, Inc.

Motif is a registered trademark of Open Systems Foundation, Inc

Solaris is a registered trademark of Sun Microsystems, Inc.

SPARC is a registered trademark of Sparc International, Inc.

SunOS is a registered trademark of Sun Microsystems, Inc.

ULTRIX is a registered trademark of Digital Equipment Corporation

UNIX is a registered trademark of Unix System Labratories, Inc.

X Window System is a registered trademark of X Consortium, Inc.

vii

Abbreviations

CISC Complex Instruction Set Computer

CPU Central Processing Unit

I/O Input/Output

KDB Kalli's DeBugger

MVD �C++ Monitoring Visualization and Debugging

POET Partial-Order Event Tracer

RISC Reduced Instruction Set Computer

ix

Contents

1 Introduction 1

2 Pro�ling Methods and Metrics 5

2.1 Pro�ling Methods . 7

2.1.1 Instrumentation Insertion . 8

2.1.2 Monitoring . 13

2.1.3 Pro�le Analysis . 18

2.1.4 Visualization . 21

2.2 Pro�ling Metrics . 24

2.2.1 Metrics on Time versus Metrics on Counts 24

2.2.2 Exact versus Statistical Metrics . 25

2.2.3 Operating Levels . 26

3 Related Work 29

3.1 Instrumentation Insertion . 29

3.2 Metrics and Monitoring Methods . 32

3.3 Pro�le Analysis . 34

3.4 Visualization . 35

3.5 Target Programming Environment . 36

4 The Target Environment 39

4.1 �C++ . 40

4.1.1 Implementation Issues . 40

xi

4.1.2 Clustering . 41

4.1.3 Communication and Synchronization 41

4.1.4 Platforms and Memory Model . 42

4.1.5 Pro�ling �C++ Programs . 43

4.2 MVD . 43

4.2.1 Thread-Safe X/Motif Support . 44

4.2.2 Watchers and Samplers . 44

4.3 �C++ Built-In Tracing . 45

5 The �Pro�ler Design 47

5.1 Design Objectives . 47

5.1.1 Pro�ling on a Thread Basis . 48

5.1.2 Pro�ling at Di�erent Levels of Detail 48

5.1.3 Selective Pro�ling . 48

5.1.4 Support Di�erent Visualization Devices 49

5.1.5 Extendibility . 49

5.1.6 Portability, Interoperability and Maintainability 49

5.2 Design Considerations . 50

5.2.1 Incorporating Pro�ling into �C++ . 51

5.2.2 The Pro�ler as a �C++ Program . 53

5.3 Static Design . 55

5.3.1 Design Model Overview . 55

5.3.2 Further Static Design Aspects . 61

5.4 Dynamic Design . 61

5.4.1 Task Communication . 62

5.4.2 Filtering . 64

5.4.3 Thread-Based Pro�ling . 65

5.4.4 Object-Based Pro�ling . 67

5.4.5 Dynamically Controlled Statistical Pro�ling 67

5.5 Design Validation . 69

xii

5.5.1 Pro�ling on a Thread Basis . 69

5.5.2 Selective Pro�ling . 69

5.5.3 Di�erent Visualization Devices . 69

5.5.4 Extendibility . 70

5.5.5 Portability, Maintainability, Interoperability 70

6 The �Pro�ler Implementation 71

6.1 Instrumentation Insertion . 71

6.1.1 Compiler Support . 71

6.1.2 Pro�le Stack . 74

6.1.3 Platform Dependencies . 75

6.2 Monitoring . 76

6.2.1 Exact Monitoring . 76

6.2.2 Statistical Monitoring . 77

6.3 Pro�le Analysis and Visualization . 80

6.3.1 Pro�le Analysis . 80

6.3.2 Visualization . 81

6.4 Further Implementation Aspects . 82

6.4.1 Hashing . 82

6.4.2 Pro�ling Scope . 85

6.4.3 Kernel Pro�ling . 85

6.5 Limitations . 86

6.5.1 Hard-Coded Filename Access . 86

6.5.2 Applicability and Availability . 87

7 Conclusions and Future Work 89

7.1 Conclusions . 89

7.2 Future Work . 90

A Object-Oriented Analysis Model Notations 93

xiii

Bibliography 97

xiv

List of Figures

2.1 Steps in Pro�ling. 7

2.2 Basic Instrumentation Insertion Primitives. 8

2.3 Indirect Instrumentation Insertion. 10

2.4 Event Collection in Exact Monitoring with Instrumentation Insertion. 15

2.5 Statistical Monitoring. 16

2.6 Example of a Bar Chart. 22

2.7 Example of a Kiviat Graph. 24

3.1 Pro�ling Tools and their Instrumentation Insertion Points. 30

4.1 MVD Watchers and Samplers. 45

4.2 �C++ and Poet: Event Trace. 46

5.1 The �Pro�ler as a �C++ Application. 50

5.2 Object Model of the �Pro�ler Kernel and Execution Monitors. 56

5.3 Object Model of the �Pro�ler Analyzers and Visualization Devices. 59

5.4 An Example Selection Window. 60

5.5 Dynamic Design: Task Communication. 62

6.1 Pro�ling Nested Function Calls Without Function Exit Instrumentation. . . 73

6.2 Compile-Time Instrumentation using Shared Trampolines. 74

6.3 A Pro�led �C++ Task's Stack. 75

6.4 Exact Pro�ling Hook for Task Creation. 77

6.5 Robust Sampling Loop. 78

xv

6.6 An Example Call Cycle. 80

6.7 Visualization of Operating System Resource Information. 81

6.8 Visualization of Statistically Pro�led Task Information at Function Level. . . 83

A.1 Classes and Objects. 93

A.2 Simpli�ed Class and Object Notation. 94

A.3 Object Relationship. 94

A.4 Inheritance. 95

A.5 Aggregation. 96

xvi

List of Tables

2.1 Combinations of Instrumentation Insertion and Monitoring. 13

5.1 A Task's Pro�ling State Information. 66

6.1 Compiler Supported Pro�ling Instrumentation Insertion on the SPARC Ar-

chitecture. 72

6.2 Collisions in Pro�ling Hash Table Buckets for a large �C++ Program. 84

xvii

Chapter 1

Introduction

The primary motivations for writing concurrent programs are two-fold. First, dividing a

problem into multiple executing tasks may be a natural way of describing it. Second, it is

often possible to reduce a program's execution-time on machines with multiple processors.

Many programming languages come with concurrent language primitives. Ada [76] and

Java [21] are probably the most popular examples. Other, originally non-concurrent, pro-

gramming languages invoke external facilities such as thread libraries to introduce concur-

rency.

Concurrent programs have a higher potential for performance problems than their se-

quential counterparts. Each executing thread can potentially experience all the performance

problems of a sequential program. In addition, there are problems that occur because of

the basic nature of concurrency among threads. Concurrent programs require mechanisms

for synchronization, communication, protection of critical sections, etc. The introduction of

these mechanisms causes an unavoidable overhead and can have a high impact on a program's

performance.

The type of performance optimization also depends on the underlying structure of the

concurrent programming language primitives. It makes a di�erence whether shared or dis-

tributed memory is used, and whether di�erent threads of control are created at the operating

system or user-level.

Nevertheless, given the right tools, potential bottlenecks of concurrent applications can

1

2 CHAPTER 1. INTRODUCTION

often be located and eliminated with only little e�ort. This process of performance optimiza-

tion encompasses di�erent aspects and involves the application of several methodologies, the

main one being pro�ling.

In addition to performance optimization, pro�ling serves many other purposes: for exam-

ple, it can help understand the underlying concurrent algorithm of a program, help discover

faulty execution behaviour, and thereby, provide support for debugging, or supply informa-

tion for a coverage analysis.

This thesis analyzes di�erent pro�ling aspects of user-level thread-libraries for shared-

memory systems. Conceptual and implementation weaknesses of user-level thread-libraries

as well as pro�ling tools are identi�ed. The resulting pro�ling model lead to the design and

implementation of a new pro�ler for the �C++ language [8] called �Pro�ler. In addition, user-

level thread pro�ling at a function level, dynamic �ltering of pro�ling information, dynamic

frequency calibration for statistical pro�ling and pro�ling a thread-library's run-time kernel

are investigated.

Although this thesis mainly focuses on the implementation concepts of �C++, the under-

lying ideas are applicable to many kinds of concurrent systems.

Thesis Outline

Chapter 2 describes general approaches to pro�ling. Di�erent pro�ling methods for instru-

mentation, monitoring, analysis and visualization are introduced and their applicability to

di�erent concurrent programming environments is discussed. This chapter also introduces

various classi�cation models for the di�erent pro�ling stages and discusses the fundamental

concepts and de�nitions for pro�ling.

Related work in the �eld of pro�ling concurrent programs is reviewed in Chapter 3.

Di�erent approaches and their applicability to pro�ling user-level threads in a shared-memory

environment are examined.

An overview and some implementation details of the target system for �Pro�ler, i.e., the

�C++ system [8], are surveyed in Chapter 4 with regard to their consequences concerning

the design and implementation of a pro�ler. In addition, previous work for monitoring and

3

visualizing a concurrent �C++ program's run-time behaviour is described.

Chapter 5 discusses the relevant design aspects of the prototype pro�ler �Pro�ler for

�C++: the design objectives are presented, static and dynamic design considerations sur-

veyed and a validation of the design is given.

The implementation of �Pro�ler for �C++ is explained in Chapter 6. Some of the main

conceptual and algorithmic aspects are described in detail.

Chapter 7 concludes the main issues of this thesis and discusses how the ideas presented

can be applied to future work.

Chapter 2

Pro�ling Methods and Metrics

The performance of concurrent using user-level thread-libraries is a�ected by various factors.

Two abstraction levels can be identi�ed: �rst, the variety of language primitives o�ered,

thereby representing the underlying concurrent programming paradigm, and second, the

actual implementation of these language primitives.

Performance optimization is composed of the following steps, which form a cycle that

can be iterated to some �xed point:

1. a careful performance evaluation of the system to determine the cost of one or more

operations,

2. an analysis of the component cost of these operations,

3. where possible, optimizing the operations to decrease their cost, and thereby, increase

performance.

This cycle is performed multiple times to ensure an optimization is e�ective and does not

interfere with other operations.

Selecting an evaluation technique and its associated metric are the key steps in every

performance evaluation [33]. When evaluating user-level thread-libraries and programs that

make use of them, measurement is the best and often the only applicable evaluation tech-

nique. In addition to measurement, techniques such as analytical modeling or simulation

5

6 CHAPTER 2. PROFILING METHODS AND METRICS

should be applied to decrease a system's potential for performance problems. Nevertheless,

measurement is the only technique allowing e�cient detection of performance bottlenecks

at a �ne-grained level, e.g., statement level. This thesis deals with the most important

measuring tool for concurrent systems, namely pro�lers.

There are many reasons for pro�ling a concurrent program, the main ones being:

performance analysis to �nd and examine the \hot spots" of the program, i.e., the most

frequent and most time-consuming sections,

algorithm analysis to empirically con�rm the predicted algorithmic behaviour of the pro-

gram,

coverage analysis to identify the executed segments of the analyzed concurrent program,

thereby determining the adequacy of a test run,

tuning to determine the e�ciency of optimization changes made to the program,

debugging to locate code segments with non-predicted behaviour.

After identifying \hot spots" in a concurrent program, the component costs of the eval-

uated operations must be analyzed in order to determine if the cost is fundamental or can

be optimized. Often, this analysis cannot be entirely automated and involves some e�ort

from the programmer. Nevertheless, modern pro�ling tools help in this reasoning process

and give enough advice to signi�cantly reduce the time needed for this step.

Depending on the results of the performance analysis, the program can be optimized

at di�erent levels. It is often the case that simple code re-arrangements on an inter- or

intra-task level give good performance increases. The situation gets more complex when

the concurrent structure of the program has to be changed. In this case, the degree of

performance improvement often depends on the available concurrent language primitives

and their implementation.

2.1. PROFILING METHODS 7

Instrumented
program

Original
program

Revised or additional
instrumentation

Data

Profiling
data

Analyzed

Run instrumented
program

Insert instrumentation

Analyze profiling
data

data
Visualize analyzed

Figure 2.1: Steps in Pro�ling.

2.1 Pro�ling Methods

Pro�ling is typically done following the steps illustrated in Figure 2.1. First, instrumentation

is added to the original program. The instrumented program is then run under the control

of the execution-monitoring pro�ler, which generates a report of the program's run-time

behaviour. This report is then analyzed and the results visualized. Often, other metrics are

chosen, new instrumentation added and this pro�ling cycle is repeated several times.

Today's pro�ling tools perform many operations: they monitor how much time an ex-

ecuting task spends in each traversed block of code, collect data about how many times

certain functions are called, analyze the concurrent system's load during synchronization

and communication among tasks, try to detect bottlenecks due to mutually exclusive access

to shared resources, etc.

8 CHAPTER 2. PROFILING METHODS AND METRICS

Timer

TimerValue

EndTime

Counter

StartTime

Count

Code Segment

Count + 1

TimerValue + (EndTime - StartTime)

GetCurrentTime()

GetCurrentTime()

Figure 2.2: Basic Instrumentation Insertion Primitives.

2.1.1 Instrumentation Insertion

Adding instrumentation to a program means extending a program with additional code and

data segments that allow gathering additional information about the program's execution.

Multiple instrumentation insertion primitives, methods and methodologies are available and

the main ones are discussed.

Instrumentation Insertion Primitives

The two basic insertion primitives are counters and timers.

Counters are utilized in various ways. An example is to check how often a certain program

segment is traversed. To provide this very important information, a static counter is

inserted, typically at the beginning or end of the code segment. At any point during

the program's execution, the counter holds the exact number of traversals of this block

of code.

Timers are used to measure the time spent in a speci�c block of code, or the time between

two distinct traversals of the same code segment.

2.1. PROFILING METHODS 9

A simple example of how these two primitives can be implemented and used to instrument

a code segment is shown in Figure 2.2. The instrumentation primitives are inserted at the

original code segment's entry and exit; in Figure 2.2, the original code segment is shaded in

gray. The counter is represented by a data structure named \Count", which is incremented

before the thread of control traverses the code segment. The timer primitive consists of two

parts: before traversing the original code segment, a data structure \StartTime" is set to the

current time. After the current thread of control has �nished executing the code segment, it

sets \EndTime" to the now current time value. Then, the di�erence between \EndTime" and

\StartTime" is added to the value of the data structure \TimerValue". Thus, if initialized

to zero, \TimerValue" always holds the total amount of time spent inside the instrumented

code segment.

Although providing very important pro�ling information about the examined block of

code, counters and timers are insu�cient for complex pro�ling metrics (see also Section 2.2).

For instance, if the examined code segment is a function, it is useful to additionally insert

instrumentation primitives that store information about the caller of the function. One pos-

sibility to improve the potential pro�ling e�ectiveness and applicability to multiple metrics is

to add conditional statements inside of the basic pro�ling primitives. For example, a metric

might require merely incrementing a value if the current thread is the only running thread.

When pro�ling concurrent programs in shared memory, additional issues have to be con-

sidered. If the pro�ler uses shared data structures for the inserted primitives, the primitives

must provide mutual exclusion to avoid corruption of the data. Alternatively, the pro�ling

data can be made independent for each executing thread, so no mutual exclusion is required.

Instrumentation Insertion Methods

Two di�erent instrumentation insertion methods can be distinguished: direct insertion and

indirect insertion.

For direct insertion, the instrumented code is placed at the front and/or end of the code

block to be instrumented.

10 CHAPTER 2. PROFILING METHODS AND METRICS

Instrumentation
Primitives for

Code Segment Entry

Return to Caller

Trampoline 2

Instrumentation
Primitives for

Code Segment Exit

Trampoline 1

Code Segment

Return to Caller

Jump to Trampoline 2

Jump to Trampoline 1

Figure 2.3: Indirect Instrumentation Insertion.

A more common and general approach is indirect insertion of instrumentation primitives.

This approach is achieved by simply inserting a jump to a trampoline for each point

in the instrumented code segment where instrumentation primitives are to be placed.

As shown in Figure 2.3, the instrumentation primitives are moved into the trampoline

and after executing them, execution jumps back to the original code segment, like a

call to a subroutine.

Using indirect insertion as the instrumentation insertion method makes automated and

con�gurable instrumentation easier, as the trampolines are located at known positions, where

they can be easily modi�ed. In addition, it is possible to insert parameterized calls to a spe-

ci�c trampoline from various points of the instrumented program and control the selection of

the appropriate instrumentation primitive by using conditional statements inside the tram-

poline.

A variation of indirect insertion is copying the �rst few instructions of the original code

segment to the end of the trampoline. Then, a jump-to-trampoline instruction is placed at

the beginning of the original code segment, overwriting the instructions just copied from the

code segment to the trampoline. This variant, which is similar to breakpoint insertion for

2.1. PROFILING METHODS 11

debuggers [36], has as a result that, most likely, storage has to be allocated for each di�erent

trampoline to hold the relocated code. Nevertheless, this approach is the preferable one if

the instrumentation has to be done after compilation.

Instrumentation Insertion Methodologies

Depending on the selected pro�ling metrics (see Section 2.2), monitoring technique (see Sec-

tion 2.1.2), and the point of time at which instrumentation occurs, three di�erent method-

ologies of instrumentation insertion can be distinguished:

1. No instrumentation insertion

Even though this approach is not very popular, pro�ling can be performed without

inserting any additional instrumentation. In this case, statistical monitoring (see Sec-

tion 2.1.2) is the only applicable method to collect the required execution-time infor-

mation.

Nevertheless, not inserting additional instrumentation code clearly reduces the so-

called probe e�ect [15] when pro�ling concurrent programs. The probe e�ect results

from the fact that concurrent programs are non-deterministic in terms of the order

of executed instructions; hence, every insertion of additional instructions potentially

changes the program's behaviour. Therefore, the more instrumentation inserted, the

greater the potential for disturbing the sequence of execution.

2. Statically inserted instrumentation

Most pro�ling tools statically insert instrumentation code before compile-time, at

compile-time, or by dynamically changing the executable. The latter one is also called

binary re-writing. In most cases, the applied instrumentation method is indirect in-

strumentation insertion in the form of trampolines.

Even though statically inserting instrumentation entails a higher probe e�ect, it reveals

important information about the pro�led program that is impossible or very di�cult

to obtain by any other methodology. Examples are the insertion of counters to mea-

sure the number of traversals through a code segment, or inserting instrumentation

12 CHAPTER 2. PROFILING METHODS AND METRICS

that gathers information about an instrumented function's callers, which makes the

construction of a function call graph possible.

The drawback of statically inserted instrumentation code is that if instrumentation is

placed at a point in the program that it is not a potential bottleneck, it is infeasible

to remove it without stopping the program's execution. Since this problem becomes

crucial for long running programs, the instrumentation primitives should be conditional

and depend on the value of
ags indicating if pro�ling of the respective block of code is

activated, and thereby allowing the necessary amount of run-time control. Only then

is statically inserted instrumentation suited for pro�ling of applications of all sizes.

