
�C++ Annotated Reference Manual

Version 5.5.0

Peter A. Buhrc
1 1995, 1996, 1998, 2000, 2003, 2004, 2005, 2007
Peter A. Buhr and Richard A. Stroobosscherc
1 1992

September 19, 2007

1Permission is granted to redistribute this manual unmodified in any form; permission is granted to redistribute
modified versions of this manual in any form, provided the modified version explicitly attributes said modifications to
their respective authors, and provided that no modificationis made to these terms of redistribution.

Contents

Preface 1

1 �C++ Extensions 3
1.1 Design Requirements. 3
1.2 Elementary Execution Properties. 4
1.3 High-level Execution Constructs. 5

2 �C++ Translator 7
2.1 Extending C++. 7
2.2 Compile Time Structure of a�C++ Program . 8
2.3 �C++ Runtime Structure. 8

2.3.1 Cluster . 8
2.3.2 Virtual Processor. 9

2.4 �C++ Kernel . 10
2.5 Using the�C++ Translator . 10

2.5.1 Compiling a�C++ Program. 10
2.5.2 Preprocessor Variables. 11

2.6 Labelled Break/Continue. 12
2.7 Coroutine . 13

2.7.1 Coroutine Creation and Destruction. 14
2.7.2 Inherited Members. 15
2.7.3 Coroutine Control and Communication. 17

2.8 Mutex Type . 18
2.9 Scheduling . 21

2.9.1 Implicit Scheduling. 21
2.9.2 External Scheduling. 22

2.9.2.1 Accept Statement. 22
2.9.2.2 Breaking a Rendezvous. 24
2.9.2.3 Accepting the Destructor. 24
2.9.2.4 Commentary. 25

2.9.3 Internal Scheduling. 25
2.9.3.1 Condition Variables and Wait/Signal Statements. 26
2.9.3.2 Commentary. 27

2.10 Monitor . 28
2.10.1 Monitor Creation and Destruction. 28
2.10.2 Monitor Control and Communication. 28

2.11 Coroutine Monitor . 28
2.11.1 Coroutine-Monitor Creation and Destruction. 29
2.11.2 Coroutine-Monitor Control and Communication. 29

2.12 Task .. 29
2.12.1 Task Creation and Destruction. 30
2.12.2 Inherited Members. 31

iii

iv CONTENTS

2.12.3 Task Control and Communication. 33
2.13 Commentary . 33
2.14 Inheritance . 34
2.15 Explicit Mutual Exclusion and Synchronization. 36

2.15.1 Counting Semaphore. 36
2.15.1.1 Commentary. 37

2.15.2 Lock . 38
2.15.3 Owner Lock . 38
2.15.4 Condition Lock. 39
2.15.5 Barrier . 39

2.16 User Specified Context. 40
2.16.1 Predefined Floating-Point Context. 41

2.17 Implementation Restrictions. 43

3 Asynchronous Communication 45
3.1 Futures . 46

3.1.1 Client Operations. 46
3.1.2 Server Operations. 46
3.1.3 Explicit Storage Management. 47
3.1.4 Example . 48
3.1.5 Implicit Storage Management. 48
3.1.6 Example . 48

3.2 Future Access. 49
3.2.1 Select Statement. 50
3.2.2 Wait Queue. 51

3.3 Servers . 53

4 Input/Output 57
4.1 Nonblocking I/O . 57
4.2 C++ Stream I/O . 57
4.3 UNIX File I/O . 59

4.3.1 File Access. 60
4.4 BSD Sockets . 60

4.4.1 Client . 62
4.4.2 Server. 64
4.4.3 Server Acceptor . 66

5 Exceptions 69
5.1 EHM .69
5.2 �C++ EHM . 70
5.3 Exception Type. 70

5.3.1 Creation and Destruction. 71
5.3.2 Inherited Members. 71

5.4 Raising . 72
5.4.1 Nonlocal Propagation. 72
5.4.2 Enabling/Disabling Propagation. 73
5.4.3 Concurrent Propagation. 74

5.5 Handler . 75
5.5.1 Termination. 75
5.5.2 Resumption. 75
5.5.3 Termination/Resumption. 77

5.5.3.1 Recursive Resuming. 78
5.5.3.2 Preventing Recursive Resuming. 78
5.5.3.3 Commentary. 80

CONTENTS v

5.6 Bound Exceptions. 81
5.6.1 C++ Exception-Handling Deficiencies. 81
5.6.2 Object Binding. 82
5.6.3 Bound Handlers . 82

5.6.3.1 Matching. 82
5.6.3.2 Termination. 82
5.6.3.3 Resumption. 82

5.7 Inheritance . 83
5.8 Predefined Exception Routines. 84

5.8.1 terminate/set terminate . 84
5.8.2 unexpected/set unexpected . 85
5.8.3 uncaught exception . 85

5.9 Programming with Exceptions. 85
5.9.1 Terminating Propagation. 86
5.9.2 Resuming Propagation. 86
5.9.3 Terminating/Resuming Propagation. 86

5.10 Predefined Exception-Types. 86
5.10.1 Implicitly Enabled Exception-Types. 86
5.10.2 Unhandled Exception in Coroutine. 88
5.10.3 Breaking a Rendezvous. 89

6 Cancellation 91
6.1 Using Cancellation. 92
6.2 Enabling/Disabling Cancellation. 92
6.3 Commentary . 92

7 Errors 95
7.1 Static (Compile-time) Warnings/Errors. 95
7.2 Dynamic (Runtime) Warnings/Errors. 99

7.2.1 Assertions. 99
7.2.2 Termination. 99
7.2.3 Messages. 100

7.2.3.1 Default Actions . 100
7.2.3.2 Coroutine . 104
7.2.3.3 Mutex Type . 107
7.2.3.4 Task . 111
7.2.3.5 Condition Variable. 112
7.2.3.6 Accept Statement. 113
7.2.3.7 Calendar. 114
7.2.3.8 Locks . 114
7.2.3.9 Cluster. 114
7.2.3.10 Heap. 115
7.2.3.11 I/O . 116
7.2.3.12 Processor. 116
7.2.3.13 UNIX . 116

8 �C++ Kernel 119
8.1 Pre-emptive Scheduling and Critical Sections. 119
8.2 Memory Management. 119
8.3 Cluster. .119
8.4 Processors. 121

8.4.1 Implicit Task Scheduling. 123
8.4.2 Idle Virtual Processors. 124
8.4.3 Blocking Virtual Processors. 124

vi CONTENTS

9 Posix Threads (pthreads) 127
9.1 Combining Pthreads with�C++ . 127

9.1.1 Linking�C++ and Pthreads Binaries. 127
9.1.2 Recompiling Pthreads Modules. 129

9.2 �C++ Task as a Pthreads Thread. 129
9.3 Semantic Inconsistencies between Pthreads and�C++ . 130

9.3.1 Termination ofmain . 130
9.3.2 Cleanup Semantics. 130

9.4 Commentary . 131

10 Real-Time 133
10.1 Duration and Time. 133
10.2 Timeout Operations. 136

10.2.1 Time Delay. 136
10.2.2 Accept Statement. 136
10.2.3 Select Statement. 137
10.2.4 I/O . 138

10.3 Clock .139
10.4 Periodic Task. 139
10.5 Sporadic Task. 141
10.6 Aperiodic Task . 141
10.7 Priority Inheritance Protocol. 142
10.8 Real-Time Scheduling. 143
10.9 User-Supplied Scheduler. 143
10.10Real-Time Cluster. 144

10.10.1 Deadline Monotonic Scheduler. 145

11 Miscellaneous 147
11.1 Default Values. 147

11.1.1 Task. 147
11.1.2 Processor. 147
11.1.3 Heap . 148

11.2 Symbolic Debugging. 148
11.3 Installation Requirements. 148
11.4 Installation . 148
11.5 Reporting Problems. 149
11.6 Contributors. 149

A �C++ Grammar 151

B Data Structure Library (DSL) 153
B.1 Stack .153

B.1.1 Iterator . 154
B.2 Queue. .154

B.2.1 Iterator . 155
B.3 Sequence . 156

B.3.1 Iterator . 157

C Example Programs 159
C.1 Readers And Writer. 159
C.2 Bounded Buffer. 161

C.2.1 Using Monitor Accept . 161
C.2.2 Using Monitor Condition. 162
C.2.3 Using Task . 163

CONTENTS vii

C.2.4 Using P/V. 164
C.3 Disk Scheduler. 165
C.4 UNIX File I/O . 168
C.5 UNIX Socket I/O . 169

C.5.1 Client - UNIX/Datagram. 170
C.5.2 Server - UNIX/Datagram. 171
C.5.3 Client - INET/Stream. 172
C.5.4 Socket - INET/Stream. 174

Bibliography 177

Index 181

viii CONTENTS

Preface

The goal of this work is to introduce concurrency into the object-oriented language C++ [Str97]. To achieve this goal a
set of important programming language abstractions were adapted to C++, producing a new dialect called�C++. These
abstractions were derived from a set of design requirementsand combinations of elementary execution properties,
different combinations of which categorized existing programming language abstractions and suggested new ones.
The set of important abstractions contains those needed to express concurrency, as well as some that are not directly
related to concurrency. Therefore, while the focus of this work is on concurrency, all the abstractions produced from
the elementary properties are discussed. While the abstractions are presented as extensions to C++, the requirements
and elementary properties are generally applicable to other object-oriented languages.

This manual does not discuss how to use the new constructs to build complex concurrent systems. An in-depth
discussion of these issues, with respect to�C++, is available in “Understanding Control Flow with Concurrent Pro-
gramming using�C++”. This manual is strictly a reference manual for�C++. A reader should have an intermediate
knowledge of control flow and concurrency issues to understand the ideas presented in this manual as well as some
experience programming in C++.

This manual contains annotations set off from the normal discussion in the following way:2 Annotation discussion is quoted with quads. 2
An annotation provides rationale for design decisions or additional implementation information. Also a chapter or
section may end with a commentary section, which contains major discussion about design alternatives and/or imple-
mentation issues.

Each chapter of the manual doesnot begin with an insightful quotation. Feel free to add your own.

1

2 CONTENTS

Chapter 1�C++ Extensions�C++ [BD92] extends the C++ programming language [Str97] in somewhat the same way that C++ extends the C
programming language. The extensions introduce new objects that augment the existing set of control flow facilities
and provide for lightweight concurrency on uniprocessor and parallel execution on multiprocessor computers running
the UNIX operating system. The following discussion is the rationale for the particular extensions that were chosen.

1.1 Design Requirements

The following requirements directed this work:� Any linguistic feature that affects code generationmustbecome part of the language. In other words, if the com-
piler can generate code that invalidates the correctness ofa library package implementing a particular feature,
either the library feature cannot be implemented safely or additional capabilities must be added to the program-
ming language to support the feature. Concurrency is a language feature affected by code generation, and hence,
must be added to the programming language [Buh95]. In the case of C++, the concurrency extensions are best
added through new kinds of objects.� All communication among the new kinds of objects must be statically type checkable because static type check-
ing is essential for early detection of errors and efficient code generation. (As well, this requirement is consistent
with the fact that C++ is a statically typed programming language.)� Interaction among the different kinds of objects should be possible, and in particular, interaction among con-
current objects, called tasks, should be possible. This requirement allows a programmer to choose the kind of
object best suited to the particular problem without havingto cope with communication restrictions.

In contrast, some approaches have restrictions on interactions among concurrent objects, such as tasks can only
interact indirectly through another non-task object. For example, many programming languages that support
monitors [Bri75, MMS79, Hol92] require that all communication among tasks be done indirectly through a
monitor; similarly, the Linda system [CG89] requires that all communication take place through one or possibly
a small number of tuple spaces. This restriction increases the number of objects in the system; more objects
consume more system resources, which slows the system. As well, communication among tasks is slowed
because of additional synchronization and data transfers with the intermediate object.� All communication among objects is performed using routinecalls; data is transmitted by passing arguments
to parameters and results are returned as the value of the routine call. It is confusing to have multiple forms of
communication in a language, such as message passing, message queues, or communication ports, as well as
normal routine call.� Any of the new kinds of objects should have the same declaration scopes and lifetimes as existing objects. That
is, any object can be declared at program startup, during routine and block activation, and on demand during
execution, using anew operator.

3

4 CHAPTER 1. �C++ EXTENSIONS� All mutual exclusion must be implicit in the programming language constructs and all synchronization should be
limited in scope. Requiring users to build mutual exclusionout of locks often leads to incorrect programs. Also,
reducing the scope in which synchronization can be used, by encapsulating it as part of language constructs,
further reduces errors in concurrent programs.� Both synchronous and asynchronous communication are needed in a concurrent system. However, the best
way to support this is to provide synchronous communicationas the fundamental mechanism; asynchronous
mechanisms, such as buffering or futures [Hal85], can then be built using synchronous mechanisms. Building
synchronous communication out of asynchronous mechanismsrequires a protocol for the caller to subsequently
detect completion, which is error prone because the caller may not obey the protocol (e.g., never retrieve a
result). Furthermore, asynchronous requests require the creation of implicit queues of outstanding requests, each
of which must contain a copy of the arguments of the request. This implementation requirement creates a storage
management problem because different requests require different amounts of storage in the queue. Therefore,
asynchronous communication is too complicated and expensive a mechanism to be hidden in a system.� An object that is accessed concurrently must have some control over which requester it services next. There are
two distinct approaches: control can be based on the kind of request, for example, selecting a requester from
the set formed by calls to a particular entry point; or control can be based on the identity of the requester. In
the former case, it must be possible to give priorities to thesets of requesters. This requirement is essential for
high-priority requests, such as a time out or a termination request. (This priority is to be differentiated from
execution priority.) In the latter case, selection controlis very precise as the next request must only come from
the specified requester. In general, the former case is usually sufficient and simpler to express.� There must be flexibility in the order that requests are completed. That is, a task can accept a request and
subsequently postpone it for an unspecified time, while continuing to accept new requests. Without this ability,
certain kinds of concurrency problems are quite difficult toimplement, e.g., disk scheduling, and the amount of
concurrency is inhibited as tasks are needlessly blocked [Gen81].

All of these requirements are satisfied in�C++ except the first, which requires compiler support. Even through�C++
lacks compiler support, its design assumes compiler support so the extensions are easily added to any C++ compiler.

1.2 Elementary Execution Properties
Extensions to the object concept were developed based on thefollowing execution properties:

thread – is execution of code that occurs independently of and possibly concurrently with other execution; the exe-
cution resulting from a thread is sequential. A thread’s function is to advance execution by changing execution
state. Multiple threads provide concurrent execution. A programming language must provide constructs that
permit the creation of new threads and specify how threads are used to accomplish computation. Furthermore,
there must be programming language constructs whose execution causes threads to block and subsequently be
made ready for execution. A thread is either blocked or running or ready. A thread isblockedwhen it is waiting
for some event to occur. A thread isrunning when it is executing on an actual processor. A thread isready
when it is eligible for execution but not being executed.

execution state– is the state information needed to permit independent execution. An execution state is eitheractive
or inactive, depending on whether or not it is currently being used by a thread. In practice, an execution state
consists of the data items created by an object, including its local data, local block and routine activations, and
a current execution location, which is initialized to a starting point. The local block and routine activations
are often maintained in a contiguous stack, which constitutes the bulk of an execution state and is dynamic in
size, and is the area where the local variables and executionlocation are preserved when an execution state is
inactive. A programming language determines what constitutes an execution state, and therefore, execution state
is an elementary property of the semantics of a language. When control transfers from one execution state to
another, it is called acontext switch.

mutual exclusion – is the mechanism that permits an action to be performed on a resource without interruption by
other actions on the resource. In a concurrent system, mutual exclusion is required to guarantee consistent gen-
eration of results, and cannot be trivially or efficiently implemented without appropriate programming language
constructs.

1.3. HIGH-LEVEL EXECUTION CONSTRUCTS 5

The first two properties represent the minimum needed to perform execution, and seem to be fundamental in that
they are not expressible in machine-independent or language-independent ways. For example, creating a new thread
requires creation of system runtime control information, and manipulation of execution states requires machine specific
operations (modifying stack and frame pointers). The last property, while expressible in terms of simple language
statements, can only be done by algorithms that are error-prone and inefficient, e.g., Dekker-like algorithms, and
therefore, mutual exclusion must also be provided as an elementary execution property, usually through special atomic
hardware instructions.

1.3 High-level Execution Constructs

A programming language designer could attempt to provide these 3 execution properties as basic abstractions in a
programming language [BLL88], allowing users to construct higher-level constructs from them. However, some com-
binations might be inappropriate or potentially dangerous. Therefore, all combinations are examined, analyzing which
ones make sense and are appropriate as higher-level programming language constructs. What is interesting is that
enumerating all combination of these elementary executionproperties produces many existing high-level abstractions
and suggests new ones.

The three execution properties are properties of objects. Therefore, an object may or may not have a thread, may
or may not have an execution state, and may or may not have mutual exclusion. Different combinations of these three
properties produce different kinds of objects. If an objecthas mutual exclusion, this means that execution of certain
member routines are mutually exclusive of one another. Sucha member routine is called a mutual-exclusion member
(mutex member). In the situation where an object does not have the minimum properties required for execution, i.e.,
thread and execution state, those of its caller are used.

Table1.1shows the different abstractions possible when an object possesses different execution properties:

object properties object’s member routine properties
thread execution state no mutual exclusion mutual exclusion

no no 1 class object 2 monitor
no yes 3 coroutine 4 coroutine monitor
yes no 5 (rejected) 6 (rejected)
yes yes 7 (rejected) 8 task

Table 1.1: Fundamental Abstractions

Case 1 is an object, such as afree routine (a routine not a member of an object) or an object with member routines
neither of which has the necessary execution properties, called a class object. In this case, the caller’s thread and
execution state are used to perform execution. Since this kind of object provides no mutual exclusion, it is normally
accessed only by a single thread. If such an object is accessed by several threads, explicit locking may be required,
which violates a design requirement. Case 2 is like Case 1 butdeals with the concurrent-access problem by implicitly
ensuring mutual exclusion for the duration of each computation by a member routine. This abstraction is amoni-
tor [Hoa74]. Case 3 is an object that has its own execution state but no thread. Such an object uses its caller’s thread
to advance its own execution state and usually, but not always, returns the thread back to the caller. This abstraction
is a coroutine [Mar80]. Case 4 is like Case 3 but deals with the concurrent-access problem by implicitly ensuring
mutual exclusion; the namecoroutine monitor has been adopted for this case. Cases 5 and 6 are objects with athread
but no execution state. Both cases are rejected because the thread cannot be used to provide additional concurrency.
First, the object’s thread cannot execute on its own since itdoes not have an execution state, so it cannot perform any
independent actions. Second, if the caller’s execution state is used, assuming the caller’s thread can be blocked to
ensure mutual exclusion of the execution state, the effect is to have two threads successively executing portions of a
single computation, which does not seem useful. Case 7 is an object that has its own thread and execution state. Be-
cause it has both a thread and execution state it is capable ofexecuting on its own; however, it lacks mutual exclusion.
Without mutual exclusion, access to the object’s data is unsafe; therefore, servicing of requests would, in general,
require explicit locking, which violates a design requirement. Furthermore, there is no performance advantage over
case 8. For these reasons, this case is rejected. Case 8 is like Case 7 but deals with the concurrent-access problem by
implicitly ensuring mutual exclusion, called atask.

6 CHAPTER 1. �C++ EXTENSIONS

The abstractions suggested by this categorization come from fundamental properties of execution and not ad hoc
decisions of a programming language designer. While it is possible to simplify the programming language design by
only supporting the task abstraction [SBG+90], which provides all the elementary execution properties,this would
unnecessarily complicate and make inefficient solutions tocertain problems. As will be shown, each of the non-
rejected abstractions produced by this categorization hasa particular set of problems it can solve, and therefore, each
has a place in a programming language. If one of these abstractions is not present, a programmer may be forced to
contrive a solution for some problems that violates abstraction or is inefficient.

Chapter 2�C++ Translator

The�C++ translator1 reads a program containing language extensions and transforms each extension into one or more
C++ statements, which are then compiled by an appropriate C++ compiler and linked with a concurrency runtime
library. Because�C++ is only a translator and not a compiler, some restrictions apply that would be unnecessary if
the extensions were part of the C++ programming language. Similar, but less extensive translators have been built:
MC [RH87] and Concurrent C++ [GR88].

2.1 Extending C++
Operations in�C++ are expressed explicitly, i.e., the abstractions derived from the elementary properties are used to
structure a program into a set of objects that interact, possibly concurrently, to complete a computation. This situation
is to be distinguished from implicit schemes, such as those that attempt todiscoverconcurrency in an otherwise
sequential program, e.g., by parallelizing loops and access to data structures. While both schemes are complementary,
and hence, can appear together in a single programming language, implicit schemes are limited in their capacity
to discoverconcurrency, and therefore, the explicit scheme is essential. Currently,�C++ only supports the explicit
approach, but nothing in its design precludes the addition of the implicit approach.

The abstractions in Table1.1, p. 5 are expressed in�C++ using two new type specifiers,_Coroutine and _Task ,
which are extensions of theclass construct, and hence, define new types. In this manual, a typedefined by theclass
construct and the new constructs are calledclass type, monitor type, coroutine type, coroutine-monitor type and
task type, respectively. The termsclass object, monitor , coroutine, coroutine monitor andtask refer to the objects
created from such types. The termobject is the generic term for any instance created from any type. All objects
can be declared externally, in a block, or using thenew operator. Two new type qualifiers,_Mutex and _Nomutex ,
are also introduced to specify the presence or absence of mutual exclusion on the member routines of a type (see
Table2.1). The default qualification values have been chosen based onthe expected frequency of use of the new types.
Several new statements are added to the language; each is used to affect control in objects created by the new types.
AppendixA, p.151shows the grammar for all the�C++ extensions.

object properties object’s member routine properties
thread execution state no mutual exclusion mutual exclusion

no no [_Nomutex]y class _Mutex class
no yes [_Nomutex] _Coroutine _Mutex _Coroutine
yes yes N/A [_Mutex] _Tasky [] implies default qualification if not specified

Table 2.1: New Type Specifiers�C++ executes on uniprocessor and multiprocessor shared-memory computers. On a uniprocessor, concurrency is
achieved by interleaving execution to give the appearance of parallel execution. On a multiprocessor computer, con-

1 The term “translator” is used rather than preprocessor because�C++ programs are partially parsed and symbol tables are constructed. A
preprocessor, such ascpp, normally only manipulates strings.

7

8 CHAPTER 2. �C++ TRANSLATOR

currency is accomplished by a combination of interleaved execution and true parallel execution. Furthermore,�C++
uses ashared-memory model. This single memory may be the address space of a single UNIX process or a memory
shared among a set of kernel threads. A memory is populated byroutine activations, class objects, coroutines, moni-
tors, coroutine monitors and concurrently executing tasks, all of which have the same addressing scheme for accessing
the memory. Because these entities use the same memory they can belightweight, so there is a low execution cost for
creating, maintaining and communicating among them. This approach has its advantages as well as its disadvantages.
Communicating objects do not have to send large data structures back and forth, but can simply pass pointers to data
structures. However, this technique does not lend itself toa distributed environment with separate address spaces.2 Approaches taken by distributed shared-memory systems mayprovide the necessary implementation

mechanisms to make the distributed memory case similar to the shared-memory case. 2
2.2 Compile Time Structure of a�C++ Program
A �C++ program is constructed exactly like a normal C++ programwith one exception: the main (starting) routine
is a member of an initial task calleduMain, which has the following structure (Section2.12, p. 29 details the task
construct):

_Task uMain {
private :

int argc; // number of arguments on the shell command line
char **argv; // pointers to tokens on the shell command line
int &uRetCode; // return value to the shell
void main(); // user provides body for this routine

public :
uMain(int argc, char *argv[]) : argc(argc), argv(argv) {}

};

A �C++ program must define the body for themain member routine of this initial task, e.g.:

. . . // normal C++ declarations and routines
void uMain::main() { // body for initial task uMain

. . .
switch (argc) { // use argc from uMain

case 2:
no = atoi(argv[1]); // use argv from uMain

. . .
uRetCode = 0; // use uRetCode from uMain

}�C++ supplies the free routinemain to initialize the�C++ runtime environment and creates the taskuMain, of which
routineuMain::main is a member. MemberuMain::main has available, as local variables, the same two arguments that
are passed to the free routinemain: argc, andargv. To return a value back to the shell, set the variableuRetCode and
return fromuMain::main; uRetCode is initialized to zero.

2.3 �C++ Runtime Structure
The dynamic structure of an executing�C++ program is significantly more complex than a normal C++ program. In
addition to the five kinds of objects introduced by the elementary properties,�C++ has two more runtime entities that
are used to control concurrent execution.

2.3.1 Cluster

A cluster is a collection of tasks and virtual processors (discussed next) that execute the tasks. The purpose of a cluster
is to control the amount of parallelism that is possible among tasks, whereparallelism is defined as execution which
occurs simultaneously. Parallelism can only occur when multiple processors are present.Concurrency is execution
that, over a period of time, appears to be parallel. For example, a program written with multiple tasks has the potential
to take advantage of parallelism but it can execute on a uniprocessor, where it mayappear to execute in parallel
because of the rapid speed of context switching.

2.3. �C++ RUNTIME STRUCTURE 9

Normally, a cluster uses a single-queue multi-server queueing model for scheduling its tasks on its processors (see
Chapter10, p. 133for other kinds of schedulers). This simple scheduling results in automatic load balancing of tasks
on processors. Figure2.1 illustrates the runtime structure of a�C++ program. An executing task is illustrated by its
containment in a processor. Because of appropriate defaults for clusters, it is possible to begin writing�C++ programs
after learning about coroutines or tasks. More complex concurrency work may require the use of clusters. If several
clusters exist, both tasks and virtual processors, can be explicitly migrated from one cluster to another. No automatic
load balancing among clusters is performed by�C++.

User Cluster Other Cluster(s)

Ready Tasks

Blocked Tasks

Processors

System Cluster

clustercoroutine task monitor processor

Figure 2.1: Runtime Structure of a�C++ Program

When a�C++ program begins execution, it creates two clusters: a system cluster and a user cluster. The system
cluster contains a processor that does not execute user tasks. Instead, the system cluster handles system-related opera-
tions, such as catching errors that occur on the user clusters, printing appropriate error information, and shutting down�C++. A user cluster is created to contain the user tasks; the first task created in the user cluster isuMain, which begins
executing the member routineuMain::main. Having all tasks execute on the one cluster often maximizesutilization of
processors, which minimizes runtime. However, because of limitations of the underlying operating system or because
of special hardware requirements, it is sometimes necessary to have more than one cluster. Partitioning into clusters
must be used with care as it has the potential to inhibit parallelism when used indiscriminately. However, in some situ-
ations partitioning is essential, e.g., on some systems concurrent UNIX I/O operations are only possible by exploiting
the clustering mechanism.

2.3.2 Virtual Processor

A �C++ virtual processor is a “software processor” that executes threads. A virtual processor is implemented by ker-
nel thread (normally created through a UNIX process) that issubsequently scheduled for execution on a hardware
processor by the underlying operating system. On a multiprocessor, kernel threads are usually distributed across the
hardware processors and so some virtual processors are ableto execute in parallel.�C++ uses virtual processors in-
stead of hardware processors so that programs do not actually allocate and hold hardware processors. Programs can
be written to run using a number of virtual processors and execute on a machine with a smaller number of hardware
processors. Thus, the way in which�C++ accesses the parallelism of the underlying hardware is through an interme-
diate resource, the kernel thread. In this way,�C++ is kept portable across uniprocessor and different multiprocessor
hardware designs.

When a virtual processor is executing,�C++ controls scheduling of tasks on it. Thus, when UNIX schedules a
virtual processor for a runtime period,�C++ may further subdivide that period by executing one or more tasks. When

10 CHAPTER 2. �C++ TRANSLATOR

multiple virtual processors are used to execute tasks, the�C++ scheduling may automatically distribute tasks among
virtual processors, and thus, indirectly among hardware processors. In this way, parallel execution occurs.

2.4 �C++ Kernel

After a �C++ program is translated and compiled, a runtime concurrency library is linked in with the resulting pro-
gram, called the�C++ kernel. There are two versions of the�C++ kernel: the unikernel, which is designed to use a
single processor (in effect, there is only one virtual processor); and the multikernel, which is designed to use several
processors. Thus, the unikernel is sensibly used on systemswith a single hardware processor or when kernel threads
are unavailable; the multikernel is sensibly used on systems that have multiple hardware processors and when kernel
threads are available. Table2.2 shows the situations where each kernel can be used. The unikernel can be used in a
system with multiple hardware processors and kernel threads but does not take advantage of either of these capabili-
ties. The multikernel can be used on a system with a single hardware processor and kernel threads but performs less
efficiently than the unikernel because it uses multiprocessor techniques unnecessarily.

no kernel threads kernel threads

single unikernel, yes unikernel, yes
processor multikernel, no multikernel, yes, but inefficient
multiple unikernel, yes unikernel, yes, but no parallelism

processors multikernel, no multikernel, yes

Table 2.2: When to Use the Unikernel and Multikernel

Each of the�C++ kernels has a debugging version, which performs a numberof runtime checks. For example,
the�C++ kernel provides no support for automatic growth of stackspace for coroutines and tasks because this would
require compiler support. The debugging version checks forstack overflow whenever context switches occur among
coroutines and tasks, which catches many stack overflows; however, stack overflow can still occur if insufficient
stack area is provided, which can cause an immediate error orunexplainable results. Many other runtime checks are
performed in the debugging version. After a program is debugged, the non-debugging version can be used to increase
performance.

2.5 Using the�C++ Translator

To use the concurrency extensions in a C++ program, include the file:

#include <uC++.h>

at the beginning of each source file needing access to�C++,and it must appear before all other include files.

2.5.1 Compiling a�C++ Program

Theu++ command is used to compile a�C++ program. This command works just like the GNUg++ [Tie90] command
for compiling C++ programs, e.g.:

u++ [C++ options] yourprogram.C [assembler and loader files]

The following additional options are available for theu++ command:

-debug The program is linked with the debugging version of the unikernel or multikernel. The debug version
performs runtime checks to help during the debugging phase of a �C++ program, but substantially slows the
execution of the program. The runtime checks should only be removed after the program is completely de-
bugged.This option is the default.

-nodebug The program is linked with the non-debugging version of the unikernel or multikernel, so the execution
of the program is faster.However, no runtime checks orassert s are performed so errors usually result in
abnormal program termination.

2.5. USING THE�C++ TRANSLATOR 11

-yield When a program is translated, a random number of context switches occur at the beginning of each member
routine so that during execution on a uniprocessor there is abetter simulation of parallelism. (This non-
determinism in execution is in addition to random context switching due to pre-emptive scheduling, see Sec-
tion 8.4.1, p. 123). The extra yields of execution can help during the debugging phase of a�C++ program, but
substantially slows the execution of the program.

-noyield Additional context switches are not inserted in member routines.This option is the default.

-verify When a program is translated, a check to verify that the stackhas not overflowed occurs at the beginning of
each member routine. (This checking is in addition to checkson each context switch provided by the-debug
option.) Verifying the stack has not overflowed is importantduring the debugging phase of a�C++ program,
but slows the execution of the program.

-noverify Stack-overflow checking is not inserted in member routines.This option is the default.

-multi The program is linked with the multikernel.

-nomulti The program is linked with the unikernel.This option is the default.

-quiet The�C++ compilation message is not printed at the beginning of a compilation.

-noquiet The�C++ compilation message is printed at the beginning of a compilation. This option is the default.

-U++ Only the C preprocessor and the�C++ translator steps are performed and the transformed program is written
to standard output, which makes it possible to examine the code generated by the�C++ translator.

-compiler path-nameThe path-name of the compiler used to compile a�C++ program(s). The default is the com-
piler used to compile the�C++ runtime library. It is unsafe to use a different compilerunless the generated
code is binary compatible. (See Section11.3, p.148for supported compilers.)

When multiple conflicting options appear on the command line, e.g.,-yield followed by -noyield, the last option takes
precedence.

2.5.2 Preprocessor Variables

When programs are compiled usingu++, the following preprocessor variables are available:

_ _U_CPLUSPLUS_ _ is always available during preprocessing and its value is the current major version number
of �C++.2

_ _U_CPLUSPLUS_MINOR_ _ is always available during preprocessing and its value is the current minor version
number of�C++.

_ _U_CPLUSPLUS_PATCH_ _ is always available during preprocessing and its value is the current patch version
number of�C++.

_ _U_DEBUG_ _ is available during preprocessing if the-debug compilation option is specified.

_ _U_YIELD_ _ is available during preprocessing if the-yield compilation option is specified.

_ _U_VERIFY_ _ is available during preprocessing if the-verify compilation option is specified.

_ _U_MULTI_ _ is available during preprocessing if the-multi compilation option is specified.

2 The C preprocessor allows only integer values in a preprocessor variable so a value like “5.5.0” is not allowed. Hence, the need to have three
variables for the major, minor and patch version number.

12 CHAPTER 2. �C++ TRANSLATOR

These preprocessor variables allow conditional compilation of programs that must work differently in these situa-
tions. For example, to allow a normal C/C++ program to be compiled using�C++, the following is necessary:

#ifdef _ _U_CPLUSPLUS_ _
void uMain::main() {
#else
int main(int argc, char *argv[]) {
#endif

// body of main routine
}

which conditionally includes the correct definition formain if the program is compiled usingu++.

2.6 Labelled Break/Continue

While C++ providesbreak andcontinue statements for altering control flow, both are restricted toone level of nesting
for a particular control structure. Unfortunately, this restriction forces programmers to usegoto to achieve the equiv-
alent for more than one level of nesting. To prevent having tomake this switch,�C++ extends thebreak andcontinue
with a target label to support static multi-level exit [Buh85, GJSB00]. For the labelledbreak , it is possible to specify
which control structure is the target for exit, e.g.:

C++ �C++

for (. . .) {
for (. . .) {

for (. . .) {
. . . goto L1; . . .
. . . goto L2; . . .
. . . goto L3; . . . // or break

} L3: ;
} L2: ;

} L1: ;

L1: for (. . .) {
L2: for (. . .) {

L3: for (. . .) {
. . . break L1; . . .
. . . break L2; . . .
. . . break L3; . . . // or break

}
}

}

The innermost loop has three exit points, which cause termination of one or more of the three nested loops, respectively.
For the labelledcontinue , it is possible to specify which control structure is the target for the next loop iteration, e.g.:

C++ �C++

for (. . .) {
for (. . .) {

for (. . .) {
. . . goto L1; . . .
. . . goto L2; . . .
. . . goto L3; . . . // or continue

L3: ; }
L2: ; }

L1: ; }

L1: for (. . .) {
L2: for (. . .) {

L3: for (. . .) {
. . . continue L1; . . .
. . . continue L2; . . .
. . . continue L3; . . . // or continue

}
}

}

The innermost loop has three restart points, which cause thenext loop iteration to begin, respectively. For bothbreak
andcontinue , the target label must be directly associated with afor , while or do statement; forbreak , the target label
can also be associated with aswitch or compound ({ }) statement, e.g.:

2.7. COROUTINE 13

L1: {
. . . declarations . . .
L2: switch (. . .) {

L3: for (. . .) {
. . . break L1; . . . // exit compound statement
. . . break L2; . . . // exit switch
. . . break L3; . . . // exit loop

}
. . .

}
. . .

}

Bothbreak andcontinue with target labels are simply agoto restricted in the following ways:� They cannot be used to create a loop. This means that only the looping construct can be used to create a loop.
This restriction is important since all situations that canresult in repeated execution of statements in a program
are clearly delineated.� Since they always transfer out of containing control structures, they cannot be used to branch into a control
structure.

The advantage of the labelledbreak /continue is that it allows static multi-level exits without having touse thegoto
statement and ties control flow to the target control structure rather than an arbitrary point in a program. Furthermore,
the location of the label at thebeginningof the target control structure informs the reader that complex control flow is
occurring in the body of the control structure. Withgoto , the label at the end of the control structure fails to conveythis
important clue early enough to the reader. Finally, using anexplicit target for the transfer instead of an implicit target
allows new nested loop orswitch constructs to be added or removed without affecting other constructs. The implicit
targets of the currentbreak andcontinue , i.e., the closest enclosing loop orswitch , change as certain constructs are
added or removed.

2.7 Coroutine
A coroutine is an object with its own execution state, so its execution can be suspended and resumed. Execution of a
coroutine is suspended as control leaves it, only to carry onfrom that point when control returns at some later time.
This property means a coroutine is not restarted at the beginning on each activation and its local variables are preserved.
Hence, a coroutine solves the class of problems associated with finite-state machines and push-down automata, which
are logically characterized by the ability to retain state between invocations. In contrast, a free routine or member
routine always executes to completion before returning so its local variables only persist for a particular invocation.

A coroutine executes serially, and hence there is no concurrency implied by the coroutine construct.
However, the ability of a coroutine to suspend its executionstate and later have it resumed is the precursor
to true tasks but without concurrency problems; hence, a coroutine is also useful to have in a programming
language for teaching purposes because it allows incremental development of these properties [Yea91].

A coroutine type has all the properties of aclass . The general form of the coroutine type is the following:

[_Nomutex] _Coroutine coroutine-name {
private :

. . . // these members are not visible externally
protected :

. . . // these members are visible to descendants
void main(); // starting member

public :
. . . // these members are visible externally

};

The coroutine type has one distinguished member, namedmain; this distinguished member is called thecoroutine
main. Instead of allowing direct interaction withmain, its visibility is normally private or protected ; therefore,

14 CHAPTER 2. �C++ TRANSLATOR

a coroutine can only be activated indirectly by one of the coroutine’s member routines. The decision to make the
coroutine mainprivate or protected depends solely on whether derived classes can reuse the coroutine main or must
supply their own. Hence, a user interacts with a coroutine indirectly through its member routines. This approach
allows a coroutine type to have multiple public member routines to service different kinds of requests that are statically
type checked. A coroutine main cannot have parameters or return a result, but the same effect can be accomplished
indirectly by passing values through the coroutine’s global variables, calledcommunication variables, which are
accessible from both the coroutine’s member andmain routines.

A coroutine can suspend its execution at any point by activating another coroutine, which is done in two ways.
First, a coroutine can implicitly reactivate the coroutinethat previously activated it via membersuspend. Second, a
coroutine can explicitly invoke a member of another coroutine, which causes activation of that coroutine via member
resume. These two forms result in two different styles of coroutinecontrol flow. A full coroutine is part of a resume
cycle, while asemi-coroutine [Mar80, p. 4, 37] is not part of a resume cycle. A full coroutine can perform semi-
coroutine operations because it subsumes the notion of the semi-coroutine; i.e., a full coroutine can use suspend to
activate the member routine that activated it or resume to itself, but it must always form a resume cycle with other
coroutines.2 Simulating a coroutine with a subroutine requires retaining data in variables with global scope or

variables withstatic storage-class between invocations. However, retaining state in these ways violates
the principle of abstraction and does not generalize to multiple instances, since there is only one copy of
the storage in both cases. Also, without a separate execution state, activation points must be managed
explicitly, requiring the execution logic to be written as aseries of cases, each ending by recording the
next case to be executed on re-entry. However, explicit management of activation points is complex and
error-prone, for more than a small number of activation points.

Simulating a coroutine with a class solves the problem of abstraction and does generalize to multiple
instances, but does not handle the explicit management of activation points. Simulating a coroutine with a
task, which also has an execution state to handle activationpoints, is non-trivial because the organizational
structure of a coroutine and task are different. Furthermore, simulating full coroutines, which form a
cyclic call-graph, may be impossible with tasks because of atask’s mutual-exclusion, which could cause
deadlock (not a problem in�C++ because multiple entry is allowed by the same thread). Finally, a task
is inefficient for this purpose because of the higher cost of switching both a thread and execution state as
opposed to just an execution state. In this implementation,the cost of communication with a coroutine is,
in general, less than half the cost of communication with a task, unless the communication is dominated
by transferring large amounts of data. 2

2.7.1 Coroutine Creation and Destruction

A coroutine is the same as a class object with respect to creation and destruction, e.g.:

_Coroutine C {
void main() . . . // coroutine main

public :
void r(. . .) . . .

