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Abstract

This thesis focuses on two real-time scheduling algorithms: fixed-priority with preemption

threshold (FPPT) and the reservation-based algorithm (RBA).

FPPT is an important form of real-time scheduling algorithm that generalizes both fixed-

priority preemptive (FPP) and fixed-priority non-preemptive (FPNP), i.e., FPP and FPNP are the

two boundary cases for FPPT. The critical instant for FPPT is rephrased, and it is shown that FPPT

is robust under its critical instant. When a task set is schedulable by FPPT with predefined regular

priorities, there may exist multiple valid preemption threshold assignments, which are proved to

be delimited by two special assignments, called minimal and maximal assignment respectively.

This thesis presents effective algorithms to compute the minimal and maximal assignment by

starting from FPNP. In addition, algorithms are presented to compute the minimal (maximal)

assignment when the other is known. The maximal assignment reduces the number of context

switches and can eliminate some resource sharing issues. It is shown that the algorithm to find the

maximal assignment can be used to perform a schedulability test for FPPT. Resource management

protocols for FPPT are not addressed in this work, which is left for future study.

RBA is a kind of bandwidth reservation algorithm in which an even duration of time (the

bandwidth) is made available for executing aperiodic tasks to improve their response time. This

thesis provides the theoretical support to compute the maximal size of the reserved bandwidth af-

ter guaranteeing schedulability of a periodic task set for earliest deadline first (EDF), rate mono-

tonic (RMA), and FPPT algorithms. When RMA is used to schedule periodic tasks, the known

algorithm to calculate the reservation size is complicated and ineffective. It is shown that the

combination of RBA and FPPT can obtain a reservation size no smaller than that of RMA and

avoid the high run-time cost of EDF. Combined with a background server, the response time of

aperiodic tasks can be further improved. However, this thesis does not consider all practical is-

sues. For example, the bandwidth may be too small and the practical costs of additional context

switching may be expensive.

To verify the research results of this thesis, a small real-time scheduling tool-kit was created

as part of the thesis work. The tool-kit allows scheduling algorithms to be created and tested (via

simulations), where scheduling results are presented as step-by-step Gantt-charts. The tool-kit

was invaluable in generating examples to prove or disprove different aspects of the scheduling

work for the thesis. The tool-kit has been extended with multiple scheduling algorithms, not just

those specific to this thesis.
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Chapter 1

Introduction

Real-time systems are becoming more and more important as they have entered into people’s daily

lives through, for example, manufacturing, transportation, and medical operation controls [66,

16]. Unlike traditional computation that only requires functional correctness, a real-time system

is restricted by time constraints, as the correctness of a computation also depends on time. If

a result is obtained within some specific time called the deadline, it is valid; otherwise, it is

useless or its usage is degraded. If a real-time task misses its deadline, resulting in a catastrophic

effect, it is called a hard real-time task such as an atomic power plant control task. If a real-

time task misses its deadline from time to time, resulting in a degraded result, it is called a

soft real-time task such as transmitting an image frame during videoconferencing. If a real-time

system contains at least one hard real-time task, it is called a hard real-time system; otherwise

it is called a soft real-time system. An alternative viewpoint is that a real-time system must be

predictable and the system reacts to events in a timely way. The ability to react to events requires

an appropriate execution order of the tasks, which is called a real-time schedule of tasks. The

algorithm applied to find a schedule is called a scheduling algorithm. Many real-time scheduling

algorithms have been created for different applications from static to dynamic [45, 57] from

uniprocessor to multiprocessor [5, 6], from serial to parallel algorithms [44, 35, 24, 54], using

both weak and strong assumptions [61, 61, 58, 11]. However, even a simple real-time scheduling

problem under simple constraints for a uniprocessor or multiprocessor environment can be NP-

Complete [71, 25]; hence, scheduling is one of the most difficult parts in the development of a

real-time system.

In traditional concurrent programming, tasks do not have deadline constraints. The purpose of
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a real-time scheduling algorithm is to guarantee the deadlines of all real-time tasks in the system,

which is different from the purpose of other types of scheduling. For example, other scheduling

algorithms may target load balancing in a multiprocessor system [14, 75] or minimizing memory

usage. Both of these kinds of scheduling algorithms are popular in concurrent programming

environments. However, these kinds of scheduling algorithms do not guarantee the deadlines of

tasks.

Many real-time systems are designed for an embedded system, where the characteristics of

the application and the operating environment can be known. In this case, the real-time system

can be finely tuned to the desired degree of performance. Embedded systems may also have

additional constraints that must be considered, such as a small amount of memory, power con-

sumption, weight, or physical size. These very specific constraints are in contrast to the demands

of flexibility and functionality typically available in non-real-time or general real-time systems.

In addition to a deadline parameter, real-time tasks have other operational parameters, such

as ready time, starting time, and worst case computation time [50, 52]. Ready time and starting

time are defined later in Section 1.3. Worst case computation time is the maximal amount of

time required for a task to execute exclusively until it finishes, and is called computation time for

simplification.

1.1 Real-Time Task

For real-time scheduling purposes, tasks in a task set are often classified depending on arrival

patterns [66], which is shown in Figure 1.1.

task

� !  " periodic

non-periodic # aperiodic

sporadic

Figure 1.1: Task Categorization

1. periodic task

A periodic task has a fixed release frequency that is periodic in nature, the fixed interval

between two consecutive releases of a periodic task is called its period.

2



A periodic task has many instances during its lifetime. An instance of a periodic task is

called a job of that periodic task. A periodic task consists of all of its jobs1.

2. non-periodic task

A non-periodic task does not have a fixed release frequency. Non-periodic tasks are further

subdivided into two sub-categories: aperiodic and sporadic. Again, the difference between

these categories lies in release frequencies.$ aperiodic task

An aperiodic task has a release frequency that is unbounded. In the extreme, this

property could lead to an arbitrarily large number of simultaneously active tasks.$ sporadic task

A sporadic task is an aperiodic task with a guaranteed minimum inter-arrival time

between releases.

1.2 Real-Time Scheduler

A run-time system performs scheduling through a component called a scheduler. When a sched-

uler performs a computation trying to find a valid schedule for a task set, it is performing a

schedulability test. One very important factor when a scheduler performs a schedulability test for

a task set is whether the execution of a task can be preempted during its execution by another task.

If preemption is allowed, the scheduler is called preemptive. A preemptive scheduler may allow

tasks to be interrupted at arbitrary points during their execution, and then a context switch allows

a new or possibly the same task to continue its execution. Preemption gives greater flexibility

in scheduling as task execution can be subdivided into arbitrary time intervals to facilitate time

layout and achieve higher processor utilization. However, the cost of each preemption must be

factored into the scheduling, and the amount of time required for a context switch must be sig-

nificantly less than the computation time of a task. If no preemption is allowed, the scheduler is

called non-preemptive. When a non-preemptive scheduler is used, the execution of a task is never

preempted by another task, resulting in less context switches than for a preemptive scheduler.

Furthermore, such a scheduler can be used as a cheap mechanism to ensure mutual exclusion to

a shared resources, as long as resource usage does not span a task’s computation (job).

1Task and job are used interchangeably in many real-time papers.

3



3. Scheduling Algorithm
1. Task Set

2. System Architecture

4. Resource Management Protocol Yes/No

Figure 1.2: Real-Time Scheduler

No matter which scheduler is applied, the provided execution order for tasks is enforced by

a dispatcher. Sometimes a scheduler and a dispatcher are combined and sometimes they are

separate, depending on the system.

A real-time scheduler often has to consider more than the task set, such as resource man-

agement protocols, and the system architecture, as indicated in Figure 1.2. Based on the task

set, system architecture, and resource management protocol, the scheduling algorithm performs

a schedulability test and provides an answer of “yes” or “no”. If yes, the scheduler provides one

schedule and possibly provides system-status information such as the utilization of the system

resources. For example, if the processor utilization is less than 1, then the unused time left by

periodic tasks can be used to service aperiodic tasks. Each of these four factors is discussed in

detail.

1. Task Sets

As mentioned, tasks are divided into three types in a real-time system: periodic, aperi-

odic, and sporadic. Most research work attempts to transfer sporadic tasks into periodic

tasks with worst case cost estimation and create special servers to service aperiodic tasks

without guaranteeing deadlines. Periodic, aperiodic, and sporadic tasks require different

schedulers to guarantee their deadlines or to make them complete their computations as

soon as possible due to their different properties and requirements. Often periodic tasks are

scheduled by a well-known scheduler such as RMA, while the unused time left by the pe-

riodic tasks is used to service aperiodic and sporadic tasks. In a uniprocessor environment,

it is complicated to consider scheduling three types of tasks. However, in a multiprocessor

environment, it is possible to assign a processor(s) to each kind of tasks so the different

task sets can be scheduled by different schedulers on different processors. Periodic tasks

can also be grouped and assigned to different processors so as to improve the processor

utilization or minimize the number of processors required for the tasks [17]. Furthermore,

the scheduler on each processor can be relatively simple and fast. Though many task sets

4



unschedulable in a uniprocessor environment may be schedulable in a multiprocessor en-

vironment, the scheduling problem in a multiprocessor environment is more complicated

than in a uniprocessor environment.

2. System Architectures

Originally, only uniprocessor computers were available. Now system architecture is expe-

riencing a change from uniprocessor to multiprocessor, and from stand-alone machines to

networked systems. Both of these changes improve the processing ability of the systems

but also challenge the next generation of software, which greatly affects scheduling. One

task set may be unschedulable in a uniprocessor environment, but it may be schedulable

in a multiprocessor environment. While it seems that multiprocessor systems enlarge the

range of problems that can be solved practically, the scheduling problem in a multipro-

cessor environment is more difficult in a uniprocessor environment. For example, it may

seem counter-intuitive, but certain schedulers are optimal in a uniprocessor environment

but may not be optimal in a multiprocessor environment [43]. The traditional schedulers

and/or resource management protocols originally created for uniprocessor architectures

must be rechecked when they are adopted for multiprocessor systems. In a uniprocessor

environment, concurrent programming is very popular to structure complex, independent

operations often associated with real-time systems. In addition, concurrent programs can

immediately take advantage of any available hardware parallelism, as in current multipro-

cessor environments. This thesis does not consider multiprocessor environments; it only

considers uniprocessor environments.

3. Scheduling Algorithms

Many real-time schedulers are available [45, 43, 33, 41, 7, 26]. In general, each particular

scheduler attempts to take advantage of some aspect of a given task set. As a result, there

is no general scheduler that works for all task sets. However, it is unclear which scheduler

is the most appropriate for a particular task set. In addition, there may exist different

schedulability tests for a given scheduler. For example, RMA has at least three different

schedulability tests [45, 33, 41]. Furthermore, a scheduler may be implemented in a number

of ways, including using a parallel algorithm for schedule searching. For example, the

earliest deadline first (EDF) [45] can be implemented with a parallel algorithm for schedule

searching.

4. Resource Management Protocols
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Task execution is seldom independent. First, there may exist precedence constraints among

tasks. For example, one task can only start after another task finishes successfully. Sec-

ond, tasks often communicate and/or access exclusively-shared2 resources, which imposes

additional constraints on scheduling as tasks may block when attempting these operations.

As such, many real-time systems provide resource management protocols [53, 1, 2, 3, 11].

Among them, priority inheritance protocol (PIP) [62], priority ceiling protocol (PCP) [27],

session reservation protocol (SRP) [4], and stack-based protocol (SBP) [11] are very im-

portant ones.

There are multiple approaches to categorize real-time schedulers. For example, based on

whether a real-time scheduler is event-driven or time-driven; based on whether a real-time sched-

uler supports multiprocessor architectures; based on whether a real-time scheduler allows pre-

emption. Each subclass can be further categorized if necessary. For example, if a real-time

scheduler is event-driven and assigns priorities to the responses to different events, it is called

priority-based. Priority-based real-time schedulers can be further categorized into two types:

fixed-priority or dynamic-priority, based on whether the priority of a task is fixed or dynamic

during its execution.

RMA is fixed-priority preemptive (FPP). The schedulability test of a fixed-priority scheduler

can be performed offline (statically). In FPP, the running task can be interrupted at an arbitrary

location, i.e., suspended (blocked), and another task can become the running task. For FPP,

preemption occurs when a task with a higher priority becomes ready while a task with a lower

priority is running. After RMA, much research work has been done on FPP scheduling algo-

rithms on uniprocessor environments [8, 10, 13, 29, 28, 19, 23, 41, 70, 33, 38, 39, 47, 49, 55, 56].

FPP scheduling algorithms have also been extended to multiprocessor and/or distributed environ-

ments [6, 5, 38, 47, 55, 73].

One important assumption of RMA is task independence [45], which implies that tasks do not

communicate and they do not access exclusively-shared resources. However, this assumption is

often impractical because tasks may interact or compete for exclusively-shared resources during

their executions. A direct consequence of dependent tasks is that a task with a lower priority

may hold some exclusively-shared resources when a task with a higher priority is ready. If the

task with a higher priority also requires an exclusively-shared resource held by another blocked

task with a lower priority, then a priority inversion occurs [58]. As a result, exclusive access

2A resource may not be exclusively-shared such as a read-only data file.
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to shared resources may preclude the desired schedule to ensure tasks achieve their deadlines.

To solve the problem, specific resource management protocols have been proposed [27, 61, 62,

65]. In addition, preemptions introduce context switches, whose cost may not be negligible in

practice. For example, extra processor time and memory are required. Dealing with the cost of

a context switch is discussed in Section 2.2.5. Interestingly, if preemption is disallowed, then

appropriate access to exclusively-shared resources can be guaranteed and the cost of context

switches introduced by preemptions can be saved, too. These observations suggest using fixed-

priority non-preemption (FPNP) when possible.

FPNP is based on a fixed-priority assignment, with the added requirement that the execution

of a task cannot be preempted by another task. Non-preemptive scheduling is important in real-

time distributed applications such as on-line transaction processing. For example, each packet

should be transmitted successfully or not. Otherwise, such a packet is considered useless or lost

by the receiver.

Fixed-Priority with preemption threshold (FPPT) [74] fills the gap between FPP and FPNP,

and it is a mixture of FPP and FPNP, where FPP and FPNP are the two boundary cases of FPPT.

Each task has a pair of priorities: regular priority and preemption threshold, where the preemp-

tion threshold of a task is equal to or higher than its regular priority. The regular priority of a task

is fixed and used to compete for the processor when the task enters a system. When a task starts

to run, its running priority is upgraded to its preemption threshold. Only those tasks with regular

priorities higher than the preemption threshold of the running task can preempt the execution of

the running task. All preemption thresholds of a task set form a preemption threshold assignment

or assignment for simplification. Similarly, all regular priorities of a task set form a regular pri-

ority assignment. If an assignment can make each task schedulable by FPPT, then the assignment

is called valid. Based on the schedulability test for FPPT, a known algorithm [74] can find a valid

preemption threshold assignment if the task set is schedulable by FPPT when the regular priority

is predefined.

Finally, supporting both periodic tasks and aperiodic tasks is also very important. Most often,

periodic tasks are scheduled by a well-known real-time scheduling algorithm such as RMA, EDF,

and FPPT. After guaranteeing that all periodic tasks meet their deadlines, the unused time left by

periodic tasks is used to schedule aperiodic tasks. The well-known approaches to manage such

unused time are background server, polling server, slack stealing algorithm, and bandwidth reser-

vation algorithm, which are discussed in Section 2.3. The reservation-based algorithm (RBA) is

an important bandwidth reservation algorithm.
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1.3 Terminology and Assumption

Periodic tasks are denoted as %&�('�%���'()&)() and the * th job of task %�� is denoted as +��-, . . Some of

the research work enumerates all jobs of a task with the index starting from / and some of them

with 0 , which depends on personal taste and preference. In this thesis, the starting index for

the research work is / , but when discussing other research work, the starting index is clearly

specified.

The time when a job enters a system is called its ready time. The starting time of a job is the

time when the job starts to execute for the first time. The duration between the time when a job

enters a system and when it finishes is called the response time of the job. In the lifetime of a

system, the worst case response time of a task is equal to the maximal response time of all of its

jobs.

The time when the first job of a task is ready is called the phase of the task. If all tasks in a

task set have the same phase, they are called in phase and their phase can be considered to be / .
The major cycle of a task set is denoted as 1���2 , which is equal to the least common multiple

of the periods of all periodic tasks in the task set. The unit cycle of a task set is denoted as 1���2 ,
which is equal to the greatest common divisor of the periods of all the periodic tasks in the task

set.

The time granularity in a real-time system determines the granularity of the time parameters of

a task. For example, if a microsecond is the minimal time-unit supported by a clock in a real-time

system, any part less than 0 microsecond is impossible. Practically, the time parameters of a task

in a real-time system are presented as the number of smallest time-units of the clock in the system.

To simplify discussion and calculation, a time value can be scaled to an integer of the fundamental

time-unit. Therefore, without loss of generality, all periods of periodic tasks are assumed to be

integers for convenience in this thesis. Furthermore, the time-unit to specify a periodic task is

assumed to be much larger than the fundamental time-unit because it is generally true in practice.

For example, the time-unit for a periodic task may be millisecond while the fundamental time-

unit may be microsecond. In the following discussion, the time-unit is unspecified; instead, it is

assumed that the time-unit used makes sense practically.

A periodic task is denoted as % = ( D, T, C, P ), where D stands for the deadline, T the period,

C the computation time, and P the phase. If the deadline is equal to the period, then % = ( T, C, P

) is used. If the phase is / , then % = ( T, C ) is used. A periodic task set 3 with 4 periodic tasks is

denoted as 365879% � '�% � '()()&):'�% �<; . For convenience, the deadline of task % � is denoted by = � , the
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period by 1 � , the computation time by > � , and the phase by ? � . For example, task %@5BADCE'�FE'�GE'�0&H
indicates a periodic task with deadline C , period F , computation time G , and phase 0 .

Given a periodic task set, if tasks neither communicate nor access exclusively-shared re-

sources during their executions, then such a task set is called an independent task set.

A harmonic periodic task set satisfies the condition that for each task its period is an exact

multiple of the period of every other task with a shorter period. For example, a task set composed

of four tasks with periods G , I , J , and 0(K is harmonic. But a task set composed of four tasks with

periods G , L , K , and 0(G is not harmonic.

RMA timing analysis is based on a worst case scenario as follows. At time / , the first job of

each task is ready. Such a scenario is called a critical instant [45]. For the RMA critical instant,

periodic tasks are assumed to satisfy the following assumptions:

1. A periodic task has a hard deadline.

2. A periodic task’s computation time cannot be greater than its period.

3. All periodic tasks are independent.

4. The worst case computation time of a periodic task is constant.

In addition, any aperiodic task does not have a hard, critical deadline. Two additional as-

sumptions are as follows in this thesis:

1. A periodic task’s deadline can be greater than its period.

2. Tasks %&� , %�� , )&)() , %�� are listed in decreasing order based on their fixed-priorities, the priority

of task %�� is equal to M . Note, this thesis follows the standard convention that the smaller a

priority in value, the higher the priority.

Based on the assumptions, for task % � 5BAD= � , 1 � , > � , /NH , + �-, . is ready at time 1 �(O * with period1 � , computation time > � , phase / , and deadline = � . Given task % � , if FPPT is used, then its regular

priority and preemption threshold are denoted by a pair of numbers ADP � ':� � H , where P � stands for

the regular priority and � � for the preemption threshold. By default, P � 58M . For a task set with4 periodic tasks, the regular priority assignment is denoted as PQ5R79P � , P � , )()&) , P �E; and the

preemption threshold assignment is denoted as �S5T7(� � , � � , )()&) , � �E; . The assumption that each

task has a unique regular priority is reasonable. Given a task set with predefined regular priority,
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if two tasks have the same regular priority. The situation can be dealt with as follows. The tasks

can be sorted in increasing order based on their importance breaking ties arbitrary. Based on the

sorted result, a unique regular priority is assigned to each task. Thus, if two tasks have the same

regular priority, it is easy to reassign a unique regular priorities to them.

Based on the definition of preemption threshold, the preemption threshold ��� of task %�� is

between M and 0 inclusively. When a task set is schedulable by FPPT, there may exist multiple

valid assignments. Among a group of valid assignments for a task set, if the preemption threshold

of each task is minimal, such an assignment is called minimal; if the preemption threshold of each

task is maximal, such an assignment is called maximal. The minimal and maximal assignments

are formally defined in Section 3.5.2.

As mentioned, this thesis does not consider multiprocessor architectures, only uniprocessor

architecture is considered. At the same time, sporadic tasks are not considered and only periodic

and aperiodic tasks are considered. Extra assumptions are introduced in each section if necessary.

1.4 Objective and Contributions

The field of real-time scheduling is a mature research area, with many contributions over the

past 30+ years covering theoretical and practical developments. This thesis dovetails with this

large body of work by providing incremental advancements in two existing, commonly used

algorithms, and demonstrates these advancements with other existing approaches through a newly

developed real-time scheduling tool-kit. This work targets two of the most important problems in

real-time scheduling:

1. How to effectively schedule a set of periodic real-time tasks on a uniprocessor computer

(with some thought towards multiprocessor scheduling).

2. How to effectively schedule aperiodic real-time tasks among the periodic tasks to take

advantage of any unused execution-time.

These two problems are core issues in real-time scheduling, and hence, this work contributes

to both the fundamental theoretical and practical development of the field.

Specifically, this thesis takes the existing FPPT scheduler for scheduling periodic tasks and

bandwidth reservation algorithm for scheduling aperiodic tasks, and extends each with new theo-

retical and practical developments. As well, a new real-time scheduling tool-kit was developed to
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verify these new algorithmic approaches in a quick and precise manner, and to provide a mecha-

nism to compare and contrast the new algorithms with other approaches. The results are a broader

understanding of the two existing approaches, and a better implementation for scheduling real-

time task sets. The deficiencies and/or problems of the existing research work in these three areas

are explained.

1. FPPT

Wang and Saksena present a schedulability test for FPPT [74] when the regular priority

of each periodic task is predefined. They present an effective algorithm to compute the

minimal assignment by starting from FPP, one of the boundary cases of FPPT; in addition,

they present an effective algorithm [60] to compute the maximal assignment by starting

from a valid assignment such as the minimal assignment.

However, the original schedulability test for FPPT is incorrect [59]. In addition, when a

task set is schedulable by FPPT, there may exist multiple valid preemption threshold assign-

ments. A mechanism to generate additional valid preemption threshold assignments is not

discussed. Furthermore, the relationship among valid preemption threshold assignments

is not considered such as all valid assignments are delimited by a minimal and maximal

assignment. Finally, computing the minimal and maximal assignments by starting from

FPNP, the other boundary case of FPPT, is not discussed.

2. RBA

RBA is one of the bandwidth reservation algorithms, in which a periodic task acts as a

periodic server to service aperiodic tasks. When RMA is used to guarantee the deadlines

of periodic tasks, Kang and Yi-Chieh [63] present an algorithm to calculate the reservation

size.

However, the algorithm is complicated and its correctness is suspect. In addition, the algo-

rithm does not consider the maximal reservation bandwidth when other schedulers such as

EDF and FPPT are used to guarantee the deadlines of periodic tasks.

3. tool-kit

Though many real-time scheduling tool-kits are available, there is none that can satisfy the

requirements to generate all of the examples or counter examples required by this thesis.

One tool-kit is required to integrate different parts from different tool-kits.

Another reason to develop such a tool-kit is to verify the correctness of the ideas that are

guessed by the author during the research work. For example, when considering a sample
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task set based on an even perfect number, generating the Gantt-chart of such a task set step

by step in its first critical instant is required.

The research work of this thesis is based on the above problems and observations. The con-

tributions of this thesis are as follows.

1. Prove that FPPT is robust under its critical instant (robustness is discussed in Section 2.1.2);

provide theoretical support for the mechanism to generate more valid preemption thresh-

old assignments when a task set is schedulable by FPPT; prove that all valid assignments

for a task set are delimited by the minimal and maximal assignments; present algorithms

to compute the minimal (maximal) assignment by starting from the maximal (minimal) as-

signment; present algorithms to compute the minimal and maximal assignments by starting

from FPNP; and present the relationships among all algorithms to compute maximal and

minimal preemption threshold assignments from both boundary cases of FPPT – FPNP

and FPP. The research work in this thesis shows that the maximal threshold assignment can

be calculated from either boundary case with equivalent complexity and the minimal and

maximal threshold assignments can be calculated if the other is known.

2. Provide theoretical support for a new algorithm to calculate the maximal bandwidth re-

served in RBA with RMA and EDF to guarantee the deadlines of periodic tasks, which is

simpler and more effective than the known algorithm. When RBA is combined with FPPT,

it can obtain a better reservation size than RMA but avoid the high run-time cost of EDF.

3. The creation of a small real-time scheduling tool-kit with a graphical interface to verify

the research results for this thesis. The research work of this thesis does not focus on the

tool-kit. Instead, the tool-kit is only a by-product of the research work. Though the tool-kit

is ad hoc, full of personal tastes and preferences, it does contain some novel features that

may be of interest in a larger commercial scheduling tool-kit.

1.5 Thesis Organization

Related work is presented in Chapter 2. In Chapter 3, FPPT is proved robust under its critical

instant; a mechanism to generate additional valid preemption threshold assignments is presented;

all valid assignments for a task set are delimited by the minimal and maximal assignments, which
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is specified by a necessary condition; the algorithm to calculate the minimal and maximal as-

signments by starting from FPNP are presented and proved that they can be used to perform a

schedulability test, too. In Chapter 4, a theoretical support is proved to compute the maximal

reservation size when RMA is used in RBA. When RBA is combined with FPPT, an algorithm to

search for the maximal assignment under which the maximal reservation size can be calculated

is presented. In Chapter 5, a small real-time scheduling tool-kit to verify the research work in the

thesis is discussed. Conclusion and further research work are discussed in Chapter 6.
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Chapter 2

Related Work

Within the large corpus of literature on real-time scheduling, this chapter focuses on that material

necessary to understand the subsequent new material presented in Chapters 3, 4, and 5.

2.1 Rate Monotonic Algorithm

Liu and Layland [45] formally proposed RMA to schedule real-time periodic tasks in a unipro-

cessor environment based on the RMA critical instant. Given a task set, the priority of a task is

inversely proportional to its period under RMA. Alternatively speaking, the longer the period of

a task, the lower the priority of the task.

Given a periodic task set 3B5R79%��U5VA-1��W':>X�YH[ZX0]\^M_\`4 ; , 1a�b\c1��d\e)&)()�\f1�� , its

processor utilization g is defined by Formula 2.1 [45].gh5 �i �kjl� > �1�� (2.1)

The Liu and Layland’s schedulability test calculates an expected processor utilization gamnAo4pH
with Formula 2.2 [45], where 4 is the number of tasks.gqmNAD4�Hr5s4rADGrtu@v 0(H (2.2)

When 4]wyxz'�g m Ao4pH{wV/E)�KN| . Given a task set of 4 tasks, if g m Ao4pH�}~g , then it is schedulable

by RMA. This schedulability test is sufficient with time efficiency ��AD4�H , but pessimistic. When a
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task set does not satisfy the condition or it fails this schedulability test, it may still be schedulable

by RMA. For example, periodic tasks % � 5 ADLN/E'�|NH , % � 5 ADFN/E'&0(FNH , and % � 5 ADCN/E'&0�I�H fail

this RMA schedulability test because g m ADLNH��^/E)�CNJ and g^5`/E)�J . But in fact, these tasks are

schedulable by RMA based on other sufficient and necessary schedulability tests.

Since Liu and Layland proposed RMA, many other approaches have been proposed to im-

prove the performance of RMA and/or extend RMA from a uniprocessor to a multiprocessor

environment [41, 8, 15, 33, 70, 19, 23, 13, 29, 28, 38, 56]. In uniprocessor environments, the fol-

lowing three approaches have been used to improve the performance of RMA based on improving

the schedulability test and/or converting a task set into another task set under which a schedula-

bility test is potentially easier to solve. As most real-time scheduling problems are NP-Complete,

no polynomial algorithm is currently known for RMA. The cost for the current necessary and

sufficient RMA schedulability tests are pseudo-polynomial.

1. improve schedulability test

(a) sufficient and necessary schedulability test

The Liu and Layland’s schedulability test is only sufficient, the first sufficient and

necessary schedulability test for RMA was proposed by Lehoczky et al [41], which

is rephrased in detail in Section 2.1.1.

Audsley et al [8] proposed a sufficient and necessary schedulability test based on

the response time, denoted as ��� , of each job in the first critical instant. Hence, the

response time of +��-, � is checked for 0�\�M�\�4 . A task set is schedulable by RMA

if and only if ���
\^1�� for 0�\`M�\^4 . This approach is also explained in detail

in [15]. Furthermore, this research work is based on Joseph and Pandya’s research

work in [33].

Tjandrasa et al [70] proposed another sufficient and necessary schedulability test

based on the exact amount of execution time, denoted as ��� , required by those jobs

of tasks %&�('�%��&'()&)()W'�%�� ready over ��/E':1���� for 0
\�MX\�4 . A task set is schedulable by

RMA if and only if �X�r\�1�� for 0U\�M�\64 .

The time efficiency of these approaches is pseudo-polynomial. Up to now, there is

no RMA schedulability test that is sufficient and necessary with polynomial time

efficiency.

(b) increase the threshold, i.e., moving the processor utilization from /E)�KN| to 0
The threshold in the Liu and Layland’s schedulability test is too low as it is only
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/E)�KN| . If the threshold can be increased, then the range of task sets that do not fail

the corresponding RMA schedulability test is expanded. Thus, many task sets may

still be schedulable by RMA if they fail the Liu and Layland’s schedulability test.

Research work along this line has been done [19, 23, 13]. Like the Liu and Layland’s

schedulability test, these schedulability tests are only sufficient and the time efficiency

is pseudo-polynomial.

2. convert task set

A task set can be converted into another task set under which a schedulability test is easier

to perform. One approach is based on the harmonic task set, which is schedulable if and

only if its processor utilization is not greater than 0 [72]. Therefore, if a task set can be

converted into a schedulable harmonic task set, then the original task set is schedulable.

Research work [29, 28] along this line has been done. Though its time efficiency is poly-

nomial, this approach may fail. First, a successful conversion may be unavailable. Second,

the conversion may change the schedulability of the original task set as a converted task set

may be unschedulable but the original task set is schedulable by RMA.

3. try both approaches

Lauzac et al [38] proposed a combined approach to improve RMA scheduling. First, a

given task set is converted into a new task set such that if the original task set is schedula-

ble, then the converted task set is also schedulable. Then an improved schedulability test

works on the converted task set. Park et al [56] considered supporting tasks with unfixed

computation time. In Park’s research work, a minimum and maximum computation time

for a task set are given. Then a better schedulability test works on the task set. However,

the time efficiency for both approaches is pseudo-polynomial.

As RMA priority assignment can be used to assign the regular priorities for a task set in FPPT

and is used in a known RBA to compute the maximal reserved bandwidth, a simple introduction

to one of its sufficient and necessary schedulability tests can help understanding FPPT and RBA.

2.1.1 Sufficient and Necessary RMA Schedulability Test

Lehoczky et al [41] first proposed a sufficient and necessary schedulability test for RMA based

on the RMA critical instant. This schedulability test calculates an expected processor utilization
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with Formula 2.8, which depends on Formulae 2.3, 2.4, 2.5, 2.6, and 2.7. All of these formulae

are presented by Lehoczky et al [41].� �:A-��Hr5 �i .�jl� >�.��q�o����1�.�� (2.3)� � A-�WH�5 � � A-�WH:��� (2.4)� ��5 ���Y�  ��¡E¢D£E¤9¥Y¦ � ��A§��H (2.5)3 � 5~79¨���1 .n© *�5�0N'()&)():'�M:ª�¨U5�0N'()&)():'�«-1 � ��1 .�¬�; (2.6)� �­5 ���Y�  ¢D®N¯(¥�¦ � �:A-��H (2.7)� 5 �
°n±  �:£E�-£E�9¦ � � (2.8)

where

� �:A-�WH gives the cumulative amount of processor time required by those tasks ready over��/<':�D� . � ��A-�WH is the average processor utilization of those tasks ready over ��/<':�D� . Formula 2.5 calcu-

lates the minimal value on the continuous range Ao/E':1���� . The numbers defined in Formula 2.6 are

called check points. Formula 2.7 calculates the same minimal value on discrete values, i.e., check

points, over AD/<':1���� . Formulae 2.6 and 2.7 simplify the calculation of
�

. A task set is schedulable

by RMA if and only if
� \B0 . This observation is formally presented in the following theorem

named Theorem ERMA2 1:

Theorem ERMA2 [41]2: Given periodic tasks %&�('&)()&):'�%�� ,
1. %�� can be scheduled for all task phasings using RMA if and only if

� �q\s0 .
2. The entire task set can be scheduled for all task phasings using RMA if and only if

� \s0 .
2.1.2 RMA Robustness

Mok [51] defines the terms PFP (Preemptive Fixed-Priority) and NPFP (Non-Preemptive Fixed-

Priority), which correspond to FPP and FPNP, respectively. Mok focuses on the robustness of

1“ERMA” indicates the Exact version of Rate Monotonic scheduling Algorithm. Theorem ERMA2 corresponds
to Theorem 2 in [41], which is the second version of the same theorem. That is why 2 appears in the name of the
theorem.