3. Dynamically inserted instrumentation

Dynamically inserting pro�ling instrumentation is a relatively novel methodology [29],

where the instrumentation insertion is performed at run-time, according to special

pro�ling algorithms that decide where, when and what type of instrumentation is

needed to pro�le a program.

Since address relocation during run-time is a non-trivial task, the preferable, and in

many cases only, applicable instrumentation method is the variation of indirect instru-

mentation insertion that moves the �rst instructions of the instrumented code segment

to a trampoline and executes them from there as described above.

In contrast to statically inserted instrumentation, pro�ling via dynamically inserted

instrumentation cannot normally be performed at the same �ne-grained level with

acceptable accuracy, because in order to dynamically change the pro�led program's

code segment, the program has to be executed under control of the pro�ler. Therefore,

the overhead cost of dynamically inserting code increases the potential for probe-e�ects

and is not applicable to small code segments when accurate results are required.

Nevertheless, pro�ling with dynamically inserted instrumentation has the potential

to reduce the amount of irrelevant information collected to a minimum and does not

cause any overhead in \unimportant" code blocks. The instrumentation overhead

can be dynamically measured and adjusted by adding and removing instrumentation

2.1. PROFILING METHODS 13

exact monitoring statistical monitoring

no instrumentation � �

static instrumentation + +

dynamic instrumentation � + (long running programs)

Table 2.1: Combinations of Instrumentation Insertion and Monitoring.

insertion primitives.

Therefore, dynamically inserted instrumentation normally aims at performance mea-

surement of large-scale long-running programs.

2.1.2 Monitoring

Monitoring is the process of asynchronously (or synchronously) collecting information about

a program's execution behaviour [6].

During execution, the pro�ler monitors the program, possibly making use of inserted

instrumentation, and produces an execution pro�le, which subsequently is passed to the

pro�le analyzer (see Section 2.1.3).

Two di�erent monitoring methods can be distinguished: exact monitoring and statisti-

cal monitoring. Thus, there are various possible combinations of monitoring methods and

instrumentation insertion methodologies; these combinations are evaluated and illustrated

in Table 2.1. The symbol \+" means sound results, \�" represents acceptable results with

some limitations, and \�" stands for unacceptable results. In the following, all di�erent

combinations are discussed and their evaluation elaborated.

Exact Monitoring

Exact monitoring gives exact information about the pro�led program's execution behaviour

in regard to the chosen metric (see Section 2.2). Exact monitoring is used, for example,

to provide information about the exact time when the monitored program reaches certain

points in its code or about the exact number of calls to a certain function. As mentioned be-

14 CHAPTER 2. PROFILING METHODS AND METRICS

fore, depending on the underlying instrumentation insertion methodology, there exist several

di�erent approaches to exact monitoring.

1. In the case of no instrumentation insertion, exact monitoring can be performed by

running the pro�led program under control of the pro�ler, which yields and resumes

the pro�led program's execution on a machine instruction level, similar to tracing

and single-stepping in debugging tools. It is clear that this approach introduces the

maximum probe e�ect, and therefore, is not applicable in most cases. In addition,

exact monitoring without instrumentation on multiple processors is non-trivial, and in

most cases not wanted, since unless each processor has a separate pro�ler, the execution

controlling pro�ler has to schedule the order of execution among di�erent processors,

which results in a serialization of execution.

2. For exact monitoring, statically inserted instrumentation is the preferable methodology

if a complete event trace is required by the selected pro�ling metric. Special instru-

mentation code is inserted at all points of interest in the monitored program. Selecting

these locations for instrumentation insertion allows exact monitoring to be performed

at di�erent levels of granularity possibly at a very �ne grained level, i.e., statement

level. The inserted instrumentation consists of code that generates some type of event

and sends it to a monitoring pro�ler as shown in Figure 2.4. The type of event de-

pends on the pro�ling metric used and can be everything from a simple time stamp to

detailed information about the state of the currently executing thread.

According to the selected pro�ling metric, the event data is collected by the mon-

itoring pro�ler, which then performs an analysis and visualization of the data (see

Sections 2.1.3 and 2.1.4).

3. Dynamically inserting instrumentation into the monitored program entails the risk of

missing events needed to gather exact information with respect to certain pro�ling

metrics. Thus, dynamic instrumentation insertion is only applied if either the pro�ling

metric does not depend on a complete trace of events, or if the execution path of the

monitored program can be predicted and instrumentation inserted accordingly for each

2.1. PROFILING METHODS 15

Inserted
Instrumentation

Event Generation

Sending Event

Event Generation

Sending Event

Event Generation

Sending Event

Monitoring Profiler

Monitored Program

Event Collection

Figure 2.4: Event Collection in Exact Monitoring with Instrumentation Insertion.

executing thread before the monitored program's threads of control reach the points

critical for exact monitoring.

Statistical Monitoring

Statistical monitoring is used to collect run-time information about the monitored program

by periodically sampling the examined program's state of execution. This technique is illus-

trated in Figure 2.5.

In most cases, the probe e�ect introduced by pro�ling has to be minimized, which makes

exact monitoring infeasible. In addition, applying exact monitoring to long-running appli-

cations can produce an enormous amount of collected data, too large for any reasonable

analysis.

Statistical monitoring deals with these problems by intentionally omitting information

about events that occur between samples. This technique reduces the amount of data gath-

16 CHAPTER 2. PROFILING METHODS AND METRICS

Monitored Program

Monitoring Profiler

Figure 2.5: Statistical Monitoring.

ered, but still provides enough information to produce a representative image of the mon-

itored program, which is accurate enough to detect relevant performance problems. In

addition, special sampling hardware can be used, and in a multi-processor environment,

the pro�ler performing the statistical monitoring can be executed by a dedicated processor,

thereby lessening the probe e�ect on the monitored program.

Similar to exact monitoring, di�erent approaches can be taken depending on the method-

ology of instrumentation insertion utilized (see Table 2.1).

1. Statistical monitoring can be done without any instrumentation insertion. In this case,

the monitoring pro�ler collects the relevant information only by periodically inspect-

ing the state of the program under examination. Although statistical monitoring with

no instrumentation insertion minimizes the probe e�ect, getting accurate and detailed

information about a concurrent program can be very di�cult, unless there is support

by the underlying system, i.e., the operating system or the kernel of the thread library

used. For example, on most systems it is impossible to get the current value of the

program counter of a process on another physical processor. Also, the sampling algo-

2.1. PROFILING METHODS 17

rithms have to be extremely robust towards potential state changes; if, for example, the

monitored program changes state while the pro�ler is in the process of reading exactly

this identical state information, the sampled value is very likely to be inconsistent.

2. Performing statistical monitoring with static instrumentation is probably the most

common combination when statistically pro�ling a concurrent program. In this case,

the inserted instrumentation consists of only basic instrumentation primitives and their

corresponding pro�ling data structures, the locations of which are known by the mon-

itoring pro�ler. According to the selected pro�ling metric, these primitives operate on

their data structures, and the pro�ler periodically reads the data structures' values.

This approach allows sampling data structures internal to the pro�led program, be-

cause the sampled state information is available to the pro�led threads, which execute

the instrumentation primitives and update their corresponding pro�ling data struc-

tures. Hence, by introducing some cooperation between the pro�led program and the

pro�ler, additional information becomes available.

3. Dynamic instrumentation is also applicable to statistical monitoring. This combination

is useful for pro�ling long-running applications. The sampled data structures and

the primitives that operate on them are dynamically inserted and removed by the

pro�ler. While the same pro�ling metrics can be applied as in the case of statistical

monitoring with static instrumentation insertion, dynamic instrumentation only causes

an overhead where it is unavoidable.

Summary

Inserting instrumentation often results in more accurate results although it introduces a

greater probe e�ect; in addition, it facilitates the operation of a statistically monitoring pro-

�ler. Inserted instrumentation allows monitoring at di�erent levels of granularity according

to the programming language primitives utilized. Information about the executing program

can, for instance, be collected at a function level, which in most cases su�ces for pro�ling

purposes. In this case, instrumentation is added at the monitored program's function en-

18 CHAPTER 2. PROFILING METHODS AND METRICS

tries and/or exits. In general, instrumentation is inserted at a level depending on the basic

language primitives, and the inserted code stores an identi�er for the instance of the cur-

rently executed primitive in a data structure periodically sampled by the monitoring pro�ler.

Since these data structures only change values at the beginning and end of the monitored

primitive, the probability of incorrect data due to state changes during sampling is reduced

compared to statement level state changes when no instrumentation is inserted.

2.1.3 Pro�le Analysis

Subsequent to monitoring, the next stage in the pro�ling cycle is the pro�le analysis. In the

following, the time aspect and the purpose of pro�le analysis are discussed.

Time Aspect

Depending on the pro�ler's architecture, the pro�le analysis can be performed anywhere from

post-code-generation to pre-visualization. Two opposing techniques can be distinguished:

1. One possibility is that the analysis is done on-the-
y; i.e., while the pro�led program

is executing, the pro�ling monitor produces the pro�ling data and passes it along to a

pro�le analyzer. This approach has the advantage that it reduces the amount of stored

pro�ling data, since it is immediately processed. Another advantage of this approach is

that the pro�ling results are available while the program is still running. This feature

makes dynamic pro�ling possible and is very useful when long-running programs are

pro�led. Also, a visual representation of the pro�ling data can be presented while

the program is running, thereby allowing possible user-interaction. For example, the

user could dynamically switch pro�ling on and o� for certain modules and possibly

detect performance problems in the current context of the program. The drawbacks of

analyzing the execution pro�les on-the-
y are that it introduces an additional probe-

e�ect and that it might be impossible to perform the analysis with the speed of the

incoming data from the monitoring stage when sampling is done at a high frequency.

In this case, relevant data has to be discarded, or the analyzer has to work with a large

2.1. PROFILING METHODS 19

delay between the time when a pro�ling events occurs and when it is processed. Both

of these cases make an on-the-
y analysis infeasible for short-running programs. Also,

when pro�ling programs that are highly user-interactive, additional user-interaction at

the pro�ler-level might be undesirable.

2. The second variant is performing the analysis post-mortem, i.e., after the pro�led

program has �nished execution and after all relevant pro�ling data is collected. This

technique is used by most pro�ling tools and is applicable to programs of all execution

durations, although it might not be preferable for long-running applications. This

method entails a lower probe-e�ect than performing the pro�ling analysis on-the-
y.

On the other hand, especially when pro�ling long-running applications, there is the

problem of vast amounts of pro�ling data that have to be managed. Also, post-mortem

analysis is in
exible in terms of user-interaction, because the user cannot in
uence the

pro�ling during the program's run-time, but there are no additional burdens on the

user while the program is executing.

Purpose

The purpose of the pro�le analysis is twofold: �rst, analyzing the collected pro�ling infor-

mation, and second, preparing the analyzed information for visualization:

1. Analysis of the pro�ling information

An analysis of the pro�ling information mainly consists of two parts: �ltering and a

correlation analysis, which can both be performed independently of the time aspect.

Filtering aims at reducing the collected data to a manageable subset. Wrong and irrel-

evant data is detected and removed, and depending on the pro�ling metric utilized, the

amount of data is reduced to a necessary minimum. Therefore, �ltering is a main as-

pect in the pro�le analysis. However, it is a non-trivial task to choose a proper �ltering

technique that discards unnecessary information, which could potentially overwhelm

the user, while still maintaining enough information to correctly represent the selected

pro�ling metric.

20 CHAPTER 2. PROFILING METHODS AND METRICS

Correlation analysis is the second task performed during the analysis stage. Its main

goal is to cut through the pro�ling data along a certain dimension in order to detect

correlated pro�ling events. For example, the pro�ling metric can require information

about thread synchronization events; therefore, it is important to compare pro�ling

events for di�erent concurrently executing threads and detect the ones that are using

synchronization primitives at the examined point of time.

2. Preparation for visualization

The other purpose of the pro�le analysis is to prepare the pro�ling data for visualiza-

tion. The preparation comprises condensing the pro�ling data according to the metrics

and visualization technique. Condensing the pro�ling data is important both to provide

the required level of abstraction and to avoid overwhelming the user with irrelevant

information. Also, it is clear that di�erent visualization techniques for the same data

require di�erent preparations; simple tables, for instance, might require more precise

information than bar charts displaying accumulated values.

There exists a wide range of possible levels of \intelligence" for a pro�le analyzer: the

pro�le analysis can be entirely automated, or at the other extreme, the pro�le analyzer can

be a help-tool only supporting the user.

Complete automation of the pro�le analysis mainly aims at performance analysis and

tuning of programs. It usually requires expert-system-like arti�cial intelligence support,

which de�nes and evaluates hypotheses in order to locate a performance bottleneck. This

approach has the advantage that the user does not have to be a pro�ling expert to e�ectively

use the pro�ler. The drawback is that it may not be as
exible as a help-tool and that relevant

information might be omitted because the hypotheses does not cover all imaginable cases.

Initial research in this �eld has been done; examples can be found in [11], [14], [50], [56] and

[78].

Help tools require the user to be familiar with pro�ling, but they have the advantage

that, in addition to performance analysis and tuning, they can be used for other pro�ling

reasons, namely algorithm analysis, coverage analysis and debugging.

2.1. PROFILING METHODS 21

It is clear that these two possibilities can be combined in a variety of ways. Automated

tools can provide interaction in the selection and evaluation of hypotheses, and help tools

can have a certain degree of automated pro�ling analysis functionality to lead the user to

possible problems.

2.1.4 Visualization

Visualization is the last step in the pro�ling cycle. Its purpose is to present the pro�l-

ing information to the user in an e�ective, concise and appealing manner. Di�erent basic

visualization techniques can be distinguished: tables, charts, and graphs.

Tables

The simplest and in many cases the best visualization technique is presenting the pro�ling

data in a table. When utilized to visualize pro�ling data, a table is often sorted by decreasing

order of importance according to the pro�ling metric. For example, if the durations a thread

spends in di�erent functions are measured, the pro�ler presents the functions in order from

relatively longest period to shortest period in the table. An advantage of visualizing data

in a table is that it is the best format to show many details at the same time and the raw

data values prevent misleading the user. Nevertheless, tables are restricted to representing

discrete values depending on at most two dimensional input, and therefore, can only be

applied in certain situations. Also, for many pro�ling metrics, the information should be

presented by more appealing, graphical visualization techniques.

Charts

Another visualization technique is presenting pro�ling data in a chart. Charts are pictures

or diagrams that give information by graphically displaying discrete data values. Many

di�erent types of charts can be applied, examples of which are bar charts.

An example for a bar chart is presented in Figure 2.6. It shows a bar chart presenting

pro�ling information of the total time a thread spent in the running state inside di�erent

22 CHAPTER 2. PROFILING METHODS AND METRICS

Figure 2.6: Example of a Bar Chart.

functions. Distinct functions are represented by di�erent bars and the bars' heights indicate

how much time the visualized thread spent inside the corresponding function.

In addition to bar charts, there exists a variety of chart types useful when visualizing

pro�ling data; examples are Gantt charts and Schumacher charts (see [55]).

2.1. PROFILING METHODS 23

When designing a chart, it should be ensured that a large share of the visible points

on a graphic presents data information, and that the chart contains as little redundancy

as possible. For example, the width of a bar in a bar chart does not provide any further

information and might even be misleading. Therefore, the bar chart presented in Figure 2.6

can be redrawn in a simpler and more concise way; such a display is presented in Figure 6.8

in Section 6.3. For a more detailed discussion on graphical excellence, graphical integrity

and the theory of data graphics, see [75].

Although charts can ful�ll the purpose of e�ciently communicating complex quantitative

ideas, they are restricted to discrete data values that depend on only one or two dimensional

input. For displaying contiguous multi-dimensional data, a graph is used instead of a chart.

Graphs

The third visualization technique exposes pro�ling data in the form of a graph. Graphs

show how quantities depend on each other; they use lines and surfaces to represent rela-

tions of possibly multi-dimensional functions. Many pro�ling metrics can only be e�ectively

visualized in the form of a graph; each of these metrics might require its own graph type.

A very useful example is a kiviat graph [39], which is shown in Figure 2.7. This kiviat

graph shows eight di�erent metrics aligned in a circle along radial lines. For each metric,

its value is marked at the corresponding radial line and connected to the neighbour metrics'

marks, thereby creating the inner area of the kiviat graph, which is shaded in gray. Note

that the metrics alternate in such a way that a metric for which a higher value is better is

between metrics for which a lower value is better. Therefore, the ideal shape of the kiviat

graph is an N-pointed star where N is the number of metrics, for which a higher value is

better. In this case, the star is malformed for the metric \CPU wait" indicating that this

is the metric whose value might be too large. Kiviat graphs can be applied to various sets

of metrics as long as an even number of metrics is used, and the metrics are aligned in the

manner described above. Further examples of kiviat graphs are discussed in Section 6.3.2.

24 CHAPTER 2. PROFILING METHODS AND METRICS

Figure 2.7: Example of a Kiviat Graph.

2.2 Pro�ling Metrics

The e�ectiveness of pro�ling tools mainly depends on the selection of appropriate pro�ling

metrics. There exist a great variety of pro�ling metrics corresponding to the underlying

pro�ling philosophy; many pro�lers create new metrics to suit their pro�ling environment

the best. Di�erent existing approaches are discussed in Chapter 3.

In this section, di�erent approaches are introduced to classify pro�ling metrics.

2.2.1 Metrics on Time versus Metrics on Counts

As alluded to in Section 2.1.1, pro�ling can be done along two dimensions: time and counts.

The underlying reason for pro�ling has a strong in
uence on the choice between these two

dimensions, or a possible combination of them. Whereas coverage analysis usually requires

2.2. PROFILING METRICS 25

a metric on counts, other reasons for pro�ling might entail a utilization of metrics on time.

Metrics on Time

Pro�ling metrics on time are usually used when performing a performance analysis, an

algorithm analysis, or tuning. Both time events and time durations can be used by metrics

on time. As well, time events are needed when metrics are applied that make use of the order

of the pro�led events, e.g., in a real-time analysis. Common examples of pro�ling metrics on

time durations measure the total time spent in a speci�c function or the time spent blocking

on I/O requests.

Metrics on Counts

Although pro�ling metrics on counts are mainly applied when performing algorithm analyses,

coverage analyses, or debugging, they might be useful to give supplementary information for

performance analysis or tuning. An example of a metric on counts is the number of times a

certain function is called during the pro�led program's execution.

It is clear that in many cases, metrics on counts and metrics on time can be combined

to build even more e�ective metrics.

2.2.2 Exact versus Statistical Metrics

Depending on the monitoring technique applied, pro�ling metrics can be classi�ed as exact

metrics and statistical metrics and are a consequence of the chosen instrumentation insertion

and monitoring methodology.

Exact Metrics

Exact metrics provide exact information about the pro�led program. For example, if the

metric is the number of calls to a certain function, statistical information is insu�cient.

