
iTalk
Index your talk

by

Archana Adma

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2006

©Archana Adma 2006

 ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners. I understand that my

thesis may be made electronically available to the public.

 iii

Abstract

iTalk is an integrated tool developed to enable search through audio content recorded from
voice conferences. In this digital world, where VoIP and text based search engines rule the
user community, iTalk comes handy by saving the user’s contribution to voice conferences
and indexing them with the help of manipulated speech recognition technologies, thereby
providing the users a gateway to archived audio conferences. A 3-tier indexing algorithm
enables retrieval of small chunks of audio from the recorded conversation, which saves user’s
time in skimming through the audio content.

This project is aimed at the integration of the voice conferencing tool Vocal Village
developed at the University of Toronto and the file system based search engine Wumpus
developed at the University of Waterloo. The resulting system provides a back stream to
record, index and archive the audio for retrieval based on the associated XML based index
file. The XML index file is generated using transcriptions obtained by the 3-tier algorithm to
which each audio file is fed. The output accuracy is dependent on the training files obtained
from the users. The more training length is, the better is the output.

In this thesis we present the design and development of the tool; we also provide the
necessary background information on speech recognition tools and VoIP technologies.

 iv

Acknowledgements

My supervisor Charlie Clarke is duly thanked for his enthusiasm, encouragement, and
support throughout the development of the iTalk project and for his assistance and advice in
writing this thesis. His care in making my masters program as easy as it can get, cannot be
sufficiently thanked. Special thanks to my thesis readers: Gordon Cormack and Olga
Vechtomova, for their time, guidance, availability and understanding. I would also like to
graciously acknowledge funding from IBM Canada and Centre for Communications and
Information Technology Ontario.

Many thanks to Mark Chignell, Dr. Sharon Straus, MIE lab mates and KTP group from
University of Toronto, who gave me an opportunity to conduct my research from their place
along with a lot of support by involving me in several of their events. To Helen Evans, who
helped me edit my thesis and made it into a good work as it looks today. Thanks to all the
PLG and IR group members, especially Stephen Büttcher and Philip Tilker, whose research
advices and help made way to the development of iTalk system in a short time. My thanks
are due to Ashif Harji and Mike Patterson, who have provided the necessary technical
support throughout and sometimes even at odd hours. To Maheedhar Kolla, who helped in
proofreading and providing valuable technical writing advises.

As brief as I would like to make my acknowledgements, I would not want to forget anyone
who is responsible for this thesis. To all the administrative staff and all my friends at
Waterloo and to all of those whom I have talked to, met with, debated with, and even smiled
to: I would like to thank you all, for the small things that give a lot of inspiration and keep
the courage to reach our goals. Always mentioned at the last, just because they are family and
they know that irrespective of where I mention them, they hold a very prestigious position in
my life and I can never sufficiently thank them all for everything they are, they did, and they
will do for me. Thank you for being my family. A special group of friends who are more than
just friends ABCD-IT are all thanked in person for their direct and indirect moral support,
especially Sravanthi Boocha and Anuhya Cheruku. Last but not the least, my little niece
Dhanya Karra, who used to lift the stress off this thesis with her child talk, I am smiling even
as I am writing this, I guess that says everything.

 v

Dedication

To the one without whose artistic talent this thesis would have been yet another thesis with
lines of text and figures that are just boxes, without whose support I wouldn’t have
successfully traveled all the way to completing my thesis, who has been encouraging me
despite spending days of lacking attention from me during my masters program, to you dear
husband, Shashidhar Reddy Methuku, I dedicate my thesis.

 vi

Table of Contents

Abstract ... iii
Acknowledgements ... iv
Dedication .. v
Table of Contents .. vi
List of Tables .. viii
List of Figures ... ix
Chapter 1 .. 1
Introduction.. 1

1.1 Need for iTalk System... 1

1.2 Hypothesis for the iTalk system.. 2

1.3 Organization.. 3

Chapter 2 .. 4
Background and Related Work .. 4

2.1 Speech Recognition... 4

2.1.1 Hidden Markov Model.. 4

2.1.2 Methods in Automatic Speech Recognition.. 9

2.1.3 Pattern Recognition approach to continuous speech recognition system 10

2.1.4 Word Error Rate (WER) ... 12

2.1.5 Summary of Automatic Speech Recognition Process... 13

2.2 Audio Mining .. 15

2.2.1 How Audio Mining Works?.. 16

2.2.2 Out of vocabulary (OOV) words in audio mining or spoken document retrieval............... 17

2.3 Information Retrieval .. 18

2.4 Audio Conferencing .. 18

2.5 Related Work in Audio Indexing Systems .. 20

2.5.1 TREC Spoken document retrieval efforts ... 20

2.5.2 Tools for automatic transcription and browsing of audio-visual presentations 23

2.5.3 Indexing spoken documents using self-organizing maps.. 25

2.5.4 An integrated automatic transcription and indexing tool for spoken medical reports 25

2.5.5 A spoken query information retrieval system ... 28

2.5.6 Acoustic indexing via phone lattices .. 31

2.5.7 Spoken document indexing and search using PSPL ... 33

2.5.8 SpeechLogger: A coversational speech retrieval system .. 34

 vii

2.5.9 Summary of related work .. 37

Chapter 3 Design .. 39
3.1 Preliminary Steps... 39

3.2 Recording high quality audio files... 41

3.3 Speech recognition tool with time-stamped transcripts ... 43

3.3.1 The iTalk Speech Processor.. 50

3.4 Audio Snippet Retrieval System.. 56

3.5 Design summary of iTalk components .. 58

Chapter 4 .. 59
Architecture of iTalk Tool Kit.. 59

4.1 Integration concerns... 59

4.2 Initial Architecture... 63

4.3 Server Side Architecture.. 68

4.4 Summary of iTalk Architectures ... 70

Chapter 5 Future Work ... 71
5.1 Improving iTalk tool: usability and speed of data retrieval ... 71

5.2 Applications of iTalk System .. 72

Chapter 6 Conclusion ... 73
Bibliography ... 74

 viii

List of Tables

Table Page

1.ASR performance assessment ... 37

 ix

List of Figures

Figure 1: Milestones in speech and multimodal technology and research [20]. 2

Figure 2: A Markov chain with 5 states and selected state transitions [2]. .. 5

Figure 3: Block diagram of a continuous speech recognizer [2]. ... 10

Figure 4: A typical speech recognition process [4]. ... 14

Figure 5: Scansoft's audio mining development process [6]. ... 17

Figure 6: Sample screen shot of vocal village voice conferencing tool [10].. 19

Figure 7: TREC 6 SDR process [39]. ... 21

Figure 8: A typical SDR process [22]. ... 22

Figure 9: Sample screen shot of the lecture browser [5]. ... 24

Figure 10: Overview of the automatic concept extraction study process [12]. 26

Figure 11: General spoken query information retrieval system architecture [16]. 29

Figure 12: Audio/video file preprocessing using a speech decoder, acoustic and language models [16].

.. 30

Figure 13: Phone lattice for the word "damage" (d ae m ih jh) [17]. ... 32

Figure 14: Overview of the SpeechLogger system [18]... 35

Figure 15: General SDR flow... 40

Figure 16: Overview of vocal village audio conferencing process…………………………………...42

Figure 17: A high level overview of iTalk processor…………….…………………………………..47

Figure 18: 3 tier feed……………………………………………………..…………………………...51

Figure 19: iTalk processor flow diagram………………………...…………………………………...55

Figure 20: iTalk system – component level flow diagram…………………………………………....60

Figure 21: Overview of initial architecture for iTalk tool …………………………………………....62

Figure 22: Detailed initial client side architecture……………….…………………………………...64

Figure 23: Presentation of iTalk system at CASCON 2005 conference in Toronto, Ontario,

Canada………………………………………………………………………………………………...65

Figure 24: Current iTalk Server Architecture……………………..……...…………………………..67

Figure 25: Detailed iTalk server architecture…………………………………………………….….. 69

 1

Chapter 1

Introduction

Technology has taken a front seat in communications with the advancement of Internet.
VoIP technology has become one of the leading communications technologies today.
However, the dream of recording conversations for future revisiting has been complex - the
reasons include technological complexity associated with recording of the VoIP conferences,
lack of proper audio indexing tools and techniques. Today, VoIP technology has advanced to
the stage of recording conferences in real time. However, the need for audio indexing tools,
such as visiting a particular point of time in the conference audio, has not been achieved
successfully primarily due to the lack of proper tools to index the audio files. Mere indexing
with the metadata of the file, even though helpful in retrieving the correct audio file, is not
very effective in skimming through the content of the audio files.

1.1 Need for iTalk System

Church [20] assesses the possible trends in development of future storage to be in the range
of petabytes. The availability of such a huge storage is expected to cause major dislocations,
as everyone will be able to store large amounts of text, speech, and video. Going even
further, Church [20] predicts that in the future, search will become a more important
application than speech coding and data entry. As speech is the key to information retrieval
from audio and video clips, speech-based research is expected to increase in the near future.
Church [20] presents milestones in speech and multimodal technology and research as
follows:

 2

Figure 1: Milestones in speech and multimodal technology and research [20].

Though lot of work has already been done in the direction of audio indexing, most of it was
focused on the read-speech, broadcast news domain, and very few, in contrast, on
spontaneous conversational speech. Methods to cope with informal speech containing
misstatements, corrections and disfluencies, which are more complex to handle, are yet to be
developed. The biggest challenge, however, is to design user interfaces for people to sift
through spoken documents as rapidly as they can pick through clean text [21]. The need for
tools, which provide an interface for users to sift through their audio conferences for spoken
words as they would through a text document for some specific words, is hence desired.
iTalk system is developed to satisfy this need: archive, index, and retrieve spontaneous
speech.

1.2 Hypothesis for the iTalk system

As will be explained in chapter 2 of this thesis, typical spoken document retrieval involves
generating a transcript for a recorded audio file by running it through a speech recognition
tool. Further, text-based indexing techniques are applied to this transcript to search for
specific words in an audio file. Such spoken document retrieval would retrieve the audio file
that contains a specific keyword from among thousands of audio files. However, such
retrieval is not very effective considering the number of false positive documents and the
amount of time spent in skimming through the audio file looking for the keyword. A more
desired approach is to retrieve either the exact position in the audio file where the keyword
occurs or the sets of keywords with associated concepts. This requires time-stamping the
audio file and the generated transcript. To achieve this, iTalk hypothesis uses a 3-tier feed

 3

and multiple hypothesized transcript generation methodology that is further described in
chapter 3.

This method ensures better indexing of all positions in the audio file and also benefits the
recognition accuracy.

1.3 Organization

The remainder of this thesis presents the iTalk spoken snippet retrieval system, the
techniques and design involved in the development of this system and its applications.

Chapter 2 presents the required background on the speech recognition process, standard
audio mining approach, out of vocabulary words and their effect on spoken document
retrieval, VoIP based audio conferences, and information retrieval process using text-based
search engines. This information is followed up with relevant tools and techniques developed
in the field of spoken document retrieval.

Chapter 3 presents the audio indexing methodology for automatic archiving, indexing, and
retrieving of recorded VoIP based audio conferences.

Chapter 4 describes the architecture of iTalk and the initial design with informal user
feedback obtained from a demo at CASCON 2005 conference followed by improved design
developed based on the criticism received.

Chapter 5 emphasizes the potential future direction for the development of iTalk tool and
Chapter 6 concludes the contributions of this work followed by references in bibliography.

 4

Chapter 2

Background and Related Work

2.1 Speech Recognition

Speech is a combination of information obtained from discourse, semantics, syntax,
phonologies, phonetics and acoustics [1]. Speech recognition, however, is the process of
converting an acoustic signal into a set of words. In general, speech recognition involves the
ability to match a voice pattern against a provided or acquired vocabulary. The most
successful model to match speech patterns in Automatic Speech Recognition (ASR) is the
Hidden Markov Model (HMM).

2.1.1 Hidden Markov Model

Hidden Markov Models [2] are referred to probabilistic functions of Markov chains in the
communications literature. This section presents the theory of discrete Markov chains and
extends it to the ideas behind HMM.

Discrete Markov Processes:

Consider a system which may be described at any time as being in one of a set of N distinct
states, ,21 ,....,, NSSS (where N=5), as illustrated in Figure 2 [2].

 5

Figure 2: A Markov chain with 5 states and selected state transitions [2].

At regularly spaced discrete times, the system undergoes a change of state, even back to the
same state, according to a set of probabilities associated with the state. The time instants
associated with the state changes are denoted by,,2,1=t and the actual state at time t is
denoted by tq . A complete probabilistic description of the above system would, in general,
require specification of the current state (at time t) as well as all the predecessor states. For a
discrete first order Markov chain, this probabilistic description would require just the current
and the predecessor state. This can be represented as follows:

][,....],[121 itjtktitjt SqSqPSqSqSqP ====== −−− Eqn-1

Only those processes in which the right hand side of Eqn-1 is independent of time are
considered. This leads to the set of state transition probabilities aij of the following form:

Nji,1,SqSqPa i1tjtij ≤≤=== −][Eqn -2

 6

with the state transition coefficients having the properties:

 Eqn-3a

1
1

=∑
=

N

j
ija Eqn-3b

since they obey standard stochastic constraints. The above stochastic process could be called
an observable Markov Model, since the output of the process is the set of states at each
instant of time, in which each state corresponds to a physical observable event.

Hidden Markov Model:

The concept of Markov model [2] includes the case where the observation is a probabilistic
function of the state. The resulting model is a doubly embedded stochastic process with an
underlying invisible stochastic process that can only be observed through another set of
stochastic processes that generate the sequence of observations. This model is generally
referred to as the HMM [2].