2The index of the first job is ² in this research work. A minor change in format is made.
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RMA priority assignment for FPP and FPNP. That is, given a task set schedulable by a fixed-

priority assignment, if the computation time of a task is reduced and the fixed-priority assignment

still preserves the schedulability, then the fixed-priority assignment is robust. Mok proves that

the RMA priority assignment for FPP is robust but it is not robust for FPNP based on the RMA

critical instant. For example, given three periodic tasks % � 5BADLE'&0(H , % � 5BADKE'&0(H , and % � 5BAW0&GE':I�H ,
they are schedulable by RMA priority assignment for FPP and FPNP based on the RMA critical

instant. If the computation time of the second task is reduced to 0 , the task set is still schedulable

by RMA priority assignment for FPP, but is unschedulable by RMA assignment for FPNP based

on the RMA critical instant. The details are as follows. + �:, � starts to execute at time / and finishes

at time 0 , followed by + ��, � that starts to execute at time 0 and finishes at time G . After + ��, � finishes,+ ��, � starts to execute. Due to non-preemption, + ��, � continues to execute until it finishes at timeK though + �:,³� is ready at time L with a higher priority than + ��, � . + �:,³� can only start to execute at

time K , which is its deadline. Thus, + �:,³� misses its deadline and the task set is unschedulable.

The robustness of RMA indicates that if a task set is schedulable by RMA, then any subset of

the task set is schedulable by RMA. The reason is as follows. As RMA is robust, when a task set

is schedulable by RMA, decreasing the computation of any task cannot change the schedulability

of the task set. When the computation time of a task is decreased to / , resulting in that the task is

removed from a task set, the remaining tasks are still schedulable by RMA as it is robust.

The robustness of RMA indicates that its schedulability test can be performed incrementally.

Given periodic tasks % � 5`A-1 � '´> � H for 0µ\~M�\�4 and 1 � \¶1 � \·)()()�\¶1 � , the schedulability

test can be performed on % � , % � , )&)() , % � for 0�\�Mr\�4 . If tasks % � , % � , )()() , % � are unschedulable by

RMA for 0
\~MX\s4 , then the whole task set is unschedulable and further schedulability testing

is unnecessary. Otherwise, the schedulability test can be performed on % � , % � , )&)() , % � , % �Y¸l� until

either the whole task set is schedulable or % � , % � , )&)() , % � , % �Y¸l� are unschedulable. The latter case

indicates that the whole task set is unschedulable.

2.2 Fixed-Priority with Preemption Threshold

FPPT was first introduced by Express Logic in the ThreadX real-time operating system [37].

Preemption threshold allows a task to only prevent preemption of tasks up to a specified threshold

priority. For example, during the execution of a task, if a ready task has a regular priority higher

than the preemption threshold of the running task, then the former can still preempt the execution

of the running task; otherwise, it cannot. When the preemption threshold of each task is equal to
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its regular priority in a task set, then FPPT degrades to FPP. When all preemption thresholds are

the same as the highest regular priority in a task set, then FPPT degrades to FPNP. RMA may be

applied to assign the regular priorities for a task set. Unlike RMA, FPPT allows a task to prohibit

some preemptions by assigning an appropriate preemption threshold to the task.

2.2.1 Background

The following is work that moves out of general preemption scheduling (FPP) to non-preemption

(FPNP) and then restricted preemption (FPPT). When preemption is required, it should be lim-

ited [31]. For example, the number of preemptions is minimized, to reduce its cost.

Kweon and Shin [36] guarantee an end-to-end delay by applying a non-preemptive rate-

monotonic priority scheduling policy at each network switch on the path in a real-time communi-

cation system. However, they did not consider its strict timing analysis. Parks and Lee [57] pro-

pose a dynamic, real-time execution model inspired by multi-threaded data-flow architectures by

applying non-preemptive RMA. However, the timing analysis is pessimistic. Bate and Burns [12]

extend the schedulability analysis of FPP in real-time systems to the FPNP environment.

Fixed-priority with mutual-preemption task groups [22] is used to partition a task set into

several subsets. Within a task subset, each task cannot preempt any other task in the same group so

the tasks in the same subset can share one execution stack and resources. This issue is significant

when the amount of memory in a microprocessor is small such as 512k bytes, and the speed

of the processor is slow. Each task has two priorities, called base priority and dispatch priority

respectively, where the latter is equal to the highest base priority in the same subset. The base

priority can be assigned using RMA or the deadline monotonic algorithm (DMA) [43, 7, 10]. All

tasks in the same subset share the same dispatch priority. When a task starts to run for the first

time, its running priority is set to its dispatch priority. Only a task from another subset, whose base

priority is higher than the dispatch priority of the current running task, can preempt the execution

of the latter. The number of subsets is called the number of preemption levels. The algorithm to

find the minimal number of preemption levels is complicated. A resource management protocol

is still required due to preemption. The schedulability test is also based on a critical instant that is

different from the RMA critical instant. The purpose of the research work in [22] is to reduce the

number of execution stacks and the number of preemptions so as to save memory and processor

time.

The idea of the schedulability test for FPPT in [74] is correct. However, the actual schedu-
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lability test is incorrect [59] as it violates one condition of level-i busy period [39] (discussed

formally in Section 2.2.2). The preemption threshold assignment algorithm [74] only finds the

minimal valid preemption threshold assignment and the algorithm [60] computes the maximal

preemption threshold assignment. However, the algorithm to compute the maximal preemption

threshold assignment starts from a valid assignment.

2.2.2 FPP Timing Analysis

As the timing analysis for FPNP [57, 12] and FPPT [74] is based on the idea for the timing

analysis of FPP [39], rephrasing the research result of the latter can be helpful to understand the

former. FPP assumes at time / , the first critical instant occurs, implying that all tasks are ready at

time / . For example, RMA critical instant follows this assumption.

Lehoczky [39]3 introduces the concept of a level-i busy period when scheduling periodic tasks

with arbitrary deadlines and a fixed-priority scheduling algorithm. A level-i busy period is a time

interval ��¹�'�º´� within which jobs of priority M or higher are processed throughout ��¹�'�º´� but no jobs

of priority M or higher are processed in AD¹ v¼» '�¹�H or ADº�'�ºa½ » H for sufficiently small »�¾ / . Note,

during a level-i busy period, no job with priority lower than M can execute, which indicates jobs

with priority lower than M can only start to execute at the end of a level-i busy period or before the

beginning of a level-i busy period if required. Suppose ��¹�'�º´� is a level-i busy period, at time º ,
all jobs with priorities equal to or greater than M ready before º must have finished. Furthermore,

there should be no jobs with priorities equal to or greater than M ready at time º . Consider a level-i

busy period ��/E'�º´� starting from the first critical instant, two conditions must be satisfied.

1. Within ��/<'�º´� , no task with priority lower than %�� can execute.

2. At time º , all tasks with priorities equal to or greater than %�� have finished their executions.

Given periodic tasks %&� , %�� , )()&) , %�� with arbitrary deadlines, they are schedulable by FPP if

and only if [39]4 �
°�±�:£E�X£E� �
°�±�´£À¿&£EÁqÂ
� ��AD¨�'9AD¨ v 0&HW1��Ã½�=Ä�ÅHX\s0 (2.9)

3In [39], there is an error in Example 3. The level-2 busy period should be Æ Ç(ÈDÉ�Ê�Ë´Ì instead of Æ Ç&ÈDÉ�Ê�É´Ì .
4The index of the first job is ² in this research work.
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where

� �ÍAD¨�'�Î�Hq5¶���Y�¢D£E�UÏ�Ï �XÐ��i.�jl� >�. � �1�. � ½�¨�>X�XÑ����ÒÑ (2.10)

and Ó � 5·Ô�MÕ4l79¨ © � � AD¨�'�¨�1 � HÖ\·0 ; . In

� � AD¨�'9Ao¨ v 0&HW1 � ½z= � H , Ô and ¨ stand for + �X, ¿ ,
the ¨ th job of task % � and AD¨ v 0(HW1 � ½s= � the deadline of + �X, ¿ . If task % � is schedulable,

then there exists a time � that is equal to the required computation time for the first ¨ jobs of

task % � and all jobs ready over ��/E'´�D� with priorities higher than % � and �Ö\cAD¨ v 0(HW1 � ½h= � .

� � AD¨�'�Î�H calculates the minimum processor utilization over ��/<'�Î�� based on such a � for a givenÔ , ¨ , and Î .

� � AD¨�'9Ao¨ v 0(HW1 � ½h= � HÖ\·0 guarantees that + �X, × cannot miss its deadline and

� � AD¨�'�¨�1 � H_\Ø0 guarantees the length of the first level-m busy period is reached, no further

checking is required. In other words, given tasks % � , % � , )()() , % � , the Lehoczky’s schedulability

test checks all jobs of these tasks within the first level-m busy period starting from time / . If any

job misses its deadline, then the task set is unschedulable. Otherwise, the task set is schedulable.

Correspondingly, on the left hand side of Formula 2.9, the inner maximization guarantees that the

worst case response time of task % � is not greater than its deadline and the outer maximization

guarantees that the worst case response time of each task is not greater than its deadline.

Lehoczky also proves that the longest response time for a job of task % � occurs during a level-i

busy period initiated at the critical instant, Ù � = )()&) = Ù � = / , where Ù � is the phase of task % � (see

Theorem 0 in[39]).

Tindell [69] rephrases the Lehoczky’s schedulability test. The research work in [69] definesÚ �-, × as the finishing time of + �-, × , and Û � as the worst case response time of task % � . Then5Ú �Ü, ×�5BADÝ�½z0(HW>��À½ �-Ðp�i.�jl� � Ú �-, ×1�. ��>�. (2.11)Û���5 �
°n±×:j��Þ,³�:, ��,³ß³ß³ß A Ú �Ü, × v Ý&1��ÜH (2.12)

The above iteration over increasing values of Ý can stop if Ú �-, ×�\yADÝ�½·0(HW1�� . A task set is

schedulable by FPP if and only if Û���\e=Ä� , 0�\àM�\à4 . Both timing analyses for FPP are

sufficient and necessary.

5The index of the first job is Ç in this research work.
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2.2.3 Applying Level-i Busy Period in FPNP

George, Rivierre, and Spuri [26] established the computation of the worst case response time of

tasks in the context of FPNP. Given tasks %&� , %�� , )&)() , %�� , which are listed in decreasing order by

their fixed priorities, the worst case response time of any task %�� is calculated by6� ��5á�
°�±.�®9� â�ãä�Yå 7(>�. v 0 ; ½ i.�®9æ:ânãä�Yå-ç   �Y¦ � � �1 . ��>�.() (2.13)Ú �-, ×�5sÝ&>X��½ i.�®9æ:ânãä�Yå Ï 0�½cè Ú �-, ×1�.Äé Ñ >�.ê½ë�@°�±¿&®9� â�ã��kå 7(>X¿ v 0 ; ' (2.14)Û���5 �
°�±×:j���,³�:,³ß³ß³ß ,Yì�íE¥äî�¤9¥�ï 7 Ú �Ü, ×a½�>X� v Ý&1p� ; (2.15)ðòñ ADMÕH and ó ñ ADMÕH are index sets of tasks with priorities higher and lower than task % � , respectively.� � is the length of the level-i busy period. Ú �-, × is the time when + �-, × starts to execute. Equa-

tion 2.13 computes the length of the level-i busy period, equation 2.14 the starting time of + �-, × ,
and equation 2.15 the worst case response time of task % � . The worst case response time is based

on the assumption that the clock resolution is 0 and it occurs when a task (if any) % . , *]ô�ó ñ ADMÒH
with longest computation time just starts to execute before the critical instant. Then task % � can

be blocked by % . with > . v 0 , which corresponds to the first item in equation 2.13. In practice,

this minus one only makes sense when the parameters for a task are based on the clock tick. The

second item in equation 2.13 corresponds to the amount of time executed by those tasks with

priorities equal to or higher than % � . George et al [26] claim their schedulability test is sufficient

and necessary.

2.2.4 Applying Level-i Busy Period in FPPT

In FPP, when a task enters a system, it must wait if a task with a higher priority is running. During

the execution of a task, if another task with a higher priority becomes ready, the running task must

be preempted and wait until all other tasks with higher priorities finish. For convenience, this kind

of waiting is called interference from tasks with higher priorities.

In FPPT, the kind of waiting for a task is also called interference from other tasks with regular

priorities higher than the preemption threshold of the task. For a task % � in FPPT, in addition to

6The index of the first job is Ç in this research work.
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the interference caused by other tasks with regular priorities higher than � � , % � may wait when

another task % . with a lower regular priority is running. For example, when task % � is ready, task% . with a lower regular priority is running and % � must wait. This delay occurs because the running

task % . cannot be preempted by task % � due to P �Xõ P . but P � }~� . , so % � must wait. This kind

of waiting is called blocking time from a task with a lower regular priority and task % � is called

being blocked by task % . . Wang and Saksena [74] apply the level-i busy period to calculate the

worst case response time in FPPT. However, their schedulability test is incorrect [59] as it may

not consider all jobs in the first level-i busy period. The reason why all jobs must be checked is

the first job of a task in the first level-i busy period may not get the worst case response time for

the task. The corrected schedulability test was presented by Regehr [59]. The formulae in [59]

are rephrased7 or simplified, because Regehr’s research work considers release jitter [67], which

is not covered in this thesis. ö ã�÷�¥�å 5 �@°�±.�øE�Ü, ù´úû£Eü(¥o¡Eü�ú > . (2.16)� ��5 ö ãä÷W¥�å ½ iý .�, ü�ú:£Eü(¥ � � �1 . � >�. (2.17)3��-, ×þ5 ö ã�÷�¥�å ½�ÝU��>X�À½ iý .�, ü�ú�¡Eü(¥ Ï 0r½ è 3��-, ×1 . é Ñ ��>�. (2.18)ÿ �-, ×þ5s3��-, ×r½�>X��½ iý .W, ü�ú:¡�ùû¥ Ï � ÿ �Ü, ×1 . � v Ï 0r½^è 3��-, ×1 . é ÑlÑ �Þ>�. (2.19)� � 5 �
°�±×:j���,³�:,³ß³ß³ß ,Yì�íÀ¥Yî�¤9¥ ï A ÿ �-, × v Ý&1 � H (2.20)

Formula 2.16 computes the maximal blocking time for a task from any other task with a lower

regular priority. If a task cannot be blocked by another task with a lower regular priority, then its

maximal blocking time is 0. Note, the blocking time from a task with a lower regular priority was

originally introduced in the priority inheritance protocol. In other words, Formula 2.16 is derived

from [62].

Formula 2.17 computes the length of the first level-i busy period. The initial value for the

recursive calculation is

ö ãä÷W¥Yå ½ �ý .W, ü�ú:£Àü(¥ >�. no matter whether

ö ã�÷�¥�å is equal to or greater than / .
7Rephrasing follows the standard convention that the larger a numeric value, the lower its priority.
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If the iterative computation converges,
� � converges to a stable value. If the iterative computation

diverges, and
� � increases, then the calculation can stop when

� � ¾ 1 �
2 , which indicates the task

set is unschedulable.

Formula 2.18 computes the starting time of +��Ü, × . Before +��Ü, × can start to run, all jobs of %&� , %�� ,)&)() , %��-Ð�� ready over ��/<'�3��-, ×Ò� must finish before 3��-, × , so do the first Ý jobs of %�� in addition to the

blocking task with a lower regular priority. The initial value for 3��-, × is Ýa�D>X��½ �ý .W, ü�ú:¡Àü(¥ >�.E½
ö ãä÷W¥äå .

Formula 2.19 computes the finishing time of +��-, × . After +��-, × starts to execute, its running

priority is upgraded to its preemption threshold, and %�� can only be preempted by any task %�æ
ready over AD3��-, ×�' ÿ �Ü, ×�H where P<æ õ ��� . Hence,

ÿ �Ü, × is equal to its starting time plus its computation

time and all the computation times of those tasks having regular priorities higher than ��� with jobs

ready over AD3��-, ×(' ÿ �-, ×�H . At time 3­�Ü, × , no job of task %´. with P�. õ ��� is ready, hence the number of

jobs of task %´. ready before 3��-, × is equal to � ¯(¥�� �¤Þú�� . The initial value for
ÿ �Ü, × is 3��-, ×q½ >X� .

Formula 2.20 computes the worst case response time of %�� . As the response time of +��-, × is

equal to
ÿ �Ü, × v Ý&1�� , then the worst case response time of %�� can be calculated.

For all tasks % � , 0d\cM
\c4 , if � � \c= � , then the task set is schedulable by FPPT; other-

wise, the task set is unschedulable. In [74], Wang and Saksena present an algorithm to assign

preemption thresholds based on the computation of worst case response time.

The reason why all jobs of a task in the first level-i busy period must be checked to compute

the worst case response time of the task is that in the first level-i busy period, based on the FPPT

critical instant, there may be multiple jobs for each task and the first job of each task may not

get the longest response time. Example 3 in [39] presents such a scenario for FPP (pay attention

to the footnotes on page 20), one boundary case of FPPT. When performing a schedulability test

on tasks %&�X5cADCN/E'�CN/E'�GòKNH and %��Å5cA�0(GN/E'&0(/N/E'�KNG�H with RMA, a kind of FPP, the response time

of +E��, � is 0N0�I but the response time of +E�û, � is 0N0&J , which shows that task %�� gets worse response

time at +E��, � than at +E��, � . This example shows that the first job of a task in the first level-2 busy

period does not get the longest response time. As FPPT is also based on the level-i busy period to

compute the worst case response time of each task, it must also check all jobs of a task in the first

level-i busy period. Similarly, FPNP, the other boundary case of FPPT, must perform the same

check.

The related research work on FPPT can be summarized by Figure 2.1. The research work

in [39] introduced the idea of level-i busy period based on the RMA critical instant, which is

rephrased by the research work in [69]. The research work in [37] introduces the idea of pre-
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Correct FPPT Schedulability Test [59]

Applying level-i busy period [74]Applying level-i busy period [26]

Rephrase level-i busy period [69] Preemption Threshold [37]

Level-i busy period [39]

Figure 2.1: Current Research Results

emption threshold. The research work in [26] applied the level-i busy period for FPNP based

on a critical instant different from the RMA critical instant and modified one condition of the

level-i busy period. In the research work [26], at most one job with a regular priority lower than% � can execute within a level-i busy period. The corresponding schedulability test is sufficient

and necessary. The research work in [74] applied the idea of the level-i busy period and pre-

emption threshold based on a critical instant similar to [26]. However, its schedulability test is

incorrect. The research work in [59] presented a correct schedulability test when the release jitter

is also considered, which can be simplified to a correct schedulability test without considering

the release jitter.

2.2.5 Cost of Context Switch

In practice, the cost of a context switch for independent periodic tasks is not negligible as a context

switch requires extra processor time and memory requirement. Thus, a real-time scheduling

algorithm must deal with the effect introduced by context switches. There is a simple rule of

thumb [18, 34] to deal with the cost of context switches for periodic tasks. Suppose the cost of a

context switch in a system is >
	 , then each periodic task is affected by extra time equal to G�>
	 .
Thus, the effect of context switches on a periodic task can be included in a schedulability test by

increasing the computation time of each periodic task by an amount G�>
	 .
25



2.3 Scheduling Aperiodic Tasks

Scheduling both periodic tasks and aperiodic tasks can be very important in a real-time system.

While periodic tasks have fixed arrival times and hard deadlines, aperiodic tasks have random

arrival times and soft deadlines usually. A scheduling algorithm for both types of tasks must

guarantee the deadlines of the periodic tasks and should shorten the response time of aperiodic

tasks. In general, such a scheduler is based on a well-known algorithm for scheduling periodic

tasks such as RMA, EDF, and FPPT to guarantee the deadlines of periodic tasks. The unused time

left by periodic tasks is used to schedule aperiodic tasks and attempts are made to use this fixed

time resource to shorten the response time of aperiodic tasks. Background server, polling server,

bandwidth reservation algorithm [46], and slack stealing algorithm [40] are typical approaches

that use the unused time left by periodic tasks to schedule aperiodic tasks. The first three ap-

proaches use RMA and the last approach uses EDF to guarantee the deadlines of the periodic

tasks. Each of the typical approaches for scheduling aperiodic tasks is outlined as follows.

A background server services aperiodic tasks whenever the processor is not used by periodic

tasks. That is, should a job finish early or there is no job to dispatch at this time, an aperiodic

task is dispatched until the next periodic job must be scheduled. There is no change to the

periodic task set nor the corresponding scheduling algorithm for the periodic tasks. However,

when the workload of periodic tasks is heavy, an aperiodic task may encounter a long delay before

starting execution and it may be interrupted frequently by periodic tasks during its execution, so

its response time may be long.

A polling server is a periodic task scheduled to service aperiodic tasks. The scheduling al-

gorithm of the periodic tasks performs the schedulability test on all periodic tasks including the

polling server, i.e., the polling server extends the periodic task set to access the unused time, and

hence, a polling server can only be as effective as the underlying periodic scheduler to access the

unused time. Furthermore, it cannot take advantage of unused time resulting from a job finishing

early because the schedulability test requires a fixed computation time. The processor time as-

signed to the polling server can then be used to service aperiodic tasks. Typically, a polling server

is assigned the highest priority by a priority-based scheduler. For example, the period of a polling

server is the shortest if RMA is used to schedule periodic tasks. At the beginning of execution of

each instance of a polling server, it checks the aperiodic task queue. If the aperiodic task queue is

empty, it stops immediately and it is not made ready to execute and does not check the aperiodic

task queue again until its next period. Thus, aperiodic tasks arriving during the middle of one job

of the polling server cannot start to execute until the next job of the polling server. If the aperiodic
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task queue is not empty, the polling server uses its computation time to service aperiodic tasks

until it consumes all of its computation time or all ready aperiodic tasks finish. The weak point

of a polling server is that an aperiodic task may have to wait for almost one period of the polling

server if it enters the system immediately after the beginning of the execution of one instance of

the polling server.

A bandwidth reservation algorithm also creates a periodic task, called periodic server, to

service aperiodic tasks. Like a polling server, it extends the periodic task set, so the underlying

periodic scheduler must include it in the schedulability test. The computation time of the periodic

task is called the bandwidth to be reserved. Typically, the periodic server has the shortest period.

Thus, it has the highest priority based on RMA. At the beginning of execution of each instance

of the periodic server, it checks the aperiodic task queue. If the aperiodic task queue is empty, it

suspends immediately and tries to keep its computation time as long as possible in each period.

For example, other ready periodic tasks may start to execute earlier and the computation time of

the periodic server is postponed. However, the computation time of the periodic server cannot be

accumulated for the next period, and hence, the available computation time of a periodic server

decreases to / at the end of its period. If the aperiodic task queue is not empty, the periodic server

uses its computation time to service aperiodic tasks until it consumes all of its computation time or

all ready aperiodic tasks finish. If an aperiodic task enters the system in the middle of one instance

of the periodic server, it can start to execute if the computation time of the periodic server is still

available. If there is still part of its computation time available after all aperiodic tasks finish, the

periodic server still tries to keep its remaining computation time as long as possible. Therefore,

it improves the response time of aperiodic task execution by preserving its computation time as

late as possible within its period so that an aperiodic task entering the system in the middle of one

instance of the periodic server may start its execution with the computation time left. Deferrable

server [42], sporadic server [64], and RBA [63] are typical bandwidth reservation scheduling

algorithms belonging to this category except that they have different approaches to preserve and

consume the computation time of the periodic server.

A slack stealing algorithm does not create a periodic task to service aperiodic tasks. First,

it uses EDF to perform a schedulability test on the periodic tasks and makes sure all periodic

tasks can meet their deadlines. Second, whenever an aperiodic task is ready, it tries to postpone

the execution of periodic tasks and service the aperiodic task as long as possible without making

any periodic task miss its deadline. Even though the implementation of this dynamic approach is

complicated and the run-time cost is expensive, it is optimal with respect to the response time of
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aperiodic tasks [40].

Figure 2.2 shows the scheduling results of three periodic tasks scheduled by RMA and one

aperiodic task with background server, polling server, and bandwidth reservation algorithms,

respectively. The three periodic tasks are %&��5BADLE'&0(H , %��X5BAoFE'(0(H , and %��X5BAoKE'(0(H . The aperiodic

task arrives at time 0 with computation time 0N)�G . Part (a) is the background server; part (b) is

the polling server with period G and computation time /E)�G ; part (c) is the bandwidth reservation

algorithm with reserved bandwidth /E)�G in each time unit. The aperiodic task starts to execute

at time I and finishes at time J<)�G for the background server; G and 0(G<)�G for the polling server;0 and C for the bandwidth reservation algorithm. Note, some of the periodic task execution has

been subdivided into several pieces due to preemption by RMA. The order of starting time of the

aperiodic task from the earliest to the latest is bandwidth reservation algorithm, polling server, and

background server; the order of finishing time of the aperiodic task from the earliest to the latest

is bandwidth reservation algorithm, background server, and polling server. For polling server and

bandwidth reservation algorithm, there is still unused time that can be used to serviced aperiodic

tasks to further shorten their response times. In part (b), it can be verified that the finishing time

of the aperiodic task is also JE)�G with the addition of a background server. In part (c), the aperiodic

task finishes before any unused time is available, which can be managed by a background server.

Given that the bandwidth reservation algorithm, in general, gives the better response time for

aperiodic tasks, it is selected for further development in this thesis.

2.4 Reservation-Based Algorithm

Among the different approaches for implementing bandwidth reservation algorithm such as de-

ferrable server, sporadic server, and RBA, RBA is one important algorithms to schedule both

periodic and aperiodic tasks [63, 46]. Like other bandwidth reservation algorithms, RBA applies

RMA to schedule periodic tasks and aperiodic tasks are scheduled by utilizing the processor time

unused by periodic tasks. RBA creates a periodic server to service aperiodic tasks. The computa-

tion time of the periodic server is called the reservation size, denoted as � 	 , which is equal to the

bandwidth to be reserved in a bandwidth reservation algorithm. RMA is applied to schedule all

periodic tasks including the periodic server. The key point in RBA is to maximize the reservation

size � while guaranteeing the deadlines of all periodic tasks. In RBA, the expected maximal � 	
is called the least upper bound of � 	 ( � ����� ). Kang and Yi-Chieh [63] presented an algorithm

to calculate � ����� and another algorithm to perform the RMA schedulability test with parameter� 	 and the period of the periodic server is equal to the unit cycle. The schedulability test checks

28



� �

� ����
�

� �

� ����
�

� �

� ����
�

R
es

er
va

tio
n

A
pe

ri
od

ic
Ta

sk
Po

lli
ng

Se
rv

er

�
�
�
�
�
�
�
�
 
!
��
��
��
��
��

�
�
�
�
�
�
�
�
 
!
��
��
��
��
��

�
�
�
�
�
�
�
�
 
!
��
��
��
��
��

(a
)

(b
)

(c
)

1.
0

1.
0

1.
0

0.
8

(a) background server (b) polling server (c) bandwidth reservation

Figure 2.2: Scheduling Periodic and Aperiodic Tasks
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all jobs in the first major cycle, if any job misses its deadline, then the task set is unschedulable;

otherwise, the task set is schedulable. This exhaustive computation of checking all jobs in the

first major cycle is called physical scheduling [43], which is not a good approach. There are

two major weak points in the algorithm [63] to compute � ����� though the idea of the algorithm is

reasonable.

1. The algorithm provides clear steps to compute ������� when the number of periodic tasks

is 2. However, when the number of periodic tasks is greater than 2, the authors did not

provide clear steps to compute ������� . Essentially, the pseudo-code for the algorithm and its

explanation are insufficient to compute ������� .
2. As mentioned by the authors, the ������� derived by the algorithm may not be maximal as

only 4 iterations of computation in one major cycle are used; although they claim this �������
is close to 95% of the maximal value.

Therefore, the usefulness of the algorithm is suspect and a new algorithm is required to com-

pute the maximal � ����� when RMA is used. As RMA is a special case of FPP, which is a special

case of FPPT, the range of schedulable task sets by FPPT is larger than RMA. When RBA is com-

bined with FPPT, it can obtain a not worse reservation size than RMA. Up to now, no research

work has been done in this area.

2.5 Current Status in Real-Time Scheduling Tool-Kits

As an exact mathematical model for a real-time system is very difficult to obtain and analyze,

simulation is often used to help system designers and programmers understanding a real-time

system. A number of real-time scheduling tool-kits have been developed to help real-time system

designers and programmers in verification and testing of task sets and scheduling algorithms.

Martin Naedele [53] presented a survey of real-time scheduling tool-kits. Table 2.1 substantially

extends the survey in Martin Naedele [53] to summarize the current status of real-time scheduling

tool-kits based on the features different tool-kits provide. In the table, an empty entry indicates it

is unknown or not mentioned by the original authors. Among them, DET/SAT/SIM (Det), PERTS

SAT (Perts), and DTRESS/PERTSSim (Dtress) are the most comprehensive.

Most of the tool-kits focus on the performance of the whole system. Some of them also

consider the flexibility of changing components in the system such as schedulers, resource man-

agement protocols, and system architectures. Based on their functionalities, these scheduling
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features " tools Ast Det Perts Dtress Saw After Brux Org Cai Stress 123 GAST

multi-CPU Yes Yes Yes Yes
distributed Yes Yes Yes Yes Yes Yes
periodic task Yes Yes Yes Yes Yes Yes Yes
aperiodic task Yes Yes Yes Yes
sporadic task Yes
PIP Yes No No Yes No Yes
PCP Yes Yes Yes Yes Yes
DCP Yes No No
SRP Yes No No
SBP No Yes Yes
RMA Yes Yes Yes Yes Yes Yes Yes
DMA No Yes Yes Yes Yes
EDF Yes Yes Yes Yes Yes Yes
GRMA Yes No No No
Cyclic Yes No No No
LLFS Yes
SG Yes
Hard RT Yes
Soft RT Yes
output analysis No Yes Yes
Gantt-chart No Yes No Yes Yes
extensibility Yes No Yes Yes Yes
system model p.f. t/r G t/ G
available No No Yes Yes No No No No No
continues No No No No

Ast: Asserts
Det: DET/SAT/SIM
Perts: PERTS SAT
Dtress: DTRESS/PERTSSim
Brux: Tool of the University Libre de Bruxelles
Org: Framework of the Oregon State University
Cai: CAISARTS
123: Scheduler 1-2-3
p.f. : parameter file
t/r G: task/resource Graph
PIP: Priority Inheritance Protocol

PCP: Priority Ceiling Protocol
DCP: Device Control Protocol
SRP: Session Reservation Protocol
SBP: Stack-Based Protocol
GRMA: Generalized RMA
Cyclic: Cyclic Executives
LLFS: Least Laxity First Scheduler
SG: Simulator Generator
Hard RT: Hard Real-Time
Soft RT: Soft Real-Time
continues: continuing development work

Table 2.1: Real-Time Scheduling Tool-Kit Summary
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tool-kits are simulators, some of them are simulation languages, and only a few of them are

frameworks.

1. A simulator is a simulation program that can be used directly by users. However, all func-

tionality is predefined, so it may not meet all requirements of users. For example, users

cannot generate executable code and execute the new code. Jan Jonsson [32] developed

a tool-kit called generic allocation and scheduling Tool (GAST) to classify different types

of scheduling algorithms, compare the performance of different schedulers, and search for

possible scheduling algorithms for a task set with AI techniques to improve the perfor-

mance of multiprocessor schedulers. However, his multiprocessor scheduler does not take

advantage of the multiprocessor system architecture as it still applies a serial algorithm

for the schedulability test. Among the tool-kits in the Table 2.1, DET/SAT/SIM, PERTS

SAT, DTRESS/PERTSSim, AFTER, Brux, CAISARTS, and Scheduler 1-2-3 are simula-

tors. SAW does not provide a simulation function but provides a system analysis function

and system designers can use it interactively to evaluate the designed system. Thus, SAW

can be considered to be a simulator, too.

2. STRESS [9] is a simulation language with support for specifying the system architecture,

properties of task sets, scheduling algorithms, and resource management protocols. On

the one hand, STRESS is a good tool-kit to evaluate scheduling algorithms and resource

management protocols, and even help design new scheduling algorithms. On the other

hand, STRESS makes some unrealistic assumptions about scheduling algorithms, such as

a task starts on each tick of the system clock and the cost of a context switch is zero, which

is impractical. Resources are limited to semaphores in STRESS, eliminating many high-

level concurrency constructs, such as monitors. STRESS does not consider the relationship

among system architectures, properties of task set, scheduling algorithms, and resource

management protocols. Among the tool-kits in Table 2.1, Asserts and Brux also provide

simulation languages.