Therefore, metrics on counts usually imply exact metrics. Nevertheless, a metric on time

can also be an exact metric when it is built on time events. Important examples of exact

26 CHAPTER 2. PROFILING METHODS AND METRICS

metrics are trace-based metrics (see Section 3.2), or metrics that are based on a function

call graph. Although exact metrics might introduce a high probe e�ect, modern pro�lers

should provide support for exact metrics, since they are preferable to statistical metrics when

performing algorithm analysis, coverage analysis and debugging.

Statistical Metrics

For performance analysis, statistical metrics are preferable to exact metrics, since they usu-

ally do not require exact monitoring, and therefore, introduce less of a probe e�ect. Statistical

metrics are usually metrics on time, for example, the time spent inside a speci�c block of

code. It is clear that in most cases, statistical metrics can be computed using pro�ling data

collected via statistical monitoring.

2.2.3 Operating Levels

Pro�ling metrics can also be classi�ed according to the level at which they operate and

where the pro�ling data is available. Since pro�ling can be done at di�erent levels of detail

depending on the underlying system, corresponding metrics must be built at di�erent lev-

els of abstraction to correctly represent this system under examination. Pro�ling support

by the underlying system can lead to more accurate data or reveal relevant information

intrinsic to the run-time system's kernel. For example, many operating systems provide

various pro�ling support and statistical information about application processes, normally

including data concerning the resource-usage, memory and input/output behaviour, system

load, active processor time, etc. Furthermore, this information is only available through the

instrumentation provided at this level. A good pro�ling tool should present the informa-

tion and take it into account when performing the pro�le analysis. In many cases, support

by the operating system or the run-time kernel facilitates gathering pro�ling data needed

to develop informative and accurate pro�ling metrics. In addition, information about the

system's load during the pro�ling process is needed to validate the adequacy of a test-run.

Thus, integrating pro�ling supporting instrumentation into the kernel is an important design

issue and should be part of any programming development environment.

2.2. PROFILING METRICS 27

At a higher level, the programming language itself can support pro�ling at various lev-

els, e.g., via the programming paradigms and constructs supplied, or by supporting pro�le

instrumentation insertion at the pre-processor, compilation or linking level.

Optimally, a programming environment supports pro�ling metrics at the di�erent operat-

ing levels discussed above to allow
exible, accurate and �ne-grained metrics to be integrated

into the pro�ling process.

Chapter 3

Related Work

In the following sections, di�erent pro�ling tools and environments are brie
y introduced

and distinguished in terms of their instrumentation insertion, monitoring, pro�le analysis

and visualization techniques, and the target programming environment they are aimed at.

3.1 Instrumentation Insertion

Pro�ling tools can be classi�ed in various ways. One important aspect representing the un-

derlying methodology is the stage where the instrumentation insertion is performed: instru-

mentation insertion can be done at various stages, anywhere between writing the program's

source code and executing the program. Some previous pro�ling tools and their points of

instrumentation insertion are presented in Figure 3.1.

Inserting pro�ling instrumentation at the source code stage gives the programmer com-

plete control about when, where and possibly how the application is pro�led. This approach

of manually inserting the instrumentation is, for example, required by the pro�ling tool

JEWEL [42]. Although this method provides a detailed level of selectivity, it has the draw-

back that it requires a lot of time and e�ort by the program instrumentor. Other pro�ling

tools, such as PARAVER [57], do not require the program analyst to modify the general

source code, but to only add some new statements at the beginning and end of the blocks of

code to be pro�led, which start and terminate the pro�ling event collection process. PIE [62]

29

30 CHAPTER 3. RELATED WORK

Pre-Processed
Source

Re-Written
Executable

Software Engineer

Compiler

Source

Preprocessor Pablo, AIMS, S-Check

JEWEL, Paraver

Abstract Execution, MPP Apprentice,
gprof

, PIE

Linker

Binary Re-writer

Executing Process

Object Code

Executable

VPPB, IPS-2 , AIMS

QP, MTOOL

Paradyn, Chiron, TAM,
Mach Kernel Monitor

Figure 3.1: Pro�ling Tools and their Instrumentation Insertion Points.

is another example where parts of the instrumentation have to be inserted in the source by

the programmer when �ne-grained pro�ling is required.

Other tools perform the instrumentation insertion at a pre-processor level. AIMS [80] [81],

Pablo [59], pC++ Instrumentor [48] and S-Check [63] are examples of pro�ling tools where

the necessary instrumentation is inserted into the source code by a source code instrumen-

3.1. INSTRUMENTATION INSERTION 31

tor before program compilation. In this case, instrumentation insertion can be done in an

interactive manner, or can be used to perform automated synthetic perturbation screen-

ing [46] [64]: the synthetic perturbation screening technique inserts arti�cial, controllable

delay points into the source code at locations of potential performance bottlenecks. These

delay points can be switched on and o�, thereby representing numerous di�erent versions

of the original program with a distinct run-time behaviour. The instrumented program is

executed with many di�erent delay settings and the resulting execution times are recorded.

Using statistical techniques, such as variance analysis, the relative strength of the instru-

mented performance bottlenecks is identi�ed and critical spots are located.

AE (Abstract Execution) [43], MPP Apprentice [78], and the sequential pro�ling tool

gprof [22] are examples of tools that accomplish the pro�ling instrumentation insertion at

the compilation stage. This approach has the advantage that pro�ling insertion can be done

at a �ne-grained level, even down to the assembler instruction level. An obvious drawback of

inserting instrumentation at the compilation stage is that a di�erent version of the compiler

is needed for each supported platform.

At the linking stage, there exist di�erent approaches for adding instrumentation. One

possibility is to replace the standard system libraries by instrumented ones. This approach

is taken by IPS [52] and IPS�2 [51]. Similarly, the run-time libraries can be replaced, which

is done by VPPB [4] and AIMS [80]. Also, when the instrumentation insertion is added at

an earlier stage, the pro�ling tool usually requires linking additional libraries to the program

to be pro�led, in order to supply the necessary monitoring and analysis functionality.

After linking, some performance tools, e.g., QP [3] and MTOOL [19], perform binary

re-writing of the object code to insert the necessary instrumentation. This approach has the

advantages that it is almost independent to the programming language used and does not

require changing the pre-processor, compiler, or the linked libraries. Obviously, since this

method does not take the underlying programming primitives into account, it does not allow

pro�ling on an abstract basis corresponding to the higher-level language constructs that are

used to write the concurrent program.

There exist several possible techniques that can be applied to perform pro�ling on an

32 CHAPTER 3. RELATED WORK

executable that has not been instrumented in a previous stage. Chiron [20], for example,

performs the pro�ling by using the Mint [77] object code multiprocessor simulator. Another

technique is used by the TAM [61] tool for Intel Paragon architectures, which defers the

instrumentation insertion to the beginning of the program's execution. Paradyn [50] is a

pro�ling tool that dynamically inserts and removes the instrumentation during run-time.

Dynamic instrumentation has the advantage that it reduces the amount of pro�ling data

generated and does not slow down the program's execution for parts of the program that

are considered unimportant in terms of pro�ling. Paradyn dynamically inserts the necessary

instrumentation by controlling the pro�led program's execution with a variation of the UNIX

ptrace interface [71].

In addition to the instrumentation insertion techniques described above, other mecha-

nisms can be applied on systems that either have operating system kernel instrumentation

support, an example of which is the Mach Kernel Monitor [44], or provide a facility that

allows a process to monitor the execution of other processes. Monitoring support for pro-

cesses is provided by most operating systems, e.g., di�erent versions of UNIX provide this

information via system call libraries (see [69]) or process information management facilities,

like the /proc �lesystem [70].

3.2 Metrics and Monitoring Methods

Before pro�ling can be applied, the relevant pro�ling entities, i.e., the parts of the program

on which pro�ling is performed, have to be identi�ed. The next step is to de�ne and select

pro�ling metrics to appropriately represent these pro�led entities. Theoretical considerations

about performance metrics are, for instance, found in [72]. Once the metric has been de�ned,

a corresponding monitoring method is selected.

Metrics and monitoring methods are two essential aspects in pro�ling; as discussed in the

following, the monitoring method applied can be used to classify di�erent pro�ling tools.

Many tools perform a pro�le analysis based on event-traces of the program's execution.

Exact monitoring is the commonly applied technique in this case (see Section 2.1.2). Based

3.2. METRICS AND MONITORING METHODS 33

on an event-trace, di�erent tools calculate di�erent metrics. The sequential tool gprof [22],

e.g., uses trampoline insertion to collect information about the pro�led application's call

graph. Various tools extend this idea to pro�ling parallel applications and collect call graph

information for di�erent processes. The pC++ [48] programming system and PARAVER [57]

are examples of this technique.

There is a variety of event types that can be collected: PARAVER collects events rep-

resenting the CPU activity, communication events and allows user-de�nable events. Based

on an event-trace, Monit [35] computes metrics, such as the number of busy processors or

the number of threads waiting to enter a critical section. IPS [52] and IPS�2 [51] both

calculate the critical path by making use of the program's event-trace, where critical path

is the longest path through a series of sequential code fragments between communication

points. IPS�2 also provides a metric called Logical Zeroing, which gives, based on the critical

path, an estimate of how much the execution time will improve when improving a selected

function. Slack [28] is a third metric introduced by IPS�2, which is based on a critical

path analysis. PV [31], the Uniform Trace Environment (UTE) [79], Pablo [59], Upshot [24]

and JEWEL [42] are other examples of event-driven performance measurement tools. Pablo

de�nes the trace log-�le format SDDF [2], which is supported by many di�erent pro�ling

and visualization environments. A more general approach to event-trace monitoring and

analysis is introduced with the ZM4/SIMPLE [53] tool set: an abstraction model is given,

which applies to many di�erent exact monitoring approaches. A comparison and validation

of various, mostly trace-based, metrics is found in [30].

Statistical monitoring is the other technique used by many tools. As in the case of

gprof, an interrupt-driven sampler monitors the program's behaviour during run-time by

sampling its program counter. Quartz [1] is a tool that, in its original version, calculates

a metric called Normalized Processor Time (NPT) based on statistical monitoring. NPT

represents the time for each executed function divided by the number of currently executing

processors performing useful work, which gives the e�ective parallelism for that time interval.

Limitations of statistical monitoring are discussed in [58].

Paradyn takes a hybrid approach of exact and statistical monitoring: It periodically

34 CHAPTER 3. RELATED WORK

samples exact information, which comes from event counters and timers.

3.3 Pro�le Analysis

As discussed in Section 2.1.3, a pro�le analysis can be performed at various stages from post-

code-generation to pre-visualization. Some pro�ling tools perform the pro�ling analysis in

a simulated environment. VPPB [4], PARAVER [57] and Chiron [20] are examples of this

approach.

Paradyn [50] performs the pro�le analysis during a program's run-time and uses the in-

formation about the current state of the pro�led program to make decisions about where and

when to add or remove the pro�ling instrumentation. On-the-
y analysis of pro�ling events

has the advantage that the user can possibly be involved in the analysis, selection of instru-

mented code blocks, and �ltering and metric selection while the program is running, which

is especially useful for long-running applications. The major draw-back of dynamic pro�le

analysis is the additional cost and perturbation caused by the pro�le analyzer. Therefore,

most pro�ling tools, especially those based on event traces, perform a post-mortem pro-

�le analysis. Examples of tools that use post-mortem analysis are IPS [52], IPS�2 [51],

ZM4/SIMPLE [53], TAU [5], PV [31], UTE [79], Pablo [59], Upshot [24] and AIMS [80].

S-Check [63] performs its pro�le analysis via synthetic-perturbation screening [46] [64],

i.e., by executing various di�erently instrumented versions of the pro�led program. In-

strumentation in S-Check means calculating a sensitivity measure for each code segment

and subsequently building di�erent versions of the instrumented program by inserting con-

trollable delay statements at the locations of potential performance bottlenecks inside the

program.

ExtraP and Speedy [54] are performance extrapolation tools for pC++ [48] that use pro�le

analysis in a certain environment to predict the performance metrics in a di�erent environ-

ment. This technique can, for instance, be used to run the parallel program on a sequential

machine and predict its performance in an environment with multiple parallel processors.

3.4. VISUALIZATION 35

3.4 Visualization

Visualization is the stage in the pro�ling cycle that aims at identifying and understanding the

pro�led program. Di�erent pro�ling tools use di�erent pro�ling visualization techniques and

there exists a wide range of presentation methods, from text-based tables to sophisticated

three-dimensional graphics. Some selected approaches are discussed in the following:

gprof is an example of a pro�ling visualizer that solely uses text-based output in table

format to present the gathered pro�ling information.

An example of a general visualization program for event traces is Poet [41] [74]. It

allows visualizing the generated event data on-the-
y or post-mortem, and supplies a
exible

interface to de�ne the graphical output.

ParaGraph [23] is another graphical display system for visualizing parallel program per-

formance that can be used on a number of di�erent message-passing multicomputer archi-

tectures. Using the pro�ler's trace data �le, it can be used to pictorially replay the pro�led

events.

TheChiron [20] parallel program performance visualization system uses three-dimensional

folded graphs to display larger amounts of pro�ling information relevant to memory and syn-

chronization behaviour.

Through SDDF [2], Pablo [59] has become a tool with a wide range of visual and audio-

visual presentation back-end modules: simple tables and bar-charts, kiviat graphs and three-

dimensional graphical devices. Even virtual reality support (see [60]) and performance data

\soni�cation" modules (see [47]), i.e., modules that represent pro�ling events by di�erent

audio patterns, are available.

Two other examples of tools that visualize parallel code are PARAVER [57] and Tau [5].

Tau is a language-speci�c program analysis tool for the pC++ [48] environment that provides

visualization modules to graphically present the gathered pro�ling information, including

information about the pC++ run-time kernel.

36 CHAPTER 3. RELATED WORK

3.5 Target Programming Environment

Pro�ling tools can be designed to apply to general or language-speci�c programming

paradigms. As discussed in Section 3.1, the necessary instrumentation insertion can be

performed at di�erent stages, which represents the pro�ling tool's programming language or

system dependency. Pro�ling systems, where the instrumentation is inserted before or during

compilation, normally apply to a speci�c programming language for certain computer envi-

ronments. The most commonly supported programming languages are parallel dialects of

Fortran, e.g., HPF (High Performance Fortran) [25], and variations of C/C++ [34] [66] with

support for concurrent programming. Tools that perform the instrumentation by linking

with modi�ed libraries, binary re-writing or during the program's execution rather depend

on the computer architecture than the underlying programming language.

JEWEL [42], Quartz [1], TAU [5], Speedy [54], VPPB [4], Paradyn [50] and AIMS [80] all

support parallel versions of C or C++. Paradyn and AIMS additionally support HPF and

allow pro�ling programs that make use of the PVM [73] message passing library. Commonly

supported platforms are large-scale multi-processor systems like the IBM SP2 [67], the Intel

Paragon [13], or the CRAY T3D [10].

Although the pro�ling tools presented in this chapter cover di�erent aspects and pro-

gramming environments, they do not incorporate facilities that cover performance analysis,

algorithm analysis, coverage analysis, tuning and debugging (see Chapter 2) for user-level

thread-based shared-memory multiprocessor environments given in the �C++ [8] concurrent

programming system.

Most tools supporting multiple platforms are based on instrumented message-passing

libraries, only support data parallel programming languages, or do not meet scalability or

extendibility requirements. Dynamic instrumentation, for instance, is a promising approach

to pro�ling large-scale long-running applications, but causes too much overhead to accurately

pro�le smaller-scale short-running programs, as it requires running the pro�led program

under the entire control of the pro�ling monitor that performs the necessary instrumentation

insertion. In addition, extendibility requirements are not met by many tools: the program

analyst might want to add new metrics that reveal some information speci�c to the program

3.5. TARGET PROGRAMMING ENVIRONMENT 37

under examination, aggregate the pro�led data in a certain way, provide back-end interfaces

to other visualization tools, etc.

Since retrieving monitoring information on a per-thread level requires the pro�ler to know

about details intrinsic to the run-time system, a tight coupling between the pro�ler and the

run-time system kernel becomes necessary. Although replacing the original run-time library

by an instrumented one can handle this scenario, pro�ling at a very �ne-grained level, i.e.,

a function or even statement level, can only be achieved when the pro�ler and the run-time

kernel co-operate.

Chapter 4

The Target Environment

As discussed in Chapter 3, the design of a pro�ling tool for concurrent programs strongly

depends on its target environment. Both the underlying concurrent programming language

paradigms and the architecture of the programming environment play an important role.

This work focuses on a concurrent object-oriented programming environment supporting

user-level light-weight threads in shared-memory. Pro�ling user-level threads requires in-

trinsic knowledge about the run-time system; in this chapter, the most important aspects

of the target system, �C++, as well as previous approaches to run-time kernel visualization

for this system are discussed. Although this work mainly discusses issues dealing with the

target environment described here, the ideas are applicable to numerous other environments.

The target programming environment of this work is a user-level thread library for C++,

called �C++ [8]. Section 4.1 presents a brief discussion about the programming paradigms

and the architectural and implementation issues of �C++ relevant to pro�ling. Some initial

work for visualizing a �C++ program's activity has been done (see [6]) and is discussed in Sec-

tion 4.2. Section 4.3 describes the built-in tracing functionality of �C++ and a visualization

tool for event traces, called Poet (see [41]).

39

40 CHAPTER 4. THE TARGET ENVIRONMENT

4.1 �C++

�C++ [8] is a dialect of the object-oriented programming language C++ [66] introducing

programming primitives to support concurrent entities, such as processors and tasks, and

synchronization primitives, such as monitors and condition variables, semaphores, barriers

and locks. In addition, it provides various communication facilities for precisely controlling

the scheduling order at di�erent levels of abstraction. At a task level, �C++ has real-time

support and provides the possibility to implement user schedulers for tasks; at a mutual

exclusion level, it supplies new mechanisms to control the order in which requests to enter a

mutually exclusive object are served.

4.1.1 Implementation Issues

Mechanisms for supporting a concurrent programming environment in �C++ are provided

at di�erent levels: a modi�ed pre-processor parses �C++ language primitives and performs

a translation to C++. A standard C++ compiler generates the �C++ application's object

code and links it to the �C++ run-time library, which implements the run-time system kernel

and the concurrent programming functionality.

�C++ de�nes two di�erent kinds of active entities operating at di�erent levels: processors

and tasks.

Processors in �C++ are virtual processors. �C++ operates in two modes: uni-processor

and multiple-processor. In the uni-processor case, all processors are simulated by

the run-time kernel inside of one UNIX process. In the multi-processor mode, each

processor is implemented by a UNIX process, i.e., all scheduling for a processor is done

by the underlying operating system. Only some parallel processor environments allow

binding a UNIX process to a speci�c physical processor; therefore, the execution of

a UNIX process cannot be predicted in any manner, which is an issue with respect

to real-time programming. An example where binding a UNIX process to a speci�c

processor is possible is the Sequent Symmetry [45]. Unless speci�ed otherwise, in this

thesis, the term processor refers to a �C++ processor and the term process refers to a

4.1. �C++ 41

UNIX process.