An HMM is characterized by the following:

1. N, the number of states in the model. Generally, the states are interconnected in
such a way so that a needed state can be reached regardless the current state.
Individual states are denoted as },......,,{ 21 NSSSS = , and the state at time t is
denoted as tq .

2. M, the number of distinct observation symbols per state, i.e. the discrete alphabet
size. The observation symbols correspond to the physical output of the system
being modeled. Individual symbols are denoted as },....,,{ 21 MVVVV = .

3. The state transition probability distribution }{ ijaA = where

NjiSqSqPa itjtij ≤≤=== + ,1],[1 Eqn-4

0>ija for all i,j considering the case where any state can reach any other state in
a single step.

0≥ija

 7

4. The observation symbol probability distribution in state j,)}({ kbB j= , where

() MkNjSqtatvPkb jtkj ≤≤≤≤== 1,1],[Eqn-5

5. The initial distribution }{ iππ = where

NiSqP ii ≤≤== 1],[1π Eqn-6

Given appropriate values of N, M, A, B and π, the HMM can be used as a generator to give
an observation sequence of the following form:

TOOOO21= Eqn-7

where each of the observations tO is one of the symbols from V, and T is the number of
observations in the sequence. The whole procedure can be subdivided into the following
stages [2]:

1. Choose an initial state iSq =1 according to the initial state distribution π.

2. Set t = 1.

3. Choose kt vO = according to the symbol probability distribution in state iS ,
i.e.,)(kbi .

4. Transit to a new state jt Sq =+1 according to the state transition probability

distribution for state iS , i.e., ija .

5. Set t= t + 1; return to step 3 if t < T; otherwise terminate the procedure.

The above procedure can be used both as a generator of observations, and as a model for
how a given observation sequence was generated by an appropriate HMM. Thus, we can say
that a complete specification of an HMM requires specification of two model parameters (N
and M), specification of observation symbols, and the specification of the three probability
measures A, B, and π. The complete parameter set of the model can be represented as:

 8

),,(πλ BA= Eqn-8

Thus, a HMM is defined [2] as a pair of stochastic processes (X,Y), where X is a first order
Markov chain and is not directly observable; Y is a sequence of random variables taking
values in the space of acoustic parameters or observations.

Assumptions in HMMs specific to speech recognition [2]:

1. The first order Markov hypothesis states that history has no influence on the chain’s
future evolution if the present is specified.

2. The output independence hypothesis states that neither the chain evolution nor the
past observations influence the present observation, if the last chain transition is
specified.

Types of HMMs:

HMMs can be classified as discrete, continuous, and semi-continuous, based on the nature
of the elements of the B matrix, which are the distribution functions [2].

In discrete HMMs, distributions are defined on finite spaces. The observations would be
vectors of symbols in a finite alphabet of N different elements. For all Q vector components,
a discrete density N},…1,2, =k |{w(k) is defined. The distribution is then obtained by
multiplying the probabilities of each component. The components are assumed to be
independent.

In continuous HMMs, distributions are defined as probability densities on continuous
observation spaces. Strong restrictions have to be imposed on the functional form of the
distributions, in order to have a manageable number of statistical parameters to estimate. The
popular approach is to characterize the model transitions with mixtures of base densities g of
a family G having a simple parametric form. The base densities g Є G are usually Gaussian
or Laplacian, and can be parameterized by the mean vector and the covariance matrix. To
model complex distributions, a large number of base densities have to be used in every
mixture. This procedure may require a large training corpus of data for the estimation of the
distribution parameters. When the available corpus is not large enough, distributions can be
shared among transitions of different models to reduce problems.

In semi-continuous HMMs, all mixtures are expressed in terms of a common set of base
densities. Different mixtures are characterized only by different weights. In general, semi-
continuous modeling involves interpretation of the input vector y in terms of several
components y[Q],y[2],y[1], … . Each component is associated with a different set of base
distributions. The components are assumed to be statistically independent, and, hence, the
distributions associated with the model transitions are products of the component density
functions.

 9

Computation of probabilities with discrete models is faster as compared with continuous
models. However, it is possible to speed up the mixture densities computation by applying
vector quantization on the Gaussians of the mixture. Parameters of statistical models are
estimated by iterative learning algorithms, in which the likelihood of a set of training data is
guaranteed to increase at each step [2].

2.1.2 Methods in Automatic Speech Recognition

Sequences of vectors [3] of acoustic parameters are treated as observations of acoustic
word models that are used to compute the probability of observing a sequence of vectors

when a word sequence is pronounced. Given a sequence TY1 , a word sequence
∧

W is
generated by the ASR system with a search process based on the rule:

w
WPWYP T)()(maxargW 1=

∧

,

where
∧

W corresponds to the candidate having maximum a-posteriori probability (MAP).
While)(1 WYP T is computed by the acoustic models, P(W) is computed by the language
models.

Acoustic Models -A sequence of acoustic parameters, extracted from a spoken utterance, is
seen as a concatenation of elementary processes described by the HMMs [3]. Acoustic
models includes both word and unit models.

Word and unit models: Words are represented by networks of phonemes [3]. Each
path in a word network represents a pronunciation of the word. The same phoneme can
have different acoustic distributions of observations if pronounced in different contexts.
Models of a phoneme in different contexts are called Allophone models. The decision
as to how many allophones should be considered for a given phoneme depends on
many factors such as the availability of sufficient training data to infer the model
parameters. In principle, an allophone should be considered for every different word in
which a phoneme appears. If vocabulary is large, it is unlikely that there is enough data
to train all the allophone models. Hence, models for allophones are considered at a
different level of detail i.e. word, syllable, triphone, diphone, context independent
phoneme. Probability distributions for an allophone that have a certain degree of
generality can be obtained by mixing the distributions of more detailed allophone
models.

One other way allophones can be considered is to choose them by clustering possible
contexts. This choice can be made by Classification and Regression Trees (CART) [3].
CART is a binary tree having a phoneme at the root and, each node ni associated with a
question Qi about the context. There are algorithms for growing and pruning CARTs

 10

based on automatically assigning questions to a node from a manually determined pool
of questions. The leaves of the tree may be simply labeled by an allophone symbol.
Each allophone model is an HMM made of states, transitions and probability
distributions.

Language Models -The probability P(W) of a sequence of words LwwwW ,....,, 21= is
computed by a Language Model. In general P(W) can be expressed as follows:

∏
=

−==
n

i
iin wwwPwwwPWP

1
1021),....,|(),....,,()([3]

2.1.3 Pattern Recognition approach to continuous speech recognition system

This section presents how specific aspects of HMM theory are applied to continuous
speech recognition. Figure 3 [2], shows a block diagram of pattern recognition approach to
continuous speech recognition system.

Figure 3: Block diagram of a continuous speech recognizer [2].

The key signal processing steps for pattern recognition approach include [2]:

1. Feature Analysis: A spectral and/or temporal analysis of the speech signal is
performed to generate observation vectors, which can be used to train the HMMs that
characterize different speech sounds.

2. Unit Matching System: First a choice of speech recognition unit must be made.
Possibilities include linguistically based sub-word units such as phones, diphones,
demisyllables, as well as derivative units such as fenemes, fenones, and acoustic

 11

units. Other possibilities include whole word units, and even units, which correspond
to a group of 2 or more words. Ex: - and an, in the, of a etc. Generally, the less
complex the unit is, the fewer of them are in the language, and the more complicated
their structure is in continuous speech. For large vocabulary speech recognition
(involving 1000 or more words), the use of sub-word speech units is almost
mandatory, as it would be quite difficult to record an adequate training set for
designing HMMs for units of the size of words or larger. However, for specialized
applications such as small vocabulary, it is both reasonable and practical to consider
the word as a basic speech unit. Independent of the unit chosen for recognition, an
inventory of such units must be obtained via training. Typically, each such unit is
characterized by some types of HMMs, whose parameters are estimated from a
training set of speech data. The unit matching system provides the likelihood of a
match of all sequences of speech recognition units to the unknown input speech.
Techniques for providing such match scores, and in particular determining the best
match score (subject to lexical and syntactic constraints of the system) include the
stack decoding procedure, various forms of frame synchronous path decoding, and a
lexical access scoring procedure.

3. Lexical Decoding: This process places constraints on the unit matching system so that
the paths investigated are those corresponding to sequences of speech units present in
a word dictionary (a lexicon). This procedure implies that the speech recognition
word vocabulary must be specified in terms of the basic units chosen for recognition.
Such specification can be deterministic (Ex: - one or more finite state networks for
each word in the vocabulary) or statistical (Ex: - probabilities attached to the arcs in
the finite state representation of words). In the case when the chosen units are words
or word combinations, the lexical decoding step is essentially eliminated and the
structure of the recognizer is greatly simplified.

4. Syntactic Analysis: This process places further constraints on the unit matching
system so that the paths investigated are those corresponding to speech units which
comprise words (lexical decoding) and for which the words are in a proper sequence,
as specified by a word grammar. Such a word grammar can then be represented by a
deterministic finite state network, in which, all word combinations which are
accepted by the grammar are enumerated, or by a statistical grammar. Ex: - a trigram
word model in which probabilities of sequences of 3 words in a specified order are
given. For some command and control tasks only a single word from finite set of
equiprobable is required to be recognized, which leads to grammar being either trivial
or unnecessary. Such tasks are often referred to as isolated word speech recognition
tasks. For other applications, such as digit sequences, very simple grammars are often
adequate. Ex: - any digit can be spoken and followed by any other digit. Finally, there
are tasks for which grammar is the dominant factor and, although it adds a great deal

 12

of constraint to the recognition process, the procedure also improves recognition
performance imposing the resulting restrictions on the sequence of speech units,
which are valid recognition candidates.

5. Semantic Analysis: This process, similar to the steps of syntactic analysis and lexical
decoding, adds further constraints on the set of recognition search paths. One way in
which semantic constraints are utilized is via a dynamic model of the state of the
recognizer. Depending on the recognizer state, certain syntactically correct input
strings are eliminated from consideration. This allows making the recognition task
easier, which, in turn, results in higher performance of the system.

An additional factor that affects the implementation process of speech recognizer refers to
the method used to separate background silence from the input speech. There are three
reasonable ways to accomplish this task [2]:

1. Explicit detection of speech presence via techniques that discriminate
background from speech on the basis of signal energy and signal durations. Such
methods have been used for template-based approaches because of their inherent
simplicity and their success in low to moderate noise backgrounds.

2. Construction of a model of the background silence, e.g. a statistical model, and
present the incoming signal as an arbitrary sequence of speech and background in
the following form:

Signal = (silence) – speech – (silence)

where, the silence part of the signal is optional in that it may not be present
before or after the speech.

3. Extension of speech unit models so that background silence is included
(optionally) within the first and/or the last state of the model, and, consequently,
silence inherently is included within all speech unit models.

All three techniques have been utilized in speech recognition systems.

2.1.4 Word Error Rate (WER)

The performance of speech recognition systems is generally measured based on word error
rate. In simple terms, word error rate refers to the measure of the average number of word
differences between the recognized word sequence and the reference of correct word
sequence. The general difficulty of measuring the performance lies in the fact that the
recognized word sequence can have length different from the reference word sequence [31].

 13

The WER is derived from the Levenshtein distance, working at word level instead of
character. This problem is solved by aligning the recognized word sequence with the
reference sequence using dynamic string alignment. Word error rate could then be computed
as [31]:

N
IDSWER ++

=

where

N is the number of words in the reference,

S is the number of substitutions,

D is the number of the deletions,

I is the number of the insertions,

Word Recognition Rate (WRR) reports the performance of speech recognition tools in
terms of the number of words in the recognized word sequence that matches with the ones in
the referenced word sequence, in which the reference word sequence is considered to be
correct. The WRR can be obtained from the WER following the rule [31]:

N
IH

N
IDSNWERWRR −

=
−−−

=−= 1 ,

where

H is the number of correctly recognized words.

2.1.5 Summary of Automatic Speech Recognition Process

Speech recognition [4] is the process of analyzing an audio signal to determine the words
uttered by the speaker. Speech recognition involves audio and lexical processing. Audio
processing creates a network of possible phonetic sequences that could match the input
speech. Lexical processing refines the network by using application context information
captured in grammars. A typical speech recognition process is represented in Figure 4 [4].

 14

Figure 4: A typical speech recognition process [4].

The automatic speech recognition process begins with capturing the audio signal,
converting it into electrical form, and digitizing it for computer analysis. A speech detector,
or end-pointer, identifies where the speech starts and stops in the signal. This eliminates non-
speech noise like silence and background noise from being processed. Spoken language is
composed of a sequence of words, and words are composed of a sequence of phonemes.
Since the phonemes are the smallest distinctive acoustic units, altering a single phoneme will
transform one word into another. Ex:- by changing “mah” to “rah”, mat becomes rat. HMMs
identify the phoneme sequence in the end-pointed speech signal by calculating the most
probable phoneme sequences that best describe the speech input. These probabilities are
derived using mathematical acoustic models that represent archetypical phonemes. The
acoustic models are built by distilling large amounts of recorded speech in order to capture
the essential characteristics of each phoneme. A large body of training data is required to
overcome the variability inherent in speech of every individual. The variability in speech can
be attributed to the differences in regional accents, speaking rate, background noise, channel
characteristics, linguistic content, physiological differences, etc. Sometimes similar sounding
phrases are also confusing. This is especially common in unusual contexts, noisy situations,

 15

and lyrics in music. Speech recognition does not attempt to distinguish a single phrase that
was spoken, but proposes a phoneme lattice n-best list of similar sounding phrases ranked by
likelihood [4].