3. A framework approach considers the extensibility and potential requirements of users. In a

framework, a user can specify a simulation environment, scheduler, resource management

protocols, and task set, etc. Then the frame work generates source code based on the speci-

fication, compiles the code, and runs the executable code with the task set. Matthew Francis

Storch [68] applied the framework approach. His tool-kit also focuses on failure analysis

and hierarchical scheduling. Among the tool-kits in the Table 2.1, Framework of the Ore-
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gon State University is also based on the framework approach, and it was implemented in

C++.
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Chapter 3

Fixed-Priority with Preemption

Threshold

This chapter examines FPPT to schedule independent periodic task sets. First, the FPPT schedu-

lability test is proved robust under its critical instant. Second, the solution space for a task set

schedulable by FPPT is presented, which is delimited by two special preemption threshold as-

signments. Third, effective algorithms to compute those two special assignments are presented.

Finally, the relationship of these algorithms is presented, followed by comparing FPPT with PIP.

The first three items are the major contributions of this chapter. No prior research work has been

done in exploring the mechanism to generate more valid preemption threshold assignments when

a task set is schedulable by FPPT. The reasons to explore the solution space are as follows. First,

multiple valid assignments for a task set schedulable by FPPT may be available, providing a real-

time system designer with additional flexibility for scheduling periodic tasks, potentially allowing

secondary requirements to be satisfied. Second, under the maximal assignment, each individual

preemption threshold is maximized, so the number of preemptions is minimized, reducing proces-

sor time and memory requirements. Third, if a valid assignment makes each task non-preemptive,

i.e., schedulable by FPNP, then resource management protocols may be unnecessary. Even if a

resource management protocol is necessary, reducing the number of preemptions potentially re-

duces the time when the protocol has an effect, which enhances the potential schedulability.
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3.1 Relationship among FPNP, FPPT, and FPP

FPPT has two boundary cases. When no preemption is allowed, then the preemption threshold of

each task is equal to the highest regular priority in a task set and FPPT degrades to FPNP; when

any task can be preempted by other tasks with higher regular priorities, then the preemption

threshold of each task is equal to its regular priority in a task set and FPPT degrades to FPP.

The relationship among FPNP, FPPT, and FPP is indicated in Figure 3.1. Moving along the

spectrum to the left, as the preemption threshold of each task is increasing, task preemptions are

decreasing and the boundary case has no preemption, i.e., FPPT degrades to FPNP. Moving along

the spectrum to the right, as the preemption threshold of each task is decreasing, task preemptions

are increasing and the boundary case is that any task %�� can preempt the execution of another task%´. if PE� õ PÀ. , i.e., FPPT degrades to FPP.

more preemptionsfewer preemptions
FPNP FPPT FPP

Figure 3.1: Relationship among FPNP, FPPT, and FPP

The set of all task sets schedulable by a real-time scheduler �U3 is denoted as #%$�¯ . Given

two real-time schedulers �U3a� and �U3l� , if #&$�¯ t ' #&$­¯)( and #&$­¯)( ' #&$­¯ t , then �U3a� and�U3�� are called incomparable. For example, FPP and FPNP are two typical schedulers that are

incomparable. The former maximizes the number of preemptions while the latter eliminates all

preemptions. FPPT fills the gap between them.

3.2 FPPT Critical Instant

The correct schedulability test for FPPT is based on the critical instant in [74], where a task’s

worst case response time occurs when the following three conditions are satisfied.

1. A job of each task with a higher regular priority arrives at the same time (time / ).
2. A task may be blocked by another task with a lower regular priority. That is, the task

contributing the maximum blocking time has just started before the first critical instant.

3. Tasks are arriving at their maximum rates.

In FPPT, a task can be blocked by another task with a lower regular priority. Wang and Sak-

sena [74] adopt the same critical instant as [26] except that the blocking time from a task with a
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lower regular priority is equal to �
°�±ù:ú�£Eü(¥D¡Eü�ú > . instead of �@°�±ù:ú�£Eü(¥o¡Àü�ú > . v 0 . It seems that the latter

is better by intuition. However, the latter is useless in practice because the latter assumes that

the time unit is a clock tick, such as a number of microseconds. In practice, the time unit for

a task is much bigger than the clock tick such as millisecond. Thus, the difference between the

results from these two formulae is less than 1/1000, which can be ignored. Furthermore, in order

to use the latter formula, all time parameters must use the clock tick as time unit. That is why

Formula 2.16 is adopted in the schedulability test.

For convenience, this critical instant is called the FPPT critical instant, which is different

from the RMA critical instant. One property of the FPPT critical instant is discussed as follows.

The RMA critical instant analysis is one important property in FPP. For FPP, if each job

in the first level-i busy period starting from the first critical instant does not miss its deadline,

then the whole task set is schedulable by FPP. The RMA critical instant works for all tasks as

one scenario makes each task get its worst case response time. Such a critical instant is called a

universal critical instant for FPP. Furthermore, such a critical instant works for any task set based

on FPP. However, this critical instant analysis is not true for FPNP. One counter example is tasks% � 58ADLN/E'�LNH and % � 5BADFò/E':I�GòH , which is shown in Figure 3.2. Suppose each task always executes

up to its worst case computation time. Based on FPNP and the RMA critical instant, + �:, � starts

to run at time / and finishes at time L ; + ��, � starts to run at time L and finishes at time I�F . Even if

both + �:, � and + ��, � finish within their deadlines, i.e., all jobs in the first level-i busy period starting

from the first critical instant meet their deadlines, these two tasks are unschedulable by FPNP as+ �:, � misses its deadline at time |N/ . The reason is non-preemption. When + �:, � is ready at time 60,+ ��,³� is running. Though + �:, � has higher regular priority than + ��,³� , the former cannot preempt the

execution of the latter due to non-preemption.

0 10 20 30 40 50 60 70 80 90 100 Time

*,+.-0/2143658793;: *,+=<>/?1A@;587�B,C6:

Figure 3.2: Critical Instant for FPP Invalid for FPNP
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As mentioned in Section 2.1.2, FPP is robust based on the RMA critical instant. However,

FPNP is not robust based on the RMA critical instant. For example, tasks % � 5ØA-I�/E'&0N0(H , % � 5ADCò/E':I�/òH , and % � 5eAoGNJN/E'&0(|NH are schedulable by FPNP based on the RMA critical instant. The

scheduling result for all jobs in the first major cycle is shown in Table 3.1. As all jobs in the

Job Ready Time Start Time Finish Time Response Time Deadline+��:, � / / 0N0 0N0 I�/+ ��, � / 0N0 FE0 I�/ CN/+��:,³� I�/ FE0 KNG 0N0 I�/+���, � / KNG JE0 0(| GNJN/+��:, � JN/ JE0 |NG 0N0 I�/+E��,³� CN/ |NG 0(LNG I�/ CN/+��:, � 0(GN/ 0(LNG 0�I�L 0N0 I�/+E��, � 0�I�/ 0�I�L 0(JNL I�/ CN/+��:, � 0(KN/ 0(JNL 0(|�I 0N0 I�/+ �:, D GN/N/ GN/N/ GE0N0 0N0 I�/+E��, � GE0(/ GE0N0 GNFE0 I�/ CN/+��:, E G�I�/ GNFE0 GNKNG 0N0 I�/
Table 3.1: Task Set Schedulable By FPNP under the RMA Critical Instant

first major cycle meet their deadlines, then the task set is schedulable by FPNP under the RMA

critical instant.

However, decreasing the computation time of task %�� to 0�I results in the task set becoming

unschedulable by FPNP. The scheduling result remains the same for +��:, � , +E�û, � , and +��:,³� . However,+���, � finishes at time CNK due to decreased computation time followed by +E�û,³� , which finishes at

time 0N0(K . Then +��:, � starts to run at time 0N0&K and misses its deadline. Thus, the task set is

unschedulable by FPNP under the RMA critical instant. Hence, FPNP is not robust under the

RMA critical instant. At the end of Section 3.4, it is proven that FPPT is robust under its critical

instant.

When the computation time of % � is decreased to / , resulting in that % � is removed from the

task set, contrary to the intuition that % � and % � should be schedulable by FPNP under the RMA

critical instant as more processor time is available, tasks % � and % � are unschedulable by FPNP

under the RMA critical instant. The details are as follows. + �:, � starts to run first and finishes at

time 0N0 , followed by + ��, � , which finishes at time FE0 . + �:,³� starts to run at time FE0 and finishes at

time KNG . As there are no more ready jobs, the processor can be used by other applications. At time
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CN/ , + ��,³� is ready and starts to run, which finishes at time 0N0&/ . + �´, � ready at time JN/ starts to run

at time 0N0(/ and misses its deadline. Thus, % � and % � are unschedulable by FPNP under the RMA

critical instant. Therefore, it is not possible to construct a schedulability test by incrementally

testing tasks from the highest to the lowest priority as in RMA.

As the schedulability test for FPNP cannot be based on the RMA critical instant, thus FPNP

requires its own critical instant definition [26, 74], hence the schedulability test for FPPT cannot

be based on the RMA critical instant because FPNP is a boundary case of FPPT. The new critical

instant for FPPT creates an individual worst case scenario for each task in a task set, because

there is no universal critical instant available for FPPT (or FPNP) similar to FPP.

Theorem 1

There does not exist a universal critical instant for the whole task set in FPPT except when FPPT

degrades to FPP.

Proof: Suppose there exists such a universal critical instant >
FHG .
1. When FPPT degrades to FPNP, all tasks are non-preemptive. Given task set 3�5·7�%&� , %�� ,)()&) , %�� ; , suppose task %�¿ is a task with maximum computation time among the tasks with

regular priorities lower than %&� in a task set. Consider task set 3>IE5~79%&��'�%��&'()&)():'�%�¿ ; .
Consider task %&� with highest priority in task set 3 I . It may be blocked by a task with lower

priority due to non-preemption, in this case say task %�¿ . Thus, the worst case for %&� is if

it is ready just after %�¿ starts to execute. As >
FHG is a universal critical instant, then it also

includes this scenario for task %&� . Denote this scenario as >JF t .
Consider task %�¿ in task set 3>I . At the beginning of the system (at time / ), any job of %�¿
must wait until all tasks with higher regular priorities have finished. Thus, the worst case is

all tasks with higher regular priorities are ready at time / and so is %�¿ . Under this scenario,%�¿ gets its worst case response time. As >
F G is a universal critical instant, then >JF G must

include this scenario for %�¿ . Denote this scenario as >
FHK .
Combining >JF t with >
F K can obtain another scenario: tasks %&� , %�� , )&)() , and %�¿ are ready

at time / , and one job of %�¿ just starts to run. Under this scenario, task %�¿ gets a worse

response time than in >
F K , which is a contradiction as >
FHG is a universal critical instant.

Thus, such a >
FHG does not exist.

2. When FPPT degrades to neither FPP nor FPNP, there exists at least one task with preemp-

tion threshold higher than its regular priority. Given task set 385à79% � '�% � '()&)():'�% ��; with
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regular priority assignment Pz5 79P � '�P � '()()&)W'�P �<; where P � 5ØM and preemption thresh-

old assignment �s5à7(� � '´� � '()&)()W':� �E; , suppose task % ¿ is a task such that � ¿�õ P ¿ and¨ is minimum. There also exists a task % � with P � 5`� ¿ because each task has a unique

regular priority and the regular priority is between 0 and 4 inclusively. Consider task set3 I 5~79% � '�% � '()&)():'�% ¿�; with regular priority assignment P I 5~79P � '�P � '&)()()W'�P ¿N; and preemp-

tion threshold assignment � I 5�7(� � ':� � '&)()()´':� ¿�; .
Consider task %�� with PE��5`��¿ in task set 3LI . It may be blocked by %�¿ due to P<�Å5`��¿ .
Then the worst case for %�� is %&� , %�� , )()() , %�� are ready at the same time just after %�¿ starts to

execute. As >
FHG is a universal critical instant, then it also includes this scenario for task %�� .
Denote this scenario as >
FD¥ .
Consider task %�¿ in task set 3 I . At the beginning of the system (at time / ), any job of %�¿
must wait until all tasks with higher regular priorities have finished. Thus, the worst case

is all tasks with higher regular priorities are ready at time / , so is %�¿ . Under this scenario,%�¿ gets its worst case response time. As >
FHG is a universal critical instant, then >JFHG must

include this scenario for %�¿ . Denote this scenario as >
F K .
Combining > FD¥ with > F K can obtain another scenario: tasks % � , % � , )()&) , and % ¿ are ready

at time / , and one job of % ¿ just starts to run. Under this scenario, task % ¿ gets a worse

response time than in > F K , which is a contradiction as > FHG is a universal critical instant.

Thus, such a > FHG does not exist. M
Based on Theorem 1, the worst case scenario for each task in FPPT may not occur at the same

time except when it degrades to FPP. In other words, under the worst case scenario for a task, it

is unnecessary to check whether all other tasks get their worst case scenarios because their worst

case scenarios may not exist at the same time.

3.3 Blocking Time from a Task with Lower Regular Priority

Based on the critical instant for FPPT, it is shown that a task can be blocked by at most one

other task with a lower regular priority, which is formally described in Theorem 2 and shows that

Formula 2.16 is valid.

Theorem 2

A task can be blocked by at most one task with a lower regular priority based on the FPPT critical

instant.
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Proof: Consider the simple case that a task is blocked by two other tasks with lower regular

priorities. Given tasks %.N , %.O , and %QP with PRN õ PSO and PRN õ PTP , suppose %.N can be blocked

by %.O and %QP , which implies �UO�\�PRN and �SP¼\�PSN .

As PRN õ PSO and PRN õ PVP , tasks %.N , %.O , and %QP cannot be ready at the same time. In

addition, task %.N can be ready before neither task %.O nor task %QP . Otherwise, task %.N can be

blocked by neither task %.O nor task %QP . In order to guarantee %.N is blocked by both tasks %.O and%QP , tasks %.O and %QP must start to execute for the first time before %.N is ready so that the running

priorities of %.O and %QP are upgraded to �UO and �SP respectively. Furthermore, if task %.O ( %QP )

starts to run first, then it must be preempted by %QP ( %.O ). Otherwise, %.N is only blocked by one

task. As �UO�\�PRN and �SP¼\�PSN , task %.N cannot preempt their executions and must wait.

1. %QP runs first. As %.N is also blocked by %.O , %.O preempts the execution of %QP , after %.O
finishes, %QP continues its execution because �WP`\àPSN . After %QP finishes, %.N starts its

execution. This execution order is indicated in Figure 3.3. In the diagram, ��P , �XO , and �XN
are the ready times of %QP , %.O , and %.N respectively. Therefore, PRO õ �SP . However, due to�WP¼\�PRN and PSN õ PSO , �SP õ PRO . As PSO õ �WP , then PSO õ PSO , which is a contradiction.

� P � O � N Time

% P % O % P % N
Figure 3.3: Task Execution Order

2. % O runs first. Similarly to the first case, P P õ P P , which is a contradiction.

Therefore, a task can be blocked by at most one task with a lower regular priority. M
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3.4 Robustness of FPPT

As mentioned, FPP is robust under the RMA critical instant while FPNP is not. However, FPPT is

also robust under its own critical instant, which is described formally in Theorem 3. This property

guarantees that the FPPT schedulability test can be performed incrementally.

Theorem 3

FPPT is robust under the FPPT critical instant.

Proof: Suppose a task set is schedulable by FPPT with regular priority assignment P and preemp-

tion threshold assignment � . The proof shows that the schedulability of any task is unaffected if

the computation time of any task %�� is decreased.

1. For any task %�æ with P<æ õ PE� . The interference from tasks with regular priorities higher

than %�æ is the same. However,

ö ã�÷ZY�å may be shorter if %�� was contributing the maximal

blocking time originally based on Formula 2.16, which indicates that %�æ may start earlier so

its worst case response time cannot be longer. Hence, the schedulability of %�æ is unaffected.

2. For task %�� itself. The interference from tasks with regular priorities higher than %�� is the

same.

ö ãä÷W¥�å is also the same based on Formula 2.16. Then the worst case response time of%�� cannot be longer due to its decreased computation time. Hence, the schedulability of %��
is unaffected.

3. For any task %�¿ with PE¿ ¾ P<� . ö ã�÷ZKWå is the same based on Formula 2.16. However, the

interference from tasks with regular priorities higher than %�¿ cannot be longer due to the

decreased computation time of %�� as PE� õ PE¿ . Then, the worst case response time of %�¿
cannot be longer due to decreasing the computation time of %�� . Hence, the schedulability

of %�¿ is unaffected.

Therefore, given a task set schedulable by FPPT, if the computation time of any task %�� is de-

creased, it does not affect the schedulability of the task set. Based on the definition of robustness,

FPPT is robust under its critical instant. M
When decreasing the computation time of a task, consider the boundary case such as decreas-

ing it to / . Thus, the task is removed from a task set. As FPPT is robust under its critical instant,

the rest of the tasks are still schedulable. Hence, a subset of a task set schedulable by FPPT is

still schedulable by FPPT, which is described in Corollary 1.
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Corollary 1

If a task set 3 is schedulable by FPPT, then task set 3LI such that 3>IJ[^3 is also schedulable.

Hence, the schedulability test for FPPT can be performed incrementally.

3.5 Preemption Threshold Assignment

The schedulability test provided in Section 2.2.4 assumes a preemption threshold assignment al-

ready exists, which is not true practically. In practice, only the regular priority is defined. For

example, the regular priority can be assigned based on the RMA priority assignment. It is rea-

sonable to assume that the regular priorities are predefined for a given task set. The reason is as

follows. The algorithm to search for a feasible fixed-priority assignment has been well studied.

The research work in [69] presents an effective algorithm to find a feasible fixed-priority assign-

ment for preemptive scheduling. In addition, this algorithm is also applicable to non-preemptive

scheduling [26].

To determine whether a task set is schedulable, the key point is to find a valid preemption

threshold assignment by using the schedulability test. However, the search space of all possible

preemption threshold assignments is ��AD4]\�H in the worst case, which indicates that an effective

searching algorithm is required. Furthermore, given a task set with predefined regular priority, it

may be schedulable under several preemption threshold assignments.

This section proves that when a task set with predefined regular priority is schedulable, any

valid preemption threshold assignment must be delimited by two special assignments. When

these two special assignments are known, more valid assignments can be generated. Computing

these two special assignments is discussed in Section 3.6.

3.5.1 Simple Example

If a task set with predefined regular priority is schedulable by FPPT, there may exist multiple valid

preemption threshold assignments making the task set schedulable. For example, given tasks%&�þ58ADGN/E'�JNH , %���5BADLN/<'�KNH , %��X5BAoFN/E'(0&/NH , %.�X5BAW0(/ò/E'�JNH , and %QD�5BAoLN/N/E'&0(GNH with regular priority

assignment P65 7�0N'�G<'�LE'WI�':F ; , they are schedulable with only the following seven preemption
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threshold assignments (verified by exhaustive search)

^ �þ5�7�0N'�G<'�LE'´IÀ':F ; ' ^ �X5~7�0N'(0N'�LE'WI�':F ; ' ^ �X5~7�0N'&0N'�GE'´I�':F ; ' ^ �Å5�7�0N'(0ò'(0N'´IÀ'�F ; '^ DX5�7�0N'(0ò'(0N'�L�':F ; ' ^ EÅ5~7�0N'(0N'&0N':GE':F ; ' ^`_ 5~7�0N'&0N'(0N'&0N':F ; )
For all of these assignments, the preemption thresholds for ����5�0 and �WD�5sF are the same. Now

consider the preemption thresholds for %�� , %�� , and %.� .
Observation: all valid assignments are delimited by

^ � and
^a_

. The preemption thresholds of

tasks %�� , %�� , and %.� in
^ � are minimal while the preemption thresholds of tasks %�� , %�� , and %.� in^`_

are maximal. In other words,
^ � , ^ � , ^ � , ^ D , and

^ E are logically between them.

Conjecture: For a given task set schedulable by FPPT with predefined regular priority, there

are two special valid assignments ������� and ���
	�� , where ��������5 7(��� t , ���b( , )()&) , ���þu ; and���
	��{5~7&��� t , ���J( , )&)() , ���Uu ; . In addition, ���þ¥ }����U¥ for 0U\�Mr\�4 . For any valid assignment�B5 7(����':�E��'()&)():'´��� ; , it must satisfy that ����ô`�³���U¥W':���þ¥k� for 0z\ Md\à4 . In addition, an

assignment satisfying this condition may be invalid. For example, assignment ��5T7�0N'�G<'(0N':LE':F ;
is invalid as +���, � misses its deadline under this assignment. Furthermore, any other assignments

that do not satisfy this condition are invalid. This conjecture is proved correct in the following

discussion.

3.5.2 Partial Order Relationship

Before further discussion, a partial order relationship between two assignments is defined.

Definition 1

Given a task set and two valid assignments � and �cI , if all individual preemption thresholds of �
are equal to or greater1 than those of �dI , i.e., ���a}��cI� for 0U\�M�\�4 , then define �fe��cI .
Clearly, e is a reflexive, anti-symmetric, and transitive relationship. In the above example,

^ �%e^ �Je ^ �Je ^a_ (not a complete list).

Definition 2

Suppose
^

is the group of all valid assignments for a task set. Let ���
����ô ^ satisfy the relation-

ship ���
�ä�geB� for all �sô ^ , i.e., each individual preemption threshold of ������� is equal to or

1Note, the larger a numeric value, the lower its priority as mentioned before.
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greater than the corresponding part of any other valid assignment in
^

, then � �
�ä� is defined as

the minimal assignment in
^

.

Definition 3

Suppose
^

is the group of all valid assignments for a task set. Let � �
	�� ô ^ satisfy the relation-

ship �hes� �
	�� for all � ô ^ , i.e., each individual preemption threshold of � �
	�� is less than or

equal to the corresponding part of any other valid assignment in
^

, then � �
	�� is defined as the

maximal assignment in
^

.

In the above example,
^ � and

^a_
are the minimal assignment and the maximal assignment, re-

spectively. The purpose for defining ������� and ���
	�� is they exist and can be calculated effectively

when a task set is schedulable by FPPT with predefined regular priority.

3.5.3 Generating Valid Assignments

When multiple valid assignments may exist for a task set schedulable by FPPT with predefined

regular priority, an effective mechanism is needed to calculate additional valid assignments. It is

proved that for any valid assignment � , it must satisfy that �������iez�ges���
	�� (see Theorem 4).

In this section, ������� and ���
	�� are assumed available. In the next section, effective algorithms to

compute ������� and ���
	�� are presented. Before proving the correctness of this necessary condi-

tion, four lemmas are proved. Lemma 1, 2, and 3 provide theoretical support to generate another

valid assignment based on two known valid assignments that satisfy some special conditions.

In the proofs of these lemmas, the following known lemmas, corollary, and theorem in [74] are

used2, which are rephrased first:

Lemma AFFECT : Changing the preemption threshold of task % � from � � to � � may only affect

the worst case response time of task % � and those tasks whose regular priorities are between � �
and � � .
Corollary AFFECT : The worst case response time of task % � cannot be affected by the preemp-

tion threshold assignment of any task % . with P .{õ P � .
Theorem VALID : Assume a task set of 4 tasks schedulable with predefined regular priority P�579P � , P � , )()&) , P ��; and preemption threshold assignment �]587(� � , � � , )&)() , � �E; . If changing only

2Lemma AFFECT, Corollary AFFECT, Theorem VALID, and Lemma INVALID correspond to Lemma 5.1,
Corollary 5.1, Theorem 5.1,and Lemma 5.2 in [74], respectively.
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the preemption threshold of task % . from � . to � I. , where � I. ¾ � . makes task % . still schedulable,

then the whole task set is still schedulable by the preemption threshold assignment � I 5~7(� � , � � ,)&)() , � .�Ðp� , � I. , � .�¸l� , )&)() , � �E; .
Lemma INVALID : Given a task set of 4 tasks with predefined regular priority P�5~79P � , P � , )()() ,P ��; , if setting the preemption threshold of task % � to the highest regular priority, i.e., � � 5cP � ,
still cannot make task % � schedulable, then the whole task set is unschedulable.

Lemma 1

Let � and �dI be two valid assignments such that �cI%e�� . Then assignment �cIjIq5Ø7&��� , �À� , )()() ,��¿(Ð�� , �cIjI¿ , �cI¿�¸�� , )()() , �cI� ; is also valid, where �cIjI¿ ô]� ��¿�':�cI¿ � for ¨�ô]�Y0ò'�4<� .
Proof: The proof first considers the case when ¨[5B4 and shows that it is correct. Then it uses

the correct result to prove the case when ¨d5·4 v 0 to be correct and so on for the cases when¨
5¶4 v G , 4 v L , )&)() , G , 0 . Note, �cIce�� indicates ���q\��cI� for 0U\�Mr\�4 .

1. Assignment �cIjI�5�7(��� , �À� , )&)() , ���òÐp� , �dIjI� ; is valid, where �cIjI� ô]� ����'´�cI� � .
Based on Lemma AFFECT, changing ��� to �cIjI� in � may only affect the worst case response

time of task %�� and those tasks whose regular priorities are between �cIjI� and ��� .
(a) For any task % � with P � ô��³� � '´�dIjI� � , consider its worst case response time under �cIjI

and � . For both cases, the interference from tasks with higher regular priorities is

the same. However, its blocking time from a task with a lower regular priority under�cIjI cannot be longer than � based on Formula 2.16 as � � \~�dIjI� . Thus, the response

time of task % � cannot be longer under �cIjI than � . Hence, the schedulability of % � is

unaffected.

(b) Consider the worst case response time of %�� under �cIjI and �cI . For both assignments,

the blocking time from a task with a lower regular priority is the same, which is equal

to / . Under �cIjI , any task %´. with P�. õ �cIjI� can preempt the execution of %�� ; under �dI ,
any task %´. with PÀ. õ �cI� can preempt the execution of %�� . As �cIjI� \ �dI� , the number of

tasks that can preempt the execution of %�� under �cIjI is less than or equal to that under�cI . Hence, the interference for %�� from tasks with higher regular priorities under �cIjI
cannot be worse than that under �cI . As �cI is valid, then %�� meets its deadline under�cIjI , too.

Therefore, �dIjI is also valid.
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2. Based on step 1, assignment � ¯ 587(� � , � � , )()&) , � �NÐ�� , � I� ; is valid. Now consider assign-

ment � ¤ 5~7&� � , � � , )&)() , � �NÐ�� , Î , � I� ; where Î[ôS� � �òÐp� '´� I�òÐ�� � .
Based on Lemma AFFECT, changing ���òÐ�� to Î in �E¯ may only affect the worst case

response time of task %��NÐ�� and those tasks whose regular priorities are between Î and���òÐ�� .
(a) For any task %�� with PE��ôz�³���òÐ��('�Î�� , consider its worst case response time under ��¤

and �À¯ . For both cases, the interference from tasks with higher regular priorities is

the same. However, its blocking time from a task with a lower regular priority under��¤ cannot be longer than �E¯ based on Formula 2.16 as ���NÐ��X\�Î . Thus, the response

time of task %�� cannot be longer under ��¤ than �À¯ . Hence, the schedulability of %�� is

unaffected.

(b) Consider the worst case response time of % �òÐ�� under � ¤ and �cI . For both assignments,

the blocking time from a task with a lower regular priority is the same. Under � ¤ , any

task % . with P .�õ Î can preempt the execution of % �NÐ�� ; under �cI , any task % . withP .�õ �cI�òÐ�� can preempt the execution of % �NÐ�� . As Î�\T�dI�òÐp� , the number of tasks

that can preempt the execution of % �NÐ�� under � ¤ is less than or equal to that under �dI .
Hence, the interference for % �NÐ�� from tasks with higher regular priorities under � ¤
cannot be worse than that under �cI . As �dI is valid, then % �NÐ�� meets its deadline under� ¤ , too.

Therefore, ��¤ is also valid.

3. Using a similar approach in step 2, assignment ��¤S5~7(��� , �À� , )()() , ��¿(Ð�� , Î , �cI¿û¸l� , )&)() , �cI� ;
can be proved valid, where Îbô �³��¿N'´�cI¿ � when ¨
5s4 v G , 4 v L , )()&) , G , 0 .

Therefore, Lemma 1 is correct. M
Lemma 1 guarantees that additional valid assignments can be calculated based on ���
�ä� and���
	�� .

Lemma 2

Let � and �dI be two valid assignments. If ¨ is the maximal number such that �cI¿ ¾ ��¿ , then

assignment �dIjI�5~7(��� , �E� , )()&) , ��¿(Ð�� , �cI¿ , ��¿û¸l� , )&)() , ��� ; is also valid.

Proof: Based on Lemma AFFECT, changing � ¿ to �cIjI¿ in � may only affect the worst case

response time of task % ¿ and those tasks whose regular priorities are between �cIjI¿ and � ¿ .
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1. For any task % � with P � ô]�³� ¿ '´� IjI¿ � , consider its worst case response time under � and � IjI . For

both cases, the interference from tasks with higher regular priorities is the same. However,

its blocking time from a task with a lower regular priority cannot be longer under � IjI than �
based on Formula 2.16 as � I¿ ¾ � ¿ and � I¿ 5z� IjI¿ . Thus, the response time of task % � cannot

be longer under � IjI than � , i.e., the schedulability of % � is unaffected.

2. Consider the worst case response time of %�¿ under �cI and �cIjI . For both assignments, the

interference from tasks with higher regular priorities is the same. However, the blocking

time from a task with a lower regular priority cannot be longer under �cIjI than �cI . First,�cI� \��cIjI� for ¨ õ MU\�4 as ¨ is the maximal number such that �dI¿ ¾ ��¿ and ����58�dIjI� for¨ õ M�\�4 . Second,

ö AD%kIjI¿ HÖ\ ö AD%kI¿ H based on Formula 2.16 as ����5��cIjI� for ¨ õ M�\�4 .

Thus, the response time of %�¿ cannot be longer under �cIjI than �dI . As �cI is valid, %�¿ meets

its deadline under �cIjI , too.

Therefore, � IjI is also valid. M
Lemma 2 provides additional support to generate a new valid assignment based on two valid

assignments that satisfy some specific conditions. The new valid assignment is obtained by de-

creasing the preemption threshold of one task to the preemption threshold in another valid as-

signment of the same task, which provides the possibility to generate a new valid assignment that

may be a candidate for ���
�ä� .
Lemma 3

Let � and � I be two valid assignments. If ���Ö\f� I� for 0d\^M�\c4 except that � I¿ õ ��¿ , then

assignment � IjI 5~7(��� , �E� , )()&) , ��¿(Ð�� , � I¿ , ��¿û¸l� , )&)() , ��� ; is also valid.

Proof: Based on Lemma AFFECT, changing ��¿ to �cI¿ in � may only affect the worst case

response time of task %�¿ and those tasks with regular priorities between ��¿ and �cI¿ .
1. For any task % æ with P æ ô]�³� I¿ ':� ¿ � , there are two cases.

(a) %�æ is blocked by %�¿ under �cIjI . In this case, %�æ must be blocked by %�¿ under �cI because�cIjI� \z�dI� for 0
\sM�\s4 , resulting in %�æ getting the same blocking time under �cIjI and�cI . However, %�æ ’s interference is no worse under �dIjI than under �dI because �cIjIæ \��cIæ .
Hence, the worst case response time of %�æ under �dIjI is not longer than under �cI . As �cI
is valid, then the schedulability of %�æ is unaffected under �cIjI .
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(b) % æ is not blocked by % ¿ under � IjI . In this case, % æ gets the same blocking time under� IjI and � as � IjI� 5 � � for 0]\`M
\c4 except Mml5e¨ . Note, % æ ’s response time can

be affected by only one task with lower regular priority. As % æ ’s priority remains the

same under � IjI and � , % æ gets the same interference under � IjI and � . Hence, % æ gets the

same worst case response time under � IjI and � . As � is valid, then the schedulability

of % æ is unaffected under � IjI .
Therefore, the schedulability of %�æ is unaffected under � IjI .

2. Consider the worst case response time of % ¿ under �dIjI and � . For both assignments, the

blocking time from a task with a lower regular priority is the same. However, under �cIjI ,
any task % . with P . õ �dIjI¿ can preempt the execution of % ¿ ; under � , any task % . withP .
õ � ¿ can preempt the execution of % ¿ . As �cI¿ õ � ¿ and �cI¿ 5��cIjI¿ , the number of tasks

that can preempt the execution of % ¿ under �cIjI is less than or equal to that under � . Hence,

the interference for % ¿ from tasks with higher regular priorities cannot be worse under �cIjI
than � . Thus, the response time of % ¿ cannot be longer under �cIjI than � . As � is valid, % ¿
meets its deadline under �dIjI , too.

Therefore, �cIjI is also valid. M
Lemma 3 provides further support to generate a new valid assignment based on two valid as-

signments satisfying some specific conditions. The new valid assignment is obtained by increas-

ing the preemption threshold of one task to the preemption threshold in another valid assignment

of the same task, which provides the possibility to generate a new valid assignment that may be a

candidate for ���
	�� .
When a task set is schedulable by FPPT with predefined regular priority, and both ������� and���
	�� are already known, then all other valid assignments must be delimited by them, which is

based on Lemma 1, 2, and 3. At the same time, it is possible to generate additional assignments

based on ���
��� and ���
	�� directly without calculating the worst case response time for each task

based on the schedulability test under the given assignment.