Tasks in �C++ are user-level threads that are created and managed by the �C++ run-time

kernel. Using user-level threads, as opposed to kernel-level threads, to implement a

task has the advantage of greater portability, since still not all operating systems sup-

port multiple kernel-level threads. An example of an operating system supporting

multi-threaded processes created and managed at the kernel level is the AIX 4.1 UNIX

operating system. Tasks in �C++ are executed by �C++ processors and are preemp-

tively time-sliced. Therefore, time-slicing is performed by the �C++ kernel among

tasks, and time-slicing is performed by the underlying operating system among proces-

sors. In the following, only time-slicing and task scheduling at the �C++ kernel level

is considered.

4.1.2 Clustering

In addition to creating and managing processors and tasks, �C++ introduces the notion of

clusters, which binds tasks with processors. A cluster is a collection of tasks and proces-

sors, which can be de�ned by the programmer to administratively structure the concurrent

program's active entities. Tasks on a cluster are only executed by the processors for that

cluster. Thus, each cluster has to have at least one processor associated with it to execute

its tasks. The order in which tasks are scheduled is de�ned by the policy of the cluster's

scheduler, which can be replaced by a user. Migration of tasks or processors to other clusters

during run-time is also supported.

4.1.3 Communication and Synchronization

Various synchronization facilities are available in �C++: locks, counting semaphores, barri-

ers, and monitors with accept statements and condition variables. Monitors are objects in

which all or some member functions are always executed in a mutually exclusive manner.

For a further discussion on monitors see [27]. �C++ supplies very precise mechanisms to

explicitly control which mutual exclusive member function executes next. Tasks in �C++

42 CHAPTER 4. THE TARGET ENVIRONMENT

are implemented as monitors, i.e., a class with mutually exclusive member functions and a

thread of control. This approach allows tasks to directly communicate with each other by

making and accepting calls to their mutual exclusive member functions. Communication

among all objects in �C++ is done through parameter passing, as opposed to message pass-

ing. Parameter passing has the advantage that it can be statically type-checked and it allows

the implementation of a concurrent problem to be performed in a coding style that is also

used in sequential programming.

4.1.4 Platforms and Memory Model

�C++ supports various uni- and multi-processor platforms with shared-memory and provides

the same programming language primitives with identical interface for both the uni- and

multi-processor case. As described in Section 4.1.1, in the uni-processor mode, all tasks and

processors are managed by one UNIX process, whereas in the multi-processor case, each

virtual processor is embedded into a UNIX process. In the latter case, it is assumed that

the operating system distributes the di�erent UNIX processes among the existing hardware

processors. �C++ provides a shared-memory programming model and uses memory mapping

between UNIX processes in the multi-processor case to make the multiple UNIX processes

share a common memory.

Researchers in parallel computing generally agree that it is important to support a shared-

memory programming model, since it does not burden the programmer with orchestrating

all inter-task communication through explicit messages.

�C++ is currently implemented on various shared-memory multi-processor computer ar-

chitectures. Recent research in developing large-scale parallel machines has shown that

message-based processor communication is only more e�ective than shared-memory for dis-

tributed data-parallel applications and a few other specialized situations. For a more detailed

discussion on architectural support for both shared-memory and message-passing, see [40].

4.2. MVD 43

4.1.5 Pro�ling �C++ Programs

There are many challenges when pro�ling a concurrent program in an environment similar

to �C++. First, since the environment provides user-level tasks, the pro�ling tool must be

able to pro�le at a task level. This requirement is non-trivial and has to be considered

when designing both the run-time environment and the execution monitoring pro�ling tool.

Knowing about the existence of user-level threads is not enough; the pro�ler has to know the

exact locations where the information representing the separate tasks' state is stored and

has to be able to correctly handle the run-time system's scheduling mechanisms.

Shared memory is the second challenge when designing a pro�ling tool for �C++, since

the code segment is shared among di�erent tasks. If the code segment is not shared, inter-

esting pro�ling locations can be instrumented, and each hit in the instrumented code during

execution can implicitly reveal which task is executing. In the case of shared code, it is

impossible to identify the task that is executing the instrumented block of code by simply

identifying where the instrumented segment is located. Thus, knowledge intrinsic to the

run-time kernel has to be made available to the pro�ler.

A third challenge arises from the requirement that a pro�ling tool should be able to

perform both exact and statistical pro�ling on di�erent levels of abstraction, i.e., from a

very �ne-grained level to a coarse-grained level, e.g., function or statement level through to

high-level language constructs, where the possible abstraction depends on the concurrent

primitives supplied. In �C++, it should be possible to build pro�ling metrics that perform

exact pro�ling on task creation, destruction and communication.

Further design considerations concerning a pro�ling tool for �C++ are discussed in Chap-

ter 5.

4.2 MVD

Some initial work on monitoring and visualizing a �C++ program's run-time kernel activ-

ity has been done with the Monitoring, Debugging and Visualization (MVD) tool set [6].

The MVD tools and libraries allow building monitoring samplers for �C++ programs that

44 CHAPTER 4. THE TARGET ENVIRONMENT

visualize the current state of a running program.

4.2.1 Thread-Safe X/Motif Support

The visualization primitives are provided by a modi�ed version of the X11/R6 Window Sys-

tem [17], and using the Xt [49] and Motif libraries. The modi�ed version for �C++ allows

thread-safe access to the available graphic routines. All X requests are handled by a server

task that executes on its own �C++ cluster. Using the X/Motif visualization routines, a

programmer can write application-speci�c visualization modules that display the program's

behaviour and help in performing the algorithm analysis. Examples of such visualized con-

current programs are also described in [6].

4.2.2 Watchers and Samplers

The MVD toolset for �C++ allows monitoring a program's execution-time behaviour by sup-

plying watcher and sampler objects. Samplers and watchers provide a mechanism to retrieve

information about a program's run-time behaviour. A watcher is a task that periodically in-

vokes routines of one or more sampler objects registered with the watcher in order to collect

information or to display the collected information on the screen. Sampling can be done on

any memory location or accessible variable. For instance, the watcher-sampler mechanism

allows monitoring kernel-intrinsic information, such as the current task's stack sizes and its

current state of execution. The sampled information is analyzed and visualized on-the-
y.

Figure 4.1 shows an example graphical output of a collection of sampler and watcher objects

visualizing the current system state at di�erent levels of detail, i.e., at a system level, a

cluster level and a task level.

The MVD toolset does not supply any mechanisms for exact pro�ling or statistical pro�l-

ing on a �ne-grained level. Also, it requires some e�ort from the programmer to choose and

include the watcher and sampler modules required. Nevertheless, the watchers and samplers

allow statistically monitoring of a program with respect to its kernel activity and provide a

�rst mechanism to gain pro�ling information about a concurrent �C++ program.

4.3. �C++ BUILT-IN TRACING 45

Figure 4.1: MVD Watchers and Samplers.

4.3 �C++ Built-In Tracing

�C++ has built-in tracing support that allows generating an event trace of communication

and synchronization events for concurrent programs. This event stream can then be sent to

an event trace visualizing tool. Poet [41] is such a visualization tool providing a general

con�gurable interface that accepts incoming events and graphically displays them. An in-

terface to accept �C++ trace events has been developed and is described in detail in [74].

�C++ supports generating trace events for both active concurrent entities, such as tasks and

processors, and passive concurrent entities like monitors and semaphores.

Figure 4.2 shows an example event trace of a simple concurrent consumer-producer pro-

gram. The consumer (cons) and the producer (prod) synchronize insertions and removals

46 CHAPTER 4. THE TARGET ENVIRONMENT

Figure 4.2: �C++ and Poet: Event Trace.

from a bu�er by making calls to semaphores as shown in the �gure. In the current ver-

sion of �C++, inserting the necessary code to produce the trace information is done at the

translation level and provides information about concurrent language constructs. Only the

relative order of the events is recorded, but no information is collected about the duration

between two subsequent events. (However, Poet is capable of supporting real-time events.)

Nevertheless, a certain degree of exact pro�ling is achieved and the cooperation between

�C++ and Poet allows debugging and performing an algorithmic analysis of a concurrent

program by visualizing the communication and synchronization events.

Chapter 5

The �Pro�ler Design

The discussions of Chapter 3 and Chapter 4 illustrated that previous work in pro�ling

concurrent applications has been done and various pro�ling techniques and methods for

di�erent environments are available. Nonetheless, with the existing tools and techniques

described, it is impossible to perform both exact and statistical, �ne-grained pro�ling on a

per-thread basis when using a shared-memory user-level thread library like �C++: the pro�ler

must understand the speci�c architecture of the thread library and run in cooperation with

the run-time kernel in order to provide detailed and thread library speci�c information.

As part of this thesis, I have designed and implemented an extendible prototype pro�ler

for �C++ called �Pro�ler, which meets these requirements and allows exact and statistical

per-thread pro�ling at a �ne-grained level.

This chapter describes the design of �Pro�ler and Chapter 6 discusses the relevant im-

plementation issues.

5.1 Design Objectives

The design objectives for the pro�ler prototype developed are derived directly from the

requirements discussed earlier. The following sections summarize the design goals in more

detail.

47

48 CHAPTER 5. THE �PROFILER DESIGN

5.1.1 Pro�ling on a Thread Basis

When writing concurrent programs, the programmer creates di�erent threads of control,

which have to be independently monitored by the pro�ling tool. This requirement has the

consequence that the pro�ler must know how the underlying thread-management system,

i.e., the �C++ kernel, manages multiple threads of control. Also, since �C++ can operate in

both a uni- and multi-processor environment, the pro�ler should work in both environments

as well.

5.1.2 Pro�ling at Di�erent Levels of Detail

Di�erent metrics require pro�ling to be done at di�erent levels of detail. For �C++, this

requirement means that the pro�ler must be designed in such a way that it has the potential

to pro�le at a cluster, at a processor, at a task and even at a function level. Techniques

to collect information at a statement level should be provided as well, for the rare cases

where pro�ling at a function level is insu�cient. Nevertheless, since all instrumentation

increases the probe e�ect, the instrumentation insertion should normally be done only at a

function level; if �ner-grained pro�ling is required, other mechanisms have to be invoked.

Thus, another general and important design consideration is to ensure a reasonable level of

accuracy and to minimize the probe e�ect introduced.

Both exact and statistical pro�ling have to be supported by the pro�ling tool. It should

be possible to build metrics that support exact and statistical pro�ling at di�erent levels of

detail.

5.1.3 Selective Pro�ling

Selective pro�ling means that pro�ling is integrated into the system in such a way that the

program analyst can specify which modules are pro�led. Therefore, the design of the pro�ler

has to ensure that instrumentation insertion and pro�ling is only done for the speci�ed

modules, and that instrumented program or library code and code that is not instrumented

interact correctly.

5.1. DESIGN OBJECTIVES 49

Also, the pro�ler should become an optional tool in the �C++ tool set, i.e., a full instal-

lation of the pro�ler should not be mandatory to write and run �C++ programs.

5.1.4 Support Di�erent Visualization Devices

Di�erent pro�ling modes calculate di�erent metrics and require di�erent visualization tech-

niques. �Pro�ler should provide various graphical and textual visual devices to present the

collected pro�ling data in an informative manner. The basic types for visualization devices,

such as tables, bar charts, or even more advanced devices, e.g., Kiviat graphs, should be

supported in order to allow building various types of metrics.

5.1.5 Extendibility

One of the main design objectives for �Pro�ler is its extendibility. When pro�ling concurrent

programs, situations can occur, where the program analyst may want to add functionality to

the pro�ling tool. This new functionality can consist of new metrics, new analyzing routines,

new visualization devices, etc. The design of the pro�ler should not preclude the program

analyst from adding functionality to the pro�ler, but rather encourage it. �Pro�ler should

provide a modular interface, which allows easy addition of new pro�ling facilities, or possibly

modifying or replacing existing ones.

5.1.6 Portability, Interoperability and Maintainability

The �C++ system is supported on various computer architectures and operating systems,

including SunOS, Solaris, Ultrix, IRIX, AIX and Linux on di�erent processors. Therefore,

the design of the pro�ler should not preclude a port to any of these or other computer

architectures.

Since �C++ provides various tools to help develop concurrent programs, such as a de-

bugger for �C++ programs (see [7]) and the MVD tool set, �Pro�ler should be designed so

that it does not restrict existing functionality; for example, pro�led programs should still be

debuggable, and event trace visualization should still be possible.

50 CHAPTER 5. THE �PROFILER DESIGN

Maintainability is another important design aspect in any software development. The

design of �Pro�ler should allow adapting the underlying system to new versions with as little

modi�cations to the pro�ler code as possible. The goal is best accomplished if �Pro�ler is

implemented in a high-level object-oriented concurrent programming language.

5.2 Design Considerations

This section discusses what design considerations have to be taken into account in order to

ful�ll the design objectives stated in Section 5.1.

In order to incorporate pro�ling into �C++, work had to be done at two di�erent levels:

�rst, some new features had to be added to the existing �C++ environment to support

pro�ling, and second, the application that performs the actual pro�ling had to be developed.

µ C++ Run-Time Kernel

Profiled µ C++ Program

µ Profiler

Profiling
Cluster

Cluster 1

Cluster 2

. .
 .

Task

Processor

Figure 5.1: The �Pro�ler as a �C++ Application.

The pro�ling application is designed to be a concurrent program written in �C++, and

executing in parallel with the pro�led application on its own cluster and processor. Figure 5.1

5.2. DESIGN CONSIDERATIONS 51

illustrates this scenario. The �C++ run-time kernel co-operates with the pro�ler and is

responsible for its execution in parallel with the pro�led application. This tight coupling

between the kernel and the pro�ler allows the pro�ler to access data structures intrinsic to

the run-time kernel while maintaining a maximum degree of interoperability and
exibility.

Since the pro�ler application operates on its own cluster and is executed by its own pro-

cessor, the in
uence on the pro�led program's run-time behaviour is kept to a minimum;

this is especially true in the multi-processor mode of �C++, since the pro�ler application

executes inside its own separate UNIX process and does not share the pro�led application's

code image. Note that the data section of the program is shared, but the pro�ler performs

read-only operations, which do not interfere with the pro�led program. Nevertheless, the

program analyst has to be aware of the fact that, as with any other possible pro�ling archi-

tecture designs, the pro�ler still introduces some e�ect on the execution behaviour due to

increased bus tra�c and memory usage.

5.2.1 Incorporating Pro�ling into �C++

When compiling a �C++ program, di�erent
ags are available to specify whether, for exam-

ple, debugging or tracing code is generated or what running mode is used, i.e., uni-processor

or multi-processor. Pro�ling must be incorporated in a similar way into the system; that is,

when compiling a program, the programmer can specify whether the program is to be pro-

�led by simply adding a command line parameter when invoking the compiler. In the case

of pro�ling, the necessary instrumentation gets inserted and the program is linked with the

pro�ling libraries that supply the pro�ler application code. Thus, in the simplest case, the

instrumentation insertion and activation of the pro�ling modules is completely transparent

to the programmer.

Nevertheless, to equip the programmer with precise control about what parts of the

program are pro�led, routines were added to the �C++ run-time system, which allow turning

pro�ling on and o� for a particular thread at any point during its execution. In addition, the

programmer can compile parts of the program with the pro�le
ag and other parts without

the pro�le
ag and then link them together, thereby creating an executable where only some

52 CHAPTER 5. THE �PROFILER DESIGN

parts are instrumented and pro�led.

Allowing exact pro�ling on a per-thread basis requires certain hooks to be inserted into the

run-time kernel, which are used to register important events with the pro�ler that would be

missed with purely statistical monitoring. These hooks have to be designed so they become

active only when a pro�ler application is present; i.e., the existence of the pro�ler must be

checked for dynamically inside the run-time kernel. This approach has the advantage that

it becomes possible to build user or system libraries that automatically and dynamically

detect when pro�ling is active and activate the necessary hooks, which then register with

the pro�ler.

Integrating the pro�ler into the pro�led program clearly has the disadvantage that it

increases the size of the instrumented executable, but it has the advantage that pro�ling

becomes possible with minimal e�ort by the programmer, since it is only necessary to re-

compile the program with an additional command line
ag and then start the program to

be pro�led again in the same manner it is started without pro�ling activated. Also, the

necessary tight coupling with the run-time kernel and the required accuracy of the collected

pro�ling data are other reasons for having the pro�ler operating in the same address space as

the application itself. The disadvantage of the larger executable �le size resulting from the

pro�ler may be avoided in future versions by dynamically linking only the necessary functions

during run-time. Initial related work for supporting general link and unlink editing of single

functions and modules during execution for a variety of computer platforms has been done

and is described in [26].

The instrumentation insertion method used for �Pro�ler is static instrumentation in-

sertion at compile-time using shared trampolines; the instrumentation points are function

entry and function exit. Dynamic instrumentation is considered too expensive when pro�l-

ing programs with short or intermediate execution times. Pro�ling with no instrumentation

insertion would require developing a whole new run-time kernel for the �C++ system and

would introduce too great a probe e�ect (see Section 2.1.1). Pro�ling on a thread basis using

shared trampolines requires maintaining a separate data structure for each �C++ task. In

these data structures, the current pro�ling information about the executing tasks is main-

5.2. DESIGN CONSIDERATIONS 53

tained, i.e., information about the current function's address, the address of the function

from where the current function was called, etc. A pointer was added to each �C++ task

object pointing to its corresponding pro�ling data structure in order to allow an executing

task to correctly update the pro�ling data structures inside a shared trampoline. As pro�ling

data structures for each task are independent, no mutual exclusion is required inside of the

shared trampoline where the pro�ling data is updated. Since the per-thread data structures

are created by the pro�ler, it knows their location and can therefore sample the data struc-

tures to retrieve the necessary information about the current location of the di�erent tasks

in the pro�led program. This mechanism is used when statistically monitoring tasks.

5.2.2 The Pro�ler as a �C++ Program

As stated before, the pro�ler is a �C++ program, i.e., a concurrent object-oriented pro-

gram, operating on its own cluster through its own processor. To ensure high
exibility and

extendibility, it is split into di�erent parts representing the underlying functionality. This

section brie
y discusses the design considerations of the di�erent parts, i.e., the �Pro�ler

kernel, �Pro�ler execution monitors, �Pro�ler metric analyzers and �Pro�ler visualization

devices, and their purpose.

�Pro�ler Kernel

The core part of �Pro�ler is the �Pro�ler kernel. It has its own thread of control and

acts as an administrator [16] handling incoming pro�ling events when exact pro�ling is

selected, or performing the sampling for statistical pro�ling. It also provides an interface for

other pro�ling modules. For instance, when �Pro�ler execution monitors or �Pro�ler metric

analyzers are created, they register with the �Pro�ler kernel, which manages them from

that point onwards. This design allows any combination of monitors and any combination

of analyzers to be used during the same pro�ling session. In addition, it facilitates the

implementation and integration of new pro�ling monitors or analyzers in the system. The

�Pro�ler kernel has complete access to the �C++ run-time kernel's data structures and

methods, and is created before the pro�led application. Since it is possible to dynamically

54 CHAPTER 5. THE �PROFILER DESIGN

turn pro�ling on and o� for each task, the pro�ler kernel must be aware of the current state

in terms of pro�ling for each pro�lable task.