The speech recognizer further searches through the network of possible phoneme
sequences to find the most likely phrase that was spoken. Most of the possible phrases in the
n-best list are meaningless to the application because they are completely out of context.
Application context is captured using a recognition grammar. A grammar is a set of
allowable phrases at a given point in an application. Speech recognition grammars are not
meant to represent all of the phrases in a language. Instead, each prompt in a speech
application may reference a unique grammar that constrains the associated speech
recognition to a specific range of phrases. As the application context changes, different
grammars are loaded. Grammars are built by listing the allowable phrases with shorthand to
simplify common constructs. For example, shorthand might be used to indicate that one word
out of a set can appear in a given location, as opposed to solution that requires an explicit list
of all complete phrases.

Example:

[I am working] [today][tonight]

is more compact than:

[I am working today]

[I am working tonight]

Paths in the grammar can include weights to indicate that the word sequence “Toronto,
Ontario” is more likely to be said than “Surrey, Ontario”. All the words in a grammar must
be converted to phonemes as used in speech recognition process. First, each word is looked
up in a pronunciation dictionary that provides the corresponding phonemes. Custom
pronunciation dictionaries can be used to control the pronunciations used in general
applications. If a word is not found in the dictionary, pronunciation rules are applied to sound
out the answer similar to the way a person would. The result of the conversion process is a
network of phoneme strings that represent phrases allowed by the grammar. The final step in
the speech recognition process is matching the network of acoustic segments with their
phoneme labels to the phoneme strings allowed by the grammar [4].

2.2 Audio Mining

Audio Mining [6], also referred to as audio searching, takes a text-based query and locates
the search term or phrase in an audio/video file. In simple terms, Audio Mining is a technique
that is used to search audio/video files for occurrences of specific words or phrases.

 16

While speech recognition technology is used to recognize the words or phonemes spoken
in an audio or video file, audio mining is aimed at identification of location of specific words
or phonemes within audio or video files that contain speech. There are two main approaches
to audio mining:

1. LVCSR Audio Mining

2. Phonetic Audio Mining

LVCSR Audio Mining - Large Vocabulary Continuous Speech Recognition (LVCSR)
audio mining has two stages – pre-processing or indexing stage and the search stage [6].
During the indexing stage, a large vocabulary recognizer processes the speech content in the
input file to generate a searchable index file with information about the words spoken in the
input file. During the search stage, firstly, a search term is defined and then one or more
index files are searched for all occurrences that match the specified search term. The audio or
video files that result from the search can be either displayed as “search hits”, or can be
played to the user after being subdivided into parts based on relevancy.

Phonetic Audio Mining - Phonetic audio mining is also a two-stage process that contains
indexing and search stages. During the indexing stage, speech from the input file is processed
with a phonetic recognizer to create a phonetic-based index file [6]. This index file stores the
phonetic content of the speech. During the search stage, a search term is defined and
converted into a phoneme string. A number of phonetic index files are searched to identify all
occurrences of the search term.

Phoneme-based searches can result in more false matches than the text-based approach.
The issue is particularly relevant for short search terms, as many words sound alike or sound
like parts of other words. As pointed out by Dan Ellis [6], it can be complicated for a
phonetic system to accurately classify a phoneme, except by recognizing the entire word that
it is a part of or by understanding that a language permits only certain phoneme sequences.
On the contrary, phonetic indexing can still be useful if the analyzed material contains
important words that are likely to be missing from a text system’s dictionary, such as foreign
terms and names of people and places [6].

2.2.1 How Audio Mining Works?

LVCSR audio mining systems and phoneme-based audio mining systems work in much
the same way, except that the LVCSR system uses a text-based dictionary and the latter uses
a phonetic dictionary [6]. One of the successful models for audio mining, the ScanSoft’s
audio mining development system, is represented in the Figure 5 [6].

 17

Figure 5: Scansoft's audio mining development process [6].

The audio/video file is given to the acoustic analyzer, the outputs of which alongside with
the custom vocabulary information are processed by the speech recognition engine to
generate an XML-based speech index file. The XML speech index file consists of all the
words recognized by the speech recognizer along with time stamps of their occurrence in the
audio/video file. These XML speech index files are accessible by either the web-based search
interfaces or other media management systems for retrieving specific audio information.

2.2.2 Out of vocabulary (OOV) words in audio mining or spoken document retrieval

The general approach for information retrieval from audio sources is to use a large
vocabulary continuous speech recognition (LVCSR) system to generate word-level
transcriptions and then apply standard text based information retrieval techniques to those
transcripts [19]. This LVCSR approach to SDR raises the issue of identifying new words that
are not a part of the large vocabulary recognition system. Regardless how large the
vocabulary of the recognition system is, there will always be new terms that occur in the
input audio stream. Such words in the audio stream that are outside the particular speech
recognition vocabulary used are called out of vocabulary (OOV) words. Woodland et al.
[19] have investigated the effects of OOV words in spoken document retrieval. The speech
recognizer interprets each audio segment as a sequence of items from the recognition
vocabulary. The recognizer will make at least one word error whenever an OOV word is in
the input audio stream. Hence, OOV words are actually replaced by alternatives that are most
probable based on the acoustic model and the recognition language model of the recognizer.
Size and nature of the vocabulary recognizer is hence an important factor to the recognizer

 18

performance. One way to minimize the expected OOV rate is to choose the vocabulary by
taking the most frequent word forms from a large text corpus. Other researchers [21] also
indicate that long documents alleviate the expected problems due to “out of vocabulary” and
otherwise misrecognized words.

2.3 Information Retrieval

Information Retrieval (IR) [8] is mainly concerned with the identification of information
sources that are related to a user’s request. Information retrieval is different from information
extraction, in which content is derived directly from the information sources, and question
answering, in which a user’s question is answered based on knowledge of information [8]. Of
the three types mentioned above, information retrieval is the easiest to generalize, since
knowledge of the content is unnecessary [7]. Identification of relevant segments of speech in
a large corpus of digitized audio is different from the task of finding a relevant document
among several text documents. Hence, accurate identification of the specific location of a
word or phrase from a large corpus of XML index files might require better search tools than
the regular text-based search engines.

File system search engines index the file system ahead of time and keep an index that, for
every term that appears in the file system, contains a list of all files with the relevant term
and the exact positions of it within the files [9]. Thus, usage of the file system search engine
technique for the XML index files seems to provide a better retrieval interface for the audio
indexing system in question.

The iTalk system was developed with Wumpus search engine tool * [38] as the retrieval
interface. Wumpus is a file system based search engine developed by Stephen Büttcher under
the supervision of Prof. Charles Clarke from the Information Retrieval Group at University
of Waterloo. Wumpus search engine indexes the content of all files in the file system and,
upon a query, returns all the indices that correspond to the query keywords. The index
positions that rank highest among all the indices based on BM25 technique [32] will be
returned to the user in the decreasing order of the ranks.

2.4 Audio Conferencing

Audio conferencing is a widely used distance collaboration tool [10]. It is quite economical
and is used in several formal business settings. Audio conferencing involves real time
dialogue exchange among the conference participants and is one of the current forms of
communication among major professional groups and teams. Researchers have been working
on improving the audio conferencing experience leading to effective communication by
creating new forms of audio conferencing tools. Vocal Village (VV) [36] is a result of such
research by Prof. Mark Chignell and his team from the University of Toronto. This system
uses VoIP technology to connect collaborative groups. Unlike other VoIP applications, the

* More information about the Wumpus Search Engine is available at www.wumpus-search.org

 19

VV system enhances traditional audio conference environments by binaurally presenting
auditory location cues that cause the voices of individual participants to appear as if they are
coming from different positions in space, distributed from left to right around the listener’s
head. This spatialized presentation format closely simulates the acoustical qualities of face-
to-face collaboration, allowing VV users to feel as if they are meeting in a common physical
location. Figure 6 [10] presents the graphical user interface of the VV audio conferencing
tool.

Figure 6: Sample screen shot of vocal village voice conferencing tool [10].

The graphical user interface for VV displays contextual information for the users, showing
who is present in the audio space and where they are located, as well as providing a visual
cue when participants enter and leave the conference * [10]. The apparently new technology
in audio conferencing with added quality benefits and ease of use perfectly fits the iTalk
requirements. Hence, the iTalk system is developed with Vocal Village as the audio
conferencing tool at the user’s end. Vocal Village generates a high quality raw audio file for
each participant at the end of the conference that is further processed by iTalk tool kit to be
indexed for accurate retrieval of audio snippets from within the audio file.

*More information on vocal village VoIP conferencing tool is available at www.vocalvillage.net

 20

2.5 Related Work in Audio Indexing Systems

The iTalk tool that will be discussed in detail in Chapter 3 is not the first of its kind that
performs indexing of audio information. The main research effort towards spoken document
retrieval (SDR) was the SDR-TREC evaluations [22]. Recently, there seems to be a lot of
research in this direction outside the SDR-TREC as well. Several approaches have been
developed for spoken document indexing and retrieval for different applications. Some of
those pioneering and marking approaches that perform audio indexing and searching are
described in this section. These audio indexing systems are not intended to support voice
conferences; however, they are aimed at effective skimming through audio information
obtained from different sources.

2.5.1 TREC Spoken document retrieval efforts

The Text Retrieval Conference (TREC) SDR track has provided an infrastructure for
development and evaluation of SDR technology [22]. SDR is accomplished by using a
combination of automatic speech recognition and information retrieval technologies.

TREC 6 1997 Spoken Document Retrieval Track – The goal of TREC 6 SDR known-item
retrieval task is to generate a single correct document for each topic rather than a set of
relevant documents as in an ad-hoc task. The TREC 6 SDR process is presented in Figure 7
[39]. The evaluation of SDR technology [22] showed that relatively good known-item
retrieval could be achieved for a small collection of broadcast news spoken documents.
However, retrieval performance or recognition accuracy could not be analyzed due to the
small corpus used for testing.

TREC 7 1998 Spoken Document Retrieval Track – The goal of TREC 7 SDR was to
evaluate ad-hoc relevance retrieval from a much larger corpus than the 1997 SDR task. The
typical SDR process was defined from these proceedings, see Figure 8 [22]:

 21

Figure 7: TREC 6 SDR process [39].

 22

Figure 8: A typical SDR process [22].

A speech recognizer is applied to an audio stream and a time-marked transcription of the
speech generated. The transcription may be phone or word-based in a lattice (probability
network), n-best list (multiple individual transcriptions) or more typically a 1-best transcript
(the most probable transcription as determined by the recognizer). The transcript is then
indexed and searched by a retrieval system [22]. The results retrieved for a query is a list of
temporal pointers to the audio stream ordered by decreasing similarity between the content of
the speech being pointed to and the query.

The evaluations of TREC 7 revealed that the best performance for retrieval using a speech
recognizer (.5120 MAP) approached that of retrieval using perfect human-generated
reference transcripts (.5668) [40]. It is estimated that there is a near-linear relationship
between recognition word error rate and retrieval performance. Named-entity word error rate
had high correlation with retrieval performance than mere word error rate. These evaluations
are the basis for spoken document retrieval and many research efforts evolved from these
results.

TREC 8 Spoken Document Retrieval Track – [26] The 100 hours of TREC-7 data with
2866 stories and 23 queries limited the conclusions that could be drawn about SDR and
hence a larger collection was needed to confirm the results. TREC-8 provided 500 hours of
audio data, 21,574 stories and 50 queries. The TREC-8 SDR task contains two main tasks
[26]:

1. Story-Known (SK) SDR with audio from American broadcast radio and TV news
programs along with manually generated story boundaries. Participants must

 23

present a list of relevant documents and their ranking for a given natural language
text query, by running a recognizer and retrieval system on the audio data.

2. Story – unknown SDR with no knowledge of story boundaries at both
recognition and retrieval time. Endpoints of the shows are given with start time
of “first” story and end time of the “last” story. Retrieval would then produce a
ranked list of shows with time stamps that are mapped to their corresponding
story identifiers based on the standard scoring procedure.

TREC 8 results [22] show that the SDR technology is robust to handle large spoken
document collections. Once again, the TREC-8 track results revealed that there is a near
linear relationship between recognition errors and retrieval accuracy and that the degradation
of retrieval performance for increased recognition errors is relatively gentle. TREC-8 made
way for further experimental research in conditions where story boundaries are unknown and
that was taken up in TREC-9.

Though TREC-SDR track experiments have been marking in the field of SDR, all the
TREC experiments applied SDR technology within the broadcast news domain. Broadcast
news domain is quite different from conversational speech; consequently, TREC SDR
experimental systems might not provide effective results in the conversational speech
domain.

2.5.2 Tools for automatic transcription and browsing of audio-visual presentations

Cyphers, Hazen and Glass [5] developed a tool for web-based transcription service to
which users can upload their audio files for automatic transcription and indexing. As a part of
this MIT Spoken Lecture Processing Tool, Glass et al. [15] have developed a server and an
accompanying lecture browser for the users to locate and browse audio segments appropriate
to their query. Personal digital audio recorder iRiver N10 [41] was the source for collecting
audio data in this experiment [15].

The key steps in the transcription process are:

1. Language Model Adaptation - Adaptation of a topic independent vocabulary and
language model using the supplemental text data provided by the user.

2. Segmentation - Automatic segmentation of audio files into 6 to 8 second chunks
of speech separated by pauses.

3. Automatic annotation of audio chunks using a speech recognition system.

Language Model Adaptation- In this process, the vocabulary of any supplemental topic-
dependent texts provided by the user is extracted and added to the topic-independent
vocabulary. The recognizer would then combine the topic independent word sequence
statistics from the corpus of existing lecture material with the topic dependent statistics of the
supplemental material to create a topic-adapted language model.