Theorem 4

Given a task set schedulable by FPPT with predefined regular priority, there exist valid assign-

ments ������� and ���@	�� such that for any valid assignment � , �������ne��ie����
	�� .
Proof: Let � í 5 7(� í t ':� ík( '()&)():'´� í u ; be any valid assignment such that for any other valid

assignment � , �hez� í is false; let �So�587(�So t ':�So ( '()()&):':�So�u ; be any valid assignment such that
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for any other valid assignment � , �WopeB� is false. For any assignment ��5 7(� � '´� � '&)()&):':� ��; ,
define�l� 5�7�* ©)q *�':�ò. ¾ ��íNú ; 'Ø�p��5~7�* ©)q *�':�ò. õ � o ú ; '^���Å5~7�* ©)q *�':��íNúÅ}��ò.Å}�� o ú ; )
In other words, ��� , ��� , and ��� are subsets of 7�0N'�GE'&)()�)W'�4 ; . ��� is the index set such that for any

element * in �l� , its corresponding preemption thresholds �ò. and ��íòú satisfy �ò. is greater than ��íòú .��� is the index set such that for any element * in �p� , its corresponding preemption thresholds �N.
and � o ú satisfy �N. is less than � o ú . ��� is the index set such that for any element * in ��� , its

corresponding preemption thresholds �ò. , ��íòú and � o ú satisfy �ò. is equal to or greater than � o ú
but less than or equal to ��íNú . Based on the definition of ��� , �p� , and ��� , they form a partition of7�0ò'�GE'&)()�):'�4 ; . If � is valid,

1. Assume ���rl5ts
As ���ul5vs , find the maximal ¨¼ô���� . Based on the definition of ��� , ��¿ ¾ ��íSK and ¨ is

maximal. Consider two valid assignments � and ��í . Based on Lemma 2, the assignment�cI�5Ø7(��í t , ��ík( , )&)() , ��íWK=w t , ��¿ , ��íWK�x t , )()() , ��íEu ; is also valid. Obviously, �cIye·��í and�cI`l5z��í . Then based on the definition of ��í , this is a contradiction.

2. Assume ����5ts and ���zl5{s$ ���Å5{s
It implies that �ò. õ � o ú for 0Ö\¼*�\z4 , i.e., � o e6� and � o l5s� . As � is also valid,

then based on the definition of � o , this is also a contradiction.$ � � l5{s
As � � l5|s , choose the minimal ¨¼ô¼� � . As � � 5}s , � í e~� . Based on Lemma 1,

assignment �cIjI�5`7(� � , � � , )()&) , � ¿ , � í K�x t , )&)() , � í u ; is valid. As well, �So ¥ \T� � for0Ö\zM�\h¨ v 0 based on the selection of ¨ ; �So ¥ \6� íÀ¥ for 0Ö\zM
\h4 by definition of�Wo and because � � 5ts ; and � ¿�õ �SoUK as ¨�ô[� � . Then, assignment �dI�5�7(�So t , �So ( ,)()&) , �SoUK=w t , � ¿ , �WokK�x t , )()&) , �Wo�u ; is valid based on Lemma 3. Obviously, �Woge��cI and�cI`l5z�So . Then based on the definition of �Wo , this is a contradiction.

There are J possible combinations depending on whether each of �l� , �p� , and ��� is equal to s
or not, which is shown in Table 3.2. For convenience, in Table 3.2, when ��� is equal to s , it is

represented by / ; when ��� is not equal to s , it is represented by 0 . The values in the first column
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are the corresponding decimal values of binary numbers formed by � � � � � � where � � is the most

significant bit and � � the least significant bit. The symbols in the last column indicate whether the

corresponding combination of � � , � � , and � � is valid or invalid. Symbols “ ~ ” and “ � ” indicate

“being valid” and “being invalid” respectively.

Value ��� �p� ��� Status/ / / / �0 / / 0 ~G / 0 / �L / 0 0 �I 0 / / �F 0 / 0 �K 0 0 / �C 0 0 0 �
Table 3.2: Combinations of ��� , �p� , and ���

As �l� , �p� , and ��� form a partition of 7�0N'�GE'&)()�)W'�4 ; , obviously, �l� , ��� , and ��� cannot be

equal to s simultaneously, whose corresponding decimal value of ���:������� is equal to / , which

is indicated with “ � ” in Table 3.2. Case 1 includes the cases ���ul5vs and the values of ��� and��� can be either the empty set or the non-empty set. Thus, I distinct combinations are included,

whose corresponding decimal values of �l�:�p����� are I , F , K , and C . As Case 1 is impossible, thenI distinct combinations are excluded, which are indicated with “ � ” in Table 3.2. Similarly, G
distinct combinations are excluded in Case 2, whose corresponding decimal values of ����������� areG and L , which are indicated with “ � ” in Table 3.2.

After eliminating C distinct combinations, only the combination ���U5�s , ���Ö5�s , and ���il5
s holds, whose corresponding decimal value of ���:�p����� is 0 , which is indicated with “ ~ ” in

Table 3.2. Thus, ��íE¥�}s���þ}¶� o ¥ for 0
\QM�\Q4 based on the definition of ��� , i.e., ��í�e¶� and��e�� o based on the definition of e . Therefore, ��íie���e�� o , ��í�5 ���
�ä� , and � o 5z���@	�� . M
Note, not all assignments delimited by ���
��� and ���
	�� are valid. Consider the example in

Section 3.5.1, �������Í5 ^ � and ���
	��{5 ^a_ . Assignment 7�0ò'�GE'&0N'�LE':F ; is invalid. In fact, there areADG v 0�½¶0(H(ADL v 0�½¶0(H(A-I v 0
½s0(Hr5~G�I distinct assignments delimited by ���
�ä� and ���
	�� , and0(C of them are invalid (verified by exhaustive search).

When a task set is unschedulable, there is no assignment able to make the task set schedulable.
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Of course, neither � �
�ä� nor � �
	�� exists. Therefore, if an algorithm is guaranteed to compute� ����� and it cannot find � �
�ä� , then � �
	�� does not exist either. Being guaranteed is two-fold. First,

if the task set is schedulable, the algorithm can find one valid assignment. Second, the assignment

is minimal, which is equal to � ����� . Similarly, if an algorithm is guaranteed to compute � �
	�� and

it cannot find � �
	�� , then � ����� does not exist either. This property is described formally in

Corollary 2.

Corollary 2

If an algorithm is guaranteed to compute � �
��� A-� �
	�� H and it cannot find � ����� A-� �
	�� H , then� �
	�� A-� ����� H does not exist either.

Proof: Suppose ���
	�� does exist. Based on Theorem 4, ���
	�� is valid and makes the task set

schedulable. As the algorithm is guaranteed to compute ������� and it cannot find ���
�ä� , which

indicates that the task set is unschedulable, resulting in a contradiction. Thus, ���
	�� does not

exist. The other case can be proved similarly. M

3.5.4 Area Delimited by � ����� and � �
	��
Based on Theorem 4, any valid assignment must be delimited by ������� and ���
	�� . Based on the

assumption PE��5^M and ���U\ P<� for 0d\ M�\·4 , all valid assignments can be represented by a

2-dimensional area, where the regular priorities of all tasks are located on the horizontal direction

and the preemption thresholds are located on the vertical direction. Given tasks %&�Ä5ëAW0&/E'(0(H ,%��d5 AW0&FE'(0(H , %��]5 A§I�/E':I�H , %.�Ã5 ADKN/E'&0(/NH , %QDb5 ADJN/E'�GN/NH , %.E]5 AW0(/ò/E'(0(FòH , % _ 5 ADGò/N/E'(0&/NH ,%.�Å58ADG�I�/E'&0(KNH , the corresponding 2-dimensional area is shown in Figure 3.4.

Figure 3.4 shows two polylines corresponding to the minimal and maximal assignment for a

task set with 8 tasks in a G -dimensional space. Note, tasks are indexed starting from 0 instead of/ . In the diagram, � ����� 5f7�0 , G , L , I , F , F , F , C ; is indicated by the upper polyline delimiting

the shaded area, while � �@	�� 5c7�0 , 0 , 0 , G , L , L , G , L ; is indicated by the lower polyline delim-

iting the shaded area. The preemption thresholds for % � is equal to the highest regular priority,

which are not shown clearly due to their overlapping the boundary. For any valid assignment,

the corresponding polyline must be located within the shaded area delimited by the two polylines

for the minimal and maximal assignments (including the boundary ) based on Theorem 4. The

horizontal dotted line indicates the boundary case FPNP as the preemption threshold of each task

is equal to the highest regular priority 1, while the diagonal dotted line indicates the boundary
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Figure 3.4: All Possible Valid Assignments

case FPP as the preemption threshold of each task is equal to its regular priority. The area above

the diagonal dotted line is invalid as the preemption threshold of a task is lower than its regular

priority, which is unreasonable (see the top of page 7). The area below the horizontal dotted line

is invalid as the highest preemption threshold is equal to the highest regular priority. Note, not

each assignment in the shaded area is valid. For example, assignment 7�0 , 0 , 0 , L , I , I , L , I ; is

invalid. In fact, there are 3240 distinct assignments delimited by ������� and ���
	�� , only 1512 of

them are valid (verified by exhaustive search).

3.6 Computing Minimal and Maximal Assignments

In Section 3.5.3, the minimal assignment � �
�ä� and the maximal assignment � �@	�� are assumed

to be available. In practice, this assumption is not true. To generate more valid assignments when

a task set with predefined regular priority is schedulable by FPPT, the minimal and maximal
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assignment must be calculated first.

When a task set with predefined regular priority is schedulable by FPPT, the research work

in [74] presented an effective algorithm to find a valid preemption threshold assignment. The

authors do not point out that the assignment obtained is minimal. The research work in [60]

presented an algorithm to compute the maximal assignment provided that a valid assignment is

already known. By starting with a valid assignment, the algorithm calculates � �
	�� but the authors

do not prove formally the result is maximal.

The known algorithm to compute the minimal assignment starts its computation from FPP,

one boundary case of FPPT. As FPPT has two boundary cases – FPP and FPNP, it is reasonable to

consider computing the minimal assignment from FPNP, the other boundary case of FPPT. This

section presents algorithms to compute minimal and maximal assignments effectively. In addi-

tion, the known algorithm to compute the maximal assignment starts its computation with a valid

assignment. This section presents an algorithm to compute minimal assignment by starting from

the maximal assignment. Furthermore, it is shown that the minimal and maximal assignments can

be calculated by starting from either boundary case and the time complexity is the same. Finally,

the algorithm to compute the maximal assignment can be used to perform a schedulability test for

FPPT similar to the algorithm to compute the minimal assignment. The reason to explore effec-

tive algorithms to compute the minimal and maximal assignments starting from both boundary

cases is whether computing � ����� ( � �
	�� ) from FPP is more expensive than from FPNP depends

on a given task set. Under a multiprocessor architecture, it is reasonable to compute � ����� ( � �@	�� )
using both approaches and stop when a result is found. Note, a multiprocessor architecture is

only used to compute � ����� ( � �
	�� ), which does not imply that FPPT works on a multiprocessor

architecture. Instead, FPPT works on a uniprocessor architecture.

3.6.1 Computing Minimal Assignment from FPP

For convenience, the assignment algorithm in [74] is called FindMinFromFPP. The pseudo-code

is shown in Figure 3.5 (see Figure 2 in [74] for details). At the beginning, the algorithm sets

the initial values for P and � , which corresponds to lines 1 to 4, where P<�þ5cM and ����5cPE� for0¼\ØM
\Ø4 . Then the algorithm tries to calculate the minimal preemption threshold for each

task from the task with the lowest regular priority to the task with the highest regular priority,

which corresponds to lines 5 to 10. For any task %�� , whenever it cannot meet its deadline with

the current preemption threshold, the algorithm increases the preemption threshold by one. If
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the increased preemption threshold is higher than the highest regular priority P � , then there is no

valid preemption assignment that can make % � schedulable and the algorithm stops. Otherwise,

the algorithm repeats this increment and checking if the current task can meet its deadline. Lines

6 to 9 performs this computation for each task.

1 for ( M>�ë0 to 4 )
2 P<��� M ;
3 ���>�ePE� ;
4 endfor
5 for ( M>�e4 to 0 )
6 while (

� >���1ÍADP<��'´���ÜH ¾ =�� )
7 � � �Ø� � v 0 ; // increase the preemption threshold of % � by 1
8 if ( ��� õ P­��H then return FAIL;
9 endwhile
10 endfor
11 return � ;

Figure 3.5: Pseudo-code for FindMinFromFPP

Theorem 5

Algorithm FindMinFromFPP is guaranteed to find ���
�ä� if ���
�ä� exists.

Proof:

1. The searching direction and the starting point are reasonable. First, the starting point is���_5VP<� for 0�\ëMd\à4 . When ���µ5VP­� , if %�� cannot meet its deadline, it indicates

that the task is unschedulable by any preemption threshold and the algorithm stops based

on Lemma INVALID. Second, the searching direction is from the task with the lowest

regular priority to the task with the highest regular priority. Based on Corollary AFFECT,

changing the preemption threshold of any task with a higher regular priority cannot affect

the worst case response time of any task with a lower regular priority. In addition, when

task %�� is considered, all tasks with regular priorities lower than %�� can already meet their

deadlines. Thus, the validity of ��� for %�� cannot affect the validity of all other preemption

thresholds of tasks with regular priorities lower than %�� .
2. Suppose ������� does not exist but the algorithm returns assignment � . Based on the searching

direction, function WCRT AoPE�:':���YH is called for each task. As any assignment of a preemp-

tion threshold to a task does not affect the validity of tasks with lower regular priorities,
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after the algorithm checks the task with highest regular priority, � is found to be valid.

Based on Theorem 4, � �
��� e���e�� �
	�� , indicating that � �
��� exists, which is a contradic-

tion. Thus, the algorithm must return FAIL when � ����� does not exist.

3. Suppose ������� exists but the algorithm returns � . Similar to the previous step, � is valid

and �������iez��ez���
	�� . Suppose ¨ is maximal such that ��¿ õ ����K . When %�¿ is checked,

its interference from tasks with higher regular priorities under ��¿ is not greater than under���yK but with the same blocking time from a task with a lower regular priority. As �������
is valid and the initial preemption threshold for %�¿ is P<¿ , the algorithm finds ����K is valid

for %�¿ and the algorithm stops checking before it reaches ��¿ . Then the final preemption

threshold for %�¿ is not higher than ���yK , resulting in ��¿d}����yK , which is a contradiction.

Thus, no such ¨ exists and ��5z���
��� .
Therefore, the algorithm returns FAIL when � �
��� does not exist; otherwise, it returns � ����� . M

Theorem 5 guarantees that given a task set, if algorithm FindMinFromFPP finds a valid as-

signment � , then any other valid assignment �cI satisfies ��e �dI . In the pseudo-code, the function

WCRT ADP � '´� � H is used to compute the worst case response time of task % � based on the regular pri-

ority assignment P and the preemption threshold assignment � . When the function WCRT ADP � '´� � H
is called, it applies Formulae 2.16, 2.17, 2.18, 2.19, and 2.20. As Formulae 2.17, 2.18, and 2.19

are solved by iteration, the time complexity for solving these formulae is non-deterministic, re-

sulting in the time complexity for WCRT ADP � ':� � H being non-deterministic, too. For convenience,

the time complexity for WCRT ADP � '´� � H is assumed to be ��ADÛ�H , where Û is not constant and depends

on the task set, regular priority, and preemption threshold. This assumption is different from the

research work in [74] where the time complexity for WCRT ADP � ':� � H is assumed to be constant.

The worst case for Û occurs when all jobs in a major cycle must be checked as each iteration only

deals with one job, which is equal to�i �Yj�� 1 �
21�� 5 1p�
2 �i �Yjl� 01��\ 1p�
2r�(4 as 1�� is an integer

Thus, 1 ��2 ��4 can be considered to be Û in the worst case. Because of the double nested loops

in the pseudo-code, where the outer for-loop iterates 4 times, and the inner while loop iterates M
times in the worst case for each task % � . Hence, the time complexity of the algorithm is ��AD4 � ��Û9H
where 4 is the number of tasks and the complexity is pseudo-polynomial. In this thesis, Û stands
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for the cost of function WCRT AoP � ':� � H in the worst case and 1 �
2 �(4 is the worst case cost, where4 is the number of tasks in a periodic task set.

3.6.2 Computing Maximal Assignment from Minimal Assignment

Based on Theorem 4, all valid assignments for a task set schedulable by FPPT with predefined

regular priority are delimited by ������� and ���@	�� . This section presents an algorithm called Find-

MaxFromMin to calculate the maximal assignment for a task set schedulable by FPPT with pre-

defined regular priority by starting with the minimal assignment. FindMaxFromMin is similar to

the algorithm to compute the maximal assignment presented in [60], which starts its computation

with any valid assignment. However, the algorithm in [60] did not formally prove that its result is

maximal. In fact, FindMaxFromMin can compute the maximal assignment by starting with any

valid assignment. Hence, FindMaxFromMin rephrases the algorithm in [60].

The pseudo-code for algorithm FindingMaxFromMin is shown in Figure 3.6 (see Figure 4

in [60] for details). First, it assumes the task set is schedulable by FPPT and ���
��� is calculated

by using FindMinFromFPP (There is another approach to calculate ������� in Section 3.6.4), and

uses ���
�ä� as the starting point to calculate ���
	�� , which corresponds to lines 1 to 4. Denote the

tentative maximal assignment as � . Second, starting from the task with highest regular priority

to the task with lowest regular priority, for each task %�� , the algorithm increases the preemption

threshold ��� by one, which corresponds to line 7 in Figure 3.6. The worst case response time of

the potentially affected task %�¿ is recalculated, where ¨ is equal to the new preemption threshold��� . If %�¿ misses its deadline where P<¿µ58��� , then the increasing the preemption threshold of ���
is invalid. Then ��� is reduced to its immediately previous value and the next task is considered,

which corresponds to lines 5 to 14 in Figure 3.6. If %�¿ still can meet its deadline, the algorithm

repeats the increment and checks the worst case response time of the next potentially affected

task. For the same reason as the previous algorithm, the time complexity of the algorithm is��AD4 � �(Û�H .
Theorem 6

Algorithm FindMaxFromMin calculates the maximal valid assignment.

Proof:

1. The searching direction and the starting point are guaranteed to find a valid assignment.

First, starting from � ����� indicates each task can meet its deadline at the beginning. Second,
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1 for ( M��ë0 to 4 )
2 PE�>�eM ;
3 ���>�Ø���þ¥ ;
4 endfor
5 for ADML�ë0 to 4�H
6 while A-��� ¾ P­��H // still have space to increase the preemption threshold of %��
7 ����� ��� v 0 ; // increase the preemption threshold of %�� by 1
8 ¨u�Ø��� ;
9 if A � >���1ÍADP<¿�':��¿(H ¾ =�¿�H // affects %�¿
10 ���]�Ø���E½z0 ;
11 break;
12 endif;
13 endwhile
14 endfor
15 return � ;

Figure 3.6: Pseudo-code for FindMaxFromMin

from the task with highest regular priority to the task with lowest regular priority, when task%�� is considered, those tasks %&� , %�� , )()&) , %��-Ð�� are already schedulable. When increasing the

preemption threshold of %�� , it can only affect tasks %&� , %�� , )&)() , %��-Ð�� but it cannot affect tasks%��Y¸�� , %��Y¸�� , )&)() , %�� based on Corollary AFFECT. For task %�� itself, its worst case response

time cannot be worse than before as it gets less interference from tasks with higher regular

priorities. Then the algorithm checks the affected tasks %&� , %�� , )&)() , %��-Ðp� . If any of them,

say %´. misses its deadline, it implies that %�� contributes the maximal blocking time. Note

the preemption threshold of %´. is already maximized. Thus, it cannot be increased any

more. The only option is to decrease the preemption threshold of %�� to its immediately

previous value so %�� no longer blocks %´. . If all of the tasks are still schedulable, then the

new assignment is valid. After all tasks are checked, a valid assignment is obtained.

2. Suppose the algorithm returns � instead of � �@	�� . As � is valid, then � �
�ä� e¶�?e~� �@	��
based on Theorem 4. Suppose ¨ is minimal such that � ¿ ¾ � � K . When % ¿ is checked, the

algorithm checks � � K , � � K v 0 , � � K v G , )()() , � � K sequentially if each of them is valid for% ¿ . As both � and � �
	�� are valid and � � 5z� �U¥ for 0�\�Mr\�¨ v 0 , the algorithm finds that7(� � t , � �J( , )()&) , � � K=w t , � � K v * , � ¿�¸l� , � ¿û¸�� , )()() , � �E; is valid for /d\¶*]\�� � K v � � K
based on Lemma 1. Thus, after the algorithm finds � ¿ is valid, it continues to check until� � K . Then the final preemption threshold for % ¿ cannot be lower than � � K , resulting in� ¿ \�� � K , which is a contradiction. Thus, no such ¨ exists and �µ5 � �
	�� .
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Therefore, the algorithm returns � �
	�� . M
If � �
�ä� is substituted by any other valid assignment, the algorithm still works as the algorithm

only needs a valid assignment to start its computation. Based on Corollary AFFECT, increasing

the preemption threshold of any task % � cannot affect the worst case response time of any other

task with a lower regular priority lower than % � . Thus, starting with any valid assignment, increas-

ing the preemption threshold of any task % � cannot affect the schedulability of any other task with

regular priority lower than % � .
One weak point in algorithm FindMaxFromMin is that it depends on ������� or any other valid

assignment.

3.6.3 Computing Maximal Assignment from FPP

Based on Theorem 5 and 6, � �@	�� can be computed by starting from FPP if existing. If � �@	��
existing, � �
�ä� also exists based on Theorem 4. First, FindMinFromFPP calculates � �
�ä� if ex-

isting. Second, if � ����� exists and calculated, FindMaxFromMin can calculate � �
	�� by starting

from � �
�ä� . The sequential combinations of FindMinFromFPP and FindMaxFromMin form a

new algorithm called FindMaxFromFPP. For the same reason as the previous algorithm, the time

complexity of the algorithm is ��Ao4 � �(Û�H .
3.6.4 Computing Minimal Assignment from FPNP

Corresponding to the algorithm to compute � ����� by starting from FPP, a new algorithm to com-

pute � �
��� by starting from FPNP is presented, called FindMinFromFPNP, and its pseudo-code is

shown in Figure 3.7.

At the beginning, the algorithm sets the initial values for P and � , which corresponds to lines

1 to 4, where P � 5àM and � � 5àP � for 0 \`M_\^4 . Then the algorithm tries to calculate the

minimal preemption threshold for each task starting from the task with the lowest regular priority

to the task with the highest regular priority, which corresponds to lines 5 to 13. For any task % � ,
the algorithm first checks if its worst case response time is not greater than its deadline when

its preemption threshold is highest. If its worst case response time is greater than its deadline,

then there is no valid preemption assignment that can make % � schedulable and the algorithm

stops. Lines 6 and 7 perform this check. If the worst case response time is not greater than its

deadline, the preemption threshold of the task is decreased by one; note that this decreasing does
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not increase the worst case response time of any task with regular priority higher or lower than% � , it may only affect the worst case response time of % � . Thus, only the schedulability of % � needs

to be checked. If it is still schedulable, then repeat the process until either � � 5�P � and % � is still

schedulable, or % � is unschedulable. Lines 8 to 11 perform this computation. If % � is schedulable

and P � 5z� � , switch to the next task directly as there is no more space to decrease the preemption

threshold of the task. If % � is unschedulable, increase the preemption threshold of the task by one

and switch to the next task. Line 12 performs this check.

1 for ( M>�ë0 to 4 )
2 P<��� M ;
3 ���>�eP�� ; // starting from FPNP
4 endfor
5 for ( M>�e4 to 0 )
6 ���>� � >Í��1ÍAoPE�Õ'´���ÜH ;
7 if ( � � ¾ = � ) then return FAIL;
8 while ( ( ���r\�=�� ) and ( ��� õ PE� ) )
9 ���]�Ø���E½z0 ;
10 ���>� � >Í��1�ADPE�Õ'´���-H ;
11 endwhile
12 if ( ��� ¾ =�� ) then ���0�Ø��� v 0 ;
13 endfor
14 return � ;

Figure 3.7: Pseudo-code for FindMinFromFPNP

Theorem 7

Algorithm FindMinFromFPNP is guaranteed to find ���
�ä� if ������� exists.

Proof:

1. The searching direction and the starting point are reasonable. First, the starting point is���_5VP­� for 0z\àMb\à4 . When ���_5VP­� , if %�� cannot meet its deadline, it indicates

that the task is unschedulable by any preemption threshold and the algorithm stops based

on Lemma INVALID. Second, the searching direction is from the task with the lowest

regular priority to the task with the highest regular priority. Based on Corollary AFFECT,

changing the preemption threshold of any task with a higher regular priority cannot affect

the worst case response time of any task with a lower regular priority. In addition, when

task %�� is considered, all tasks with regular priorities lower than %�� can already meet their
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deadlines. Thus, the validity of � � for % � cannot affect the validity of all other preemption

thresholds of tasks with regular priorities lower than % � .
2. Suppose ������� does not exist but the algorithm returns assignment � . Based on the searching

direction, function WCRT AoPE�:':���YH is called for each task. As any assignment of a preemp-

tion threshold to a task does not affect the validity of tasks with lower regular priorities,

after the algorithm checks the task with highest regular priority, � is found to be valid.

Based on Theorem 4, ���
����e���e����
	�� , indicating that ���
��� exists, which is a contradic-

tion. Thus, the algorithm must return FAIL when ������� does not exist.

3. Suppose � ����� exists but the algorithm returns � . Similar to the previous step, � is valid

and � ����� ez��ez� �
	�� . Suppose ¨ is maximal such that � ¿
õ � � K . When % ¿ is checked,

its interference from tasks with higher regular priorities under � ¿ is not greater than under� � K but it has the same blocking time from a task with a lower regular priority. As � �����
is valid, the algorithm finds � ¿ is valid for % ¿ and the algorithm continues to check � ¿ ½z0 ,� ¿ ½~G , )&)() , � � K v 0 , because under any of these preemption thresholds, % ¿ gets shorter

interference than � � K from tasks with higher regular priorities but with the same blocking

time. After finding � � K is valid, then the final preemption threshold for % ¿ is not higher than� � K , resulting in � ¿ }z� � K , which is a contradiction to the assumption that ¨ is maximal

such that � ¿�õ � � K . Thus, no such ¨ exists and ��5z� ����� .
Therefore, the algorithm returns FAIL when ���
��� does not exist; otherwise, it returns ������� . M

Due to the double nested loops in the pseudo-code, where the outer for-loop iterates 4 times

and the inner while-loop iterates M times in the worst case, the time complexity of the algorithm

is ��Ao4 � �&Û9H where 4 is the number of tasks.

3.6.5 Computing Minimal Assignment from Maximal Assignment

As ���
	�� can be calculated by starting with ������� , it is reasonable to consider calculating �������
by starting with ���
	�� . For convenience, such an algorithm is called FindMinFromMax and its

pseudo-code is shown in Figure 3.8.

At the beginning, lines 1 to 4 set the initial values for P and � , where P<�­5¶M for 0U\�Mr\�4 and�b5z���
	�� . Then the algorithm checks each task from the task with lowest regular priority to the

task with highest regular priority, which corresponds to lines 5 to 13. For each task %�� , whenever
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its preemption threshold is still equal to or higher than its regular priority, the algorithm decreases

the preemption threshold of task % � by one. Note, decreasing the preemption threshold of task % �
cannot affect the worst case response time of any task with regular priorities lower than % � based

on Corollary AFFECT. As those tasks with regular priorities lower than % � cannot miss their

deadlines, then the decrement cannot affect the schedulability of those tasks with lower regular

priorities. In addition, the decrement cannot make the worst case response time of those tasks

with regular priorities higher than % � longer based on Formula 2.16. However, the worst case

response time of % � may be longer as it can get more interference from tasks with higher regular

priorities. Thus, only the worst case response time of % � is checked, which corresponds to lines 8

to 11. If task % � misses its deadline, the algorithm increases the preemption threshold by one and

switches to the next task.

1 for ( M��ë0 to 4 )
2 PE�>�eM ;
3 � � �Ø� �{¥ ;
4 endfor
5 for ADML�e4 to 0(H
6 while A-��� õ P<�§H // still have space to decrease the preemption threshold of %��
7 � � � � � ½¶0 ; // decrease the preemption threshold of % � by 1
8 if A � >���1ÍADP<��'´���YH ¾ =��ÜH
9 ���0� ��� v 0 ;
10 break;
11 endif;
12 endwhile
13 endfor
14 return � ;

Figure 3.8: Pseudo-code for FindMinFromMax

Theorem 8

Algorithm FindMinFromMax calculates ������� .

Proof: The proof is similar to the proof of Theorem 7. M
If ���
	�� is substituted by any other valid assignment, the algorithm still works as the algo-

rithm only needs a valid assignment to start its computation. Based on Corollary AFFECT,

decreasing the preemption threshold of any task %�� cannot affect the worst case response time of

any other task with a lower regular priority lower than %�� . Thus, starting with any valid assign-

ment, decreasing the preemption threshold of any task %�� cannot affect the schedulability of any
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other task with a regular priority lower than % � , and it cannot affect the schedulability of any task

with a regular priority higher than % � . Only the worst case response time of task % � is required to

be checked. For the same reason as the previous algorithm, the time complexity of the algorithm

is ��Ao4 � �&Û9H .
3.6.6 Computing Maximal Assignment from FPNP

Corresponding to the algorithm FindMinFromFPNP to compute the minimal assignment from

FPNP, it is reasonable to compute the maximal assignment from FPNP, resulting in an algorithm

called FindMaxFromFPNP, whose pseudo-code is shown in Figure 3.9. At the beginning, the

algorithm sets the initial values for the regular priorities and preemption thresholds, which cor-

responds to lines 1 to 4. Task set S stores a subset of tasks that are already schedulable, and it

is initialized to the empty set in line 5. Then from the task with highest regular priority to the

task with lowest regular priority, for each task %�� , it is appended to S, which corresponds to line

7. Appending %�� requires rechecking the schedulability of %&� , %�� , )()&) , %��-Ðp� , which corresponds

to lines 8 to 10. WCRT ADPÀ.n'´�N.('�3
H is similar to WCRT ADP�.N':�ò.�H , which computes the worst case

response time of %´. in subset S, with the corresponding regular priority and preemption thresh-

old. For each such task %´. , if it becomes unschedulable, then the preemption threshold of %�� is

set to the regular priority of %´. plus 1, i.e., set P�.�½s0 to ��� . After checking all tasks with regular

priorities higher than %�� , %�� is checked, which corresponds to line 11. The time complexity of

algorithm FindMaxFromFPNP is ��AD4 � �NÛ�H . Note, this algorithm does not need to start with a

valid assignment.

Theorem 9

Algorithm FindMaxFromFPNP is guaranteed to find ���@	�� if ���
	�� exists.

Proof: Let 3­¿{5~7�%&� , )&)() , %�¿ ; .
1. The searching direction, the starting point, and the incremental schedulability test for FPPT

are guaranteed to find a valid assignment if existing. First, the starting point is ����5^P­�
for 0¼\ØM_\ 4 and the subset of tasks schedulable is the empty set. Second, from the

task with highest regular priority to the task with lowest regular priority, when task %�� is

considered, those tasks in S are already schedulable. After %�� is appended to S, it may

affect the schedulability of all other tasks in S, which must be rechecked. For each task%´. in S (excluding %�� ), they are checked from highest regular priority to lowest priority, to
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1 for ( M>�ë0 to 4 )
2 P<��� M ;
3 ���>�eP�� ;
4 endfor
5 3h��s ;
6 for ADM>�ë0 to 4�H
7 32�e3u�d7�%�� ; ;
8 for ( *��ë0 to M v 0 )
9 if A � >Í��1�ADP�.(':�ò.('�3
H ¾ =Í.ûH then ���0� P�.ê½¶0 ;
10 endfor
11 if A � >Í��1ÍAoP � '´� � '�3�H ¾ = � H then return FAILURE;
12 endfor
13 return � ;

Figure 3.9: Pseudo-code for FindMaxFromFPNP

determine if % . is schedulable. If % . is unschedulable, it implies thats % � contributes the

maximal blocking time for % . because before % � was appended, % . was schedulable. Thus,

changing the preemption thresholds for tasks with regular priorities lower than % . but higher

than % � cannot affect the schedulability of % . . That is why only % � needs to be considered.

The options are either to decrease the preemption threshold of % � to the regular priority of% . plus 1 (set P . ½�0 to � � ) so % � cannot block % . or increase the preemption threshold of % . .
The latter is impossible because the preemption threshold of % . is either P � or increasing � .
makes other task(s) with regular priorities higher than P . unschedulable. When % � does not

affect any such % . , then its schedulability must be checked. When % � is unschedulable, then

no preemption threshold can make it schedulable as changing the preemption thresholds of

any such % . cannot help based on searching its preemption threshold is from the highest to

the lowest.