};
C *cp; // pointer to a C coroutine
{ // start a new block

C c, ca[3]; // local creation
cp = new C; // dynamic creation
. . .
c.r(. . .); // call a member routine that activates the coroutine
ca[1].r(. . .); // call a member routine that activates the coroutine
cp->r(. . .); // call a member routine that activates the coroutine
. . .

} // c, ca[0], ca[1] and ca[2] are deallocated
. . .
delete cp; // cp’s instance is deallocated

When a coroutine is created, the appropriate coroutine constructor and any base-class constructors are executed in
the normal order. The coroutine’s execution-state is created and the starting point (activation point) is initialized

2.7. COROUTINE 15

to the coroutine’smain routine visible by the inheritance scope rules from the coroutine type; however, themain
routine does not start execution until the coroutine is activated by one of its member routines. The location of a
coroutine’s variables—in the coroutine’s data area or in member routinemain—depends on whether the variables
must be accessed by member routines other thanmain. Oncemain is activated, it executes until it activates another
coroutine or terminates. The coroutine’s point of last activation may be outside of themain routine becausemain may
have called another routine; the routine called could be local to the coroutine or in another coroutine.

A coroutine terminates when itsmain routine terminates. When a coroutine terminates, it activates the coroutine
or task that causedmain to start execution. This choice ensures that the starting sequence is a tree, i.e., there are no
cycles. A thread can move in a cycle among a group of coroutines but termination always proceeds back along the
branches of the starting tree. This choice for termination does impose certain requirements on the starting order of
coroutines, but it is essential to ensure that cycles can be broken at termination.Activating a terminated coroutine
is an error. A coroutine’s destructor is invoked by the deallocating thread when the block containing the coroutine
declaration terminates or by an explicitdelete statement for a dynamically allocated coroutine.

Like a class object, a coroutine may be deleted at any timeeven if the coroutine’smain routine is started but
not terminated, i.e., the coroutine is still suspended in itsmain routine. Before the coroutine’s destructor is run, the
coroutine’s stack is unwound via the cancellation mechanism (see Section6, p. 91), to ensure cleanup of resources
allocated on the coroutine’s stack. This unwinding involves an implicitresume of the coroutine being deleted.

Like a routine or class, a coroutine can access all the external variables of a C++ program and the heap area. Also,
any static member variables declared within a coroutine are shared among all instances of that coroutine type. If a
coroutine makes global references or hasstatic variables and is instantiated by different tasks, there is the general
problem of concurrent access to these shared variables. Therefore, it is suggested that these kinds of references be
used with extreme caution.

2.7.2 Inherited Members

Each coroutine type, if not derived from some other coroutine type, is implicitly derived from the coroutine type
uBaseCoroutine, e.g.:

_Coroutine coroutine-name : public uBaseCoroutine { // implicit inheritance
. . .

};

where the interface for the base-classuBaseCoroutine is:

_Coroutine uBaseCoroutine {
protected :

void resume();
void suspend();

public :
uBaseCoroutine();
uBaseCoroutine(unsigned int stackSize);
uBaseCoroutine(void *storage, unsigned int storageSize);

void *stackPointer() const ; // stack info
unsigned int stackSize() const ;
void *stack() const ;
ptrdiff_ t stackFree() const ;
ptrdiff_ t stackUsed() const ;
void verify();

const char *setName(const char *name); // coroutine info
const char *getName() const ;
enum State { Halt, Active, Inactive };
State getState() const ;
uBaseCoroutine &starter() const ;
uBaseCoroutine &resumer() const ;

16 CHAPTER 2. �C++ TRANSLATOR

enum CancellationState { CancelEnabled, CancelDisabled };
void cancel(); // cancellation
bool cancelled();
bool cancelInProgress();

_Event Failure; // exceptions
_Event UnhandledException;

};

The member routinesresume andsuspend are discussed in Section2.7.3.
The overloaded constructor routineuBaseCoroutine has the following forms:

uBaseCoroutine() – creates a coroutine on the current cluster with the cluster’s default stack size.

uBaseCoroutine(unsigned int stackSize) – creates a coroutine on the current cluster with the specified minimum
stack size (in bytes). The amount of storage for the coroutine’s stack is always greater than this stack size, as
extra information is stored on the stack.

uBaseCoroutine(void *storage, unsigned int storageSize) – creates a coroutine on the current cluster using the
specified storage andmaximumstorage size (in bytes) for the coroutine’s stack. The amount of storage for
the coroutine’s stack is always less than actual storage size, as extra information is stored on the stack.This
storage is NOT freed at coroutine deallocation. If the specified storage address is zero (NULL), the storage
size becomes a stack size, as in the previous constructor.

A coroutine type can be designed to allow declarations to specify the stack storage and size by doing the following:

_Coroutine C {
public :

C() : uBaseCoroutine(8192) {}; // default 8K stack
C(unsigned int s) : uBaseCoroutine(s) {}; // user specified stack size
C(void *st, unsigned int s) : uBaseCoroutine(st,s) // user specified stack storage and size
. . .

};
C x, y(16384), z(area, 32768); // x => 8K stack, y => 16K stack, z => stack < 32K at “area”

The member routinestackPointer returns the address of the stack pointer. If a coroutine calls this routine, its
current stack pointer is returned. If a coroutine calls thisroutine for another coroutine, the stack pointer saved at the
last context switch of the other coroutine is returned; thismay not be the current stack pointer value for that coroutine.

The member routinestackSize returns the maximum amount of stack space that is allocated for this coroutine. A
coroutine cannot exceed this value during its execution. The member routinestack returns the address of the stack
storage for this coroutine. On most computers, the stack grows down (high address) towards the stack-storage address
(low address). If a coroutine is created with specific stack storage, the address of that storage is returned; otherwise,
the address of the�C++ created stack storage is returned.

The member routinestackFree returns the amount of free stack space. If a coroutine calls this routine, its current
free stack space is returned. If a coroutine calls this routine for another coroutine, the free stack space at the last
context switch of the other coroutine is returned; this may not be the current free stack space for that coroutine.

The member routinestackUsed returns the amount of used stack space. If a coroutine calls this routine, its current
used stack space is returned. if a coroutine calls this routine for another coroutine, the used stack space at the last
context switch of the other coroutine is returned; this may not be the current used stack space for that coroutine.

The member routineverify checks whether the current coroutine has overflowed its stack. If it has, the program
terminates. To completely ensure the stack size is never exceeded, a call toverify must be included after each set of
declarations, as in the following:

void main() {
. . . // declarations
verify(); // check for stack overflow
. . . // code

}

2.7. COROUTINE 17

Thus, after a coroutine has allocated its local variables, acheck is made that its stack has not overflowed. Clearly, this
technique is not ideal and requires additional work for the programmer, but it does handle complex cases where the
stack depth is difficult to determine and can be used to help debug possible stack overflow situations.2 When the-verify option is used, calls toverify are automatically inserted at the beginning of each

member routine, but not after each set of declarations. 2
The member routinesetName associates a name with a coroutine and returns the previous name. The name is not

copied so its storage must persist for the duration of the coroutine. The member routinegetName returns the string
name associated with a coroutine. If a coroutine has not beenassigned a name,getName returns the type name of the
coroutine.�C++ uses the name when printing any error message, which is helpful in debugging.

The member routinegetState returns the current state of a coroutine’s execution, whichis one of the enumerated
valuesHalt, Active or Inactive.

The member routinestarter returns the coroutine’s starter, i.e., the coroutine that performed the first resume of
this coroutine (see Section2.7.1, p. 14). The member routineresumer returns the coroutine’s last resumer, i.e., the
coroutine that performed the last resume of this coroutine (see Section2.7.3).

The member routinecancel marks the coroutine/task for cancellation. The member routinecancelled returns true
if the coroutine/task is marked for cancellation, and falseotherwise. The member routinecancelInProgress returns
true if cancellation is started for the coroutine/task. Section 6, p. 91discusses cancellation in detail.

The type_Event is defined in Section5.3, p.70.
The free routine:

uBaseCoroutine &uThisCoroutine();

is used to determine the identity of the coroutine executingthis routine. Because it returns a reference to the base
coroutine type,uBaseCoroutine, this reference can only be used to access the public routines of typeuBaseCoroutine.
For example, a free routine can check whether the allocationof its local variables has overflowed the stack of a
coroutine that called it by performing the following:

int FreeRtn(. . .) {
. . . // declarations
uThisCoroutine().verify(); // check for stack overflow
. . . // code

}

As well, printing a coroutine’s address for debugging purposes must be done like this:

cout << "coroutine:" << &uThisCoroutine() << endl; // notice the ampersand (&)

2.7.3 Coroutine Control and Communication

Control flow among coroutines is specified by the protected membersresume andsuspend. A call to resume may
appear in any member of the coroutine, but normally it is usedonly in the public members. A call tosuspend may
appear in any member of the coroutine, but normally it is usedonly in the coroutine main or non-publicmembers called
directly or indirectly from the coroutine main. Membersresume andsuspend are composed of two parts. The first
part inactivates the coroutine that calls the member and thesecond part reactivates another coroutine; the differenceis
which coroutine is reactivated. Memberresume activates the current coroutine object, i.e., the coroutine specified by
the implicit this variable. Membersuspend activates the coroutine that previously executed a call toresume for the
coroutine executing thesuspend, ignoring any resumes of a coroutine to itself. In effect, these special members cause
control flow to transfer among execution states, which involves context switches.

It is important to understand that calling a coroutine’s member by another coroutine does not cause a switch to the
other coroutine. A switch only occurs when aresume is executed in the other coroutine’s member. Therefore, printing
&uThisCoroutine() in the other coroutine’s member always prints thecalling coroutine’s address; printingthis in the
other coroutine’s member always prints thecalled coroutine’s address (which is the coroutine thatresume switches
to). Hence, there is a difference between who is executing and where execution is occurring.

Figure2.2shows a semi-coroutine producer and consumer coroutine, and a driver routine. Notice the explicit call
from Prod’s main routine todelivery and then the return back whendelivery completes.delivery always activates its
coroutine, which subsequently activatesdelivery.

Figure2.3, p. 19 shows a full-coroutine producer and consumer coroutine, and a driver routine. Notice the calls
to memberresume in routinespayment and delivery. The resume in routinepayment activates the execution state

18 CHAPTER 2. �C++ TRANSLATOR

Consumer Producer

_Coroutine Cons {
int p1, p2, status; // communication
bool done;
void main() {

// 1st resume starts here
int money = 1;
for (;;) {

cout << "cons receives: " <<
p1 << ", " << p2;

if (done) break ;
status += 1;
cout << " and pays $" <<

money << endl;
suspend(); // restart delivery & stop
money += 1;

}
cout << "cons stops" << endl;

}
public :

Cons() : status(0), done(false) {}
int delivery(int p1, int p2) {

Cons::p1 = p1;
Cons::p2 = p2;
resume(); // restart main
return status;

}
void stop() {

done = true ;
resume(); // restart main

}
}; // Cons

_Coroutine Prod {
Cons &cons; // communication
int N;
void main() {

// 1st resume starts here
int i, p1, p2, status;
for (i = 1; i <= N; i += 1) {

p1 = rand() % 100;
p2 = rand() % 100;
cout << "prod delivers: " <<

p1 << ", " << p2 << endl;
status = cons.delivery(p1, p2);
cout << "prod status: " <<

status << endl;
}
cout << "prod stops" << endl;
cons.stop();

}
public :

Prod(Cons &c) : cons(c) {}
void start(int N) {

Prod::N = N;
resume(); // restart main

}
}; // Prod

void uMain::main() {
Cons cons; // create consumer
Prod prod(cons); // create producer
prod.start(5); // start producer

}

Figure 2.2: Semi-Coroutine Producer-Consumer

associated withProd::main and that execution state continues in routineCons::delivery. Similarly, the resume in routine
delivery activates the execution state associated withCons::main and that execution state continues inCons::main
initially and subsequently in routineProd::payment. This cyclic control flow and the termination control flow is
illustrated in Figure2.4, p.20.

2.8 Mutex Type

A mutex type consists of a set of variables and a set of mutex members that operate on the variables.A mutex type
has at least one mutex member.Objects instantiated from mutex types have the property that mutex members are
executed with mutual exclusion; that is, only one task at a time can be executing in the mutex members. Similar to an
execution state, a mutex object is either active or inactive, depending on whether or not a task is executing a mutex
member (versus a task executing the coroutine main). Mutualexclusion is enforced bylocking the mutex object when
execution of a mutex member begins andunlocking it when the active task voluntarily gives up control of the mutex
object by waiting in or exiting from the monitor. If another task invokes a mutex member while a mutex object is
locked, the task is blocked until the mutex object becomes unlocked. An active task may call other mutex members
either directly from within the mutex type or indirectly by calling another object, which subsequently calls back into
the mutex object.If an active task enters multiple mutex objects, it owns the mutex locks for these objects and can enter
anyone of them again without having to reacquire their locks. If an active task releases control of one of these mutex
objects by waiting within it, which implicitly unlocks thatobject,the task does not unlock any other mutex objects it
currently owns. If an active task releases control of one of these mutex objects by exiting from it, which implicitly
unlocks that object,the task must do so in strict nested order, i.e., Last-In first-Out (LIFO) order of mutex-object

2.8. MUTEX TYPE 19

Consumer Producer

_Coroutine Cons {
Prod ∏ // communication
int p1, p2, status;
bool done;
void main() {

// 1st resume starts here
int money = 1, receipt;
for (;;) {

cout << "cons receives: " <<
p1 << ", " << p2;

if (done) break ;
status += 1;
cout << " and pays $" <<

money << endl;
receipt = prod.payment(money);
cout << "cons receipt #" <<

receipt << endl;
money += 1;

}
cout << "cons stops" << endl;

}
public :

Cons(Prod &p) : prod(p) {
done = false ;
status = 0;

}
int delivery(int p1, int p2) {

Cons::p1 = p1; // restart cons in
Cons::p2 = p2; // Cons::main 1st time
resume(); // and afterwards cons
return status; // in Prod::payment

}
void stop() {

done = true ;
resume();

}
}; // Cons

_Coroutine Prod {
Cons *cons; // communication
int N, money, receipt;
void main() {

// 1st resume starts here
int i, p1, p2, status;
for (i = 1; i <= N; i += 1) {

p1 = rand() % 100;
p2 = rand() % 100;
cout << "prod delivers: " <<

p1 << ", " << p2 << endl;
status = cons->delivery(p1, p2);
cout << "prod status: " <<

status << endl;
}
cout << "prod stops" << endl;
cons->stop();

}
public :

Prod() : receipt(0) {}
int payment(int money) {

Prod::money = money;
cout << "prod payment of $" <<

money << endl;
resume(); // restart prod
receipt += 1; // in Cons::delivery
return receipt;

}
void start(int N, Cons &c) {

Prod::N = N;
cons = &c;
resume();

}
}; // Prod

void uMain::main() {
Prod prod;
Cons cons(prod);
prod.start(5, cons);

}

Figure 2.3: Full-Coroutine Producer-Consumer

acquisition (see Section7.2.3.3, p. 107). This LIFO restriction results solely because there does not seem to be any
useful examples for non-LIFO locking, and it is often an indication of an error in a program.

When_Mutex or _Nomutex qualifies a type, e.g.:

_Mutex class M {
private :

char z(. . .); // default nomutex
public :

M(); // default nomutex
~M(); // default mutex
int x(. . .); // default mutex
float y(. . .); // default mutex

};

it defines the default form of mutual exclusion onall public member routines, except the constructor, which is never

20 CHAPTER 2. �C++ TRANSLATOR

(context switch)

(context switch)

termination
sequence

normal
execution

uMain::main

prod

cons

Start/Terminate Sequence Thread Movement

uMain::main

Prod::start

(context switch)

Prod::main

Cons::delivery

Cons::main

Prod::payment

Cons::delivery

Prod::main

Cons::delivery

Prod::payment

Cons::main

(context switch)

Figure 2.4: Cyclic Control Flow in Full Coroutine

mutex, and the destructor, which is always mutex for a mutex type. Hence, public member routinesx and y of
mutex typeM are mutex members executing mutually exclusively of one another. Member routines that areprotected
and private arealways implicitly _Nomutex , except for the destructor of a mutex type, which is always_Mutex
regardless of its visibility.Because the destructor of a mutex type is always executed with mutual exclusion, the call to
the destructor may block, either at termination of a block containing a mutex object or when deleting a dynamically
allocated mutex object.If a mutex qualifier is specified on a forward declaration, e.g.:

_Mutex class M; // forward declaration
. . .
_Mutex class M {. . .} // actual declaration

it must match with the actual declaration.In general, it is bestnot to put a mutex qualifier on a forward declaration so
the default can be changed on the actual declaration withouthaving to change the forward declaration.

A mutex qualifier may be needed forprotected andprivate member routines in mutex types, e.g.:

_Mutex class M {
private :

_Mutex char z(. . .); // explicitly qualified member routine
. . .

};

because another task may need access to these member routines. For example, when afriend task calls aprotected or
private member routine, these calls may need to provide mutual exclusion.

A public member of a mutex type can be explicitly qualified with _Nomutex . Such a routine is, in general, error-
prone in concurrent situations because the lack of mutual exclusion permits concurrent updating to object variables.
However, there are two situations where a nomutex public member are useful: first, for read-only member routines
where execution speed is of critical importance; and second, to encapsulate a sequence of calls to several mutex
members to establish a protocol, which ensures that a user cannot violate the protocol since it is part of the type’s
definition.

The general structure of a mutex object is shown in Figure2.5. All the implicit and explicit data structures

2.9. SCHEDULING 21

associated with a mutex object are discussed in the following sections. Notice each mutex member has a queue
associated with it on which calling tasks wait if the mutex object is locked. A nomutex member has no queue.

exit

A

condition
B

stack

acceptor/
signalled

condition

X

mutex

Y

entry

order of

active task blocked task duplicate

queue

arrival

shared

variables

queues

a

c

d

b

b

a

d

c

Figure 2.5:�C++ Mutex Object

2.9 Scheduling
For many purposes, the mutual exclusion that is provided automatically by mutex members is all that is needed, e.g.,
an atomic counter:

_Mutex class atomicounter {
int cnt;

public :
atomicounter() { cnt = 0; }
inc() { cnt += 1; } // atomically increment counter

}

However, it is sometimes necessary to synchronize with tasks calling or executing within the mutex object forming
different scheduling patterns. For this purpose, a task in amutex object can block until a particular external or internal
event occurs. At some point after a task has blocked, it must be reactivated either implicitly by the implicit scheduler
(discussed next) or explicitly by another (active) task.

2.9.1 Implicit Scheduling

Implicit scheduling occurs when a mutex object becomes unlocked because the active task blocks in or exits from a
mutex member. The next task to use the mutex object is then chosen from one of a number of lists associated with the
mutex object. Figure2.5shows a mutex object with a set of tasks using or waiting to useit. When a calling task finds
the mutex object locked, it is added to both themutex queueof the member routine it called and theentry queue;
otherwise it enters the mutex object and locks it. The entry queue is a list of all the calling tasks in chronological
order of arrival, which is important for selecting a task when there is no active task in a mutex object. When a task in
the mutex object is blocked implicitly (see Section2.9.2) or is reactivated by another (active) task (see Section2.9.3,
p. 25), it is added to the top of theacceptor/signalled stack.

22 CHAPTER 2. �C++ TRANSLATOR

When a mutex object becomes unlocked, the next task to execute is selected by animplicit scheduler. For some
of the following scheduling statements, the implicit scheduler is directed to select from a specific set of queues;
hence, there is no choice with regard to which queues are examined. For other scheduling statements, the implicit
scheduler may make a choice among the queues. When a choice ispossible, the implicit scheduler for�C++ makes
selections based on the results presented in [BFC95] to give the user the greatest possible control and produce efficient
performance. These selection rules are:

1. Select tasks that have entered the mutex object, blocked,and now need to continue execution over tasks that
have called and are waiting to enter.

2. When one task reactivates a task that was previously blocked in the mutex object, the restarting task always con-
tinues execution and the reactivated task continues to waituntil it is selected for execution by rule 1. (signalBlock
is an exception to this rule, see page27.)

All other tasks must wait until the mutex object is again unlocked. Therefore, when selection is done implicitly, the
next task to resume is not under direct user control, but is selected by the implicit scheduler.

2.9.2 External Scheduling

External scheduling controls state changes to a mutex object by scheduling calls to specified mutex members, which
indirectly schedules tasks calling fromoutsidethe mutex object. This technique takes advantage of the entry queue to
block tasks unconditionally when the mutex object is active(i.e., block outside) and the acceptor stack to block tasks
conditionally that have entered the monitor (i.e., block inside). Much of the scheduling that occurs and the programmer
thinks about is the outside scheduling from the entry queue rather than the internal scheduling on the acceptor stack,
which occurs implicitly. External scheduling is accomplished with the accept statement.

2.9.2.1 Accept Statement

An _Accept statement dynamically chooses the mutex member(s) that executes next, which indirectly controls the
next accepted caller, i.e., the next caller to the accepted mutex member(s). The simple form of the_Accept statement
is:

_When (conditional-expression) // optional guard
_Accept (mutex-member-name-list);

with the restriction that constructors,new , delete , and _Nomutex members are excluded from being accepted.
The first three member routines are excluded because these routines are essentially part of the implicit memory-
management runtime support. That is, the object does not exist until after thenew routine is completed and a con-
structor starts; similarly, the object does not exist whendelete is called. In all these cases, member routines cannot be
called, and hence accepted, because the object does not exist or is not initialized._Nomutex members are excluded
because they contain no code affecting the caller or acceptor with respect to mutual exclusion.

The syntax for accepting a mutex operator member, such as operator=, is:

_Accept (operator =);

Currently, there is no way to accept a particular overloadedmember. Instead, when an overloaded member name
appears in an_Accept statement, calls to any member with that name are accepted.2 A consequence of this design decision is that once one routine of a set of overloaded routines becomes

mutex, all the overloaded routines in that set become mutex members. The rationale is that members with
the same name should perform essentially the same function,and therefore, they all should be eligible to
accept a call. 2

A _When guard is considered true if it is omitted or if itsconditional-expressionevaluates to non-zero. The
conditional-expressionof a _When may call a routine,but the routine must not block or context switch. The guard
must be true and an outstanding call to the specified mutex member(s) must exist for a call to be accepted. A list of
mutex members can be specified in an_Accept clause, e.g.:

_Accept (insert, remove);

If there are several mutex members that can be accepted, selection priority is established by the left-to-right placement
of the mutex members in the_Accept clause of the statement. Hence, the order of the mutex members in the_Accept

2.9. SCHEDULING 23

clause indicates their relative priority for selection if there are several outstanding calls. If the guard is true and there is
no outstanding call to the specified member(s), the acceptoris accept-blocked until a call to the appropriate member(s)
is made. If the guard is false, execution continues without accepting any call; in this case, the guard is the same as an
if statement, e.g.:

_When (count == 0) _Accept (mem); � if (count == 0) _Accept (mem);

Note, an accept statement with a true guard accepts only one call, regardless of the number of mutex members listed
in the _Accept clause.

When an_Accept statement is executed, the acceptor is blocked and pushed onthe top of the implicit accep-
tor/signalled stack and the mutex object is unlocked. The internal scheduler then schedules a task from the specified
mutex-member queue(s), possibly waiting until an appropriate call occurs. The accepted member is then executed like
a member routine of a conventional class by the caller’s thread. If the caller is expecting a return value, this value
is returned using thereturn statement in the member routine. When the caller’s thread exits the mutex member (or
waits, as is discussed shortly), the mutex object is unlocked. Because the internal scheduler gives priority to tasks on
the acceptor/signalled stack of the mutex object over calling tasks, the acceptor is popped from the acceptor/signalled
stack and made ready. When the acceptor becomes active, it has exclusive access to the object. Hence, the execution
order between acceptor and caller is stack order, as for a traditional routine call.

The extended form of the_Accept statement conditionally accepts one of a group of mutex members and then
allows a specific action to be performedafter the mutex member is called, e.g.:

_When (conditional-expression) // optional guard
_Accept (mutex-member-name-list)

statement // action
or _When (conditional-expression) // optional guard

_Accept (mutex-member-name-list)
statement // action

or
. . .

. . .
_When (conditional-expression) // optional guard
else // optional terminating clause

statement

Before an_Accept clause is executed, its guard must be true and an outstandingcall to its corresponding member(s)
must exist. If there are several mutex members that can be accepted, selection priority is established by the left-to-right
then top-to-bottom placement of the mutex members in the_Accept clauses of the statement. If some accept guards
are true and there are no outstanding calls to these members,the task is accept-blocked until a call to one of these
members is made. If all the accept guards are false, the statement does nothing, unless there is a terminatingelse
clause with a true guard, which is executed instead. Hence, the terminatingelse clause allows a conditional attempt
to accept a call without the acceptor blocking. Again, a group of _Accept clauses is not the same as a group ofif
statements, e.g.:

if (C1) _Accept (mem1); _When (C1) _Accept (mem1);
else if (C2) _Accept (mem2); or _When (C2) _Accept (mem2);

The left example accepts onlymem1 if C1 is true or onlymem2 if C2 is true. The right example accepts eithermem1
or mem2 if C1 and C2 are true. Once the accepted call has completedor the caller waits, the statement after the
accepting_Accept clause is executed and the accept statement is complete.2 Generalizing the previous example from 2 to 3 accept clauseswith conditionals results in the following

expansion:

if (C1 && C2 && C3) _Accept (mem1, mem2, mem3);
else if (C1 && C2) _Accept (mem1, mem2);
else if (C1 && C3) _Accept (mem1, mem3);
else if (C2 && C3) _Accept (mem2, mem3);
else if (C1) _Accept (mem1);
else if (C2) _Accept (mem2);
else if (C3) _Accept (mem3);

24 CHAPTER 2. �C++ TRANSLATOR

This form is necessary to ensure that for every true conditional, only the corresponding members are
accepted. The general pattern forN conditionals is:�NN�+ � NN � 1�+ : : :+ �N1� = (1 + 1)N � 1 from the binomial theorem:
Having to write an exponential number of statements, i.e.,2N � 1, to handle this case is clearly unsat-
isfactory, both from a textual and performance standpoint.The exponential number of statements are
eliminated because the_When and the_Accept clauses are checkedsimultaneouslyduring execution of
the accept statement instead of having to first check the conditionals and then perform the appropriate
accept clauses in an accept statement. 22 Note, the syntax of the_Accept statement precludes the caller’s argument values from being accessed
in theconditional-expressionof a _When . However, this deficiency is handled by the ability of a task to
postpone requests (see Section2.9.3.2, p.27). 22 WARNING: Beware of the following difference between theor connector and the terminatingelse
clause:

_Accept (mem1); _Accept (mem1);
or _Accept (mem2); else _Accept (mem2);

The left example accepts a call to either membermem1 or mem2. The right example accepts a call to
membermem1, if one is currently available; otherwise it accepts a call to membermem2. The syntactic
difference is subtle, and yet, the execution is significantly different (see also Section10.2.2, p. 136). 2

2.9.2.2 Breaking a Rendezvous

The accept statement forms arendezvousbetween the acceptor and the accepted tasks, where a rendezvous is a point
in time at which both tasks wait for a section of code to execute before continuing.

Task1 Task2
rendezvous

The start of the rendezvous begins when the accepted mutex member begins execution and ends when the acceptor task
restarts execution, either because the accepted task finishes executing of the mutex memberor the accepted task waits.
In the latter case, correctness implies sufficient code has been executed in the mutex member before the wait occurs for
the acceptor to continue successfully. Finally, for the definition of rendezvous, it does not matter which task executes
the rendezvous, but in�C++, it is the accepted task that executes it. It can be crucial to correctness that the acceptor
know if the accepted task does not complete the rendezvous code, otherwise the acceptor task continues under the
incorrect assumption that the rendezvous action has occurred. To this end, a concurrent exception is implicitly raised
at the acceptor task if the accepted member terminates abnormally (see Section5.10.3, p. 89).

2.9.2.3 Accepting the Destructor

Accepting the destructor in an_Accept statement is used to terminate a mutex object when it is deallocated (like the
terminate clause of theselect statement in Ada [Uni83, Sections 9.4, 9.7.1]). The destructor is accepted in the same
way as a mutex member, e.g.:

2.9. SCHEDULING 25

for (;;) {
_Accept (~DiskScheduler) { // request to terminate DiskScheduler

break ;
} or _Accept (WorkRequest) { // request from disk
} or _Accept (DiskRequest) { // request from clients
} // _Accept

} // for
// cleanup code

However, the semantics for accepting a destructor are different from accepting a normal mutex member. When the call
to the destructor occurs, the caller blocks immediately because a mutex object’s storage cannot be deallocated if it is
being used by a thread. When the destructor is accepted, the caller is blocked and pushed onto the acceptor/signalled
stack instead of the acceptor. Therefore, control restartsat the accept statementwithout executing the destructor
member, which allows a mutex object to cleanup before it terminates. (This semantics is the same assignal, see
page27.) Only when the caller to the destructor is popped off the acceptor/signalled stack by the internal scheduler
can the destructor execute. The destructor can reactivate any blocked tasks on the acceptor/signalled stack; at this
point, the task behaves like a monitor because its thread is halted.2 While a mutex object can always be setup so that the destructor does all the cleanup, this can force

variables that logically belong in member routines into themutex object. Furthermore, the fact that control
would not return to the_Accept statement when the destructor is accepted seemed more confusing than
having special semantics for accepting the destructor. 2

Accepting the destructor can be used by a mutex object to knowwhen to stop without having to accept a special
call. For example, by allocating tasks in a specific way, a server task for a number of clients can know when the clients
are finished and terminate without having to be explicitly told, e.g.:

{
DiskScheduler ds; // start DiskScheduler task
{

Clients c1(ds), c2(ds), c3(ds); // start clients, which communicate with ds
} // wait for clients to terminate

} // implicit call to DiskScheduler’s destructor

2.9.2.4 Commentary

In contrast to Ada, an_Accept statement in�C++ places the code to be executed in a mutex member; thus, it is
specified separately from the_Accept statement. An Ada-style accept specifies the accept body as part of the accept
statement, requiring the accept statement to provide parameters and a routine body. Since we have found that having
more than one accept statement per member is rather rare, ourapproach gives essentially the same capabilities as
Ada. As well, accepting member routines also allows virtualroutine redefinition, which is impossible with accept
bodies. Finally, an accept statement with parameters and a routine body does not fit with the design of C++ because
it is like a nested routine definition, and since routines cannot be nested in C++, there is no precedent for such a
facility. It is important to note that anything that can be done in Ada-style accept statements can be done within
member routines, possibly with some additional code. If members need to communicate with the block containing the
_Accept statements, it can be done by leaving “memos” in the mutex-type’s variables. In cases where there would be
several different Ada-style accept statements for the sameentry, accept members would have to start with switching
logic to determine which case applies. While neither of these solutions is particularly appealing, the need to use them
seems to arise only rarely.

2.9.3 Internal Scheduling

A complementary approach to external scheduling is internal scheduling. Instead of scheduling tasks from outside
the mutex object from the entry queue (the entry queue is still necessary), most of the scheduling occurs inside the
monitor. To do schedulinginsidethe monitor requires additional queuesinsidethe monitor on which tasks can block
and subsequently be unblocked by other tasks. For that purpose, condition variables are provided, with an associated
wait and signal statement.

26 CHAPTER 2. �C++ TRANSLATOR

2.9.3.1 Condition Variables and Wait/Signal Statements

The typeuCondition creates a queue object on which tasks can be blocked and reactivated in first-in first-out order, and
is defined:

class uCondition {
public :

void wait(); // wait on condition
void wait(long int info); // wait on condition with information
void signal(); // signal condition
void signalBlock(); // signal condition
bool empty() const ;
long int front() const ;

_Event WaitingFailure;
};
uCondition DiskNotIdle;

A condition variable is owned by the mutex object that performs the first wait on it; subsequently, only the owner can
wait and signal that condition variable.2 It is common to associate with each condition variable an assertion about the state of the mutex object.

For example, in a disk-head scheduler, a condition variablemight be associated with the assertion “the
disk head is idle”. Waiting on that condition variable wouldcorrespond to waiting until the condition is
satisfied, that is, until the disk head is idle. Correspondingly, the active task would reactivate tasks waiting
on that condition variable only when the disk head became idle. The association between assertions and
condition variables is implicit and not part of the language. 2

To block a task on a condition queue, the active task in a mutexobject calls memberwait, e.g.,

DiskNotIdle.wait();

This statement causes the active task to block on conditionDiskNotIdle, which unlocks the mutex object and invokes
the internal scheduler. Internal scheduling first attemptsto pop a task from the acceptor/signalled stack. If there are
no tasks on the acceptor/signalled stack, the internal scheduler selects a task from the entry queue or waits until a call
occurs if there are no tasks; hence, the next task to enter is the one blocked the longest. If the internal scheduling did
not accept a call at this point, deadlock would occur.

When waiting, it is possible to optionally store an integer value with a waiting task on a condition queue by passing
an argument towait, e.g.:

DiskNotIdle.wait(integer-expression);

If no value is specified in a call towait, the value for that blocked task is undefined. The integer value can be accessed by
other tasks through theuCondition member routinefront. This value can be used to provide more precise information
about a waiting task than can be inferred from its presence ona particular condition variable. For example, the
value of the front blocked task on a condition can be examinedby a signaller to help make a decision about which
condition variable it should signal next. This capability is useful, for example, in a problem like the readers and writer.
(See AppendixC.1, p. 159 for an example program using this feature, but only after reading Section2.10, p. 28 on
monitors.) In that case, reader and writer tasks wait on the same condition queue to preserve First-In First-Out (FIFO)
order and each waiting task is marked with a value for reader or writer, respectively. A task that is signalling can first
check if the awaiting task at the head of a condition queue is areader or writer task by examining the stored value
before signalling.2 The value stored with a waiting task and examined by a signaller should not be construed as a message

between tasks. The information stored with the waiting taskis not meant for a particular task nor is it
received by a particular task. Any task in the monitor can examine it. Also, the value stored with each
task isnot a priority for use in the subsequent selection of a task when the monitor is unlocked.

If this capability did not exist, it can be mimicked by creating and managing an explicit queue in the
monitor that contains the values. Nodes would have to be added and removed from the explicit queue
as tasks are blocked and restarted. Since there is already a condition queue and its nodes are added and

2.9. SCHEDULING 27

removed at the correct times, it seemed reasonable to allow users to store some additional data with the
blocked tasks. 2

To unblock a task from a condition variable, the active task in a mutex object calls either membersignal or
signalBlock. For membersignal, e.g.:

DiskNotIdle.signal();

the effect is to remove one task from the specified condition variable and push it onto the acceptor/signalled stack.
The signaller continues execution and the signalled task isscheduled by the internal scheduler when the mutex object
is next unlocked. This semantics isdifferent from the _Accept statement, which always blocks the acceptor;the
signaller does not block forsignal. For membersignalBlock, e.g.:

DiskNotIdle.signalBlock();

the effect is to remove one task from the specified condition variable and make it the active task, and push the signaller
onto the acceptor/signalled stack. The signalled task continues execution and the signaller is scheduled by the internal
scheduler when the mutex object is next unlocked. This semantics islike the _Accept statement, which always blocks
the acceptor. For either kind of signal, signalling an emptycondition just continues executions, i.e., it does nothing.2 The _Accept , wait, signal andsignalBlock can be executed by any routine of a mutex type. Even

though these statements block the current task, they can be allowed in any member routine because mem-
ber routines are executed by the caller, not the task the member is defined in. This capability is to be
contrasted to Ada where waiting in an accept body would causethe task to deadlock. 2

The member routineempty() returnsfalse if there are tasks blocked on the queue andtrue otherwise. The member
routinefront returns an integer value stored with the waiting task at the front of the condition queue. It is an error to
examine the front of an empty condition queue; therefore, a condition must be checked to verify that there is a blocked
task, e.g.:

if (! DiskNotIdle.empty() && DiskNotIdle.front() == 1) . . .

(This capability is discussed in detail shortly.)
It is notmeaningful to read or to assign to a condition variable, or copy a condition variable (e.g., pass it as a value

parameter), or use a condition variable if not its owner.

2.9.3.2 Commentary

The ability to postpone a request is an essential requirement of a programming language’s concurrency facilities.
Postponement may occur multiple times during the servicingof a request while still allowing a mutex object to accept
new requests.

In simple cases, the_When construct can be used to accept only requests that can be completed without postpone-
ment. However, when the selection criteria become complex,e.g., when the parameters of the request are needed to
do the selection or information is needed from multiple queues, it is simpler to unconditionally accept a request and
subsequently postpone it if it does not meet the selection criteria. This approach avoids complex selection expressions
and possibly their repeated evaluation. In addition, all the normal programming language constructs and data struc-
tures can be used in the process of making a decision to postpone a request, instead of some fixed selection mechanism
provided in the programming language, as in SR [AOC+88] and Concurrent C++ [GR88].

Regardless of the power of a selection facility, none can deal with the need to postpone a request after it is accepted.
In a complex concurrent system, a task may have to make requests to other tasks as part of servicing a request. Any
of these further requests can indicate that the current request cannot be completed at this time and must be postponed.
Thus, it is essential that a request be postponable even after it is accepted because of any number of reasons during the
servicing of the request. Condition variables seem essential to support this facility.

An alternative approach to condition variables is to send the request to be postponed to another (usually non-public)
mutex member of the object (like Ada 95’srequeue statement). This action re-blocks the request on that mutex
member’s entry queue, which can be subsequently accepted when the request can be restarted. However, there are
problems with this approach. First, the postponed request may not be able to be sent directly from a mutex member to
another mutex member because deadlock occurs due to synchronous communication. (Asynchronous communication
solves this problem, but as stated earlier, imposes a substantial system complexity and overhead.) The only alternative
is to use a nomutex member, which calls a mutex member to startthe request and checks its return code to determine if

28 CHAPTER 2. �C++ TRANSLATOR

the request must be postponed. If the request is to be postponed, another mutex member is invoked to block the current
request until it can be continued. Unfortunately, structuring the code in this fashion becomes complex for non-trivial
cases and there is little control over the order that requests are processed. In fact, the structuring problem is similar
to the one when simulating a coroutine using a class or subroutine, where the programmer must explicitly handle
the different execution states. Second, any mutex member servicing a request may accumulate temporary results. If
the request must be postponed, the temporary results must bereturned and bundled with the initial request that are
forwarded to the mutex member that handles the next step of the processing; alternatively, the temporary results can
be re-computed at the next step if that is possible. In contrast, waiting on a condition variable automatically saves the
execution location and any partially computed state.

2.10 Monitor
A monitor is an object with mutual exclusion and so it can be accessed simultaneously by multiple tasks. A mon-
itor provides a mechanism for indirect communication amongtasks and is particularly useful for managing shared
resources. A monitor type has all the properties of aclass . The general form of the monitor type is the following:

_Mutex class monitor-name {
private :

. . . // these members are not visible externally
protected :

. . . // these members are visible to descendants
public :

. . . // these members are visible externally
};

The macro name_Monitor is defined to be “_Mutex class ” in include fileuC++.h.

2.10.1 Monitor Creation and Destruction

A monitor is the same as a class object with respect to creation and destruction, e.g.:

_Mutex class M {
public :

void r(. . .) . . . // mutex member
};
M *mp; // pointer to a M
{ // start a new block

M m, ma[3]; // local creation
mp = new M; // dynamic creation
. . .

} // wait for m, ma[0], ma[1] and ma[2] to terminate and then deallocate
. . .
delete mp; // wait for mp’s instance to terminate and then deallocate

Because a monitor is a mutex object, the execution of its destructor waits until it can gain access to the monitor, just
like the other mutex members of a monitor, which can delay thetermination of the block containing a monitor or the
deletion of a dynamically allocated monitor.

2.10.2 Monitor Control and Communication

In �C++, both internal and external scheduling are provided, where most traditional monitors provide only internal
scheduling. Figure2.6 compares the traditional internal scheduling style using explicit condition variables to the
external scheduling style using accept statements. The problem is the exchange of values (telephone numbers) between
two kinds of tasks (girls and boys). (While_Accept allows the removal of all condition variables in this case, this is
not always possible.)