 24

Segmentation- In this process, the audio file is arbitrarily broken down into ten second
chunks and is processed with an efficient vocabulary and a speaker independent phonetic
recognizer. Contiguous regions of speech are identified from the phonetic recognition output.
The segmentation process constructs 6 to 8 second audio segments of speech from these
contiguous regions. Speech is broken down into 6 to 8 second segments, as experiments have
shown that longer segments tend to be computationally burdensome for searching audio files.
At the same time, shorter segments are harder to recognize accurately as they provide less
context information to the language model. Further, language model adaptation is performed
with supplemental topic dependent vocabulary being added to topic-independent vocabulary.
SUMMIT speech recognition system [42] is used to transcribe the segmented audio.

The audio data is then indexed based on the recognition output in preparation for
availability on browsing by the user, as shown in the Figure 9 [5].

Figure 9: Sample screen shot of the lecture browser [5].

The lecture transcriptions are split into segments separated by two or more seconds of non-
speech segments, as determined by the recognizer. Lucene text search engine [43] library is
used to index the segments with additional support from Berkeley database containing
information such as timing for the segments and the words within the segments [5].

The browser presents the list of hits within the indexed lectures for a given text query. When
a hit is selected, it is shown in the context of the lecture transcription. User can then adjust

 25

the duration of the context preceding or following the hit, navigate to and from the preceding
and following parts of the lecture, and listen to the displayed segment.

Glass et al.’s [15] experimental results that are based on 10 computer science lectures
present that:

1. Retrieval of short audio segments containing important keywords and phrases can be
reliably obtained even with high word error rates.

2. The language model adaptation process of adding spontaneous speech data to subject-
specific written materials increases transcription accuracy but has a marginal effect
on the retrieval performance [14].

3. Good audio IR results can be obtained even with high errors in the transcriptions,
given that the relevant keywords are reliably detected.

4. When the vocabulary is not exhaustive, reducing the OOV word rate by increasing
the word size improves recognition accuracy and precision, but reduces recall.

As mentioned above, this project is aimed at processing the lecture speech. Despite the
similarity with the conversational speech in terms of spontaneity, lecture speech involves a
small topic dependent vocabulary that is rarely used in every day conversations. Hence, the
language adaptation model, as performed by Glass et al. [15], though appropriate for lecture
speeches, might not be effective for human to human conversations. Human to human
conversations might not only be boundless in terms of the topics discussed, but also in terms
of vocabulary being used.

2.5.3 Indexing spoken documents using self-organizing maps

Kurimo [11] created a searchable index for spoken audio documents by selecting the best
index terms for each document with the help of the other documents close to it using a
semantic vector space. First, the audio stream is converted into a text stream by a speech
recognizer. Then, the text of each story is represented in a vector space as a document vector,
which is a normalized sum of the word vectors in the story. A large collection of such
document vectors is used to train a self-organizing map (SOM) [11] to find latent semantic
structures in the collection. As the stories in spoken news are short and normally include
speech recognition errors, smoothing of the document vectors using the semantic clusters
determined by the SOM is used as a way to enhance the indexing. Kurimo’s application is
the indexing and retrieval of broadcast news on radio and television.

2.5.4 An integrated automatic transcription and indexing tool for spoken medical
reports

Happe et al. [12] developed an integrated tool for automatic transcription and indexing of
spoken medical reports using the NOMINDEX program [44] and the commercially available
speech recognition tools: Naturally Speaking 5 [45] and IBM VIA VOICE 8 professional

 26

[46] versions. NOMINDEX [44] is an indexing tool that extracts concepts from medical text
in natural language and is based on the MeSH French medical lexicon thesaurus [47]. This
indexing tool also has the matching process that extracts thesaurus concepts in a sentence. In
this section we present the method and evaluation of the tool developed by Happe et al. [12].

Method - For each document, the automatic concept extraction process consists of three
steps:

1. Dictation and digital audio recording.

2. Speech Recognition and

3. Automatic Indexing

Figure 10 [12] provides an overview of the method used in this experiment.

Figure 10: Overview of the automatic concept extraction study process [12].

 27

For this experiment, Happe et al. [12] have used the MENELAS Patient Discharge
Summaries (PDSs) [13] as the audio source. Most patient relevant medical information is
generally stored in narrative format in the PDS. These PDSs would contain minimal yet
sufficient information to be used with the following visits of the patient. MENELAS [13] has
the audio version of these PDSs, which are dictated by a secretary and stored on the
computer.

A single operator recorded the PDSs on CD-ROM. The audio PDSs are run through both
the Naturally Speaking 5 [45] and IBM VIA VOICE [46] speech recognition tools as per the
initialization phase requirements for each of the tools. The files obtained from the best
configuration of speech recognition process are further processed by NOMINDEX program
[44] to generate keywords/ index terms.

Evaluation – A comparison was done between the set of concepts extracted by
NOMINDEX [44] after the speech recognition phase and the set of keywords manually
extracted from the initial document. The method was evaluated on a corpus consisting of 28
hospital medical reports corresponding to in-patients admitted for Coronarography. The same
corpus was used for testing speech recognition and indexing.

• Speech Recognition: Two speech recognition packages, i.e. Naturally Speaking 5
Professional [45] and IBM via voice 8 Professional [46], were tested to measure
their relative performances and evaluated against their ability to recognize words.

• Indexing: For each document, a set of keywords was manually extracted by one of
the authors. Automatic indexing was performed by the NOMINDEX program [44]
on the transcriptions generated from the speech recognition tool.

 From Happe et. al [12] evaluation of the speech recognition tools and the effect of speech
recognition errors in audio indexing, one can assume that:

• “Misspellings” would not affect the concept of the documents and can be easily
corrected with a spellchecker.

• Contexts cannot always be used for disambiguation; therefore, homophone
disambiguation might not be helpful.

• Word sense ambiguity needs to be improved for automatic concept extraction to be
successful.

• The number of indexing errors resulting from speech recognition errors is low.
Consequently, combination of speech recognition and automatic indexing
techniques should be beneficial.

 28

In the experiment, Happe et al. [12] employed a corpus of 28 dictated documents. This
experiment is limited, since the data is recorded by a dictation specialist/secretary rather than
a normal user/physician. This difference in the recording method is worth noting, as the
dictation from a written document is similar to carefully spoken speech, i.e. broadcast news.
Spontaneous dictation, on the other hand, has more similarities with the conversational
speech in that both types contain spontaneous speech effects such as word contractions,
extraneous filler words, partial words, and false starts. Further more, any person with clear
speech habits can get 97% recognition accuracy without much training with the speech
recognition system. However, the same system might have comparatively lower recognition
accuracy resulting from speech habits of the speaker regardless of the amount of training.
Speech habits are continuously formed and refer to a certain pattern of speech frequently
used by the speaker. Ex: – fast, slow, long pauses, short pauses, etc. On the contrary, iTalk
captures the audio from normal spoken conversations by any user. Consequently, the
recognition accuracy is affected. iTalk has an integrated search feature, which enables
retrieval of contents of the audio file based on the search query. Happe et al.’s [12]
experiment was focused primarily on comparison between the manually extracted keywords
with the automatically generated index terms. Despite the found differences and similarities,
Happe et al.’s [12] experimental results strengthen the motivation for tools similar to iTalk.

2.5.5 A spoken query information retrieval system

Garza et al. [16] proposed architecture for a spoken information retrieval from multimedia
databases. The architecture focuses on information retrieval from multimedia documents,
using spoken queries and user interface.

Being based on client server architecture, the spoken query information retrieval system is
shown in Figure 11 [16].

 29

Figure 11: General spoken query information retrieval system architecture [16].

The system has a Java enabled front end that captures acoustic information from the query.
This acoustic information is then transmitted to a server-side servlet that invokes the audio
preprocessing module and is then forwarded to the speech decoder. A query system,
Managing Gigabytes (MG) [48], that takes the CMU SPHINX III [49] system decoder
hypothesis, was generated using the acoustic and language models obtained from the training
stage. The Input produces a set of pointers to the documents in the multimedia database, in
which the queried words were found. The results obtained are presented to the user on a web
page, which includes links to document segments or audio/video file frames.

The multimedia database used in this architecture is a set of indexed documents such as
plain-text, MS-Word, MS-PowerPoint, PDF, and audio/video files. Non-text documents are
preprocessed to produce a raw transcription that can be added to the indexed archive. In
general, the database contains two file categories: text-sourced and audio-sourced. In the
preprocessing stage, plain text is extracted from text-sourced files by ignoring images, fonts,

 30

document style formats, and special characters. For audio-sourced files, i.e. audio and video
files, the preprocessing stage involves automatic speech recognition to extract the audio
transcriptions as shown in the Figure 12 [16].

Figure 12: Audio/video file preprocessing using a speech decoder, acoustic and language

models [16].

The audio-sourced files preprocessing involves generation of speech segments of the
acoustic signals using the CMUseg tool [50]. These speech segments are preprocessed to
generate static and dynamic information condensed as a feature vector, which is given as
input to the SPHINX III [49] decoder to produce the best transcription for the audio signal.
Training of the acoustic models was performed using a database of several hours of audio
produced by different speakers. Finally, the audio transcription files are indexed using an
inverted index based text retrieval system, Managing Gigabytes [48].

From the results obtained, Garza et al. [16] proposed that the integration of speech
recognizer, text based document indexing and retrieval tools comprise an effective
architecture for a spoken query system on multimedia databases.

 31

2.5.6 Acoustic indexing via phone lattices

Brown et al. [17] presented an audio indexing approach that uses an offline HMM system.
This offline HMM system generates a number of likely phone sequences, which may then be
rapidly searched to find phone strings that consists the desired word. Audio indexing using
phone lattices involves three stages:

1. Model training

2. Lattice generation

3. Lattice scanning

Model training - Using a text transcription and dictionary, a phone sequence is generated
for every training utterance. HMM parameters were estimated using the phone sequences.
Speaker-dependent models were trained using a corpus containing:

• 20 natural speech messages (“p” data): Responses obtained for 20 unique
voicemail prompts.

• 77 read sentences (“r” data): Sentences constructed to contain a keyword
minimum of five times.

• 170 keywords (“i” data) spoken in isolation.

• 150 read sentences (“Z” data): phonetically-rich sentences from the TIMIT
corpus [51].

For speaker-independent acoustic models, additional training data is obtained from the
WSJCAM0 British English corpus [52] that consists of spoken sentences read from the Wall
Street Journal.

Lattice generation - Given unknown acoustic data, it is possible to find the most likely
sequence of phones using a set of phone HMMs and a network of possible phone
interconnections. An enhanced Viterbi algorithm [17] is used to generate multiple
hypotheses, representing the n most likely paths through the models. The multiple hypotheses
can be stored as a directed acyclic graph, in which nodes represent phone start/end times;
whereas arcs represent hypothesized phone occurrences between the nodes. This graph is
referred to as phone lattice. Arcs are labelled with an acoustic score. Acoustic score indicates
the likelihood of correspondence between the acoustic data over a given interval with the
particular phone model. An additional constraint is added to the phone lattices: all paths must
start at a particular node and end at another node. The “depth” of a phone lattice is the
number of phone hypotheses that are active at a given point in time. A shallow lattice leads to

 32

poor performance resulting from unavoidable phone recognition errors. Considering that the
best phone recognition systems exhibit accuracy levels of approximately 70% , even a
smaller depth, such as 1-deep lattice, has a poor chance of correct identification of a given
phone string. Furthermore, storage requirements and search time increase substantially with
lattice depth. At any given point in time during lattice generation, the number of active
tokens represents the n best paths through the model lattice. The more tokens are being used,
the deeper is the lattice. Figure 13 [17] represents a lattice generated for the single utterance
“damage”.

Figure 13: Phone lattice for the word "damage" (d ae m ih jh) [17].

Lattice scanning - The generated phone lattices are scanned for a phone sequence
composing the given word. An acoustic score is computed from this phone sequence as the
sum of the phone arc scores normalized by the best-path score. Deep lattices have different
paths starting or ending within a few milliseconds and resulting in many hypotheses for a
given word. In the case shown in Figure 13, there are two possible paths for the sequence d
ae m ih jh. The best scoring hypothesis is then used as the resultant hypothesis.

The phone accuracy [17] is defined as: “the ratio of correctly recognized phones, minus
deletions and insertion, to the actual number of phones for the best path through the lattice”.
For word spotting, an acceptable figure of merit is defined [17] as: “The average percentage
of correctly detected words as the threshold is varied from one to ten false alarms per word
per hour”. Word spotting errors affect both speech recognition and information retrieval
performance. The lattice scan approach uses lattices of depth necessary for identification of
longer words and results in larger number of false alarms for shorter words. The lattice scan
method is not robust enough for short words.

Brown et al. [17] conducted experiments on the Wall Street Journal WSJCAM0 read-
speech corpus [52]. The results indicate that natural speech corpus is more difficult to
recognize than the read-speech corpus.

 33

2.5.7 Spoken document indexing and search using PSPL

Chelba and Acero [30], in their study Position Specific Posterior Lattices (PSPL) for
indexing speech, have proposed a new representation of automatic speech recognition lattices
that naturally lend themselves to efficient indexing of position information and subsequent
relevance of spoken documents using proximity. The PSPL is a lossy but compact
representation of a speech recognition lattice that lends itself to the standard inverted
indexing conducted in the text search: position as well as other contextual information for
each hit is retained.

The position information needed for recording a given word is not readily available in ASR
lattices. However, ASR lattices do contain the data needed to evaluate proximity information.
On a given path through the lattice, position index to each link/word is assigned in a regular
way. Each path occurs with a given posterior probability that is easily computable from the
lattice. Soft-hits [30] that specify the tuple <document id, position, posterior probability> for
each word in the lattice are then indexed.