2. Suppose ���@	�� does not exist but the algorithm returns assignment � . Based on the search-

ing direction, when %�¿ is checked in 3�¿ , the algorithm first guarantees that %�¿ does not

affect the schedulability of all tasks other than %�¿ , i.e., %�¿ ’s preemption threshold must not

affect the schedulability of tasks with higher regular priorities. After the task with low-

est regular priority is checked, the algorithm finds that � is valid. Based on Theorem 4,���
����e¶��es���
	�� , indicating that ���
	�� exists, which is a contradiction. Thus, the algo-

rithm must return FAIL when ���
	�� does not exist.

3. Suppose ���
	�� exists but the algorithm returns � . Similar to the previous step, � is valid

63



and � ����� e���e�� �
	�� . Suppose ¨ is minimal such that � ¿ ¾ � � K . Let
^ ¿ 5T7(� � t , � �
( ,)()&) , � � K ; . Note,

^ ¿ is valid for 3 ¿ as the schedulability test for FPPT is incremental based

on Theorem 3 (see Section 3.4). Due to searching from P � to P ¿ , when % ¿ is checked in3 ¿ , the algorithm finds that
^ ¿ is valid for 3 ¿ and assigns � � K to % ¿ as � ¿ ¾ � � K . Thus,

the algorithm does not check � ¿ , which is a contradiction. Thus, no such ¨ exists and��5 � �
	�� .
Therefore, the algorithm returns FAIL when ���@	�� does not exist; otherwise, it returns ���@	�� . M

3.6.7 The Whole Picture

Based on the previous six sections, the relationships among those six algorithms is shown in

Figure 3.10.

� ����� � �
	��
FPP FPNPFPPT

①

②

③

⑥

⑤

④

① : FindMinFromFPP
② : FindMaxFromMin
③ : FindMaxFromFPP

④ : FindMinFromFPNP
⑤ : FindMinFromMax
⑥ : FindMaxFromFPNP

Figure 3.10: Relationships Among Six Algorithms

The diagram shows that FPP and FPNP are two boundary cases of FPPT. When a task set with

predefined regular priority is unschedulable by FPPT, neither � ����� nor � �
	�� exists. When a task

set with predefined regular priority is schedulable by FPPT, its � ����� can be calculated by starting

from either FPP or FPNP, which is indicated by algorithms ① and ④ respectively. In addition,
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whenever either � ����� or � ��	�� is known, the other can be calculated, which is indicated by algo-

rithms ② and ⑤ respectively. Furthermore, no algorithm to compute � �@	�� by starting directly

from FPP is presented. However, an algorithm to compute � �
	�� by starting indirectly from FPP

is presented, which is indicated by algorithm ③. Algorithm ③ is the sequential combinations of

algorithms ① and ②. An algorithm to compute � �
	�� by starting directly from FPNP is presented,

which is indicated by algorithm ⑥.

Among the six algorithms, algorithm ① is presented in [74] and algorithm ② is presented

in [60]. However, the validity of each algorithm is not formally proved. This thesis provides a

formal proof for the validity of each algorithm. Algorithms ➃, ➄, and ⑥ including the formal

proofs of their validity are contributions of this thesis.

3.7 Comparing FPPT with PIP

FPPT and PIP seem similar as both FPPT and PIP apply two priorities to schedule a task set. One

of the priorities is fixed and predefined. In PIP, the fixed-priority is called the static priority; in

FPPT it is called the regular priority. Both PIP and FPPT apply a fixed-priority to compete for the

processor. The other priority must be calculated. In PIP, the other priority is called the inherited

priority and it is dynamic; in FPPT it is the preemption threshold.

However, PIP and FPPT are different. First, once the preemption threshold of a task is calcu-

lated in FPPT, it is fixed during the execution of the task, while the inherited priority of a task in

PIP is determined dynamically during its execution. This is due to the property of PIP: if a task%.� with higher static priority is blocked by another task %�í with lower static priority because %�í
is using an exclusively-shared resource also needed by %.� , then %�í inherits the priority of %.� , i.e.,

the inherited priority of %�í is set to the static priority of %.� . In other words, %�í inherits the static

priority of %.� . This inheritance can be transitive if more ready tasks with higher static priorities

need to access the same exclusively-shared resource.

Second, the purpose of the dual-priority is different. In PIP, the inherited priority is used

to synchronize the concurrent accesses to exclusively-shared resource so that a task with higher

static priority can be blocked by at most one task with lower static priority when they access the

same exclusively-shared resource. Tasks still compete for the processor with their static priorities.

When a task starts to run, its running priority is upgraded to its inherited priority. Once the task

with lower static priority releases the exclusively-shared resource, its running priority returns to
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its immediately previous inherited priority. Similarly, in FPPT, the regular priority is used to com-

pete for the processor. When a task starts to run, its running priority is upgraded to its preemption

threshold. Only those tasks with regular priorities higher than the preemption threshold of the

currently running task can preempt the execution of the latter. Thus, FPPT applies dual-priority

to guarantee the deadlines of tasks that are independent. If tasks are not independent, then FPPT

does not work without an extra resource management protocol.

Third, in PIP the inherited priority guarantees that a task with lower static priority that is

already using an exclusively-shared resource cannot be preempted when the same resource is also

required by another ready task with higher static priority. (Deadlocks may still occur. Priority

ceiling protocol (PCP) guarantees that no deadlock can occur.) In FPPT, the preemption threshold

just controls the range of tasks that can preempt the execution of the currently running task.

3.8 Summary

This chapter proves that the FPPT schedulability test is robust under its critical instant. When a

task set is schedulable by FPPT with predefined regular priority, there may exist multiple valid

assignments, among which there are two special assignments: minimal and maximal. A partial

order relationship is defined among these valid assignments. This chapter shows that all valid

assignments are delimited by the minimal and maximal assignments. Effective algorithms to

compute both the minimal assignment and maximal assignment from FPNP are presented. In

addition, it is shown that the minimal (maximal) assignment can be calculated from the maxi-

mal (minimal) assignment and the corresponding algorithms are presented. All algorithms are

proved correct. It is shown that the maximal assignment can be calculated indirectly from FPP.

Furthermore, this chapter formally proves that results of algorithms FindMinFromFPP and Find-

MaxFromMin are minimal and maximal, respectively. The relationships among these algorithms

indicate that FPPT does generalize both FPP and FPNP and provide more flexibilities for real-

time scheduling.
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Chapter 4

Reservation-Based Algorithm

This chapter examines RBA to schedule periodic tasks with EDF, RMA, or FPPT while aperiodic

tasks are executed with the unused time left by periodic tasks. RBA is selected because it has

the potential to minimize the start-time variance among randomly arriving aperiodic tasks while

guaranteeing the deadlines of periodic tasks. The main contributions are two algorithms to cal-

culate the maximal size of the reserved bandwidth when RMA and FPPT are used, respectively.

Furthermore, the period of the periodic server is one time unit instead of one unit cycle. Hence,

within the reservation band, it is possible to start an aperiodic task in one time unit and continue

its execution every subsequent time unit, therefore providing immediate response.

4.1 Motivations

Based on the research result in Chapter 3, RMA is only a special case of FPP, which is a special

case of FPPT. This property implies that whenever an independent task set is schedulable by

RMA, it must also be schedulable by FPP. Of course, it must also be schedulable by FPPT. Thus,

the range of schedulable independent task sets of FPPT is larger than that of FPP, which is larger

than that of RMA. In addition, an independent periodic task set is schedulable if and only if the

processor utilization of the task set is not greater than 1 when EDF is used. As any independent

task set with processor utilization greater than 1 cannot be schedulable by any scheduler, then any

other schedulers cannot be better than EDF. Thus, the range of schedulable independent task sets

of EDF is the largest. In other words, when tasks are independent, EDF is stronger than FPPT

and FPPT is stronger than either FPP or FPNP. The range of schedulable independent task sets

are shown in Figure 4.1. Note, there exist task sets schedulable by both FPP and FPNP.
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FPP FPNP

FPPT

EDF

Figure 4.1: Schedulability Relationship among FPP, FPNP, FPPT, and EDF

Given an independent task set with processor utilization g , the maximal reservation in each

time unit is 0 v g . EDF can allow all unused time left by periodic tasks to be reserved evenly

in each time unit for servicing aperiodic tasks, resulting in a maximized reservation size. For

task sets schedulable by RMA, the reservation size cannot be better than that of EDF, which is

explained in detail in Section 4.3. For task sets schedulable by FPPT, it can obtain a reservation

size not worse than RMA. Therefore, if tasks are independent and the processor utilization is the

only consideration, EDF is the best choice, followed by FPPT and RMA.

However, in practice, conditions can vary. First, EDF is dynamic and has high run-time cost;

RMA and FPPT are both static and can perform schedulability tests offline. Second, tasks may not

be independent and resource management protocols are necessary and most well-known resource

management protocols are based on RMA. Thus, the combinations of RBA with these different

schedulers for periodic tasks make sense and have their practical usages. For example, when

resource management protocols are necessary, RMA with RBA should be considered. When the

processor utilization is the only consideration and the run-time cost can be ignored, EDF with

RBA is the best choice. When tasks are independent and the run-time cost cannot be ignored,

FPPT with RBA is better than either EDF or RMA as it can get a reservation size not worse than

RMA and avoid the high run-time cost of EDF. These are the reasons to explore the combinations

of RBA and EDF, RMA, and FPPT, respectively.

4.2 Location of Bandwidth Reserved

With bandwidth reservation, the processor time is categorized into two bands. The first one is

the bandwidth reserved. The second one is the time for periodic tasks. Part (a) in Figure 4.2
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shows this categorization. In part (a), the locations of the specific time segments for periodic

tasks and the bandwidth are unspecified, it only indicates the time ratio between periodic tasks

and bandwidth. The specific location of the periodic server depends on the rule to consume the

reservation [42]. A rule to consume a reservation specifies how the reservation is used. For exam-

ple, if the reservation is used by polling, then the reservation is available at the beginning of each

cycle of the periodic server. If the reservation is used by a deferrable server, then the reservation

can be kept as long as possible in each cycle. Under this consuming rule, the computation time

of the periodic server may be sliced over a period. Part (b) in Figure 4.2 shows the location of

the reserved bandwidth when polling is used. This chapter does not consider consuming rules.

Instead, it focuses on the computation of the maximal reservation size, which can be used by

different consuming rules.

(b)

(a)

Time

Time

Figure 4.2: Location of Bandwidth Reserved

4.3 RBA with EDF

When EDF is used to schedule periodic tasks in RBA, this type of RBA is called RBA EDF

for convenience. The algorithm to compute the maximal size of the reserved bandwidth for

RBA EDF is trivial. In RBA EDF, the periodic server is %
58AW0N'(0 v gUH , where g is the processor

utilization of an independent task set. The reason is an independent task set is schedulable by

EDF if and only if the processor utilization of the task set is not greater than 0 [45].
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4.4 RBA with RMA

RBA EDF can obtain a maximal reservation size when the processor utilization is the only con-

sideration. However, the processor utilization is not always the only consideration in practice.

First, periodic tasks may not be independent. For example, they compete for exclusively-shared

resources. Shared resources are usually managed by resource management protocols. Many well-

known resource management protocols are based on RMA [62] instead of EDF. Second, EDF has

a high dynamic scheduling cost, which must be calculated into its scheduling. Thus, EDF is

not always an appropriate choice in RBA. When RMA is used, the corresponding RBA is called

RBA RMA for convenience.

However, when RMA is used to schedule such a task set, it is schedulable if and only if
�

is

not greater than 0 , i.e.,
� \�0 (see Theorem ERMA2 in Section 2.1.1). It is shown that

� }~g ,

which is formally described in Lemma 4. Thus, whenever an independent task set is schedulable

by RMA, it implies 0µ} � }8g . Hence, the task set must be schedulable by EDF. In addition,

given a task set with gc\B0 , � can be greater than 0 . Thus, the task set may be schedulable by

EDF but unschedulable by RMA. For example, given tasks %��X5BADLE'&0(H , %&��5BADFE'�GNH , %���5BAW0&GE'�LNH ,� 5Ø0N)�/òJNLNLNL and
� ¾ 0 ; g 5·/E)�|òJNLNLNLNL and g õ 0 . The task set is schedulable by EDF but

unschedulable by RMA. Therefore, EDF is more powerful than RMA if the processor utilization

is the only consideration.

Lemma 4

Given periodic tasks %��p5BA§1p�W':>��kHÞ'(0U\�Mr\64 , 1q�X\�1���\s)&)()N\�1�� , then
� }zg .

Proof: Note, ga�{5 ��.:j�� P ú¤�ú , which is the processor utilization of tasks %&�('�%���'&)()&):'�%�� and g�� õgr� õ )()&) õ ga�Ä5�g .
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1. Calculate
� � A-�WH ,

� ��A§��Hy5 ��.:jl� >�.þ�a� ¢¤Þú �� based on Formulae 2.3 and 2.4

} ��.:jl� >�.þ� ¢¤�ú� as � �1 . � } �1 .5 �i .�jl� >�.1�.5 ga�
2. Calculate

� � , � �e5 ���Y�  �Þ¡À¢o£À¤�¥Y¦ � �:A-�WH based on Formula 2.5} ga� as
� ��A-�WHX}zga� in step 1

3. Calculate
�

, � 5 �
°�±  �´£À�-£E�9¦ � � based on Formula 2.8} �
°�±  �´£À�-£E�9¦ gq� as
� �r}zga� in step 25 ga� as g
� õ gê� õ )&)() õ gq� at start of proof5 g

M

4.4.1 Computing Reserved Bandwidth with RMA

When RBA RMA performs a schedulability test on a periodic task set [63], it takes ��	 as a param-

eter. The schedulability test algorithm can be used to calculate ������� by trial-and-error, which is

simpler than the algorithm in [63] to compute ������� . The corresponding pseudo-code in Figure 4.3

performs an iterative approach using the schedulability test from [63] to determine ������� . Note,

the tentative ������� acts as the parameter ��	 in the schedulability test. If the step size is small
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enough, then the result can be maximal. In fact, the trial-and-error approach can calculate � �����
quickly if the step size is refined by exponential increments or decrements during the calculation.

1 ���������e/E)�/ ;
2 �Þ�Z� ñ �(MX���t�e/E)�/E0 ; // assume a stepsize of 0.01
3 if ( !RBA( ������� ) ) then return -1; // the task set is unschedulable by RMA
4 while ( RBA( � ����� ) )
5 ��������� ��������½h����� ñ �&MX��� ;
6 endwhile
7 return ( � ����� v ����� ñ �&MX��� ); // reservation size

Figure 4.3: Computing ������� with Trial-and-Error

As mentioned, the schedulability test in [63] checks all jobs in one major cycle and performs

physical scheduling, which is not a good approach. The next section presents an algorithm to

calculate the maximal ������� .
4.4.2 Maximal Reserved Bandwidth with RMA

Based on Theorem ERMA2,
� � is the minimal processor utilization to schedule the periodic tasks%&� , %�� , )&)() , %�� using RMA. Each task %´. , 0µ\z*]\�M , cannot miss its deadline over [ /E':1�� ] if and

only if
� .Ã\ 0 . In each time unit from / to 1p� , 0 v � � is the amount of time left unused by

periodic tasks %&� , %�� , )&)() , %�� if
� � õ 0 . If this amount of time is used to service aperiodic tasks, it

is the bandwidth to be reserved. Furthermore, as L is the minimal value to guarantee the deadlines

of periodic tasks, 0 v � is the maximal amount of time that can be reserved in each time unit.

Hence, the bandwidth to be reserved is maximal while guaranteeing the deadlines of periodic

tasks scheduled by RMA. This observation is formally presented in the following theorem.

Theorem 10

Given periodic task set 3Ø5 79% � 5 A-1 � ':> � H Z�0s\ëMd\ë4 ; , 1 � \à1 � \y)()()�\à1 � , if it

is schedulable using RMA, then 0 v � is the maximal amount of processor time that can be

reserved in each time unit to service aperiodic tasks without missing the deadline of any periodic

task.

Proof: The proof is based on creating an extra periodic task %��X5BA-1��9'´>X��H
5BAW0N'&0 v � H . Consider

periodic task set 3>I�5f79%�� ; �S3 , 1��µ\~1a�Í\~1��
\B)&)()�\~1�� . Thus, Theorem ERMA2 can be

applied directly on 3LI .
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1. If only task % � is considered, based on Formulae 2.8, 2.3, 2.4, 2.7,
� I 5 � I� 5 � I� A§1 � HÅ5���  ã�¤   å¤   5 P  Q¡X¢.£  £  8¤¤   5 P  ¤   5 > � 5 0 v � . As tasks % � , % � , )&)() , % � are schedulable by

RMA, based on Theorem ERMA2, / õ � \s0 , thus,
� IE5�0 v � õ 0 . Based on Theorem

ERMA2, the task set composed of only task % � is schedulable by RMA.

2. Consider tasks %�� , %&� , %�� , )&)() , %�� for 0[\BMÖ\84 . As tasks %&� , %�� , )()&) , %�� are schedulable

by RMA and RMA is robust, task set 3­�Å5Ø7�%&� , %�� , )()&) , %�� ; is schedulable by RMA for0U\�M
\�4 . Based on Theorem ERMA2, the corresponding value of
�

, denoted as
� ¯(¥ , for3�� is not greater than 0 for 0�\zM�\h4 . Then

� ¯(¥r5 �@°�±  �:£�.�£À�Y¦ � . for 0�\sM�\h4 . Obviously,� ¯&¥r\ � \s0 for 0Ö\6Mr\�4 .�
I� A§��Há5 �i.:j�� >�.þ� � �1 . � based on Formula 2.35 >��X�­� �1�� �{½ �i.:j�� >�.þ�q� �1�. �5 > � �­� �0 �U½

� � A-�WH based on Formula 2.35 A�0 v � Hr�Þ�p½ � ��A-�WH� I� A-�WHV5
�
I� A§��H� based on Formula 2.45 AW0 v � Hr����½ � ��A§��H�5 AW0 v � Hr���� ½

� ��A§��H�5 AW0 v � H�½ � � A-�WH based on Formula 2.4� I� 5 ���Y�  �Þ¡À¢o£À¤�¥Y¦ � I� A-�WH based on Formula 2.55 ���Y�  �Þ¡À¢o£À¤�¥Y¦ A:AW0 v � H�½ � �:A-�WH:H5 AW0 v � H�½ ���Y�  �Þ¡À¢o£À¤�¥Y¦ � � A-�WH5 AW0 v � H�½ � � based on Formula 2.5
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� I 5 �
°n±  ��£�.�£E�Y¦ � I. based on Formula 2.85 �
°�± Ï � I� ' �
°�±  �:£�.�£À�Y¦ � I. Ñ5 �
°�± Ï � I� A-1��ûH�'¼�
°�±  �:£�.�£E�Y¦ � I. Ñ5 �
°�± Ï 0 v � '¼�
°�±  �:£�.�£E�Y¦ A:AW0 v � Hp½ � .ûH�Ñ5 �
°�± Ï 0 v � '�AW0 v � H�½ �
°�±  �´£�.�£E�k¦ � . Ñ5 �
°�±pA�0 v � '�AW0 v � H�½ � ¯(¥DH as
� ¯(¥l5 �
°n±  �:£�.�£E�Y¦ � .5 �
°�±pA�0 v � '&0 v � ½ � ¯(¥ÕH\ �
°�±pA�0 v � '&0(H as

� ¯(¥ \ � \¶05 0 as / õ � \s0
Based on Theorem ERMA2, periodic tasks %�� , %&� , %�� , )()() , %�� are schedulable by RMA for0U\�M
\�4 . When Mq5s4 , tasks %�� , %&� , %�� , )()&) , %�� are schedulable by RMA.

If task %�� acts as the periodic server to service aperiodic tasks, then in each time unit, 0 v � amount

of time can be reserved to service aperiodic tasks. As L is the minimal processor utilization

required to schedule the periodic task set, 0 v � is the maximal amount of processor time to be

reserved to service aperiodic tasks in each time unit. Thus, ��������5�0 v � is maximal. M
The following example demonstrates the application of Theorem 10. Given tasks %&� 5ADL<'(0N)�GòH , %���5ØADFE'&0N)�FNH , and %��
5eADKE'�/E)�KNH , � 5·/E)�| , this task set is schedulable by RMA based

on Theorem ERMA2. Based on Theorem 10, 0 v � 5B0 v /E)�|U5~/E)Y0 is the maximal amount of

time in each time unit that can be reserved to service aperiodic tasks. The period of the periodic

server is 0 . The scheduling result of RBA RMA with reservation size ��	X5�/<)Y0 is shown in Fig-

ure 4.4. Each time unit has only 0.9 amount of processor time to service periodic tasks. At time

0, +��:, ��'�+E�û, � and +���, � are ready, +��:, � has highest priority and is chosen to run followed by +E��, � .
At time 3, +��:,³� is ready and it has higher priority than +���, � . After +��:,³� finishes at time 4.4, +��Þ, �
starts to run and finishes at time 5. As all jobs at the first critical instance can finish within their

deadlines, the tasks are schedulable by RBA RMA with ��	�5s/<)Y0 .
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Figure 4.4: Scheduling Result of RBA RMA with Maximal �������
4.5 RBA with FPPT

In the previous two sections, RBA EDF and RBA RMA are presented. As FPPT generalizes

FPP and FPNP, resulting in a larger range of schedulable task sets than both FPP and FPNP,

this section examines the combination of FPPT and RBA, called RBA FPPT for convenience.

Unlike RBA EDF and RBA RMA where the exact maximal size of the reserved bandwidth can

be computed with simple formulae directly, the computation of the maximal size of the reserved

bandwidth for RBA FPPT is composed of three steps. First, a schedulability test for FPPT is

performed on a given task set. If the task set is unschedulable, then no reservation is available in

each time unit. Second, when the task set is schedulable, a trial-and-error algorithm is presented

to compute a reservation size when a valid assignment of the original task set is known. Third,

starting from the maximal assignment of the original task set, search for a valid assignment under

which the maximal reservation size can be calculated. Again, the regular priority of the periodic

task set is assumed to be predefined.

4.5.1 Priority Range

Suppose periodic tasks are %&� , %�� , )&)() , %�� and the periodic server is %�� , where the period of the

periodic server is 1. As the reservation must be guaranteed at each period, the priority range for

the periodic server and other periodic tasks are assumed to satisfy the following two conditions.

1. The periodic server has a regular priority higher than any other periodic tasks.
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2. Any of the other periodic tasks cannot have a preemption threshold equal to or higher than

the regular priority of the periodic server.

The first condition implies that the periodic server cannot get any interference from any other

periodic tasks, i.e., it cannot be preempted by any other periodic tasks. In addition, the periodic

server also has the highest preemption threshold as the highest preemption threshold is equal to

the highest regular priority. The second condition guarantees that the periodic server can preempt

the execution of any other periodic tasks.

As the larger a numeric value, the lower the priority it represents, it is reasonable to assign 0

to the regular priority and preemption threshold of the periodic server. The regular priorities and

preemption thresholds of periodic tasks are in the range �Y0N'�4<� .
The periodic server %�� and the given periodic tasks %&� , %�� , )()&) , %�� form a new task set. For

convenience, the new task set is called an extended task set. Assume a concatenation operator±
, which does two things: it merges two sets and keeps the order of the elements. For example,79/ ; ± 7�0N'�GE'�L ; = 79/ , 0 , G , L ; . As the periodic server has highest regular priority and preemption

threshold / , i.e., PE��5^/ and ���µ5^/ , the regular priority assignment for the extended task set

is denoted as 79P<� ; ± P , where P is the regular priority assignment for the original task set.

Similarly, when an assignment � for the original task set is given, the corresponding assignment

for the extended task set is denoted as 7(��� ; ± � .

4.5.2 Original Task Set and Extended Task Set

Given a task set with regular priority assignment P , the corresponding extended task set has a

regular priority assignment 79/ ; ± P for an arbitrary reservation size. For any valid assignment �
of the original task set, 79/ ; ± � may not be a valid assignment for the extended task set under

the regular priority assignment 79/ ; ± P . The reason is the interference from the periodic server

can affect all other periodic tasks. Thus, all periodic tasks must be rechecked in the extended task

set. Consider the relationship between the valid assignments for the original task set and the valid

assignments for the extended task set, which can formally be specified in the following lemma.

Lemma 5

Let
^c²

be the set of valid assignments for the original task set and
^ m be the set of valid assign-

ments for the extended task set with an arbitrary reservation size for the periodic server. Define^ 5~7N7�/ ; ± �dZ q �dô ^c² ; . ^ mJ³ ^ .
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Proof: q � I ô ^ m , � I can be denoted as 79/ , � � , � � , )&)() , � ��; . As � I is valid for the extended task

set, then it must be valid for the extended task set when the reservation size of the periodic server

is decreased. The reason is the FPPT schedulability test is robust based on Theorem 3. Thus, if a

task set is schedulable by FPPT under some regular priority assignment and preemption threshold

assignment, decreasing the computation time of a task cannot affect the schedulability of the task

set.

When the reservation size of the periodic server is decreased to / , the extended task set

degrades to the original task set. Thus, the regular priority and preemption threshold for the

periodic server can be ignored and 7&� � , � � , )()() , � �E; is valid for the original task set. Note, 7�/ , � � ,� � , )()() , � �E; ô ^ based on the definition of
^

, resulting in � I ô ^ m . Therefore,
^ m ³ ^ . M

Lemma 5 shows that all possible assignments for the extended task set are in
^

and indicates

that for any valid assignment 79/ , � � , � � , )&)() , � �<; for the extended task set, the assignment 7(� � , � � ,)&)() , � �E; is valid for the original task set. Given a valid assignment � in the original task set, 79/ ; ±� is a candidate valid assignment for the extended task set depending on the reservation size. One

exhaustive approach is to check each assignment � in
^ ²

, calculate the maximal reservation size

under assignment 7�/ ; ± � in the extended task set, and choose the assignment � under which

the maximal reservation size can be obtained. However, this exhaustive approach based on the

original task set is impractical because © ^ ² © may be 40\ in the worst case.

On the other hand, another approach is to perform the computation directly on the extended

task set instead of the original task set. As 0 v g is the maximal reservation size for any scheduler,

one naive approach is to perform a binary search over the range ��/E'(0 v gX� for the maximal

reservation size. While this approach is trivial, its practical usage is limited. Such an approach is

not discussed further.

4.5.3 Reservation Size under a Valid Assignment

Given a periodic task set with predefined regular priority, a FPPT schedulability test can be per-

formed based on Chapter 3. If the task set is schedulable, there may exist multiple valid as-

signments. The minimal and maximal assignments can be calculated effectively based on Theo-

rems 5, 7, and 9. As well, additional valid assignments can be calculated. Furthermore, Lemma

Valid and Lemma 5 provide support to compute the maximal reservation size effectively, i.e,

without checking each valid assignment in
^´²

exhaustively. Before further discussion, an algo-

rithm to compute the maximal reservation size in the extended task set is presented when a valid
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assignment in the original task set is known.

Suppose a valid assignment for the original task set is � and the regular priority assignment

is P . The corresponding preemption threshold assignment and regular priority assignment for the

extended task set are � I and P I , where � I 5�79/ ; ± � and P I 5�79/ ; ± P . Computing a reservation

size starts with a small candidate value >�� . The algorithm proceeds in a straightforward manner

using trial-and-error and is shown in Figure 4.5. In the extended task set, due to interference

from the periodic server, all periodic tasks are affected and their worst case response time must

be re-calculated. Whenever all periodic tasks can still meet their deadlines, >X� is increased by a

step size until some task cannot meet its deadline. For example, the step size can be set to 0.01.

Then the final result >X� v ����� ñ �&MX��� is the reservation size. When some task misses its deadline,

denote it as %�� . Let %´. be the task contributing the maximal blocking time for %�� . The algorithm

returns õ >X� v �Þ�Z� ñ �(Mµ���N'�%��:'�%´. ¾ . Note, if more than one task misses its deadline, the algorithm

returns the one with the highest regular priority and its corresponding %´. ; %´. may not exist, e.g.,

when %�� is the task with the lowest regular priority or no task exits with preemption threshold

equal to or higher than P<� .
1 PcIn�à79/ ; ± P ;
2 � I �à79/ ; ± � ;
3 >X�¶�e/ ;
4 �Þ�Z� ñ �(MX���U5s/E)�/E0 ;
5 while A§��Û8·T�&H
6 >X�¸� >X�ê½h�Þ�Z� ñ �(Mµ��� ;
7 for ADMi� 0 to 4�H
8 if A � >���1ÍADP I� '´� I� H ¾ =��ÜH then
9 compute %´. such that �ò.Å\�PE� õ PÀ. and >�. is maximal;
10 return õ >X� v ���Z� ñ �(Mµ���N'�%��:'�%´. ¾ ;
11 endif
12 endfor
13 endwhile

Figure 4.5: Pseudo-code for Computing Reservation Size

The pseudo-code assumes a valid assignment � from the original task set exists. For conve-

nience, this algorithm is called ���6�;�(Û8¹�¹N�WMXº�4�3�Mµ����A-��H . As the number of iterations of the while-

loop is �´Ð o	D¢ mÜâ;	o�¼»Wm in the worst case, the time complexity of this algorithm is ��A �:Ð o	D¢Ym-â;	D��»Wm �Õ4��ÕÛ�H , which

is pseudo-polynomial, where 4 is the number of tasks and Û (see page 55) is the cost of calling

function

� >Í��1�ADPcI� ':�cI� H .
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4.5.4 Computing Maximal Reservation Size with � ����� and � �@	��
The heuristic for the algorithm to compute the maximal reservation size in the extended task set by

checking some valid assignments in the original task set is based on considering the relationship

between the reservation sizes and the valid assignments in the original task set.

For the boundary case ���
�ä� , a task with a higher regular priority gets minimal blocking time

from another task with a lower regular priority, implying that a task with a higher regular priority

may potentially get its minimal response time. However, a task with a lower regular priority

may potentially get its maximal response time when its preemption threshold is minimal, which

indicates that it gets more interference from tasks with higher regular priorities. When a periodic

server is appended, a task with lower regular priority is more likely to miss its deadline as it

gets more interference from tasks with higher regular priorities. By intuition, under ������� , the

reservation size may not be maximal.

For the other boundary case ���
	�� , a task with a lower regular priority gets minimal inter-

ference from the tasks with higher regular priorities while it may get maximal blocking time

from another task with lower regular priority. However, if the saved interference from tasks with

higher regular priorities is greater than the increased blocking time, then the worst case response

time of a task with a lower regular priority may potentially be minimized. At the same time, the

worst case response time of a task with a higher regular priority may potentially be maximized.

When a periodic server is appended, a task with a higher regular priority is more likely to miss

its deadline. By intuition, under ���
	�� , the reservation size may not be maximal.

For example, given tasks %&�þ5BADFN/<'(0(FNH , %��X5·AW0(/N/<'(0(/NH , %��Å5 A�0(FN/E'&0(FNH , %.�Å5BADGN/ò/E'�LN/òH , and%QD�5ØADGNFN/<':I�FNH , ���
���b5`7�0N'�GE'�LE'WI�':F ; and ���
	��µ5f7�0N'&0N'(0ò'(0N':G ; , as well � 5`7�0N'&0N'(0ò':GE':G ; is

also valid. Let � I�
�ä� 5 79/ ; ± ������� , � I�@	�� 5 79/ ; ± ���
	�� , � I 5`7�/ ; ± � , and P I 5 79/ ; ± P .

Based on algorithm ���6�;�(Û8¹�¹N�WMXº�4�3�Mµ����A-��H , the corresponding reservation sizes under assignments� I����� , � I�
	�� , and � I are � I�
��� 5�/E)�/NC , � I�
	�� 5�/E)Y0 , and � I 5B/E) 0�I , respectively. This example

shows that the maximal reservation may occur between ������� and ���
	�� .
There may exists multiple valid assignments in the original task set under which the maximal

reservation size can be calculated. For the previous example, under assignments 7�0 , G , L , L ,I ; , 7�0 , G , L , L , L ; , and 7�0 , G , L , L , G ; , the maximal reservation is also /E)Y0�I . Among these

valid assignments, the maximal assignment is preferred as it makes the number of preemptions

minimal.

As the maximal reservation size may not occur at � �
�ä� or � �@	�� , it seems that there exists
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a balance point located between � �
��� and � �
	�� , inclusively. The key point in finding such a

balance point between � �
�ä� and � �
	�� is to decrease the preemption thresholds of those tasks

with lower regular priorities from � �
	�� . Note, lowering the preemption threshold of a task may

have two effects. First, it may potentially get a longer worst case response time for the task itself

as it may get more interference from tasks with higher regular priorities. Second, those tasks with

regular priorities higher than the task may potentially get a shorter worse case response time as

they may get less blocking time from some task with a lower regular priority. Thus, lowering

the preemption threshold of a task with a lower regular priority results in the worst case response

time of a task with lower regular priority potentially lengthening and the worst case response time

of a task with higher regular priority shortening. Consider those tasks in the previous example,

their worse case response times under � �@	�� , � , � ����� are shown in Figure 4.6.
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Figure 4.6: Boundary Cases and Balanced Point

In the diagram, the dashed line stands for the worst case response time of all tasks in the

task set under assignment � �
	�� , similarly the dotted line for assignment � and the solid line for
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assignment � �
��� . The diagram indicates the tasks with higher regular priorities under � �
�ä� get

shorter worst case response times than � and � �
	�� , while the tasks with lower regular priorities

under � ����� get longer worst case response times than � and � �@	�� . Compare � �
	�� with � , the

latter is obtained by decreasing the preemption threshold of % � in � �@	�� . The diagram indicates

that the worst case response times for % � , % � , and % � under � are not worse than under � �
	�� ; the

worst case response time of % � and % D under � are not better than under � �
	�� .
Computing such a balance point starts from the maximal assignment ���
	�� . As the preemp-

tion threshold of each task under ���
	�� is already maximized, increasing the preemption threshold

of any task is already impossible. Thus, during the computation, it is important to only decrease

the preemption threshold of tasks. At the same time, oscillation of preemption threshold of a task

up and down is avoided. The computation is based on algorithm ���;�6�(Û8¹�¹N�WMXº�4�3�MX����A-��H and its

result õ Ô�¹�Î����N'�%��Ò'�%´. ¾ .