2.11 Coroutine Monitor
The coroutine monitor is a coroutine with mutual exclusion,making it safely accessible by multiple tasks. A coroutine-
monitor type has a combination of the properties of a coroutine and a monitor, and can be used where a combination

2.12. TASK 29

Internal Scheduling External Scheduling

_Monitor DatingService {
int GirlPhoneNo, BoyPhoneNo;
uCondition GirlWaiting, BoyWaiting;

public :
int Girl(int PhoneNo) {

if (BoyWaiting.empty()) {
GirlWaiting.wait();
GirlPhoneNo = PhoneNo;

} else {
GirlPhoneNo = PhoneNo;
BoyWaiting.signalBlock();

} // if
return BoyPhoneNo;

} // Girl
int Boy(int PhoneNo) {

if (GirlWaiting.empty()) {
BoyWaiting.wait();
BoyPhoneNo = PhoneNo;

} else {
BoyPhoneNo = PhoneNo;
GirlWaiting.signalBlock();

} // if
return GirlPhoneNo;

} // Boy
}; // DatingService

_Monitor DatingService {
int GirlPhoneNo, BoyPhoneNo;

public :
DatingService() {

GirlPhoneNo = BoyPhoneNo = -1;
} // DatingService
int Girl(int PhoneNo) {

GirlPhoneNo = PhoneNo;
if (BoyPhoneNo == -1) {

_Accept (Boy);
} // if
int temp = BoyPhoneNo;
BoyPhoneNo = -1;
return temp;

} // Girl
int Boy(int PhoneNo) {

BoyPhoneNo = PhoneNo;
if (GirlPhoneNo == -1) {

_Accept (Girl);
} // if
int temp = GirlPhoneNo;
GirlPhoneNo = -1;
return temp;

} // Boy
}; // DatingService

Figure 2.6: Internal versus External Scheduling

of these properties are needed, such as a finite-state machine that is used by multiple tasks. A coroutine-monitor type
has all the properties of aclass . The general form of the coroutine-monitor type is the following:

_Mutex _Coroutine coroutine-name {
private :

. . . // these members are not visible externally
protected :

. . . // these members are visible to descendants
void main(); // starting member

public :
. . . // these members are visible externally

};

The macro name_Cormonitor is defined to be “_Mutex _Coroutine ” in include file uC++.h.

2.11.1 Coroutine-Monitor Creation and Destruction

A coroutine monitor is the same as a monitor with respect to creation and destruction.

2.11.2 Coroutine-Monitor Control and Communication

A coroutine monitor can make use ofsuspend, resume, _Accept anduCondition variables,wait, signal andsignalBlock
to move a task among execution states and to block and restarttasks that enter it. When creating a cyclic call-graph
using a coroutine monitor, it is the programmer’s responsibility to ensure that at least one of the members in the cycle
is a _Nomutex member or deadlock occurs because of the mutual exclusion.

2.12 Task
A task is an object with its own thread of control and execution state, and whose public member routines provide
mutual exclusion. A task type has all the properties of aclass . The general form of the task type is the following:

30 CHAPTER 2. �C++ TRANSLATOR

_Task task-name {
private :

. . . // these members are not visible externally
protected :

. . . // these members are visible to descendants
void main(); // starting member

public :
. . . // these members are visible externally

};

The task type has one distinguished member, namedmain, in which the new thread starts execution; this distinguished
member is called thetask main. Instead of allowing direct interaction withmain, its visibility is normallyprivate
or protected . The decision to make the task mainprivate or protected depends solely on whether derived classes
can reuse the task main or must supply their own. Hence, a userinteracts with a task indirectly through its member
routines. This approach allows a task type to have multiple public member routines to service different kinds of
requests that are statically type checked. A task main cannot have parameters or return a result, but the same effect can
be accomplished indirectly by passing values through the task’s global variables, calledcommunication variables,
which are accessible from both the task’s member andmain routines.

2.12.1 Task Creation and Destruction

A task is the same as a class object with respect to creation and destruction, e.g.:

_Task T {
void main() . . . // task main

public :
void r(. . .) . . .

};
T *tp; // pointer to a T task
{ // start a new block

T t, ta[3]; // local creation
tp = new T; // dynamic creation
. . .
t.r(. . .); // call a member routine that must be accepted
ta[1].r(. . .); // call a member routine that must be accepted
tp->r(. . .); // call a member routine that must be accepted
. . .

} // wait for t, ta[0], ta[1] and ta[2] to terminate and then deallocate
. . .
delete tp; // wait for tp’s instance to terminate and then deallocate

When a task is created, the appropriate task constructor andany base-class constructors are executed in the normal
order by the creating thread. The task’s execution-state and thread are created and the starting point for the new thread
(activation point) is initialized to the task’smain routine visible by the inheritance scope rules from the tasktype. After
this point, the creating task executes concurrently with the new task. The location of a task’s variables—in the task’s
data area or in member routinemain—depends on whether the variables must be accessed by memberroutines other
thanmain. main executes until its thread blocks or terminates.

A task terminates when itsmain routine terminates. When a task terminates, so does the task’s thread of control.
At this point, the task becomes a monitor and can still be usedin that form. A task’s destructor is invoked by the
deallocating thread when the block containing the task declaration terminates or by an explicitdelete statement for a
dynamically allocated task. Because a task is a mutex object, a block cannot terminate until all tasks declared in the
block terminate. Similarly, deleting a task on the heap mustalso wait until the task being deleted has terminated.

While a task that creates another task is conceptually the parent and the created task its child,�C++ makes no
implicit use of this relationship nor does it provide any facilities based on this relationship. Once a task is declared it
has no special relationship with its declarer other than what results from the normal scope rules.

Like a coroutine, a task can access all the external variables of a C++ program and the heap area. Also, any
static member variables declared within a task are shared among allinstances of that task type. If a task makes
global references or hasstatic variables, there is the general problem of concurrent access to these shared variables.

2.12. TASK 31

Therefore, it is suggested that these kinds of references beused with extreme caution.2 A coroutine is not owned by the task that creates it; it can be “passed” to another task. However,
to ensure that only one thread is executing a coroutine at a time, the passing around of a coroutine must
involve a protocol among its users, which is the same sort of protocol required when multiple tasks share
a data structure. 2

2.12.2 Inherited Members

Each task type, if not derived from some other task type, is implicitly derived from the task typeuBaseTask, e.g.:

_Task task-name : public uBaseTask {
. . .

};

where the interface for the base classuBaseTask is:

_Task uBaseTask : public uBaseCoroutine { // inherits from coroutine base type
public :

uBaseTask();
uBaseTask(unsigned int stackSize);
uBaseTask(void *storage, unsigned int storageSize);
uBaseTask(uCluster &cluster);
uBaseTask(uCluster &cluster, unsigned int stackSize);
uBaseTask(uCluster &cluster, void *storage, unsigned int storageSize);

void yield(unsigned int times = 1);
uCluster &migrate(uCluster &cluster);
uCluster &getCluster() const ;
uBaseCoroutine &getCoroutine() const ;

enum State { Start, Ready, Running, Blocked, Terminate };
State getState() const ;

int getActivePriority();
int getBasePriority();

};

The public member routines ofuBaseCoroutine are inherited and have the same functionality (see Section2.7.2, p.15).
The overloaded constructor routineuBaseTask has the following forms:

uBaseTask() – creates a task on the current cluster with the cluster’s default stack size (seeuBaseCoroutine()
p. 16).

uBaseTask(unsigned int stackSize) – creates a task on the current cluster with the specifiedminimumstack size
(in bytes) (seeuBaseCoroutine(int stackSize) p. 16).

uBaseTask(void *storage, unsigned int storageSize) – creates a task on the current cluster using the specified
storage andmaximumstorage size (in bytes) for the task’s stack
(seeuBaseCoroutine(void *storage, unsigned int storageSize) p. 16).

uBaseTask(uCluster &cluster) – creates a task on the specified cluster with that cluster’s default stack size.

uBaseTask(uCluster &cluster, unsigned int stackSize) – creates a task on the specified cluster with the specified
stack size (in bytes).

uBaseTask(uCluster &cluster, void *storage, unsigned int storageSize) – creates a task on the specified cluster
using the specified storage andmaximumstorage size (in bytes) for the task’s stack.

A task type can be designed to allow declarations to specify the cluster on which creation occurs and the stack size by
doing the following:

32 CHAPTER 2. �C++ TRANSLATOR

_Task T {
public :

T() : uBaseTask(8192) {}; // current cluster, default 8K stack
T(unsigned int s) : uBaseTask(s) {}; // current cluster and user specified stack size
T(void *st, unsigned int s) : uBaseCoroutine(st,s) // current cluster and user specified stack storage & size
T(uCluster &c) : uBaseTask(c) {}; // user cluster
T(uCluster &c, unsigned int s) : uBaseTask(c, s) {}; // user cluster and stack size
T(uCluster &c, void *st, unsigned int s) : uBaseTask(c, st, s) {}; // user cluster, specified stack storage & size
. . .

};
uCluster c; // create a new cluster
T x, y(16384), z(area1, 32768); // x => 8K stack, y => 16K stack, z => stack < 32K at “area1”
T q(c), r(c, 16384); // q => cluster c & 8K stack, r => cluster c & 16K stack
T s(c, area2, 32768); // s => cluster c, stack < 32K at “area2”

The member routine routineyield gives up control of the virtual processor to another ready task the specified
number of times. For example, the callyield(5) immediately returns control to the�C++ kernel and the next 4 times
the task is scheduled for execution. If there are no other ready tasks, the yielding task is simply stopped and restarted
5 times (i.e., 5 context switches from itself to itself).yield allows a task to relinquish control when it has no current
work to do or when it wants other ready tasks to execute beforeit performs more work. An example of the former
situation is when a task is polling for an event, such as a hardware event. After the polling task has determined the
event has not occurred, it can relinquish control to anotherready task, e.g.,yield(1). An example of the latter situation
is when a task is creating many other tasks. The creating taskmay not want to create a large number of tasks before the
created tasks have a chance to begin execution. (Task creation occurs so quickly that it is possible to create 100–1000
tasks before pre-emptive scheduling occurs.) If after the creation of several tasks the creator yields control, some
created tasks have an opportunity to begin execution beforethe next group of tasks is created. This facility is not a
mechanism to control the exact order of execution of tasks; pre-emptive scheduling and/or multiple processors make
this impossible.2 When the-yield option is used, calls toyield(rand() % 3) are automatically inserted at the beginning

of each member routine. 2
Althoughyield is a public member routine of every task type, one task cannotyield another task; a task may only

yield itself because a task can only be yielded when it is running, which is true when a task yields itself. If one task
could yield another, the yielded task may be ready or blocked, but in either of these states there is no virtual processor
to yield. If the yielded task is running, it would have to be interrupted and blocked, but it may be performing a critical
operation that cannot be interrupted. Attempting to make all cases work correctly and consistently is problematic and
not particularly useful. Finally, the ability to perform such a powerful operation on a task without its permission seems
unreasonable.

The member routinemigrate allows a task to move itself from one cluster to another so that it can access resources
dedicated to that cluster’s processor(s), e.g.:

from-cluster-reference = migrate(to-cluster-reference)

Althoughmigrate is a public member routine, one task cannot migrate another task; a task may only migrate itself for
the same reason as foryield.

The member routinegetCluster returns the current cluster a task is executing on. The member routinegetCoroutine
returns the current coroutine being executed by a task or thetask itself if it is not executing a coroutine.

The member routinegetState returns the current state of a task, which is one of the enumerated values
uBaseTask::Start, uBaseTask::Ready, uBaseTask::Running, uBaseTask::Blocked or uBaseTask::Terminate.

Two member routines are used in real-time programming (see Chapter10, p.133). The member routinegetActivePriority
returns the current active priority of a task, which is an integer value between 0 and 31. The member routine
getBasePriority returns the current base priority of a task, which is an integer value between 0 and 31.

The free routine:

uBaseTask &uThisTask();

is used to determine the identity of the task executing this routine. Because it returns a reference to the base task type,
uBaseTask, for the current task, this reference can only be used to access the public routines of typeuBaseTask and

2.13. COMMENTARY 33

uBaseCoroutine. For example, a free routine can verify the stack or yield execution of the calling task by performing
the following:

uThisTask().verify();
uThisTask().yield();

As well, printing a task’s address for debugging purposes must done like this:

cout << "task:" << &uThisTask() << endl; // notice the ampersand (&)

2.12.3 Task Control and Communication

A task can make use of_Accept anduCondition variables,wait, signal andsignalBlock to block and unblock tasks that
enter it. AppendixC.3, p.165shows the archetypical disk scheduler implemented as a taskthat must process requests
in an order other than first-in first-out to achieve efficient utilization of the disk.

2.13 Commentary

Initially, every attempt was made to add the new�C++ types and statements by creating a library ofclass definitions
that were used through inheritance and preprocessor macros. This approach has been used by others to provide
coroutine facilities [Sho87, Lab90] and simple parallel facilities [DG87, BLL88]. However, after discovering many
limitations with all library approaches, it was abandoned in favour of language extensions.

The most significant problem with all library approaches to concurrency is the lack of soundness and/or effi-
ciency [Buh95]. A compiler and/or assembler may perform valid sequentialoptimizations that invalidate a correct
concurrent program. Code movement, dead code removal, and copying values into registers are just some examples
of optimizations that can invalidate a concurrent program,e.g., moving code into or out of a critical section, remov-
ing a timing loop, or copying a shared variable into a register making it invisible to other processors. To preserve
soundness, it is necessary to identify and selectively turnoff optimizations for those concurrent sections of code that
might cause problems. However, a programmer may not be awareof when or where a compiler/assembler is using
an optimization that affects concurrency; only the compiler/assembler writer has that knowledge. Furthermore, unless
the type of a variable/parameter conveys concurrent usage,neither the compiler nor the assembler can generate sound
code for separately compiled programs and libraries. Therefore, when using a concurrent library, a programmer can at
best turn off all optimizations in an attempt to ensure soundness, which can have a significant performance impact on
the remaining execution of the program, which is composed oflarge sections of sequential code that can benefit from
the optimizations.

Even if a programmer can deal with the soundness/efficiency problem, there are other significant problems with
attempting to implement concurrency via the library approach. In general, a library approach involves defining an
abstract class,Task, which implements the task abstraction. New task types are created by inheritance fromTask, and
tasks are instances of these types.

On this approach, thread creation must be arranged so that the task body does not start execution until all of
the task’s initialization code has finished. One approach requires the task body (the code that appears in a�C++
task’smain) to be placed at the end of the new class’s constructor, with code to start a new thread inTask::Task().
One thread then continues normally, returning fromTask::Task() to complete execution of the constructors, while
the other thread returns directly to the point where the taskwas declared. This forking of control is accomplished
in the library approach by having one thread “diddle” with the stack to find the return address of the constructor
called at the declaration. However, this scheme prevents further inheritance; it is impossible to derive a type from a
task type if the new type requires a constructor, since the new constructor would be executed onlyafter the parent
constructor containing the task body. It also seems impossible to write stack-diddling code that causes one thread to
return directly to the declaration point if the exact numberof levels of inheritance is unknown. Another approach that
does not rely on stack diddling while still allowing inheritance is to determine when all initialization is completed so
that the new thread can be started. However, it is impossiblein C++ (and most other object-oriented programming
languages) for a constructor to determine if it is the last constructor executed in an inheritance chain. A mechanism
like Simula’s [Sta87] inner could be used to ensure that all initialization had been donebefore the task’s thread is
started. However, it is not obvious howinner would work in a programming language with multiple inheritance.

PRESTO (and now Java [GJSB00]) solved this problem by providing astart() member routine in classTask, which
must be called after the creation of a task.Task::Task() would set up the new thread, butstart() would set it running.

34 CHAPTER 2. �C++ TRANSLATOR

However, this two-step initialization introduces a new user responsibility: to invokestart before invoking any member
routines or accessing any member variables.

A similar two-thread problem occurs during deletion when a destructor is called. The destructor of a task can
be invoked while the task body is executing, but clean-up code must not execute until the task body has terminated.
Therefore, the code needed to wait for a thread’s termination cannot simply be placed inTask::~Task(), because it
would be executed after all the derived class destructors have executed. Task designers could be required to put the
termination code in the new task type’s destructor, but thatprevents further inheritance.Task could provide afinish()
routine, analogous tostart(), which must be called before task deletion, but that is error-prone because a user may fail
to call finish appropriately, for example, before the end of a block containing a local task.

Communication among tasks also presents difficulties. In library-based schemes, it is often done via message
queues. However, a single queue per task is inadequate; the queue’s message type inevitably becomes a union of
several “real” message types, and static type checking is compromised. (One could use inheritance from aMessage
class, instead of a union, but the task would still have to perform type tests on messages before accessing them.)
If multiple queues are used, some analogue of the Adaselect statement is needed to allow a task to block on more
than one queue. Furthermore, there is no statically enforceable way to ensure that only one task is entitled to receive
messages from any particular queue. Hence the implementation must handle the case of several tasks that are waiting
to receive messages from overlapping sets of queues. For example,

class TaskType : Task {
public :

MsgQueueType A; // queue associated with each instance of the task
static MsgQueueType B; // queue shared among all instances of the task type

protected :
void main() {

. . .
_Accept i = A.front(); // accept from either message queue
or _Accept i = B.front();
. . .

}
};
TaskType T1, T2;

TasksT1 andT2 are simultaneously accepting from two different queues. While it is straightforward to check for the
existence of data in the queues, if there is no data, bothT1 andT2 block waiting for data to appear on either queue.
To implement this, tasks have to be associated with both queues until data arrives, given data when it arrives, and
then removed from both queues. Implementing this operationis expensive since the addition or removal of a message
to/from a queue must be an atomic operation across all queuesinvolved in a waiting task’s accept statement to ensure
that only one data item from the accepted set of queues is given to the accepting task.

If the more natural routine-call mechanism is to be used for communication among tasks, each public member
routine would have to have special code at the start and possibly at the exits of each public member, which the
programmer would have to provide. Other object-oriented programming languages that support inheritance of routines,
such as LOGLAN’88 [CKL+88] and Beta [MMPN93], or wrapper routines, as in GNU C++ [Tie88], might be able to
provide automatically any special member code. Furthermore, we could not find any convenient way to provide an
Ada-likeselect statement without extending the language.

In the end, we found the library approach to be completely unsatisfactory. We decided that language extensions
would better suit our goals by providing soundness and efficiency, greater flexibility and consistency with existing
language features, and static checking.

2.14 Inheritance

C++ provides two forms of inheritance:private and protected inheritance, which provide code reuse, andpublic
inheritance, which provides reuse and subtyping (a promiseof behavioural compatibility). (These terms must not be
confused with C++ visibility terms with the same names.)

In C++, class definitions can inherit from one another using both single and multiple inheritance. In�C++, there
are multiple kinds of types, e.g., class, mutex, coroutine,and task, so the situation is more complex. The problem is
that mutex, coroutine and task types provide implicit functionality that cannot be arbitrarily mixed. While there are

2.14. INHERITANCE 35

some implementation difficulties with certain combinations, the main reason is a fundamental one. Types are written
as a class, mutex, coroutine or task, and the coding styles used in each cannot, in general, be arbitrarily mixed. For
example, an object produced by a class that inherits from a task type appears to be a non-concurrent object but its
behaviour is concurrent. While object behaviour is a user issue, there is a significantly greater chance of problems if
users casually combine types of different kinds. Table2.3shows the forms of inheritance allowed in�C++.

base NO multiple inheritance
derived struct/class coroutine monitor coroutine monitor task

struct/class
p

X X X X
coroutine

p p
X X X

monitor
p

X
p

X X
coroutine monitor

p p p p
X

task
p

X
p

X
p

Table 2.3: Inheritance among Type Generators

First, the case ofsingleprivate/protected/public inheritance among homogeneouskinds of type, i.e., the kinds of
the base and derived type are the same, is supported in�C++ (major diagonal in Table2.3), e.g.:

_Coroutine Cbase {};
_Coroutine Cderived : private Cbase {}; // homogeneous private inheritance
_Monitor Mbase {};
_Monitor Mderived : protected Mbase {}; // homogeneous protected inheritance
_Cormonitor CMbase {};
_Cormonitor CMderived : public CMbase {}; // homogeneous public inheritance
_Task Tbase {};
_Task Tderived : protected Tbase {}; // homogeneous protected inheritance

In this situation, all implicit functionality matches between base and derived types, and therefore, there are no prob-
lems.

Second, the case ofsingleprivate/protected/public inheritance among heterogeneous kinds of type, i.e., the kinds
of the base and derived type are different, is supported in�C++ only if the derived kind is more specific than the base
kind with respect to the elementary execution properties (see Section1.2, p.4), e.g.:

class cbase {};

_Coroutine Cderived : public cbase {}; // heterogeneous public inheritance
_Monitor Mderived : public cbase {}; // heterogeneous public inheritance
_Cormonitor CMderived1 : private cbase {}; // heterogeneous private inheritance
_Cormonitor CMderived2 : protected Cbase {}; // heterogeneous protected inheritance
_Cormonitor CMderived3 : public Mbase {}; // heterogeneous public inheritance
_Task Tderived1 : protected cbase {}; // heterogeneous protected inheritance
_Task Tderived2 : public Mbase {}; // heterogeneous public inheritance

For example, a coroutine monitor can inherit from a class, a monitor, or a coroutine because the coroutine monitor has
the elementary execution properties of each of these kinds of type: The only exception to this rule is between a task
and coroutine because the logical use ofmain is completely different between these kinds of type. It seems unlikely
that a task could inherit themain routine from a coroutine and have the coroutine’smain perform any reasonable action
with respect to the task’s thread and mutex members.

Heterogeneous inheritance is useful for generating concurrent types from existing non-concurrent types, e.g., to
define a mutex queue by deriving from a simple queue, or for usewith container classes requiring additional link
fields. For example, to change a simple queue to a mutex queue requires a monitor to inherit from the classQueue and
redefine all of the class’s member routines so mutual exclusion occurs when they are invoked, e.g.:

36 CHAPTER 2. �C++ TRANSLATOR

class Queue { // sequential queue
public :

void insert(. . .) . . .
virtual void remove(. . .) . . .

};
_Mutex class MutexQueue : public Queue { // concurrent queue

virtual void insert(. . .) . . .
virtual void remove(. . .) . . .

};
Queue *qp = new MutexQueue; // subtyping allows assignment
qp->insert(. . .); // call to a non-virtual member routine, statically bound
qp->remove(. . .); // call to a virtual member routine, dynamically bound

However, there is a fundamental problem with non-virtual members in C++, which can cause significant confu-
sion because non-virtual routine calls are statically bound. For example, routinesQueue::insert andQueue::remove
do not provide mutual exclusion because they are members of the class, while routinesMutexQueue::insert and
MutexQueue::remove do provide mutual exclusion because they are members of a mutex type. Because the pointer
variableqp is of typeQueue, the callqp->insert calls Queue::insert even thoughinsert is redefined inMutexQueue;
so no mutual exclusion occurs. In contrast, the call toremove is dynamically bound, so the redefined routine in the
monitor is invoked and appropriate synchronization occurs. The unexpected lack of mutual exclusion would cause
errors. In object-oriented programming languages that have only virtual member routines, this is not a problem. The
problem does not occur with private or protected inheritance because no subtype relationship is created, and hence,
the assignment toqp would be invalid.

Multiple inheritance is allowed, with the restriction thatat most one of the immediate base classes may be a mutex,
coroutine, or task type, e.g.:

_Coroutine Cderived : public Cbase, public cbase {};
_Monitor Mderived : public Mbase, public cbase {};
_Cormonitor CMderived : protected Cbase, public cbase {};
_Task Tderived : public Mbase, protected cbase {};

Some of the reasons for this restriction are technical and some relate to the coding styles of the different kinds of type.
Multiple inheritance is conceivable for the mutex property, but technically it is difficult to ensure a single root object to
manage the mutual exclusion. Multiple inheritance of the execution-state property is technically difficult for the same
reason, i.e., to ensure a single root object. As well, there is the problem of selecting the correctmain to execute on the
execution state, e.g., if the most derived class does not specify a main member, there could be multiplemain members
to choose from in the hierarchy. Multiple inheritance of thethread property is technically difficult because only one
thread must be started regardless of the complexity of the hierarchy. In general, multiple inheritance is not as useful a
mechanism as it initially seemed [Car90].

2.15 Explicit Mutual Exclusion and Synchronization

The following locks are low-level mechanisms for providingmutual exclusion of critical sections and synchronization
among tasks. In general, explicit locks are unnecessary to build highly concurrent systems; the mutual exclusion
provided by monitors, coroutine monitors and tasks, and thesynchronization provided by_Accept , wait, signal and
signalBlock are sufficient. Nevertheless, several low-level lock mechanisms are provided for teaching purposes and for
special situations.

2.15.1 Counting Semaphore

A semaphore in�C++ is implemented as a counting semaphore as described by Dijkstra [Dij65]. A counting semaphore
has two parts: a counter and a list of waiting tasks. Both the counter and the list of waiting tasks is managed by the
semaphore. The typeuSemaphore defines a semaphore:

2.15. EXPLICIT MUTUAL EXCLUSION AND SYNCHRONIZATION 37

class uSemaphore {
public :

uSemaphore(unsigned int count = 1);
void P();
bool P(uDuration duration);
bool P(uTime time);
void P(uSemaphore &s);
bool P(uSemaphore &s, uDuration duration);
bool P(uSemaphore &s, uTime time);
bool TryP();
void V(unsigned int times = 1);
int counter() const ;
bool empty() const ;

};
uSemaphore x, y(1), *z;
z = new uSemaphore(4);

The declarations create three semaphore variables and initializes them to the value 1, 0, and 4, respectively.
The constructor routineuSemaphore has the following form:

uSemaphore(int count) – this form specifies an initialization value for the semaphore counter. Appropriate val-
ues are� 0. The default count is 1.

The member routinesP andV are used to perform the classical counting semaphore operations. P decrements the
semaphore counter if the value of the semaphore counter is greater than zero and continues; if the semaphore counter is
equal to zero, the calling task blocks. IfP is passed a semaphore, that semaphore isVed beforePing on the semaphore
object; the two operations occur atomically. IfP is passed a duration or time value, the waiting task is unblocked after
that period or when the specified time is exceeded even if the task has not beenVed; this form ofP returnstrue if
the waiting task isVed andfalse otherwise (meaning timeout occurred). (See Section10.1, p. 133for information on
typesuDuration anduTime.) The member routineTryP attempts to acquire the semaphore but does not block.TryP
returnstrue if the semaphore is acquired andfalse otherwise.V wakes up the task blocked for the longest time if there
are tasks blocked on the semaphore and increments the semaphore counter. IfV is passed a positive integer value, the
semaphore isVed that many times. The member routinecounter returns the value of the semaphore counter,N , which
can be negative, zero, or positive: negative means abs(N) tasks are blocked waiting to acquire the semaphore, and the
semaphore is locked; zero means no tasks are waiting to acquire the semaphore, and the semaphore is locked; positive
means the semaphore is unlocked and allowsN tasks to acquire the semaphore. The member routineempty returns
false if there are threads blocked on the semaphore andtrue otherwise.

It is not meaningful to read or to assign to a semaphore variable, or copy a semaphore variable (e.g., pass it as a
value parameter).

To use counting semaphores in a�C++ program, include the file:

#include <uSemaphore.h>

2.15.1.1 Commentary

Thewait andsignal operations on conditions are very similar to theP andV operations on counting semaphores. The
wait statement can block a task’s execution while asignal statement can cause resumption of another task. There
are, however, differences between them. TheP operation does not necessarily block a task, since the semaphore
counter may be greater than zero. Thewait statement, however, always blocks a task. Thesignal statement can make
ready (unblock) a blocked task on a condition just as aV operation makes ready a blocked task on a semaphore. The
difference is that aV operation always increments the semaphore counter; thereby affecting a subsequentP operation.
A signal statement on an empty condition does not affect a subsequentwait statement, and therefore, is lost. Another
difference is that multiple tasks blocked on a semaphore canresume execution without delay if enoughV operations
are performed. In the mutex-type case, multiplesignal statements do unblock multiple tasks, but only one of these
tasks is able to execute because of the mutual-exclusion property of the mutex type.

38 CHAPTER 2. �C++ TRANSLATOR

2.15.2 Lock

A lock is either closed (0) or opened (1), and tasks compete toacquire the lock after it is released. Unlike a semaphore,
which blocks tasks that cannot continue execution immediately, a lock may allow tasks to loop (spin) attempting to
acquire the lock (busy wait). Locks do not ensure that tasks competing to acquire it are served in any particular order;
in theory, starvation can occur, in practice, it is usually not a problem.

The typeuLock defines a lock:

class uLock {
public :

uLock(unsigned int value = 1);
void acquire();
bool tryacquire();
void release();

};
uLock x, y, *z;
z = new uLock(0);

The declarations create three lock variables and initializes the first two to open and the last to closed.
The constructor routineuLock has the following form:

uLock(int value) – this form specifies an initialization value for the lock. Appropriate values are 0 and 1. The
default value is 1.

The member routinesacquire andrelease are used to atomically acquire and release the lock, closingand opening
it, respectively. acquire acquires the lock if it is open, otherwise the calling task spins waiting until it can acquire
the lock. The member routinetryacquire makes one attempt to try to acquire the lock, i.e., it does notspin waiting.
tryacquire returnstrue if the lock is acquired andfalse otherwise.release releases the lock, which allows any waiting
tasks to compete to acquire the lock. Any number of releases can be performed on a lock as a release simply sets the
lock to opened (1).

It is notmeaningful to read or to assign to a lock variable, or copy a lock variable (e.g., pass it as a value parameter).

2.15.3 Owner Lock

An owner lock is owned by the task that acquires it; all other tasks attempting to acquire the lock block until the owner
releases it. The owner of an owner lock can acquire the lock multiple times, but a matching number of releases must
occur or the lock remains in the owner’s possession and othertasks cannot acquire it. (Owner locks are used in the
implementation of the non-blocking I/O stream library, seeSection4.2, p. 57). As a result, an owner lock canonlybe
used for mutual exclusion, because synchronization requires the locking task to be different from the unlocking one.
The typeuOwnerLock defines an owner lock:

class uOwnerLock {
public :

uOwnerLock();
unsigned int times() const ;
uBaseTask *owner() const ;
void acquire();
bool tryacquire();
void release();

};
uOwnerLock x, y, *z;
z = new uOwnerLock;

The declarations create three owner-lock variables and initializes them to open.
The member routinetimes returns the number of times the lock has been acquired by the lock owner. The member

routineowner returns the task owning the lock or NULL if there is no owner. The member routineacquire acquires the
lock if it is open, otherwise the calling task blocks until itcan acquire the lock. The member routinetryacquire makes
one attempt to try to acquire the lock, i.e., it does not block; the valuetrue is returned if the lock is acquired andfalse
otherwise. The member routinerelease releases the lock, and if there are waiting tasks, one is restarted; waiting tasks
are released in FIFO order.

2.15. EXPLICIT MUTUAL EXCLUSION AND SYNCHRONIZATION 39

It is not meaningful to read or to assign to an owner lock variable, or copy an owner lock variable (e.g., pass it as
a value parameter).

2.15.4 Condition Lock

The condition lock is like a condition variable (see Section2.9.3.1, p. 26), creating a queue object on which tasks
block and unblock; however, there is no monitor construct tosimplify and ensure correct usage of condition locks.
Instead, a condition lock is dependent on the owner lock for its functionality, and collectively these two kinds of locks
can be used to build a monitor, providing both synchronization and mutual exclusion. As for a condition variable, a
condition lock canonly be used for synchronization, because the wait operation always blocks. The typeuCondLock
defines a condition lock:

class uCondLock {
public :

uCondLock();
bool empty();
void wait(uOwnerLock &lock);
bool wait(uOwnerLock &lock, uDuration duration);
bool wait(uOwnerLock &lock, uTime time);
void signal();
void broadcast();

};
uCondLock x, y, *z;
z = new uCondLock;

The declarations create three condition locks and initializes them to open.

The member routineempty() returnsfalse if there are tasks blocked on the queue andtrue otherwise. The routines
wait andsignal are used to block a thread on and unblock a thread from the queue of a condition, respectively. The
wait routine atomically blocks the calling task and releases theargument owner-lock; in addition, thewait routine
re-acquires its argument owner-lock before returning. Ifwait is passed a duration or time value, the waiting task is
unblocked after that period or when the specified time is exceeded even if the task has not been signalled; this form of
wait returnstrue if the task is signalled andfalse otherwise (meaning timeout occurred). (See Section10.1, p.133for
information on typesuDuration anduTime.) Thesignal routine checks if there is a waiting task, and if so, unblocksa
waiting task from the queue of the condition lock; waiting tasks are released in FIFO order. Thesignal routine can be
safely called without acquiring any owner lock associated with tasks waiting on the condition. Thebroadcast routine
is the same as thesignal routine, except all waiting tasks are unblocked.

It is notmeaningful to read or to assign to a lock variable, or copy a lock variable (e.g., pass it as a value parameter).

2.15.5 Barrier

A barrier allowsN tasks to synchronize, possible multiple times, during their life time. Barriers are used to repeatedly
coordinate a group of tasks performing a concurrent operation followed by a sequential operation. In�C++, a barrier
is a mutex coroutine, i.e.,_Cormonitor , to provide the necessary mutual exclusion and to allow codeto be easily
executed both before and after theN tasks synchronize on the barrier. The typeuBarrier defines a barrier:

40 CHAPTER 2. �C++ TRANSLATOR

_Mutex _Coroutine uBarrier {
protected :

void main() {
for (;;) {

suspend();
}

}
public :

uBarrier(unsigned int total);
_Nomutex unsigned int total() const ;
_Nomutex unsigned int waiters() const ;
void reset(unsigned int total);
void block();
virtual void last() {

resume();
}

};
uBarrier x(10), *y;
y = new uBarrier(20);

The declarations create two barrier variables and initializes the first to work with 10 tasks and the second to work with
20 tasks.

The constructor routineuBarrier has the following form:

uBarrier(unsigned int total) – this form specifies the total number of tasks participatingin the synchronization.
Appropriate values are� 0.

The member routinestotal andwaiters return the total number of tasks participating in the synchronization and the
total number of tasks currently waiting at the barrier, respectively. The member routinereset changes the total number
of tasks participating in the synchronization; no tasks maybe waiting in the barrier when the total is changed.block
is called to synchronize withN tasks; tasks block until anyN tasks have calledblock. The virtual member routine
last is called by the last task to synchronize at the barrier. It can be replaced by subclassing fromuBarrier to provide a
specific action to be executed when synchronization is complete. This capability is often used to reset a computation
before releasing the tasks from the barrier to start the nextcomputation. The default code forlast is to resume the
coroutine main.

The coroutine main is usually replaced by subclassing to supply the code to be executed before and after tasks
synchronize. The general form for a barriermain routine is:

void main() {
for (;;) {

// code executed before synchronization (initialization)
suspend();
// code executed after synchronization (termination)

}
}

Normally, the last action of the constructor for the subclass is resuming, which switches to the coroutine main to
prime the barrier’s initialization. Whenmain suspends back to the constructor, the barrier is initialized and ready to
synchronize the first set of tasks.

It is not meaningful to read or to assign to a barrier variable, or copya barrier variable (e.g., pass it as a value
parameter).

To use barriers in a�C++ program, include the file:

#include <uBarrier.h>

2.16 User Specified Context
The following facilities allow users to specify additionalcoroutine and task context to be saved and restored during a
context switch. This facility should only be used to save andrestore processor specific data, for example, coprocessor

2.16. USER SPECIFIED CONTEXT 41

or graphics hardware data that is specific to each processor’s execution. This facility doesnot allow a shared resource,
like a single graphics device, to be accessed mutually exclusively by multiple tasks in a multiprocessor environment. In
a multiprocessing environment, tasks executing in parallel corrupt the shared resource because their context switches
overlap. To share a resource in a multiprocessor environment requires proper mutual exclusion, for example, by using a
server task. In a uniprocessor environment, this facility can be used to guarantee mutual exclusion to a shared resource
because only one task is executing at a time so the context of the shared resource is saved and restored on each context
switch. Westronglydiscourage using this facility for mutual exclusion of a non-processor-specific resource because it
does not scale to the multiprocessor environment.

The user-context facility has two parts: the definition of a context save-area, containing the storage for the context
and routines to save and restore the context, and the declaration and initialization of a context save-area. The associa-
tion of the additional context with a coroutine or task depends on which execution state is active when the declaration
of the context save-area occurs.

A context areamustbe derived from the abstract classuContext:

class uContext {
public :

uContext();
uContext(void *key);
virtual void save() = 0;
virtual void restore() = 0;

}; // uContext

The overloaded constructor routineuContext has the following forms:

uContext() – creates a context with a unique search key (discussed shortly).

uContext(void *key) – creates a context with the user supplied search key.

Multiple context areas can be declared, and hence, associated with a coroutine or task. However, a context is only
associated with an execution state if its search key is unique. This requirement prevents the same context from being
associated multiple times with a particular coroutine or task.

Figure2.7 shows how the context of a hardware coprocessor can be saved and restored as part of the context of
taskworker. A unique search-key for all instances ofCoProcessorCxt is created via the address of the static variable,
uUniqueKey, because the address of a static variable is unique within a program. Therefore, the value assigned to
uUniqueKey is irrelevant, but a value must be assigned in one translation unit for linking purposes. This address is
implicitly stored in each instance ofCoProcessorCxt. When a context is added to a task, a search is performed for any
context with the same key. If a context with the same key is found, the new context is not added; otherwise it is added
to the list of user contexts for the task.2 WARNING: Put no code into routinessave andrestore that results in a context switch, e.g., printing

usingcout or cerr (useprintf if necessary). These routines are called during a context switch, and a context
switch cannot be recursively invoked. 2

2.16.1 Predefined Floating-Point Context

In most operating systems, the entire state of the actual processor is saved during a context switch between execution
states because there is no way to determine if a particular object is using only a subset of the actual processor state. All
programs use the fixed-point registers, while only some use the floating-point registers. Because there is a significant
execution cost in saving and restoring the floating-point registers, they are not saved automatically. If a coroutine or
task performs floating-point operations, saving the floating-point registers must become part of the context-switching
action for the execution state of that coroutine or task.

To save and restore the float-point registers on a context switch, declare a single instance of the predefined type
uFloatingPointContext in the scope of the floating-point computations, such as the beginning of the coroutine’s or task’s
main member, e.g.:

42 CHAPTER 2. �C++ TRANSLATOR

class CoProcessorCxt : public uContext {
static int uUniqueKey; // unique address across all instances
int reg[3]; // coprocessor has 3 integer registers

public :
CoProcessorCxt() : uContext(&uUniqueKey) {};
void save();
void restore();

};

int CoProcessorCxt::uUniqueKey = 0; // must initialize in one translation unit

void CoProcessor::Save() {
// assembler code to save coprocessor registers into context area

}
void CoProcessor::Restore() {

// assembler code to restore coprocessor registers from context area
}

_Task worker {
. . .
void main() {

CoProcessorCxt cpcxt; // associate additional context with task
. . .

}
. . .

};

Figure 2.7: Saving Co-processor Context

_Coroutine C {
void main() {

uFloatingPointContext fpcxt; // the name of the variable is insignificant
. . . // floating-point computations can be performed safely in this scope

}
. . .