A simple dynamic programming algorithm [30] which is a variation on the standard
forward-backward algorithm is employed for computing the sum of overall possible paths in
a lattice that contains a given word at a given position. In N-gram lattices where N ≥ 2, all
links ending at a given node n must contain the same word word(n), so the posterior
probability of a given word w occurring at a given position l is calculated using the following
formula:

))(,(][)LAT|,(
0][..

nwordwllwP
nn ltsn

start

nn δ
β

βα
βα

⋅
⋅

= ∑ >⋅ [30]

The position Specific Posterior Lattice is a representation of the LAT)|,(lwP distribution:
for each position bin l, the words w are stored along with their posterior
probability LAT)|,(lwP .

For indexation of the speech content, speech files are first segmented and for each segment
a corresponding PSPL lattice is generated. Each document and each segment in a given
collection are mapped to an integer value using a collection descriptor file, which lists all
documents and segments. Each soft hit will store the PSPL position and posterior probability.
The relevance ranking scheme for a given Query Qi qqqQ1= and document D
represented as PSPL is described as follows [30]:

For all query terms, a 1-gram score is calculated by summing the PSPL posterior
probability across all segments s and positions k. The results are aggregated in a common
value),(1 QDS gram− [30]. Logarithmic tapering off is used for discounting the effect of large
counts in a given document. Similar to 1-gram, an expected tapered-count is calculated for

 34

each N-gram in the query and the results are aggregated in a common value
),(QDS gramN − [30]. By taking the inner product with a vector of weights, the different

proximity types, one for each N-gram order allowed by the query length, are combined:

∑
=

−⋅=
Q

N
gramNN QDSwQDS

1

),(),(

Only documents containing all the terms in the query are returned. Further more, Chelba
and Acero [30] indicate that the transcription for any given segment might also be
represented as a PSPL with exactly one word per position bin and the relevance scores
calculated correspond to the ones specified by TF-IDF score for the query.

2.5.8 SpeechLogger: A coversational speech retrieval system

SpeechLogger [18] is a system that enables search from spoken communications such as
teleconferences and telephone conversations. Begeja et al. [18] focused on improvement of
the navigational interface for better information retrieval of spoken documents. The
possibility to improve the ASR system has not been considered, given that the data quality of
conversational speech audio files is not always sufficient for production of objective ASR
results.

Begeja et al. [18] have defined four interface elements that help in providing a better
navigational system for spoken documents:

1. A timeline that represents every search hit in a spoken document with a tick mark.
Tick mark, provides a better identification of false positive documents.

2. Keyword extraction that summarizes conversation and presents subtopics in large
spoken documents thereby providing a means to differentiate among the search
results.

3. Speaker segmentation and speaker identification that splits the spoken document into
meaningful chunks of audio information.

4. Lattice search and phoneme search aimed at increasing the possible search space.

Figure 14 [18] provides an overview of the SpeechLogger system.

 35

Figure 14: Overview of the SpeechLogger system [18].

 36

As shown in the Figure 14, for every audio recording that is added to the File Server,
SpeechLogger performs speaker segmentation, speech recognition, transcription alignment,
keyword extraction, audio compression, and speech indexing.

• Speaker segmentation – This component separates the speakers from each other.

• Speech recognition – This component converts the audio into a word or phone
sequence including alternate hypotheses in the form of lattices.

• Transcription alignment – This component aligns the corresponding transcripts for
an audio file, if available, with the speech recognition output at a given point in
time in the audio file.

• Keyword extraction – This component extracts the most salient words found in the
speech recognition output (one-best word) or transcript. These keywords can be
used to determine the nature of spoken communications.

• Audio compression – This component compresses the audio file and creates an
MP3 audio file, which is copied into the Media Server.

• Speech Indexing – Text and lattice indexing is performed in this phase. Indices are
created based on word and phone lattices or one-best word and one-best phones.
User can browse and search the audio using either text index or lattice index. The
audio is played back via media streaming or over the phone using the Voice Genie
VoiceXML gateway [53].

In assessment of the effectiveness of the techniques featured above three different corpora
were used: the DARPA broadcast news corpus, the switchboard corpus consisting of the two-
way telephone conversations, and a corpus of multi-party teleconferences on various topics.

Begeja et al. [18] point out from their assessments that broadcast news data performs well
at speaker segmentation where teleconferences data performs poorly. This performance
difference can be attributed to the high audio quality and well controlled structure of the
broadcast news program, in comparison to poor audio quality of teleconferences that contain
a lot of spontaneous speech segments, which are less than 1 second long, such as “umm”,
“ah”, “no”, etc. These characteristics make the teleconference data the most challenging for
speaker segmentation.

ASR performance is evaluated based on word error rate and out of vocabulary word rate.
The performance of ASR on broadcast news, switchboard corpus, and the teleconference
corpus is presented in Table 1 [18]:

 37

Corpus Word Error Rate Out of Vocabulary word rate

Broadcast News ~20% 0.6%

Switchboard ~40% 6%

Teleconference ~50% 12%

Table 1: ASR performance assessment for SpeechLogger system [18].

From the results summarized in Table 1, it is evident that both the word error rate and out
of vocabulary word rate are high in the teleconference corpus. The reason can be attributed to
the environment of the teleconferences, as they involve multiple users and different kinds of
equipment for recording the audio. This, in turn, results in poor audio quality and,
consequently, a poor speech recognition output.

2.5.9 Summary of related work

Previous sections introduced several spoken document retrieval efforts: TREC evaluations
are concluded briefly; different audio indexing approaches using self-organizing maps, phone
lattices and position specific posterior lattices are introduced; automatic tools for spoken
document indexing and/or retrieval, i.e. the MIT spoken lecture processing tool; Happe et
al.’s [12] integrated tool for concept extraction from spoken medical reports; Garza et al.’s
[16] spoken query information retrieval tool and SpeechLogger tools are presented. Other
research fields include the NoTIme system [23] that uses strokes on a sketching application
to index audio, the Filochat system [25] that uses the stroke indexing for notes taken at
meetings, the Audio Notebook tool [24], which is a paper-based portable note taker that
indexes audio, etc. We tried to give an insight into the traditional and novel spoken document
retrieval approaches for recorded conversational speech.

There are three classes of spoken documents as presented by Begeja et al. [18]:

Broadcast news – Broadcast news has excellent ASR output, as there is only one speaker at
a time, the audio quality is high and generally involves a good speaker. There are several
research and commercial systems aimed at broadcast news or similar read-speech data.

Telephone Conversations – Telephone conversations have considerably good ASR outputs
as they involve only two speakers and have an acceptable audio quality. Though researchers
did examine telephone conversations, attention mostly has been paid at voice mail data.

Teleconferences – Teleconferences, unlike telephone conversations and broadcast news,
have poor ASR outputs resulting from extensive noise involved: there are multiple speakers
communicating simultaneously. This leads to poor audio quality.

 38

 As previously stated, there are several research and commercial spoken document retrieval
systems, some aiming at broadcast news, read-speech recordings, some addressing voicemail
recording corpus, and some working on telephone and teleconference corpuses. iTalk, in its
turn, is aimed at VoIP conferences. Similar to teleconferences, VoIP conferences would be
vulnerable to poor audio quality. Consequently, there is a distinct need for better systems and
techniques to compensate for a relatively poor ASR output.

James Allan [21] in his research estimated that even with 40% error rate in ASR system,
the effectiveness of an IR system falls less than 10%. Consequently, tools similar to iTalk,
that work with a good ASR tool and apply a better indexing approach specific to the
application enhanced by text-based search techniques, provide a more effective way for
skimming through VoIP based audio conversations.

 39

Chapter 3
Design

In this chapter, we describe the components and associated changes in their structure that
are focused on integration and development of iTalk system. Further, we discuss the
hypothesis for indexing recorded audio conferences and retrieval of specific snippets of the
audio file containing the query keyword.

3.1 Preliminary Steps

The first step in the development of any system is to determine what is already available,
what is missing and what needs to be done to fill in the gap. In this section, we focus our
analysis on the above stated issues.

As mentioned in Chapter 2, any basic spoken document retrieval system involves 3 tools:

• Audio recording

• Speech recognition

• Search tool

Technological innovation contributed to formation of efficient tools in all the three
domains mentioned above. However, to achieve the goal of spoken snippet retrieval from an
archive of audio files, integration of these tools must be completed in a way that minimizes
the possibility of data loss, whereas accuracy of the end audio snippet retrieved must be
sustained at the same level as the original input audio recorded.

The easiest way to integrate the model is to upload the recorded audio file from the source
recorder to the speech recognition engine. The transcript generated from the speech
recognition engine is then forwarded to the search tool to be indexed for searching. Figure 15
presents the flow of information for integration. Such an index would be able to retrieve an
audio file from several audio files; however, retrieval of only a part of an audio file from

 40

several files is unattainable. The reason for this is rooted in the fact that the transcript of an
audio file is what is being indexed. When a query keyword appears to be positively present
in a transcript say aT , the search tool would point to aT , which would in turn link to the
source audio file. Hence, the search tool retrieves the entire audio file for the user. Though
good enough for small documents say 1 to 5 minutes in length, retrieval of an audio file say
of 60 minutes in length is but an incomplete search, since the user has to manually skim
through audio file of 60 minutes in duration, in order to locate the exact place where the
keyword was spoken. And if the retrieved document was a false positive, it would end up in
an ineffective search.

Figure 15: General SDR flow.

 41

Moreover, the success of the system will be dependent on its ability to retrieve the specific
position in an audio file from among several audio files, in which the text based query
keyword appears.

Consequently, the basic need includes the following systems: recorder producing high
quality audio files alongside with the speech recognition tool capable of generating time-
stamped transcripts, which refer to specific positions in the audio file and a retrieval system,
which returns relevant snippets as query results.

3.2 Recording high quality audio files

VV audio conferencing system, presented in section 2.4, has the capability to process good
quality audio for broadcasting across the conference. A new version of this tool has been
used: it saves the user’s contribution to the conference on his/her system. Figure 16 presents
the procedure. As evident from Figure 16, all clients participating in a conference
communicate with a central VV server. The VV server enables the start and the end of a
conference as well as the real time broadcasting of audio among the conference members or
clients. As the conference continues, the client side VV software records the client’s audio.
At the end of the conference, recorded audio will be saved to a specific location on the
client’s system. Thus, at the end of each conference, all participants have their audio
contribution to the conference stored on their systems in a specific location. As the audio is
recorded and stored at the same location where it is generated, loss of audio data or quality is
avoided. Thus, good quality audio recording is achieved. The achieved outcome is then used
as the input for speech recognition engine.

 42

Figure 16: Overview of vocal village audio conferencing process.

 43

Since the input audio quality is good, results of speech recognition will not be affected. Poor
audio quality results in poor recognition accuracy, as it simultaneously increases the
possibility for misrecognised words. Thus, ensuring good quality audio as an input helps in
future processing of the audio file for better recognition accuracy, and high playback quality
as well.

3.3 Speech recognition tool with time-stamped transcripts

Dragon Naturally Speaking 7.0 [45], here after referred to as DNS, is one of the leading
commercially available software for speech recognition [34]. Having been long enough in the
speech recognition market, the DNS has considerably evolved from a discrete speech
recognition engine introduced in 1982 to a real-time continuous speech recognition system in
1997 that was further developed into a dictation system in 2001 followed by several
enhancements that resulted in the current version, which is very competitive in the market of
commercial speech recognition tools, aimed at providing powerful user-independent speech
recognition solutions as well. Tools to create commands, i.e. macros, which are programming
instructions for repetitive tasks and to control DNS, are also developed. The research in DNS
extensions by Gould resulted in Natlink [27], a macro system for DNS. Natlink is a
compatibility module that allows writing macros in python programming language [29] to
control DNS. Also referred to as Natpython [28], Natlink provides a gateway to interact with
the DNS system from the backend with capabilities to:

• Add speech recognition to Python programs

• Control DNS from Python

• Write voice macros in Python for DNS.

• Create grammars telling DNS what to listen for and get call-backs when

speech matching the grammar is recognized.

• Access some of the functionality of DNS from Python including sending
keystrokes to other applications, controlling the microphone, creating new
DNS users, make DNS recognize speech from a file and write text to a file.

There are several other good speech recognition tools in the market. At the same time, DNS
is one of the most efficient tools that claims 97% recognition accuracy [45]. All speech
recognition tools are striving for better recognition accuracy, as there is no single system that
can recognize any given audio input with 100% accuracy. Hence, much of the recognition
tools have not yet focused on generating time-stamped transcripts for a given audio file.

Time-stamped transcript index files, as mentioned above, are a basic requirement for audio
snippet retrieval systems. XML, the eXtensible Markup Language [33] that defines a

 44

standard structural design for data representation and exchange on the Internet is a desired
format for index files. We hence designed an XML file structure for documenting the
transcripts with proper indices and timestamps to the audio file. Since an archival of audio
files resulting from several audio conferences need to be indexed, a design that uniquely
identifies and links the index files with respective audio files is required. In order to assist in
audio snippet retrieval from archived audio conferences, the desired XML index file should
contain the following information:

• Name of audio file

• Conference Starting Time

• Conference Ending Time

• Speaker

• Length of audio file

• Audio Clip

Name of audio file - The name of the audio file provides a unique identification to the
audio file using conference related data such as name of the speaker, conference title, date
and time of the conference along with the time when the speaker joined the conference. The
filename format is proposed to contain information in the following format:

 “speaker_conference
title_year_month_date_chours_cminutes_cseconds_jhours_jminutes_jseconds”

where, chours, cminutes and cseconds correspond to the conference starting time and jhours,
jminutes and jseconds correspond to the time at which the speaker joins the conference.

This information, being available in the filename, provides a unique index, since no two
conferences clients can ever have all the information in the filename identical. This technique
also helps to integrate conference files from multiple speakers or multiple conference files of
a single speaker, etc.