Suppose calling function ���;�6�(Û8¹�¹N�WMXº�4�3�MX����A-� �
	�� H returns õ Ô�¹�Î����N'�% � '�% . ¾ . The result

indicates that the maximal reservation size is Ô�¹�Î���� . If a larger reservation size is used, then % �
is the task with highest regular priority under � �
	�� that misses its deadline; and % . contributes

the maximal blocking time for % � . What is the approach to allow % � to continue to meet its

deadline under a larger reservation size? There are two possible options to allow % � to meet its

deadline. First, % � ’s preemption threshold could be increased, resulting in less interference from

tasks with higher regular priorities. Second, the preemption threshold of some task with a lower

regular priority could be decreased, resulting in less blocking time for % � . Because the starting

assignment is the maximal assignment � �
	�� , increasing the preemption threshold of any task is

impossible. The only option is decreasing the preemption threshold of the task contributing the

maximal blocking time. Consider these results for õ Ô�¹�Î����ò'�% � '�% . ¾ .

1. %´. does not exist. This case is trivial. %�� cannot be blocked by any task because no %´.
contributes blocking time for %�� . Hence, the only option to allow it to meet its deadline is to

increase its preemption threshold, which is impossible because of ���
	�� . Thus, no further

increment of the preemption threshold for %�� can be made. Thus, no better result can be

obtained and ���@	�� is the maximal assignment under which the maximal reservation size

can be obtained. This property is formally specified in the following lemma.

Lemma 6

If calling function ���6�;�(Û8¹�¹N�WMXº�4�3�Mµ����A-� �
	�� H returns õ Ô�¹�Î����N'�% � '�% . ¾ , where % . does

not exist, then � �
	�� is the maximal assignment under which the maximal reservation size

can be obtained.
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Proof: For any other valid assignment �B5y7&� � , � � , )&)() , � �E; , let ��� be the maximal

reservation size under � . Suppose ��� ¾ Ô�¹�Î���� . Consider the extended task set under

assignments � and � �
	�� with reservation size ��� . As � is valid, based on Theorem 4,�Åec� �
	�� . Hence, � � K \c� ¿ for 0 \c¨¶\^4 . Under both assignments, % � cannot be

blocked by any task as % . does not exist. Furthermore, % � cannot get worse interference from

tasks % � , % � , % � , )&)() , % �-Ð�� under � �
	�� than under � with reservation size ��� as � �U¥ \s� � .
Thus, the worst case response time of % � under � �@	�� cannot be worse than under � with

reservation size ��� . This is a contradiction as ��� ¾ Ô�¹�Î���� and Ô�¹�Î���� is the maximal

reservation under � �
	�� , implying that any reservation larger than Ô�¹�Î���� causes % � to

miss its deadline under � �
	�� . Thus, the assumption ��� ¾ Ô�¹�Î���� is incorrect, resulting

in ���Ö\�Ô�¹�Î���� .
Clearly, ���
	�� is the maximal assignment under which the maximal reservation size can be

obtained. M
2. %´. exists, but ��� úµ\�PE� , implying that the minimal threshold assignment of task %´. is not

lower than the regular priority of task %�� . As increasing the preemption threshold of %�� is

impossible because of ���
	�� , the only option is to decrease the preemption threshold of%´. so the blocking time for %�� can be shorter. But this does not work because ���rú�\BPE� .
Hence, %´. ’s preemption threshold cannot be lowered sufficiently so it no longer blocks %�� .
Thus, no better result can be obtained and ���
	�� is the maximal assignment under which

the maximal reservation size can be obtained. This property is formally specified in the

following lemma.

Lemma 7

If calling function ���6�;�(Û8¹�¹N�WMXº�4�3�Mµ����A-���
	��(H returns õ Ô�¹�Î����N'�%��Ò'�%´. ¾ , where %´. exists

with ���rúÅ\�P<� , then ���
	�� is the maximal assignment under which the maximal reservation

size can be obtained.

Proof: For any other valid assignment �B5y7&� � , � � , )&)() , � �E; , let ��� be the maximal

reservation size under � . Suppose ��� ¾ Ô�¹�Î���� . Consider the extended task set under

assignments � and � �
	�� with reservation size ��� .
(a) As � is valid, based on Theorem 4, � ����� e���e�� �
	�� , resulting in � � K�\�� ¿ \�� � K

for 0
\s¨d\s4 . Thus, � �Xú \s� . \~P � due to � �rú \sP � . Based on Formula 2.16, % .
can block % � under assignments � �@	�� and � . As % . contributes the maximal blocking

time for % � under � �
	�� , it also contributes the maximal blocking time for % � under �
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based on Formula 2.16. Hence, under both assignments � �
	�� and � , % � gets the same

maximal blocking time from % . .
(b) Now consider the interference for %�� under ���
	�� and � . %�� cannot get worse inter-

ference from tasks %�� , %&� , %�� , )&)() , %��-Ðp� under ���
	�� than under � because %�� gets its

smallest interference from tasks with higher regular priorities under ���@	�� .
Thus, the worst case response time of %�� under ���@	�� cannot be worse than under � with

reservation size ��� . This is a contradiction as ��� ¾ Ô�¹�Î���� and Ô�¹�Î���� is the maximal

reservation under ���
	�� , implying that any reservation size larger than Ô�¹�Î���� causes %�� to

miss its deadline under ���
	�� . Thus, the assumption ��� ¾ Ô�¹�Î���� is incorrect, resulting

in ���Ö\�Ô�¹�Î���� .
Clearly, ���
	�� is the maximal assignment under which the maximal reservation size can be

obtained. M
3. % . exists and � �rú ¾ P � , implying that the minimal preemption threshold of task % . is lower

than the regular priority of task % � . Let ��5 7(� � t , � �
( , )&)() , � �Xú w t , P � ½T0 , � �Xú x t , )()() ,� � u ; . If � is a valid assignment under which a better reservation size can be obtained, then

a better choice is found and further checking is required. The following lemma indicates

that choosing such a better choice cannot exclude the maximal assignment under which

maximal reservation size can be obtained.

Lemma 8

Assume algorithm ���6�;�&Û,¹�¹ò��MXº�4�3�Mµ����A§���
	��(H returns õ Ô�¹�Î����ò'�%��Õ'�%´. ¾ , where %´. exists

with ��� ú ¾ PE� . Let assignment ��5~7&��� t , ���
( , )()&) , ����ú w t , PE�N½�0 , ����ú x t , )()&) , ���{u ; . If �
is a valid assignment under which a better reservation size can be obtained, then any valid

assignment � I under which a better reservation size than � can be obtained, must satisfy� I e�� .

Proof: As � I is valid, � I e����@	�� based on Theorem 4, resulting in � I� K \���¿ for 0�\�¨�\4 . As ��¿Ö5s���ÆK for 0Í\s¨[\z4 but ¨gl56* , hence � I¿ }z��¿ for 0�\z¨d\h4 but ¨Çl5z* . The

remainder of the proof is to show � I. }��ò.þ5sP<�À½¶0 .
Let ��� and ��� I be the maximal reservation sizes under � and � I , respectively. Then ��� I ¾Ô�¹�Î���� because ��� I ¾ ��� and ��� ¾ Ô�¹�Î���� . Suppose � I. õ �ò. , which implies � I. õPE��½¶0 . Consider the worse case response time of %�� under assignments � I and ���
	�� with

reservation size ��� I . Under both assignments, %�� gets the same maximal blocking time
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from % . because � ��ú \~� I. õ P � ½~0 . As � �{¥ \~� I� , % � gets not worse interference from

tasks with higher regular priorities under � �@	�� than under � I . Therefore, under assignment� �@	�� with reservation size ��� I , % � can meet its deadline and ��� I ¾ Ô�¹�Î���� . This is a

contradiction as any reservation larger than Ô�¹�Î���� causes % � to miss its deadline under� �@	�� . Therefore, � I. } � . , resulting in � I e � . M
4. %´. exists and ���rú ¾ PE� . Let ��5 7(��� t , ���
( , )()() , ����ú w t , P<�p½�0 , ����ú x t , )()&) , ���Uu ; . A

better reservation size cannot be obtained under � . The reasons why a better reservation

size cannot be obtained are as follows.

(a) � may be invalid. When � is invalid, a better reservation size cannot be obtained, of

course.

(b) %´. itself is affected due to a lower preemption threshold in � than in ���
	�� , resulting

in more interference.

(c) %�� is no longer blocked by %´. , but it may be blocked by another task with the same

blocking time as %´. .
(d) % ¿ would miss its deadline where M�½z0Ö\�¨_\]* v 0 .

No matter which case occurs, to get a better reservation size, the preemption thresholds of

tasks %�� , %&� , %�� , )()&) , %��-Ð�� are not required to change based on Lemma Valid. In addition,

only the preemption thresholds of tasks %�� , %��k¸l� , )()&) , %�� should be modified. An algorithm

called
ÿ MÕ4cÈ ö �Þ�Õ���(ÛEA-� , Ô�¹�Î����&H is used to compute the next assignment under which a

better reservation size may be obtained, which is shown in Figure 4.7.

Algorithm
ÿ MÒ4cÈ ö ���Ò�Z�&ÛÀA§�ê'�Ô�¹�Î����(H performs the 4 checks. At beginning, the algorithm

sets 79/ ; ± 7&����':�E�('&)()&):':���-Ðp� ; to �cI and uses a reservation size Ô�¹�Î�����½?�Þ�Z� ñ �(Mµ��� , which

is the minimal reservation size better than Ô�¹�Î���� . The algorithm tries to schedule %�� , %&� ,%�� , )&)() , %��-Ð�� , %�� with assignment �cI ± 7(���U¥ ; . If any task %�æ with higher regular priority is

unschedulable, then �cI� is set to PcIæ ½_0 . After checking all tasks with regular priorities higher

than %�� , if %�� misses its deadline, then no better reservation size can be made and ���@	�� is the

maximal assignment under which the maximal reservation size can be calculated. The loop

is repeated to add the next task until all tasks are checked. If the task set is still schedulable

at the end, then the new assignment is returned. Due to the two nested for-loops, the time

complexity of the algorithm is ��Ao4 � �DÛ�H , where 4 is the number of tasks and Û (see page 55)

is the cost of calling function

� >���1ÍADPcIæ '´�cIæ '�3
H or

� >Í��1�ADPcI¿ ':�cI¿ '�3�H .
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1 �Þ�Z� ñ �(MX���É�e/E)�/E0 ;
2 P I �à79/ ; ± P ;
3 �cI��à79/ ; ± 7(����':�E�&'()()&):':���-Ð�� ; ;
4 % � �áAW0N'����r½h�Þ�Z� ñ �(Mµ���(H ;
5 3Ê�à7�%��9'�%&�û'�%��('&)()()´'�%��-Ð�� ; ;
6 for AD¨n�eM to 4�H do
7 3?�e3u�Ã79%�¿ ; ;
8 �dIc�Ø�cI ± 7(����K ; ;
9 for A ð �e/ to ¨ v 0(H
10 if A � >Í��1ÍADP´Iæ '´�dIæ '�3
H ¾ =�æ�H then �cI¿ �ePcIæ ½¶0 ;
11 endfor
12 if A � >���1ÍADP I¿ '´� I¿ '�3�H ¾ =�¿�H then return õ?Ë ¹�óH�;�ò':� I ¾ ;
13 endfor
14 return õ ��Û8·T�ò':�cI ¾ ;

Figure 4.7: Pseudo-code for FindBetter

Compared to algorithm FindMaxFromFPNP in Section 3.6.6 (see Figure 3.9 on page 63),

calling function
ÿ MÒ4cÈ ö ���Ò�Z�&ÛÀA§� , Ô�¹�Î����(H tries to compute the maximal preemption thresh-

olds for tasks %�� , %��Y¸�� , )&)() , %�� with the constraints that the reservation size is Ô�¹�Î����Å½
����� ñ �&MX��� and the preemption thresholds for tasks %�� , %&� , %�� , )&)() , %��-Ð�� are known. The reason

is as follows. When task %�¿ is considered for Mr\z¨�\�4 , its initial preemption threshold is��� K , which is maximal. As a result, task %�¿ may block tasks with higher regular priorities.

Lines 9 to 11 check each task %�æ with higher regular priority for /�\ ð \�¨ v 0 . If %�æ can-

not meet its deadline, the reasons is that %�æ is blocked by %�¿ as before %�¿ is appended, tasks%�� , %&� , %�� , )()() , and %�¿(Ð�� are schedulable. Thus, the preemption threshold of %�¿ is adjusted

to P<æÖ½~0 . After all tasks with higher regular priorities are checked, if %�¿ is schedulable,

then tasks %�� , %&� , %�� , )()&) , and %�¿ are schedulable; otherwise, they are unschedulable. Note,

during the computation, the preemption threshold of %�¿ is never decreased except when it

blocks some task that misses its deadline. Thus, the preemption threshold of %�¿ is maximal

under the constraints.

Assume calling function ���;�;�&Û8¹�¹ò��Mµº94�3
MX����A-���@	��(H returns õ Ô�¹�Î����N'�%���'�%´. ¾ , where %´.
exists with �ò. ¾ PE� . Let �S5T7(��� t , ���
( , )&)() , ���Xú w t , PE�E½s0 , ����ú x t , )()&) , ���Uu ; ( � may be

invalid). A better reservation size cannot be obtained under assignment � .

Lemma 9

If calling function
ÿ MÕ4cÈ ö �Þ�Õ���(ÛEA-�r'�Ô�¹�Î����&H returns õ?Ë ¹�óH�6�N':� I ¾ , then ���
	�� is the max-
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imal assignment under which the maximal reservation size can be obtained; if calling func-

tion
ÿ MÕ4cÈ ö ���Õ���(ÛEA-�r'�Ô�¹�Î����&H returns õ �WÛ8·T�N'´� I ¾ , and the maximal reservation size un-

der � I is ��� I , then for any valid assignment � IjI under which the maximal reservation size

is ��� IjI such that ��� IjI ¾ ��� I , it must satisfy � IjI e�� I .
Proof: Note, if calling function ���;�6�(Û8¹�¹N�WMXº�4�3�MX����A-���
	��(H returns õ Ô�¹�Î����N'�%���'�%´. ¾ ,

this indicates that tasks %�� , %&� , %�� , )()&) , %��-Ð�� can meet their deadlines under ���
	�� with

reservation Ô�¹�Î����U½Ì�Þ�Z� ñ �(MX��� , and %�� is the task with the highest regular priority that

misses its deadline under the same conditions.

When function
ÿ MÕ4cÈ ö �Þ�Õ�Z�&ÛEA-� , Ô�¹�Î����&H returns õÍË ¹�óH�;�ò':� I ¾ , a reservation size ofÔ�¹�Î����X½t�Þ�Z� ñ �(MX��� cannot be obtained because any reservation size larger than Ô�¹�Î����

causes %�� to miss its deadline, which is indicated by line 12 in Figure 4.7. As Ô�¹�Î����X½
����� ñ �&MX��� is the minimal value greater than Ô�¹�Î���� , then Ô�¹�Î���� is the maximal reserva-

tion size, which can be obtained under ���@	�� .
When function

ÿ MÕ4cÈ ö �Þ�Õ�Z�&ÛEA-� , Ô�¹�Î����(H returns õ ��Û8·V�N':� I ¾ , a reservation size of Ô�¹�Î����&½
����� ñ �&MX��� can be obtained under assignment � I . As � IjI is valid, then � IjI e¶���@	�� based on

Theorem 4. Thus, � IjI¿ }z��� K for 0
\s¨d\s4 . As � I¿ 5~��� K for 0�\Q¨ õ M , then � IjI¿ }¶� I¿
for 0�\�¨ õ M . The remainder of the proof is to show � IjI¿ }�� I¿ for M
\�¨_\�4 .

Suppose �dIjI¿ õ ��¿ for some ¨ such that Md\ë¨B\ë4 . As �cI¿ is the maximal preemp-

tion threshold of task %�¿ for Mr½·0�\ ¨�\ 4 with reservation size ���QI , increasing the

preemption threshold of %�¿ can cause some task with a higher regular priority to miss its

deadline, resulting in that the corresponding reservation size cannot be better than ���QI .
Hence, ���QIjI�\B���)I , which is a contradiction as ���)IjI ¾ ���QI . Therefore, no ¨ exists such

that �cIjI¿ õ ��¿ for Mr\�¨ \�4 .

Based on the previous two steps, �cIjITe��cI . M
Lemma 9 guarantees that if there is a better choice, it cannot be missed. At the same time,

the maximal assignment under which the maximal reservation size can be calculated is not

excluded when such a better choice is made.

Lemmas 6, 7, 8, and 9 indicate when the maximal reservation size can be obtained under the

maximal assignment ���
	�� or indicate when further computation is required.

Now consider the case when further computation is required. When ���6�;�&Û,¹�¹ò��MXº�4�3�Mµ����A§� �
	�� H
returns õ Ô�¹�Î����N'�% � '�% . ¾ , based on Lemma 8 and 9, There are two cases when further com-
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putation is required. First, % � is no longer blocked by % . and a better reservation size can be

obtained. Under this case, assignment �]587(� � t , � �J( , )&)() , � ��ú w t , P � ½~0 , � �Xú x t , )()() , � � u ; is

better than � �
	�� . Second, % � is no longer blocked by % . but a better reservation size cannot be

obtained. Under this case, the results depends on the result õÌË óD¹8Î�':� I I ¾ from calling functionÿ MÒ4dÈ ö ���Ò�Z�(ÛEA-��H . ÿ MÕ4cÈ ö ���Õ���(ÛEA-��H tries to compute the maximal preemption thresholds for % � ,% �Y¸l� , )()() , % � with the constraints that the preemption thresholds for % � , % � , )()&) , % �-Ðp� are � � t , � �
( ,)&)() , � �U¥ w t and the reservation size is Ô�¹�Î�����½2���Z� ñ �(Mµ��� . If such an assignment is unavailable,

which is indicated by Ë óD¹¨Î 5 Ë ¹�óH�;� , then � �@	�� is the maximal assignment under which the

maximal reservation size can be obtained. Otherwise, � IjI is better than � �
	�� .
To perform further computation, the same computation on � �
	�� is performed on � or � I

obtained by Lemmas 8 and 9. The pseudo-code is shown in Figure 4.8. For convenience, this

algorithm is called ÏQ¹�Î����6�;�&Û,¹�¹ò��MXº�4�3�Mµ����A§�­H and parameter � is a valid assignment for the

original task set. Initially, � is set to � �
	�� .
1 �Ð�Ø���@	�� ;
2 õ Ô�¹�Î����ò'�%��W'�%´. ¾ �e���6�;�(Û8¹�¹N�WMXº�4�3�Mµ����A-��H ;
3 Ô�¹�Î����)I��eÔ�¹�Î���� ;
4 while (true)
5 if ( %´. does not exist) then return õ Ô�¹�Î����ò':� ¾ ;
6 if A-��� úÅ\�PE�DH then return õ Ô�¹�Î����ò':� ¾ ;
7 �dI��R7(� � ':� � '()()&)W':� .�Ð�� '�P � ½z0N':� .�¸l� '()&)():'´� ��; ;
8 if A-� I is valid H then õ Ô�¹�Î���� I '�% I� '�% I. ¾ � ���;�;�&Û8¹�¹ò��Mµº94�3
MX����A-� I H ;
9 if ADÔ�¹�Î����QI ¾ Ô�¹�Î����(H then
10 �v�Ø�cI ;
11 Ô�¹�Î����¶�eÔ�¹�Î���� I ;
12 %��i� % I� ;
13 %´.?�e% I. ;
14 endif;
15 if AoÔ�¹�Î���� I \�Ô�¹�Î����(H then
16 õ?Ë óD¹¨Î­'´�cIjI ¾ � ÿ MÕ4cÈ ö ���Õ���(ÛEA-�cIÜ'�Ô�¹�Î����(H ;
17 if A Ë óD¹8ÎÍ5 Ë ¹�óH�;�&H return õ Ô�¹�Î����N':� ¾ ;
18 �v�Ø�cIjI ;
19 õ Ô�¹�Î����ò'�%��Õ'�%´. ¾ �e���;�6�(Û8¹�¹ò��Mµº�4p3
MX����A-� IjI H ;
20 endif
21 endwhile

Figure 4.8: Pseudo-code for Algorithm Computing Maximal Reservation Size
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The correctness of the algorithm is as follows. First, the correctness of the first iteration is

guaranteed by Lemmas 6, 7, 8, and 9. From the second iteration, the following lemma guarantees

that when the preemption threshold is decreased once, it can no longer be increased during the

computation.

Lemma 10

Based on algorithm Ï~¹�Î����;�6�(Û8¹�¹N�WMXº�4�3�MX����A-��H , increasing the preemption threshold of any task

at any step can never result in a larger reservation size.

Proof: The proof is by induction on each iteration (step) of the while-loop.

1. Base case: k = 1, any increment is impossible as all the preemption thresholds are maximal.

2. Hypothesis: Assume that for ����� ñ �@\s¨ , only decreasing the preemption threshold results

in a larger reservation size.

3. Induction: Consider step ¨@½�0 . Suppose %�� is the task with highest regular priority that

misses its deadline and %´. is the task contributing the maximal blocking time for %�� . There

are two options to get a larger reservation size. First, increase the preemption threshold of%�� . Second, decrease the preemption threshold of %´. . This proof only shows that increas-

ing the preemption threshold of %�� is impossible. There are two possible situations when

increasing the preemption threshold of %�� .$ ����5z���{¥ , implying that increasing ��� is impossible.$ � � l5Ø� �U¥ . As � � 5Ø� �{¥ at the beginning of the algorithm, consider the last time� � was decreased. Say it was done because it was blocking task % â . Based on the

hypothesis, no task’s preemption threshold was increased. Thus, % â must be of the

same or lower priority as when it was being blocked by % � and it is schedulable,

resulting in % â ’s interference from tasks with higher regular priorities being the same

or larger. If � � is increased, it contributes the same blocking time to % â as before it

was decreased, but the reservation size is larger. Clearly, % â is unschedulable under

the larger reservation size, as its worst case response time is the same or larger but it

was the task limiting the reservation size previously. Hence, % � ’s preemption threshold

cannot be increased.

Thus, it is impossible to increase the preemption threshold of %�� .
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Based on induction, Lemma 10 is correct. M
Lemma 10 indicates that increasing the preemption threshold of a task during the computation

is impossible. That is why no preemption threshold increment operation exists in
ÿ MÒ4cÈ ö ���Ò�Z�&ÛÀA§�­H

and Ï~¹�Î����;�6�(Û8¹�¹N�WMXº�4�3�MX����A-��H . Based on Lemma 10, after an iteration, the original assignment� and the new assignment � I satisfy � I es� and a better reservation size can be obtained under� I than under � . In other words, the maximal assignment under which the maximal reservation

size can be obtained is never excluded and the searching direction is correct. When the algorithm

stops, it indicates that no more searching space and no larger reservation size is available.

Suppose when the algorithm stops, the result is õ Ô�¹�Î����ò'�%��Õ'�%´. ¾ . Then there are two

possibilities.

1. %´. does not exist, which indicates that no adjustment can be made for %�� as no job con-

tributes blocking time for %�� and increasing its preemption threshold is impossible based on

Lemma 10.

2. %´. exists. As õ Ô�¹�Î����N'�%��Õ'�%´. ¾ is returned, Ô�¹�Î�����½¶����� ñ �&MX��� is valid for tasks %&� , %�� ,)()&) , %��-Ðp� under ��� , �À� , )&)() , ���-Ðp� . Further changing any of ��� , �E� , )()() , ���-Ð�� cannot affect the

schedulability of %�� . Assume a larger reservation size is possible. Hence, some adjustment

of ���Y¸l� , ���Y¸p� , )()() , ��� must result in Ô�¹�Î����U½Ì�Þ�Z� ñ �(Mµ��� being a valid reservation size.

As the algorithm to adjust ���Y¸�� , ���Y¸�� , )()&) , ��� is based on the algorithm to compute the

maximal assignment from FPNP, it is guaranteed to find such an assignment if it exists. As

the algorithm fails to find such an assignment, no such assignment exists and the reservation

size Ô�¹�Î�����½?�Þ�Z� ñ �(Mµ��� is invalid. Therefore, Ô�¹�Î���� is the maximal reservation size.

The worst case for algorithm Ï~¹�Î����;�6�(Û8¹�¹N�WMXº�4�3�MX����A-��H is each iteration only increases the

reservation size with ����� ñ �&MX��� . Note, the upper bound for the maximal reservation size is 0 v g .

As the time complexity for ���;�6�(Û8¹�¹ò��Mµº�4p3
MX����A-��H is ��A �:Ð o	o¢YmÜâ;	o��»�m �Õ4��ÕÛ�H and the time complexity forÿ MÒ4dÈ ö ���Ò�Z�(ÛEA-��H is ��AD4 � ��Û�H , then the time complexity for algorithm Ï~¹�Î����;�6�(Û8¹�¹ò��Mµº�4p3
MX����A-��H
is ��A �:Ð o	o¢YmÜâ;	o��»�m �:4��:Ûr½d4 � �:Û�H , assuming that ���;�;�&Û8¹�¹ò��Mµº94�3
MX����A-��H starts with the current maximal

reservation size when it is called at each iteration.

4.6 Comparing RBA EDF, RBA RMA, and RBA FPPT

The section presents a simple example to demonstrate the difference among RBA EDF, RBA RMA,

and RBA FPPT. Given tasks % � 5^ADLE'&0(H , % � 5^AoFE'(0N)�CNH , and % � 5cAoKE'(0N)�GNH , then gB5�/E)�JòCNLNLNLNL ,
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� 5~/E)�|NJ . The bandwidth reserved starts at the beginning of each time unit for convenience and

simplification. If RBA RMA is used, then � 	 580 v � 5B0 v /E)�|òJU5s/E)�/NG . If RBA EDF is used,

breaking ties in favor of the task with shorter period, then � 	 580 v gQ5B0 v /E)�JNJU5~/E)Y0&G . The

scheduling result by RBA RMA is shown by parts (a) and (b) in Figure 4.9, while the correspond-

ing result by RBA EDF is shown by parts (c) and (d) in Figure 4.9. Only the scheduling results

of the first critical instance are shown in Figure 4.9 because of the critical zone analysis [45] for

RMA and EDF. Thus, the schedulability test stops when those jobs in the first critical instant meet

their deadlines.

In part (a) and (b), RBA RMA is used. At the beginning of each time unit, � 	 5e/<)�/NG is

reserved. Thus, only 0.98 is available for periodic tasks. At time 0, + �:, � '�+ �û, � and + ��, � are ready.+ �:, � has highest priority and runs at time 0.02. + �:, � is preempted by the reservation at time 1

and resumes running at time 0N)�/NG and finishes at time 0N)�/nI , after which + ��, � starts to run. + �û, �
continues to run until it is preempted by the reservation at time 2, after which it resumes running

at time GE)�/NG and finishes at time GE)�CNK , after which + ��, � starts to run. After + ��, � is preempted by the

reservation at time 3, + �´,³� is ready. After the reservation, + �:,³� starts to run at time LE)�/NG as % � has

higher priority than % � . After + �:,³� is preempted by the reservation at time I , it resumes running at

time I�)�/NG and finishes at time I�)�/�I , after which + ��, � resumes running and finishes at time F . Up

to this point, all jobs in the first critical instant have meet their deadlines, implying that they are

schedulable by RBA RMA with � 	 5s/E)�/òG .
In part (c) and (d), RBA EDF is used. At the beginning of each time unit, � 	 5 /<)Y0(G is

reserved. Thus, only 0.88 is available for periodic tasks. At time 0, + �:, � '�+ �û, � and + ��, � are ready.+ �:, � has highest priority and runs at time 0.12. + �:, � is preempted by the reservation at time 1

and resumes running at time 0N)Y0(G and finishes at time 0N)�GnI , after which + ��, � starts to run. + �û, �
continues to run until it is preempted by the reservation at time 2, after which it resumes running

at time G<)Y0(G until it is preempted by the reservation at time 3. At time 3, + �:,³� is ready with

deadline at time 6. After the reservation, + ��, � resumes running at time 3.12 and finishes at timeLE) 0(J because its deadline is 5, which is earlier than that of + �:,³� . + �:,³� starts to run at time 3.18

and is preempted by the reservation at time 4. After the reservation, + �:,³� resumes running at time

4.12 and finishes at time 4.3, after which + ��, � starts to run. + ��, � is preempted by the reservation at

time 5 and resumes running at time FE)Y0&G and finishes at time 5.62. Though + �û,³� is ready at time

5 with deadline 10, + �Þ, � resumes running as its deadline 6 is earlier than 10. Up to this point, all

jobs in the first critical instant have meet their deadlines, implying that they are schedulable by

RBA EDF with � 	 5¶/E)Y0(G .
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If RBA FPPT is used, � 	 5Ø/E) 0 and the scheduling stops when all jobs in the first level-i

busy period meet their deadlines. The scheduling for RBA FPPT with � 	 5Ø/<)Y0 is shown by

Figure 4.10 and 4.11, where P I 5`79/ , 0 , G , L ; and � I 5`79/ , 0 , 0 , 0 ; for the extended task set.

Figure 4.10 shows the scheduling results for the busy periods of level-0, level-1, and level-2.

Figure 4.11 shows the scheduling result for level-3 busy period. Note, the processor utilization

under FPPT is /E)�JNCNLNLNLòLÅ½~/E)Y0U5e/<)�|NCNLNLòLNL , which is less than 0ò)�/ , implying that RBA FPPT

cannot be better than RBA EDF.

When RBA FPPT is used, a task competes for the processor with its preemption threshold

after it is preempted by any other task such that the regular priority of the latter is higher than the

preemption threshold of the former. The ties are broken in favor of the preempted task. At the

beginning of each time unit, � 	 5s/<)Y0(/ is reserved. Thus, only 0.9 is available for periodic tasks.

The level-0 busy period is trivial in Figure 4.10. In the level-1 busy period, % � is blocked by % � .+ ��, � just starts to run when the reservation and + �:, � are ready at time 0. As the regular priority

of the periodic server is higher than the preemption threshold of % � , + ��, � is preempted by the

reservation. After the reservation, as the preemption threshold of % � is equal to the regular priority

of % � , + ��, � resumes running at time 1.1 and finishes at time 1.9 because of breaking ties in favor

of the preempted task. + �´, � starts to run at time 1.9 and is preempted by the reservation at time 2.+ �:, � resumes running at time 2.1 and finishes at time 3, when + �:,³� is ready. After the reservation,+ �:,³� starts to run at time 3.1 and is preempted by the reservation at time 4. + �:,³� resumes running

at time 4.1 and finishes at time 4.2. Up to this point, all jobs in the first level-1 busy period have

meet their deadlines, implying that % � is schedulable by RBA FPPT with � 	 5z/E)Y0 .
In the level-2 busy period, % � is blocked by % � . + ��, � just starts to run when the reservation,+ �:, � , and + ��, � are ready at time 0. As the regular priority of the periodic server is higher than

the preemption threshold of % � , + �Þ, � is preempted by the reservation. After the reservation, as

the preemption threshold of % � is equal to the regular priority of % � , + �Þ, � resumes running at time

1.1 and finishes at time 1.4 because of breaking ties in favor of the preempted task. + �´, � starts

to run at time 1.4 and is preempted by the reservation at time 2. + �:, � resumes running at time

2.1 and finishes at time 2.5, after which + ��, � starts to run until it is preempted at time 3, when+ �:,³� is ready. After the reservation, + ��, � resumes running at time 3.1 until it is preempted by

the reservation again at time 4. + ��, � resumes running at time 4.1 and finishes at time 4.4, after

which + �´,³� starts to run until it is preempted by the reservation at time 5, when + ��,³� is ready.+ �:,³� resumes running at time 5.1 and finishes at time 5.5, after which + ��,³� starts to run until it is

preempted by the reservation at time 6. + �:, � is ready at time 6. After the reservation, + ��,³� resumes
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Figure 4.10: Combination of FPPT and RBA (continued)
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Figure 4.11: Combination of FPPT and RBA
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running at time 6.1 until it is preempted by the reservation at time 7. + �û,³� resumes running at time

7.1 and finishes at time 7.4, after which + �:, � starts to run until it is preempted by the reservation at

time 8. + �´, � resumes running at time 8.1 and finishes at time 8.5. Up to this point, all jobs in the

first level-2 busy period have meet their deadlines, implying that % � is schedulable by RBA FPPT

with � 	 5¶/E)Y0 .
In the level-3 busy period, no task can block % � . The scheduling result is separated into 3

segments. Similarly to level-1 and level-2 busy period, it can be verified that all jobs in the first

level-3 busy period can meet their deadlines. Thus, % � can be schedulable by RBA FPPT with� 	 5s/E)Y0 . Therefore, the whole task set is schedulable by RBA FPPT with � 	 5s/E)Y0 .
The scheduling results show that not only can FPPT schedule a bigger range of task sets than

either FPP or FPNP, it can also provide better response time for aperiodic tasks.