};

Oncemain starts, both the fixed-point and floating-point registers are restored or saved during a context switch to or
from instances of coroutineC.2 WARNING: The member routines of a coroutine or task are executed usingthe execution state of the

caller. Therefore, if floating-point operations occur in a member routine, including the constructor, the
caller must also save the floating-point registers. Only a coroutine’s or task’smain routine and the routines
called bymain use the coroutine’s or task’s execution state, and therefore, only these routines can safely
perform floating-point operations. 22 WARNING: Some processors, like the SPARC, implicitly save both fixed and floating-point reg-
isters, which means it is unnecessary to create instances ofuFloatingPointContext in tasks performing
floating-point operations. However, leaving outuFloatingPointContext is dangerous because the pro-
gram is not portable to other processors. Therefore, it is important to always include an instance of
uFloatingPointContext in tasks performing floating-point operations. For processors like the SPARC,
uFloatingPointContext does nothing, so there is no cost. 2

Additional context can be associated with a coroutine or task in a free routine, member routine, or as part of a class
object to temporarily save a particular context. For example, the floating-point registers are saved when an instance of
the following class is declared:

2.17. IMPLEMENTATION RESTRICTIONS 43

class c {
private :

uFloatingPointContext fpcxt;
public :

void func() {
// perform floating-point computations

}
};

When a coroutine or task declares an instance ofc, its context switching is augmented to save the floating-point
registers for the duration of the instance. This capabilityallows the implementor ofc to ensure that the integrity of its
floating-point calculations are not violated by another coroutine or task performing floating-point operations. It also
frees the user from having to know that the floating-point registers must be saved when using classc. Remember, if
the floating-point registers are already being saved, the additional association is ignored because of the unique search
key.

2.17 Implementation Restrictions
The following restrictions are an artifact of this implementation. In some cases the restriction results from the fact that�C++ is only a translator and not a compiler. In all other cases, the restrictions exist simply because time limitations
on this project have prevented it from being implemented.� While �C++ has extended C++ with concurrency constructs, it is not acompiler. Therefore, it suffers from the

soundness/efficiency problem related to all concurrency library approaches (see Section2.13, p.33). To mitigate
soundness problems,�C++ implicitly turns on or off compiler optimizations knownto cause soundness problems.
Unfortunately, turning on these flags affects all variables, and hence, prevents many valid optimizations. Since
it is virtually impossible to determine whether a variable is or is not shared by multiple tasks, it is necessary to
take such Draconian measures to ensure that correct concurrent programs are sound.� Some runtime member routines are publicly visible when theyshould not be; therefore,�C++ programs should
not contain variable names that start with a “u” followed by acapital letter. This problem is an artifact of�C++
being a translator.� By default,�C++ allows at most 128 mutex members because a 128-bit mask isused to test for accepted
member routines. When�C++ is compiled, this value can be modified by setting the preprocessor variable
_ _U_MAXENTRYBITS_ _.

Unfortunately, bit masks, in general, do not extend to support multiple inheritance. We believe that the perfor-
mance degradation required to support multiple inheritance is unacceptable.� When defining a derived type from a base type that is a task or coroutine and the base type has default parameters
in its constructor, the default arguments must be explicitly specified if the base constructor is an initializer in the
definition of the constructor of the derived type, e.g.:

_Coroutine Base {
public :

Base(int i, float f = 3.0, char c = ’c’);
};

_Coroutine Derived : public Base {
public :

Derived(int i) : Base(i, 3.0, ’c’); // values 3.0 and ’c’must be specified
};

All other uses of the constructor forBase arenot required to specify the default values. This problem is an
artifact of�C++ being a translator.� Anonymous coroutine and task types are not supported, e.g.:

44 CHAPTER 2. �C++ TRANSLATOR

_Task /* no name */ { // must have a name
. . .

} t1, t2, t3;

Both a coroutine and a task must have a constructor and destructor, which can only be created using the name
of the type constructor. Having the translator generate a hidden unique name is problematic because the order
of include files may cause the generation of a different name for different compilations, which plays havoc with
linking because of name mangling.� There is no discrimination mechanism in the_Accept statement to differentiate among overloaded mutex mem-
ber routines. When time permits, a scheme using a formal declarer in the_Accept statement to disambiguate
overloaded member routines will be implemented, e.g.:

_Accept (mem(int));
or _Accept (mem(float));

Here, the overloaded member routinesmem are completely disambiguated by the type of their parameters be-
cause C++ overload resolution does not use the return type.� A try block surrounding a constructor body is not supported, e.g.:

class T2 : public T1 {
const int i;

public :
T2(); // constructor

};
T2::T2() try : T1(3), i(27) {

// body of constructor
} catch {

// handle exceptions from initialization constructors (e.g., T1)
}

This problem is an artifact of�C++ being a translator.

Chapter 3

Asynchronous Communication

Parallelism occurs when multiple threads execute simultaneously to decrease a program’s execution, i.e., the program
takes less time to complete a computation. The computation must be divided along some dimension(s) and these
subdivisions are executed asynchronously by the threads. The decrease in execution time is limited by the number of
these subdivisions that can be executed simultaneously (Amdahl’s law).

Every practical concurrent program involves some communication among threads. One thread may communicate
with another in order to provide inputs (arguments), and/orto receive the output (results) produced by the other thread.
If the thread providing the inputs is the same thread that later receives the output, then the communication pattern is
analogous to a sequential routine call, where one routine provides arguments to another and receives the result. A call
by one thread to a_Mutex member of a task is an example of this communication pattern.Such a call is known as
a synchronous callbecause the two tasks must synchronize in order to pass the arguments from caller to callee, and
because the caller remains blocked until the callee returnsits result.

While a synchronous call is simple and useful, it may limit parallelism because the caller task is forced to block
until the result is returned. In some cases there is a subdivision of the computation that the caller task can perform
while the callee task is computing its result. In such a case,it is more appropriate to use anasynchronous call. An
asynchronous call can be thought of as two synchronous calls, one to provide the inputs and a second one to receive
the output, e.g.:

callee.start(arg); // provide arguments
// caller performs other work asynchronously
result = callee.finish(); // obtain result

Here, the call tostart returns as soon as the arguments are transferred from callerto callee. Computation then proceeds
for both the caller and callee, concurrently. In an asynchronous call, the caller and callee are known as theclient
andserver, respectively. Note, the client may still have to block at the call tofinish, if the server has not yet finished
its computation. The amount of parallelism that can be obtained in this way depends on the amount of concurrent
computation that can be done by the client and server. If there is little or no concurrency possible, then the overhead
of two synchronous calls outweighs the benefits gained by anypotential parallelism, and a single synchronous call is
sufficient.

In the previous example, the client may also have to block when calling thestart method, if the server is performing
some other computation at the time of the call. If the server only handles one outstanding asynchronous call at a time
from one client task it should always be ready to receive and respond to thestart method immediately, minimizing
blocking time for the client. Depending on the application it may be necessary to have a more complicated server, one
that can manage multiple outstanding asynchronous calls from multiple clients simultaneously. Constructing a server
that can handle calls efficiently while minimizing blockingtime for clients generally requires additional buffering of
arguments and results. Different designs for servers are discussed in Section3.3, p.53.

45

46 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

3.1 Futures
A future is an abstraction that attempts to hide some of the details involved in an asynchronous call, in particular
buffering and retrieving the return value.1 The previous two synchronous calls are transformed into a single explicit
synchronous call and an implicit second synchronous call when the future is accessed:

future = callee.work(arg); // provide arguments and get future result
// perform other work asynchronously
i = future() + . . .; // obtain actual result, may block if result not ready

In general, a future is generic in the type of the return valueand acts as a surrogate for this value. Instead of making
two calls to send arguments and then retrieve the result, a single call is made and the future representing the result is
returned immediately. The client continues execution as ifthe call had returned an actual result. The future is filled in
at some later time, after the server calculates the result. If the client tries to use the future before a result is inserted,
the client implicitly blocks and is subsequently unblockedby the server after it insertions a result in the future. Hence,
there is no explicit protocol between client and server to retrieve a result; the protocol is implicit within the future.�C++ provides two forms of futures, which differ in their storage-management interface. The explicit-storage-
management future (Future_ESM) must be allocated and deallocated explicitly by the client. The implicit-storage-
management future (Future_ISM) automatically allocates required storage and automatically frees the storage when
the future is no longer in use. The advantage ofFuture_ESM is that it allows the programmer to choose the method of
allocation, whether on the heap, on the stack, or statically, which can result in more predictable and efficient allocation
compared toFuture_ISM, which always allocates storage on the heap. The disadvantage ofFuture_ESM is that the
client must ensure that the future is deallocated, but not before the server thread has inserted the result (or the operation
has been cancelled).

There is a basic set of common operations available on both types of futures. These consist of client operations,
used by a client task to retrieve the return value, and serveroperations, used by a server task to fill in the value.

3.1.1 Client Operations

The future operations available to a client are:

available – returnstrue if the asynchronous call has completed andfalse otherwise. Note, the call could complete
because a result is available, because the server has generated an exception, or because the call has been
cancelled (through thecancel method, below).

operator () – (function call) returns a copy of the future result. The client blocks if the future result is currently
unavailable. If an exception is returned by the server, thatexception is thrown. A future result can be retrieved
multiple times by any task until the future is reset or destroyed.

operator T – (conversion to type T) returns a copy of the future result.This kind of access must be performed only
after a blocking access, or after a call toavailable returnstrue . This operation is a low-cost way of accessing
a future resultafter the result is known to have been delivered. As withoperator (), if the server returns an
exception, that exception is thrown.

cancelled – returnstrue if the future is cancelled andfalse otherwise.

cancel – attempts to cancel the asynchronous call the future refersto. All clients waiting for the result are un-
blocked, and an exception of typeFuture_ESM::Cancellation is thrown at any client attempting to access the
result. Depending on the server, this operation may also have the effect of preventing the requested computation
from starting, or it may interrupt the computation in progress.

3.1.2 Server Operations

The future operations available to a server are:

delivery(T result) – copy the server-generated result into the future, unblocking any clients that are waiting for
the result. This result is the value returned to the client.

1 Other approaches for asynchronous call involve tickets and/or call backs, but both approaches require an explicit protocol to retrieve a result.

3.1. FUTURES 47

reset – mark the future as empty so it can be reused, after which the current future value is no longer available.

exception(uBaseEvent *cause) – copy a server-generated exception into the future. All clients waiting for the
result are unblocked, and the exceptioncause is thrown at any client attempting to access the result.

A server may require storage to buffer call arguments and other data needed for cancellation of futures. This
storage is allocated as part of the future; hence, the futuremay also be generic in the type of server-management data.
A server exports this type information for use with a future (see Section3.3, p.53).

Future cancellation affects the server computing the future’s value. Depending on the server, cancellation may
prevent the requested computation from starting, or it may interrupt the computation in progress. In both cases, the
server does not insert a result into the future. If the servercomputation cannot be interrupted, the server may deliver a
result even though the future has been cancelled.

An ESM future’scancel member cannot return until it is known that the server no longer references the cancelled
future because the future’s storage may be deallocated. Therefore, the server must inform the future if it will or will
not not deliver a value, by supplying a member in theServerData type with the following interface:

bool cancel();

It returnstrue if the result of the asynchronous call will not be delivered to the future, and hence the server computation
has been interrupted, andfalse otherwise.

An ISM future allows server-specific data to be included in the future through a special constructor parameter,
which must implement a similarcancel member. However, no action need be taken by the ISM server, since it is
always safe for the client to delete its copy of the future. Inthis case thecancel method is purely advisory, allowing
the server to avoid unnecessary computation.”

3.1.3 Explicit Storage Management

The explicit storage-management (ESM) future (see Figure3.1) makes the client responsible for storage management
by preallocating the future and passing it as an argument to the asynchronous call.

template <typename T, typename ServerData> _Monitor Future_ESM {
public :

Future_ESM();

// used by client
_Nomutex bool available(); // future result available ?
T operator ()(); // access result, possibly having to wait
_Nomutex operator T(); // cheap access of result after waiting

_Event Cancellation {}; // raised if future cancelled
_Nomutex bool cancelled(); // future result cancelled ?
void cancel(); // cancel future result

// used by server
ServerData serverData; // information needed by server

void delivery(T result); // make result available in the future
void reset(); // mark future as empty (for reuse)
void exception(uBaseEvent *ex); // make exception available in the future

};

Figure 3.1: Future : Explicit Storage Management

This kind of future isnot copyable, i.e., no assignment or pass-by-value is allowed.Both client and server must
operate on the same future, since the future is the buffer through which the result is returned. To copy the future would
be to create two buffers; a client could wait for a value to be delivered to one buffer, whereas the server could deliver
the future to the other buffer. As a result it is necessary to pass the future by pointer or by reference. It is possible for
many threads to wait on the same future, so long as each uses a pointer or reference.

48 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

It is the client’s responsibility to ensure a future continues to exist after a call as long as it is possible for the server
to deliver a return value or exception. It is safe to delete the future afteroperator () returns, whenavailable returns
true , or aftercancel returns. Note that because of this guarantee provided bycancel, it may be the case thatcancel
blocks until the server task acknowledges the cancellation.

3.1.4 Example

This example illustrates how a client uses a number of futures to communicate asynchronously with a server:

Server server; // server thread to process async call
Future_ESM<int , Server::IMsg> f[10]; // created on the stack
for (int i = 0; i < 10; i += 1) { // start a number of calls

server.mem(f[i], i, ’c’); // async call
}
// work asynchronously while server processes requests
for (int i = 0; i < 10; i += 1) { // retrieve async results

osacquire(cout) << f[i]() << " " << // may block on first attempt to retrieve value
f[i] << endl; // use value again (cheap access)

}

The client creates an array ofN futures forint values. In general, these futures can appear in any context requiring
an int value and are used to makeN asynchronous calls to the server. For each call toserver.mem, a future is passed,
in which the server returns a result, along with appropriatearguments, which are used by the server to perform the
computation. The client then proceeds asynchronously withthe server to perform other work, possibly in parallel with
the server (if running multiprocessor). Finally, the client retrieves the results from the server by first performing a
blocking access to each future. After that future is retrieved, it can be retrieved again using the cheap nonblocking-
form (or the expensive blocking-form, but there is no point in synchronizing more than once for each asynchronous
call.)

The key point for explicit futures is that the client preallocates the future storage so the server does not perform any
dynamic memory-allocation for the futures, which can provided a substantial performance benefit. In the example, the
client is able to use low-cost stack storage for the futures needed to interact with the server.

3.1.5 Implicit Storage Management

The implicit storage-management (ISM) future (see Figure3.2) simplifies the future interface relative toFuture_ESM
by automatically managing the storage required for the asynchronous call.

Unlike the ESM future, an ISM futureis copyable, i.e., both assignment and pass-by-value are allowed. The ISM
future functions as a “handle” or smart pointer [Ale01] that refers to the result value. Any copy of an ISM future
refers to the same result value as the original. Although ISMfutures may be allocated on the stack, on the heap,
or statically, the underlying storage for the result value (and possibly for server-management data as well) is always
implicitly allocated on the heap. This storage is freed whenall futures referring to that value are destroyed.

Server-specific data (see Section3.1.2, p. 46) can be passed to an ISM future via its constructor.

Occasionally it is useful to know whether two futures refer to the result of the same asynchronous call. For
this reason,Future_ISM has one member not found inFuture_ESM. The member routineequals returnstrue if the
argument future refers to the same asynchronous call as thisfuture andfalse otherwise.

3.1.6 Example

This example uses ISM futures in the same way the previous example used ESM futures:

3.2. FUTURE ACCESS 49

template <typename T> class Future_ISM {
public :

Future_ISM();
Future_ISM(ServerData *serverData);

// used by client
bool available(); // future result available ?
T operator ()(); // access result, possibly having to wait
operator T(); // cheap access of result after waiting

_Event Cancellation {}; // raised if future cancelled
bool cancelled(); // future result cancelled ?
void cancel(); // cancel future result

bool equals(const Future_ISM<T> &other); // equality of reference

// used by server
void delivery(T result); // make result available in the future
void reset(); // mark future as empty (for reuse)
void exception(uBaseEvent *ex); // make exception available in the future

};

Figure 3.2: Future : Implicit Storage Management

Server server; // server thread to process async call
Future_ISM<int > f[10]; // created on the stack, but also uses heap
for (int i = 0; i < 10; i += 1) { // start a number of calls

f[i] = server.mem(i, ’c’); // async call
}
// work asynchronously while server processes requests
for (int i = 0; i < 10; i += 1) { // retrieve async results

osacquire(cout) << f[i]() << " " << // may block on first attempt to retrieve value
f[i] << endl; // use value again (cheap access)

}

Note that the asynchronous call to the server has the future as its return value, resembling a traditional return call,
unlike the ESM future. Also, an ISM future allows the internal server-management data to be hidden from the client.

3.2 Future Access

After a client has created a future, passed it to a server, andthen continued asynchronously, it normally accesses the
future to retrieve its value. The simplest way to access a future is to call itsoperator () member. If the client’s com-
putation is reasonably structured, this approach may provide good asynchrony, with only occasional short-blocking
because the future’s value is unavailable. However, asynchrony can be curtailed if the client accesses a future too early
and blocks when it could do other work. A more complicated wayof accessing a future is to check, using theavailable
method, whether the future is accessible before performinga potentially blocking access operation.

When a client creates multiple futures, and correspondingly makes multiple asynchronous calls using these futures,
neither of previous approaches may be satisfactory. The client may only be able to proceed when some combination of
the future results are available, or it may be able to proceedin different ways depending on the order in which results
become available. Although it is possible to use theavailable method to check for accessibility of a set of futures, it is
impossible to useavailable to wait on a future set without polling the futures (busy waiting). Hence, a more complex
future-selection mechanism is necessary. This mechanism can be divided into two basic forms: heterogeneous and
homogeneous.

heterogeneous:In this case, there are a number of futures that may have different types. Complicated selection
conditions are constructed by naming individual futures inexpressions. This style of selection provides great
flexibility, but does not scale to large numbers of futures.

50 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

homogeneous:In this case, there are a number of futures of related types. The set of futures are stored together in
a data structure like a container or array, and hence, must have some notion of common type. Two common
selection operations on the futures within the data structure are wait-for-any and wait-for-all, i.e., wait for the
first future in the set to becomes available, or wait for all futures in the set to become available. This style of
selection is practical for large numbers of futures, but lacks the flexibility of heterogeneous selection.

3.2.1 Select Statement�C++ provides a select statement to handle heterogeneous future selection by waiting for one or more available futures
based on a logical selection-criteria. The simplest form ofthe select statement has a single_Select clause, e.g.:

_Select (selector-expression);

The selector-expression must be satisfied before executioncontinues. When the selector-expression consists of a
reference to a single future, the expression is satisfied if and only if the future is available. For example, in:

_Select (f1); � f1();

the selector becomes select blocked untilf1.available() is true, which is equivalent to calling the blocking future access-
operator. More interesting is when multiple futures appearin a compound selector-expression, where the futures are
related using logical operators| | and&& to specify a compound selection criteria, e.g.:

_Select (f1 | | f2 && f3);

Normal operator precedence applies so the expression is implicitly parenthesized as:(f1 | | (f2 && f3)). Execution
waits until either futuref1 is available or both futuresf2 and f3 are available. Hence, for any selector-expression
containing an| | operator, some futures in the expression may be unavailableafter the selector-expression is satisfied.
For example, in the above selection expression, if futuref1 becomes available, neither, one or both off2 andf3 may be
available.

A _Select clause may be guarded with a logical expression, e.g.:

_When (conditional-expression) _Select (f1); � if (conditional-expression) _Select (f1);

The selector task is select blocked while the guard is true and there is no available future. A_When guard is considered
true if it is omitted or if itsconditional-expressionevaluates to non-zero. If the guard is false, execution continues
without waiting for any future to become available; for thisexample, the guard is the same as anif statement. Note, a
simple select-statement always waits until at least one future is available unless its guard is false.

The complex form of the select statement conditionally executes a specific actionafter each selector-expression
evaluates to true (see select-statement grammar in ChapterA, p. 151for complete syntax), e.g.:

_Select (selector-expression)
statement // action

After the selector-expression is satisfied, the action statement is executed; in this case, the action could simply follow
the select statement. However, the complex form of the select statement allows relating multiple_Select clauses
using keywordsor andand , each with a separate action statement. Theor and and keywords relate the_Select
clauses in exactly the same way operators| | and&& relate futures in a select-expression, including the same operator
precedence; parentheses may be used to specify evaluation order. For example, the previous select statement with a
compound selector-expression can be rewritten into its equivalent complex form with actions executed for each future
that becomes available (superfluous parentheses show precedence of evaluation):

(// superfluous parentheses
_Select (f1)

statement-1 // action
or (// superfluous parentheses

_Select (f2) // optional guard
statement-2 // action

and _Select (f3) // optional guard
statement-3 // action

) // and
) // or

The original selector-expression is now three connected_Select clauses, where each_Select clause has its own
action. During execution of the statement, each_Select -clause action is executed when its sub-selector-expression

3.2. FUTURE ACCESS 51

is satisfied, i.e., when each future becomes available; however, control does not continue until the selector-expression
associated with the entire statement is satisfied. For example, if f2 becomes available, statement-2 is executed but
the selector-expression associated with the entire statement is not satisfied so control blocks again. When eitherf1 or
f3 become available, statement-1 or 3 is executed, and the selector-expression associated with the entire statement is
satisfied so control continues. For this example, within theaction statement, it is possible to access the future using
the non-blocking access-operator since the future is knownto be available.

An action statement is triggered only once for its selector-expression, even if the selector-expression is compound.
For example, in:

_Select (f1 | | f2)
statement-1

and _Select (f3)
statement-2

statement-1 is only executed once even though both futuresf1 and f2 may become available while waiting for the
selector-expression associated with the entire statementto become satisfied. Also, in statement-1, it is unknown which
of futuresf1 or f2 satisfied the sub-selector-expression and caused the action to be triggered; hence, it is necessary to
check which of the two futures is available.

Note, a complex select-statement with_When guards is not the same as a group of connectedif statements, e.g.:

if (C1) _Select (f1); _When (C1) _Select (f1);
else if (C2) _Select (f2); or _When (C2) _Select (f2);

The left example waits for only futuref1 if C1 is true or onlyf2 if C1 is false andC2 is true. The right example waits
for either f1 or f2 if C1 andC2 are true. Like the_Accept statement, it takes2N � 1 if statements to simulate a
compound_Select statement withN _When guards (see p.23).

Finally, a select statement can be made non-blocking using aterminatingelse clause, e.g.:

_Select (selector-expression)
statement // action

_When (conditional-expression) else // optional guard & terminating clause
statement // action

Theelse clausemustbe the last clause of a select statement. If its guard is true or omitted and the select statement is
not immediately true, then the action for theelse clause is executed and control continues. If the guard is false, the
select statement blocks as if theelse clause is not present. (See Section10.2.3, p. 137for timeout with_Select .)

3.2.2 Wait Queue�C++ provides two data structures to handle homogeneous future selection. As with the two future types, they have
similar behaviour but different approaches to storage management.

ESM ISM

template < typename Selectee >
class uWaitQueue_ESM {

public :
uWaitQueue_ESM();
template < typename Iterator >

uWaitQueue_ESM(Iterator begin, Iterator end);
bool empty() const ;
void add(Selectee *n);
template < typename Iterator >

void add(Iterator begin, Iterator end);
void remove(Selectee *n);
Selectee *drop();

};

template < typename Selectee >
class uWaitQueue_ISM {

public :
uWaitQueue_ISM();
template < typename Iterator >

uWaitQueue_ISM(Iterator begin, Iterator end);
bool empty() const ;
void add(Selectee n);
template < typename Iterator >

void add(Iterator begin, Iterator end);
void remove(Selectee *n);
Selectee drop();

};

To useuWaitQueue_ISM, futures are added to the queue at construction or using theadd methods, and are removed
using thedrop method as each becomes available.uWaitQueue_ESM is similar, except it operates on future pointers.
For uWaitQueue_ESM, the client must ensure added futures remain valid, i.e., their storage persists, as long as they

52 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

are in auWaitQueue_ESM. For uWaitQueue_ISM, the added futures must be copyable, so ISM futures can be used
but not ESM futures;uWaitQueue_ESM is the only queue that can be used with ESM futures.

The operations available on both kinds of queue are:

uWaitQueue_ISM() / uWaitQueue_ESM() – constructs an empty queue.

uWaitQueue_ISM(Iterator begin, Iterator end) / uWaitQueue_ESM(Iterator begin, Iterator end) – constructs a
queue, adding all of the futures in the range referenced by the iteratorsbegin and end (inclusive of begin,
but exclusive ofend). For the ESM queue, it is pointers to the futures that are added to the queue.

empty – returns true if there are no futures in the queue, false otherwise.

add(Selectee n) – adds a single future to the queue (ISM).

add(Selectee *n) – adds a single pointer to a future to the queue (ESM).

add(Iterator begin, Iterator end) – adds all of the futures in the range referenced by the iteratorsbegin andend
(inclusive ofbegin, but exclusive ofend). For the ESM queue, it is pointers to the futures that are added to the
queue.

remove(Selectee n) – removes any futures in the queue that refer to the same asynchronous call asn (ISM).

remove(Selectee *n) – removes any occurrence of the future pointern from the queue (ESM).

drop – returns an available future from the queue, removing it from the queue. The client blocks if there is no
available future. If multiple futures are available, one ischosen arbitrarily to return; other available futures can
be obtained by further calls todrop. Calling drop on an empty ISM queue is an error; calling drop on an empty
ESM queue returnsNULL.

Thedrop method is an example of “wait-any” semantics in homogeneousselection: execution blocks until at least
one future is available. To provide “wait-all” semantics, where execution only continues when all futures are available,
a simple loop suffices:

uWaitQueue_ISM<Future_ISM<int > > queue; // or ESM
// add futures to queue
while (! queue.empty()) { // wait for all futures to become available

queue.drop();
}

Other semantics, such as “wait-n” (block untiln futures are available), can be obtained using more complex control
logic. Indeed, it is possible to use wait queues to simulate some forms of the_Select statement:

_Select (f1)
statement-1

or _Select (f2 && f3)
statement-2

uWaitQueue_ISM<Future_ISM<int > > queue;
queue.add(f1); queue.add(f2); queue.add(f3);
for (;;) {

queue.drop();
if (f1.available()) {

statement-1
break ;

} else if (f2.available() && f3.available()) {
statement-2
break ;

}
}

However, for more complex selection, the complexity of the simulation grows faster than the complexity of the equiva-
lent _Select statement. Furthermore, the_Select statement allows for different types of futures (includingboth ESM
and ISM futures) to be mixed in a single selection, whereas the futures in auWaitQueue must all have the same type.

3.3. SERVERS 53

Caller(s)

Caller(s)

Server

Server

Server

single future

multiple futures

return

call

return

call

return

call Admin

return

call

Caller Callee
return

call

Worker(s)

Worker(s)

requests

Figure 3.3: Basic Server Structures

3.3 Servers

A server performs a computation on behalf of a client allowing the client to execute asynchronously until it needs the
result of the computation. Figure3.3shows three basic organizational structures for servers, from simple to complex
(top to bottom). The top structure is the simplest, where a single client uses a direct asynchronous call to pass a
future to the server for computation and retrieves the result of this computation from the future before passing another
future (one-to-one relationship between client and server). This structure ensures the single client cannot block on
the asynchronous call because it synchronizes with the server when it accesses the future, so the server should always
be available to receive arguments for the next call. However, this structure may result in the server spending most
of its time blocked if the single client does significant additional computation (such as processing the future result)
before making the next call. Note, attempting to increase the server’s work by sending multiple futures produces no
additional asynchrony because the server cannot accept these calls while it is working nor does it have any place to
store the additional arguments for subsequent processing.

To mitigate server blocking, a server must be restructured to support multiple asynchronous calls while it is work-
ing. This approach allows one or more clients (many-to-one relationship between clients and server) to make one
or more asynchronous calls, supplying the server with more work to keep it from blocking. Two key changes are
required. First, a server must provide a request buffer to store arguments for multiple asynchronous calls. Second,
the server must poll periodically for new asynchronous calls while it is working, otherwise clients block attempting to
insert requests into the buffer until their call is accepted. This latter requirement is necessary because the buffer isa
shared resource that requires mutual exclusion, i.e., clients add to the buffer and the server removes from the buffer.
However, polling can obscure server code and polling frequency is always an issue. The only way to remove polling
is to separate the buffer’s mutual-exclusion from the server’s.

The middle structure in Figure3.3handles multiple asynchronous calls by transforming the direct communication
between client and server into indirect communication by composing the server as one of more worker tasks to perform
computations and a monitor buffering future requests from asynchronous calls between client(s) and worker(s). A
client places arguments into the input buffer along with a future to return a result, and then continues. A worker
removes arguments from the input buffer for computation andplaces the result of the computation into the supplied
future; inserting the result implicitly unblocks any waiting client(s) attempting access to the future. Clients may block
if there is contention on accessing the buffer or the buffer is full; workers may block if there is contention on accessing
the buffer or the buffer is empty. Any buffer management is performed by the client and/or worker when manipulating
the buffer(s).

The bottom structure in Figure3.3 transforms the monitor into a task, called a administrator [Gen81], and its
thread is used to perform complex coordination operations between clients and workers. Notice, the administrator
task still needs internal buffers to hold multiple arguments passed asynchronously by clients. Note, this approach now

54 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

shares the buffer mutual-exclusion with the task; however,the administrator task can mitigate this issue by not making
blocking calls and only performing simple administration work, so it is mostly ready to accept asynchronous calls
from clients. In this case, the administrator may spend mostof its time blocked waiting for client and/or worker calls,
but this behaviour is often a reasonable tradeoff to allow centralizing of administrative duties when managing complex
requests and interactions.

Figure3.4 illustrates a server composed of a monitor buffer and workertask (middle structure in Figure3.3). Both
an ESM and ISM version of the server are presented, where the differences are storage management and cancellation
of a future. Each server has server-specific data,ServerData, created in each future for use in cancellation. When
a client cancels a future associated with this server, member ServerData::cancel is called, and both servers mark the
position in the request queue to indicate that future is cancelled. The worker-task type,InputWorker, and an instance of
it, is, are local to the server for abstraction and encapsulation reasons.InputWorker reads an< integer; string > tuple
and communicates the tuple to the server via a synchronous call to the private mutex-memberinput, which checks if
a future exists with a matching integer key, and if so, placesthe string into that future as its result value. The ESM
server conditionally inserts the string into the future by checks if the future at positionvalue is NULL indicating it has
been cancelled. The ISM server does not conditionally insert the string because an empty future is inserted at position
value to hold the string if the original future is cancelled. Asynchronous calls from clients are made by calling mutex
memberrequest, specifying an integer key and a future to return the associated string read by the input worker. The
ESM server resets the future passed to it as it is about to be reused, and the ISM server creates a new future. If the new
request is greater than the vector size, the vector size is increased. The future is then buffered in vectorrequests until
the input worker subsequently fills it in with a value, and server-specific data is filled into the future in case the client
cancels the future.

3.3. SERVERS 55

ESM ISM

_Monitor InputServer {
struct ServerData {

InputServer *server;
int requested;

bool cancel() {
server->requests[requested] = NULL;
return true ;

} // ServerData::cancel
ServerData() {}

}; // ServerData

_Task InputWorker {
InputServer &is;

void main() {
int id;
string text;

while (cin >> id) {
getline(cin, text);
is.input(id, text);

} // while
} // main

public :
InputWorker(InputServer &is) : is(is) {}

}; // InputWorker
public :

typedef Future_ESM< string,
ServerData > FutureType;

private :
InputWorker iw;
vector< FutureType * > requests;

_Mutex void input(int value, string text) {
if (requests.size() > value) {

if (requests[value] != NULL) {
requests[value]->delivery(text);

} // if
} // if

} // input
public :

InputServer() : iw(*this) {}

void request(FutureType *f, int requested) {
f->reset();
if (requests.size() <= requested) {

requests.resize(requested + 1);
} // if
requests[requested] = f;
f->serverData.server = this ;
f->serverData.requested = requested;

} // request
}; // InputServer

_Monitor InputServer {
struct ServerData : public Future_ISM< string >::ServerData {

InputServer *server;
int requested;

bool cancel() {
server->requests[requested] = Future_ISM< string >();
return true ;

} // ServerData::cancel
ServerData(InputServer *s, int r) : server(s), requested(r) {}

}; // ServerData

_Task InputWorker {
InputServer &is;

void main() {
int id;
string text;

while (cin >> id) {
getline(cin, text);
is.input(id, text);

} // while
} // main

public :
InputWorker(InputServer &is) : is(is) {}

}; // InputWorker
public :

typedef Future_ISM< string > FutureType;

private :
InputWorker iw;
vector< FutureType > requests;

_Mutex void input(int value, string text) {
if (requests.size() > value) {

requests[value].delivery(text);

} // if
} // input

public :
InputServer() : iw(*this) {}

FutureType request(int requested) {
FutureType f(new ServerData(this , requested));
if (requests.size() <= requested) {

requests.resize(requested + 1);
} // if
requests[requested] = f;

return f;
} // request

}; // InputServer

Figure 3.4: Example Server

56 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

Chapter 4

Input/Output

A major problem with concurrency and the file system is that, like the compiler, the file system is unaware if a program
is concurrent (see Section2.13, p. 33). To ensure multiple tasks are not performing I/O operations simultaneously on
the same file descriptor, each�C++ file is implemented as a monitor that provides mutual exclusion on I/O operations.
However, there are more complex issues relating to I/O operations in a concurrent system.

4.1 Nonblocking I/O

For a sequential program performing an I/O operation that cannot proceed immediately, the normal action for the file
system is to block the program until the operation can continue. For example, when a program needs input from the
keyboard, the file system blocks the program until data is entered. This action is correct for a sequential program
because there is no other work for it to do until the new data issupplied by the user. However, this action may be
incorrect for a concurrent program because there may be other work to do even without the user data. Therefore, the
normal action by the file system, called heavy blocking (see Section8.4.3, p. 124), is usually inappropriate for a con-
current program because it inhibits concurrency. Therefore, I/O operations must be transformed from heavy blocking
to light blocking so that execution of other tasks can continue. This transformation is achieved by nonblocking I/O.
To simplify the complexity of nonblocking I/O,�C++ supplies a nonblocking I/O library.

While I/O operations can be made nonblocking, this requiresspecial action as the nonblocking I/O operations may
not restart automatically when the operation completes. Instead, it may be necessary to poll for I/O completions, which
is done through theselect operation in UNIX, while other tasks execute. Only when all tasks on a cluster are directly
or indirectly (light-) blocked, waiting for I/O operationsto complete, can the virtual processor be heavy blocked.

This scenario is implemented automatically by�C++ choosing a task performing I/O to poll for completion of
any I/O operation, called thepoller task; all other tasks performing I/O are light blocked. When an I/O operation
completes (e.g., aread or write), the task waiting for that operation is unblocked by the poller task. If the poller’s
I/O completes, it unblocks one of the I/O blocked tasks and that task becomes the I/O poller. Only when the poller
detects that no I/O operations have completed and there are no tasks on the cluster to execute (i.e., the cluster’s ready
queue is empty) does the poller perform a heavy block. This scheme allows other tasks to progress with only a slight
degradation in performance due to the polling task.

4.2 C++ Stream I/O

Because a stream may be shared by multiple tasks, charactersgenerated by the insertion operator (<<) and/or the
extraction operator>> in different tasks may be intermixed. For example, if two tasks execute the following:

task1 : cout << "abc " << "def " << endl;
task2 : cout << "uvw " << "xyz " << endl;

some of the different outputs that can appear are:

57

58 CHAPTER 4. INPUT/OUTPUT

abc def
uvw xyz
uvw abc def
xyz
abc uvw xyz
def
uvw abc xyz def

abuvwc dexfyz

In fact, concurrent operations can even corrupt the internal state of the stream, resulting in failure. As a result, some
form of mutual exclusion is required for concurrent stream access. A coarse-grained solution is to perform all stream
operations (e.g., I/O) via a single task or within a monitor,providing the necessary mutual exclusion for the stream.
A fine-grained solution is to have a lock for each stream, which is acquired and released around stream operations by
each task.�C++ provides a fine-grained solution where an owner lock is acquired and released indirectly by instantiating
a type that is specific to the kind stream: typeisacquire for input streams and typeosacquire for output streams.
For the duration of objects of these types on an appropriate stream, that stream’s owner lock is held so I/O for that
stream occurs with mutual exclusion within and across I/O operations performed on the stream. The lock acquire is
performed in the object’s constructor and the release is performed in the destructor. The most common usage is to
create an anonymous object to lock the stream during a singlecascaded I/O expression, e.g.:

task1 : osacquire(cout) << "abc " << "def " << endl; // anonymous locking object
task2 : osacquire(cout) << "uvw " << "xyz " << endl; // anonymous locking object

constraining the output to two different lines in any order:

abc def
uvw xyz

uvw xyz
abc def

The anonymous locking object is only deallocated after the entire cascaded I/O expression is completed, and it then
implicitly releases the stream’s owner lock in its destructor.

Because of the properties of an owner lock, a task can allocate multiple locking objects for a specified stream,
and the stream’s owner lock is only released when the topmostlocking object is deallocated. Therefore, multiple I/O
statements can be protected atomically using normal block structure, e.g.:

{ // acquire the lock for stream cout for block duration
osacquire acq(cout); // named stream locker
cout << "abc";
osacquire(cout) << "uvw " << "xyz " << endl; // ok to acquire and release again
cout << "def";

} // implicitly release the lock when “acq” is deallocated

For anfstream, which can perform both input and output, bothisacquire andosacquire can be used. The only
restriction is that the kind of stream locker has to match with kind of I/O operation, e.g.:

fstream file("abc");
osacquire(file) << . . . // output operations
. . .
isacquire(file) >> . . . // input operations

For protecting multiple I/O statements on anfstream, eitherisacquire or osacquire can be used to acquire the stream
lock, e.g.:

fstream file("abc");
{ // acquire the lock for stream file for block duration

osacquire acq(file); // or isacquire acq(file)
file >> . . . // input operations
. . .
file << . . . // output operations

} // implicitly release the lock when “acq” is deallocated

WARNING: Deadlock can occur if routines are called in an I/O sequence that might block, e.g.:

4.3. UNIX FILE I/O 59

osacquire(cout) << "data:" << Monitor.rtn(. . .) << endl;

The problem occurs if the task executing the I/O sequence blocks in the monitor when it is holding the I/O lock for
streamcout. Any other task that attempts to write oncout blocks until the task holding the lock is unblocked and
releases it. This scenario can lead to deadlock if the task that is going to unblock the task waiting in the monitor first
writes tocout. One simple precaution is to factor the call to the monitor routine out of the I/O sequence, e.g.:

int data = Monitor.rtn(. . .);
osacquire(cout) << "data:" << data << endl;

4.3 UNIX File I/O

The following interface is provided to use UNIX files. A file isa passive object that has information written into and
read from it by tasks; therefore, a file is like a monitor, which provides indirect communication among tasks. The
difference between a file and a monitor is that the file is on secondary storage, and hence, is not directly accessible by
the computer’s processors; a file must be made explicitly accessible before it can be used in a program. Furthermore,
a file may have multiple accessors—although it is up to UNIX tointerpret the meaning of these potentially concurrent
accessors—so there is a many-to-one relationship between afile and its accessors. This relationship is represented in
a�C++ program by a declaration for a file and subsequent declarations for each accessor.

Traditionally, access to a file is explicit and is achieved procedurally by a call to “open” and a subsequent call
to “close” to terminate the access. In�C++, the declaration of a specialaccess objectperforms the equivalent of the
traditional open and its deallocation performs the equivalent of the traditional close. In many cases, the access object
is a local variable so that the duration of access is tied to the duration of its containing block. However, by dynamically
allocating an access object and passing its pointer to otherblocks, the equivalent access duration provided by traditional
“open” and “close” can be achieved.

In �C++, a connection to a UNIX file is made by declaration of auFile object, e.g.:

uFile infile("abc"), outfile("xyz");

which creates two connection variables,infile and outfile, connected to UNIX filesabc and xyz, respectively. The
operations available on a file object are:

class uFile {
public :

uFile(const char *name);
~uFile();

const char *getName() const ;
void status(struct stat &buf);

_Event Failure;
_Event TerminateFailure;
_Event StatusFailure;

}; // uFile

The parameters for the first and second constructors ofuFile are as follows. Thename parameter is the UNIX name of
the file, which is connected to the program. The destructor ofuFile checks if there are any registered accessors using
the file, and raises the exceptionTerminateFailure if there are.