Conference Starting time (CST) - Starting time refers to the time at which the conference

was initiated and includes both date and time information.

Conference Ending time (CET) - Ending time refers to the time at which the conference

is ended by the VV server.

 45

Speaker – Speaker name is the username for VV client tool and the DNS username for
training files as well. It is required to maintain integrity among the audio conferencing and
speech recognition tools in order to obtain better results.

Length of the audio file (LA) - Length of the audio file is the time in seconds for which

the audio conference has been recorded. Length of audio file can be obtained from the
following equation:

LA = CET – CST seconds,

 where CET is the conference ending time and CST is the conference starting time.

Audio clip - Audio clip refers to an audio snippet which is a segment of an audio file that
starts at some location in the audio file and ends after a specific duration: in this experiment
the duration is 15 seconds. Indexing information outlined below is to be documented in the
XML file for each audio snippet:

• Clip name – This is similar to the audio file name, with additional information

to obtain snippet’s relative position in the source audio file.

• Clip Starting time (CLST) - Clip starting time is the time in the audio file

from which the clip is extracted.

• Clip Ending time (CLET) - Clip ending time is calculated using the clip

starting time and applying the following equation:

CLET = CLST + 15seconds,

where CLET is the clip ending time and CLST is the clip starting time.

• Dragon Transcription - The output text generated by Dragon Naturally
Speaking speech recognition tool when the audio clip is given as input.

 46

The resulting XML index file for each client’s conference audio file can be represented in
the following form:

<conference>
 <starting time> - conference starting time
 <ending time> - conference ending time
 <audio file name>
 <speaker name>
 <audio clip 1>
 <audio clip 2>
 |
 |
 |
 |
 |
 <audio clip n>
</conference>

where, n is the number of snippets with 15 second duration generated from the given audio
file.

The <audio clip> structure can be represented as:

<audio clip>
 <starting time>
 <ending time>
 <clip name>
 <transcription>
</audio clip>

- audio snippet starting time with reference to conference audio timeline.
- audio snippet ending time with reference to conference audio timeline.

where, clip name is the unique name given to the 15 second audio snippet file with
information to identify the position of the snippet in the original audio file. Transcription
refers to the output obtained from speech recognition system when the audio snippet file is
given as an input. The structures of the <starting time> and <ending time> are similar and
can be represented as follows:

 47

< time>
 <year>
 <month>
 <date>
 <hour>
 <minutes>
 <seconds>
</time>

As mentioned earlier, the speech recognition tool does not automatically generate the
desired XML index file. We hence designed the iTalk processor described in 3.3.1, which is
integrated with the DNS speech recognition tool, to generate transcripts for every 15 seconds
of audio, i.e., snippets, in the input audio file and document them together in a single XML
index file.

A high level overview of the iTalk processor is shown in Figure 17.

Figure 17: A high level overview of iTalk processor.

 48

 iTalk processor takes an input audio file, passes audio snippets to the DNS, and obtains
transcripts to generate an XML index file. For a given audio snippet, when speech matching
with the reference grammar is recognized, DNS returns the identified words to the iTalk
processor to be written to the XML file.

To aid the processor, we developed an algorithm in Python that interacts with the Natlink

module in order to programmatically send audio input to the DNS system and receive the
text generated by the DNS system to a text file. Using the general transcription grammar to
generate multiple hypotheses for every word recognized, the algorithm writes the results to
a text file.

The following steps are involved in writing the results of DNS recognition to a text file,

from an input audio file using the Natlink module:

 49

Step 1. Identify the DNS user for the speaker of the audio file, ideally user = speaker.

Step 2. Connect the Natlink module with DNS, which launches DNS if it is not already
running.

Step 3. Set the microphone state to “off”. This step disables any other audio input
sources to DNS.

Step 4. Open the specified DNS user which loads the user training files for recognition.

Step 5. Call DNS to take input from a wave file with the indicated filename simulating
real time recognition and performing utterance detection by separating speech from
pauses.

Step 6. Open the output text file to which the recognized results are to be written.

Step 7. Initialize and load the transcription grammar with the results object set to be
obtained when the recognition is specific to the grammar and the result to contain
partial recognition hypotheses, here on referred to as multiple hypotheses, which will be
available during recognition.

Step 8. Activate the global dictation grammars.

Step 9. When a word is recognized, write all the partial recognition hypotheses to the
output text file.

Step 10. Unload the transcription grammar, close the output text file, disconnect from
DNS, and close the input wave file.

 50

Thus, we can programmatically obtain transcription results to a text file for an input audio
(wave) file.

3.3.1 The iTalk Speech Processor

The goal of iTalk speech processor is to generate an XML index file with all the necessary
meta-information for archiving the audio conferences, and text version of the words spoken
in those conferences for searching the audio archive and skimming through the audio files.
The sensitive issue in this process is related to the speech recognition process. Despite their
performance with dictation audio and broadcast news, the transcripts obtained from speech
recognition have not proved to be successful for audio indexing. Main concerns include the
misrecognised words, OOV words, and indices to the correctly recognized words. From the
research presented in Chapter 2, we can assume that the effects of misrecognised words and
OOV words are almost negligible for audio file retrieval. Hence, iTalk speech processor
focuses on the recognized words and their position of occurrence in the audio file.

The DNS output is based on the input given. When given the same audio with different
levels of background information, the output differs, as the speech recognizer tends towards
the most accurate words that fill the sentence based on the reference grammar. If a previously
recognized word is wrong, the probability of the next fit word to be wrong will increase. In
order to index the audio file better, we have chosen to segment the audio file in 15 seconds
snippets. 15 seconds of audio snippet is long enough to accurately recognize the words by
providing sufficient context information and to contain a possible keyword but at the same
time short enough not to be computationally burdensome. By passing the same audio file
with differing background levels, i.e. from 0 sec, 5 sec, and 10 seconds in the audio, for only
15 seconds, we can expect an increase in the probability of occurrence of accurately
recognized words. At the same time, proper indices are generated using the overlapping
segments.

In order to provide differing levels of background information to the DNS and index the
audio file at all possible indices, we present a 3-tier algorithm. “3-tier” refers to the 3
differing levels of audio segments sourcing from the same audio file that are given to the
DNS system for transcription. Figure 18 presents the 3-tier segmentation of the audio file as
it is fed to the speech recognition system.

 51

Figure 18: 3-tier feed.

This feed is the basic iTalk technique to index audio files for skimming through them. In
tier-1, the audio file is fed from 0 to n seconds in segments of 15 seconds each, where n is the
length of the audio file in seconds. So the tier-1 feed segments would be 0 to 15 seconds, 15
to 30 seconds, 30 to 45 seconds, 45 to 60 seconds, ……,(n-15) to n seconds in the source
audio file. Tier 2 feeds the audio file from 5 to n seconds, and Tier 3 repeats the process from
10 to n seconds in segments of 15 seconds each, where n is the length of the audio file in
seconds. Hence, tier-2 feed would be 5 to 20 seconds, 20 to 35 seconds, 35 to 50 seconds,
……., (n-10) to n seconds and the tier-3 feed would be 10 to 25 seconds, 25 to 40 seconds,
40 to 55 seconds, …, (n-5) to n seconds in the source audio file. Thus, the 3-tier feed to DNS
results in transcripts that contain accurately recognized words reappearing as a consequence
of the overlap in the segments. The overlap in the 3-tier feed is aimed at indexing the audio
file with maximum indices to accurate keywords.

 The iTalk processor is hence developed to give 3-tier feed to DNS and obtain multiple
hypothesized outputs to generate the desired XML index file. A high-level algorithm for the
iTalk processor is as follows:

 52

Algorithm to generate time-stamped transcript index file.

Start

open new XML file in write mode

write metadata to XML file

for length(audio file):

Tier-1

 splitaudio(0)

Tier-2

 splitaudio(5)

Tier-3

 splitaudio(10)

close all open files

disconnect from DNS

remove snippet wave files created.

End

splitaudio(starting position):

startpos = starting position

for length of audio file:

if startpos <= length of audio file:

 read frames from input audio and write to wave file from startpos for 15 seconds.

 startpos = startpos + 15

 close the wave file

 write the wavefile meta data to XML file

 do transcript()

doTranscript():

 generate multiple hypothesis()

 write to XML file

 53

When the iTalk speech processor is triggered with an input audio file, the processor creates

a new file of XML type and opens it in the write mode. The meta-information obtained from
the audio file name (filename format described in section 3.3) is then added to the XML file
with respective tagging data including the following variables: starting time, ending time,
filename, and speaker of the audio file. The processor then prepares for 3-tier feed to the
DNS by segmenting the audio file into chunks of 15 seconds in three steps:

Step 1. The processor reads the input audio file and writes 15 seconds of the audio to a
new wave file. The new wave file or snippet is then given a unique id as the filename. The
filename aids in the indexing providing position specific information from the input audio
file. The clip id is defined to be in the format:

(clip number)audio file name(tier start position)

where, clip number is a value from 0 to m, m refers to the maximum number of snippets in
the given audio file. The maximum number of snippets in a given audio file is obtained from
the following equation:

m = length of audio file / snippet length

or simply

m = length of audio file in seconds / 15 seconds

Tier start position is 0 seconds in step-1, since the first audio snippet is generated from the
initial or the 0th second position in the source audio file. Hence, m audio snippets are
generated in step-1, and each snippet starts at the position, where the preceding snippet ends
for the length of the original audio file. So in tier-1, the first audio snippet would be
identified as (0)audio file name(0), the second snippet as (1)audio file name(0), and so on
with the last audio snippet identified as (m)audio file name(0).

Step 2. Similar to step 1, the processor reads the input audio file and writes the data to a

new wave file. However, this time the processor reads from 5th second position in the source
audio file and generates a new wave file of 15 seconds duration. All the snippets that follow
start from the position at which the preceding snippet ends resulting in audio file segments
from 5 to 20 seconds, 20 to 35 seconds, 35 to 50 seconds, and so on until (n-10) to n seconds.
In tier-2, the start position being 5th second, the first audio snippet will be identified as
(0)audio file name(5), the second snippet as (1)audio file name(5), and so on until (m)audio
file name(5).

Step 3. Similar to the previous steps, the processor reads the input audio file and writes to

a new wave file. However, this time the processor reads from 10th second position in the
source audio file and generates a new wave file of 15 seconds duration. All the snippets that
follow start from the position at which the preceding snippet ends resulting in audio file

 54

segments from 10 to 25 seconds, 25 to 40 seconds, 40 to 55 seconds and so on until (n-5) to n
seconds. In tier-3, the start position being 10th second, the first audio snippet will be
identified as (0)audio file name(10), the second snippet as (1)audio file name(10), and so on
until (m)audio file name(10).

When a keyword is identified in a particular snippet, the clip id format helps in retrieving
the position in the audio file. The snippet position can be calculated using the clip id applying
the following rules:

Rule 1. snippet start position = (clip number + tier start position) * 15

Rule 2. snippet end position = snippet start position + 15

In each step, after the segmented snippet is generated, the meta-data of the snippet, such

as the clip id, the starting and ending times of the audio snippet, is added to the XML file
with respective tags. The audio snippet is then referred to the DNS to receive recognition
results through the steps outlined in section 3.3. These results are also written to the XML
file with appropriate tagging data.

 Thus, the iTalk processor continues for 3m snippets generated by tiered segmentation.
These 3m snippets have different background audio data as well as overlaps in audio data.
With proper analysis the transcripts of these 3m snippets can provide useful indices to the
source audio file. Hence, the XML file is loaded with the transcripts for all 3m snippets along
with the necessary tagging information. Figure 19 presents the flow of information among
the modules in iTalk processor:

 55

Figure 19: iTalk processor flow diagram.

 56

The XML file and the source audio file are then forwarded to the iTalk file system. The

iTalk file system, is further indexed by the Wumpus text-based file system search engine
[38], whereas the snippets generated by the iTalk processor are deleted. Archiving the
original audio file helps to maintain the sound quality of an audio file, when retrieved as a
query result. Thus, the iTalk processor coupled with the DNS, is used as a speech recognition
tool that generates time-stamped transcripts.

3.4 Audio Snippet Retrieval System

The Wumpus file system search engine is acted upon the iTalk file system to enable audio
snippet retrieval with text-based queries. The back-end infrastructure for audio snippet
retrieval with Wumpus search engine consists of the following three components:

• Update Server

• Wumpus Search Engine

• Http Server

Update Server - The update server monitors the “incoming” directory for new audio, XML,
and log files and processes them as they arrive. When the update server receives a new file,
the server follows the following steps to maintain the integrity of conference data:

1. The .wav file is converted into a single-channel raw audio file with 8 bits sample
width and 22050 Hz sample rate using the sox sound converter tool [54]. This is to
ensure high quality of the audio file.

2. Check for the presence of XML file for the given conference and speaker, if present,

the new XML file is merged with the existing XML file so that there will be only one
XML file for each speaker in a particular conference.

Hence, for each conference the update server contains the following information:

• One or more audio files and a single XML index file for each speaker in the
conference and

• Log file with information about the joining and leaving time of each

participant in the conference.

 57

Wumpus Search Engine - Wumpus search engine [38] indexes the XML files and processes
search queries.

HTTP server - HTTP server takes requests from the web browser, reformats them, forwards
to wumpus search engine, and receives the wumpus response. The wumpus response is then
forwarded to the web browser.

The retrieval system enables for keyword search query and audio file download query to wumpus. When a
search query is given:

• The HTTP server translates the keyword query into a form that can be

understood by wumpus, similar to the format below:
 rank "<audio>".."</audio>" by "word1", "word2", ..., "wordN"

• All 15 second snippets are ranked using a modified version of BM25 [32],

similar to the method described in [35].