4.7 Further Improvement of RBA

Note, the maximal reservation sizes for RBA EDF and RBA RMA are 0 v g and 0 v � , respec-

tively. As
� }fg based on Lemma 4, the maximal value of RBA EDF is not less than that of

RBA RMA. Furthermore, there is no more unused time after reserving a fraction 0 v g of proces-

sor time in each time unit for RBA EDF. However, since 0 v � \s0 v g , RBA RMA may result in

some unused time in certain time units after reserving a fraction 0 v � of processor time in each

time unit. Such an unused time segment is shown in unit 8 in Figure 4.4. This unused time may

not be distributed evenly in each time unit but it is known in advance (statically) and can also

be used to run aperiodic tasks in conjunction with the reservation bandwidth. Taking advantage

of this extra unused time increases the potential for aperiodic tasks to start and complete their

executions earlier. Thus, their response times of aperiodic tasks are shortened..

In one major cycle 1���2 , the total amount of unused time after reserving 0 v � amount of time

in each time unit is denoted as �Õ���(�;	omXê and the percentage of extra time to service aperiodic tasks

in one major cycle is denoted as
ñ mÕ��¢ , then�Õ���&�;	DmµêÍ5z1���2 v 1���2r��g v 1���2r��A�0 v � Hr5z1��
2ê��A � v gUH (4.1)ñ mÕ��¢ 5 �Õ���&�;	Dmµê1���2 5 1���2r��A � v g{H1���2 58A � v gUH (4.2)

Alternatively speaking, there still exists an extra A � v gUH percent of time that can be used to

service aperiodic tasks, if required, in one major cycle. For tasks % � 5·ADLE'(0&H , % � 5cADF<'(0N)�CòH , and

95



% � 5cADK<'(0N)�GòH , g�5�/E)�JNCNLòLNL and
� 5�/E)�|òJ . Based on Formula 4.1, � ���(�;	Dmµê 5~1 �
2 �EA � v g{H�5LN/��ÕAo/E)�|NJ v /�)�JNC�LNLNLòHp�¶LN/��Y/E)Y0�5¶L . Based on Formula 4.2,

ñ mÕ��¢ 5BA � v g{Ha5BAD/E)�| v /E)�JNCNLNL�LNLNH��/E) 0(/ .
As the reservation size under RBA FPPT cannot be greater than RBA EDF, there may exist

extra time unused by the periodic server and periodic tasks. Like RBA RMA, the unused time in

each time unit is 0 v g v ��	 , which is known in advance as ��	 can be calculated offline. When

this value is greater than / , it indicates that extra time is available to service aperiodic tasks if

required.

Finally, there is one remaining source of unused time to service aperiodic tasks: when peri-

odic tasks or aperiodic tasks finish earlier. The unused computation time can be managed by an

aperiodic or a background server to execute aperiodic tasks to further improve performance.

4.8 Scaling the Periodic Server

The periodic server with maximal bandwidth in RBA EDF is the periodic task %d5ØAW0N'&0 v gUH .
As scaling the period and computation time of a task with the same scaler does not change the

processor utilization of the task, then for any positive integer 1 , A§1Å':1�AW0 v g{H:H and AW0ò'(0 v g{H have

the same processor utilization. Given a task set, if the periodic server returned by RBA EDF isAW0ò'(0 v g{H , then A-1Å'´1ÍAW0 v g{H:H is also a candidate for the periodic server in RBA EDF as replacingAW0ò'(0 v g{H with A-1Å'´1ÍAW0 v g{H:H does not change the processor utilization of a task set and EDF only

depends on the processor utilization. Therefore, there is more flexibility in choosing a periodic

server with EDF.

The periodic server A�0N'(0 v gUH can be generalized to A-1Å'´1ÍAW0 v g{H:H by scaling the period and

computation time with the same scaler when RBA EDF is used. However, when RBA RMA is

used, this may not be true. For example, consider three periodic tasks % � 5BADL<'(0N)�GòH , % � 5BAoFE'(0N)�FNH ,% � 5 AoKE'�/E)�KNH , with g = 0ò)�GN�NLU½80N)�FN�òFU½s/E)�KN�òK = /E)�J , � 5e/E)�| . Based on Theorem 10, the

periodic server candidate is AW0ò'�/E)Y0&H . If it is scaled to % � 5VADG<'�/E)�GòH , then tasks % � , % � , % � , and% � are unschedulable by RBA RMA. This is because scaling a task with the same scaler against

period and computation time requires RMA to recalculate the schedulability test based on [41],

and the new task set may no longer be schedulable by RMA. On the other hand, consider two

periodic tasks % � 5BADK<'�GNH and % � 5·AW0(G<'�GNH . Based on Theorem 10, the periodic server candidate

is AW0N'�/E)�FNH . If it is scaled to % � 5BA-I�'�GNH , then tasks % � , % � , and % � are still schedulable by RMA. In

other words, the scaled periodic server is still valid.
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Like RMA, scaling may be invalid under RBA FPPT. For example, given tasks % � 5^AoLE'(0(H ,% � 5ëADF<'(0N)�CòH , and % � 5ëADK<'(0N)�GòH , They are schedulable by RBA FPPT with � 	 5 /E)Y0 , whereP I 5�7�/ , 0 , G , L ; and � I 5879/ , 0 , 0 , 0 ; for the extended task set. However, if the periodic serverAW0ò'�/E)Y0&H is scaled to ADGE'�/E)�GNH , then these tasks are unschedulable by RBA FPPT under the same

regular priority assignment and preemption threshold assignment.

The purpose of scaling is to provide flexibility for the real-time system designer. In particular,

the periodic server has always had period 0 , which may be too small and the number of context

switches may be too large, resulting in extra processor time, memory, and other system resources.

If the period and the computation time of the periodic server can be scaled by the same scaler,

the result is a periodic server with a decreased number of context switches. Of course, the scaling

cannot be arbitrary. When the period of the periodic server is too large, the periodic server may

degrade to a background server, which may worsen the response time of aperiodic tasks. The

real-time system designer has the option to choose a reasonable scaler based on both periodic and

aperiodic task sets.

4.9 Summary

This chapter points out the maximal reservation size for RBA EDF for an independent task set.

For RBA RMA, a trial-and-error algorithm is presented to calculate ������� and Theorem 10 proves

how to calculate the maximal reservation size ������� when RMA is used to schedule periodic tasks,

which cannot be obtained all the time in [63]. Using RBA RMA results in that all resource man-

agement protocols based on RMA can be used. For RBA FPPT, an algorithm is presented to cal-

culate a reservation size when a valid FPPT assignment for a periodic task set is available. When

a periodic task set is schedulable by FPPT, ���
��� and ���
	�� can be calculated effectively. Starting

from them, an algorithm to compute a reservation size is presented. The maximal reservation

size calculated by the latter cannot be less than that of the former for the same periodic task set.

Though RBA FPPT cannot beat RBA EDF with respect to the reservation size, it does remove

the expensive dynamic scheduling cost of EDF. Furthermore, when RBA RMA and RBA FPPT

are used, after reserving the maximal amount of time in each time unit, there may exist some

unused time in some time units that can be used directly by aperiodic tasks so as to shorten their

response times. Finally, periodic tasks and aperiodic tasks may finish earlier, this unused time

can be managed by an aperiodic or a background server to further shorten the response time of

aperiodic tasks.
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Chapter 5

Scheduling Tool-Kit

During the research work of this thesis, it was often necessary to verify some ideas or the validity

of an assumption. For example, when a task set with predefined regular priority is schedulable by

FPPT, there may exist multiple valid assignments. It turns out to be complex to verify the validity

of all possible assignments by hand even with only 5 tasks. A more strict assumption is to assume

the task set is harmonic. Even under this strict assumption, the search space is still 5! = 120 in the

worst case, which is beyond verifying manually. Thus, a program was required to help perform

these computations. This program was extended step by step over the course of the thesis work to

become a small real-time scheduling tool-kit, which can verify not only the research work of this

thesis but also other previous and future real-time work. Currently, this tool-kit assumes tasks are

independent, so resource management protocols are not considered. However, the architecture of

the tool-kit does not prohibit supporting resource management protocols.

The motivations to develop this scheduling tool-kit are as follows. First, available tool-kits

may not support new scheduling algorithms, which is the thrust of this work. Even if they pro-

vided support for new scheduling algorithms, it is often complex to customize the tool-kit, espe-

cially to the specific requirements needed in this thesis. Second, available tool-kits focus on some

special features of schedulers, which are often not of interest for this thesis. Third, available tool-

kits do not provide the necessary output procedure to generate a Gantt-chart step by step even

if Gantt-charts are supported. In the research work of this thesis, this procedure is important to

trace how a task misses its deadline when it is unschedulable. Based on these reasons, a simple

and specific scheduling tool-kit was developed after several separate simulation programs were

written.
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5.1 Tool-Kit Architecture

The general functional model of the scheduling tool-kit is illustrated in Figure 5.1. The tool-kit

has two input parameters: schedulers and task sets. Based on the input parameters, the tool-kit

outputs an answer of “yes” or “no” for a schedulability test. If the answer is “yes”, the sched-

uler provides one schedule and system-status information such as the utilization of the system

resources. If the answer is “no”, the tool-kit should point out which task misses its deadline. This

procedure can be repeated as long as the user wants to change the input parameters. Based on

this model, the performance of different schedulers and the impact of the task set can be ana-

lyzed. Each of these two input parameters, the output information, and the tool-kit are discussed

in detail.

feedback

feedback

Output
Task Sets

Schedulers
Scheduling Tool

Figure 5.1: Architecture of Scheduling Tool-Kit

5.1.1 Schedulers

Though many real-time schedulers are available [45, 43, 7, 41, 39, 26, 74], there is no general

scheduler that works for all task sets. Hence, it is necessary to provide different schedulers in a

tool-kit and let the tool-kit and/or user choose the most appropriate schedulers for an application.

As multiprocessor architecture and networking are becoming ubiquitous, it is reasonable for a

computationally expensive schedulability test algorithm to take advantage of the multiprocessor

architecture to improve scheduling performance. For example, based on Section 3.6, when FPPT

performs a schedulability test on a given task set, it searches for a valid assignment to make the

task set schedulable. It is shown that the minimal assignment is one valid assignment and it can

be computed effectively by starting from its two boundary cases – FPP and FPNP, with the same

worst case time complexity. However, it is unknown from which boundary case it is faster to

compute an assignment for a specific task set. In a uniprocessor environment, two options are to
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choose one of them at random or use experience gained from the results of simulations. How-

ever, in a multiprocessor environment, the scheduler can create two threads that run on different

processors to compute the minimal assignment by starting from FPP and FPNP independently.

Whenever either of them finishes, the other can stop and the former returns its result. Thus, the

scheduler finishes with the time cost of the faster one.

5.1.2 Task Sets

The tool-kit provides functionality to create both periodic and aperiodic task sets. In the tool-kit,

a task set is considered to be fixed and changing a task set during a simulation is not considered.

There are some general assumptions for a periodic task set in a real-time system. Program-

mers usually know or can determine the following four parameters for each task: period, worst

case computation time, deadline, and phase. If the worst case computation time and/or deadline

are unavailable, the distributions of the worst case computation time and/or the deadline can be

considered. In general, real-time system designers know the functionality of the system, and can

compute these parameters and other constraints based on analysis and/or simulation.

This thesis considers aperiodic tasks but not sporadic tasks. Most research work attempts to

transfer aperiodic tasks into periodic tasks with worst case estimation for period and computation

time, which is not adopted in this thesis. Instead, this thesis is only interested in how to shorten

the response time of an aperiodic task. Whenever an aperiodic task is ready, it is assumed its

worst case computation time is also known.

5.1.3 Output Information

The output information from the tool-kit should be concise and helpful:

1. The tool-kit must provide a “yes” or “no” answer for the schedulability test based on a task

set and a specific scheduler.

2. If the answer to the schedulability test is “yes”, the tool-kit must provide at least one sched-

ule.

3. If the answer to the schedulability test is “no” and the schedulability test is only sufficient,

a simple message states the failure of the schedulability test but this does not indicate the
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task set is unschedulable; if the schedulability test is sufficient and necessary, the tool-kit

should point out which task misses its deadline.

4. A graphical output should be provided such as a colorful Gantt-chart to indicate the simu-

lation results so a user can easily trace a scheduling procedure step by step.

The importance of visualizing the scheduling procedure step by step must be emphasized.

If a schedulability test is successful, examining the scheduling steps can identify pessimistic

assumptions in the task set or the scheduler. A user can then make fine grain adjustments to

achieve higher processor utilization, perform more work, or get better performance for aperiodic

tasks. If the schedulability test is unsuccessful, examining the scheduling steps can identify not

only the exact location of the failure but also the job leading up to the failure. A user can then

look back in time to examine multiple details that ultimately resulted in the unschedulability.

5.2 Tool-Kit Implementation

Several aspects of the tool-kit created to aid in the development of this thesis are presented. The

tool-kit is written in C++ and has been designed in an extensible way.

5.2.1 Scheduler

Currently, the tool-kit supports the following real-time scheduling algorithms: RMA, DMA, EDF,

FPNP, FPP, and FPPT. As the number of schedulers increases, a mechanism to manage them

effectively is required so it is unnecessary to start from scratch when generating a new scheduler,

especially as all real-time schedulers share common features. First, all schedulers need a task set

on which to perform a schedulability test. Second, they perform a schedulability test on a given

task set. Third, they need to report the results of the schedulability test. All of these common

features can be represented in an abstract class. Abstract functionality can be represented by pure

virtual functions in C++ and each specific scheduler implements the virtual function differently.

This structure is shown in Figure 5.2.

In the interface AbstractPeriodicScheduler, there are five pure virtual functions. Function

test verifies if the task set is a schedulable, schedulingInformation displays the scheduling

result, taskVerify verifies the validity of a given task set, schedulelist returns a schedule if
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1 #ifndef RT_ ABSTRACT_ SCHEDULER_ H
2 #define RT_ ABSTRACT_ SCHEDULER_ H
3 #include <list>
4 #include <string>
5 #include "common.h" // for Schedule
6 class AbstractPeriodicScheduler {
7 public:
8 AbstractPeriodicScheduler() {};
9 virtual ~AbstractPeriodicScheduler() {};

10 virtual bool test() = 0; // schedulability test
11 virtual void schedulingInformation( std::string sname ) = 0; // show result
12 virtual bool tasksetVerify() = 0; // verify the validity of a task set
13 virtual std::list<Schedule> schedulelist() = 0; // get one schedule if existing
14 };
15 #endif

Figure 5.2: Abstract Periodic Scheduler

LiuLayland Lehoczky Response Time

RMA EDF FPPT

Abstract Real-Time Scheduler

Figure 5.3: Hierarchy of Schedulers

existing. All schedulers can be derived from this abstract scheduler. For example, the partial

hierarchical inheritance tree for RMA, EDF, and FPPT is shown in Figure 5.3.

In Figure 5.3, the root of the hierarchical tree is the abstract real-time scheduler, from which

RMA, EDF, and FPPT are derived. In addition, RMA can be further subdivided based on the

schedulability test algorithms. By default, these schedulers do not consider reservation for aperi-

odic tasks. When reservation is considered, the reservation size is passed as an explicit parameter

to the specific scheduler’s constructor to reduce the number of classes. For example, it is unnec-

essary to derive two classes from EDF, one of which is without reservation and the other with

reservation.

The interface for RMA is shown in Figure 5.4. The class RateMonotonicAlgorithm inherits

from the abstract interface AbstractPeriodicScheduler. Extra member data and functions are
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appended. The second parameter in the constructor has a default value of 0.0, which indicates

no reservation is considered. When this parameter is greater than 0.0, it indicates that a non-

zero reservation is considered. As there are three schedulability tests in RMA, the pure virtual

function test is still not implemented in RMA. When the specific schedulability test is known,

test is implemented in a subclass. Like test, schedulingInformation needs to know the name of

a specific scheduler to show the scheduling result. Thus, in RMA, it is still not implemented and

is still declared as a pure virtual function. Function getFailpoint returns the first job that misses

its deadline when a task set cannot be schedulable by RMA.

1 #ifndef RateMonotonicAlgorithm_H
2 #define RateMonotonicAlgorithm_H
3 #include "common.h"
4 #include "AbstractPeriodicScheduler.h"
5 #include "RealTimePeriodicTaskSet.h"
6 class RateMonotonicAlgorithm : public AbstractPeriodicScheduler {
7 protected:
8 RealTimePeriodicTaskSet rtpSet; // task set
9 bool schedulable; // schedulalable or not

10 vector<int> periods; // periods of tasks
11 vector<double> computations; // computation times of tasks
12 vector<double> deadlines; // deadlines of tasks
13 long long int cost; // time to perform schedulability test in microsecond
14 double rs; // reservation size
15 FailPoint failpoint; // the failing point when the task set is unschedulable
16 public:
17 RateMonotonicAlgorithm( const RealTimePeriodicTaskSet &taskSet,
18 double r = 0.0); // default no reservation
19 virtual ~RateMonotonicAlgorithm();
20 long long int getCost() const; // get time to perform schedulability test
21 double getRs() const; // get the reservation size
22 FailPoint getFailpoint(); // get the first task that misses its deadline
23 virtual bool test() = 0;
24 virtual void schedulingInformation( string sname ) = 0;
25 virtual bool tasksetVerify();
26 virtual list<Schedule> schedulelist();
27 };
28 #endif

Figure 5.4: Rate Monotonic Scheduler

When a specific schedulability test is known for RMA, a subclass can be derived from Rate-

MonotonicAlgorithm where test and schedulingInformation are overridden. Figure 5.5 shows
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the class definitions when the Liu and Layland’s schedulability test is used. A private data mem-

1 #ifndef RateMonotonicAlgorithmLiuLayland_H
2 #define RateMonotonicAlgorithmLiuLayland_ H
3 #include "RateMonotonicAlgorithm.h"
4 class RateMonotonicAlgorithmLiuLayland : public RateMonotonicAlgorithm {
5 private:
6 double Ue; // expected processor utilization
7 public:
8 RateMonotonicAlgorithmLiuLayland( const RealTimePeriodicTaskSet &taskSet,
9 double r = 0.0);

10 virtual ~RateMonotonicAlgorithmLiuLayland();
11 virtual bool test(); // Using Liu & Layland ë s schedulability test
12 virtual void schedulingInformation( string sname );
13 };
14 #endif

Figure 5.5: Rate Monotonic Scheduler : LiuLayland

ber stores the expected processor utilization. The two virtual functions test and schedulingIn-

formation are implemented. Note, this schedulability test is only sufficient so schedulingInfor-

mation only prints “yes” or “no”.

Figure 5.6 shows the class definitions when the Lehoczky’s schedulability test presented is

used. A data member stores the minimal average processor utilization. The two functions test

and schedulingInformation are implemented. In addition, a member function getL is used to get

the minimal average processor utilization. Note, this schedulability test is sufficient and necessary

so schedulingInformation can print a Gantt-chart.

Figure 5.7 shows the class definitions when the schedulability test based on response time is

used. A data member stores the worst case response times of tasks. The two functions test and

schedulingInformation are implemented. This schedulability test is sufficient and necessary so

schedulingInformation can print a Gantt-chart.

Figure 5.8 shows the class definition for EarliestDeadlineFirst. As no subclass is derived

from this scheduler, all pure virtual functions are implemented in this subclass. The two virtual

functions test and schedulingInformation are overridden based on EDF. This schedulability test

is sufficient and necessary so schedulingInformation can print a Gantt-chart.

Figure 5.9 shows the class definition for FPPT. Extra data members are appended. For exam-

ple, data members to store the regular priority and preemption threshold assignment, worst case
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1 #ifndef RateMonotonicAlgorithmLehoczky_H
2 #define RateMonotonicAlgorithmLehoczky_H
3 #include "RateMonotonicAlgorithm.h"
4 class RateMonotonicAlgorithmLehoczky : public RateMonotonicAlgorithm {
5 private:
6 double L; // minimal average processor untilzation
7 double computeLit(int i, double t);// L for tasks 1,2,. . .,i at time t
8 public:
9 RateMonotonicAlgorithmLehoczky( const RealTimePeriodicTaskSet &taskSet,

10 double r = 0.0 );
11 virtual ~RateMonotonicAlgorithmLehoczky();
12 virtual bool test(); // Using Lehoczky ës schedulability test
13 virtual void schedulingInformation( string sname );
14 double getL(); // get the minimal average processor untilzation
15 };
16 #endif

Figure 5.6: Rate Monotonic Scheduler : Lehoczky

1 #ifndef RateMonotonicAlgorithmResponseTime_H
2 #define RateMonotonicAlgorithmResponseTime_H
3 #include "RateMonotonicAlgorithm.h"
4 class RateMonotonicAlgorithmResponseTime : public RateMonotonicAlgorithm {
5 private:
6 vector<double> R; // response time of J_ 1,0; J_ 2,0; . . .
7 void computeR(); // compute the worst case response time for each task
8 public:
9 RateMonotonicAlgorithmResponseTime( const RealTimePeriodicTaskSet &taskSet,

10 double r = 0.0 );
11 virtual ~RateMonotonicAlgorithmResponseTime();
12 virtual bool test(); // using schedulability test based on response time
13 virtual void schedulingInformation( string sname );
14 };
15 #endif

Figure 5.7: Rate Monotonic Scheduler : ResponseTime
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1 #ifndef EarliestDeadlineFirst_ H
2 #define EarliestDeadlineFirst_ H
3 #include <string>
4 #include "AbstractPeriodicScheduler.h"
5 #include "RealTimePeriodicTaskSet.h"
6 class EarliestDeadlineFirst : public AbstractPeriodicScheduler {
7 protected:
8 RealTimePeriodicTaskSet rtpSet; // task set
9 bool schedulable; // schedulalable or not

10 vector<int> periods; // periods of tasks
11 vector<double> computations; // computation times of tasks
12 vector<double> deadlines; // deadlines of tasks
13 long long int cost; // time to perform schedulability test in microsecond
14 double rs; // reservation size
15 FailPoint failpoint; // the failing point when the task set is unschedulable
16 public:
17 EarliestDeadlineFirst( const RealTimePeriodicTaskSet &taskSet,
18 double r = 0.0 ); // default no reservation
19 virtual ~EarliestDeadlineFirst();
20 long long int getCost() const; // get time to perform schedulability test
21 double getRs() const; // get reservation size
22 FailPoint getFailpoint(); // get the first job that misses its deadline
23 virtual bool test();
24 virtual void schedulingInformation( string sname );
25 virtual bool tasksetVerify();
26 virtual list<Schedule> schedulelist();
27 };
28 #endif

Figure 5.8: Earliest Deadline First

response times of tasks, the blocking time for each task, and the length of each level-i busy period.

In addition, extra functions are also appended. maxFromMin computes the maximal assignment

from any valid assignment low; minFromFpp computes the minimal assignment starting from

FPP; minFromMax computes the minimal assignment from any valid assignment � such that�tl5T���
��� but ��������es� ; maxFromFpnp computes the maximal assignment from FPNP; min-

FromFpnp computes the minimal assignment from FPNP; i schedule gets one schedule in the

level-i busy period; all schedule gets one schedule for each level-i busy period. This schedula-

bility test is sufficient and necessary so schedulingInformation can print a Gantt-chart.
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1 #ifndef FixedPriorityWithPreemptionThreshold_H
2 #define FixedPriorityWithPreemptionThreshold_H
3 #include "AbstractPeriodicScheduler.h"
4 #include "RealTimePeriodicTaskSet.h"
5 class FixedPriorityWithPreemptionThreshold : public AbstractPeriodicScheduler {
6 protected:
7 RealTimePeriodicTaskSet rtpSet;
8 bool schedulable;
9 vector<int> periods; // periods of tasks

10 vector<double> computations; // computation times of tasks
11 vector<double> deadlines; // deadlines of tasks
12 long long int cost; // time to perform schedulability test in microsecond
13 double rs; // reservation size
14 FailPoint failpoint; // Record the failing point when the task set is unschedulable
15 vector<int> regular; // regular priority
16 vector<int> threshold; // preemption threshold
17 vector<double> level_ i_ length; // length of level-i busy period
18 vector<double> response; // worst case respone time
19 vector<double> blocking; // blocking time from a task with a lower regular priority
20 public:
21 FixedPriorityWithPreemptionThreshold( const RealTimePeriodicTaskSet &taskSet,
22 double r = 0.0 ); // default no reservation
23 virtual ~FixedPriorityWithPreemptionThreshold();
24 long long int getCost() const; // get time to perform schedulability test
25 double getRs() const; // get the reservation size
26 vector<int> maxFromMin( const vector<int>& low); // max assignment from min
27 vector<int> minFromFpp(); // compute minimal assignment from FPP
28 vector<int> minFromMax(const vector<int>& high); // min assignment from max
29 vector<int> maxFromFpnp(); // compute maximal assignment from FPNP
30 vector<int> minFromFpnp(); // compute minimal assignment from FPNP
31 virtual bool test();
32 virtual void schedulingInformation( string sname );
33 virtual bool tasksetVerify();
34 virtual list<Schedule> schedulelist();
35 list<Schedule> i_ schedule( int i ); // schedule in one level-i busy period
36 list< list<Schedule> > all_ schedule(); // schedule in all level-i busy periods
37 };
38 #endif

Figure 5.9: Fixed Priority with Preemption Threshold
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5.2.2 Data Structures for Task Sets

A task set is stored in a plain text file. As periodic tasks and aperiodic tasks have different

parameters, the structure of a data file to store a periodic task set is different from that for an

aperiodic task set.

1. A periodic task set is composed of one or more periodic tasks. The internal structure

is: the first value N, is the number of tasks in the set, followed by N 4-tuples, one for

each task. Each tuple representing a periodic task contains its period, deadline, worst case

computation time, and phase respectively. For example, the following is a file storing F
periodic tasks. FG G 0 /I I 0 /C C 0 /0�I 0�I 0 /GNJ GNJ 0 /
In this example, for each periodic task, its period is equal to its deadline, the worst case

computation time is 1, and its phase is 0.

2. An aperiodic task set is composed of one or more aperiodic tasks. The internal structure

is: the first value N, is the number of tasks in the set, followed by N 2-tuples, one for each

task. Each tuple representing an aperiodic task contains its arrival time and worst case

computation time, respectively. For example, the following is a file storing L aperiodic

tasks. L0(/E)�F 0ò)�FKE0N)Y0 L<)³IGN/N/E)�| G<)�C
The first aperiodic task arrives at time 10.5 with worst case computation time 1.5.
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5.2.3 User Interface

The tool-kit is implemented with a graphical user interface (GUI) and the GUI libraries are from

Gtkmm [21, 30], which is similar to Motif for X-Windows. The main window of the tool-kit is

shown in Figure 5.10. In the main window, there is a menu bar containing one menu item to

choose a scheduler. Notice that some schedulers such as RateMonotonicAlgorithm, have an ad-

ditional selection menu to specify the specific schedulability test. When reservation is considered

with RMA, one sufficient and necessary schedulability test is chosen. That is why there is no

submenu for menu item RateMonotonicAlgorithmWithReservation.

Figure 5.10: Tool-Kit Main Window

After a scheduler is chosen, another window pops up, which is shown in Figure 5.11. There

is a menu bar in the pop-up window to perform data file operations such as generating new data

files and selecting existing data files.

Below the menu bar, there is a drawing area to show the scheduling results based on the

chosen scheduler and data file when available. A schedule is shown in this area based on a time

line. Each task is indicated by a distinct color. The schedule is shown up to one major cycle.

If a task set stored in the chosen data file is schedulable by the chosen scheduler, one schedule

is shown in this area. If the task set is unschedulable, then the scheduling result up to the job

missing its deadline is shown. The job missing its deadline is also specified.

At the bottom of the window, are seven buttons to control the schedule. These buttons are
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Figure 5.11: Tool-Kit Scheduler Window

explained from left to right based on the chosen scheduler and data file. Clicking the button “All”

shows one schedule completely. Clicking the button “Step” moves through a schedule step by

step. For example, when RMA is chosen, the scheduling result of each task is appended for each

step. When EDF is chosen, the schedule of one job is appended for each step. Clicking the

button “Clear” clears the schedule. Clicking the button “Perform” performs a schedulability test.

Clicking the button “Data” shows the content of the chosen data file. Clicking the button “Status”

shows whether a task set passes the corresponding schedulability test. Clicking the button “Quit”

closes the window.

5.3 Case Study

This section traces some examples with the tool-kit to demonstrate the functionality of the tool-

kit and explain how to use its graphical user interface. The examples also demonstrate how the

tool-kit was used to verify the theoretical results of this thesis.

5.3.1 Case for Different Schedulability Tests for RMA

Consider an example task set that passes the Liu and Layland’s schedulability test. Given tasks% � 5VADLE'�/E)�|NH , % � 5VAoFE'(0N)�FNH , and % � 5VADK<'�/E)�KòH , then ge5 /E)�C , and
� 5 /E)�CNJ . As g m ADLNH
�/E)�CNCN|NCNKòL and /E)�CNCò|NCNKNL ¾ /E)�C , these tasks are schedulable by RMA based on the Liu and Lay-

land’s schedulability test. Figure 5.12 shows the scheduling result after scheduling the first task,

the second task, and the third task, respectively.

In each picture, the top line is the time line and at each step, another task is added to the time
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Figure 5.12: RMA Liu and Layland’s Schedulability Test Step by Step (step 1, 2, 3)
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line. The bottom 3 lines show when each job enters the system. The scroll bar at the bottom allows

scrolling along the time line. The different heights of the lines for each task do not represent any

value; it only helps visually distinguish among the tasks on the task line.

Now consider an example task set that fails the Liu and Layland’s schedulability test but

passes the Lehoczky’s schedulability test. Given tasks % � 5ëADL<'(0N)�GòH , % � 5ëADFE'&0N)�FNH , and % � 5ADK<'�/E)�KòH , then g 5 /E)�J . These tasks fail the Liu and Layland’s schedulability test because/E)�J ¾ /<)�CNCN|NCòKNL . As the Liu and Layland’s schedulability test is only sufficient, a task set fail-

ing this schedulability test may still be schedulable by RMA. In fact, based on the Lehoczky’s

schedulability test for RMA,
� 58/E)�| õ 0 , so the task set is schedulable because /E)�| \B0 . The

schedule is shown in Figure 5.13.

Figure 5.13: RMA Lehoczky Schedulability Test

Now consider an example task set that fails the Lehoczky schedulability test. Given tasks%&�Í5àADGE'�/E)�GNH , %��
5eADL<'(0N)�GòH , %��_5eADFE'&0N)�FNH , and %.�µ5eAoKE'�/E)�KNH , � 5Ø0ò)�/NG ¾ 0 . The task set is

unschedulable by RMA. The scheduling result is shown in Figure 5.14. As shown in the diagram,+k��, � misses its deadline of 6, implying that this task set is unschedulable by RMA.

However, this task set is schedulable by FPPT with Pb5�7�0 , G , L , I ; , �������Í5�7�0 , G , L , L ; , and���
	��{5~7�0 , 0 , 0 , 0 ; . ( see another example in detail in Section 5.3.3)
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Figure 5.14: Task Set Unschedulable by RMA

5.3.2 Case for RBA RMA

Given tasks %&��5BADLE'&0N)�GNH , %���5BAoFE'(0N)�FNH , and %��X5BADK<'�/E)�KòH , then g 5¶/E)�J and
� 5s/E)�| . Based on

RBA RMA, the maximal reservation size is 0 v � 5 /<)Y0 . When a scheduler with reservation is

selected, clicking the “Perform” button first pops up a dialog window prompting for a reservation

size, which is shown on the upper part in Figure 5.15. Note, the maximal reservation size ��	 is

already calculated by RBA RMA. Any value in the range ��/E)�/E'���	 � is a valid reservation size. In

Figure 5.15, the slider has been adjusted to the current reservation size of 0.06, which is shown

on the top of the slider.

After the reservation is selected, it is used to initialize RBA RMA in order to generate one

schedule. The scheduling result is shown on the lower part in Figure 5.15. In the diagram, the

reservation is the small black bar located at the beginning of each time unit.