�Pro�ler Execution Monitors

Monitoring the pro�led program's execution behaviour is performed by �Pro�ler execution

monitors. All �Pro�ler monitors have the same base type and register with the pro�ler upon

creation. The program analyst is able to interact in the selection of the pro�ling metrics

after the �Pro�ler kernel is created, but before the pro�led part of the application is started.

Corresponding to the choice of the pro�ling metrics, only the necessary execution monitors

are created. An extendible general base type for �Pro�ler execution monitors is provided,

with an interface for both statistical and exact monitoring functionality at di�erent levels

of detail. The execution monitors are designed as passive objects, i.e., they are executed

by the �Pro�ler kernel's thread. Each execution monitor that supports statistical sampling

is assigned a sampling frequency, and the �Pro�ler kernel invokes the monitor's sampling

member routines at that frequency. The sampling frequency should be changeable by the

user before pro�ling starts and dynamically resettable by the execution monitors during

execution.

�Pro�ler Metric Analyzers and Visualization Devices

In most situations, an execution monitor has a corresponding �Pro�ler metric analyzer

object that performs the pro�le analysis for the pro�ling data collected. Normally, the

�Pro�ler metric analyzers are created after the program's execution has completed; i.e., a

post-mortem pro�le analysis is performed. Nonetheless, the modularization of the pro�ler

does not preclude a dynamic pro�ling analysis.

The analyzers manage their corresponding graphical data visualization devices. Since

�C++, in combination with the MVD tool set, provides facilities for graphical user interface

programming using X Windows/Motif, the visualization devices were developed using this

existing library. In order to supply a high degree of
exibility in creating and re-using

visualization devices, a library of basic data visualization widgets is being developed rather

than directly integrating the code for the visualization devices into the pro�ler application.

5.3. STATIC DESIGN 55

�Pro�ler must incorporate metrics based on statistical pro�ling and metrics based on exact

pro�ling at a function-level. Analysis and visualization of the pro�led program's operating

system resource usage and metrics representing the load of the underlying system during

execution are additionally provided to allow verifying the accuracy of a test run. On the

platforms supported by �C++ , this important piece of information is available through the

/proc �le system [70] or by the getrusage system command [69].

Another important design aspect is to supply di�erent hierarchies of abstraction in the

pro�le analysis and visualization stages. Pro�ling information is accessible beginning at a

high level of abstraction and information aggregation, for example, by exposing the list of

the system's pro�led clusters with summarized pro�ling data, and then allowing the analyst

to enter levels that reveal more detailed information, such as information about the pro�led

tasks on the selected cluster.

5.3 Static Design

In this section, the static design aspects of �Pro�ler are discussed. Section 5.3.1 gives an

overview of the underlying object-oriented analysis model for �Pro�ler, and further static

design issues are delineated in Section 5.3.2.

5.3.1 Design Model Overview

The static design of �Pro�ler is presented using an object-oriented analysis model, whose

main parts are illustrated in Figure 5.2 and Figure 5.3. The notation used conforms to the

object-oriented analysis modeling techniques introduced in [9], with one exception: classes

and objects, where the member functions and attributes are not shown, are drawn in a

compressed format. (Appendix A summarizes the relevant notations used in the object-

oriented analysis model presented here.) For clarity reasons, object messages are not shown

and only the member functions and attributes of the objects and classes that are important

to understand the conceptual design are displayed.

56 CHAPTER 5. THE �PROFILER DESIGN

�Pro�ler Kernel and Execution Monitors

uProfilerClock

profiler
nextAlarm

ClockIsSet

main

setClock
isSet

uProfilerStartWD

uTaskSamplingMonitor

samplerList

CreateTaskSampler
CreateMetricAnalyze
RegisterTaskNotify
DeregisterTaskNotify
Poll

uRUMonitoruCGMonitoruProfileAnalyze

uSPTaskSampler

active
task

GetCurrentFuncID
GetCurrentParentFuncID
GetCurrentProfileStackBegin
GetCuffentProfileStackPointer
IsProfilingActive
IsActive
Activate
Inactivate
GetTask
Poll

uTaskSampleruSPMonitor

uProcessorProfileInfouCGInfo uClusterInfoNode

uTaskProfileInfo

µ Profiler kernel

taskName
uProfileStackBegin
uProfileSP
uFuncID
uParentFuncID

uProfiler

uExecutionMonitor

profiler
GetCurrentFuncID
GetCurrentProfileStackBegin
GetCurrentProfilerStackPointer
IsProfilingActive
GetName
CreateMetricAnalyze
GetProfiler

pollFrequency

Poll
Register & Deregister Functions

1

1

1

1

0,n

1

1

1

1

0,n 0,1

1

0,1 0,1

1

1

1 1 0,1 0,1

0,n 0,n 0,n

0,n 0,n 0,n

0,n

1

11

uProfileTaskSampler

uFirstArgument

Figure 5.2: Object Model of the �Pro�ler Kernel and Execution Monitors.

Figure 5.2 shows the object relationships of the �Pro�ler kernel and the execution monitors.

The �Pro�ler kernel consists of the objects uPro�ler, uPro�leAnalyze, uPro�leTaskSampler

and uPro�lerClock. uPro�ler and uPro�lerClock are tasks communicating with each other

to perform statistical pro�ling at a certain frequency (for more details, see Section 5.4).

5.3. STATIC DESIGN 57

uPro�leTaskSampler is a passive object that contains the data structures needed to represent

a task's state information and corresponds to one pro�led task. The data structures needed

for pro�ling encompass a pro�ling stack where the current call stack information of the task

is stored, and information about the currently executed function (see Section 6.1.2); when

in statistical pro�ling mode, these data structures are read periodically by the sampling

execution monitors. uPro�leAnalyze is the object executed once the pro�ling data is ready for

analysis. uPro�leAnalyze creates the necessary speci�c analyzers that perform the analysis.

The object relationships of uPro�leAnalyze are described in the next sub-section and are

shown in Figure 5.3.

uExecutionMonitor is an abstract class providing the basic functionality for both statis-

tical and exact pro�ling. All execution monitors inherit from it and specialize the virtual

member functions needed for their speci�c purpose; examples of such member functions are

Poll(), which is the member function that is invoked at the execution monitor's frequency

when performing statistical pro�ling, or the register and deregister functions invoked when

a processor or task is created or �nishes. Since uPro�ler invokes these specialized member

functions, it must know of their presence for each active execution monitor. Therefore,

upon its construction, each execution monitor has to register all necessary member functions

with uPro�ler. Using the virtual member function mechanism, it is possible to determine

if a member function of a derived class specializes a certain member function of the base

class, by comparing member function pointers of the base class and the derived class. This

mechanism is used by uExecutionMonitor to facilitate the implementation of new execution

monitors. The member function Initialize() provided by uExecutionMonitor can be used to

dynamically check what virtual member functions are overwritten and registers them accord-

ingly with uPro�ler. Thus, adding a new execution monitor to the pro�ler simply requires

inheriting from uExecutionMonitor, providing special purpose versions of the member rou-

tines that have to be called by the pro�ler kernel, and last, making an initialization call to

Initialize().

uPro�lermaintains a list of all execution monitors and their member functions and invokes

them during execution as needed. uExecutionMonitor also provides access functions to get

58 CHAPTER 5. THE �PROFILER DESIGN

information about the current task's state, and therefore, allows type-safe read-only access

to data structures internal to the run-time kernel or the pro�ler. A special purpose execution

monitor developed for statistical monitoring on a task level is supplied by the uTaskSam-

plingMonitor class. A uTaskSamplingMonitor object maintains a list of uTaskSampler objects,

one for each task on each cluster to be sampled.

uCGMonitor, uRUMonitor and uSPMonitor are three execution monitor prototypes. uCG-

Monitor supplies exact pro�ling at a function level. For each pro�lable task on each pro�lable

cluster, it collects information about the number of calls to each function and each of its

callers. uRUMonitor collects information about the run-time resource usage and load of the

underlying operating system. uSPMonitor statistically samples a task measuring the time

the task spends on a certain cluster in a certain function in a certain state. For instance, it

collects data about how long the pro�led task is in the blocked state inside of an I/O routine

on the I/O system cluster. All information gathered by uSPMonitor is based on statistical

sampling. Each execution monitor is responsible for operating and updating its own objects

and possibly accumulating or summarizing the pro�ling data collected. These operations on

the pro�ling data structures are encapsulated in the objects uCGInfo, uProcessorPro�leInfo,

uClusterInfoNode and uTaskPro�leInfo, respectively.

�Pro�ler Metric Analyzers and Visualization Devices

The object model of the metric analyzers and visualization devices is shown in Figure 5.3.

Corresponding to the execution monitors described in the previous subsection, there exist

di�erent metric analyzers, i.e., uRUAnalyze, uCallGraphAnalyze, uSPAnalyze and uSPCluster-

Analyze, which all inherit from the base type uMetricAnalyze. All metric analyzers are created

and managed by uPro�leAnalyze. uMetricAnalyze is the class providing the basic facilities to

create and manage selection windows. Since displaying pro�ling information in a hierar-

chical manner is an important feature to allow e�cient maneuvering through the presented

data along a particular dimension, selection windows are important; they display a list of

selectable objects, which represent the next level of detail. For instance, a selection window,

see Figure 5.4, shows the list of pro�led tasks in the system (left box) and reveals more

5
.
3
.
S
T
A
T
I
C
D
E
S
I
G
N

5
9

1

0,n

...

ExposeCB
AddEntry
Manage
UnManage
SetTopLabelForeGroundColour
SetTopLabelBackGroundColour
SetBottomLabelForeGroundColour
SetBottomLabelBackGroundColour
SetForeGroundColour
SetBackGroundColour
SetGraphForeGroundColour
SetGraphBackGroundColour

ShowBars

uSelectable

uKiviatGraphWidget

0,1

uMetricAnalyze

profiler
selectionWindow
numItems

CreateSelectionWindow
CreateVisualDevice
getNumItems
CreateList
newSelectable

uProfileAnalyze profiler
aitl
analyzer
vd
extended
list

Deselect
CloseCB
SelectCB

0,1

0,1

0,1

0,n

uAddItemToList

widget
pos
maxPos

operator()

1

1
selectionWindow
pos

uVisualDevice

parent
visualDeviceWidget
unmanaged

Manage
UnManage
GetWidget
GetParentWidget

0,1

TableRowWD
colWidgets
numCols
numRows
title
entry

AddStringEntry
Manage
UnManage

uRUAnalyze uCallGraphAnalyze uSPAnalyze uSPClusterAnalyze

1

1

uAnalyzeFuncCallTableWidget

1

1

uRUProcessorAnalyzeWidget

1

1

uSPTaskAnalyzeWidget

uSPTaskAnalyzeuAnalyzeFuncCallTableuRUProcessorAnalyze

uTableWidget

DrawingArea

numBars
maxValue
barWidth
spaceBetweenBars
maxBarHeight
barChartTable
initialExpose

uProfileBarChartWidget

DrawingArea
...
numMetrics

kiviatGraphTable
initialExpose

ShowGraph
ExposeCB
AddEntry
Manage
UnManage
SetLabelForeGroundColour
SetLabelBackGroundColour
SetForeGroundColour
SetBackGroundColour
SetGraphForeGroundColour

setGraphBackGroundColour

0,1

0,n

0,n0,1

0,1

n

0,1

0,1

0,1

0,1

uSelectionWindow

F
i
g
u
r
e
5
.
3
:
O
b
j
e
c
t
M
o
d
e
l
o
f
t
h
e
�
P
r
o
�
l
e
r
A
n
a
l
y
z
e
r
s
a
n
d
V
i
s
u
a
l
i
z
a
t
i
o
n
D
e
v
i
c
e
s
.

60 CHAPTER 5. THE �PROFILER DESIGN

detailed information upon selection of a task. uSelectionWindow is the class that provides

this functionality.

Figure 5.4: An Example Selection Window.

As illustrated in Figure 5.4, a selection window can also contain an additional visual de-

vice displaying information about the di�erent list items. In the example selection window,

an additional visual device shows information about the time each task spent in di�erent exe-

cution states (right box). The corresponding objects to each selectable list item inherits from

the class uSelectable to provide a type-safe precisely de�ned interface to uSelectionWindow.

Visual devices are all derived from the uVisualDevice class and provide di�erent mechanisms

to expose information. uTableWidget shows the data in table format as illustrated in the right

box in Figure 5.4. uPro�leBarChartWidget and uKiviatGraphWidget visualize the information

in a bar chart or a kiviat graph, respectively. uRUProcessorAnalyzeWidget, uAnalyzeFunc-

CallTableWidget and uSPTaskAnalyze use these visual devices to appropriately display the

pro�ling information collected.

5.4. DYNAMIC DESIGN 61

5.3.2 Further Static Design Aspects

Accessing the Symbol Table

Accessing the symbol table of the pro�led program is important for many reasons: The

pro�ler must know, for example, the address of all functions to determine in which function

the currently pro�led task is executing. Also, when visualizing the pro�ling information,

object and function names are important. Since the symbol table information is dependent

on the underlying computer architecture and �le and process formats, a common interface

is required to encapsulate the architecture dependent speci�cs. This interface is provided

through the uSymbolTable class, which maintains a necessary subset of the symbol table

entries and supplies member functions to retrieve the address and the name of a function.

Also, uSymbolTable allows checking whether a certain function is a class member function,

which is important when pro�ling on an object instance basis (see Section 5.4.4). The

symbol table information is obtained by using the Binary File Descriptor Library [12], which

implements the architecture dependent details and provides an interface to inspect and

demangle symbol table entries.

5.4 Dynamic Design

As discussed in previous sections, the pro�ler is a �C++ program, which is integrated into

the pro�led application's code. Thus, starting the pro�led application �rst starts the pro�ler

and its start-up menu appears, where the program analyst selects the pro�ling metrics to be

applied. After the program analyst has accomplished this selection, the pro�led application

is started and its execution behaviour is monitored by the pro�ler.

This section discusses the crucial dynamic design aspects of �Pro�ler. Section 5.4.1

describes the communication among the tasks involved in pro�ling, Section 5.4.2 discusses

design issues concerning pro�ling information �ltering, Section 5.4.3 describes thread-based

pro�ling, Section 5.4.4 discusses issues concerning object-based pro�ling, and Section 5.4.5

brie
y introduces some ideas concerning dynamic sampling frequency adaption for statistical

pro�ling.

62 CHAPTER 5. THE �PROFILER DESIGN

5.4.1 Task Communication

Direct Task Communication Task

Passive ObjectFunction Call to Passive Object

User Task 2

User Task 3
uProfiler

Exact Profiling

uProfilerClock

Statistical Profiling

Execution Monitor 1

Execution Monitor 2

User Task 1

System Task 1

System Task 2

Figure 5.5: Dynamic Design: Task Communication.

Figure 5.5 illustrates how the uPro�ler task communicates with the other tasks in the pro�led

program and how the execution monitors are invoked. The example scenario consists of

three user-tasks, two system tasks and two execution monitors. User tasks are created in

the pro�led program's user code, whereas system tasks are tasks that are intrinsic to the

�C++ run-time kernel. Note that all task communication is direct, i.e., communication

is performed through calls to a task's mutual exclusive member functions. When exact

5.4. DYNAMIC DESIGN 63

pro�ling is applied, the user and system tasks call into the pro�ler upon reaching di�erent

pro�ling hooks implicitly inserted into the code (see Section 5.2). Since the uPro�ler task

works as an administrator, it accepts these calls in a mutual exclusive manner and executes

the corresponding member routines of all execution monitors that have registered with the

pro�ler for this speci�c pro�ling hook. To achieve greater concurrency, the work that is

performed inside the mutually exclusive member routines, where the pro�led tasks call in, is

reduced to a minimum; i.e., the necessary information is copied into data structures internal

to uPro�ler and the caller exits the member function immediately, thereby returning control

to the pro�ler. Then, the uPro�ler task can safely read the contents of the communication

data structures and pass the information to the corresponding execution monitors.

In the case of statistical pro�ling, another task, uPro�lerClock, communicates with the

uPro�ler task. Whenever uPro�ler has �nished a statistical pro�ling cycle, it sets the alarm

clock uPro�lerClock, which is also part of the �Pro�ler kernel, by making a call to setClock().

A statistical pro�ling cycle in this context means the work that is done by the uPro�ler task

for all ready sampling events. If there are no other events to process, uPro�ler puts itself to

sleep by blocking for incoming events. uPro�lerClock waits the speci�ed time and wakes up

the uPro�ler task by calling its member function WakeUp(). Thus, this mechanism allows the

uPro�ler task to be ready to accept calls to all of its member functions at any time, unless

it is in the process of performing work itself. Also, the design allows each metric to have a

di�erent and possibly variable sampling frequency.

Notice that an execution monitor does not have its own thread of control, i.e., execution

monitors are passive objects as opposed to active tasks. All the work performed by the

execution monitors is done by the uPro�ler task. The main reason for this design model

is to lessen the scheduling and synchronization overhead on the pro�ler cluster, because

only one dedicated processor executes on the pro�ler cluster. This processor performs the

work of the pro�ler, i.e., the uPro�ler and uPro�lerClock tasks, and it does not do any

other work. Since only one processor is executing on the pro�ling cluster, changing the

currently passive uExecutionMonitor objects to active tasks would unnecessarily increase the

scheduling and synchronization overhead. Nevertheless, when running �C++ on a large-

64 CHAPTER 5. THE �PROFILER DESIGN

scale parallel machine, it might become desirable to assign more than one processor to the

pro�ling cluster. In this case, it is necessary to make each execution monitor a distinct

task, thereby providing greater concurrency. Since the current design already encapsulates

the corresponding functionality into di�erent objects and provides a well-de�ned interface to

uPro�ler, changing the currently passive objects to active tasks can easily be accomplished

if required.

5.4.2 Filtering

Filtering is a very important mechanism that should be supported by any pro�ling tool. The

purpose behind �ltering pro�ling data is two-fold: �rst, �ltering should be done to reduce the

amount of pro�ling data collected to a relevant subset; second, �ltering information should

be done when presenting the analyzed pro�ling information to a user. In the latter case, the

purpose of �ltering is to provide a mechanism to focus on a certain section of the analyzed

pro�ling information according to a certain, possibly selectable, perspective. Thus, two

�ltering mechanisms can be distinguished and are supported by �Pro�ler: dynamic �ltering

and post-mortem �ltering.