• Wumpus search engine then returns the top matching "<audio>".."</audio>"
XML elements along with their full text to the HTTP server. The HTTP server
modifies the look and feel of the information and returns it to the web
browser.

When a download query ("get audio") is given:

• The request for an audio snippet contains the name of the conference, the
name of the speaker, the start timestamp of the snippet, and its length. The
latter two are given in seconds. The start offset is the number of seconds from
the beginning of the audio stream for that speaker.

• Wumpus uses the above information to identify the raw audio file for the

conference and the speaker, extracts the requested snippet, uses sox [54] to
convert the audio data back into .wav format, and returns it to the HTTP
server, which, in turn, returns it to the web browser.

• When the user requests multiple streams (i.e. streams of all speakers in the

conference mixed together) instead of only a single audio stream, wumpus
uses the information in the conference's .log file to find out when the
individual speakers entered the conference. The relative start time of the
participant’s audio streams is then used to translate the start offset in the
selected audio stream to the corresponding start offsets in other participant’s
audio streams. These audio streams are then mixed together into one single

 58

.wav audio stream, containing audio data for all speakers with the help of sox
tool [54].

Thus, the wumpus audio snippet retrieval system not only returns a particular snippet of

speaker’s conversation in a conference but with a little bit of added complexity also generates
an integrated snippet with the contributions of all participants in the conference at that
particular point of time in the conference.

3.5 Design summary of iTalk components

We have defined the essential tools and components for the development of iTalk system
as audio recording component for the voice conferencing tool, time-stamped transcription
component for the speech recognition tool, and the audio snippet retrieval component for the
search engine tool. These components were defined specifically for iTalk, the design of
which has been the focus of this chapter. Selected voice conferencing tool, VV, is equipped
with the audio recording component. Section 3.2 outlined the design of the recording
component. We then presented the design for time-stamped XML index file in section 3.3
followed by the design of iTalk processor with an algorithm to programmatically generate
the defined XML index file using DNS. Finally, we described the steps involved in audio
snippet retrieval component that uses the text based file system search engine wumpus to
retrieve audio snippets either as a single stream specific to a speaker or as multiple streams
specific to a conference, as outlined in section 3.4. The integration of VV audio conferencing
system, the iTalk processor with DNS that generates time-stamped transcripts of audio
recordings along with the wumpus text-based file system search engine results in the desired
system for capture, archival and searching of audio conferences i.e; the iTalk tool kit.

 59

Chapter 4

Architecture of iTalk Tool Kit

 In this chapter, we present the architectural design for the iTalk tool kit that integrates the
vocal village voice conferencing system, DNS speech recognition system, and Wumpus text
based file system search engine tool to capture, archive, and search conference audio. We
then describe this initial architecture with an informal user feedback obtained from our demo
presented at CASCON 2005 conference in Toronto, Ontario, Canada. Further, we present an
architectural evolution that was developed to overcome the limitations of the initial
architecture.

4.1 Integration concerns

Having designed the three essential components (see Chapter 3), integration of these
components appears to be a comparatively easier task. The main components and the flow of
information among them are described in Figure 20.

 60

Figure 20: iTalk system – component level flow diagram.

 61

As mentioned in Chapter 3, the iTalk processor interacts with DNS to generate the desired
XML index file. DNS uses the speaker training files as a reference for speech recognition.
Hence, each conference participant needs to train the DNS to generate the user file that is
stored on the same system. This user file will be used as a reference by the DNS in order to
recognize the words accurately. iTalk processor interacts with DNS as well as with this user
file to generate an XML index file for the given conference audio input. iTalk system is an
integration of technologies developed across different platforms and different programming
languages. The VV conferencing tool is Windows based software developed in VB.Net.
Whereas, the iTalk processor is developed in Python to control the DNS which is a Windows
based tool, in order to obtain necessary recognition data. Wumpus is a file system search
engine for Linux environment. Hence, integration design needs to consider several technical
issues for the development of this system, which includes but is not limited to the file
formats, security concerns, and possible loss of data. To achieve the desired results the VV
client system, iTalk processor, and the DNS were merged to work on a single Windows
system. The system is realized in the initial architecture described in the following section.

 62

Figure 21: Overview of initial architecture for iTalk tool.

 63

4.2 Initial Architecture

iTalk aims at recording, archiving, and searching audio conferences talks. An overview of
the initial architecture for the iTalk tool is represented in the Figure 21.

As evident from Figure 21, iTalk architecture is developed by merging the VV client side
software with the iTalk processor which in turn interacts with the DNS, as described in
section 3.3.1. VV audio conferencing system connects all participants in a conference and
broadcasts each participant’s contribution to the conference in real time across all the
participants in that conference with the help of a central VV server. When a conference is
initiated by a VV client, the server creates a log of the conference by tracking the time at
which participant is joining and leaving the conference. The VV server log file maintains
data such as participant’s username, time at which the user joined the conference, time at
which the user left the conference. During the conference, VV client side tool records the
user’s speech contribution to the conference on the user’s disk. At the end of the conference,
the recorded speech is saved as a wave file and the iTalk processor is triggered in each of the
VV client system. The processor, as described in the section 3.3.1, segments the wave file
into audio clips of 15 seconds in 3 tiers and connects to DNS in order to receive partial
recognition hypotheses for all the audio clips. The processor then generates the XML index
file. The generated XML index file is then uploaded to the iTalk file system along with its
associated client wave file. Thus, all participants of the conference have their speech
contribution and its associated XML index file uploaded to the iTalk file system. The VV
server, at the end of conference, uploads the log file created for that conference to the iTalk
file system. The iTalk file system contains an audio file, an XML index file for each client
that participated in the conference, and a log file for the same conference. The iTalk file
system is then indexed by the Wumpus search engine for audio snippet retrieval, as outlined
in section 3.4. This detailed process of the client side architecture is represented in Figure 22.
This design requires each user to have DNS installed and trained in the system where VV
client conferencing will be used. Further, at the end of the conference, users should wait for
the iTalk processor to generate the XML file that is then forwarded for indexing to the
Wumpus search engine. We had an opportunity to present this system at IBM CASCON
2005 conference in Toronto, Ontario, Canada. Informal user feedback obtained from the
conference proved to be very effective for further analysis. Figure 23 presents an overview of
the presentation at the conference.

 64

Figure 22: Detailed initial client side architecture.

 65

Figure 23: Presentation of iTalk system at CASCON 2005 conference in Toronto, Ontario,

Canada

 66

 In general, most users found the iTalk system to be more of a search engine for voice
conferences. User interface of this system contains nothing but a search bar and needs to be
enhanced to improve usability. Users were satisfied with the search results alongside with the
snippet retrieval performance of the system; however there were few comments regarding the
usability and overall performance of the system. The most noteworthy feedback is presented
below:

1. The current iTalk processor requires a dedicated processor due to the involvement
of DNS and leaves no space for the user to do mutli-tasking.

2. The longevity of the processing time at the end of the conference until the files are
uploaded to the iTalk file system raised concerns. Though acceptable for short
conversations of less than 5 minutes, conversations around 30 to 60 minutes extend
the longevity of the wave file processing and the XML file generation processes.

3. Each client system in the conference should have the DNS and iTalk processor
installed on it, which limits the user to use only that system for participating in the
conference. The desired system should be available over the Internet for
downloading in negligible time with easy installation. However, the involvement of
DNS complicates this issue, as it is a commercial tool that requires user training for
the minimum of 30 minutes to an average of 3 hours to generate the user training
files. Even if the training files were to be downloaded from a different system, the
time spent in mere installation of DNS and completion of the new user wizard itself
is significant enough to be considered.

4. Changes and updates to any component of the system should be replicated for all
the clients. Overall, the process is a very cumbersome task.

5. The client systems might not have the capability to perform huge audio file
processing after installing tools like DNS that consume a lot of disk space. If a
client was to participate in a conference for at least an hour, the resulting recorded
audio file is large. Further more, the file requires extensive processing time
alongside with the inevitable upload time, when being forwarded to the iTalk file
system.

To overcome the limitations outlined above, we have worked towards easing the usability
and saving time at the user’s end. Efforts resulted in development of server architecture for
the iTalk system to be described in the following section.

 67

Figure 24: Current iTalk Server Architecture

 68

4.3 Server Side Architecture

 This design is aimed at enhancing the iTalk tool performance, while reducing the burden
on client machines. Figure 24 presents an overview of the server side architecture.

A dedicated server is added to the initial architecture to run the iTalk processor with DNS.
This migration of the processor from the client machine raised issues such as:

• DNS has to handle multiple users on a single machine.

• User training files must be obtained and archived for all participants.

• Input audio files must be archived on the iTalk server.

• The iTalk processor must be enhanced with a server module that keeps
looking for incoming files and handles them to be processed by the iTalk
processor as they are received.

However, the migration proved worth handling the above issues, since the client machine
burden was drastically reduced and usability has significantly improved:

• Users can use any machine with VV installed on it. The requirement for the
client machine to have DNS installed on it will no longer be valid.

• When a user ends a conference, the audio file is uploaded to the iTalk server
reducing the time for processing the audio file on the client machine.

• Users can transfer their DNS training files once initially to the iTalk server.
When a user ends a conference, the audio file will be uploaded in the
background to the iTalk server while the user can continue his work on the
same machine.

Hence, we designed the iTalk server architecture to ease usability while maintaining the
integrity of the system. The iTalk server was developed to continuously listen for incoming
audio files. For every incoming audio file, the iTalk processor would be triggered to segment
the audio files and receive transcripts from DNS to generate XML index files as described
earlier. Each audio file and its associated XML index file are further uploaded to the iTalk
file system indexed by the wumpus search engine. Figure 25 provides an overview of the
detailed flow of processes for the iTalk server.

 69

Figure 25: Detailed iTalk server architecture

 70

At the end of a conference, the VV clients upload recorded audio file to iTalk server, while
the VV server forwards the conference log file to the iTalk file system. Thus, the server side
architecture is very transparent to the end user. Development of iTalk server clearly
differentiated the 3 components – VV, iTalk server, and the wumpus search engine tools, as
merely sharing data to provide the same integrated tool results. This architecture opened new
domains: similar tools can handle the input to the iTalk server and output from iTalk server
by sharing data in the same procedure. For example, VV can be replaced with Yahoo! Voice
Calls [55], whereas wumpus search engine can be replaced with Google search engine [56] to
provide similar or better results in audio conference indexing.

4.4 Summary of iTalk Architectures

We integrated the VV voice conferencing tool, the iTalk processor, DNS, and the Wumpus
file system search engine to achieve the desired functionality of the iTalk system. We
presented the integration concerns followed by the initial architecture for iTalk system,
which merges the VV tool with the iTalk processor and DNS to generate XML index file that
is uploaded to the iTalk file system which is indexed by the wumpus search engine.
However, this tool posed several limitations that were discovered during our presentation of
the system at the IBM CASCON 2005 conference in Toronto, Ontario, Canada. We further
described the architectural evolution of the iTalk server which not only solved many usability
and performance issues, but also opened doors for future developments of iTalk system with
a perspective to be incorporated into several other applications. We hence achieved the goal
to develop an audio indexing system for VoIP based audio conferences that enables
recording, archiving, searching, and skimming through the audio data with effective snippet
retrieval.

 71

Chapter 5
Future Work

In this chapter, we focus on identifying specific areas that need improvement and should be
considered in future research and development of iTalk tool. First, we concentrate on further
evaluation of the iTalk system with consideration given to usability and speed of data
retrieval. Later, we determine possible application domains for the iTalk tool.

5.1 Improving iTalk tool: usability and speed of data retrieval

iTalk server needs further evaluation in order to identify specific positions that can improve
audio snippet retrieval performance with low rate of false positives. With the current design,
the results of a query are audio snippets with transcripts that contain some or all the words in
the query. The snippet that has all the query words occurring in the transcript, for the highest
number of times will be ranked highest. It should be pointed out, that the rank largely
depends on the search engine techniques used. However, the possibility that all the three tiers
of an audio snippet have the requested query words happens more than once. This
unavoidably leads to retrieval of all the three tiers of the snippet. Ex:- 30-45 seconds snippet
of an audio might be retrieved as a result of a query and still contain 35-50 and 40-60 second
snippets of the same audio in the search results list.

As such, better methods can be implemented to result in one audio snippet from one audio
file to be retrieved. If the file retrieved corresponds to what the user was searching for, he or
she can also listen to either the following snippet of the audio file or to the one prior to that.
This procedure ensures that the list actually contains audio snippets from different audio files
that resulted for a particular query, which ultimately results in effective search for audio
information that the user would like to retrieve.

As mentioned in the introduction, there is a distinct need to develop a quality user interface
for users to be able to sift through audio conferences for spoken words just as they would sift
through text files. Unlike the current design that retrieves the related audio snippets as search

 72

results, a more sophisticated version of user interface would enable the user to view all audio
files that belong to one conference as a single search result. With such an interface, the user
will be able to skim through different speakers in the conference at the exact point in time
when the search keyword was spoken.

Several improvements can be made in the UI design to achieve better usability. However,
the backbone of the iTalk system, i.e. the iTalk processor, can also be enhanced in different
ways. Strategies of further improvement include: addition of semantic analyzers, phonetic
recognizers, keyword extractors to aid in the retrieval performance.

5.2 Applications of iTalk system
The possible applications of the iTalk system include:

• iTalk could be improved into a personal audio search engine, where users can
record their every day tasks or any other personal information they would
rather talk and record, than type into their system. This recording will then be
copied to the iTalk server to be further processed for indexing. The resulting
XML index file can be returned back to the user’s personal database to be
indexed by a search engine. Thus, iTalk server can be enhanced to be very
mobile and flexible for users.