It is not meaningful to read or to assign to auFile object, or copy auFile object (e.g., pass it as a value parameter).
The member routinegetName returns the string name associated with a file.
The parameter for member routinestatus is explained in the UNIX manual entry forstat. (The first parameter to

the UNIX stat routine is unnecessary, as it is provided implicitly by theuFile object.) Because a file object is still
inaccessible after a connection is made, there are no memberroutines to access its contents.

To use the interface, include the file:

#include <uFile.h>

at the beginning of each source file.uFile.h also includes the following UNIX system file:<fcntl.h>

60 CHAPTER 4. INPUT/OUTPUT

class uFileAccess {
public :

uFileAccess(uFile &f, int flags, int mode = 0644);
~uFileAccess();

int read(char *buf, int len, uDuration *timeout = NULL);
int readv(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
_Mutex int write(char *buf, int len, uDuration *timeout = NULL);
int writev(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
off_ t lseek(off_ t offset, int whence);
int fsync();
int fd();

_Event Failure;
_Event OpenFailure;
_Event CloseFailure;
_Event SeekFailure;
_Event SyncFailure;
_Event ReadFailure;
_Event ReadTimeout;
_Event WriteFailure;
_Event WriteTimeout;

}; // uFileAccess

Figure 4.1:uFileAccess Interface

4.3.1 File Access

Once a connection is made to a UNIX file, its contents can be accessed by declaration of auFileAccess object, e.g.:

uFileAccess input(infile, O_RDONLY), output(outfile, O_CREAT | O_WRONLY);

which creates one access object to read from the connection to file abc and one object to write to the connection made
to file xyz. The operations available on an access object are listed in Figure4.1:

The parameters for the constructoruFileAccess are as follows. Thef parameter is auFile object to be opened
for access. Theflags and mode parameters are explained in the UNIX manual entry foropen. The destructor of
uFileAccess terminates access to the file and deregisters with the associateduFile object.

It is not meaningful to read or to assign to auFileAccess object, or copy auFileAccess object (e.g., pass it as a
value parameter).

The parameters and return value for member routinesread, readv, write, writev, lseek and fsync are explained
in their corresponding UNIX manual entries. (The first parameter to these UNIX routines is unnecessary, as it is
provided implicitly by theuFileAccess object.) The only exception is the optional parametertimeout, which points
to a maximum waiting time for completion of the I/O operationbefore aborting the operation by raising an exception
(see Section10.2.4, p. 138). (The typeuDuration is defined in Section10.1, p. 133.) AppendixC.4, p. 168 shows
reading and writing to UNIX files.

The member routinefd returns the file descriptor for the open UNIX file.

4.4 BSD Sockets
The following interface is provided to use BSD sockets. A socket is an end point for communicating among tasks in
different processes, possibly on different computers. A socket endpoint is accessed in one of two ways:

1. as aclient, which is one-to-many for connectionless communication with multiple server socket-endpoints, or
one to one for peer-connection communication with a server’s acceptor socket-endpoint.

2. as aserver, which is one-to-many for connectionless communication with multiple client socket-endpoints, or
one to one for peer-connection communication with a server’s acceptorsocket-endpoint.

The relationship between connectionless and peer-connection communication is shown in Figures4.2 and 4.3. For
connectionless communication (see Figure4.2), any of the client socket-endpoints can communicate with any of the

4.4. BSD SOCKETS 61

client4client3 server1S

server2S

server3S

S

client2
S

process

process

server1
server2process

process

client1
process

client2
socket endpointS

Sclient3 S

client1
Figure 4.2: Client/Server Connectionless

client3 Sclients3 Sclient1
Sclient2
Sclients4client2 server1

process

acceptor descriptorAsocket endpointS

acceptor1
process
server2acceptor3

acceptor4process
client1

process

process

S
A

A

A acceptor2S

A

Figure 4.3: Client/Server Peer Connected

server socket-endpoints, and vice versa, as long as the other’s address is known. This flexibility is possible because
each communicated message contains the address of the sender or receiver; the network then routes the message to this
address. For convenience, when a message arrives at a receiver, the sender’s address replaces the receiver’s address,
so the receiver can reply back. For peer-connection communication (see Figure4.3), a client socket-endpoint can
only communicate with the server socket-endpoint it has connected to, and vice versa. The dashed lines show the
connection of the client and server. The dotted lines show the creation of an acceptor to service the connection for peer
communication. The solid lines show the bidirectional communication among the client and server’s acceptor. Since
a specific connection is established between a client and server socket-endpoints, messages do not contain sender
and receive addresses, as these addresses are implicitly known through the connection. Notice there are fewer socket
endpoints in the peer-connection communication versus theconnectionless communication, but more acceptors. For
connectionless communication, a single socket-endpoint sequentially handles both the connection and the transfer
of data for each message. For peer-connection communication, a single socket-endpoint handles connections and an
acceptor transfers data in parallel. In general, peer-connection communication is more expensive (unless large amounts
of data are transferred) but more reliable than connectionless communication.

A server socket has a name, either a character string for UNIXpipes or port-number/machine-address for an INET
address, that clients must know to communicate. For connectionless communication, the server usually has a reader

62 CHAPTER 4. INPUT/OUTPUT

task that receives messages containing the client’s address. The message can be processed by the reader task or given to
a worker task to process, which subsequently returns a replyusing the client’s address present in the received message.
For peer-connection communication, the server usually hasone task in a loop accepting connections from clients, and
each acceptance creates an acceptor task. The acceptor taskreceives messages from only one client socket-endpoint,
processes the message and subsequently returns a reply, in parallel with accepting clients. Since the acceptor and
client are connected, communicated messages do not containclient addresses. These relationships are represented in
a�C++ program by declarations of client, server and acceptor objects, respectively.

The�C++ socket interface provides a convenience feature for connectionless communication to help manage the
addresses where messages are sent. It is often the case that aclient only sends messages from its client socket-endpoint
to a single server socket-endpoint or sends a large number ofmessages to a particular server socket-endpoint. In these
cases, the address of the server remains constant for a long period of time. To mitigate having to specify the server
address on each call for a message send, the client socket-endpoint remembersthe last server address it receives a
message from, and there is a short form of send that uses this remembered address. The initial remembered (default)
address can be set when the client socket-endpoint is created or set/reset at any time during its life-time. A similar
convenience feature exists for the server socket-endpoint, where the last client address it receives a message from is
remembered and can be implicitly used to send a message directly back to that client.

To use the interface in a�C++ program, include the file:

#include <uSocket.h>

at the beginning of each source file.uSocket.h also includes the following UNIX system files:<sys/fcntl.h>,
<sys/types.h>, <sys/socket.h>,<sys/un.h>, <netdb.h>.

4.4.1 Client

In �C++, a client, its socket endpoint, and possibly a connection to a server are created by declaration of auSocketClient
object, e.g.:

uSocketClient client("abc");

which creates a client variable,client, connected to the UNIX server socket,abc. The operations provided by
uSocketClient are listed in Figure4.4:

The first two constructors ofuSocketClient are for use with the UNIX address family. The parameters for the
constructors are as follows. Thename parameter is the name of an existing UNIX stream that the client is connecting
to. Thename parameter can beNULL for typeSOCK_DGRAM, if there is no initial server address. The optional default
type andprotocol parameters are explained in the UNIX manual entry forsocket. Only typesSOCK_STREAM and
SOCK_DGRAM communication can be specified, and any protocol appropriate for the specified communication type
(usually 0). The optionaltimeout parameter is a pointer to a maximum waiting time for completion of a connection
for type SOCK_STREAM before aborting the operation by raising an exception (see Section 10.2.4, p. 138); this
parameter is only applicable for peer-connection,SOCK_STREAM, communication.

The next two constructors ofuSocketClient are for use with the INET address family on a local host. The param-
eters for the constructors are as follows. Theport parameter is the port number of an INET port on the local host
machine. The optional defaulttype andprotocol parameters are explained in the UNIX manual entry forsocket. Only
typesSOCK_STREAM andSOCK_DGRAM communication can be specified, and any protocol appropriate for the
specified communication type (usually 0). The optional parameter timeout is a pointer to a maximum waiting time
for completion of a connection for typeSOCK_STREAM before aborting the operation by raising an exception; this
parameter is only applicable for peer-connection,SOCK_STREAM, communication.

The last two constructors ofuSocketClient are for use with the INET address family on a nonlocal host. All
parameters are the same as for the local host case, except thenonlocal host machine-name is specified by thename
parameter.

The destructor ofuSocketClient terminates the socket (close) and removes any temporary files created implicitly
for SOCK_STREAM andSOCK_DGRAM communication.

It is not meaningful to read or to assign to auSocketClient object, or copy auSocketClient object (e.g., pass it as a
value parameter).

The member routinesetServer changes the address of the default server for the short formsof sendto andrecvfrom.
The member routinegetServer returns the address of the default server.

4.4. BSD SOCKETS 63

_Monitor uSocketClient {
public :

// AF_UNIX
uSocketClient(const char *name, int type = SOCK_STREAM, int protocol = 0);
uSocketClient(const char *name, uDuration *timeout, int type = SOCK_STREAM, int protocol = 0);
// AF_INET, local host
uSocketClient(unsigned short port, int type = SOCK_STREAM, int protocol = 0);
uSocketClient(unsigned short port, uDuration *timeout, int type = SOCK_STREAM, int protocol = 0);
// AF_INET, other host
uSocketClient(unsigned short port, const char *name, int type = SOCK_STREAM, int protocol = 0);
uSocketClient(unsigned short port, const char *name, uDuration *timeout, int type = SOCK_STREAM,

int protocol = 0);
~uSocketClient();

void setServer(struct sockaddr *addr, int len);
void getServer(struct sockaddr *addr, socklen_t *len);

const struct sockaddr *getsockaddr(); // must cast result to sockaddr_in or sockaddr_un
int getsockname(struct sockaddr *name, socklen_t *len);
int getpeername(struct sockaddr *name, socklen_t *len);

int read(char *buf, int len, uDuration *timeout = NULL);
int readv(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
_Mutex int write(char *buf, int len, uDuration *timeout = NULL);
int writev(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
int send(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int sendto(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int sendto(char *buf, int len, struct sockaddr *to, socklen_t tolen, int flags = 0, uDuration *timeout = NULL);
int sendmsg(const struct msghdr *msg, int flags = 0, uDuration *timeout = NULL);
int recv(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int recvfrom(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int recvfrom(char *buf, int len, struct sockaddr *from, socklen_t *fromlen, int flags = 0,

uDuration *timeout = NULL);
int recvmsg(struct msghdr *msg, int flags = 0, uDuration *timeout = NULL);
int fd();

_Event Failure;
_Event OpenFailure;
_Event OpenTimeout;
_Event CloseFailure;
_Event ReadFailure;
_Event ReadTimeout;
_Event WriteFailure;
_Event WriteTimeout;

};

Figure 4.4:uSocketClient Interface

64 CHAPTER 4. INPUT/OUTPUT

The parameters and return value for the I/O members are explained in their corresponding UNIX manual entries,
with the following exceptions:� getpeername is only applicable for connected sockets.� The first parameter to these UNIX routines is unnecessary, asit is provided implicitly by theuSocketClient

object� The lack of address for the overloaded member routinessendto andrecvfrom.

The client implicitly remembers the address of the initial connection and eachrecvfrom call. Therefore, no
address needs to be specified in thesendto, as the data is sent directly back to the last address received. If
a client needs to communicate with multiple servers, explicit addresses can be specified in bothsendto and
recvfrom.

This capability eliminates the need to connect datagram sockets to use the short communication formssend
and recv, using the connected address. In general, connected datagram sockets have the same efficiency as
unconnected ones, but preclude specific addressing viasendto and recvfrom. The above scheme provides the
effect of a connected socket while still allowing specific addressing if required.� The optional parametertimeout, which points to a maximum waiting time for completion of theI/O operation
before aborting the operation by raising an exception

The member routinefd returns the file descriptor for the client socket.
AppendixC.5.1, p.170shows a client communicating with a server using a UNIX socket and datagram messages.

AppendixC.5.3, p. 172shows a client connecting to a server using an INET socket andstream communication with
an acceptor.

4.4.2 Server

In �C++, a server, its socket endpoint, and possibly a connection to a client are created by declaration of a
uSocketServer object, e.g.:

uSocketServer server("abc");

which creates a server variable,server, and a UNIX server socket endpoint,abc. The operations provided by
uSocketServer are listed in Figure4.5:

The first constructor ofuSocketServer is for use with the UNIX address family. The parameters for the con-
structors are as follows. Thename parameter is the name of a new UNIX server socket that the server is creating.
The optional defaulttype andprotocol parameters are explained in the UNIX manual entry forsocket. Only types
SOCK_STREAM andSOCK_DGRAM communication can be specified, and any protocol appropriate for the spec-
ified communication type (usually 0). The optional defaultbacklog parameters is explained in the UNIX manual
entry for listen; it specifies a limit on the number of incoming connections from clients and is only applicable for
peer-connection,SOCK_STREAM, communication.

The next two constructors ofuSocketServer are for use with the INET address family on a local host. The pa-
rameters for the constructors are as follows. Theport parameter is the port number of an INET port on the local host
machine, or a pointer to a location where a free port number, selected by the UNIX system, is placed. The optional
defaulttype andprotocol parameters are explained in the UNIX manual entry forsocket. Only typesSOCK_STREAM
and SOCK_DGRAM communication can be specified, and any protocol appropriate for the specified communica-
tion type (usually 0). The optional defaultbacklog parameters is explained in the UNIX manual entry forlisten;
it specifies a limit on the number of incoming connections from clients and is only applicable for peer-connection,
SOCK_STREAM, communication.

The destructor ofuSocketServer terminates the socket (close) and checks if there are any registered accessors
using the server, and raises the exceptionCloseFailure if there are.

It is not meaningful to read or to assign to auSocketServer object, or copy auSocketServer object (e.g., pass it as
a value parameter).

The member routinesetClient changes the address of the default client for the short formsof sendto andrecvfrom.
The member routinegetClient returns the address of the default client.

The parameters and return value for the I/O members are explained in their corresponding UNIX manual entries,
with the following exceptions:

4.4. BSD SOCKETS 65

_Monitor uSocketServer {
public :

// AF_UNIX
uSocketServer(const char *name, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
// AF_INET, local host
uSocketServer(unsigned short port, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
uSocketServer(unsigned short *port, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
~uSocketServer();

void setClient(struct sockaddr *addr, int len);
void getClient(struct sockaddr *addr, socklen_t *len);

const struct sockaddr *getsockaddr(); // must cast result to sockaddr_in or sockaddr_un
int getsockname(struct sockaddr *name, socklen_t *len);
int getpeername(struct sockaddr *name, socklen_t *len);

int read(char *buf, int len, uDuration *timeout = NULL);
int readv(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
_Mutex int write(char *buf, int len, uDuration *timeout = NULL);
int writev(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
int send(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int sendto(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int sendto(char *buf, int len, struct sockaddr *to, socklen_t tolen, int flags = 0, uDuration *timeout = NULL);
int sendmsg(const struct msghdr *msg, int flags = 0, uDuration *timeout = NULL);
int recv(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int recvfrom(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int recvfrom(char *buf, int len, struct sockaddr *from, socklen_t *fromlen, int flags = 0,

uDuration *timeout = NULL);
int recvmsg(struct msghdr *msg, int flags = 0, uDuration *timeout = NULL);
int fd();

_Event Failure;
_Event OpenFailure;
_Event CloseFailure;
_Event ReadFailure;
_Event ReadTimeout;
_Event WriteFailure;
_Event WriteTimeout;

};

Figure 4.5:uSocketServer Interface� getpeername is only applicable for connected sockets.� The first parameter to these UNIX routines is unnecessary, asit is provided implicitly by theuSocketClient
object� The lack of address for the overloaded member routinessendto andrecvfrom.

The server implicitly remembers the address of the initial connection and eachrecvfrom call. Therefore, no
address needs to be specified in thesendto, as the data is sent directly back to the last address received. If a
server needs to communicate with multipleclients without responding back immediately to each request, explicit
addresses can be specified in bothsendto andrecvfrom.

This capability eliminates the need to connect datagram sockets to use the short communication formssend
and recv, using the connected address. In general, connected datagram sockets have the same efficiency as
unconnected ones, but preclude specific addressing viasendto and recvfrom. The above scheme provides the
effect of a connected socket while still allowing specific addressing if required.

66 CHAPTER 4. INPUT/OUTPUT� The optional parametertimeout, which points to a maximum waiting time for completion of theI/O operation
before aborting the operation by raising an exception (see Section10.2.4, p. 138)

The member routinefd returns the file descriptor for the server socket.
AppendixC.5.2, p. 171shows a server communicating with multiple clients using a UNIX socket and datagram

messages. AppendixC.5.4, p. 174 shows a server communicating with multiple clients using anINET socket and
stream communication with an acceptor.

4.4.3 Server Acceptor

After a server socket is created for peer-connection communication, it is possible to accept connections from clients
by declaration of auSocketAccept object, e.g.:

uSocketAccept acceptor(server);

which creates an acceptor object,acceptor, that blocks until a client connects to the UNIX socket,abc, represented by
server objectserver. The operations provided byuSocketAccept are listed in Figure4.6:

The parameters for the constructors ofuSocketAccept are as follows. Thes parameter is auSocketServer object
through which a connection to a client is made. The optional default adr and len parameters, are explained in the
UNIX manual entry foraccept, and are used to determine information about the client the acceptor is connected
to. The optionaltimeout parameter is a pointer to a maximum waiting time for completion of the connection before
aborting the operation by raising an exception (see Section10.2.4, p. 138). The optionaldoAccept parameter is a
boolean where true means do an initial accept during initialization of the acceptor and false means do not do an initial
accept. If thedoAccept parameter is not specified, its value is true.

The destructor ofuSocketAccept terminates access to the socket (close) and deregisters with the associated
uSocketServer object.

It is not meaningful to read or to assign to auSocketAccept object, or copy auSocketAccept object (e.g., pass it as
a value parameter).

The member routineaccept closes any existing connection to a client, and accepts a newconnection with a client.
This routine uses the default valuesadr, len and timeout as specified to theuSocketAccept constructor for the new
connection, unless the optionaltimeout parameter is specified, which is used for the current accept and replaces the
defaulttimeout for subsequent accepts. The member routineclose closes any existing connection to a client.

The parameters and return value for the I/O members are explained in their corresponding UNIX manual entries,
with the following exceptions:� The first parameter to these UNIX routines is unnecessary, asit is provided implicitly by theuSocketClient

object� The optional parametertimeout, which points to a maximum waiting time for completion of theI/O operation
before aborting the operation by raising an exception (see Section10.2.4, p. 138)

The member routinefd returns the file descriptor for the accepted socket.2 �C++ doesnot support out-of-band data on sockets. Out-of-band data requires the ability to install a
signal handler (see Section4.1, p. 57). Currently, there is no facility to do this. 2

4.4. BSD SOCKETS 67

_Monitor uSocketAccept {
public :

uSocketAccept(uSocketServer &s, struct sockaddr *adr = NULL, socklen_t *len = NULL);
uSocketAccept(uSocketServer &s, uDuration *timeout, struct sockaddr *adr = NULL, socklen_t *len = NULL);
uSocketAccept(uSocketServer &s, bool doAccept, struct sockaddr *adr = NULL, socklen_t *len = NULL);
uSocketAccept(uSocketServer &s, uDuration *timeout, bool doAccept, struct sockaddr *adr = NULL,

socklen_t *len = NULL);
~uSocketAccept();

void accept();
void accept(uDuration *timeout);
void close();

_Mutex const struct sockaddr *getsockaddr(); // must cast result to sockaddr_in or sockaddr_un
_Mutex int getsockname(struct sockaddr *name, socklen_t *len);
_Mutex int getpeername(struct sockaddr *name, socklen_t *len);

int read(char *buf, int len, uDuration *timeout = NULL);
int readv(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
_Mutex int write(char *buf, int len, uDuration *timeout = NULL);
int writev(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
int send(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int sendto(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int sendto(char *buf, int len, struct sockaddr *to, socklen_t tolen, int flags = 0, uDuration *timeout = NULL);
int sendmsg(const struct msghdr *msg, int flags = 0, uDuration *timeout = NULL);
int recv(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int recvfrom(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int recvfrom(char *buf, int len, struct sockaddr *from, socklen_t *fromlen, int flags = 0,

uDuration *timeout = NULL);
int recvmsg(struct msghdr *msg, int flags = 0, uDuration *timeout = NULL);
int fd();

_Event Failure;
_Event OpenFailure;
_Event OpenTimeout;
_Event CloseFailure;
_Event ReadFailure;
_Event ReadTimeout;
_Event WriteFailure;
_Event WriteTimeout;

};

Figure 4.6:uSocketAccept Interface

68 CHAPTER 4. INPUT/OUTPUT

Chapter 5

Exceptions

C++ has an exception handling mechanism (EHM) based on throwing and catching in sequential programs; however,
this mechanism does not extend to a complex execution-environment. The reason is that the C++ EHM only deals
with a single raise-mechanism and a simple execution-environment, i.e., throwing and one stack. The�C++ execution
environment is more complex, and hence, it provides additional raising-mechanisms and handles multiple execution-
states (multiple stacks). These enhancements require additional language semantics and constructs; therefore, the
EHM in �C++ is a superset of that in C++, providing more advanced exception semantics. As well, with hindsight,
some of the poorer features of C++’s EHM are replaced by better mechanisms.

5.1 EHM
An exceptional eventis an event that is (usually) known to exist but which isancillary to an algorithm, i.e., an
exceptional event usually occurs with low frequency. Some examples of exceptional events are division by zero, I/O
failure, end of file, pop from an empty stack, inverse of a singular matrix. Often an exceptional event occurs when an
operation cannot perform its desired computation (Eiffel’s notion of contract failure [Mey92, p. 395]). While errors
occur infrequently, and hence, are often considered an exceptional event, it is incorrect to associate exceptions solely
with errors; exceptions can be a standard part of a regular algorithm.

An exceptional event is often represented in a programming language by a type name, called anexception type.
An exception is an instance of an exception type, which is used in a specialoperation, calledraising, indicating an
ancillary (exceptional) situation. Raising results in anexceptionalchange of control flow in the normal computation
of an operation, i.e., control propagates immediately to a dynamically specifiedhandler. To be useful, the handler
location must be dynamically determined, as opposed to statically determined; otherwise, the same action and context
for that action is executed for every exceptional change.

Two actions can sensibly be taken for an exceptional event:

1. The operation can fail requiringtermination of the expression, statement or block from which the operation is
invoked. In this case, if the handler completes, control flowcontinuesafter the handler, and the handler acts as
an alternative computation for the incomplete operation.

2. The operation can fail requiring a corrective action before resumption of the expression, statement or block
from which the operation is invoked. In this case, if the handler completes, control flowreturnsto the operation,
and the handler acts as a corrective computation for the incomplete operation.

Both kinds of actions are supported in�C++. Thus, there are two possible outcomes of an operation: normal completion
possibly with a correction action, or failure with change incontrol flow and alternate computation.2 Even with the availability of modern EHMs, the common programming techniques often used to

handle exceptional events are return codes and status flags (although this is slowly changing). Thereturn
codetechnique requires each routine to return a correctness value on completion, where different values
indicate a normal or exceptional result during a routine’s execution. Alternatively, or in conjunction with
return codes, is thestatus flag technique requiring each routine to set a shared variable oncompletion,

69

70 CHAPTER 5. EXCEPTIONS

where different values indicate a normal or exceptional result during a routine’s execution, e.g.,errno in
UNIX systems. The status value remains as long as it is not overwritten by another routine. 2

5.2 �C++ EHM

The following features characterize the�C++ EHM, and differentiate it from the C++ EHM:� �C++ exceptions are generated from a specific kind of type, which can be thrown and/or resumed. All exception
types are also grouped into a hierarchy, where the hierarchyis built by publicly inheriting among the exception
types. �C++ extends the C++ set of predefined exception-types1 covering�C++ exceptional runtime and I/O
events.� �C++ restricts raising of exceptions to the specific exception-types; C++ allows any instantiable type to be raised.� �C++ supports two forms of raising, throwing and resuming; C++ only supports throwing. All�C++ exception-
types can be either thrown or resumed.�C++ adopts a propagation mechanism eliminating recursive resuming
(see Section5.5.3.1, p. 78), even for concurrent exceptions. Essentially,�C++ follows a common rule for
throwing and resuming: between a raise and its handler, eachhandler is eligible only once.� �C++ supports two kinds of handlers, termination and resumption, which match with the kind of raise; C++ only
supports termination handlers. Unfortunately, resumption handlers must be simulated using routines/functors
due to the lack of nested routines in C++.� �C++ supports raising of nonlocal and concurrent exceptionsso that exceptions can be used to affect control
flow amongcoroutines and tasks. Anonlocal exceptionoccurs when the raising and handling execution-states
are different, and control flow is sequential, i.e., the thread raising the exception is also the thread handling the
exception. Aconcurrent exceptionalso has different raising and handling execution-states (hence, concurrent
exceptions are also nonlocal), but control flow is concurrent, i.e., the thread raising the exception is different from
the thread handling the exception. The�C++ kernel implicitly polls for both kinds of exceptions at the soonest
possible opportunity. It is also possible to (hierarchically) block these kinds of exceptions when delivery would
be inappropriate or erroneous.

5.3 Exception Type

While C++ allows any type to be used as an exception type,�C++ restricts exception to types defined by_Event . An
exception type has all the properties of aclass , and its general form is:

_Event exception-type name {
. . .

};

As well, every exception type must have a public default and copy constructor.2 Because C++ allows any type to be used as an exception type, itseems to provide additional generality,
i.e., there is no special exception type in the language. However, in practice, this generality is almost
never used. First, using a builtin type likeint as an exception type is dangerous because the type has no
inherent meaning for any exceptional event. That is, one library routine can raiseint to mean one thing and
another routine can raiseint to mean another; a handler catchingint may have no idea about the meaning
of the exception. To prevent this ambiguity, programmers create specific types describing the exception,
e.g.,overflow, underflow, etc. Second, these specific exception types can very rarelybe used in normal
computations, so the sole purpose of these types is for raising unambiguous exceptions. In essence, C++
programmers ignore the generality available in the language and follow a convention of creating explicit
exception-types. This practice is codified in�C++. 2

1std::bad_alloc, std::bad_cast, std::bad_typeid, std::bad_exception, std::basic_ios::failure, etc.

5.3. EXCEPTION TYPE 71

5.3.1 Creation and Destruction

An exception is the same as a class object with respect to creation and destruction:

_Event E { . . . };
E d; // local exception
_Resume d;
E *dp = new E; // dynamic exception
_Resume *dp;
delete dp;
_Throw E(); // temporary local exception

5.3.2 Inherited Members

Each exception type, if not derived from another exception type, is implicitly derived from the event typeuBaseEvent,
e.g.:

_Event exception-type name : public uBaseEvent . . .

where the interface for the base-classuBaseEvent is:

class uEHM {
enum RaiseKind { ThrowRaise, ResumeRaise };
bool poll();
. . .

};

class uBaseEvent {
protected :

uBaseEvent(const char *const msg = "");
void setMsg(const char *const msg);

public :
const char *const message() const ;
const uBaseCoroutine &source() const ;
const char *const sourceName() const ;
uEHM::RaiseKind getRaiseKind();
void reraise() const ;
virtual uBaseEvent *duplicate() const ;
virtual void defaultTerminate() const ;
virtual void defaultTerminate();
virtual void defaultResume() const ;
virtual void defaultResume();

};

The constructor routineuBaseEvent has the following form:

uBaseEvent(const char *const msg = "") – creates an exception with specified message, which is printed in
an error message if the exception is not handled. The messageis copied when an exception is created so it is
safe to use within an exception even if the context of the raise is deleted.

The member routinesetMsg is an alternate way to associate a message with an exception.
The member routinemessage returns the string message associated with an exception. The member routinesource

returns the coroutine/task that raised the exception; if the exception has been raised locally, the valueNULL is returned.
In some cases, the coroutine or task may be deleted when the exception is caught so this reference may be undefined.
The member routinesourceName returns the name of the coroutine/task that raised the exception; if the exception has
been raised locally, the value"*unknown*" is returned. This name is copied from the raising coroutine/task when an
exception is created so it is safe to use even if the coroutine/task is deleted. The member routinegetRaiseKind returns
whether the exception is thrown (uEHM::ThrowRaise) or resumed (uEHM::ResumeRaise) at the raise. The member
routinereraise either rethrows or reresumes the exception depending on howthe exception was originally raised. The
member routineduplicate returns a copy of the raised exception, which can be used to raise the same exception in a

72 CHAPTER 5. EXCEPTIONS

different context after it has been caught; the copy is allocated on the heap, so it is the responsibility of the caller to
delete the exception.

The member routinedefaultTerminate is implicitly called if an exception is thrown but not handled; the default
action is to calluAbort to terminate the program with the supplied message. The member routinedefaultResume is
implicitly called if an exception is resumed but not handled; the default action is to throw the exception, which begins
the search for a termination handler from the point of the initial resume. In both cases, a user-defined default action
may be implemented by overriding the appropriate virtual member. Bothconst and non-const versions of these
members are provided so an appropriate one is available within a handler if an exception is caught with or without a
const qualifier.

5.4 Raising
There are two raising mechanisms: throwing and resuming; furthermore, each kind of raising can be done locally,
nonlocally or concurrently. The kind of raising for an exception is specified by the raise statements:

_Throw [exception-type] [_At uBaseCoroutine-id] ;
_Resume [exception-type] [_At uBaseCoroutine-id] ;

If _Throw has noexception-type, it is a rethrow , meaning the currently thrown exception continues propagation. If
there is no current thrown exception but there is a currentlyresumed exception, that exception is thrown. Otherwise, the
rethrow results in a runtime error. If_Resume has noexception-type, it is areresume, meaning the currently resumed
exception continues propagation. If there is no current resumed exception but there is a currently thrown exception,
that exception is resumed. Otherwise, the reresume resultsin a runtime error. The optional_At clause allows the
specified exception or the currently propagating exception(rethrow/reresume) to be raised at another coroutine or
task.

Exceptions in�C++ are propagated differently from C++. In C++, thethrow statement initializes a temporary object,
the type of which is determined from the static type of the operand, and propagates the temporary object. In�C++, the
_Throw and _Resume statements throw an exception that is the type of the object referenced by the operand. For
example:

C++ �C++

class B {};
class D : public B {};
void f(B &t) {

throw t;
}
D m;
f(m);

_Event B {};
_Event D : public B {};
void f(B &t) {

_Throw t;
}
D m;
f(m);

in the C++ program, routinef is passed an object of derived typeD but throws an object of base typeB, because the static
type of the operand for throw,t, is of typeB. However, in the�C++ program, routinef is passed an object of derived
type D and throws the original object of typeD. This change makes a significant difference in the organization of
handlers for dealing with exceptions by allowing handlers to catch the specific rather than the general exception-type.2 Note, when subclassing is used, it is better to catch an exception by reference for termination and re-

sumption handlers. Otherwise, the exception is truncated from its dynamic type to the static type specified
at the handler, and cannot be down-cast to the dynamic type. Notice, catching truncation is different from
raising truncation, which does not occur in�C++. 2

5.4.1 Nonlocal Propagation

A nonlocal exception can be used to affect control flow with respect tosequentialexecutionamongcoroutines. That
is, a source execution raises an exception at a faulting execution; propagation occurs in the faulting execution. The
faulting execution polls at certain points to check for pending nonlocal-exceptions; when nonlocal exceptions are
present, the oldest matching exception is propagated (FIFOservice) as if it had been raised locally at the point of the
poll. Nonlocal exceptions among coroutines are possible because each coroutine has its own execution-state (stack).
For example, in Figure5.1coroutinec loops until a nonlocalDone exception is raised at it byuMain. Since coroutine

5.4. RAISING 73

control-flow is sequential, the exception typeDone is not propagated immediately. In fact, the exception can only
be propagated the next time coroutinec becomes active. Hence,uMain must make a call toc.mem somem resumes
c and the pending exception is propagated. If multiple nonlocal-exceptions are raised at a coroutine, the exceptions
are delivered serially but only when the coroutine becomes active. Note,nonlocal exceptions are initially turned off
for a coroutine, so handlers can be set upbeforeany nonlocal exception can be propagated. Propagation of nonlocal
exceptions is turned on via the_Enable statement (see Section5.4.2).

_Event Done {};

_Coroutine C {
void main() {

try {
_Enable { // allow nonlocal exceptions

for (;;) {
. . . suspend(); . . .

}
}

} catch (Done) { . . . }
}

public :
void mem() { resume(); }

};

void uMain::main() {
C c;
for (int i = 0; i < 5; i += 1) c.mem();
_Throw Done() _At c; // deliver nonlocal exception
c.mem(); // trigger pending exception

}

Figure 5.1: Nonlocal Propagation

5.4.2 Enabling/Disabling Propagation�C++ allows dynamic enabling and disabling of nonlocal exception-propagation. The constructs for controlling prop-
agation of nonlocal exceptions are the_Enable and the_Disable blocks, e.g.:

_Enable <E1> <E2> . . . { _Disable <E1> <E2> . . . {
// code in enable block // code in disable block

} }

The arguments in angle brackets for the_Enable or _Disable block specify the exception types allowed to be prop-
agated or postponed, respectively. Specifying no exception types is shorthand for specifying all exception types.
Though a nonlocal exception being propagated may match withmore than one exception type specified in the_Enable
or _Disable block due to exception inheritance (see Sections5.3.2, p.71and 5.7, p. 83), it is unnecessary to define a
precise matching scheme because the exception type is either enabled or disabled regardless of which exception type
it matches with.

_Enable and _Disable blocks can be nested, turning propagation on/off on entry and reestablishing the delivery
state to its prior value on exit. Upon entry of a_Enable block, exceptions of the specified types can be propagated,
even if the exception types were previously disabled. Similarly, upon entry to a_Disable block, exceptions of the
specified types become disabled, even if the exception typeswere previously enabled. Upon exiting a_Enable or
_Disable block, the propagation of exceptions of the specified types are restored to their state prior to entering the
block.

Initially, nonlocal propagation is disabled for all exception types in a coroutine or task, so handlers can be set up
before any nonlocal exceptions can be propagated, resulting in the following�C++ idiom in a coroutine or task main:

74 CHAPTER 5. EXCEPTIONS

void main() {
// initialization, nonlocal exceptions disabled
try { // setup handlers for nonlocal exceptions

_Enable { // enable propagation of all nonlocal exception-types
// rest of the code for this coroutine or task

} // disable all nonlocal exception-types
} catch . . . // catch nonlocal exceptions occurring in enable block
// finalization, nonlocal exceptions disabled

}

Several of the predefined kernel exception-types are implicitly enabled in certain contexts to ensure their prompt
delivery (see Section5.10.1, p.86).

The�C++ kernel polls implicitly for nonlocal exceptions (and cancellation, see Section6, p.91) when the following
occur:� after a call touBaseTask::yield,� when an_Enable statement is encountered,� when auEnableCancel object is instantiated (see Section6.2, p.92)� after a task migrates to another cluster,� after a task unblocks if it blocked when trying to enter a monitor,� after a task unblocks if it blocked on an_Accept statement,� after a task unblocks if it blocked when acquiring auLock,� after a task unblocks if it blocked when trying to perform I/O,� the first time a coroutine/task’smain routine is executed,� afteruBaseCoroutine::suspend/uBaseCoroutine::resume return.

If this level of polling is insufficient, explicit polling ispossible by calling:

bool uEHM::poll();

For terminating propagation, the return value frompoll is unaccessible because the stack frame containing the callto
poll is unwound. For resuming propagation,poll returnstrue if a nonlocal exception is delivered andfalse otherwise.
In general, explicit polling is only necessary if pre-emption is disabled, a large number of nonlocal exception-types
are arriving, or timely propagation is important.

5.4.3 Concurrent Propagation

A local exception within a task is the same as for an exceptionwithin a routine or class. An exception raised and not
handled inside a task performs the C++ default action of calling terminate, which must abort (see Section5.8.1, p. 84).
As mentioned, a nonlocal exception between a task and a coroutine is the same as between coroutines (sequential). A
concurrent exception between tasks is more complex due to the multiple threads.

Concurrent exceptions provide an additional kind of communication over a normal member call. That is, a concur-
rent exception can be used to force a communication when an execution state might otherwise be computing instead
of accepting calls. For example, two tasks may begin searching for a key in different sets; the first task to find the key
needs to inform the other task to stop searching, e.g.:

_Task searcher {
searcher &partner; // other searching task
void main() {

try {
_Enable {

. . . // implicit or explicit polling is occurring
if (key == . . .)

_Throw stop() _At partner; // inform partner search is finished
}

} catch (stop) { . . . }

Without this control-flow mechanism, both tasks have to pollfor a call from the other task at regular intervals to know
if the other task found the key. Concurrent exceptions handle this case and others.

When a task performs a concurrent raise, it blocks only long enough to deliver the exception to the specified task
and then continues. Hence, the communication is asynchronous, whereas member-call communication is synchronous.

5.5. HANDLER 75

Once an exception is delivered to a task, the runtime system propagates it at the soonest possible opportunity. If
multiple concurrent-exceptions are raised at a task, the exceptions are delivered serially.

5.5 Handler
A handler catches a propagated exception and attempts to deal with the exceptional event. Each handler is associated
with a particular block of code, called aguarded block. �C++ supports two kinds of handlers, termination and
resumption, which match with the kind of raise. An unhandledexception is dealt with by an exception default-member
(see Section5.3.2, p.71).

5.5.1 Termination

A termination handler is a corrective actionafter throwing an exception during execution of a guarded block. When
a termination handler begins execution, the stack from the point of the throw up to and including the guarded block
is unwound; hence, all block and routine activations on the stack at or below the guarded block are deallocated,
including all objects contained in these activations. After a termination handler completes, i.e., it does not perform
another throw, control continues after the guarded block itis associated with. A termination handler often only has
approximate knowledge of where an exceptional event occurred in the guarded block (e.g., a failure in library code),
and hence, any partial results of the guarded-block computation are suspect. In�C++, a termination handler is specified
identically to that in C++:catch clause of atry statement. (The details of termination handlers can be found in a C++
textbook.) Figure5.2shows how C++ and�C++ throws an exception to a termination handler. The differences are using
_Throw instead ofthrow , throwing the dynamic type instead of the static type, and requiring a special exception type
for all exceptions.

C++ �C++

class E {
public :

int i;
E(int i) : i(i) {}

};

void f() {
throw E(3);

}
int main() {

try {
f();

} catch (E e) {
cout << e.i << endl;
throw ;

} // try
}

_Event E {
public :

int i;
E(int i) : i(i) {}

};

void f() {
_Throw E(3);

}
void uMain::main() {

try {
f();

} catch (E e) {
cout << e.i << endl;
_Throw ;

} // try
}

Figure 5.2: C++ versus�C++ Terminating Propagation

5.5.2 Resumption

A resumption handler is an intervention actionafter resuming an exception during execution of a guarded block.
When a resumption handler begins execution, the stack isnotunwound because control normally returns to the resume
point; hence, all block and routine activations on the stackat or below the guarded block areretained, including all
objects contained in these activations. After a resumptionhandler completes, i.e., it does not perform another throw,
control returns to the raise statement initiating the propagation. To obtain precise knowledge of the exceptional event,
information about the event and variables at the resume point are passed to the handler so it can effect a change before
returning. Alternatively, the resumption handler may determine a correction is impossible and throw an exception,
effectively changing the original resume into a throw. Unlike normal routine calls, the call to a resumption handler is
dynamically bound rather than statically bound, so different corrections can occur for the same static context.