Dynamic Filtering

The general design of �Pro�ler supports dynamic �ltering facilities in several ways. Since col-

lection and processing of pro�ling information is the responsibility of the execution monitors,

they can immediately �lter the incoming pro�ling information, or simply collect everything

and leave the processing work for the corresponding metric analyzer. A certain degree of dy-

namic �ltering is embedded into the design of the statistically pro�ling monitor uSPMonitor.

uSPMonitor allows detecting on-the-
y whether a pro�led function belongs to the run-time

kernel, a �C++ speci�c library or the actually pro�led user program; it �lters all pro�ling

information that is not part of the user program and charges any calls to kernel and li-

brary functions to the user function calling them. This mechanism is especially useful when

pro�ling long-running applications, since the pro�ling information collected is reduced to a

minimum. Therefore, similar to dynamic instrumentation, dynamic �ltering allows pro�ling

5.4. DYNAMIC DESIGN 65

large-scale programs. Also, dynamically �ltering kernel speci�c information protects the user

from being overwhelmed with information that is part of the run-time kernel and not part

of the user code. It is imaginable to integrate even more intelligent �ltering facilities into

execution monitors: they could, for example, not only �lter the incoming pro�ling events,

but additionally assign di�erent weights to the collected information, or possibly discard al-

ready collected pro�ling information, which is considered to be unimportant, thereby freeing

important memory space.

Post-Mortem Filtering

Post-mortem �ltering is used to reduce the information collected, and possibly aggregate

and categorize the pro�ling data in order to permit a human understandable presentation

of the data. Post-mortem �ltering is performed by the metric analyzers, which are invoked

after the program's execution has �nished. For example, the uCallGraphAnalyze analyzer

uses post-mortem �ltering to mark pro�led run-time kernel and library functions di�erently

from pro�led functions in the user's code. Thus, the program analyst can easily identify

the parts of the pro�led program that belong to the actual user code. Other applications of

post-mortem �ltering are imaginable: for instance, when performance analyzing large-scale

programs, irrelevant data values could be �ltered out to help the program analyst focus on

the actual performance bottlenecks. Also, depending on the metric used, wrong pro�ling

information could be detected by the metric analyzer and be �ltered out.

5.4.3 Thread-Based Pro�ling

Thread-based pro�ling requires retrieving the state information of each executing task in a

safe, robust and correct way. When performing exact pro�ling, the pro�led tasks register

important events with the pro�ler to assure that no events are missed. Unfortunately, no

other mechanism exists that satis�es the requirement of guaranteeing the detection of all

events, but introduces less of a probe e�ect. In the case of statistical pro�ling, the situation

is more di�cult to judge. Theoretically, some statistical pro�ling can be done without any

instrumentation insertion, but it is impossible to get all the state information of each task

66 CHAPTER 5. THE �PROFILER DESIGN

Data Structure Description

funcID Address of the current function

parentFuncID Address of the function from where

the current function is called

�rstArgument First Argument to the Function

(if existing)

uPro�leStackBegin Base of the Pro�ling Stack

uPro�leSP Current Pro�ling Stack Pointer

Table 5.1: A Task's Pro�ling State Information.

without instrumentation insertion. For instance, the currently traversed function cannot be

identi�ed without help from the executing task, since on most architectures it is impossible to

read the current program counter of another task. Therefore, a di�erent design approach is

necessary: each pro�led task updates its own pro�ling data structures and the uPro�ler task

periodically reads them from inside all activated statistically pro�ling execution monitors.

The state information updated by each pro�led task on a function entry consists of the table

items in Table 5.1.

funcID and parentFuncID are used to identify the executing task's location, i.e., the current

function and the current function's parent. If it exists, �rstArgument holds the value of the

�rst parameter passed as an argument to the function. This information is used for object-

based pro�ling (see Section 5.4.4). uPro�leStackBegin and uPro�leSP are used to store the

task's call stack information, which is needed for nested function calls and explained in more

detail in Section 6.1. These data structures contain the information that cannot be directly

retrieved from inspecting the run-time kernel, and therefore, have to be updated by the

pro�led task itself. I believe that the additional probe e�ect to update this state information

cannot be eliminated when the pro�ling metric is based on pro�ling at a function level. In

addition to the data structures given in Table 5.1, valuable information about a pro�led

task, for example its current execution state, are retrieved by examining the run-time kernel

data-structures.

5.4. DYNAMIC DESIGN 67

5.4.4 Object-Based Pro�ling

�Pro�ler is a pro�ling tool for �C++ programs, i.e., programs written in a concurrent object-

oriented programming language. In contrast to developing a pro�ling tool for procedural

programming languages, additional design issues have to be taken into account when pro�l-

ing an object-oriented program at the function-level. It is imaginable to build metrics where

the object instance as well as the object member functions are required. In C++ and �C++,

di�erent instances of an object share the same code for their member functions and only

their data �elds have distinct locations in memory. Therefore, simply monitoring the code

address where the pro�led tasks execute is not enough to determine which object instance

the executed code belongs to. C++ provides a simple mechanism to identify the current

object instance that belongs to a member function: a pointer to the current object instance's

memory location (the \this-pointer") is passed to member functions as the �rst argument

(see [66]). Thus, the �rst argument to an object member function is an important piece of

information allowing object-based pro�ling. When loading the pro�led program's symbol

table (see Section 5.3.2), all object member functions are identi�ed and the symbol table

access class uSymbolTable provides a function to determine whether a code address is located

in an object member function. Thus, the execution monitor and analyzer can determine if a

traversed function belongs to an object instance and as a consequence store this information

separately. An application of object-based pro�ling is, for instance, pro�ling task communi-

cation, synchronization and scheduling through mutually exclusive objects such as monitors

or semaphores. This information allows a better understanding of the algorithmic behaviour

of the pro�led program, since it reveals not only when synchronization and communication

among tasks occurs, but it also allows the identi�cation of the communication partners.

5.4.5 Dynamically Controlled Statistical Pro�ling

When performing statistical pro�ling, the sampling frequency plays an important role. Sam-

pling at a high frequency potentially produces a great amount of pro�ling data, which can

become di�cult to manage for long-running problems and increases the probe e�ect. On

the other hand, sampling at a low frequency may not provide enough information about the

68 CHAPTER 5. THE �PROFILER DESIGN

pro�led program. Also, di�erent monitors might require di�erent sampling frequencies. A

good pro�ling tool should permit di�erent execution monitors to use di�erent sampling fre-

quencies and must not preclude building execution monitors that dynamically control their

sampling frequency. The �Pro�ler design provides the necessary mechanisms to dynamically

control and adjust the execution monitors' sampling frequencies. Also, each execution mon-

itor can be invoked at a di�erent sampling frequency. Initial work is underway in developing

algorithms that try to dynamically optimize the sampling frequency: one approach is to

gradually reduce the frequency when the sampled task appears to have the same execution

state, and reset it to its original sampling frequency when the state changes. This approach

deals with pro�ling a great number of communicating tasks, because some tasks will remain

in a blocked state until some synchronization or communication event occurs. Thus, the

pro�ler can focus on the currently active and interesting points in the concurrent program's

execution. Obviously, reducing the sampling frequency can only be done to a certain degree,

because it also increases the probability of missing important pro�ling events when a pro�led

task becomes active again. An approach to possibly eliminate this problem is to include an-

other pro�ling hook, i.e, another exact pro�ling facility, into the �C++ kernel, which sends a

message to the pro�ler when a task becomes active so that sampling can restart immediately.

Another important aspect is that if the user-speci�ed sampling frequency for a certain

execution monitor is chosen too high, the pro�ler kernel cannot service all necessary sam-

pling requests on time. Therefore, the user-speci�ed sampling frequency should be regarded

as a suggested maximum. The design of �Pro�ler allows some dynamic control at this level

as well: the pro�ler can measure the computation time that it needs to perform one pro�l-

ing cycle, i.e., to service all execution monitors for a certain sampling event. If the pro�ler

discovers that it cannot service all requests, it re-adjusts the pro�ling frequency accordingly

and noti�es the program analyst about the problem. Some initial work on run-time mea-

surement and re-adjustment of the frequency on behalf of the pro�ling kernel is integrated

into the design of �Pro�ler and being developed.

5.5. DESIGN VALIDATION 69

5.5 Design Validation

This section presents a brief discussion about how the �Pro�ler design model meets the

design objectives stated in Section 5.1.

5.5.1 Pro�ling on a Thread Basis

Pro�ling on a thread basis is achieved by maintaining independent data structures for each

pro�led task in the program. The design aspects introduced in Section 5.4.3 allow monitoring

each pro�led task's state information, where the state information consists of information

available through the run-time kernel and additional information to be collected for di�erent

pro�ling metrics. Both exact and statistical pro�ling on a thread basis are possible. In

exact pro�ling mode, no events are missed since the pro�led tasks register and deregister

with the pro�ler. In statistical pro�ling mode, distributing a small part of the work to the

pro�led task itself allows more precise and detailed information, and therefore, justi�es the

additional probe e�ect.

5.5.2 Selective Pro�ling

Selective pro�ling is integrated into the design of �Pro�ler by allowing parts of the program

to be compiled with the pro�ling
ag and parts without the pro�ling
ag, and then linking

them together, which results in pro�ling only parts of the program. In addition, new run-time

system routines for dynamically turning pro�ling on and o� on a task basis are introduced

and allow a precise mechanism to control what parts of the program are to be pro�led. Also,

the design allows a
exible implementation of the execution monitors, which can decide

on-the-
y what aspects of the program are to be pro�led.

5.5.3 Di�erent Visualization Devices

�Pro�ler provides a library of di�erent visualization devices, such as tables, bar charts and

kiviat graphs. As described in Section 5.3.1, it also supplies an extendible interface to add

70 CHAPTER 5. THE �PROFILER DESIGN

and customize new visualization devices. All analyzers can make use of the visualization

devices provided and visualize the pro�ling information in a concise format.

5.5.4 Extendibility

The design of �Pro�ler supplies a
exible and easy-to-extend interface for both the exe-

cution monitors and the metric analyzers. Extendibility is provided through inheritance

mechanisms. New statistical and exact pro�ling metrics can be built without having to

change the underlying structure of �Pro�ler. Hooks inside the run-time kernel allow regis-

tering important events for exact pro�ling. If necessary, additional hooks can be inserted

without much e�ort, since the design requires all hooks to conform to the same interface

structure and act according to the mechanisms supplied by the pro�ler kernel. Nevertheless,

all extensions to the existing design require some programming e�ort.

5.5.5 Portability, Maintainability, Interoperability

Portability, maintainability and interoperability are maximized by designing most parts of

�Pro�ler as a �C++ program. These parts become directly available on all platforms where

�C++ operates. In addition, they can interoperate with existing �C++ tools, such as, the

concurrent debugger KDB (also written in �C++). Also, it is imaginable to pro�le parts of

�Pro�ler with �Pro�ler itself. The usability of debugging tools and the �Pro�ler's design

with its underlying object-oriented analysis and design model, advocate maintainability and

make it possible to re-use code when extending or re-engineering �Pro�ler.

Chapter 6

The �Pro�ler Implementation

Based on the design model discussed in Chapter 5, I have built a prototype implementation

of �Pro�ler. This chapter discusses the fundamental and relevant issues of the �Pro�ler

implementation that reveal the additional challenges arising from creating a working proto-

type pro�ler that ful�lls the design goals stated in Section 5.1. Section 6.1 describes how

compiler support is used to perform the compile-time instrumentation insertion; Section 6.2

and Section 6.3 discuss challenges that have to be considered at the monitoring and analysis

stage of the pro�ling cycle. Further implementation issues, especially concerning e�cient

data structures and additional pro�ling features are presented in Section 6.4. Finally, the

last section in this chapter, Section 6.5, discusses the applicability of �Pro�ler and describes

limitations of the current implementation. It also discusses how to possibly eliminate them

in future implementations.

6.1 Instrumentation Insertion

6.1.1 Compiler Support

The prototype implementation for �Pro�ler uses static instrumentation insertion at compile-

time. The C++ compiler underneath �C++ supplies rudimental pro�ling instrumentation

insertion facilities for sequential programs, which are used to implement the necessary instru-

71

72 CHAPTER 6. THE �PROFILER IMPLEMENTATION

mentation insertion for �Pro�ler: a compiler
ag, �pg, for the C++ compiler causes a call

to a function called mcount() to be inserted at each function entry in that compilation unit.

Note that the inserted call to mcount() has originally been designed to support sequential

pro�ling for the standard UNIX pro�ling tools prof and gprof. For example, Table 6.1 shows

the �rst assembler lines for a compiled C++ function on the SPARC architectures with-

out and with compiler supplied instrumentation insertion. �Pro�ler uses this mechanism to

Without Instrumentation With Instrumentation

...

.global f Fv

.type f Fv,#function

.proc 020

f Fv:

save %sp,�112,%sp

...

...

.global f Fv

.type f Fv,#function

.proc 020

f Fv:

save %sp,�112,%sp

.section ".data"

.align 4

.LLP0:

.word 0 10

.section ".text"

sethi %hi(.LLP0),%o0

call mcount

add %lo(.LLP0),%o0,%o0

...

Table 6.1: Compiler Supported Pro�ling Instrumentation Insertion on the SPARC Architec-

ture.

perform the necessary instrumentation, but supplies its own version of mcount(), thereby

replacing the standard implementation. In order to replace the standard implementation,

di�erent versions of the standard libraries have to be passed as arguments to the link editor.

�Pro�ler achieves this e�ect by supplying a �lter program to possibly replace the arguments

passed from the compilation stage to the linking stage.

Unfortunately, inserting pro�ling instrumentation only at function entries is insu�cient

for �Pro�ler. Figure 6.1 illustrates why it is necessary to additionally insert pro�ling in-

6.1. INSTRUMENTATION INSERTION 73

strumentation at function exists: in the example scenario a call to Function B is performed

from inside Function A. Since both functions are instrumented, two calls to the pro�ling rou-

tine mcount() are performed: one from inside A and one from inside B. Inside of mcount(),

the pro�ling state information is changed and accounting started for mcount()'s caller. The

problem is that without re-setting this state information upon function exit, all pro�ling in-

formation collected after returning from the callee B to the caller A is erroneously associated

with B instead of A. This example shows that a technique is needed to additionally invoke

instrumentation code upon a pro�led function's exit.

Function A
call mcount

call B

Function B
call mcount

return
...

...

...

accounted to B

accounted to A

Figure 6.1: Pro�ling Nested Function Calls Without Function Exit Instrumentation.

This problem is solved in �Pro�ler by manipulating the return address of the instru-

mented function from inside mcount() as shown in Figure 6.2: In addition to mcount(),

�Pro�ler supplies both a function prologue routine, uFunctionPrologue(), and a function epi-

logue routine, uFunctionEpilogue(), which compose the shared function entry and exit tram-

polines. Inside mcount(), a check is performed to determine if pro�ling is currently active.

If this is not the case, control returns immediately to the instrumented function. Other-

wise, uFunctionPrologue() is executed, and the return address of the instrumented function

is changed, so that upon the instrumented function's exit, control returns to uFunctionEpi-

logue() instead of its original caller. Inside of uFunctionPrologue(), the old state information

has to be saved on the pro�le stack for the currently executing task (see Section 6.1.2). This

state information includes the original return address, which is later used inside of uFunc-

tionEpilogue() to return to the instrumented function's caller. If exact pro�ling on function

74 CHAPTER 6. THE �PROFILER IMPLEMENTATION

return

return

if profiling inactive return

call

modify profiled function’s return address

return

uProfiler::RegisterFunctionEntry

uFunctionPrologue

call

return

mcount

reset the task’s state information in corresponding profiling data structure

uFunctionEpilogue

profiled function mcount

uFunctionPrologue

update current task’s state information in corresponding profiling data structure

pop old state information for current task from profile stack

if exact profiling on function calls is active then call

push current task’s state information onto its profile stack

Figure 6.2: Compile-Time Instrumentation using Shared Trampolines.

calls is active, the task executing the function prologue trampoline calls into the pro�ler

from inside of uFunctionPrologue() to register the current function entry event.

6.1.2 Pro�le Stack

As explained in the previous section, the state information of the current function's caller

must be stored before the pro�ling data structures can be updated to hold information

about the current function. This requirement is mandatory in order to allow retrieving the

old state information before returning to the caller, especially since the state information

6.1. INSTRUMENTATION INSERTION 75

includes the original return address to the caller, i.e., the value of the return address before

it was re-adjusted to uFunctionEpilogue. The location where the pro�ling state information

is stored de�nes the pro�le stack.

Since there has to be a pro�le stack for each pro�led task at a memory location accessible

to the task, �Pro�ler simply uses the memory that is already allocated for the task's stack.

Figure 6.3 illustrates how the pro�le stack is located within the ordinary stack for a �C++

task. The pro�le stack is located at the opposite end of the allocated block of memory for

the stack, and it grows in the opposite direction.

Task’s stack in use

Profile Stack

Allocated for
Task’s Stack

Block of Memory

unused memory

Figure 6.3: A Pro�led �C++ Task's Stack.

Note that for each nesting level of function calls, only a few bytes of information have

to be stored on the pro�le stack. For this reason and for e�ciency reasons, this technique

is preferable to dynamically allocating new storage for the pro�ling stack. Nevertheless, for

highly recursive programs, there exists the danger of the two stacks interfering with each

other. In order to ensure stack integrity, the pro�ler checks if the pro�le stack overwrites

the task's ordinary stack. If this is the case, the pro�ler informs the user about the stack

corruption and terminates pro�ling.

6.1.3 Platform Dependencies

As described in Chapter 5, the state information to be gathered encompasses the address of

the current function, the address of the caller and the �rst argument to the called function.

76 CHAPTER 6. THE �PROFILER IMPLEMENTATION

Both the address information and the arguments passed into a function are handled di�er-

ently on di�erent architectures. Retrieving these pieces of information and manipulating

the return addresses requires intrinsic knowledge about the computer architecture for which

the code is generated. For this reason and in order to maximize the e�ciency of the imple-

mentation, mcount() is implemented in assembler language. Prototype implementations of

�Pro�ler for both a RISC and a CISC architecture have been developed. The target RISC

architecture is Sun's SPARC Processor [65] and the target CISC architecture is Intel's x86

processor family [32]. On the SPARC, e�ciency is increased by making use of the internal

register ring structure. According to the SPARC coding speci�cation (see [65]), the return

address, the �rst six arguments to a function and the return value of a function call are all

passed through registers. mcount() makes use of this fact and retrieves the required data

directly from the registers in the register window. This technique is more e�cient than
ush-

ing the register window to the stack and then walking the stack frame. The latter would be

required if mcount() was not implemented in assembler, because of the compiler generated

entry code for functions. For further details about the SPARC implementation and issues

concerning the Intel implementation, refer to the documented source code of �Pro�ler.

6.2 Monitoring

6.2.1 Exact Monitoring

Exact monitoring using �Pro�ler can be done at various levels, depending on which exact

monitoring hooks are used. Exact monitoring hooks are provided for di�erent events: for ex-

ample, hooks have been integrated into the run-time kernel for cluster creation and deletion,

processor or task creation, migration and deletion, and inside of the trampolines, a hook

exists to register function entry events (see Section 6.1). These hooks are only activated

when there is at least one execution monitor, i.e., an object derived from uExecutionMonitor,

which has registered for this particular hook with uPro�ler. uPro�ler maintains a list of ex-

ecution monitors for each hook and invokes the member function of the execution monitor

that corresponds to the hook, each time an event for this hook occurs. Figure 6.4 shows

6.2. MONITORING 77

the implementation of a hook for task creation. uPro�ler::uPro�ler RegisterTask is a function

pointer that only points to the RegisterTask() member function of uPro�ler if at least one

execution monitor has registered for exact monitoring on task creation events. It points to

NULL otherwise and can therefore be used to check whether the hook is active. All other

hooks are implemented in a similar manner and allow a
exible mechanism to activate and

deactivate exact pro�ling for a certain type of event without causing much overhead.