• iTalk system could be used to retrieve a voice message from an archival of

voice messages by searching for a keyword or a speaker. However, this
requires that iTalk processor receive recognition results from speaker-
independent speech recognition tool. The possibility, even though distinct, is
realistic considering the pace at which speech recognition research is heading
forward.

• Development of an interactive user interface with users being able to speak
out their queries to the system would result in a complete audio search and
retrieval system. The recognition results for the query audio can be passed on
to the search engine for retrieval from iTalk system.

Even though development of the above mentioned application systems require a lot of

improvement and enhancements to the iTalk system, the perspectives are positive and
realistic if performance and stability of the system are improved.

 73

Chapter 6
Conclusion

 The first chapters of the research are focused on the background of speech recognition
process, audio indexing, out of vocabulary words, information retrieval, and VoIP based
voice conferences. Having presented different audio indexing research efforts, we estimated
that there is a strong need for tools with functions similar to iTalk.

 We, then, derived and outlined our approach for automatic recording, archiving and
indexing of VoIP based audio conferences to enable search for words spoken in those
conferences. We defined the time stamped transcript specific to voice conferences and the
methodology for generating such transcripts using existing DNS speech recognition tool. We
then described the developmental approaches of iTalk processor and the 3-tier algorithm that
was designed to aid in obtaining relative indices from the transcripts generated by the DNS
tool. We presented the two architectures developed for iTalk indexing system. From the
research and development of iTalk system, we foresee a lot of enhancements that can be done
to improve the retrieval performance, data security, processing speed, and the speech
recognition accuracy. Suggestions for further research and analysis include evaluation of the
benefits and performance of the 3-tier algorithm; development of a better user interface;
integration of the iTalk system into a personal audio search system, and many others. Being
limited in time, we could not successfully integrate all of those into the current system.
Overall, we have estimated that iTalk system is a positive environment for enhancements that
result in a good audio indexer for VoIP conferences.

 74

Bibliography

[1] Woodland, P., "Speech recognition," Speech and Language Engineering - State of the
Art (Ref. No. 1998/499), IEE Colloquium on , vol., no.pp.2/1-2/5, 19 Nov 1998.

[2] Rabiner, L.R., "A tutorial on hidden Markov models and selected applications in
speech recognition," Proceedings of the IEEE , vol.77, no.2pp.257-286, Feb 1989.

[3] De Mori, R., Brugnara, F. "A Survey of the State of the Art in Human Language
Technology," Eds. Ron Cole, Chapter1 – Section 1.5, 1996,
http://speech.bme.ogi.edu/HLTsurvey. Accessed September 9, 2006.

[4] Scansoft Inc, “Open speech recognizer: An intelligent, scalable and comprehensive
speech recognition solution from SpeechWorks,” White Paper, June 2005.
http://www.nuance.com/recognizer/whitepapers/. Accessed September 9, 2006

[5] Cyphers, S., Hazen, T., and Glass, J., "Tools for Automatic Transcription and
Browsing of Audio-Visual Presentations," CSAIL abstract, 2005.

[6] Leavitt, N., "Let’s Hear It for Audio Mining," Computer, vol. 35, no. 10, pp. 23-25,
Oct., 2002.

[7] Van Rijsbergen, C.J., “Information Retrieval,” Newton, MA, USA: Butterworth-
Heinemann, 1979.

[8] Siegler, M.A., “Integration of continuous speech recognition and information
retrieval for mutually optimal performance,” Ph.D. Thesis, Carnegie Mellon

 75

University, 1999. http://www.cs.cmu.edu/~msiegler/publish/PhD/thesis.pdf. Accessed
September 9, 2006

[9] Büttcher, S. and Charles, C.L.A., “A security model for full-text file system search in
multi-user environments,” In 4th USENIX Conference on File and Storage
Technologies (USENIX FAST), San Francisco, December 2005.

[10] Chignell, M. and Kilgore, R., “The Vocal Village: Enhancing Collaboration with
Spatialized Audio conferencing,” 2004.
http://anarch.ie.utoronto.ca/IML/model/publications.php?ord=r. Accessed September
9, 2006

[11] Kurimo, M., “Thematic indexing of spoken documents by using self-organizing
maps,” Speech Commun. 38, 1, Sep. 2002, 29-45.

[12] Happe, A., Pouliquen, B., Burgun, A., Cuggia, M., Le Beux, P., “Automatic concept
extraction from spoken medical reports,” International Journal of Medical
Informatics, July 2003, V. 70, Issues 2-3, Pp 255-263.

[13] MENELAS: http://www.med.univ-ennes1.fr/plaq/proj_an/menelas_an.html.

Accessed August 31, 2006.

[14] Park, A., Hazen, T., and Glass, J., "Automatic Processing of Audio Lectures for
Information Retrieval: Vocabulary Selection and Language Modeling," Proc. Int.
Conf. on Acoustics, Speech, and Signal Proc., Philadelphia, PA, March 2005.

[15] Glass, J., Hazen, T., Cyphers, S., Schutte, K., and Park, A., "The MIT Spoken
Lecture Processing Project," Proc. HLT/EMNLP, Vancouver, October 2005.

[16] Salgado-Garza, L.R., Nolazco-Flores, J.A., Díaz-López, P.D., “A proposed
architecture for a spoken information retrieval with multimedia databases,” Taller de
Tecnologías del Lenguaje Humano, Encuentro Internacional de Computación
ENC'04, México, 2004.

[17] Brown, M. G., Foote, J. T., Jones, G. J., Jones, K. S., and Young, S. J, “Open-
vocabulary speech indexing for voice and video mail retrieval,” In Proceedings of the
Fourth ACM international Conference on Multimedia (Boston, Massachusetts, United
States, November 18 - 22, 1996). MULTIMEDIA '96. ACM Press, New York, NY,
307-316, 1996.

 76

[18] Saraclar, M., Begeja, L.,Gibbon, D., Liu, Z., Renger, B., Shahraray, B., “A
system for searching and browsing spoken communications,” HLT/NAACL Workshop
on Interdisciplinary Approaches to Speech Indexing and Retrieval, Boston, MA, May
6, 2004.

[19] Woodland, P. C., Johnson, S. E., Jourlin, P., and Jones, K. S., “Effects of out of
vocabulary words in spoken document retrieval (poster session),” In Proceedings of
the 23rd Annual international ACM SIGIR Conference on Research and Development
in information Retrieval (Athens, Greece, July 24 - 28, 2000). SIGIR '00. ACM Press,
New York, NY, 372-374, 2000.

[20] Church, K.W.,”Speech and language processing: where have we been and where
are we going?," In EUROSPEECH-2003, 1-4, 2003.

[21] Allan, J., “Perspectives on Information Retrieval and Speech,” In information
Retrieval Techniques For Speech Applications [This Book Is Based on the Workshop
"information Retrieval Techniques For Speech Applications", Held As Part of the
24th Annual international ACM SIGIR Conference on Research and Development in
infor A. Coden, E. W. Brown, and S. Srinivasan, Eds. Lecture Notes In Computer
Science, vol. 2273. Springer-Verlag, London, 1-10, 2002.

[22] Garofolo, J.S., Auzanne, G.P., Voorhes, E.M., “The TREC spoken document
retrieval track: A success story,” Proceedings of the Recherche d’Informations
Assiste par Ordinateur: Content Based Multimedia Information Access Conference,
April 12-14, 2000.

[23] Lamming, M. G. and Newman, W. M., “Activity-based Information Retrieval:
Technology in Support of Personal Memory,” In Proceedings of the IFIP 12th World
Computer Congress on Personal Computers and intelligent Systems - information
Processing '92 - Volume 3 - Volume 3 (September 07 - 11, 1992). F. H. Vogt, Ed.
IFIP Transactions, vol. A-14. North-Holland, 68-81, 1992.

[24] Stifelman, L. J., “Augmenting real-world objects: a paper-based audio
notebook,” In Conference Companion on Human Factors in Computing Systems:
Common Ground (Vancouver, British Columbia, Canada, April 13 - 18, 1996). M. J.
Tauber, Ed. CHI '96. ACM Press, New York, NY, 199-200, 1996.

[25] Whittaker, S., Hyland, P., and Wiley, M., “FILOCHAT: handwritten notes
provide access to recorded conversations,” In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems: Celebrating interdependence (Boston,

 77

Massachusetts, United States, April 24 - 28, 1994). B. Adelson, S. Dumais, and J.
Olson, Eds. CHI '94. ACM Press, New York, NY, 271-277, 1994.

[26] Johnson, S.E., Jourlin, P., Spärk Jones, K., Woodland, P.C., “Spoken Document
Retrieval for TREC-8 at Cambridge University,” In NIST special publication 500-
246: The eighth Text REtrieval Conference (TREC-8).
http://trec.nist.gov/pubs/trec8/t8_proceedings.html. Accessed September 9, 2006

[27] Gould, J., Power Point slide presentation given to the Voice Coder’s Group.
http://www.synapseadaptive.com/joel/NatLinkTalk.ppt. Accessed September 7, 2006.

[28] Speech Recognition Wiki. NatPython/Natlink/Vocola:
http://speechwiki.org/NL/HomePage.html. Accessed September 7, 2006.

[29] The Python Programming Language: http://www.python.org. Accessed September 7,
2006.

[30] Chelba, C., and Acero, A., “Position specific posterior lattices for indexing speech,”
In Proceedings of the 43rd Annual Conference of the Association for Computational
Linguistics (ACL-05), Ann Arbor, MI, 2005. ACL - 2005.

[31] Wikipedia - The Free Encyclopedia. Word error rate:
http://en.wikipedia.org/w/index.php?title=Word_error_rate&oldid=71372259.
Accessed August 31, 2006.

[32] Robertson, S.E., Walker, S., Hancock-Beaulieu, M., “Okapi at TREC-7,”
Proceedings of the Seventh Text REtrieval Conference, Gaithersburg, U.S.A.;
November 1998.

[33] eXtensible Markup Language (XML): http://www.w3.org/XML. Accessed
September 7, 2006.

[34] Wikipedia - The Free Encyclopedia. NaturallySpeaking:
http://en.wikipedia.org/w/index.php?title=NaturallySpeaking&oldid=72866539.
Accessed September 3, 2006.

[35] Büttcher, S., Clarke, C.L.A., Lushman, B., “Term Proximity Scoring for Ad-Hoc
Retrieval on Very Large Text Collections,” Proceedings of the 29th ACM Conference

 78

on Research and Development in Information Retrieval (SIGIR 2006). Seattle, USA;
August 2006.

[36] Interactive Media Lab and Collaborative Effectiveness Lab, Univ. of Toronto.
Vocal Village: www.vocalvillage.net. Accessed September 6, 2006.

[37] Searchspell. Voice Recognition:
http://www.searchspell.com/sites/wordv/voice%20recogntiion.php. Accessed
September 6, 2006.

[38] Wumpus Search Engine. Wumpus File Search: www.wumpus-search.org.
Accessed September 6, 2006.

[39] Garofolo, J., Voorhees, E., Stanford, V., Spärk Jones, K., “TREC-6 1997 spoken
document retrieval track overview and results,” In NIST special publication 500-240:
The sixth Text REtrieval Conference (TREC-6).
http://trec.nist.gov/pubs/trec6/t6_proceedings.html. Accessed September 10, 2006

[40] Garofolo, J., Voorhees, E., Stanford, V., Auzanne, G., Lund, B., “TREC-7 1998
spoken document retrieval track overview and results,” In NIST special publication
500-242: The seventh Text REtrieval Conference (TREC-7).
http://trec.nist.gov/pubs/trec7/t7_proceedings.html. Accessed September 10, 2006

[41] iRiver N10 personal digital audio recorder:
http://www.iriver.com/html/product/prpa_product.asp?pidx=31. Accessed September 10,
2006.

[42] SUMMIT speech recognition system:
http://groups.csail.mit.edu/sls//technologies/summit.shtml. Accessed September 10, 2006.

[43] Lucene text search engine: http://groups.csail.mit.edu/sls//technologies/summit.shtml
Accessed September 10, 2006.

[44] NOMINDEX indexing program: http://www.med.univ-
rennes1.fr/doc/nomindex/noomindex.html Accessed September 10, 2006.

[45] Dragon Naturally Speaking speech recognition system:
http://www.nuance.com/naturallyspeaking/ Accessed September 10, 2006.

 79

[46] IBM Via Voice speech recognition system: http://www-
306.ibm.com/software/voice/viavoice/ Accessed September 10, 2006.

[47] MeSH – A French medical lexicon thesaurus: http://www.nlm.nih.gov/mesh/ Accessed
September 10, 2006.

[48] Managing Gigabytes query system: http://mg4j.dsi.unimi.it/ Accessed September 10,
2006.

[49] SPHINX III speech recognition system:
http://cmusphinx.sourceforge.net/html/cmusphinx.php Accessed September 10, 2006.

[50] CMUseg tool: http://www.cs.cmu.edu/~msiegler/ Accessed September 10, 2006.

[51] TIMIT acoustic-phonetic continuous speech corpus:
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1 Accessed
September 10, 2006.

[52] Robinson, T., Fransen, J., Pye, D., Foote, J., and Renals, S., “WSJCAM0: A british
english speech corpus for large vocabulary continuous speech recognition,” In
Proceedings of the 1995 International Conference on Acoustics, Speech, and Signal
Processing, volume 1, pages 81--84, Detroit, May 1995. Institute of Electrical and
Electronic Engineers.

[53] Voice Genie – Voice XML gateway: http://www.voicegenie.com Accessed
September 10, 2006.

[54] SOX sound converter tool: http://sox.sourceforge.net/ Accessed September 11, 2006.

[55] Yahoo! Voice Calls – Audio conferencing tool: http://messenger.yahoo.com/
Accessed September 11, 2006.

[56] Google search engine: http://www.google.com Accessed September 11, 2006.