76 CHAPTER 5. EXCEPTIONS

Ideal Syntax Actual �C++ Syntax

_Event R1 {
public :

int &i; char &c;
R1(int &i, char &c) : i(i), c(c) {}

};
_Event R2 {};

void f(int x, char y) { _Resume R2(); }
void g(int &x, char &y) { _Resume R1(x, y); }

void uMain::main() {
try {

int x = 0;
char y = ’a’;

g(x, y);

try {
f(x, y);

} resume (R2) {
x = 2; y = ’c’; // modify local variables

} resume (. . .) { // just return
} // try
try {

g(x, y);
} resume (R1) { // just return
} // try

} resume (R1 &r) {
// cannot see variables x and y
r.i = 1; r.c = ’b’; // modify arguments

} // try
}

_Event R1 {
public :

int &i; char &c;
R1(int &i, char &c) : i(i), c(c) {}

};
_Event R2 {};

void f(int x, char y) { _Resume R2(); }
void g(int &x, char &y) { _Resume R1(x, y); }

void h1(R1 &r) { r.i = 1; r.c = ’b’; }
struct H2 { // functor

int &i; char &c;
H2(int &i, char &c) : i(i), c(c) {}
void operator ()(R2 & r) { // required

i = 2; c = ’c’;
}

};
void uMain::main() {

try <R1,h1> {
int x = 0;
char y = ’a’;

g(x, y);
H2 h2(x, y); // bind to locals
try <R2,h2><. . .> {

f(x, y);

} // try
try <R1> {

g(x, y);

} // try

} // try
}

Figure 5.3: Syntax for Resumption Handlers

In �C++, a resumption handler must be specified using a syntax different from the C++catch clause of atry
statement. Figure5.3 shows the ideal syntax for specifying resumption handlers on the left, and the compromise
syntax provided by�C++ on the right. On the left, the resumption handler is, in effect, a nested routine called when a
propagated resume exception is caught by the handler; when the resumption handler completes, control returns back to
the point of the raise. Values at the raise can be modified directly in the handler if variables are visible in both contexts,
or indirectly through reference or pointer parameters; there is no concept of a return value from a resumption handler,
as is possible with a normal routine. Unfortunately, C++ hasno notion of nested routines, so it is largely impossible to
achieve the ideal resumption-handler syntax.

On the right is the simulation of the ideal resumption-handler syntax. The most significant change is the movement
of the resumption-handler bodies to routinesh1 and H2::operator (), respectively. Also, the direct access of local
variablesx andy in the first resume handler necessitates creating a functor so thath2 can access them.

In detail,�C++ extends thetry block to set up resumption handlers, where the resumption handler is a routine.

5.5. HANDLER 77

Any number of resumption handlers can be associated with atry block and there are 2 different forms for specifying
a resumption handler:

try <E1,h> <E2> . . . {
// statements to be guarded

} // possible catch clauses

The 2 forms of specifying a resumption handler are:

1. handler code for either a specific exception or catch any:

specific exception catch any

try <E1, h> { // catch E1, call h
. . .

}

try <. . ., h> { // catch any exception, call h
. . .

}

The exception-typeE1 or any exception type with “. . .”, like catch (. . .), is handled by routine/functorh. Like
catch (. . .) clause, a< . . . > resumption clause must appear at the end of the list of resumption handlers:

try <E1,h1> <E2,h2> <E3,h2> <. . .,h3> /* must appear last in list */ {
. . .

}

The handler routine or functor must take the exception type as a reference parameter:

void h(E1 &) // routine
void H::operator ()(E1 &) // functor

unless the exception type is “. . .” because then the exception type is unknown. Type checking is performed to
ensure a proper handler is specified to handle the designatedexception type.

2. no handler code for either a specific exception or catch any:

specific exception catch any

try <E1> { // catch E1, return
. . .

}

try <. . .> { // catch any exception, return
. . .

}

The exception-typeE1 or any exception-type with “. . .” is handled by an empty handler. This eliminates having
to create a handler routine with an empty routine body.

During propagation of a resuming raise, exception matchingat eachtry block is similar to a throwing raise: the first
matching exception type is selected, but checking the exception types is from left to right at the top of the extended
try block rather top to bottom as forcatch clauses.

5.5.3 Termination/Resumption

The form of the raise dictates the set of handles examined during propagation:� _Throw causes propagation to ONLY examine termination handlers (catch),� _Resume causes propagation to ONLY examine resumption handlers (<>).

Therefore, either the handlers at the top or the bottom of thetry block are examined for a matching exception-type
depending on the form of the raise. Often the set of exceptiontypes for the termination and resumption handlers is
disjoint because each exception type has a specific action. However, it is possible for the set of exception types in each
handler set to overlap. For example, the exception typeR appears in both the termination and resumption handler-sets:

78 CHAPTER 5. EXCEPTIONS

_Event R {};
void h(R &) { _Throw R(); }

void uMain::main() {
try <R,h> { try { // ideal syntax

_Resume R(); _Resume R();
} catch (R &) { } resume (R &) { _Throw R(); }
} } catch (R &) { . . . }

}

The body of thetry block resumes exception-typeR, which is caught by the try block and resumption-handlerh is
invoked. The blocks on the call stack are now (stack grows from left to right):

uMain::main ! try <R,h>,catch (R) ! h()

Handlerh throwsR and the stack is unwound until the exception is caught again by the try block and termination-
handlercatch (R) is invoked. The termination handler is available because resuming did not unwind the stack.

5.5.3.1 Recursive Resuming

Resuming does not unwind the stack. As result, handlers defined in previous scopes continue to be present during
resuming propagation. In terminating propagation, the handlers in previous scopes disappear as the stack is unwound.
In some languages with a resuming propagation [Mac77, BMZ92, Geh92], the presence of resumption handlers in
previous scopes can cause a situation calledrecursive resuming. The simplest situation where recursive resuming
can occur is when a handler for a resuming exception-type resumes the same exception, e.g.:

_Event R {};

void h(R &) {
_Resume R();

}
void uMain::main() {

try <R,h> { try { // ideal syntax
_Resume R(); _Resume R();

} } resume (R) {. . . _Resume R(); . . .}
}

RoutineuMain::main sets up a try block for resuming exception-typeR with handler routineh, respectively. Handlerh
is invoked by the resume in the body of thetry block, and the blocks on the call stack are:

uMain::main ! try <R,h> ! h()

Thenh resumes an exception of typeR again, which finds the handler just above it at<R,h> and invokes handler routine
h again; these steps continue until the runtime stack overflows. Recursive resuming is similar to infinite recursion, and
is difficult to discover both at compile time and at runtime because of the dynamic choice of a handler. Concurrent
resuming compounds the difficulty because it can cause recursive resuming where it is impossible otherwise because
the concurrent exception can be delivered at any time.2 An implicit form of recursive resuming can occur ifyield or uEHM::poll is called from within the

resumption handler. Each of these operations results in a check for delivered exceptions, which can then
result in a call to another resumption handler. As a result, the stack can grow, possibly exceeding the task’s
stack size. In general, this error is rare because there is usually sufficient stack space and the number of
delivered resuming exceptions is small. Nevertheless, care must be taken when callingyield or uEHM::poll
directly or indirectly from a resumption handler. 2

5.5.3.2 Preventing Recursive Resuming

Recursive resuming is probably the only legitimate criticism against resuming propagation. However, not all excep-
tions handled by a resumption handler cause recursive resuming. Even if a resumption handler resumes the exception it
handles, which guarantees activating the same resumption handler again, (infinite) recursive resuming may not happen
because the handler can take a different execution path as a result of a modified execution state. Because the resuming
propagation suggested previously searches for a handler bysimply going down the runtime stack one stack frame at a

5.5. HANDLER 79

time, it has the recursive resuming problem.�C++ has a modified propagation mechanism that provides a solution to
the recursive resuming problem. Furthermore, the mechanism is extended to cover concurrent exceptions.

The modified propagation mechanism goes down the execution stack one level at a time as it does normally to
find a handler capable of handling the exception being propagated. However, during propagation all the resumption
handlers at each guarded block being “visited” are marked ineligible (denoted by italics), whether or not a handler is
found. The mark is cleared only if the exception is handled either by a termination or resumption handler.

How does this new propagation mechanism make a difference? Given the previous runtime stack:

uMain::main ! try<R,h> ! h()

the handler<R,h> is marked ineligible whenR is caught at thetry block andh is called. Hence, the exception cannot
be handled by<R,h>, and the recursion is avoided and the default action occurs for R. Essentially,�C++ follows a
common rule for terminating and resuming propagation: between a raise and its handler, each handler is eligible only
once.

In handling exceptions, it is common for routines to create additional guarded blocks. For example, if the
resumption-handler blockh is augmented to:

void g(R &) { . . . } // changes to above example
void h(R &) {

try <R,g> { try { // ideal syntax
_Resume R(); _Resume R();

} } resume (R) { . . . }
}

whereg is an additional resumption handler, the call stack is extended to the following:

uMain::main ! try<R,h> ! h() ! try <R,g> ! g()

and the handlerg is examined as it is unmarked. Using this technique, it is still possible to construct infinite recursions
with respect to propagation; i.e.,�C++ resuming propagation does not preclude all infinite recursions, e.g.:

_Event R {};
void h(R &) { void f() {

try <R,h> { try {
_Resume R(); _Resume R();

} } resume (R) { f(); }
} }
void uMain::main() {

try <R,h> { try { // ideal syntax
_Resume R(); _Resume R();

} } resume (R) { f(); }
}

Here each call toh creates a newtry block to handle the next recursion, resulting in an infinite number of handlers:

uMain::main ! try<R,h> ! h() ! try <R,h> ! . . .

As a result, there is always an eligible handler to catch the next exception in the recursion. This situation is considered
a programming error with respect to recursion not propagation.

There is one interesting interaction between marking and thedefaultResume member (see Section5.3.2, p. 71):

_Event R {};
void h(R &) { _Resume R(); } // resume instead of throw

void uMain::main() {
try <R,h> { try { // ideal syntax

_Resume R(); _Resume R();
} catch (R &) { } resume (R &) { _Resume R(); }
} } catch (R &) { . . . }

}

which results in the following call stack:

uMain::main ! try<R,h>,catch (R) ! h() ! defaultResume

When handlerh resumesR a second time, there is no eligible handler because the resumption handler forR is marked.

80 CHAPTER 5. EXCEPTIONS

However, when the base of the stack is reached,defaultResume is called, and its default action is to throwR. Terminat-
ing propagation then unwinds the stack until there is a matchwith thecatch clause in thetry block, so the behaviour
is same as the example in Section5.5.3, p.77. Hence, by examining the code, it is non-intuitive that thecatch handler
can be invoked.

Finally, all handlers are considered unmarked when propagating nonlocal exceptions because the exception is
unrelated to any existing propagation. Therefore, the propagation mechanism searches every handler on the runtime
stack. Hence, a handler ineligible to handle a local exception can be chosen to handle a delivered nonlocal exception,
reflecting the fact that a new propagation has started.

5.5.3.3 Commentary

Of the few languages with resumption, the language Mesa [MMS79] is probably the only one that also solved the
recursive resuming problem. The Mesa scheme prevents recursive resuming by not reusing a handler clause bound
to a specific invoked block, i.e., once a handler is used as part of handling an exception, it is not used again. The
propagation mechanism always starts from the top of the stack to find an unmarked handler for a resume exception.
However, this unambiguous semantics is often described as confusing.

The following program demonstrates how�C++ and Mesa solve recursive resuming, but with different solutions:

_Event R1 {};
_Event R2 {};

void f() { _Resume R1(); }
void g(R2 &) { _Resume R1(); }
void h(R1 &) { _Resume R2(); }
void j(R2 &) {}

void uMain::main() {
try <R2,j> {

try <R1,h> {
try <R2,g> {

f();
}

}
}

}

The following stack is generated at the point when resumption-handlerh is called fromf:

uMain::main ! try <R2,j> ! try <R1,h> ! try <R2,g> ! f() ! h()

The potential infinite recursion occurs becauseh resumes an exception of typeR2, and there is resumption-handler
try <R2,g>, which resumes an exception of typeR1, while resumption-handlertry <R1,h> is still on the stack. Hence,
handler bodyh invokes handler bodyg and vice versa with no case to stop the recursion.�C++ propagation prevents the infinite recursion by markingbothresumption handlers as ineligible before invoking
resuming bodyh, e.g.:

uMain::main ! try <R2,j> ! try<R1,h> ! try<R2,g> ! f() ! h()

Therefore, whenh resumes an exception of typeR2 the next eligible handler is the one with resume bodyj. Mesa
propagation prevents the infinite recursion by only markingan unhandled handler, i.e., a handler that has not returned,
as ineligible, resulting in:

uMain::main ! try <R2,j> ! try<R1,h> ! try <R2,g> ! f() ! h()

Hence, whenh resumes an exception of typeR2 the next eligible handler is the one with resume bodyg. As a result,
handler bodyg resumes an exception of typeR1 and there is no infinite recursion. However, the confusion with the
Mesa semantics is that there is no handler forR1, even though the nestedtry blocks appear to properly deal with this
situation. In fact, looking at the static structure, a programmer might incorrectly assume there is an infinite recursion
between handlersh andg, as they resume one another. This programmer confusion results in a reticence by language
designers to incorporate resuming facilities in new languages. However, as�C++ shows, there are reasonable solutions
to these issues, and hence, there is no reason to preclude resuming facilities.

5.6. BOUND EXCEPTIONS 81

5.6 Bound Exceptions

To allow for additional control over the handling of exceptions,�C++ supports the notion ofbound exceptions. This
conceptbinds the object raising an exception with the raised exception; areference to the object can be used in a
handler clause for finer-grain matching, which is more consistent with the object-oriented design of a program.

5.6.1 C++ Exception-Handling Deficiencies

In C++, only the exception type of the raised exception is used when matchingcatch clauses; the object raising the
exception does not participate in the matching. In many cases, it is important to know which object raised the exception
type for proper handling. For example, when reading from a file object, the exception-typeIOError may be raised:

file Datafile, Logfile;
try {

. . . Datafile.read(); . . .

. . . Logfile.read(); . . .
} catch (IOError) {

// handle exception from which object ?
}

The try block provides a handler forIOError exceptions generated while reading file objectsDatafile and Logfile.
However, if either read raisesIOError, it is impossible for the handler to know which object failedduring reading.
The handler can only infer the exception originates in some instance of thefile class. If other classes throwIOError,
the handler knows even less. Even if the handler can only be entered by calls toDatafile.read() andLogfile.read(), it
is unlikely the handler can perform a meaningful action without knowing which file raised the exception. Finally, it
would be inconvenient to protect each individual read with atry block to differentiate between them, as this would
largely mimic checking return-codes after each call toread.

Similar to package-specific exceptions in Ada [Int95], it is beneficial to provide object-specific handlers, e.g.:

try {
. . . Datafile.read(); . . .
. . . Logfile.read(); . . .

} catch (Datafile.IOError) {
// handle Datafile IOError

} catch (Logfile.IOError) {
// handle Logfile IOError

} catch (IOError) {
// handler IOError from other objects

}

The first twocatch clauses qualify the exception type with an object to specialize the matching. That is, only if the
exception is generated by the specified object does the matchoccur. It is now possible to differentiate between the
specified files and still use the unqualified form to handle thesame exception type generated by any other objects.2 Bound exceptions cannot be trivially mimicked by other mechanisms. Deriving a new exception type

for each file object (e.g.,Logfile_IOError from IOError) results in an explosion in the total number of
exception types, and cannot handle dynamically allocated objects, which have no static name. Passing the
associated object as an argument to the handler and checkingif the argument is the bound object, as in:

catch (IOError e) { // pass file-object address at raise
if (e.obj == &f) . . . // deal only with f
else throw // reraise exception

requires programmers to follow a coding convention of reraising the exception if the bound object is
inappropriate [BMZ92]. Such a coding convention is unreliable, significantly reducing robustness. In
addition, mimicking becomes infeasible for derived exception-types using the termination model, as in:

82 CHAPTER 5. EXCEPTIONS

class B {. . .}; // base exception-type
class D : public B {. . .}; // derived exception-type
. . .
try {

. . . throw D(this); // pass object address
} catch (D e) {

if (e.o == &o1) . . . // deal only with o1
else throw // reraise exception

} catch (B e) {
if (e.o == &o2) . . . // deal only with o2
else throw // reraise exception

// bound form
} catch (o1.D) {

} catch (o2.B) {

When exception typeD is raised, the problem occurs when the first handler catches the derived exception-
type and reraises it if the object is inappropriate. The reraise immediately terminates the current guarded
block, which precludes the handler for the base exception-type in that guarded block from being con-
sidered. The bound form (on the right) matches the handler for the base exception-type. Therefore, the
“catch first, then reraise” approach is an incomplete substitute for bound exceptions. 2

5.6.2 Object Binding

In �C++, every exception derived from the three basic exceptiontypes can potentially be bound. Binding occurs
implicitly when using�C++’s raising statements, i.e.,_Resume and_Throw . In the case of a local raise, the binding
is to the object in whose member routine the raise occurs. In the previous example, an exception raised in a call to
Datafile.read() is bound toDatafile; an exception raised in a call toLogfile.read() is bound toLogfile. If the raise occurs
inside a static member routine or in a free routine, there is no binding. In the case of a non-local raise, the binding is
to the coroutine/task executing the raise.

5.6.3 Bound Handlers

Bound handlers provide an object-specific handler for a bound exception. Matching is specified by prepending the
binding expression to the exception type using the “.” field-selection operator; the “catch-any” handler,. . ., does not
have a bound form.

5.6.3.1 Matching

A bound handler matches when the binding at the handler clause is identical to the binding associated with the currently
propagated exceptionand the exception type in the handler clause is identical to or a base-type of the currently
propagated exception type.

Bound handler clauses can be mixed with normal (unbound) handlers; the standard rules of lexical precedence
determine which handler matches if multiple are eligible. Any expression that evaluates to anlvalueis a valid binding
for a handler, but in practice, it only makes sense to specifyan object that has a member function capable of raising
an exception. Such a binding expression may or may not be evaluated during matching, and in the case of multiple
bound-handler clauses, in undefined order. Hence, care mustbe taken when specifying binding expressions containing
side-effects.

5.6.3.2 Termination

Bound termination handlers appear in the C++catch clause:

catch (raising-object . exception-type [variable]) { . . . }

In the previous example,catch (Logfile.IOError) is a catch clause specifying a bound handler with bindingLogfile and
exception-typeIOError.

5.6.3.3 Resumption

Bound resumption handlers appear in the�C++ resumption handler location at the start of atry block (see Section5.5.2,
p. 75):

5.7. INHERITANCE 83

try < raising-object . exception-type , expression > // form 1, handler code
< raising-object . exception-type > // form 2, no handler code
{ . . . }

An example of a bound resumption clause istry <uThisCoroutine().starter(), handler>, where the binding to be matched
is uThisCoroutine().starter(), which suggests a non-local exception is expected.

5.7 Inheritance

Table5.1shows the forms of inheritance allowed among C++ types and�C++ exception-types. First, the case ofsingle
public inheritance among homogeneous kinds of exception type, i.e., base and derived type are the both_Event , is
supported in�C++ (major diagonal), e.g.:

_Event Ebase {};
_Event Ederived : public Ebase {}; // homogeneous public inheritance

In this situation, all implicit functionality matches between base and derived types, and therefore, there are no prob-
lems. Public derivation of exception types is for building the exception-type hierarchy, and restricting public in-
heritance to only exception types enhances the distinctionbetween the class and exception hierarchies. Single pri-
vate/protected inheritance among homogeneous kinds of exception types is not supported, e.g.:

_Event Ederived : private Ebase {}; // homogeneous private inheritance, not allowed
_Event Ederived : protected Ebase {}; // homogeneous protected inheritance, not allowed

because each exception type must appear in the exception-type hierarchy, and hence must be a subtype of another
exception type. Neitherprivate nor protected inheritance establishes a subtyping relationship.

base public only/ NO multiple inheritance
derived struct/class event

struct/class
p

X
event

p p
Table 5.1: Inheritance among Exception Types

Second, the case ofsingleprivate/protected/public inheritance among heterogeneous kinds of type, i.e., base and
derived type of different kind, is supported in�C++ only if the base kind is an ordinary class, e.g.:

class Cbase {}; // only struct/class allowed

_Event Ederived : public Cbase {}; // heterogeneous public inheritance

An example for using such inheritance is different exception types using a common logging class. The ordinary class
implements the logging functionality and can be reused among the different exception types.

Heterogeneous inheritance among exception types and otherkinds of class, exception types, coroutine, mutex or
task, are not allowed, e.g.:

_Event Ebase {};

struct StructDerived : public Ebase {}; // not allowed
class ClassDerived : public Ebase {}; // not allowed
_Coroutine CorDerived : public Ebase {}; // not allowed
_Monitor MonitorDerived : public Ebase {}; // not allowed
_Task TaskDerived : public Ebase {}; // not allowed

A structure/class cannot inherit from an exception type because operations defined for exception types may cause
problems when accessed through a class object. This restriction does not mean exception types and non-exception-
types cannot share code. Rather, shared code must be factored out as an ordinary class and then inherited by exception
types and non-exception-types, e.g.:

84 CHAPTER 5. EXCEPTIONS

class CommonBase {};

class ClassDerived : public CommonBase {};
_Event Ederived : public CommonBase {};

Technically, it is possible for exception types to inherit from mutex, coroutine, and task types, but logically there
does not appear to be a need. Exception types do not need mutual exclusion because a new exception is generated
at each throw, so the exception is not a shared resource. For example, arithmetic overflow can be encountered by
different executions but each arithmetic overflow is independent. Hence, there is no race condition for exception
types. Finally, exception types do not need context switching or a thread to carry out computation. Consequently, any
form of inheritance from a mutex, coroutine or task by an exception type is rejected.

Multiple inheritance is allowed for private/protected/public inheritance of exception types withstruct /class for
the same reason as single inheritance.

5.8 Predefined Exception Routines

C++ supplies severalbuiltin routines to provide information and deal with problems during propagation. The semantics
of these builtin routines changes in a concurrent environment.

5.8.1 terminate /set terminate

The terminate routine is called implicitly in a number of different situations when a problem prevents successful
propagation (see a C++ reference manual for a complete list of propagation problems). The most common propagation
problem is failing to locate a matching handler. Theterminate routine provides an indirect mechanism to call a
terminate-handler, which is a routine of typeterminate_handler:

typedef void (*terminate_handler)();

and is set using the builtin routineset_terminate, which has type:

terminate_handler set_terminate(terminate_handler handler) throw ();

The previously set terminate-handler is returned when a newhandler is set. The default terminate-handler aborts the
program; a user-defined terminate-handler must also terminate the program, i.e., it may not return or raise an exception,
but it can perform some action before terminating, e.g.:

void new_handler() {
// write out message
// terminate execution (abort/exit)

}
terminate_handler old_handler = set_terminate(new_handler);

In a sequential program, there is only one terminate-handler for the entire program, which can be set and restored as
needed during execution.

In a concurrent program, having a single terminate-handlerfor all tasks does not work because the value set by
one task can be changed by another task at any time. In other words, no task can ensure that the terminate-handler
it sets is the one that is used during a propagation problem. Therefore, in�C++, each task has its own terminate-
handler, set using theset_terminate routine. Hence, each task can perform some specific action when a problem
occurs during propagation, but the terminate-handler muststill terminate the program, i.e., no terminate-handler may
return (see Section7.2.2, p.99). The default terminate-handler for each task aborts the program.

Notice, the terminate-handler is associated with a task versus a coroutine. The reason for this semantics is that the
coroutine is essentially subordinate to the task because the coroutine is executed by the task’s thread. While propaga-
tion problems can occur while executing on the coroutine’s stack, these problems are best dealt with by the task execut-
ing the coroutine because the program must terminate at thispoint. In fact, for the propagation problem of failing to lo-
cate a matching handler, the coroutine implicitly raises the predefined exceptionuBaseCoroutine::UnhandledException
in its last resumer coroutine (see Section7.2.3.1, p. 100), which ultimately transfers back to a task that either handles
this exception or has its terminate-handler invoked.

5.9. PROGRAMMING WITH EXCEPTIONS 85

5.8.2 unexpected /set unexpected

Theunexpected routine is called implicitly for the specific propagation problem of raising an exception that does not
appear in a routine’s exception specification (throw list), e.g.:

int rtn(. . .) throw (Ex1) { // exception specification
. . . throw Ex2; . . . // Ex2 not in exception specification

}

The unexpected routine provides an indirect mechanism to call an unexpected-handler, which is a routine of type
unexpected_handler:

typedef void (*unexpected_handler)();

and is set using the builtin routineset_unexpected, which has type:

unexpected_handler set_unexpected(unexpected_handler handler) throw ();

The previously set unexpected-handler is returned when a new handler is set. The default unexpected-handler calls the
terminate routine; like a terminate-handler, a user-defined unexpected-handler may not return, but it can perform some
action and either terminateor raise an exception, e.g.:

void new_handler() {
// write out message
// raise new exception

}
unexpected_handler old_handler = set_unexpected(new_handler);

In a sequential program, there is only one unexpected-handler for the entire program, which can be set and restored as
needed during execution.

In a�C++ program, having a single unexpected-handler for all coroutines/tasks does not work for the same reason
as for the terminate-handler, i.e., the value can change at any time. Because it is possible to handle this specific
propagation-problem programmatically (e.g., raise an exception) versus terminating the program, a coroutine can
install a handler and deal with this problem during propagation on its stack. Therefore, in�C++, each coroutine (and
hence, task) has its own unexpected-handler, set using theset_unexpected routine. The default unexpected-handler
for each coroutine/task calls theterminate routine.

5.8.3 uncaught exception

Theuncaught_exception routine returns true if propagation is in progress. In a�C++ program, the result of this routine
is specific to the coroutine/task that raises the exception.Hence, the occurrence of propagation in one coroutine/task
is independent of that occurring in any other coroutine/task. For example, a destructor may not raise a new exception
if it is invoked during propagation; if it does, theterminate routine is called. It is possible to useuncaught_exception
to check for this case and handle it differently from normal destructor execution, e.g.:

~T() { // destructor
if (. . . && ! uncaught_exception()) { // prevent propagation problem

// raise an exception because cleanup problem
} else {

// cleanup as best as possible
}

}

5.9 Programming with Exceptions
Like many other programming features, an EHM aims to make certain programming tasks easier and improve the
overall quality of a program. Indeed, choosing to use the EHMover other available flow control mechanisms is a
tradeoff. For example, a programmer may decide to use exceptions over some conditional statement for clarity. This
decision may sacrifice runtime efficiency and memory space. In other words, universal, crisp criteria for making a
decision do not exist. Nevertheless, some important guidelines are given to encourage good use of exceptions.

First, use exceptions to indicate exceptional event in library code to ensure a library user cannot ignoring the
event, as is possible with return codes and status values. Hence, exceptions improve safety and robustness, while still
allowing a library user to explicitly catch and do nothing about an exception. Second, use exceptions to improve clarity

86 CHAPTER 5. EXCEPTIONS

and maintainability over techniques like status return values and status flags where normal and exceptional control-
flow are mixed together within a block. Using exceptions not only separates the normal flow in a guarded block from
the exceptional flow in handlers, but also avoids mixing normal return-values with exceptional return-values. This
separation makes subsequent changes easier. Third, use exceptions to indicate conditions that happen rarely at runtime
for the following reasons:� The normal flow of the program should represent what should happen most of the time, allowing programmers

to easily understand the common functionality of a code segment. The exceptional flow then represents subtle
details to handle rare situations, such as boundary conditions.� Because the propagation mechanism requires a search for thehandler, it is usually expensive. Part of the cost is
a result of the dynamic choice of a handler. Furthermore, this dynamic choice can be less understandable than
a normal routine call. Hence, there is a potential for high runtime cost with exceptions and control flow can be
more difficult to understand. Nevertheless, the net complexity is reduced using exceptions compared to other
approaches.

5.9.1 Terminating Propagation

Typical use of terminating propagation is for graceful termination of an operation, coroutine, task or program. Ter-
mination is graceful if it triggers a sequence of cleanup actions in the execution context. Examples of abrupt (or
non-graceful) termination include theuAbort routine (abort in C) and thekill -9 command in UNIX. Graceful termina-
tion is more important in a concurrent environment because one execution can terminate while others continue. The
terminating operation must be given a chance to release any shared resources it has acquired (the cleanup action) in
order to maintain the integrity of the execution environment. For example, deadlock is potentially a rare condition and
a thrown exception can force graceful termination of an operation, consequently leading to the release of some shared
resources and breaking of the deadlock.

5.9.2 Resuming Propagation

Typical use of resuming propagation is to do additional computation, in the form of a resumption handler, for an
exceptional event or as a form of polymorphism, where an action is left unspecified (e.g., in a library routine) and
specified by a user using dynamic lookup (similar to a virtualroutine in a class). The additional computation may
modify the state of the execution, which can be useful for error recovery. Alternatively, it may cause information about
the execution to be gathered and saved as a side-effect without effectively modifying the execution’s computation.

5.9.3 Terminating/Resuming Propagation

Any exception type can be both thrown or resumed. When feasible, it is best to initially resume an exception-type to
avoid loss of local information. If no resumption handler handles the exception, the same exception-type can be thrown
(default action). For example, in a real-time application,missing a real-time constraint, say an execution cannot finish
before a deadline, is considered an exceptional event. For some applications, the constraint violation can result in
termination. Other applications can modify internal parameters to increase execution by sacrificing the quality of the
solution or by acquiring more computing resources to speedup execution.

5.10 Predefined Exception-Types�C++ provides a number of predefined exception-types, which are structured into the hierarchy in Figure5.4, divided
into two major groups: kernel and I/O. The kernel exception-types are raised by the�C++ runtime kernel when prob-
lems arise using the�C++ concurrency extensions. The I/O exception-types are raised by the�C++ I/O library when
problems arise using the file system. Only the kernel exception-types are discussed, as the I/O exception-types are OS
specific.

5.10.1 Implicitly Enabled Exception-Types

Certain of the predefined kernel exception-types are implicitly enabled in certain contexts to ensure prompt delivery
for nonlocal exceptions. The predefined exception-typeuBaseCoroutine::Failure is implicitly enabled and polling is
performed when a coroutine restarts after a suspend or resume. The predefined exception-typeuSerial::Failure is

5.10. PREDEFINED EXCEPTION-TYPES 87

uBaseEvent
uKernelFailure

uSerial::Failure
uSerial::EntryFailure
uSerial::RendezvousFailure
uCondition::WaitingFailure

uBaseCoroutine::Failure
uBaseCoroutine::UnhandledException

uPthreadable::Failure
uPthreadable::CreationFailure

uIOFailure
uFile::Failure

uFile::TerminateFailure
uFile::StatusFailure
uFileAccess::Failure

uFileAccess::OpenFailure
uFileAccess::CloseFailure
uFileAccess::SeekFailure
uFileAccess::SyncFailure
uFileAccess::ReadFailure

uFileAccess::ReadTimeout
uFileAccess::WriteFailure

uFileAccess::WriteTimeout
uSocket::Failure

uSocket::OpenFailure
uSocket::CloseFailure
uSocketServer::Failure

uSocketServer::OpenFailure
uSocketServer::CloseFailure
uSocketServer::ReadFailure

uSocketServer::ReadTimeout
uSocketServer::WriteFailure

uSocketServer::WriteTimeout
uSocketAccept::Failure

uSocketAccept::OpenFailure
uSocketAccept::OpenTimeout

uSocketAccept::CloseFailure
uSocketAccept::ReadFailure

uSocketAccept::ReadTimeout
uSocketAccept::WriteFailure

uSocketAccept::WriteTimeout
uSocketClient::Failure

uSocketClient::OpenFailure
uSocketClient::OpenTimeout

uSocketClient::CloseFailure
uSocketClient::ReadFailure

uSocketClient::ReadTimeout
uSocketClient::WriteFailure

uSocketClient::WriteTimeout

Figure 5.4:�C++ Predefined Exception-Type Hierarchy

88 CHAPTER 5. EXCEPTIONS

implicitly enabled and polling is performed when a task restarts from blocking on entry to a mutex member. This
situation also occurs when a task restarts after being blocked on an_Accept or await. The predefined exception-type
uSerial::RendezvousFailure is implicitly enabled and polling is performed when an acceptor task restarts after blocking
for a rendezvous to finish.

5.10.2 Unhandled Exception in Coroutine

An exception raised and not handled inside a coroutine terminates it and implicitly resumes a nonlocal exception of
type uBaseCoroutine::UnhandledException at the coroutine’s last resumer rather than performing the default action
(which may abort the program). For example, in:

_Event E {};

_Coroutine C {
void main() { _Throw E(); }

public :
void mem() { resume(); }

};
void uMain::main() {

C c;
try {

c.mem();
} catch (uBaseCoroutine::UnhandledException) {

. . .
}

}

the call toc.mem resumes coroutinec, and then insidec.main an exception is raised that is not handled locally by
c. When the exception of typeE reaches the top ofc’s stack without finding an appropriate handler, coroutinec
is terminated and the nonlocal exception of typeuBaseCoroutine::UnhandledException is implicitly raised atuMain,
since it isc’s last resumer. This semantics reflects the fact that the last resumer is most capable of understanding and
reacting to a failure of the operation it just invoked. Furthermore, the last resumer (coroutine or task) is guaranteed to
be restartable because it became inactive when it did the last resume. Finally, when the last resumer is restarted, the
implicitly raised nonlocal exception is immediately delivered because the context switch back to itimplicitly enables
uBaseCoroutine::UnhandledException, which triggers the propagation of the exception.

In many cases, the resumer of a coroutine is unaware of the resumed coroutine’s implementation, and hence,
cannot respond directly to unhandled exceptions forwardedfrom the resumed coroutine, which is why the general
uBaseCoroutine::UnhandledException exception is raised at the resumer rather than the specific coroutine exception.
To provide for the case where a resumer does know about exceptions that may be forwarded from a resumed coroutine,
the exceptionuBaseCoroutine::UnhandledException contains a copy of the initial exception not caught in the resumed
coroutine. When handling auBaseCoroutine::UnhandledException, a resumer can trigger the copied exception in the
handler using member routinetriggerCause. For example, in:

. . . as above . . .
void uMain::main() {

C c;
try {

c.mem(); // first call fails
} catch (uBaseCoroutine::UnhandledException &ex) {

ex.triggerCause(); // trigger copied exception
}

}

the call to c.mem indirectly _Resume s a nonlocal exception of typeuBaseCoroutine::UnhandledException,
because c.main does not handle exceptions of typeE. uMain::main has no resumption handler for
uBaseCoroutine::UnhandledException; hence, its default handler_Throw s the exception (see Section5.3.2, p. 71),
which is caught. The handler triggers a copy of the initial exception of typeE, which is raised in exactly the same way
as the raise in the resumed coroutine (i.e., matching_Throw or _Resume). In this way, the resumer coroutine can
use all exception matching mechanisms provided by�C++ to identify the initial exception.

5.10. PREDEFINED EXCEPTION-TYPES 89

5.10.3 Breaking a Rendezvous

As mentioned in Section2.9.2.2, p.24, the accept statement forms a rendezvous between the acceptor and the accepted
tasks, where a rendezvous is a point in time at which both tasks wait for a section of code to execute before continuing.
It can be crucial to correctness that the acceptor know if theaccepted task does not complete the rendezvous code,
otherwise the acceptor task continues under the incorrect assumption that the rendezvous action has occurred. To this
end, an exception of typeuSerial::RendezvousFailure is raised at the acceptor task if the accepted member terminates
abnormally. It may also be necessary for a mutex member to know if the acceptor has restarted, and hence, the
rendezvous has ended. This situation can happen if the mutexmember calls a private member, which may conditionally
wait, which ends the rendezvous. The macrouRendezvousAcceptor can be used only inside mutex types to determine
if a rendezvous has ended:

uBaseCoroutine *uRendezvousAcceptor();

It returnsNULL if the rendezvous is ended; otherwise it returns the addressof the rendezvous partner. In addition,
calling uRendezvousAcceptor has the side effect of cancelling the implicit resume ofuSerial::RendezvousFailure at
the acceptor. This capability allows a mutex member to terminate with an exception without informing the acceptor.

90 CHAPTER 5. EXCEPTIONS

Chapter 6

Cancellation

Cancellation is a mechanism to safely terminate the execution of a coroutine or task. Any coroutine/task may can-
cel itself or another coroutine/task by callinguBaseCoroutine::cancel() (see Section2.7.2, p. 15). The deletion of a
non-terminated coroutine (see page15) implicitly forces its cancellation.Cancelling a coroutine/task does not result
in immediate cancellation of the object; cancellation onlybegins when the coroutine/task encounters acancellation
checkpoint, such asuEHM::poll() or uBaseTask::yield() (see page74 for a complete list), which starts the cancellation
for the cancelled object. Note, all cancellation points arepolling points for asynchronous exceptions and vice-versa.
The more frequently cancellation checkpoints are encountered, the timelier the cancellation starts. There is no pro-
vision to “uncancel” a coroutine/task once it is cancelled.However, it is possible for the cancelled coroutine/task to
control if and where cancellation starts (see Section6.2).

Once cancellation starts, the stack of the coroutine/task is unwound, which executes the destructors of objects
allocated on the stackas well as catch-any exception handlers(i.e.,catch (. . .)). Executing this additional code during
unwinding allows safe cleanup of any objects declared in a cancelled coroutine/task via their destructors, and supports
the common C++ idiom of using catch-any handlers to perform cleanup actions during exceptional control-flow and
then reraising the exception. The C++ idiom follows from thefact that a catch-any handler has no specific information
about an exception, and hence, cannot properly handle it; therefore, it only makes sense to execute local cleanup in the
catch-any handler and continue propagation by reraising the exception so a specific handler can be found.

There are two scenarios in which a catch-any handler may finish. In the first scenario, all exceptions raised directly
or indirectly from a guarded block are handled by a common action, with normal program execution continuing after
it. However, using a catch-any handler to specify the commonaction is considered poor style. If a group of exceptions
has a common handling action, it is highly likely all its members are logically related, and hence, should be structured
into an exception hierarchy (see Section5.7, p.83) allowing all the group members to be caught by the hierarchy’s root
rather than a catch-any. In the second scenario, all exceptions are caught at a high level (often the top-most level) in a
task in order to prevent the program’s termination due to an uncaught exception. In this case, code after the handler is
often finalization/restart code to be performed unconditionally before ending or restarting the task.

Unlike a nonlocal exception (see Section5.4, p. 72), cancellation cannot be caught or stopped unless the cleanup
code aborts the program, which is the ultimate termination of all coroutines/tasks. Therefore, if a catch-any handler
finishes during cancellation, i.e., without throwing or rethrowing, the only logical behaviour is for stack unwinding
to continue. This behaviour is different from normal completion of a catch-any handler, which continues after the
handler. The correctness of a program relying on execution to continue after a catch-any handler for convenience
(scenario 1) or restart (scenario 2) reasons is unaffected since cancellation ultimately terminates the task, and hence,
normal execution/restart cannot be expected. However, thecorrectness of programs relying on execution to continue
after a catch-any handler for finalization reasons (scenario 2) is compromised by cancellation. Such programs are in-
compatible with cancellation as control cannot logically continue after the handler. In this situation, the program must
be restructured to check for cancellation and invoke the finalization code within the handler. It is possible to program-
matically check for an ongoing cancellation by calling routineuBaseCoroutine::cancelInProgress (see Section2.7.2,
p. 15) during cleanup (catch-any handler or destructor), which is analogous to usingstd::uncaught_exception.

Cancellation does not work if anewexception is thrown inside a catch-any handler because the stack unwinding
due to termination cannot be altered, e.g.:

91

92 CHAPTER 6. CANCELLATION

catch (. . .) {
. . . _Throw anotherException(); . . .

}

The resulting program behaviour is undefined, and such constructs must be avoided if cancellation is to be used. Again,
routineuBaseCoroutine::cancelInProgress (see Section2.7.2, p.15) can be used to check for this situation, so the throw
can be conditional. Alternatively, ensuring a coroutine’smain routine terminates prevents implicit cancellation.

6.1 Using Cancellation
Cancellation is used in situations where the work of a task isnot required any more and its resources should be
freed. Figure6.1shows a generic example in which a solution space is divided into sub-domains and worker tasks are
dispatched to search their respective sub-domain for a suitable solution. For this particular problem class, any specific
solution is sufficient. In the program, afteruMain creates the tasks, it waits for a solution to be found by any ofthe
Worker tasks. If aWorker task finds a solution, it stores it in theResult monitor and restartsuMain (if appropriate).
Since a solution has been found, the other worker solutions are not required and allowing these workers to proceed
is a waste of resources. Hence,uMain marks them all for cancellation and uses the result. After the result has been
processed,uMain deletes the worker tasks, which allows for execution overlap of result processing with the worker
tasks detecting, starting, and finishing cancellation. Alternatively,uMain can delete the workers right away, with the
consequence that it may have to wait for the worker tasks to finish cancellation before processing the result.