5.3.3 Case for FPPT

Given tasks %&��5BAW0(/<'(0(H , %���5BA�0(FE'(0&H , %��X5BA-I�/E'´I�H , %.�X5BADKò/E'�JNH , %QDþ58ADJN/E'�GNFNH , %.EX5BAW0&/N/E'(0&/NH ,% _ 5cAW0(FNF<'(0�I�H , and %.�{5·AW0(|ò/E'�KNH , then
� 580N)�/<0(GN| ¾ 0 . Based on Theorem ERMA2, the task

set is unschedulable by RMA. However, it is schedulable by FPPT with P�5 7�0 , G , L , I , F , K ,
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Figure 5.15: Choose Reservation Size for RBA RMAC , J ; , �������]5 7�0 , G , L , I , F , F , K , C ; , and ���
	���5 7�0 , 0 , 0 , 0 , L , G , L , 0 ; . The minimal and

maximal assignments are shown in Figure 5.16. The upper polyline corresponds to the minimal

assignment and the lower one corresponds to the maximal assignment.

5.3.4 Case for Minimal and Maximal Assignments in FPPT

Consider the same task set in Section 3.5.4, tasks are % � 5ØAW0(/E'&0(H , % � 5ØAW0(F<'(0(H , % � 5ØA-I�/E':I�H ,% � 5^ADKN/<'(0(/NH , % D 5^ADJò/E'�GN/òH , % E 5^AW0(/ò/E'(0(FòH , % _ 5^AoGN/N/E'&0(/NH , and % � 5^ADG�I�/E'(0(KòH . � ����� 5 7�0 ,
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Figure 5.16: Sample Scheduling of FPPTG , L , I , F , F , F , C ; , and ���@	�� 5 7�0 , 0 , 0 , G , L , L , G , L ; . Different algorithms presented in

Section 3.6 are used to compute the minimal and maximal assignments. The results are shown in

Figure 5.17. Clearly, the corresponding results are consistent because the graphs for the minimal

(maximal) assignments calculated by the different algorithms are the same. Hence, the minimal

(maximal) assignments computed by the different algorithms are the same, which also verifies

the correctness of the algorithms presented in Section 3.6.

5.4 Two Interesting Results

In addition to verifying the correctness of the research work in this thesis, the tool-kit was also

used to find two interesting results. These results are presented in this section.

5.4.1 Counter Example

Given tasks % � , % � , )()() , % � , FPP can perform an incremental schedulability test on the task set

because FPP is robust under the RMA critical instant. That is, any subset of a task set must

be schedulable by FPP if the whole task set is schedulable by FPP. However, this incremental

schedulability test does not hold in FPNP as FPNP is not robust under the RMA critical instant

(see Section 2.1.2). One approach to prove FPNP is not robust under the RMA critical instant
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Figure 5.17: Different Algorithms to Compute Minimal and Maximal Assignments in FPPT
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is to generate a counter example. The tool-kit provides a convenient and fast mechanism to

search for a counter example. Starting with a simple task set, an intuitive adjustments can be

made to the task set to construct a counter example in a couple of hours. For example, tasks% � 5yA-I�'&0N)Y0(H , % � 5 AoCE':I�H , and % � 5 ADGNJE'&0N)�JNH are schedulable by FPNP based on the RMA

critical instant. However, tasks % � and % � are unschedulable by FPNP based on the RMA critical

instant. The scheduling results in the first major cycle based on the RMA critical instant are

shown in Figure 5.181.

*8+.-0/?1ìB�7Q¥Q¦°¥Á: *,+=<>/?1Aí87�B�¦§5;: *,+ « /214C;î87Q¥)¦ªC6:

5ï¥ÊCÍ3ðBñ@Í­ÍíÍîóò�¥Á5m¥;¥ô¥ÁCu¥.3u¥9Bf¥Á@u¥.­u¥.íu¥Áîm¥Áò�C65�C�¥zC;CôC)3ôC)B�C;@ôC)­ôC6í�C6î
õ -Xö « misses its deadline ¥.C

5ï¥ÊCÍ3ðBñ@Í­ÍíÍîóò�¥Á5m¥;¥ô¥ÁCu¥.3u¥9Bf¥Á@u¥.­u¥.íu¥Áîm¥Áò�C65�C�¥zC;CôC)3ôC)B�C;@ôC)­ôC6í�C6î

Figure 5.18: FPNP not Robust under RMA Critical Instant

The upper part of Figure 5.18 shows that the task set composed of tasks % � , % � , and % � is

schedulable by FPNP based on the RMA critical instant. The lower part of Figure 5.18 shows

that the task set composed of only tasks % � and % � is unschedulable by FPNP based on the RMA

critical instant as + �:, � misses its deadline at 0(G . This example indicates that FPNP is not robust

under the RMA critical instant because when the computation time of task % � is decreased to / ,
resulting in that task % � is removed from the original task set, the new task set is unschedulable.

Therefore, the incremental schedulability test does not work on FPNP based on the RMA critical

instant.

1This figure can be generated by the tool-kit. However, converting to gray scale when the number of colors is over
2 is poor. Hence, this figure is hand generated using patterns instead of gray scale. Figure 5.19 is also hand generated
for the same reason.
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5.4.2 Semi-Harmonic Periodic Task Sets

An interesting problem is to find task sets with maximal processor utilization, which is equal to 1.

For example, a harmonic task set (see page 9) is schedulable by RMA if and only if its processor

utilization is not greater than 0 [72]. Given a set of periods that are harmonic, the computation

times can be scaled to achieve a processor utilization of 1. Thus, harmonic task sets represent a

class of task sets that are schedulable by RMA with processor utilization of 0 .
Is it possible for non-harmonic task sets to achieve a processor utilization of 1? First, this

section shows that such task sets exist and all such task sets must satisfy a special condition.

Second, one related work is rephrased in brief. Third, a special class of such periodic task sets

based on perfect numbers [76] is presented, which removes the limitations in the related work

and the necessity to start from a task set schedulable by RMA with processor utilization less than0 . Though the form of this special class of periodic task sets is limited, these task sets can be

good examples for teaching in real-time scheduling.

Definition 4

Given a task set, if the period of each task is a divisor of the longest period, then the task set is

called a semi-harmonic task set.

For example, a task set composed of four tasks with periods G , L , K , and 0(G is semi-harmonic.

Clearly, if a periodic task set is harmonic, then it must be semi-harmonic. However, if a periodic

task set is semi-harmonic, it may not be harmonic.

Theorem 11

Given periodic tasks %��
5 A§1p�W':>��kHÞ':1�� is an integer, for 0�\ØM�\ 4q'´1a�S\Ø1��]\ )()()�\Ø1�� ,gQ5 ���Yjl� P ¥¤�¥ 5B0 , if they are schedulable by RMA, then 1�� © 1�� for 0�\hMr\z4 , i.e., the task set is

semi-harmonic.

Proof: As task % � is schedulable, then there must exist a � such that ��5 ��.�jl� > . � ¢¤�ú,� [15], where
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/ õ �þ\ 1 � . However, �V5 �i.�jl� > . �V� �1 . �} �i.�jl� > . � �1�.5 � �i .�jl� >�.1 .5 �r��g5 �r�N05 �
Note, the equality in } holds if and only if � is an integer multiple of 1�. for 0
\�*d\s4 . As the

processor utilization of the task set is 0 , task %�� meets its deadline at time 1�� . Thus, �Ö5`1�� ,
implying that 1p� is a multiple of 1�. for 0U\ *µ\�4 . Therefore, these tasks are semi-harmonic. M

Theorem 11 indicates that a task set schedulable by RMA with a processor utilization of 1

must be semi-harmonic.

Lord [48] presents examples of non-harmonic task sets schedulable by RMA with utilization0 . Such a non-harmonic task set can be derived based on the formulae %��
5 A-1��Õ':1��Ü�N4�H and1���5�0(��A´AD4 v M�½ 0(H Ë H , where 4 is the number of tasks and Ë is called a frequency2. For example,

when Ë 5s/<)�/E0 and 4�5zI , four tasks are calculated,% � 5BADGòFE'�KE)�GNFNH�' % � 5BADLòLE)�LNLE'�JE)�LNLòH�' % � 5BADFN/E'&0(GE)�FòH�' % � 5BAW0&/N/E'�GòFNH�)
Such a task set is semi-harmonic but not harmonic with processor utilization 0 . Lord’s work

on non-harmonic task sets does not formally prove that such a task set is schedulable by RMA.

Furthermore, the task sets proposed by Lord have two limitations. First, the period of a task may

not be an integer. Second, the processor utilization of each task is the same.

It is straightforward to create a semi-harmonic task set that is not harmonic but schedulable

by RMA with processor utilization equal to 0 . Start with a task set schedulable by RMA, which

is not harmonic and whose processor utilization is less than 0 . Suppose the processor utilization

2In [48], ÷ ¥ is given as ²¬ø)ù4ú&û�ù4ü�û
²9ýHþ�ý , which is incorrect.
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is g and the major cycle is 1 ��2 . Create another task with period 1 ��2 and computation time1 ��2 AW0 v g{H . Then the new task set is schedulable by RMA with processor utilization 0 but it

is not harmonic. The correctness of the above result is apparent. First, the processor utilization

of the task set is g ½61 ��2 AW0 v gUH:��1 ��2 5fgh½~0 v g 5`0 . Second, as the appended task has

the longest period, based on RMA, its priority is lowest. Hence, appending the new task cannot

affect the schedulability of tasks in the original task set. It remains to consider the schedulability

of the appended task. As the major cycle of the original task set is 1 �
2 and in one major cycle the

unused time left by the original task set is 1 �
2 A�0 v gUH , which is equal to the computation time of

the appended task, implying that the appended task can meet its deadline. Thus, it is schedulable.

Third, as the original task set is not a harmonic task set, there exists at least one pair of periods1 � and 1 . such that 1 �cÿ 1 . , where Mzl5¶* and 1 . ¾ 1 � . This property still holds in the new task

set as no task is removed in the new task set, resulting in that the new task set is not harmonic.

However, the limitation is that the starting task set must be schedulable by RMA and not

harmonic, requiring a schedulability test be performed on the task set. In fact, there exist many

task sets such that the periods of all tasks are integers and the processor utilization of each task

is different. For example, periodic tasks % � 58ADGE'(0&H , % � 5BADL<'(0(H , and % � 5BADKE'&0(H are schedulable

by RMA with processor utilization of 1. Note, 6 is the smallest perfect number. Now, consider a

more complicated example. Given tasks%&��5BADGE'&0(H�' %���5BA-I�'&0(H�' %���5BADCE'&0(H�' %.�X5BA�0�I�'(0&H�' %QDþ58ADGNJE'&0(H�'
they are schedulable by RMA with processor utilization �� ½ �� ½ �_ ½ ��X� ½ ���� 5~0 . The Gantt-chart

of the schedule of all the jobs in the first major cycle by RMA is shown in Figure 5.19. Each task

has computation time 0 and GNJ is an even perfect number, whose distinct positive divisors greater

than 0 are G , I , C , 0�I , and GNJ . Perhaps this observation is a coincidence. By using the tool-kit

to quickly test a number of similar task sets, it was possible to get positive feedback that the

observation might be an actual consequence, and hence, a formal examination might be fruitful.

Conjecture: given a perfect number, if a task set is derived such that each period corresponds

to a distinct divisor of the perfect number greater than 1 and the computation time of each task is

1, then such a task set is schedulable by RMA with processor utilization of 1. The remainder of

this section examines this form of task sets in detail.

Perfect numbers are used in the following discussion. These numbers do not appear arbi-

trarily, but rather fell out from the following observation. Given a positive integer 4 and all of
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Figure 5.19: A Task Set based on Perfect Number ���
its distinct positive divisors, ÈN�N'.ÈE��'.È��&'()&)():'.È�� , where 0µ5 ÈN� õ ÈE� õ È�� õ )()() õ È��
5c4 , if��Ð���.�j�� È . 5Ø4 , then 4 is called a perfect number. Given a perfect number 4 , let = be the set of

such divisors. Thus, =Ø5f7,ÈdZcÈ © 4a'(0
\ÅÈ õ 4 ; . Then,
�
ê�®�� È�5·4 , which can be transformed

to
�
ê�®�� ê� 5`0 , resulting in

�
ê�®�� �u 	 5`0 . Interestingly,

�
ê�®�� �u 	 is similar to the right-hand side of

Formula 2.1 to calculate the processor utilization of a task set. This similarity leads to creating

a task set 3z5c7�%b5^A � ê '(0&HUZdÈdô�= ; whose processor utilization is equal to 0 . If task set 3 is

schedulable by RMA, then it is a task set that is schedulable by RMA with processor utilization0 . In addition, such a task set is semi-harmonic but not harmonic. As only even perfect numbers

are found up to now, only even perfect numbers are considered.

Based on the Euclid-Euler Theorem [76], 4 is an even perfect number if and only if 4s5G ânÐp� AoG â v 0(H , where G â v 0 is a Mersenne prime [76]. Therefore, an even perfect number must

be of the form G â ADG â&¸�� v 0(H . Hence, all of its distinct positive divisors are 0 , G , )()() , G â , G â(¸l� v 0 ,G�AoG â(¸l� v 0(H , G � ADG â(¸l� v 0(H , )()() , G â ADG â(¸l� v 0(H , increasingly. In fact, the general denotation of these

divisors is as follows:

È � 5 �! " G � /@\�Mr\ ñ 'G �-Ð�ã â&¸��Wå ADG â&¸�� v 0(H ñ ½s0U\�Mr\6G ñ ½z0N) (5.1)

One relationship among È � , È �Dâ(¸l�:ÐE� , and 4 for q i, /_\QM�\~G ñ ½¶0 , is presented formally in

the following lemma, which is applied in the proof of Theorem 12.
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Lemma 11

Given an even perfect number 4d5�G â ADG â(¸l� v 0(H , all of its distinct positive divisors are ÈN�q58G �
for /@\�Mr\ ñ and Èò�­5¶G �-Ðpã³â(¸l��å ADG â(¸l� v 0(H for

ñ ½z0Ö\�M
\�G ñ ½z0 based on Formula 5.1. Then

Èò� O È��Dâ&¸��´ÐÀ��5s4 for q i, /�\�M�\6G ñ ½s0 .
Proof: The key point is to show that when /�\sM�\ ñ ,

ñ ½~0�\sG ñ ½s0 v M�\sG ñ ½~0 and whenñ ½s0�\hM
\hG ñ ½s0 , /
\zG ñ ½s0 v M�\ ñ . Then based on Formula 5.1, ÈN� O È��Dâ(¸l�:ÐE�q5s4 can be

verified.

1. q i, /�\�M \ ñ . Then,/�\�M
\ ñ 5�
 v ñ \ v M�\6/ multiplying each side with v 05�
 G ñ ½s0 v ñ \�G ñ ½s0 v M \�G ñ ½z0
adding G ñ ½s0 to each side5�
 ñ ½z0U\�G ñ ½¶0 v Mr\�G ñ ½z0

Thus,

ÈN� O È��oâ(¸l�:ÐE�e5 G � O G �Dâ(¸l�:ÐE�-Ðpã³â(¸l��å ADG â(¸l� v 0(H based on Formula 5.15 G â ADG â(¸l� v 0(H5 4
2. q i,

ñ ½z0�\�M�\�G ñ ½¶0 . Then,ñ ½¶0U\�Mr\�G ñ ½z0 5�
 v AoG ñ ½s0&H�\ v Mr\ v A ñ ½s0(H
multiplying each side with v 05�
 G ñ ½s0 v AoG ñ ½s0(H�\�G ñ ½¶0 v Mr\�G ñ ½s0 v A ñ ½¶0(H
adding G ñ ½s0 to each side5�
 /@\�G ñ ½s0 v Mr\ ñ
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Thus,

ÈN� O È��oâ(¸l�:ÐE�e5 G �ÜÐ�ã³â(¸l��å AoG â(¸l� v 0(H O G �Dâ&¸��´ÐÀ� based on Formula 5.15 G â ADG â(¸l� v 0(H5 4
Therefore, Èò� O È��oâ(¸l�:ÐE�p5s4 for q i, /�\�Mr\�G ñ ½z0 . M
Given an even perfect number, if all of its distinct divisors greater than 0 are considered to

be periods of a periodic task set and the computation time of each task is equal to 0 , then such a

task set is semi-harmonic but not harmonic, which may be schedulable by RMA with processor

utilization 0 . This observation is formally specified in Theorem 12. Lemma 12 is proved first,

which is used in the proof of Theorem 12.

Lemma 12

Given an even perfect number 4~5ëG â ADG â(¸l� v 0&H , all of its distinct divisors are ÈN��5ëG � for/�\sM�\ ñ and Èò�q5�G �-Ð�ã³â(¸l��å ADG â(¸l� v 0(H for
ñ ½¶0
\sM�\QG ñ ½Q0 based on Formula 5.1. Derive

a periodic task set 3��Dâ&¸��X5879%��q5·A-1��W':>X�YH�5cAHÈò�Õ'(0(H�Z�0Í\sM�\zG ñ ½s0 ; , then
��.:j�� � ¤9¥¤Þú �µ5~1�� for

periodic task set 3��Dâ&¸�� , where
ñ ½z0Ö\�Mr\6G ñ ½z0 .

Proof: The proof is composed of three steps.�i.:j�� � 1��1�. � 5 âi.�jl� � 1p�1�. � ½ �i.�j�â(¸l� � 1p�1�. �
Let 
Ø5 â�.�jl� � ¤9¥¤Þú � and ��5 ��.�j�â(¸l� � ¤�¥¤�ú � . The next two steps calculate 
 and � .
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1. Calculate 



 5 âi.�jl� � 1��1�. �5 âi.�jl� � Èò�È�. � as 1 � 5tÈ � and 1 . 5tÈ .5 âi.�jl� � G �-Ðpã³â(¸l��å ADG â(¸l� v 0(H1�. �
as
ñ ½z0U\�M
\�G ñ ½s0 , Èò��5sG �-Ð�ã â(¸l��å AoG â(¸l� v 0(H

based on Formula 5.15 âi.�jl� � G �-Ðpã³â(¸l��å ADG â(¸l� v 0(HG . �
as 0U\]*µ\ ñ , È�.X5sG . based on Formula 5.15 �ÜÐ�ã³â(¸l��åi.�jl� � G �-Ð�ã³â(¸l��å ADG â(¸l� v 0(HG . �½ âi.�j��-Ð�ã â(¸l��å-¸l� � G �-Ð�ã â&¸��Wå ADG â(¸l� v 0(HG . �

5 �ÜÐ�ã³â(¸l��åi.�jl� � G �-Ð�ã³â(¸l��å ADG â(¸l� v 0(HG . � ½ âi.:j��-Ð�ã³â(¸l��åÜ¸l� � G �G . v G �-Ð�ã â(¸l��åG . �
Let #h5 �ÜÐ�ã³â(¸l��å�.:j�� � � ¥ w�� �¬x t � ãY� �9x t Ðp�Wå� ú � and

ö 5 â�.�j��-Ð�ã â(¸l��å-¸l� � � ¥� ú v � ¥ w�� �¬x t �� ú � , then
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# 5 �-Ð�ã â(¸l��åi.�jl� � G �-Ð�ã³â(¸l��å ADG â(¸l� v 0(HG . �5 �-Ð�ã â(¸l��åi.�jl� G �-Ð�ã â(¸l��å AoG â(¸l� v 0(HG . as *_\�M v A ñ ½z0(H5 G �-Ð�ã â&¸��Wå ADG â(¸l� v 0(H �ÜÐ�ã³â(¸l��åi.�jl� 0G .5 G �-Ð�ã â&¸��Wå ADG â(¸l� v 0(H(A�0 v 0G �ÜÐ�ã³â(¸l��å H5 G �-Ð�ã â&¸��Wå ADG â(¸l� v 0(H v AoG â(¸l� v 0(H5 1 � v AoG â(¸l� v 0(H as
ñ ½s0U\6M and 1 � 5{È � 5sG �-Ð�ã³â(¸l��å ADG â(¸l� v 0(H5 1���½s0 v G â(¸l�ö 5 âi.�j��-Ðpã³â(¸l��å-¸l� � G �G . v G �-Ð�ã³â(¸l��åG . �5 âi.�j��-Ðpã³â(¸l��å-¸l� G �G .

as Mr} * and * ¾ M v A ñ ½z0(H therefore / õ G �-Ðpã³â(¸l��åG . õ 05 G � âi.:j��-Ð�ã³â(¸l��åÜ¸l� 0G .5 G � Ï 0G �-Ð�ã³â(¸l��å v 0G â Ñ5 G â(¸l� v G �-ÐNâ
Thus, 
Ø5t#¼½ ö = 1��À½¶0 v G â(¸l� + G â&¸�� v G �ÜÐNâ = 1��E½s0 v G �ÜÐNâ .
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2. Calculate � � 5 �i.�j�â(¸l� � 1p�1�. �5 �i.�j�â(¸l� � È �È�. � as 1 � 5{È � and 1 . 5tÈ .5 �i.�j�â(¸l� � G �-Ðpã³â(¸l��å ADG â(¸l� v 0(HG .�Ð�ã³â(¸l��å AoG â(¸l� v 0(H �
based on Formula 5.1 and

ñ ½¶0U\]*_\�Mr\�G ñ ½z05 �i.�j�â(¸l� � G �G . �5 �i.�j�â(¸l� �ÒG �-Ð�. �5 �i.�j�â(¸l� G �ÜÐ�. M and * are integers, so is G �-Ð�. as M }]*5 G �-ÐNâ v 0
3. Calculate 
 ½ � �i.�jl� � 1 �1�. � 5 
 ½ �5 1��À½z0 v G �-ÐNâ ½�G �-ÐNâ v 05 1��

M
Theorem 12

Given an even perfect number 4~5ëG â ADG â(¸l� v 0&H , all of its distinct divisors are ÈN��5ëG � for/�\sM�\ ñ and Èò�q5�G �-Ð�ã³â(¸l��å ADG â(¸l� v 0(H for
ñ ½¶0
\sM�\QG ñ ½Q0 based on Formula 5.1. Derive

a periodic task set 3��oâ(¸l�Å5·79%���5`A-1��Õ':>X�-HX5^AHÈò�W'(0(H�Z�0
\~M�\QG ñ ½s0 ; , then the periodic task

set 3��Dâ(¸l� is schedulable by RMA with processor utilization 0 . Furthermore, task set 3��oâ(¸l� is

semi-harmonic but not harmonic.

Proof: The proof is composed of three steps. The first step is proving gV5 0 by applying
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Lemma 11. The second step is proving that tasks % � '�% � '()&)():'�% � are harmonic for 0U\�Mr\ ñ , which

are schedulable by RMA as
� 5 g �Xõ g�5c0 . The third step is proving tasks % � '�% � '&)()()W'�% � forñ õ M�\BG ñ ½Q0 are schedulable through proving

� � A§1 � HU5^0 and
� \·0 for

ñ õ MU\BG ñ ½~0 ,
which is based on 12; finally, proving

� \s0 when
ñ õ M \�G ñ ½z0 . Thus, the tasks % � '�% � '()()&)W'�% �

for
ñ õ M
\�G ñ ½z0 are schedulable by RMA based on Theorem ERMA2. When Ml5sG ñ ½s0 , the

whole task set is schedulable by RMA and gT5f0 . At the beginning of each step and sub-step,

the target of that step or sub-step is specified first, followed by the details.

1. g 5T04�5 �oâ��Yj�� È � as 4 is an even perfect number. Divide both sides by 4 , then

0 5 �Dâi �Yj�� Èò�45 �Dâi �Yj�� ÈN�
È ��O È �Dâ(¸l�:ÐE�

based on Lemma 11, ÈN� O È��oâ(¸l�:ÐE�­5¶4 for /�\�Mr\�G ñ ½z05 �Dâi �Yj�� 0
È��Dâ(¸l�:ÐE�5 0

È��oâ(¸l� ½ 0
È��Dâ ½ 0

È��Dâ�Ð�� ½¶)()&)�½ 0
È<�5 �Dâ(¸l�i �Yjl� 0

È �5 �Dâ(¸l�i �Yjl� >X�1�� as >��­5T0 and 1��p5tÈò�5 g based on Formula 2.1

2. 0U\�M
\ ñ , tasks % � '�% � '()()&):'�% � are schedulable by RMA.

Tasks % � '�% � '&)()&):'�% � are harmonic because 1 � 5ÍÈ � 5áG � , implying that all periods are

equal to the power of G increasingly and g �Uõ gc5Ø0 . It is known that a harmonic task

set is schedulable by RMA if its processor utilization is not greater than 0 . Therefore,% � '�% � '()&)()W'�% � are schedulable by RMA.

3.
ñ ½s0U\6Mr\�G ñ ½z0 , tasks % � '�% � '&)()()´'�% � are schedulable by RMA.
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Consider tasks % � '�% � '()&)():'�% â '�% â(¸l� '&)()()´'�% � . Based on step 2, tasks % � '�% � '&)()()´'�% â are al-

ready schedulable with g âsõ gR5á0 . Thus, it is unnecessary to consider the schedu-

lability of tasks % � '�% � '()()&):'�% â when considering tasks % â(¸l� '&)()()´'�% �Dâ(¸l� as the latter ones

have longer periods. Based on RMA, they have lower priorities. Thus, they cannot affect

the schedulability of those tasks with shorter periods, which have higher priorities. Whenñ ½s0U\6Mr\�G ñ ½z0 , 1 � 5tÈ � 5sG �ÜÐ�ã³â(¸l��å AoG â(¸l� v 0(H based on Formula 5.1.

(a) Calculate
� � A-1 � H
� �:A-1��ÜHá5 ��.�jl� >�.�� � ¤9¥¤Þú �1�� based on Formulae 2.4 and 2.3

5 ��.�jl� � ¤�¥¤�ú �1�� as > . 5�05 1p�1p� based on Lemma 125 0
(b) Calculate L for tasks %&�('�%���'()&)():'�%��� �e5 ���Y�  �Þ¡À¢o£À¤�¥Y¦ � �:A-�WH based on Formula 2.5\ � ��A-1��ÜH5 0 by step 3a

� 5 �
°�±  �:£�.�£E�Y¦ � . based on Formula 2.8\ 0 by step 2 and 3b

Based on Theorem ERMA2, tasks %&�('�%��('&)()()´'�%�� are schedulable by RMA.

Therefore, for 0z\ Md\ëG ñ ½·0 , tasks %&� , %�� , )()() , %�� are schedulable by RMA. WhenM�5sG ñ ½s0 , task set 3l�Dâ(¸l� is schedulable by RMA with gh5�0 .
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Based on Formula 5.1, 1 â = G â and 1 â(¸l� = G â&¸�� v 0 in 3 �Dâ(¸l� . As G â ÿ ADG â(¸l� v 0(H , then task set3 �oâ(¸l� is not harmonic. Clearly, 4[5z1 �Dâ(¸l� 5sG â ADG â&¸�� v 0&H and all periods of tasks in 3 �Dâ(¸l� are

divisors of 4 , resulting in 1 �r© 1 �Dâ(¸l� . Therefore, 3 �Dâ(¸l� is semi-harmonic. M

5.5 Summary

This chapter presents a real-time scheduling tool-kit developed during the research work of this

thesis. The tool-kit was used to verify the correctness of the research work and find some in-

teresting results. Though the tool-kit is an ad hoc application instead of a framework, it tries

to support different schedulers based on the abstraction of a general real-time scheduler as the

root in a hierarchy of schedulers. Currently, the tool-kit only supports independent task sets so

resource management protocols are not supported. This deficiency is a weak point, as in practice,

tasks often compete for exclusively-shared resources in many real-time systems. Furthermore,

the tool-kit does not consider system architectures as another parameter. Both of these problems

should be further studied.
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Chapter 6

Conclusion and Future Work

6.1 Overview

This thesis focuses on two real-time scheduling algorithms. The first scheduling algorithm is

FPPT; its schedulability test is proved robust under its critical instant. As well, this thesis ex-

plores the solution space when a task set with predefined regular priority is schedulable by FPPT

with multiple valid assignments. A necessary condition is presented to describe the solution

space based on a partial order relationship. Effective algorithms to compute minimal and max-

imal assignments are presented and proved correct. The second scheduling algorithm is RBA,

in which the maximal size of the reservation bandwidth is calculated. This thesis provides the-

oretical support to calculate the maximal bandwidth effectively for RBA RMA and RBA FPPT.

Finally, a small real-time scheduling tool-kit was developed to verify the correctness of these two

algorithms and for use with other real-time scheduling algorithms.

6.2 Contributions

FPPT fills the gap between FPP and FPNP, which are two (typically) incomparable schedulers.

This thesis reaffirms that FPPT is a valid form of real-time task scheduling and proves that the

FPPT schedulability test is robust under its critical instant.

When a task set is schedulable by FPPT with predefined regular priorities, there may exist

multiple valid assignments, which are delimited by the minimal and maximal assignments based

on a partial order relationship. Some mechanisms are provided to generate additional valid as-

signments when two valid assignments satisfying some specific conditions are provided. Any
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valid assignment must be located between the minimal and maximal assignments. However, not

all assignments between the minimal and maximal assignments are valid.

The known algorithm to compute the minimal assignment starts its computation from FPP

and the known algorithm to compute the maximal assignment starts its computation from a valid

assignment. However, neither algorithm formally proves the result is minimal or maximal. This

thesis provides formal proofs for both algorithms. In addition, algorithms to compute the minimal

and maximal assignments starting from FPNP are presented. It is also shown that the minimal

assignment can be calculated by starting from any valid assignment such as the maximal assign-

ment. The correctness of these algorithms are also proven.

RBA is a kind of bandwidth reservation algorithm in which a periodic server executes during

an evenly reserved bandwidth to shorten the response time of aperiodic tasks executed by the

server. The known algorithm to calculate the reservation size for RBA RMA is ineffective. This

thesis proves that the maximal reservation size for RBA RMA is equal to 0 v � where
�

is the min-

imal processor utilization required by the periodic task set when RMA is used. For RBA FPPT,

no direct formula is provided. However, an algorithm to search for the maximal assignment under

which the maximal reservation size can be calculated is presented.

To verify the research results, one important approach is to write programs to simulate the

examined real-time scheduling algorithms. Due to the difficulties in extending existing available

tool-kits and the lack of support for FPPT, a small tool-kit was developed to verify the research

work and to develop and verify two interesting results.

6.3 Benefits

As FPP and FPNP are both special cases of FPPT, FPPT has a larger range of schedulable task sets

than either FPP and FPNP. When a task set is schedulable by FPPT, if the maximal assignment

is used, it implies the number of preemptions is minimal, resulting in fewer context switches

and less system cost. Under the maximal assignment, a resource management protocol may be

unnecessary, resulting in better processor utilization. As well, FPPT has a static schedulability

test.

RBA computes the maximal reservation size to service aperiodic tasks while guaranteeing

the deadlines of periodic tasks. Though EDF can reserve all unused time left by periodic tasks

to service aperiodic tasks evenly, its run-time cost is high due to its dynamic scheduling. When

RMA is used to guarantee the deadlines of periodic tasks, an even reservation may be impossible.
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When an even reservation is possible, the reservation size cannot be better than that of EDF.

However, available resource management protocols based-on RMA can be applied when tasks

are not independent. As well, RMA also has a static schedulability test. When FPPT is used and

tasks are independent, it can obtain a reservation size not worse than RMA but remove the high

run-time cost of EDF.

6.4 Constraints

This thesis does not consider all practical issues. For both scheduling algorithms examined, tasks

are assumed to be independent during their execution, which is not always true in practice as

tasks may communicate and access exclusively-shared resources.

While all bandwidth reservation algorithms may attempt to utilize any unused time, once that

piece of time is smaller than a certain threshold, there is no practical benefit as no useful work

can be accomplished by the aperiodic tasks. In fact, RBA increases practical overhead because

both periodic and aperiodic tasks are executed in multiple short bursts requiring more context

switches, although this can be mitigated by scaling.

6.5 Future Work

Future research work focuses on reducing the constraints. First, the regular priority of a task

set is predefined. As each task has two priorities – regular priority and preemption threshold, it

is reasonable to adjust both regular priority and preemption threshold for each task at the same

time for a schedule search. When both priorities are adjusted, it is possible that the preemption

threshold of a task may be lower than its regular priority. Second, given a task set with prede-

fined regular priority, if a valid FPPT assignment does not make each task non-preemptive, then

preemptions still exist. If tasks are not independent, then resource management protocols are

required. It seems that the PIP protocol may work with FPPT. If PIP does not work, then new

resource management protocols are required for FPPT. Third, the situation when the single uni-

form reserved bandwidth is too small should be considered in RBA. When a uniform reservation

band cannot be generated across the entire major cycle, it may still be possible to have multiple

larger reservation bands. Fourth, the possibility of creating a genetic scheduling algorithm [20]

should be explored, i.e., only provide rules for tasks to compete for the processor and the rules

for preemption. During the development of the tool-kit, different scheduling algorithms were im-

plemented. Each algorithm required the same cycle to be repeated: analyzing the rules for a task
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to compete for the processor and rules for preemption if allowed. Based on these rules, the worst

case response time or expected processor utilization is computed. It seems that it is reasonable

to create a genetic scheduling algorithm, so after a user chooses specific rules for a scheduling

algorithm, the system can synthesize a scheduling algorithm based on the user’s requirement.

Of course, such a genetic scheduling algorithm may be implemented by generic programming

techniques such as inheritance, template, and virtual function.
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