== pro�ling hook activated & task registered for pro�ling ?

if (uPro�ler ::uPro�ler RegisterTask && uPro�leActive) f

== . . .

== call into pro�ler through function pointer

(�uPro�ler ::uPro�ler RegisterTask)(uPro�ler ::uPro�lerInstance, �this);

== . . .

g == if 10

Figure 6.4: Exact Pro�ling Hook for Task Creation.

Using this mechanism to precisely control which hooks are activated makes it possible

to selectively enable and disable the hooks according to the metrics used. For instance, a

statistically sampling execution monitor can use exact monitoring of task creation events

to ensure that all tasks in the pro�led program are detected, and then perform statistical

sampling for these tasks at a function level. This approach is, for example, implemented by

the uSPMonitor execution monitor.

6.2.2 Statistical Monitoring

Robust Sampling

Performing accurate statistical monitoring for concurrently executing tasks requires a careful

and robust implementation of the sampling routines. The problem is that while the statistical

execution monitor is sampling a task's state information, the task could potentially be in

the process of changing exactly this state information, and the execution monitor might

78 CHAPTER 6. THE �PROFILER IMPLEMENTATION

gather erroneous data. Therefore, all sampling information is veri�ed in order to assure

accurate pro�ling data. Figure 6.5 shows how robust and accurate sampling is performed:

all state information to be sampled is veri�ed and only accepted if the pro�led task has

reached a consistent state. The robust sampling loop mechanism demonstrated in Figure 6.5

ensures that the information concerning the task's current cluster, the task's current state,

the currently executed function, the function's parent and the pro�ling state of the task all

correspond to one single state of the pro�led task. While in theory there is no bound on

the number of iterations of this loop, it is not a problem in practice. Note that although

the information corresponds to one single state, the state information itself can be incorrect,

e.g., when the sampled task is on the ready queue after being time-sliced in an inconsistent

state.

== note: task holds a reference to the sampled task

static const uCluster �CurrentCluster ;

static uBaseTask::uTaskState CurrentTaskState;

static unsigned int funcID ;

static unsigned int parentFuncID ;

static bool CurrentTaskuPro�leActive;

== . . . 10

while (CurrentCluster != &task.uGetCluster()

j j CurrentTaskState != task.uGetState()

j j funcID != GetCurrentFuncID(task)

j j parentFuncID != GetCurrentParentFuncID(task)

j j CurrentTaskuPro�leActive != IsPro�lingActive(task)) f

CurrentCluster = &task.uGetCluster();

CurrentTaskState = task.uGetState();

funcID = GetCurrentFuncID(task);

parentFuncID = GetCurrentParentFuncID(task); 20

CurrentTaskuPro�leActive = IsPro�lingActive(task);

g == while

Figure 6.5: Robust Sampling Loop.

6.2. MONITORING 79

Dynamic Filtering

Run-time �ltering of pro�ling data is supported by �Pro�ler through the class uNameFilter,

which supplies facilities to check whether the currently executed function is part of the user's

code. If �ltering is active and the current function is not part of the user's code, but rather

part of the kernel or a �C++ internal library, the state information is charged to the user

function that called the function either directly or indirectly. Thus, the amount of pro�ling

data is reduced by a signi�cant factor and the user is protected from being overwhelmed by

information about non-user code supplied by the underlying system.

Dynamic Sampling Frequency Calibration

Some initial work is done to dynamically calibrate the sampling frequency in the case when

the duration to perform a sampling cycle is greater than the user-speci�ed sampling frequency

for a statistically sampling execution monitor. A sampling cycle means the work performed

on behalf of a particular execution monitor when the pro�ler invokes the monitor's Poll()

routine. In order to perform dynamic sampling frequency calibration, the pro�ler measures

the time it takes to execute one sampling cycle, and if user speci�ed frequency requirements

cannot be met, it re-adjusts the sampling frequency to the time needed to execute this

sampling cycle. Since the time spent in a sampling cycle may change over time due to the

user program's run-time behaviour, a validation of the sampling frequency and a possible

re-adjustment are performed on every tenth sampling cycle.

In order to allow a validation of the accuracy of a pro�ling test run, the program analyst

is informed about the frequency range in which the sampling has actually been performed.

Note that in the case of multiple monitors with di�erent sampling frequencies this ap-

proach of dynamical calibration might not solve the problem, since calibrating the frequency

of one execution monitor interferes with the calibration of other monitors with di�erent fre-

quencies. To properly handle this situation, a di�erent scheduling method is needed, which

should be further investigated in future work.

80 CHAPTER 6. THE �PROFILER IMPLEMENTATION

6.3 Pro�le Analysis and Visualization

6.3.1 Pro�le Analysis

Analyzing pro�ling information consists of three steps: �rst, the pro�ling data is extracted

from the data structures into which the corresponding execution monitor has stored the

information; second, irrelevant information is �ltered out, and third, calculations according

to the underlying metric are performed on the data. Extraction of the pro�ling data requires

the analyzer to have full access to the execution monitor's data structures. Filtering at the

pro�le analysis stage is unnecessary for the currently implemented metrics, since the data

is already �ltered at the monitoring stage. Nevertheless, the design of �Pro�ler does not

preclude an analyzer from �ltering if required by its corresponding pro�ling metric.

An example of an algorithmic calculation done at the pro�le analysis stage is the detection

of call cycles in the pro�ling data of a particular task. Call cycle detection is performed when

using the exact pro�ling option of �Pro�ler: a cycle detection algorithm is applied in order to

�nd call cycles that occurred during the execution of the pro�led tasks. Call cycle detection

provides valuable information about user program interdependencies: for example, consider

A B C

Figure 6.6: An Example Call Cycle.

the scenario of Figure 6.6. Function A calls function B, which calls function C, which

calls back to function A. In this example scenario, the time spent in function A directly

contributes to the time spent in function C, which also contributes to the time of A through

B. By exposing this situation, �Pro�ler enables the program analyst to better understand

and validate the presented pro�ling information.

6.3. PROFILE ANALYSIS AND VISUALIZATION 81

Figure 6.7: Visualization of Operating System Resource Information.

6.3.2 Visualization

Visualizing the pro�ling information is done using the visualization devices described in

Section 5.3. For example, Figure 6.7 shows a kiviat chart and additional information, which

is presented by �Pro�ler when information about the operating system's resource usage is

selected. The screen-shot shows how a kiviat graph is used to visualize pro�ling data of

a �C++ processor at the operating system level. Six metrics selected from the operating

82 CHAPTER 6. THE �PROFILER IMPLEMENTATION

system's run-time information are presented and correlated in the presented kiviat graph:

CPU busy, time in system mode, CPU non-latent, CPU sleep, time in user mode and time

in page faults. In the example output of Figure 6.7, the shape of the kiviat graph shows

that the inspected processor spent a relatively long time in the sleeping state, which could,

for example, be caused by blocking I/O operations. In addition to the data represented in

the kiviat graph, tables give detailed information about the memory behaviour, i.e., about

page faults and the number of times memory had to be swapped out to disk, about UNIX

process context switches, signals and system calls, about �lesystem block reads and writes,

and about the network activity during a test-run. As discussed earlier, information provided

by the operating system is important to validate the test-run, because it represents the

system's load during the pro�led program's execution.

Figure 6.8 demonstrates an example visualization of pro�ling information for a task,

which has been statistically monitored at a function level by a uSPMonitor execution monitor.

For each execution state of the task, i.e., running, ready and blocked, the time spent in

functions detected by the execution monitor is represented by sorted bar charts. The bar

charts give information about absolute time values while, in addition, revealing the relative

\importance" of the di�erent functions. During the pro�ling test-run that corresponds to

the example output of Figure 6.8, kernel pro�ling (see Section 6.4.3) was activated, which

results in both user functions and run-time kernel function calls being monitored.

6.4 Further Implementation Aspects

In this section, further relevant implementation aspects are discussed, including access of

the pro�ling data structures via hashing, the pro�ling scope, and issues concerning kernel

pro�ling.

6.4.1 Hashing

Performing monitoring at a function level generates an enormous amount of data to be

managed by the execution monitor. After possibly �ltering or aggregating the data, pro�ling

6.4. FURTHER IMPLEMENTATION ASPECTS 83

Figure 6.8: Visualization of Statistically Pro�led Task Information at Function Level.

information has to be stored in adequate data structures. The main aspect in choosing

appropriate data structures for this purpose is the speed with which these data structures

can be accessed and queried. Using hashing algorithms results in, on average, constant query

time and is therefore the selected technique for inserting and looking up pro�ling data during

execution. The hashing method used by �Pro�ler is a simple but e�cient variation of hashing

using division: for a given hashing key K, the hash function h(K) = K mod P is applied,

84 CHAPTER 6. THE �PROFILER IMPLEMENTATION

collisions number of buckets

0 3353

1 329

2 31

3 1

4 and more 0

Table 6.2: Collisions in Pro�ling Hash Table Buckets for a large �C++ Program.

where P is the size of the hash table. It has been shown that the best results are obtained

when choosing P a prime number with the additional requirement that R 6� 1 (mod P),

i.e., R is not congruent to 1 modulo P , where R is the radix of the keys to be inserted. In

the case of �Pro�ler, address values are used as keys into the hash table, which means that

the key values are divisible by the required address alignment of the underlying computer

architecture. For example, on the SPARC, properly aligned addresses are divisible by four,

which results in radix R = 4. Therefore, the implemented hash table for �Pro�ler adjusts its

size to a prime number that is not congruent to possible address alignment values. Note that

many other hashing methods have been developed (see, e.g., [37] or [38]), but hashing using

division has been shown to provide a comparatively good behaviour in terms of collision

reduction. For a detailed discussion on the behaviour of hashing using the division method,

see [18].

Another important aspect to be considered when implementing a hash table is its size.

If the size of a hash table is chosen too small, an unacceptable number of collisions may

occur; if the size of a hash table is chosen too great, the hash table has an unnecessarily

sparse distribution of entries. The hashing tables used by �Pro�ler are approximately four

times the size of the number of function name entries in the pro�led program's symbol

table. Empirical results have shown that the dispersion resulting from the hash function

implemented by �Pro�ler is acceptable.

�Pro�ler performs collision resolution by separate chaining for each hash table bucket,

i.e., each hash table entry is an entry point to a dynamically linked list. In order to distinguish

the entries, the entry's key is also stored in the linked list.

6.4. FURTHER IMPLEMENTATION ASPECTS 85

Table 6.2 shows an empirical collision distribution for a large �C++ program. In the

example, 4108 function addresses of an example �C++ program are inserted into a hash

table used by �Pro�ler. 3353 of these insertions did not collide with another insertion

into the corresponding hash table bucket; for 329 buckets, one collision occurred, i.e., two

insertions were made; for 31 buckets, the hashing function caused two collisions, and in one

case, three collisions were detected. For the examined program, the entry distribution can

be considered the worst-case scenario, since all function addresses of the example program

have been inserted into the hash table.

6.4.2 Pro�ling Scope

The integration of new start-up routines into the run-time kernel ensures that �Pro�ler is

started before any of the user's functions are executed. Note that by applying this method,

it is possible to pro�le the complete execution of the user code, including all the work done

in global constructors and destructors. Since the global constructors and destructors of a

�C++ program are executed by a �C++ system task (uBootTask), it is necessary to pro�le

this task in addition to the tasks created by the user. By doing so, the pro�lable scope of a

�C++ program includes all of the user's code.

6.4.3 Kernel Pro�ling

With �Pro�ler, some initial work has been done to partially pro�le the run-time kernel of

�C++. Two variants of kernel pro�ling can be distinguished: �rst, since most of the run-time

kernel is written in �C++ it can also be compiled with the pro�ling command line option,

which causes pro�ling instrumentation to be inserted into the run-time library. With the

second variant, only the parts of the run-time kernel that are compiled together with the

user program (see [8]) are instrumented.

In the �rst case, pro�ling information about the �C++ kernel can be retrieved with

only a few limitations: the part of the run-time kernel that manages the preemptive task

scheduling, and some other parts such as the parts of the run-time library that are executed

before �Pro�ler is created cannot be pro�led, because the pro�ler itself strongly depends on

86 CHAPTER 6. THE �PROFILER IMPLEMENTATION

their functionality. Pro�ling the �C++ run-time kernel is useful for debugging, analyzing

and performance tuning of �C++ itself, i.e., it mainly serves the �C++ system developer.

The second variant provides a \light" version of kernel pro�ling: in addition to the regular

pro�ling command line option, a second command line parameter called �kernelpro�le has

been integrated into �C++. When compiling a �C++ program with the �kernelpro�le
ag,

pro�ling information about the part of the run-time kernel that is compiled together with

the user program is collected and analyzed in an identical manner to the pro�leable part of

the user code.

6.5 Limitations

Although �Pro�ler has been designed to avoid restrictions on pro�ling functionality and

scope, some limitations still apply and are described in this section.

6.5.1 Hard-Coded Filename Access

As discussed in Section 5.2, integrating �Pro�ler into the pro�led program has many advan-

tages, but also entails some implementation problems: �Pro�ler needs access to the symbol

table of the pro�led program, i.e., the symbol table of the executable into which �Pro�ler

is integrated. The problem is that there exists no simple mechanism to obtain the symbol

table of the executable �le that corresponds to the executing UNIX processes, into which

the �C++ program is embedded, from inside the executing �C++ program itself. Note that

the necessary information becomes available only when the main() function in the user part

of the pro�led application is started. Unfortunately, the symbol table information is already

needed during the boot process of the uPro�ler object; so, this approach cannot be taken.

The solution used by �Pro�ler is to insert the �lename into the pro�led application during

compile-time. This technique has the disadvantage that the �lename of the pro�led �C++

program cannot be modi�ed after the compilation stage, i.e., changing the executable's name

is not allowed without re-compilation. The simplest solution to this problem is for UNIX

to provide global access to the shell arguments as it does for shell environment variables

6.5. LIMITATIONS 87

(see [68]).

6.5.2 Applicability and Availability

Since �Pro�ler has been developed and optimized for usage with �C++, it cannot be used

with other thread packages in its current implementation. Nevertheless, the underlying

design and ideas are applicable to other concurrent programming languages and provide

a general and fundamental approach to monitoring a concurrent program's execution-time

behaviour.

Although �Pro�ler provides pro�ling facilities and techniques to perform pro�ling at

a very �ne-grained level, it is questionable whether using �Pro�ler at a level lower than

a function level generates information accurate enough for a reasonable pro�ling analysis.

Nevertheless, with some e�ort, the program analyst can abstain from performing the pro-

�ling instrumentation insertion at a function level during compile-time and manually insert

the instrumentation, i.e., the calls to function mcount(), into the pro�led code wherever ap-

propriate. This technique makes it possible to perform pro�ling at a very �ne-grained level

of detail.

Currently, �Pro�ler has been ported to architectures based on Sun's SPARC processors

running SunOS and Solaris, and to architectures based on Intel's x86 processors running

Linux. Since the shared trampolines for function entry and exit have to be implemented in

machine-dependent assembler language, a simple re-compilation for a new target machine is

insu�cient. Nevertheless, the parts of �Pro�ler that are written in �C++ become directly

available on all platforms for which a port of �C++ exists, and the �Pro�ler's design requires

only few machine-dependent parts of the code, so that porting �Pro�ler to other machine

architectures and operating systems is feasible with minimal e�ort.

Chapter 7

Conclusions and Future Work

The intent of this thesis was to identify problems and challenges that occur when designing

and implementing novel methods to perform �ne-grained pro�ling of a concurrent object-

oriented program on a thread base. The resulting solutions lead to an extendible prototype

implementation of a pro�ler for the �C++ language that incorporates exact and statistical

pro�ling techniques and provides useful information for the analysis and improvement of a

concurrent object-oriented program.

7.1 Conclusions

In this thesis, the essential pro�ling methods and methodologies are de�ned and the problems

arising when pro�ling a concurrent program have been discussed.

This work focused on pro�ling user-level threads for concurrent object-oriented programs

running in a shared-memory multi-processor environment. The main reasons for pro�ling

have been identi�ed as performance analysis, algorithm analysis, coverage analysis, tuning

and debugging, and an abstract illustration of the pro�ling cycle has been presented.

Existing approaches to pro�ling concurrent programs have been discussed and it has

been discovered that none of the previous work ful�lled the design requirements to perform

extendible user-level pro�ling of concurrent object-oriented programs at a �ne-grained level

in a shared memory environment as it is provided by �C++.

89

90 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

The implemented prototype pro�ler, �Pro�ler, allows performing both exact and statisti-

cal per-thread pro�ling at a function level for �C++ programs. Designing and implementing

�Pro�ler in the high-level concurrent object-oriented language �C++ makes it easy to ex-

tend, which is an important aspect of any good pro�ling tool. Also, interoperability with

existing tools for �C++ becomes possible: for example, the pro�ler could be debugged using

the debugger for �C++, the debugger can be pro�led, and it is even imaginable to pro�le

�Pro�ler with �Pro�ler. The tight coupling with the �C++ run-time kernel allows precisely

controllable pro�ling at a �ne-grained level, and the incorporation of the pro�ler into the

program to be pro�led provides user-friendly,
exible pro�ling with minimal e�ort. Finally,

�Pro�ler's portability has been proven through implementations for both RISC and CISC

computer architectures.

The novel techniques introduced by this work include user-level thread pro�ling at a func-

tion level for �C++, dynamic �ltering of pro�ling information, dynamic frequency calibration

for statistical pro�ling, and the ability to partially pro�le a thread library's run-time kernel.

Experiments using �Pro�ler have validated the statement that pro�ling user-level threads

is useful for performance analysis, algorithm analysis, coverage analysis, tuning and debug-

ging.

The extensions to the current implementation of �C++, which were necessary to incorpo-

rate pro�ling into the target environment, will be integrated into the future release of �C++,

and �Pro�ler itself will be made publicly available as a part of the MVD package.

7.2 Future Work

The framework presented in this thesis provides a useful pro�ling environment for concurrent

programs. Nevertheless, the extendible design of �Pro�ler should be utilized to pursue

further research in the development and applicability of new metrics and corresponding

visualization techniques.

Although this work presents initial research in incorporating object-based pro�ling into

the system, metrics using this functionality still have to be developed. In addition, future

7.2. FUTURE WORK 91

work should encompass: research on an automation of the pro�le analysis, further investi-

gation of dynamically controlled pro�ling, and the development of methodologies to ensure

a better cooperation among pro�ling, debugging and event-tracing tools.