6.2 Enabling/Disabling Cancellation
A cancellee may not stop cancellation once in progress, but it can control when the cancellation starts. The ability to de-
fer the start of cancellation can be used to ensure a block of code is completely executed, similar to enabling/disabling
propagation (see Section5.4.2, p.73).

By default, cancellation is implicitly enabled for a coroutine/task (which is the opposite of nonlocal excep-
tions). Explicitly enabling/disabling cancellation is controlled by declaring an instance of one of the following types:
uEnableCancel or uDisableCancel. The object’s constructor saves the current cancellation state (enabled or disabled)
and sets the state appropriately; the object’s destructor resets the cancellation state to the previous state, e.g.:

{
uDisableCancel cancelDisable; // save current state, set to disable (variable name unimportant)
. . .
{

uEnableCancel cancelEnable; // save current state, set to enable (variable name unimportant) and
. . . // implicit poll/cancellation checkpoint

} // revert back to disabled
. . .

} // revert back to previous cancellation status

Note, creating an instance ofuEnableCancel is a cancellation checkpoint, which polls for both cancellation andasyn-
chronous exceptions.

6.3 Commentary
Despite their similarities, cancellation and nonlocal exceptions are fundamentally different mechanisms in�C++. As a
result, the approach of using_Enable /_Disable with a specialuCancellation type to control cancellation delivery was
rejected, e.g.:

_Enable <uCancellation> <. . .> /* asynchronous exceptions */ {
. . .

}

This approach is rejected because it suggests cancellationis part of the exception handling mechanism represented by
the exception typeuCancellation, which is not the case. There is no way to raise or catch a cancellation as there is
with exceptions. In addition, the blanket_Enable /_Disable , which applies to all nonlocal exceptions, does not affect
cancellation.

6.3. COMMENTARY 93

#include <uC++.h>

const int NumOfWorkers = 16;
const unsigned int Domain = 0xffffffff;

_Monitor Result {
int res;
uCondition c;

public :
Result() : res(0) {}
int getResult() {

if (res == 0) c.wait(); // wait if no result has been found so far
return res;

}
void finish(int r) {

res = r; // store result
c.signal(); // wake up uMain

}
};

_Task Worker {
Result &r;
int subdomain;

public :
Worker(int sub, Result &res) : subdomain(sub), r(res) {}
void main() {

int finalresult;
// perform calculations with embedded cancellation checkpoints
r.finish(finalresult); // if result is found, store it in Result

}
};

void uMain::main () {
Worker *w[NumOfWorkers];
Result r;
for (int i = 0; i < NumOfWorkers; i += 1) {

w[i] = new Worker(i * Domain / NumOfWorkers, r); // create worker tasks
}
int result = r.getResult();
for (int i = 0; i < NumOfWorkers; i += 1) {

w[i]->cancel(); // mark workers for cancellation
}
// do something with the result
for (int i = 0; i < NumOfWorkers; i += 1) {

delete w[i]; // only block if cancellation has not terminated worker
}

}

Figure 6.1: Cancellation Example

94 CHAPTER 6. CANCELLATION

Chapter 7

Errors

The following are examples of the static/dynamic warnings/errors that can occur during the compilation/execution of
a�C++ program.

7.1 Static (Compile-time) Warnings/Errors

These static warnings/errors are generated by the�C++ translator not by the underlying C++ compiler. These warn-
ings/errors are specific to usage problems with the�C++ concurrency extensions. The following examples show
different situations, the message generated and an explanation of the message. While not all warning/error situations
are enumerated, the list covers the common one present in most �C++ programs.

The following program:

#include <uC++.h>
_Task T {

public :
void mem() {}

private :
void main() {

fini:
for (int i = 0; i < 10; i += 1) {

_Accept (mem) {
break fini;

} else ;
}

}
};

generates these warnings when using the-Wall compiler flag (actually generated by the C++ compiler not�C++):

test.cc:17: warning: label ‘ U C fini’ defined but not used
test.cc:11: warning: label ‘ U L000001’ defined but not used
test.cc:8: warning: label ‘fini’ defined but not used

These warning messages appear due to the way�C++ generates code. Labels are generated in a number of places but
are not always used depending on what happens later in the code. It is too difficult to detect all these cases and remove
the labels that are unnecessary. All of these kinds of warnings can be suppressed by adding the extra flag:

-Wall -Wno-unused-label

The following program:

95

96 CHAPTER 7. ERRORS

#include <uC++.h>
_Task T {

void main() {
_Accept (mem);

}
public :

void mem() {}
};

generates this error:

test.cc:4: uC++ Translator error: accept on a nomutex member ”mem”, possibly caused by accept state-
ment appearing before mutex-member definition.

because the accept of membermem appearsbeforethe definition of membermem, and hence, the�C++ translator
encounters the identifiermem before it knows it is a mutex member. C++ requires definition before use in most
circumstances.

The following program:

#include <uC++.h>
_Task T {

public :
void mem() {}

private :
void main() {

_Accept (mem);
or _Accept (mem);

}
};

generates this error:

test.cc:8: uC++ Translator error: multiple accepts of mutex member ”mem”.

because the accept statement specifies the same member,mem, twice. The second specification is superfluous.
The following program:

#include <uC++.h>
_Task T1 {};
_Task T2 {

private :
void main() {

_Accept (~T1);
}

};

generates this error:

test.cc:6: uC++ Translator error: accepting an invalid destructor; destructor name must be the same as the
containing class ”T2”.

because the accept statement specifies the destructor from adifferent class,T1, within classT2.
The following program:

#include <uC++.h>
_Mutex class M {};
_Coroutine C : public M {};
_Task T1 : public C {};
_Task T2 : public M, public C {};

generates these errors:

test.cc:3: uC++ Translator error: derived type ”C” of kind ”COROUTINE” is incompatible with the base type
”M” of kind ”MONITOR”; inheritance ignored.
test.cc:4: uC++ Translator error: derived type ”T1” of kind ”TASK” is incompatible with the base type ”C” of

7.1. STATIC (COMPILE-TIME) WARNINGS/ERRORS 97

kind ”COROUTINE”; inheritance ignored.
test.cc:5: uC++ Translator error: multiple inheritance disallowed between base type ”M” of kind ”MONITOR”
and base type ”C” of kind ”COROUTINE”; inheritance ignored.

because of inheritance restrictions among kinds of types in�C++ (see Section2.14, p.34).
Similarly, the following program:

#include <uC++.h>
_Event T1 {};
_Event T2 : private T1 {};
_Event T3 : public T1, public T2 {};

generates these errors:

test.cc:3: uC++ Translator error: non-public inheritance disallowed between the derived type ”T2” of kind
”EVENT” and the base type ”T1” of kind ”EVENT”; inheritance ignored.
test.cc:4: uC++ Translator error: multiple inheritance disallowed between base type ”T1” of kind ”EVENT”
and base type ”T2” of kind ”EVENT”; inheritance ignored.

because of inheritance restrictions among exception typesin �C++ (see Section5.7, p.83).
The following program:

#include <uC++.h>
_Task T; // prototype
_Coroutine T {}; // definition

generates this error:

test.cc:3: uC++ Translator error: ”T” redeclared with different kind.

because the kind of type for the prototype,_Task , does not match the kind of type for the definition,_Coroutine .
The following program:

#include <uC++.h>
_Mutex class M1 {};
_Mutex class M2 {};
_Mutex class M3 : public M1, public M2 {}; // multiple inheritance

generates this error:

test.cc:4: uC++ Translator error: multiple inheritance disallowed between base type ”M1” of kind ”MONI-
TOR” and base type ”M2” of kind ”MONITOR”; inheritance ignored.

because only one base type can be a mutex type when inheriting.
The following program:

#include <uC++.h>
_Task T {

public :
_Nomutex void mem();

};
_Mutex void T::mem() {}

generates this error:

test.cc:6: uC++ Translator error: mutex attribute of ”T::mem” conflicts with previously declared nomutex
attribute.

because the kind of mutual exclusion,_Nomutex , for the prototype ofmem, does not match the kind of mutual
exclusion,_Mutex , for the definition.

The following program:

98 CHAPTER 7. ERRORS

#include <uC++.h>
_Task T {

public :
_Nomutex T() {} // must be mutex
_Mutex void *operator new (size_t) {} // must be nomutex
_Mutex void operator delete (void *) {} // must be nomutex
_Mutex static void mem() {} // must be nomutex
_Nomutex ~T() {} // must be mutex

};

generates these errors:

test.cc:4: uC++ Translator error: constructor must be mutex, nomutex attribute ignored.
test.cc:5: uC++ Translator error: ”new” operator must be nomutex, mutex attribute ignored.
test.cc:6: uC++ Translator error: ”delete” operator must be nomutex, mutex attribute ignored.
test.cc:7: uC++ Translator error: static member ”mem” must be nomutex, mutex attribute ignored.
test.cc:9: uC++ Translator error: destructor must be mutex for mutex type, nomutex attribute ignored.

because certain members may or may not have the mutex property for any mutex type. The constructor(s) of a mutex
type must be mutex because the thread of the constructing task is active in the object. Operatorsnew anddelete of
a mutex type must be nomutex because it is superfluous to make them mutex when the constructor and destructor
already ensure the correct form of mutual exclusion. Thestatic member(s) of a mutex type must be nomutex because
it has no direct access to the object’s mutex properties, i.e., there is nothis variable in astatic member to control the
mutex object. Finally, a destructor must be mutex if it is a member of a mutex type because deletion requires mutual
exclusion.

The following program:

#include <uC++.h>
_Mutex class T1;
class T1 {}; // conflict between forward and actual qualifier

class T2 {};
_Mutex class T2; // conflict between forward and actual qualifier

_Mutex class T3; // conflicting forward declaration qualifiers
_Nomutex class T3; // ignore both forward declaration qualifiers

_Mutex class T4 {
void mem(int); // default nomutex

public :
void mem(int , int); // default mutex

};

generates these errors:

test.cc:3: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Ignoring
previous declaration.
test.cc:6: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Ignoring
this declaration.
test.cc:9: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Assuming
default attribute.
test.cc:14: uC++ Translator error: mutex attribute of ”T4::mem” conflicts with previously declared nomutex
attribute.

because there are conflicts between mutex qualifiers. For typeT1, the mutex qualifier for the forward declaration does
not match with the actual declaration because the default qualifier for aclass is _Nomutex . For typeT2, the mutex
qualifier for the later forward declaration does not match with the actual declaration for the same reason. For type
T3, the mutex qualifiers for the two forward declarations are conflicting so they are ignored at the actual declaration.
For mutex typeT4, the default mutex qualifiers for the overloaded member routine,mem, are conflicting because one
is private, default_Nomutex , the other is public, default_Mutex , and�C++ requires overloaded members to have
identical mutex properties (see Sections2.9.2.1, p.22and 2.17, p. 43).

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 99

The following program:

#include <uC++.h>
_Task /* no name */ {};

generates this error:

test.cc:2: uC++ Translator error: cannot create anonymous coroutine or task because of the need for
named constructors and destructors.

because a type without a name cannot have constructors or destructors since both are named after the type, and the�C++ translator needs to generate constructors and destructors if not present for certain kinds of types.

7.2 Dynamic (Runtime) Warnings/Errors
These dynamic warnings/errors are generated by the�C++ runtime system not by the C++ runtime system. These
warnings/errors are specific to usage problems with the�C++ concurrency extensions. The following examples show
different situations, the message generated and an explanation of the message. While not all warning/error situations
are enumerated, the list covers the common one present in most �C++ programs.

7.2.1 Assertions

Assertions define runtime checks that must be true or the basic algorithm is incorrect; if the assertion is false, a message
is printed and the program is aborted. Assertions are written using the macroassert:

assert(boolean-expression);

Asserts can be turned off by defining the preprocessor variable NDEBUG before includingassert.h. All asserts are
implicitly turned off when the compiler flag-nodebug is specified(see Section2.5.1, p.10).

To use assertions in a�C++ program, include the file:

#include <assert.h>

7.2.2 Termination

A �C++ program can be terminated due to a failure using the UNIX routineabort, which stops all thread execution and
generates a core file for subsequent debugging (assuming theshell limits allow a core file to written). To terminate a
program, generate a core file,andprint an error message, use the�C++ free routineuAbort:

void uAbort(char *format = "", . . .)

format is a string containing text to be printed andprintf style format codes describing how to print the following
variable number of arguments. The number of elements in the variable argument list must match with the number
of format codes, as forprintf. In addition to printing the user specified message, which normally describes the error,
routineuAbort prints the name of the currently executing task type, possibly naming the type of the currently executing
coroutine if the task’s thread is not executing on its own execution state at the time of the call.

A �C++ program can be terminated using the UNIX routineexit, which stops all thread execution and returns a
status code to the invoking shell:

void exit(int status);

Note, whenexit is used to terminate a program, all global destructors are still executed. Any tasks, clusters, or
processors not deleted by this pointare not flagged with an error, unlike normal program termination.2 Because routineexit eliminates some error checking, it should not be used to enduMain::main to pass

back a return code to the shell, e.g.:

void uMain::main() {
. . .
exit(0);

}

Use the variableuRetCode from uMain::main instead (see Section2.2, p. 8). 2

100 CHAPTER 7. ERRORS

7.2.3 Messages

The following examples show different error situations, the error message generated and an explanation of the error.
While not all error situations are enumerated, the list covers the common errors present in most�C++ programs.
Finally, most of these errors are generated only when using the-debug compilation flag (see Section2.5.1, p. 10).

7.2.3.1 Default Actions

The following examples show the default actions taken when certain exceptions are not caught and handled by the
program (see Section5.3.2, p.71). In all these cases, the default action is print appropriate error message and terminate
the program. While not all default actions are enumerated, the list covers the common problems present in many�C++
programs.

The following program:

#include <uC++.h>
void f() throw () { // throw no exceptions

throw 1;
}
void uMain::main() {

f();
}

generates this error:

uC++ Runtime error (UNIX pid:20242) Exception propagated through a function whose exception-specification
does not permit exceptions of that type. Type of last active exception: int Error occurred while executing
task uMain (0xffbef828).

because routinef defines it raises no exceptions and then an exception is raised from within it.
The following program:

#include <uC++.h>
void uMain::main() {

throw 1;
}

generates this error:

uC++ Runtime error (UNIX pid:13901) Propagation failed to find a matching handler. Possible cause is
a missing try block with appropriate catch clause for specified or derived exception type, or throwing an
exception from within a destructor while propagating an exception. Type of last active exception: int Error
occurred while executing task uMain (0xffbef000).

because notry statement with an appropriatecatch clause is in effect so propagation fails to locate a matchinghandler.
The following program:

#include <uC++.h>
void uMain::main() {

throw ; // rethrow
}

generates this error:

uC++ Runtime error (UNIX pid:13291) Attempt to rethrow/reresume but no active exception. Possible
cause is a rethrow/reresume not directly or indirectly performed from a catch clause. Error occurred while
executing task uMain (0xffbef000).

because a rethrow must occur in a context with an active (already raised) exception so that exception can be raised
again.

The following program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 101

#include <uC++.h>
_Task T1 {

uCondition w;
public :

void mem() { w.wait(); }
private :

void main() {
_Accept (mem); // let T2 in so it can wait
w.signal(); // put T2 on acceptor/signalled stack
_Accept (~T1); // uMain is calling the destructor

}
};
_Task T2 {

T1 &t1;
void main() { t1.mem(); }

public :
T2(T1 &t1) : t1(t1) {}

};
void uMain::main() {

T1 *t1 = new T1;
T2 *t2 = new T2(*t1);
delete t1; // delete in same order as creation
delete t2;

}

generates this error:

uC++ Runtime error (UNIX pid:23337) (uSerial &)0x84470 : Entry failure while executing mutex destructor,
task uMain (0xffbef008) found blocked on acceptor/signalled stack. Error occurred while executing task T2
(0x8d550).

because taskt2 is allowed to wait on condition variablew in t1.mem, and then taskt1 signals conditionw, which moves
taskt2 to the acceptor/signalled stack, and accepts its destructor. As a result, when taskuMain attempts to delete task
t1, it finds taskt2 still blocked on the acceptor/signalled stack. Similarly,the following program:

#include <uC++.h>
_Task T1 {

public :
void mem() {}

private :
void main() { _Accept (~T1); }

};
_Task T2 {

T1 &t1;
public :

T2(T1 &t1) : t1(t1) {}
private :

void main() { t1.mem(); }
};
void uMain::main() {

T1 *t1 = new T1;
T2 *t2 = new T2(*t1);
delete t1;
delete t2;

}

generates this error:

uC++ Runtime error (UNIX pid:23425) (uSerial &)0x84230 : Entry failure while executing mutex destructor,
task uMain (0xffbef008) found blocked on entry queue. Error occurred while executing task T2 (0x8d310).

102 CHAPTER 7. ERRORS

because taskt2 happens to block on the call tot1.mem, and then taskt1 accepts its destructor. As a result, when task
uMain attempts to delete taskt1, it finds taskt2 still blocked on the entry queue oft1.

The following program:

#include <uC++.h>
_Event E {};

_Task T {
uBaseTask &t;

public :
T(uBaseTask &t) : t(t) {}
void mem() {

// uRendezvousAcceptor();
_Throw E();

}
private :

void main() {
_Accept (mem);

}
};

void uMain::main() {
T t(uThisTask());
try {

t.mem();
} catch (E &e) {
}

}

generates this error:

uC++ Runtime error (UNIX pid:23512) (uSerial &)0x83120 : Rendezvous failure in accepted call from task
uMain (0xffbef008) to mutex member of task T (0x82ff0). Error occurred while executing task T (0x82ff0).

because in the call tot.mem from taskuMain, the rendezvous terminates abnormally by raising an exception of type
E. As a result,uMain implicitly resumes an exception of typeuSerial::RendezvousFailure concurrently at taskt so
it knows the call did not complete and can take appropriate corrective action (see Section5.10.3, p. 89). If the call
uRendezvousAcceptor() is uncommented, an exception of typeuSerial::RendezvousFailure is not resumed at taskt,
and taskt restarts as if the rendezvous completed. A more complex version of this situation occurs when a blocked
call is aborted, i.e., before the call even begins. The following program:

#include <uC++.h>
_Event E {};

_Task T {
uBaseTask &t;

public :
T(uBaseTask &t) : t(t) {}
void mem() {}

private :
void main() {

_Throw E() _At t;
_Accept (mem);

}
};

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 103

void uMain::main() {
T t(uThisTask());
try {

_Enable {
t.mem();

}
} catch (E &e) {
}

}

generates this error:

uC++ Runtime error (UNIX pid:23656) (uSerial &)0x83260 : Rendezvous failure in accepted call from task
uMain (0xffbef008) to mutex member of task T (0x83130). Error occurred while executing task T (0x83130).

because the blocked call tot.mem from taskuMain is interrupted by the concurrent exception of typeE. When the
blocked call fromuMain is accepted,uMain immediately detects the concurrent exception and does not start the call.
As a result,uMain implicitly resumes an exception of typeuSerial::RendezvousFailure concurrently at taskt so it
knows the call did not occur and can take appropriate corrective action (see Section5.10.3, p.89).

The following program:

#include <uC++.h>
_Task T1 {

uCondition w;
public :

void mem() { w.wait(); }
private :

void main() { _Accept (mem); }
};

_Task T2 {
T1 &t1;
void main() { t1.mem(); }

public :
T2(T1 &t1) : t1(t1) {}

};

void uMain::main() {
T1 *t1 = new T1;
T2 *t2 = new T2(*t1);
delete t1;
delete t2;

}

generates this error:

uC++ Runtime error (UNIX pid:23856) (uCondition &)0x84410 : Waiting failure as task uMain (0xffbef008)
found blocked task T2 (0x8d470) on condition variable during deletion. Error occurred while executing task
T2 (0x8d470).

because the call tot1.mem blocks taskt2 on condition queuew and then taskt1 implicitly accepts its destructor when
its main terminates. As a result, when taskuMain attempts to delete taskt1, it finds taskt2 still blocked on the condition
queue.

The following program:

104 CHAPTER 7. ERRORS

#include <uC++.h>
_Event E {};

_Coroutine C {
void main() { _Throw E(); }

public :
void mem() { resume(); }

};
void uMain::main() {

C c;
c.mem(); // first call fails

}

generates this error:

uC++ Runtime error (UNIX pid:23979) (uBaseCoroutine &)0xffbef008 : Unhandled exception in coroutine
uMain raised non-locally from resumed coroutine C (0x82970), which was terminated due to an unhandled
exception of type E. Error occurred while executing task uMain (0xffbef008).

because the call toc.mem resumes coroutinec and then coroutinec throws an exception it does not handle. As a result,
when the top ofc’s stack is reached, an exception of typeuBaseCoroutine::UnhandledException is raised atuMain,
since it last resumedc. A more complex version of this situation occurs when there is a resume chain and no coroutine
along the chain handles the exception. The following program:

#include <uC++.h>
_Event E {};

_Coroutine C2 {
void main() { _Throw E(); }

public :
void mem() { resume(); }

};
_Coroutine C1 {

void main() {
C2 c2;
c2.mem();

}
public :

void mem() { resume(); }
};
void uMain::main() {

C1 c1;
c1.mem(); // first call fails

}

generates this error:

uC++ Runtime error (UNIX pid:24080) (uBaseCoroutine &)0xffbef008 : Unhandled exception in coroutine
uMain raised non-locally from coroutine C1 (0x82ec0), which was terminated due to a series of unhandled
exceptions – originally an unhandled exception of type E inside coroutine C2 (0x8acc0). Error occurred
while executing task uMain (0xffbef008).

because the call toc1.mem resumes coroutinec1, which creates coroutinec2 and call toc2.mem to resume it, and then
coroutinec2 throws an exception it does not handle. As a result, when the top ofc2’s stack is reached, an exception of
typeuBaseCoroutine::UnhandledException is raised atuMain, since it last resumedc.

7.2.3.2 Coroutine

Neither resuming to nor suspending from a terminated coroutines is allowed; a coroutine is terminated when itsmain
routine returns. The following program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 105

#include <uC++.h>
_Coroutine C {

void main() {}
public :

void mem() { resume(); }
};
void uMain::main() {

C c;
c.mem(); // first call works
c.mem(); // second call fails

}

generates this error:

uC++ Runtime error (UNIX pid:24169) Attempt by coroutine uMain (0xffbef008) to resume terminated
coroutine C (0x823a0). Possible cause is terminated coroutine’s main routine has already returned. Error
occurred while executing task uMain (0xffbef008).

because the first call toc.mem resumes coroutinec and then coroutinec terminates. As a result, whenuMain attempts
the second call toc.mem, it finds coroutinec terminated. A similar situation can be constructed usingsuspend, but is
significantly more complex to generate, hence it is not discussed in detail.

Membersuspend resumes the last resumer, and therefore, there must be a resume before a suspend can execute
(see Section2.7.3, p.17). The following program:

#include <uC++.h>
_Coroutine C {

void main() {}
public :

void mem() {
suspend(); // suspend before any resume

}
};
void uMain::main() {

C c;
c.mem();

}

generates this error:

uC++ Runtime error (UNIX pid:24258) Attempt to suspend coroutine C (0x82390) that has never been
resumed. Possible cause is a suspend executed in a member called by a coroutine user rather than by the
coroutine main. Error occurred while executing task uMain (0xffbef008).

because the call toC::mem executes a suspend before the coroutine’smain member is started, and hence, there is no
resumer to reactivate. In general, membersuspend is only called within the coroutine main or non-public members
called directly or indirectly from the coroutine main, not in public members called by other coroutines.

Two tasks cannot simultaneously execute the same coroutine; only one task can use the coroutine’s execution at a
time. The following program:

#include <uC++.h>
_Coroutine C {

void main() {
uThisTask().yield();

}
public :

void mem() {
resume();

}
};

106 CHAPTER 7. ERRORS

_Task T {
C &c;
void main() {

c.mem();
}

public :
T(C &c) : c(c) {}

};
void uMain::main() {

C c;
T t1(c), t2(c);

}

generates this error:

uC++ Runtime error (UNIX pid:24393) Attempt by task T (0x82ea0) to resume coroutine C (0x831e0) cur-
rently being executed by task T (0x83040). Possible cause is two tasks attempting simultaneous execution
of the same coroutine. Error occurred while executing task T (0x82ea0).

becauset1’s thread first calls routineC::mem and then resumes coroutinec, where it yields the processor.t2’s threads
now calls routineC::mem and attempts to resume coroutinec but t1 is currently usingc’s execution-state (stack). This
same error occurs if the coroutine is changed to a coroutine monitor and taskt1 waits in coroutinec after resuming it:

#include <uC++.h>
_Cormonitor CM {

uCondition w;
void main() {

w.wait();
}

public :
void mem() {

resume();
}

};
_Task T {

CM &cm;
void main() {

cm.mem();
}

public :
T(CM &cm) : cm(cm) {}

};
void uMain::main() {

CM cm;
T t1(cm), t2(cm);

}

When a coroutine (or task) is created, there must be sufficient memory to allocate its execution state. The following
program:

#include <uC++.h>
unsigned int uMainStackSize() {

return 1000000000; // very large stack size for uMain
}
void uMain::main() {
}

generates this error:

uC++ Runtime error (UNIX pid:24848) Attempt to allocate 1000000000 bytes of storage for coroutine or
task execution-state but insufficient memory available. Error occurred while executing task uBootTask
(0x4d6b0).

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 107

because the declaration ofuMain by theuBootTask fails due to the request for a 1000000000-byte stack foruMain.

As mentioned in Section2.4, p. 10, the�C++ kernel provides no support for automatic growth of stackspace for
coroutines and tasks. Several checks are made to mitigate problems resulting from lack of dynamic stack growth. The
following program:

#include <uC++.h>
void uMain::main() {

char x[uThisCluster().getStackSize()]; // array larger than stack space
verify();

}

generates this error:

uC++ Runtime error (UNIX pid:24917) Stack overflow detected: stack pointer 0x7a650 below limit 0x7a820.
Possible cause is allocation of large stack frame(s) and/or deep call stack. Error occurred while executing
task uMain (0xffbef008).

because the declaration of the array inuMain uses more than the current stack space.

The following program:

#include <uC++.h>
void uMain::main() {

{
char x[uThisCluster().getStackSize()]; // array larger than stack space
for (int i = 0; i < uThisCluster().getStackSize(); i += 1) {

x[i] = ’a’; // write outside stack space
}

} // delete array
verify();

}

generates this error:

uC++ Runtime error (UNIX pid:24968) Stack corruption detected. Possible cause is corrupted stack frame
via overwriting memory. Error occurred while executing task uMain (0xffbef008).

because the declaration of the array inuMain uses more than the current stack space, and by writing into the array, the
current stack space is corrupted (and possibly another stack, as well).

7.2.3.3 Mutex Type

It is a restriction that a task must acquire and release mutexobjects in nested (LIFO) order (see Section2.8, p. 18).
The following program:

#include <uC++.h>
_Task T;

_Cormonitor CM {
T *t;
void main();

public :
void mem(T *t) { // task owns mutex object

CM::t = t;
resume(); // begin coroutine main

}
};

108 CHAPTER 7. ERRORS

_Task T {
CM &cm;
void main() {

cm.mem(this); // call coroutine monitor
}

public :
T(CM &cm) : cm(cm) {}
void mem() {

resume(); // restart task in CM::mem
}

};

void CM::main() {
t->mem(); // call back into task

}
void uMain::main() {

CM cm;
T t(cm);

}

generates this error:

uC++ Runtime error (UNIX pid:25043) Attempt to perform a non-nested entry and exit from multiple ac-
cessed mutex objects. Error occurred while executing task T (0x835f0).

becauset’s thread first calls mutex routineCM::mem (and now owns coroutine monitorcm) and then resumes coroutine
cm, which now calls the mutex routineT::mem (t already owns itself). The coroutinecm resumest from withinT::mem,
which restarts inCM::mem (full coroutining) and exits before completing the nested call to mutex routineT::mem
(wherecm is suspended). Therefore, the calls to these mutex routinesdo not terminate in LIFO order. The following
program is identical to the previous one, generating the same error, but the coroutine monitor has been separated into
a coroutine and monitor:

#include <uC++.h>
_Monitor M;
_Task T;

_Coroutine C {
M *m;
void main();

public :
void mem(M *m) {

C::m = m;
resume(); // begin coroutine main

}
};
_Monitor M {

C &c;
T *t;

public :
M(C &c) : c(c) {}
void mem1(T *t) { // task owns mutex object

M::t = t;
c.mem(this);

}
void mem2();

};

void C::main() {
m->mem2();

}
_Task T {

M &m;
C &c;
void main() {

m.mem1(this); // call monitor
}

public :
T(M &m, C &c) : m(m), c(c) {}
void mem() {

resume(); // restart task in C::mem
}

};
void M::mem2() {

t->mem(); // call back into task
}
void uMain::main() {

C c;
M m(c);
T t(m, c);

}

Ownership of a mutex object by a task applies through any coroutine executed by the task. The following program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 109

#include <uC++.h>
_Task T;

_Coroutine C {
T *t;
void main();

public :
void mem(T *t) {

C::t = t;
resume();

}
};

_Task T {
C &c;
void main() {

c.mem(this);
yield();

}
public :

T(C &c) : c(c) {}
void mem() {

resume();
}

};

void C::main() {
t->mem();

}
void uMain::main() {

C c;
T t1(c), t2(c);

}

generates this error:

uC++ Runtime error (UNIX pid:25216) Attempt by task T (0x83050) to activate coroutine C (0x833c0) cur-
rently executing in a mutex object owned by task T (0x83208). Possible cause is task attempting to logically
change ownership of a mutex object via a coroutine. Error occurred while executing task T (0x83050).

becauset1’s thread first calls routineC::mem and then resumes coroutinec, which now calls the mutex routineT::mem.
t1 restarts inC::mem and returns back toT::main and yields the processor.t2’s threads now calls routineC::mem and
attempts to resume coroutinec, which would restartt2 via c in T::mem. However, this resumption would result in a
logical change in ownership becauset2 has not acquired ownership oft1. This same error can occur if the coroutine is
changed to a coroutine monitor and taskt1 waits in coroutinec after resuming it:

#include <uC++.h>
_Task T;

_Coroutine C {
T *t;
void main();

public :
void mem(T *t) {

C::t = t;
resume();

}
};

110 CHAPTER 7. ERRORS

_Task T {
uCondition w;
C &c;
void main() {

c.mem(this);
w.wait();

}
public :

T(C &c) : c(c) {}
void mem() {

resume();
}

};
void C::main() {

t->mem();
}
void uMain::main() {

C c;
T t1(c), t2(c);

}

It is incorrect storage management to delete any object if there are outstanding nested calls to the object’s members.�C++ detects this case only for mutex objects. The following program:

#include <uC++.h>
class T;

_Monitor M {
public :

void mem(T *t);
};
class T {

M *m;
public :

void mem1() {
m = new M; // allocate object
m->mem(this); // call into object

}
void mem2() {

delete m; // delete object with pending call
}

};
void M::mem(T *t) {

t->mem2(); // call back to caller
}
void uMain::main() {

T t;
t.mem1();

}

generates this error:

uC++ Runtime error (UNIX pid:25337) Attempt by task uMain (0xffbef008) to call the destructor for uSerial
0x83278, but this task has outstanding nested calls to this mutex object. Possible cause is deleting a
mutex object with outstanding nested calls to one of its members. Error occurred while executing task
uMain (0xffbef008).

It is incorrect to perform more than one delete on a mutex object, which can happen if multiple tasks attempt
to perform simultaneous deletes on the same object.�C++ detects this case only for mutex objects. The following
program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 111

#include <uC++.h>
_Monitor M {

uCondition w;
public :

~M() {
w.wait(); // force deleting task to wait

}
};
_Task T {

M *m;
void main() {

delete m; // delete mutex object
}

public :
T(M *m) : m(m) {}

};
void uMain::main() {

M *m = new M; // create mutex object
T t(m); // create task
delete m; // also delete mutex object

}

generates this error:

uC++ Runtime error (UNIX pid:25431) Attempt by task T (0x82cd0) to call the destructor for uSerial
0x83a48, but this destructor was already called by task uMain (0xffbef008). Possible cause is multiple
tasks simultaneously deleting a mutex object. Error occurred while executing task T (0x82cd0).

7.2.3.4 Task

One task cannot yield another task; a task may only yield itself (see Section2.12.2, p. 31). The following program:

#include <uC++.h>
_Task T {

void main() {}
};
void uMain::main() {

T t;
t.yield(); // yielding another task

}

generates this error:

uC++ Runtime error (UNIX pid:25487) Attempt to yield the execution of task T (0x827c0) by task uMain
(0xffbef008). A task may only yield itself. Error occurred while executing task uMain (0xffbef008).

One task cannot migrate another task; a task may only migrateitself for the same reason as for yielding (see
Section2.12.2, p. 31). The following program:

#include <uC++.h>
_Task T {

void main() {}
};
void uMain::main() {

T t;
t.migrate(uThisCluster()); // migrating another task

}

generates this error:

uC++ Runtime error (UNIX pid:25576) Attempt to migrate task T (0x82750) to cluster userCluster (0x72f80).
A task may only migrate itself to another cluster. Error occurred while executing task uMain (0xffbef008).

112 CHAPTER 7. ERRORS

The destructor of a task cannot execute if the thread of that task has not finished (halted) because the destructor
deallocates the environment in which the task’s thread is executing. The following program:

#include <uC++.h>
_Task T {

uCondition w;
void main() {

_Accept (~T); // uMain invokes destructor
w.wait(); // T continues but blocks, which restarts uMain

}
};
void uMain::main() {

T t;
} // implicitly invoke T::~T

generates this error:

uC++ Runtime error (UNIX pid:25719) Attempt to delete task T (0x82900) that is not halted. Possible cause
is task blocked on a condition queue. Error occurred while executing task uMain (0xffbef008).

because the call to the destructor restarts the accept statement (see Section2.9.2.3, p.24), and the thread oft blocks on
conditionw, which restarts the destructor. However, the destructor cannot cleanup without invalidating any subsequent
execution of taskt.

7.2.3.5 Condition Variable

Only the owner of a condition variable can wait and signal on it (see Section2.9.3.1, p.26). The following program:

#include <uC++.h>
_Task T {

uCondition &w;
void main() {

w.wait();
}

public :
T(uCondition &w) : w(w) {}

};

void uMain::main() {
uCondition w;
T t(w);
w.wait();

}

generates this error:

uC++ Runtime error (UNIX pid:6605) Attempt to wait on a condition variable for a mutex object not locked
by this task. Possible cause is accessing the condition variable outside of a mutex member for the mutex
object owning the variable. Error occurred while executing task T (0x826c8).

because the condition variablew is passed fromuMain to t, and then there is a race to wait on the condition. The error
message shows thatuMain waited first so it became the condition owner, and thent’s attempt to wait fails. Changing
wait in T::main to signal generates a similar message with respect to signalling a condition not owned by mutex object
t. It is possible for one mutex object to create a condition andpass it to another, as long as the creator does not wait on
it before passing it.

The same situation can occur if a wait or signal is incorrectly placed in a nomutex member of a mutex type. The
following program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 113

#include <uC++.h>
_Task T {

uCondition w;
void main() { w.wait(); }

public :
_Nomutex void mem() {

w.signal();
}

};
void uMain::main() {

T t;
yield();
t.mem();

}

generates this error:

uC++ Runtime error (UNIX pid:6502) Attempt to signal a condition variable for a mutex object not locked
by this task. Possible cause is accessing the condition variable outside of a mutex member for the mutex
object owning the variable. Error occurred while executing task uMain (0xffbef008).

because taskt is first to wait on condition variablew due to theyield in uMain::main, and thenuMain does not lock
mutex-objectt when callingmem as it is nomutex. Only ifuMain hast locked can it access any condition variable
owned byt. Changingsignal in T::mem to wait generates a similar message with respect to waiting on a condition not
locked by mutex objectuMain.

A condition variable must be non-empty before examining data stored with the front task blocked on the queue
(see Section2.9.3.1, p. 26). The following program:

#include <uC++.h>
void uMain::main() {

uCondition w;
int i = w.front();

}

generates this error:

uC++ Runtime error (UNIX pid:2411) Attempt to access user data on an empty condition. Possible cause
is not checking if the condition is empty before reading stored data. Error occurred while executing task
uMain (0xffbef870).

because the condition variablew is empty so there is no data to return.

7.2.3.6 Accept Statement

An _Accept accept statement can only appear in a mutex member. The following program:

#include <uC++.h>
_Monitor M {

public :
void mem1() {}
_Nomutex void mem2() {

_Accept (mem1); // not allowed in nomutex member
}

};
void uMain::main() {

M m;
m.mem2();

}

generates this error:

uC++ Runtime error (UNIX pid:2159) Attempt to accept in a mutex object not locked by this task. Possible
cause is accepting in a nomutex member routine. Error occurred while executing task uMain (0xffbef008).

114 CHAPTER 7. ERRORS

7.2.3.7 Calendar

When creating an absolute time value usinguTime (see Section10.2.1, p.136), the value must be in the range 00:00:00
UTC, January 1, 1970 to 03:14:07 UTC, January 19, 2038, whichis the UNIX start and end epochs. The following
program:

#include <uC++.h>
void uMain::main() {

uTime t(-17);
}

generates this error:

uC++ Runtime error (UNIX pid:2243) Attempt to create uTime(year=1970, month=0, day=0, hour=0,
min=0, sec=-17, nsec=0), which exceeds range 00:00:00 UTC, January 1, 1970 to 03:14:07 UTC, January
19, 2038. Error occurred while executing task uMain (0xffbef008).

7.2.3.8 Locks

The argument for theuLock constructor (see Section2.15.2, p.38) must be 0 or 1. The following program:

#include <uC++.h>
void uMain::main() {

uLock l(3);
}

generates this error:

uC++ Runtime error (UNIX pid:2328) Attempt to initialize uLock 0x91030 to 3 that exceeds range 0-1. Error
occurred while executing task uMain (0xffbef008).

because the value 3 passed to the constructor ofuLock is outside the range 0–1.

7.2.3.9 Cluster

A cluster cannot be deleted with a task still on it, regardless of what state the task is in (i.e., blocked, ready or running).
The following program:

#include <uC++.h>
_Task T {

void main() {}
};
void uMain::main() {

T *t = new T;
}

generates this error:

uC++ Runtime error (UNIX pid:2404) Attempt to delete cluster userCluster (0x82260) with task T (0x92770)
still on it. Possible cause is the task has not been deleted. Error occurred while executing task uBootTask
(0x5d6f0).

because theuBootTask happens to delete the user cluster (see Section8.3, p.119) afteruMain::main terminates before
the dynamically allocated taskt has terminated. Deleting the task associated witht beforeuMain::main terminates
solves the problem.

Similarly, a cluster cannot be deleted with a processor still located on it, regardless of what state the processor is
in (i.e., running or idle). The following program:

#include <uC++.h>
void uMain::main() {

uProcessor &p = *new uProcessor(uThisCluster());
}

generates this error:

uC++ Runtime error (UNIX pid:2488) Attempt to delete cluster userCluster (0x81770) with processor
0x91c80 still on it. Possible cause is the processor has not been deleted. Error occurred while execut-
ing task uBootTask (0x5cc00).

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 115

because theuBootTask deletes the user cluster (see Section8.3, p. 119) afteruMain::main terminates but the dynam-
ically allocated processorp is still on the user cluster. Deleting the processor associated withp beforeuMain::main
terminates solves the problem.