Another �eld for future work is to investigate the applicability of the presented ideas to

other thread packages. Also, it is imaginable to develop an interface to visualization tools

like POET [41], or extend the functionality of �Pro�ler to allow exporting the pro�ling data

in a commonly supported �le format, which is readable by other performance evaluation

tools. An example of such a �le format is the Pablo Self De�ning Data Format (SDDF) [2].

Finally, porting �Pro�ler to all of the architectures that are supported by the underlying

target environment (i.e., �C++) should be considered.

Appendix A

Object-Oriented Analysis Model

Notations

The following gives a brief description of the notation format for classes, objects, object

relations, inheritance and aggregation in the object oriented analysis model. The notation

format used is based on the notation proposed by Coad and Yourdan [9]. Classes and objects

Class Name

Attributes

Element Functions

Class Name

Attributes

Element Functions

Abstract Class Class & Object

Figure A.1: Classes and Objects.

are represented as rectangles with round edges, which are divided into three sections. The top

section contains the name, the middle section contains the attributes and the bottom section

contains the element functions of the illustrated class. Classes that can be instantiated are

embedded into a second frame with round edges; only purely abstract classes are represented

by a single frame rectangular box. Figure A.1 shows the notation format of classes and

objects. For clarity reasons, a simpli�ed notation format for classes and objects is used in

93

94 APPENDIX A. OBJECT-ORIENTED ANALYSIS MODEL NOTATIONS

this thesis when considered appropriate. The simpli�ed class and object notation is shown

in Figure A.2.

Class Name

Abstract Class Class & Object

Class Name

Figure A.2: Simpli�ed Class and Object Notation.

Figure A.3 shows how object relations, i.e., instance connections, are represented. The

cardinality notation shows how many objects of each type are related. In the example shown

in Figure A.3, An instance of Class A is related to zero or any number of objects of type

Class B, whereas each instance of Class B is related to exactly one object of type Class A,

i.e., a many-to-one relationship.

Class A

0,n

Class B

1

Figure A.3: Object Relationship.

Inheritance is represented as shown in Figure A.4. Note that, since inheritance is per-

formed on a class basis rather than on an object basis, the connecting lines begin at the

inner rectangular frame. The derived classes represent a specialization of the more general

base class. Note also, that only type inheritance, as oposed to implementation inheritance, is

represented: for example, the notation does not di�erentiate between attributes or element

functions that are inherited by all derived classes, and attributes or element functions that

are private to the base class. Figure A.5 illustrates how object aggregation is represented

in the notation. Aggregation describes a situation where an object contains other objects

as its attributes; i.e., objects are layered inside of other objects. In the example, a whole-

part aggregation structure is shown: each \part" corresponds to exactly one \whole" entity,

95

Base Class/Object

Derived Class/Object 1 Derived Class/Object 2

Figure A.4: Inheritance.

whereas the \whole" object consists of 1 to n \parts".

For a more detailed description of the object-oriented analysis notation format used in

this thesis, refer to [9].

96 APPENDIX A. OBJECT-ORIENTED ANALYSIS MODEL NOTATIONS

1

1,n

Part

Whole

Figure A.5: Aggregation.

Bibliography

[1] Anderson, T., and Lazowska, E. Quartz: A Tool for Tuning Parallel Program

Performance. In Proceedings of the 1990 SIGMETRICS Conference on Measurement

and Modeling of Computer Systems (Boston, May 1990), pp. 115{125.

[2] Aydt, R. A. The Pablo Self-De�ning Data Format. Tech. rep., Pablo Research Group,

Department of Computer Science, University of Illinois, Urbana, Illinois, March 1992.

[3] Ball, T., and Larus, J. Optimally Pro�ling and Tracing Programs. In 19th ACM

Symposium on Principles of Programming Languages (Albuquerque, New Mexico, Jan-

uary 1992), pp. 59{70.

[4] Broberg, M. Visualization of Parallel Program Behaviour. Master's thesis, Dept.

of Computer Science and Business Administration, University of Karlskrona/Ronneby,

1996.

[5] Brown, D., Hackstadt, S., Malony, A., and Morh, B. Program Analysis

Environments for Parallel Language Systems: The � Environment.

[6] Buhr, P. A. �C++ monitoring, visualization and debugging annotated reference man-

ual, version 1.0. Tech. rep., Department of Computer Science, University of Waterloo,

Waterloo, Ontario, Canada, N2L 3G1, Sept. 1995. Available via ftp from plg.uwaterloo.ca

in pub/MVD/Visualization.ps.gz.

[7] Buhr, P. A., Karsten, M., and Shih, J. KDB reference manual, version

1.1. Tech. rep., Department of Computer Science, University of Waterloo, Water-

97

98 BIBLIOGRAPHY

loo, Ontario, Canada, N2L 3G1, Dec. 1996. Available via ftp from plg.uwaterloo.ca in

pub/MVD/KDB.ps.gz.

[8] Buhr, P. A., and Stroobosscher, R. A. �C++ annotated reference manual, ver-

sion 4.6. Tech. rep., Department of Computer Science, University of Waterloo, Water-

loo, Ontario, Canada, N2L 3G1, July 1996. Available via ftp from plg.uwaterloo.ca in

pub/uSystem/uC++.ps.gz.

[9] Coad, P., and Yourdon, E. Object-Oriented Analysis, 2 ed. Prentice-Hall, Engle-

wood Cli�s, New Jersey, 1991.

[10] Cray Research Inc. Cray T3D System Architecture Overview. HR-04033.

[11] Crovella, M. E., and LeBlanc, T. J. Performance Debugging Using Parallel

Performance Predicates. 140{150. ACM/ONR Workshop on Parallel and Distributed

Debugging.

[12] Cygnus Support. LIBBFD, the Binary File Descriptor Library.

[13] Esser, R., and Knecht, R. Intel Paragon XP/S | architecture and software en-

vironment. Tech. Rep. KFA-ZAM-IB-9305, Central Institute for Applied Mathematics,

Research Center J�ulich, Germany, r.esser@kfa-juelich.de, Apr. 26 1993.

[14] Fineman, C. E., and Hontales, P. J. Selective Monitoring Using Performance Met-

ric Predicates. 162{165. Scalable High Performance Computing Conference, Williams-

burg, Virginia, USA.

[15] Gait, J. A Probe E�ect in Concurrent Programs. Software - Practice and Experience

16, 3 (March 1986), 225{233.

[16] Gentleman, W. M. Message passing between sequential processes: the reply primitive

and the administrator concept. Software|Practice and Experience 11, 5 (May 1981),

435{466.

BIBLIOGRAPHY 99

[17] Gettys, J., and Scheifler, R. W. Xlib - C Language Interface. electronic docu-

ment.

[18] Ghosh, S. P., and Lum, V. Y. Analysis of collisions when hashing by division.

Information Systems 1, 1 (1975), 15{22.

[19] Goldberg, A. J., and Hennessy, J. L. Mtool: An Integrated System for Per-

formance Debugging Shared Memory Multiprocessor Applications. IEEE Trans. on

Parallel and Distributed Systems (Jan. 1993), 28{40.

[20] Goosen, H. A., Hinz, P., and Polzin, D. W. Experience Using the Chiron Parallel

Program Performance Visualization System. Computer Science Department, University

of Cape Town, South Africa, 1995.

[21] Gosling, J., Joy, B., and Steele, G. The Java Language Speci�cation. Sun

Microsystems, Inc, August 1996.

[22] Graham, S. L., Kessler, P. B., and McKusick, M. K. gprof: a Call Graph

Execution Pro�ler. SIGPLAN Notices 17, 6 (June 1982), 120{126. Proceedings of

the SIGPLAN'82 Symposium on Compiler Construction, June 23{25, 1982, Boston,

Massachusetts, U.S.A.

[23] Heath, M. T., and Finger, J. E. ParaGraph: A Tool for Visualizing Performance of

Parallel Programs. University of Illinois and Oak Ridge National Laboratory, September

1994.

[24] Herrarte, V., and Lusk, E. Studying Parallel Program Behavior with Upshot. User

Manual.

[25] High Performance Fortran Forum. High Performance Fortran Language Speci-

�cation, Version 0.4, 1992.

[26] Ho, W. W., and Olsson, R. A. An approach to genuine dynamic linking. Software

- Practice And Experience 21, 4 (Apr. 1991), 375{390.

100 BIBLIOGRAPHY

[27] Hoare, C. A. R. Monitors: An Operating System Structuring Concept. Communi-

cations of the ACM 17, 10 (Oct. 1974), 549{557.

[28] Hollingsworth, J., and Miller, B. P. Slack: A New Performance Metric for Par-

allel Programs. Tech. Rep. CS-TR-95-1260, Computer Sciences Department, University

of Wisconsin-Madison, Madison, Wisconsin, December 1994.

[29] Hollingsworth, J. K. Finding Bottlenecks in Large Scale Parallel Programs. PhD

thesis, University of Wisconsin, Madison, 1994.

[30] Hollingsworth, J. K., and Miller, B. P. Parallel Program Performance Metrics:

A Comparison and Validation. In Supercomputing 1992, Minneapolis (Computer Science

Department, University of Wisconsin-Madison, 1992).

[31] IBM Corporation. IBM Program Visualizer (PV) Tutorial and Reference Manual,

Release 0.8.

[32] Intel Corporation. Intel Architecture Software Developer's Manual, 1997.

[33] Jain, R. The Art of Computer Systems Performance Analysis, �rst ed. John Wiley &

Sons, Inc, 605 Third Avenue, New York, N.Y., 1991. ISBN 0471503363.

[34] Kernighan, B. W., and Ritchie, D. M. The C Programming Language, second ed.

Prentice Hall Software Series. Prentice Hall, 1988.

[35] Kerola, T., and Schwetman, H. Monit: A Performance Monitoring Tool for

Parallel and Pseudo-Parallel Programs. In Proceedings of the 1987 ACM SIGMETRICS

Conference (May 1987).

[36] Kessler, P. B. Fast Breakpoints: Design and Implementation. In Proceedings of

the SIGPLAN '90 Conference on Programming Language Design and Implementation,

published in ACM SIGPLAN Notices (June 1990), vol. 25, pp. 78{84.

[37] Knott, G. D. Hashing functions. The Computer Journal 18, 3 (Aug. 1975), 265{278.

BIBLIOGRAPHY 101

[38] Knuth, D. E. The Art of Computer Programming, Sorting and Searching, vol. 3.

Addison-Wesley, Reading, MA, USA, 1973.

[39] Kolence, K. W., and Kiviat, P. J. Software Unit Pro�les and Kiviat Figures.

2{12. Performance Evaluation Review.

[40] Kranz, D., Johnson, K., Agarwal, A., Kubiatowicz, J., and Lim, B.-H.

Integrating Message-Passing and Shared-Memory : Early Experience. In Proceedings of

the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

published in ACM SIGPLAN Notices (July 1993), vol. 28, pp. 54{63.

[41] Kunz, T., Taylor, D. J., and Black, J. P. POET: Target-system-independent

visualizations of complex ditributed executions. 452{461. Proceedings of the 30th Hawaii

International Conference on System and Science, January 1997, Maui, Hawaii, U.S.A.

[42] Lange, F., Kroger, R., and Gergeleit, M. JEWEL: Design and Implementation

of a Distributed Measurement System. IEEE Transactions on Parallel and Distributed

Systems 3, 6 (November 1996), 657{671.

[43] Larus, J. R. Abstract Execution: A Technique for E�ciently Tracing Programs.

Software{ Practice and Experience (Dec. 1990), 1241{1258. Also Univ. of Wisconsin

Computer Science Tech. Report 912.

[44] Lehr, T., Black, D., Segall, Z., and Vrsalovic, D. MKM: Mach Kernel Mon-

itor Description, Examples and Measurements. Tech. rep., Carnegie-Mellon University,

Pittsburgh, March 1989. PA-CS-89-131.

[45] Lovett, T., and Thakkar, S. The Symmetry multiprocessor system. In Proceedings

of the 1988 Conference on Parallel Processing (1988), pp. 303{310.

[46] Lyon, G., Snelick, R., and Kacker, R. Synthetic-perturbation of MIMD pro-

grams. Journal of Supercomputing 8, 1 (1994), 5{8.

[47] Madhyastha, T. M. A Portable System for Data Soni�cation. Master's thesis,

Rutgers State University, 1990.

102 BIBLIOGRAPHY

[48] Malony, A., Mohr, B., Beckman, P., Gannon, D., Yang, S., and Bodin,

F. Performance Analysis of pC++: A Portable Data-Parallel Programming System for

Scalable Parallel Computers. In Proceedings of the 8th International Parallel Processing

Symbosium (IPPS), Cancun, Mexico (April 1994), pp. 75{85.

[49] McCormack, J., Asente, P., and Swick, R. R. X Toolkit Intrinsics - C Language

X Interface. electronic document.

[50] Miller, B. P., Callaghan, M. D., Cargille, J. M., Hollingsworth, J. K.,

Irvin, R. B., Karavanic, K. L., Kunchithapadam, K., and Newhall, T.

The Paradyn Parallel Performance Measurement Tools. Tech. rep., Computer Science

Department, University of Wisconsin-Madison, 1210 W. Dayton Street, Madison, WI

53706, USA.

[51] Miller, B. P., Clark, M., Hollingsworth, J. K., Kierstead, S., Lim, S., and

Torzewski, T. IPS-2: The Second Generation of a Parallel Program Measurement

System. In IEEE Transactions on Parallel and Distributed Systems (April 1990), vol. 1,

pp. 206{217.

[52] Miller, B. P., and Yang, C.-Q. IPS: An Interactive and Automatic Performance

Measurement Tool for Parallel and Distributed Programs. In Proceedings of the 7th

International Conference on Distributed Computing Systems (September 1987).

[53] Mohr, B. Standardization of Event Traces Considered Harmful or Is an Implemen-

tation of Object-Independent Event Trace Monitoring and Analysis Systems Possible

? In Advances in Parallel Computing, J. Dongarra and B. Tourancheau, Eds., vol. 6.

1993, pp. 103{124.

[54] Mohr, B. W., Malony, A. D., and Shanmugam, K. Speedy: An Integrated

Performance Extrapolation Tool for pC++ Programs. Department fo Computer and

Information Science, University of Oregon, Eugene, Oregon.

[55] Morris, M. F., and Roth, P. F. Tools and Techniques: Computer Performance

Evaluation for E�ective Analysis. Van Nostrand Reinhold, New York, 1982.

BIBLIOGRAPHY 103

[56] Perl, S. E., and Weihl, W. E. Performance Assertion Checking. 134{145. 14th

ACM Symposium on Operating Systems Principles.

[57] Pillet, V., Labarta, J., Cortes, T., and Girona, S. PARAVER: A tool to

visualise and analyze parallel code. In Proceedings of WoTUG-18: Transputer and occam

Developments (Amsterdam, April 1995), vol. 44 of Transputer and Occam Engineering,

IOS Press, pp. 17{31. ISBN 90 5199 222 x.

[58] Ponder, C., and Fateman, R. Inaccuracies in Program Pro�lers. Software - Practice

and Experience 18, 5 (May 1988), 134{145.

[59] Reed, D., Aydt, R., Noe, R., Roth, P., Shields, K., Schwartz, B., and

Tavera, L. Scalable Performance Analysis: The Pablo Performance Analysis Envi-

ronment. Scalable Parallel Libraries Conference (1993). A. Skjellum, IEEE Computer

Society.

[60] Reed, D. A., Shields, K. A., Scullin, W. H., Tavera, L. F., and Elford,

C. L. Virtual Reality and Parallel Systems Performance Analysis. Department of

Computer Science, University of Illinois, Urbana, Illinois, 1995.

[61] Ries, B., Anderson, R., Auld, W., Breazeal, D., Callaghan, K., Richards,

E., and Smith, W. The Paragon Performance Monitoring Environment. In Super-

computing 1993 (Portland, OR, November 1993), pp. 850{859.

[62] Segall, Z., and Rudolph, L. PIE: A Programming and Instrumentation Environ-

ment for Parallel Processing. IEEE Software 2, 6 (November 1985), 22{37.

[63] Snelick, R. S-Check: a Tool for Tuning Parallel Programs. National Institute of

Standards and Technology.

[64] Snelick, R., Ja'Ja', J., Kacker, R., and Lyon, G. Synthetic-perturbation tech-

niques for screening shared memory programs. Software - Practice and Experience 24,

8 (1994), 679{701.

104 BIBLIOGRAPHY

[65] SPARC International. The SPARC Architecture Manual. Prentice-Hall, Inc., En-

glewood Cli�s, New Jersey 07632, 1992.

[66] Stroustrup, B. The C++ Programming Language, second ed. Addison Wesley, 1991.

[67] Stunkel, C. B., Atkins, M., Hochschild, P. H., Swetz, R. A., Shea, D. G.,

Bender, C. A., Joseph, D. J., Stucke, R. F., Varker, P. R., Abali, B.,

Grice, D. G., Nathanson, B. J., and Tsao, M. The SP2 Communication Sub-

system. Tech. rep., IBM Thomas J. Watson Research Center, August 1994.

[68] Sun. getenv(3C). C Library Functions.

[69] Sun. getrusage(3C). C Library Functions.

[70] Sun. proc(4).

[71] Sun. ptrace(2).

[72] Sun, X.-H., and Zhu, J. Performance Considerations of Shared Virtual Memory

Machines. Department of Computer Sicence, Louisiana State University, Baton Rouge,

Louisianna.

[73] Sunderam, V. PVM: A framework for parallel distributed computing. Concurrency:

Practice and Experience 2, 4 (Dec. 1990), 315{339.

[74] Taylor, D., and Buhr, P. A. POET with �C++. Tech. rep., Department of Com-

puter Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, Dec. 1996.

Available via ftp from plg.uwaterloo.ca in pub/MVD/Poet.ps.gz.

[75] Tufte, E. R. The Visual Display of Quantitative Information. Graphics Press, Box

430, Cheshire, CT 06410, USA, 1983.

[76] United States Department of Defense. The Programming Language Ada: Ref-

erence Manual, ANSI/MIL-STD-1815A-1983 ed., Feb. 1983. Published by Springer-

Verlag.

BIBLIOGRAPHY 105

[77] Veenstra, J. Mint tutorial and user manual. Tech. Rep. 452, Computer Science

Department, University of Rochester, June 1993.

[78] Williams, W., Hoel, T., and Pase, D. The MPP Apprentice Performance Tool:

Delivering the Performance of the Cray T3D. Programming Environments for Massively

Parallel Distributed Systems, North Holland (1994).

[79] Wu, C. E., Franke, H., and Liu, Y.-H. UTE: A Uni�ed Trace Environment for

IBM SP Systems. IBM T.J. Watson Research Center.

[80] Yan, J. Performance Tuning with AIMS - An automated Instrumentation and Mon-

itoring System for Multicomputers. In Proceedings of the 27th Hawaii International

Conference on System Sciences, Wailea, Hawaii (January 1994), vol. 2, pp. 625{633.

[81] Yan, J., Sarukkai, S., and Mehra, P. Performance Measurements, Visualization

and Modelling of Parallel and Distributed Programs using the AIMS Toolkit. Software-

Practice and Experience 25, 4 (April 1995), 429{461.