7.2.3.10 Heap�C++ provides its own concurrent dynamic memory allocation routines. Unlike most C/C++ dynamic memory alloca-
tion routines,�C++ does extra checking to ensure that some aspects of dynamic memory usage are done correctly. The
following program:

#include <uC++.h>
void uMain::main() {

int *ip = (int *)1; // invalid pointer address
delete ip;

}

generates this error:

uC++ Runtime error (UNIX pid:2535) Attempt to free storage 0x1 outside the current heap range:0x5e468
to 0x91b78. Possible cause is invalid pointer. Error occurred while executing task uMain (0xffbef008).

because the value of pointerip is not within the heap storage area, and therefore, cannot bedeleted.
The following program:

#include <uC++.h>
void uMain::main() {

int *ip = new int [10];
delete &ip[5]; // not the start of the array

}

generates this error:

uC++ Runtime error (UNIX pid:2607) Attempt to free storage 0x91c14 with corrupted header. Possible
cause is duplicate free on same block or overwriting of header information. Error occurred while executing
task uMain (0xffbef008).

because the pointer passed todelete must always be the same as the pointer returned fromnew . In this case, the value
passed todelete is in the middle of the array instead of the start.

The following program:

#include <uC++.h>
_Task T {

void main() {}
public :

void mem() {}
};
void uMain::main() {

T *t = new T;
delete t;
t->mem(); // use deleted storage

}

generates this error:

uC++ Runtime error (UNIX pid:2670) (uSpinLock &)0x92a50.acquire() : internal error, attempt to multiply
acquire spin lock by same task. Error occurred while executing task uMain (0xffbef008).

because an attempt is made to use the storage for taskt after it is deleted, which is always incorrect. This storagemay
have been reallocated to another task and now contains completely different information. The problem is detected
inside of the�C++ kernel, where there are assertion checks for invalid pre- or post-conditions. In this case, the invalid
storage happened to trigger a check for a task acquiring a spin lock twice, which is never suppose to happen. Using
storage incorrectly can trigger other “internal errors” from the�C++ kernel.

As well, a warning message is issued at the end of a program if all storage is not freed.

116 CHAPTER 7. ERRORS

uC++ Runtime warning (UNIX pid:3914) : program terminating with 32(0x20) bytes of storage allocated
but not freed. Possible cause is unfreed storage allocated by the program or system/library routines called
from the program.

This is not an error; it is a warning.While this message indicates unfreed storage, it does not imply the storage is
allocated by the user’s code. Many system (e.g., exceptions) and library (e.g.,string type and socket I/O) operations
allocate storage (such as buffers) for the duration of the program, and therefore, there is little reason to free the storage
at program termination. (Why cleanup and then terminate?) There is nothing that can be done about this unfreed
storage. Therefore, the value printed is only a guide in determining if all of a user’s storage is freed.

What use is this message? Any sudden increase of unfreed storage from some base value may be a strong indication
of unfreed storage in the user’s program. A quick check of thedynamic allocation can be performed to verify all user
storage is being freed.

7.2.3.11 I/O

There are many different I/O errors; only those related to the�C++ kernel are discussed. The following program:

#include <uC++.h>
void uMain::main() {

uThisCluster().select(-1, 0, NULL);
}

generates this error:

uC++ Runtime error (UNIX pid:2962) Attempt to select on file descriptor -1 that exceeds range 0-1023.
Error occurred while executing task uMain (0xffbef008).

The following program:

#include <uC++.h>
void uMain::main() {

uThisCluster().select(-1, NULL, NULL, NULL, NULL);
}

generates this error:

uC++ Runtime error (UNIX pid:3008) Attempt to select with a file descriptor set size of -1 that exceeds
range 0-1024. Error occurred while executing task uMain (0xffbef008).

7.2.3.12 Processor

The following program:

#include <uC++.h>
#include <uSemaphore.h>
void uMain::main() {

uSemaphore s(0);
s.P(); // block only thread => synchronization deadlock

}

generates this error:

uC++ Runtime error (UNIX pid:3110) No ready or pending tasks. Possible cause is tasks are in a synchro-
nization or mutual exclusion deadlock. Error occurred while executing task uProcessorTask (0x82740).

because the only thread blocks so there are no other tasks to execute, resulting in a synchronization deadlock. This
message also appears for the more complex form of deadlock resulting from mutual exclusion.

7.2.3.13 UNIX

There are many UNIX related errors, of which only a small subset are handled specially by�C++.
A common error in C++ programs is to generate and use an invalid pointer. This situation can arise because of an

incorrect pointer calculation, such as an invalid subscript. The following program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 117

#include <uC++.h>
void uMain::main() {

int *ip = NULL; // set address to 0

*ip += 1; // use the bad address
}

generates this error:

uC++ Runtime error (UNIX pid:3241) Attempt to address location 0x0. Possible cause is reading out-
side the address space or writing to a protected area within the address space with an invalid pointer or
subscript. Error occurred while executing task uMain (0xffbef008).

because the value of pointerip is probably within the executable code, which is read-only,but an attempt to write is
occurring.

If a �C++ program is looping for some reason, it may be necessary toterminate its execution. Termination is
accomplished using a shellkill command, sending signalSIGTERM to the UNIX process.�C++ receives the termination
signal and attempts to shutdown the application, which is important in multikernel mode with multiple processors. The
following program:

#include <uC++.h>
#include <unistd.h> // getpid prototype
void uMain::main() {

kill(getpid(), SIGTERM); // send SIGTERM signal to program
}

generates this error:

uC++ Runtime error (UNIX pid:3315) Application interrupted by a termination signal. Error occurred while
executing task uMain (0xffbef008).

because the�C++ program sent itself a termination (SIGTERM) signal.

118 CHAPTER 7. ERRORS

Chapter 8�C++ Kernel

The�C++ kernel is a library of classes and routines that provide low-level lightweight concurrency support on unipro-
cessor and multiprocessor computers running the UNIX operating system. On uniprocessors, parallelism is simulated
by rapid context switching at non-deterministic points so aprogrammer cannot rely on order or speed of execution.
Some of the following facilities only have an effect on multiprocessor computers but can be called on a uniprocessor
so that a program can be seamlessly transported between the two architectures.

The�C++ kernel does not call the UNIX kernel to perform a context switch or to schedule tasks, and uses shared
memory for communication. As a result, performance for execution of and communication among large numbers of
tasks is significantly increased over UNIX processes. The maximum number of tasks that can exist is restricted only by
the amount of memory available in a program. The minimum stack size for an execution state is machine dependent,
but can be as small as 256 bytes. The storage management of all�C++ objects and the scheduling of tasks on virtual
processors is performed by the�C++ kernel.

8.1 Pre-emptive Scheduling and Critical Sections
Care must be taken when writing threaded programs calling certain UNIX library routines that arenot thread-safe. For
example, the UNIX random number generatorrand maintains an internal state between successive calls and there is no
mutual exclusion on this internal state. Hence, one task executing the random number generator can be pre-empted and
the generator state can be modified by another task, which mayresult in problems with the generated random values
or errors. Therefore, when writing�C++ programs, always use the thread-safe versions of UNIX library routines, such
asrand_r to generate random numbers.

For some non-thread-safe UNIX library-routines,�C++ provides a thread-safe equivalent, such asabort/uAbort,
exit (see Section7.2.2, p. 99), sleep, usleep, and the�C++ I/O library (see Chapter4, p.57).

8.2 Memory Management
In �C++, all user data is located in memory that is accessible by all kernel threads started by�C++. In order to make
memory management operations safe, the C++ memory management operatorsnew anddelete are indirectly redefined
through the C routinesmalloc and free to allocate and free memory correctly by multiple tasks. These memory
management operations provide identical functionality tothe C++ and C equivalent ones.

8.3 Cluster
As mentioned in Section2.3.1, p. 8, a cluster is a collection of�C++ tasks and processors; it provides a runtime
environment for execution. This environment controls the amount of parallelism and contains variables to affect how
coroutines and tasks behave on a cluster. Environment variables are used implicitly, unless overridden, when creating
an execution state on a cluster:

stack sizeis the default stack size, in bytes, used when coroutines or tasks are created on a cluster.

The variable(s) is either explicitly set or implicitly assigned a�C++ default value when the cluster is created. A cluster
is used in operations like task or processor creation to specify the cluster on which the task or processor is associated.

119

120 CHAPTER 8. �C++ KERNEL

After a cluster is created, it is the user’s responsibility to associate at least one processor with the cluster so it can
execute tasks.

The cluster interface is the following:

class uCluster {
public :

uCluster(unsigned int stackSize = uDefaultStackSize(), const char *name = "*unnamed*");
uCluster(const char *name);
uCluster(uBaseSchedule<uBaseTaskDL> &ReadyQueue,

unsigned int stackSize = uDefaultStackSize(), const char *name = "*unnamed*");
uCluster(uBaseSchedule<uBaseTaskDL> &ReadyQueue, const char *name = "*unnamed*");

const char *setName(const char *name);
const char *getName() const ;
unsigned int setStackSize(unsigned int stackSize);
unsigned int getStackSize() const ;

static const int readSelect;
static const int writeSelect;
static const int exceptSelect;
int select(int fd, int rwe, timeval *timeout = NULL);
int select(fd_set *rfd, fd_set *wfd, fd_set *efd, timeval *timeout = NULL);
int select(int nfds, fd_set *rfd, fd_set *wfd, fd_set *efd, timeval *timeout = NULL);

const uBaseTaskSeq &getTasksOnCluster();
const uProcessorSeq &getProcessorsOnCluster();

};

uCluster clus(8196, "clus") // 8K default stack size, cluster name is “clus”

The overloaded constructor routineuCluster has the following forms:

uCluster(unsigned int stackSize = uDefaultStackSize(), const char *name = "*unnamed*") – this form uses
the user specified stack size and cluster name (see Section11.1, p. 147for the first default value).

uCluster(const char *name) – this form uses the user specified name for the cluster and thecurrent cluster’s
default stack size.

When a cluster terminates, it must have no tasks executing onit and all processors associated with it must be freed.
It is the user’s responsibility to ensure no tasks are executing on a cluster when it terminates; therefore, a cluster can
only be deallocated by a task on another cluster.

The member routinesetName associates a name with a cluster and returns the previous name. The member routine
getName returns the string name associated with a cluster.

The member routinesetStackSize is used to set the default stack size value for the stack portion of each execution
state allocated on a cluster and returns the previous default stack size. The new stack size is specified in bytes. For
example, the callclus.setStackSize(8000) sets the default stack size to 8000 bytes.

The member routinegetStackSize is used to read the value of the default stack size for a cluster. For example, the
statementi = clus.getStackSize() setsi to the value 8000.

The overloaded member routineselect works like the UNIXselect routine, but on a per-task basis per cluster. That
is, all I/O performed on a cluster is managed by a poller task for that cluster (see Section4.1, p.57). In general,select
is used only in esoteric situations, e.g., when�C++ file objects are mixed with standard UNIX file objects on the same
cluster. These members return the total number of file descriptors set in all file descriptor masks, and each routine has
the following form:

select(int fd, int rwe, timeval *timeout = NULL) – this form is a shorthand select for a single file descriptor.The
mask,rwe, is composed of logically “or”ing flagsreadSelect, writeSelect, andexceptSelect. The timeout value
points to a maximum delay value, specified as atimeval, to wait for the I/O to complete. If the timeout pointer
is null, the select blocks until the I/O operation completesor fails. This form is more efficient than the next
forms with complete file descriptor sets, but handles only a single file.

8.4. PROCESSORS 121

select(fd_set *rfd, fd_set *wfd, fd_set *efd, timeval *timeout = NULL) – this form examinesall I/O file descrip-
tors in the sets pointed to byrfd, wfd, andefd, respectively, to see if any of their file descriptors are ready for
reading, or writing, or have exceptional conditions pending. The timeout value points to a maximum delay
value, specified as atimeval, to wait for an I/O to complete. If the timeout pointer is null, the select blocks until
one of the I/O operations completes or fails.

select(int nfds, fd_set *rfd, fd_set *wfd, fd_set *efd, timeval *timeout = NULL) – same as above, except only the
first nfds I/O file descriptors in the sets are examined.

There does not seem to be any standard semantics action when multiple kernel threads access the same file de-
scriptor inselect. Some systems wake all kernel threads waiting for the same file descriptor; others wake the kernel
threads in FIFO order of their request for the common file descriptor. �C++ adopts the former semantic and wakes all
tasks waiting for the same file descriptor. In general, this is not a problem becauseall �C++ file routines retry their I/O
operation, and only one succeeds in obtaining data (which one is non-deterministic).

Finally, it is impossible to precisely deliverselect errors to the task that caused it. For example, if one task
in waiting for I/O on a file descriptor and another task closesthe file descriptor, the UNIX select fails but with no
information about which file descriptor caused the error. Therefore,�C++ wakes up all tasks waiting on theselect at
the time of the error and the tasks must retry their I/O operation. Again,all �C++ file routines retry their I/O operations
after waiting onselect.2 Unfortunately, UNIX does not provide adequate facilities to ensure that signals sent to wake up a

blocked UNIX process or kernel thread is always delivered. There is a window between sending a signal
and blocking using a UNIXselect operation that cannot be closed. Therefore, the poller taskhas to wake
up once a second to deal with the rare event that a signal sent to wake it up is missed. This problem only
occurs when a task is migrating from one cluster to another cluster on which I/O is being performed.2

The member routinegetTasksOnCluster returns a list of all the tasks currently on the cluster. The member routine
getProcessorsOnCluster returns a list of all the processors currently on the cluster. These routines are useful for
profiling and debugging programs.

The free routine:

uCluster &uThisCluster();

is used to determine the identity of the current cluster a task resides on.

8.4 Processors
As mentioned in Section2.3.2, p. 9, a�C++ virtual processor is a “software processor”; it provides a runtime environ-
ment for parallel thread execution. This environment contains variables to affect how thread execution is performed
on a processor. Environment variables are used implicitly,unless overridden, when executing threads on a processor:

pre-emption timeis the default time, in milliseconds, to the next implicit yield of the currently executing task to
simulate non-deterministic execution (see Section8.4.1, p. 123).

spin amountis the default number times the cluster’s ready queue is checked for an available task to execute before
the processor blocks (see Section8.4.2, p.124).

processorsis the default number of processors created implicitly on a cluster.

The variables are either explicitly set or implicitly assigned a�C++ default value when the processor is created.
In �C++, a virtual processor is implemented as a kernel thread (possibly via a UNIX process) that is subsequently

scheduled for execution on a hardware processor by the underlying operating system. On a multiprocessor, kernel
threads are usually distributed across the hardware processors and so some execute in parallel. The maximum number
of virtual processors that can be created is indirectly limited by the number of kernel/processes the operating system
allows a program to create, as the sum of the virtual processors on all clusters cannot exceed this limit.

As stated previously, there are two versions of the�C++ kernel: the unikernel, which is designed to use a single
processor; and the multikernel, which is designed to use several processors. The interfaces to the unikernel and
multikernel are identical; the only difference is that the unikernel has only one virtual processor. In particular, in

122 CHAPTER 8. �C++ KERNEL

the unikernel, operations to increase or decrease the number of virtual processors are ignored. The uniform interface
allows almost all concurrent applications to be designed and tested on the unikernel, and then run on the multikernel
after re-linking.

The processor interface is the following:

class uProcessor {
public :

uProcessor(unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin());
uProcessor(bool detached, unsigned int ms = uDefaultPreemption(),

unsigned int spin = uDefaultSpin());
uProcessor(uCluster &cluster, unsigned int ms = uDefaultPreemption(),

unsigned int spin = uDefaultSpin());
uProcessor(uCluster &cluster, bool detached, unsigned int ms = uDefaultPreemption(),

unsigned int spin = uDefaultSpin());

uClock &getClock() const ;
uPid_t getPid() const ;
uCluster &setCluster(uCluster &cluster);
uCluster &getCluster() const ;
uBaseTask &getTask() const ;
bool getDetach() const ;
unsigned int setPreemption(unsigned int ms);
unsigned int getPreemption() const ;
unsigned int setSpin(unsigned int spin);
unsigned int getSpin() const ;
bool idle() const ;

};

uProcessor proc(clus); // processor is attached to cluster clus

A processor can be non-detached or detached with respect to its associated cluster. A non-detached processor is auto-
matically/dynamically allocated and its storage is managed by the programmer. A detached processor is dynamically
allocated and its storage is managed by its associated cluster, i.e., the processor is automatically deleted when its
cluster is deleted.

The overloaded constructor routineuProcessor has the following forms:

uProcessor(unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin()) – creates a non-
detached processor on the current cluster with the user specified time-slice and processor-spin duration (see
Section11.1, p. 147for the default values).

uProcessor(bool detached, unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin())
– creates a detached/non-detached processor on the currentcluster with the user specified time-slice and
processor-spin duration (see Section11.1, p. 147for the default values). The indicator for detachment isfalse
for non-detached andtrue for detached.

uProcessor(uCluster &cluster, unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin())
– creates a non-detached processor on the specified cluster using the user specified time-slice and processor-
spin duration.

uProcessor(uCluster &cluster, bool detached, unsigned int ms = uDefaultPreemption(), unsigned int spin =
uDefaultSpin()) – creates a detached/non-detached processor on the specified cluster using the user specified
time-slice and processor-spin duration. The indicator fordetachment isfalse for non-detached andtrue for
detached.

The member routinegetClock) returns the clock used to control timing on this processor (see Section10.3, p.139).
The member routinegetPid returns the current UNIX process id that the processor is associated with.
The member routinesetCluster moves a processor from its current cluster to another cluster and returns the cur-

rent cluster. The member routinegetCluster returns the current cluster the processor is associated with, and hence,
executing tasks for.

8.4. PROCESSORS 123

The member routinegetTask returns the current task that the processor is executing.
The member routinegetDetach returns if the processor is non-detached (false) or detached (true).
The member routinesetPreemption is used to set the default pre-emption duration for a processor (see Sec-

tion 8.4.1) and returns the previous default pre-emption duration. The time duration between interrupts is specified
in milliseconds. For example, the callproc.setPreemption(50) sets the default pre-emption time to 0.05 seconds for
a processor. To turn pre-emption off, callproc.setPreemption(0). The member routinegetPreemption is used to read
the current default pre-emption time for a processor. For example, the statementi = proc.getPreemption() setsi to the
value 50.

The member routinesetSpin is used to set the default spin-duration for a processor (seeSection8.4.2) and returns
the previous default spin-duration. The spin duration is specified as the number of times the cluster’s ready queue is
checked for an available task to execute before the processor blocks. For example, the callproc.setSpin(500) sets the
default spin-duration to 500 checks for a processor. To turnspinning off, callproc.setSpin(0). The member routine
getSpin is used to read the current default spin-duration for a processor. For example, the statementi = proc.getSpin()
setsi to the value 500.

The member routineidle indicates if this processor is currently idle, i.e., the UNIX process has blocked because
there were no tasks to execute on the cluster it is associatedwith.

The free routine:

uBaseProcessor &uThisProcessor();

is used to determine the identity of the current processor a task is executing on.
The following are points to consider when deciding how many processors to create for a cluster. First, there is

no advantage in creating significantly more processors thanthe average number of simultaneously active tasks on the
cluster. For example, if on average three tasks are eligiblefor simultaneous execution, creating significantly more than
three processors does not achieve any execution speedup andwastes resources. Second, the processors of a cluster
are really virtual processors for the hardware processors,and there is usually a performance penalty in creating more
virtual processors than hardware processors. Having more virtual processors than hardware processors can result
in extra context switching of the underlying kernel threadsor operating system processes (see Section8.4.3) used
to implement a virtual processor, which is runtime expensive. This same problem can occur among clusters. If a
computational problem is broken into multiple clusters andthe total number of virtual processors exceeds the number
of hardware processors, extra context switching occurs at the operating system level. Finally, a�C++ program usually
shares the hardware processors with other user programs. Therefore, the overall operating system load affects how
many processors should be allocated to avoid unnecessary context switching at the operating system level.2 Changing the number of processors is expensive, since a request is made to the operating system to

allocate or deallocate kernel threads or processes. This operation often takes at least an order of magnitude
more time than task creation. Furthermore, there is often a small maximum number of kernel threads
and/or processes (e.g., 20–40) that can be created in a program. Therefore, processors should be created
judiciously, normally at the beginning of a program. 2

8.4.1 Implicit Task Scheduling

Pre-emptive scheduling is enabled by default on both unikernel and multikernel. Each processor is periodically inter-
rupted in order to schedule another task to be executed. Notethat interrupts are not associated with a task but with a
processor; hence, a task does not receive a time-slice and itmay be interrupted immediately after starting execution
because the processor’s pre-emptive scheduling occurs andanother task is scheduled. A task is pre-empted at a non-
deterministic location in its execution when the processor’s pre-emptive scheduling occurs. Processors on a cluster
may have different pre-emption times. The default processor time-slice is machine dependent but is approximately
0.1 seconds on most machines. The effect of this pre-emptivescheduling is to simulate parallelism. This simulation is
usually accurate enough to detect most situations on a uniprocessor where a program might be dependent on order or
speed of execution of tasks.2 On many systems the minimum pre-emption time may be 10 milliseconds (0.01 of a second). Setting

the duration to an amount less than this simply sets the interrupt time interval to this minimum value.22 The overhead of pre-emptive scheduling depends on the frequency of the interrupts. Furthermore,
because interrupts involve entering the UNIX kernel, they are relatively expensive if they occur frequently.

124 CHAPTER 8. �C++ KERNEL

An interrupt interval of 0.05 to 0.1 seconds gives adequate concurrency and increases execution cost by
less than 1% for most programs. 2

8.4.2 Idle Virtual Processors

When there are no ready tasks for a virtual processor to execute, the idle virtual processor has to spin in a loop or block
or both. In the�C++ kernel, an idle virtual processor spins for a user-specified number of checks of the cluster’s ready
queue before it blocks. During the spinning, the virtual processor is constantly checking for ready tasks, which would
be made ready by other virtual processors. An idle virtual processor is ultimately blocked so that machine resources
are not wasted. The reason that the idle virtual processor spins is because the block/unblock time can be large in
comparison to the execution of tasks in a particular application. If an idle virtual processor is blocked immediately
upon finding no ready tasks, the next executable task has to wait for completion of an operating system call to restart
the virtual processor. If the idle processor spins for a short period of time, any task that becomes ready during the
spin duration is processed immediately. Selecting a spin amount is application dependent and it can have a significant
effect on performance.

8.4.3 Blocking Virtual Processors

To ensure maximum parallelism, it is desirable that a task not execute an operation that causes the processor it is
executing on to block. It is also essential that all processors in a cluster be interchangeable, since task execution may
be performed by any of the processors of a cluster. When tasksor processors cannot satisfy these conditions, it is
essential that they be grouped into appropriate clusters inorder to avoid adversely affecting other tasks or guarantee
correct execution. Each of these points is examined.

There are two forms of blocking that can occur:

heavy blocking which is done by the operating system on a virtual processor as a result of certain system requests
(e.g., I/O operations).

light blocking which is done by the�C++ kernel on a task as a result of certain�C++ operations (e.g.,_Accept , wait
and calls to a mutex routine).

The problem with heavy blocking is that it removes a virtual processor from use until the operation is completed; for
each virtual processor that blocks, the potential for parallelism decreases on that cluster. In those situations where
maintaining a constant number of virtual processors for computation is desirable, tasks should block lightly rather
than heavily, which is accomplished by keeping the number oftasks that block heavily to a minimum and relegated
to a separate cluster. This can be accomplished in two ways. First, tasks that would otherwise block heavily instead
make requests to a task on a separate cluster which then blocks heavily. Second, tasks migrate to the separate cluster
and perform the operation that blocks heavily. This maintains a constant number of virtual processors for concurrent
computation in a computational cluster, such as the user cluster.

On some multiprocessor computers not all hardware processors are equal. For example, not all of the hardware
processors may have the same floating-pointunits; some units may be faster than others. Therefore, it may be necessary
to create a cluster whose processors are attached to these specific hardware processors. (The mechanism for attaching
virtual processors to hardware processors is operating system specific and not part of�C++. For example, the Dynix
operating system from Sequent provides a routinetmp_affinity to lock a UNIX process on a processor.) All tasks that
need to perform high-speed floating-point operations can becreated/placed on this cluster. This segregation still allows
tasks that do only fixed-point calculations to continue on another cluster, potentially increasing parallelism, but not
interfering with the floating-point calculations.2 �C++ tasks are not implemented with kernel threads or operating system processes for two reasons.

First, kernel threads have a high runtime cost for creation and context switching. Second, an operating
system process is normally allocated as a separate address space (or perhaps several) and if the system
does not allow memory sharing among address spaces, tasks have to communicate using pipes and sockets.
Pipes and sockets are runtime expensive. If shared memory isavailable, there is still the overhead of
entering the operating system, page table creation, and management of the address space of each process.
Therefore, kernel threads and processes are calledheavyweightbecause of the high runtime cost and
space overhead in creating a separate address space for a process, and the possible restrictions on the

8.4. PROCESSORS 125

forms of communication among them.�C++ provides access to kernel threads only indirectly through
virtual processors (see Section2.3.2, p. 9). A user is not prohibited from creating kernel threads or
processes explicitly, but such threads are not administrated by the�C++ runtime environment. 2

126 CHAPTER 8. �C++ KERNEL

Chapter 9

Posix Threads (pthreads)

Posix threads(pthreads) is a relatively low-level C-language thread-library providing two basic concurrency mech-
anisms: threads and locks. As pthreads is designed for C rather than C++, pthreads does not take advantage of any
high-level features of C++. A thread is started (forked) in aroutine, possibly passing a single type-unsafe argument,
and another thread can wait for this thread’s termination (join), possibly returning a single type-unsafe value. Two
kinds of locks are available: for synchronization,pthread_cond, which is like�C++’s uCondLock (see Section2.15.4,
p. 39), and for mutual exclusion,pthread_mutex, which is like�C++’s uOwnerLock (see Section2.15.3, p. 38). See a
pthreads reference-manual [But97] for complete details on the syntax and semantics of using this library to construct
concurrent programs.

9.1 Combining Pthreads with�C++

Pthreads is the threading standard for Posix-compliant systems and has become the de-facto standard for concurrent
programming in C; hence, there exists a significant number ofapplications and libraries built using pthreads. To help
concurrent programmers leverage this existing resource, while still writing high-level concurrent programs in C++,�C++ provides a subset of the most commonly used pthreads routines (see Figure9.1). Thus, a�C++ programmer
can use high-level concurrent features in�C++, along with existing C/C++ source code or pre-compiled code that
uses pthreads functionality. It is also possible to take a native pthreads programs and – with only minor changes –
convert it to a�C++ program using�C++’s pthreads support. In this way, programmers can incrementally transform
and extend pthreads applications to use higher-level C++ approaches, starting with a combination of low-level pthreads
threads/locks and high-level�C++ capabilities, and ultimately moving to all high-level mechanisms. There are three
basic ways in which�C++ can be used in conjunction with pthreads:� linking against pre-compiled binaries using pthreads,� recompilation of separate translation units using pthreads,� recompilation of entire pthreads programs.

9.1.1 Linking �C++ and Pthreads Binaries

In most cases, existing object files using pthreads routinescan be directly linked with a�C++ program. For example,
a�C++ program,program.cc, is compiled and linked with a pthreads-dependent object-file, plib.o, by:

u++ [C++ options] program.cc plib.o

Note, the standard pthreads library,libpthread, mustnot be linked with this program (i.e.,-lpthreads) as only the
pthreads routines provided by�C++ work. However, this approach fails ifplib.o uses routines not provided by�C++
(see Figure9.1), the object file defines the entry point into the program (i.e., routinemain), or if plib.o calls pthreads
routines inside global constructors or destructors. The second and third cases can be corrected if the source forplib.o
can be changed and recompiled (described next).

127

128 CHAPTER 9. POSIX THREADS (PTHREADS)

//######################### Creation #########################
int pthread_create(pthread_t *new_thread_id, const pthread_attr_ t *attr, void * (*start_ func)(void *), void *arg);
int pthread_attr_ init(pthread_attr_ t *attr);
int pthread_attr_destroy(pthread_attr_ t *attr);
int pthread_attr_setscope(pthread_attr_ t *attr, int contentionscope);
int pthread_attr_getscope(const pthread_attr_ t *attr, int *contentionscope);
int pthread_attr_setdetachstate(pthread_attr_ t *attr, int detachstate);
int pthread_attr_getdetachstate(const pthread_attr_ t *attr, int *detachstate);
int pthread_attr_setstacksize(pthread_attr_ t *attr, size_t stacksize);
int pthread_attr_getstacksize(const pthread_attr_ t *attr, size_t *stacksize);
int pthread_getattr_np(pthread_t threadID, pthread_attr_ t *attr); // GNU extension
int pthread_yield(void); // GNU extension
//######################### Exit #########################
void pthread_exit(void *status);
int pthread_join(pthread_t threadID, void **status);
int pthread_tryjoin_np(pthread_t threadID, void **status); // GNU extension
int pthread_timedjoin_np(pthread_t threadID, void **status, const struct timespec *abstime); // GNU extension
int pthread_detach(pthread_t threadID);
//######################### Parallelism #########################
int pthread_getconcurrency(void); // XOPEN extension
int pthread_setconcurrency(int new_level); // XOPEN extension
//######################### Thread Specific Data #########################
void pthread_deletespecific_(void *pthreadData); // see uMachContext::invokeTask
int pthread_key_create(pthread_key_t *key, void (*destructor)(void *));
int pthread_key_delete(pthread_key_t key);
int pthread_setspecific(pthread_key_t key, const void *value);
void *pthread_getspecific(pthread_key_t key);
//######################### ID #########################
pthread_t pthread_self(void);
int pthread_once(pthread_once_t *once_control, void (*init_routine)(void));
//######################### Cancellation #########################
int pthread_cancel(pthread_t threadID);
int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);
void pthread_testcancel(void);
void pthread_cleanup_pop(int ex);
void pthread_cleanup_push(void (*routine) (void *), void *args);
//######################### Mutex #########################
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_ t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
//######################### Condition #########################
int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

Figure 9.1: Implemented Pthreads Routines

9.2. �C++ TASK AS A PTHREADS THREAD 129

9.1.2 Recompiling Pthreads Modules

If a translation unit declares global objects with constructors and destructors that call pthreads routines (i.e.,be-
fore/afterthe initial starting routine), a source-level change is necessary to ensure the�C++ runtime system is initial-
ized first, as the order of global constructors/destructorsamong C/C++ translation units is undefined. The source-level
change consists of adding the include fileuC++.h at the start of the translation unit (see Section2.5, p. 10) and this
translation unit must be recompiled with theu++ command (see Section2.5.1, p. 10). (It is never a mistake to in-
cludeuC++.h, as a precaution, in all translation units.) This change canbe made conditionally using#ifdef s (see
Section2.5.2, p.11) to allow a pthreads program to conditionally switch between running native pthreads or simulated
pthreads in�C++ depending on whether the program is compiled withg++ or u++, e.g.:

#ifdef _ _U_CPLUSPLUS_ _
#include <uC++.h> // only include if compiled with u++
#endif

As well, if the pthreads module contains the initial entry point main, it must be converted to the�C++ member
uMain::main (see Section2.2, p. 8). Again, conditional compilation can be used to switch between native pthreads
and pthreads in�C++, e.g.:

#ifdef _ _U_CPLUSPLUS_ _
void uMain::main() { // only change starting routine if compiled with u++
#else
int main(int argc, char *argv[]) {
#endif

// body of pthreads main routine
}

With these changes, the entire program can be compiled withg++, or another compatible C++ compiler, to use native
pthreads and linked with the pthreads (-lpthread) library. Alternatively, the program can be complied withu++, using
the pthreads simulation provided by�C++.

9.2 �C++ Task as a Pthreads Thread

In order to ease the co-operation with pthreads code, and possibly help transition from low-level pthreads concurrency
to high-level�C++ concurrency, a�C++ task can become a quasi-pthreads thread by inheriting fromuPthreadable:

_Task uPthreadable { // abstract class (inheritance only)
protected :

void *joinval; // pthreads return value
pthread_attr_ t pthread_attr; // pthread attributes

uPthreadable(const pthread_attr_ t *attr_);
uPthreadable(uCluster &cluster, const pthread_attr_ t *attr_);
uPthreadable(); // same constructors as for uBaseTask
uPthreadable(unsigned int stackSize);
uPthreadable(uCluster &cluster);
uPthreadable(uCluster &cluster, unsigned int stackSize);

public :
_Nomutex pthread_t pthreadId(); // returns a pthread id for a uC++ task

_Event Failure; // exceptions
_Event CreationFailure;

};

_Task T : public uPthreadable { // inherit so uC++ task can mimic pthreads task
. . .

public :
T(. . .) : uPthreadable(. . .) {} // initialize uPthreadable as for uBaseTask
. . .

};

130 CHAPTER 9. POSIX THREADS (PTHREADS)

It is best to think of auPthreadable task as a�C++ task that can mimic a pthreads thread by providing some pthreads
properties and capabilities. (Note, typeuPthreadable is an abstract class for inheritance only; it cannot be instantiated
directly.) The duality of auPthreadable task allows it to use all the high-level features of�C++ concurrency and yet
interact with existing pthreads code, which is helpful in situations where pthreads and�C++ are mixed, and provides a
path to transition from pthreads to�C++ concurrency.

A derived class of typeuPthreadable has direct access to variablesjoinval andpthread_attr. Variablejoinval must
be assigned by the derived class to return a value frompthread_join. Variablepthread_attr is the task’s pthreads
attributes, which can be read and written by appropriate pthreads attribute routines.

The overloaded constructor routineuPthreadable has the following forms:

uPthreadable(const pthread_attr_ t *attr_) – creates a task on the current cluster with the specified pthreads
attributes. Currently, only the stack-size attribute is observed by theuPthreadable task. The other values are
stored, but are otherwise ignored by theuPthreadable task.

uPthreadable(uCluster &cluster, const pthread_attr_ t *attr_) – creates a task on the specified cluster with the
specified pthreads attributes.

uPthreadable(. . .) are the same as foruBaseTask (see Section2.12.2, p. 31).

An exception of typeuPthreadable::CreationFailure is thrown during task instantiation if a pthread identifier cannot be
created.

The member routinepthreadId returns a unique pthreads identifier for the task. This pthreads identifier, which is
also returned when auPthreadable task callspthread_self, can be passed to any pthreads routine taking apthread_t
type, includingpthread_join andpthread_cancel. As a result, pthreads threads can join with or canceluPthreadable
tasks with correct pthreads cleanup functionality. Note, (de)registering a cleanup handler usingpthread_cleanup_push/-
pop can be performed by any kind of thread but only when executingon a pthreads oruPthreadable task’s stack; the
cleanup handler is associated with the stack frame on the task’s stack where the (de)registration occurs.

It is important to note that auPthreadable task follows�C++ semantics rather than pthreads semantics and is not
considered a pthreads thread, which is defined as a task created bypthread_create. In particular, the life time of a
uPthreadable task is the same as an ordinary�C++ task, and it becomes a monitor after itsmain routine ends. The task
uMain is auPthreadable task.

9.3 Semantic Inconsistencies between Pthreads and�C++

The combination of pthreads and�C++ creates some conflicts, which are resolved in the following ways:

9.3.1 Termination ofmain

When the startingmain routine ends, pthreads semantics cause immediate termination of the program and any out-
standing threads, whereas�C++ semantics require that all threads be programmaticallyterminated. This inconsistency
is resolved dynamically in favour of pthreads if any pthreads threads are running whenuMain::main ends. In this case,
the application is shut-down causing all threads (pthreadsand�C++) to be terminated abruptly, i.e., no finalization
code is executed for any of these threads. Recall thatuPthreadable tasks are not considered pthreads threads.

9.3.2 Cleanup Semantics

The ability to perform cleanup is important in writing robust concurrent programs. Pthreads generalized the notion of
cleanup to thread termination (exit or cancellation) by allowing cleanup routines to be registered/de-registered using
pthread_cleanup_push andpthread_cleanup_pop. An equivalent capability is provided in C++ using class destructors
andcatch clauses. When a�C++ program has a combination of both C++ and pthreads cleanup mechanisms, both are
invoked during thread termination.

Cleanup routines are executed in the reverse order of registration (LIFO). However, within a routine, the ordering
between C++ and pthreads cleanups is undefined, e.g., if an object is declared before a call topthread_cleanup_push
in the same routine, its destructor may be executed before the pthreads cleanup. Note, among themselves, C++ and
pthreads cleanups always execute in proper order.

9.4. COMMENTARY 131

As part of a pthreads thread termination, all C++’s catch-any handlers (catch (. . .)) are also executed, which is the
same behaviour as for�C++ cancellation (see Section6, p. 91). When all C++ and pthreads cleanups have been exe-
cuted, the thread terminates. The reason for executing catch-any handlers is the same as for�C++ cancellation, which
is to support the common C++ idiom of using catch-any handlers to perform cleanup actions. Like�C++ cancellation,
if a catch-any handler finishes, control does not resume after the try-block it guards, but instead, termination continues
with its associated stack unwinding. This behaviour differs from some pthreads implementations that mix C++ and
pthreads cleanup. In these implementations, the program isaborted if a catch-any handler finishes during pthreads
cleanup. The rationale for aborting is that the normal semantics of resuming execution after the handler’s try-block
is incompatible with the termination semantics for a thread. However, such a design is inconsistent with�C++ can-
cellation (see Section6, p. 91 for the rationale). As well, if the catch-any handler throwsa newexception during
cancellation, the program’s behaviour is undefined, as for�C++ cancellation.

9.4 Commentary
The pthreads simulation in�C++ also provides implicit compatibility and safety for programs calling Posix-compliant
library routines in UNIX:

All functions defined by this volume of IEEE Std 1003.1-2001 shall be thread-safe, except that the fol-
lowing functions need not be thread-safe.

... small subset of Posix functions...
Implementations shall provide internal synchronization(mutual exclusion)as necessary in order to satisfy
this requirement. [IEE01, pp. 50–51]

The most common mechanism to provide mutual exclusion within such library routines is to use pthreads locks. As
well, some Posix compliant routines rely on thread-specificdata provided by pthreads. Once pthreads calls are embed-
ded into standard UNIX implementations, it is difficult to use other thread designs due to the problems of interaction
between thread libraries. For example, a conflict occurs if alanguage/library concurrency system (e.g.,�C++) does
not use pthreads for its underlying concurrency, i.e., the language/library implements the whole concurrency system
directly using atomic instructions and kernel threads. Thereason a language/library may build its own concurrency
runtime is to achieve specialized behaviour that is different from pthreads (e.g., unblocking order, task scheduling,
priorities, thread model, etc.). However, when a language/library thread calls a Posix routine, the routine may call
a pthreads routine for thread safety resulting in two different concurrency systems’ attempting to manage the same
thread. For example, a pthreads lock in a Posix routine may attempt to block the executing thread, but if the thread is
created and managed by a different concurrency system, thisoperation is logically inconsistent and is likely to fail. The�C++ pthreads simulation handles this problem by interposing its pthreads routines so they are called from within the
Posix-compliant library routines. The simulation routines correctly interact with the�C++ runtime system, while still
providing thread-safe access to Posix library routines. Asa result, a�C++ program is portable among Posix-compliant
systems and provides access to most legacy pthreads code.

132 CHAPTER 9. POSIX THREADS (PTHREADS)

Chapter 10

Real-Time

Real-time programming is defined by the correctness of a program depending on both the accuracy of the resultand
when the result is produced. The latter criterion is not present in normal programming. Without programming language
facilities to specify timing constraints, real-time programs are usually built in ad-hoc ways (e.g., cyclic executive), and
the likelihood of encountering timing errors increases through manual calculations. The introduction of real-time
constructs is a necessity for accurately expressing time behaviour, as well as providing a means for the runtime system
to evaluate whether any timing constraints have been broken. Furthermore, explicit time-constraint constructs can
drastically minimize coding complexity as well as analysis. Various programming language constructs for real-time
environments are discussed in [SD92, Mar78, LN88, KS86, KK91, ITM90, HM92, GR91, CD95, Rip90].

10.1 Duration and Time

The convenient manipulation oftime is an essential characteristic in any time-constrained environment. Manipulating
time, in turn, yields another metric that expresses a span orduration of time. uDuration is a class whose instances
represent a span of time, e.g., subtracting two time values results in a difference that is a time duration (2:00� 1:30 =
30 minute duration). The creation and manipulation ofuDuration values are performed through the member routines
of classuDuration (see Figure10.1).

The overloaded constructor routinesuDuration provide a choice of specifying a duration value. The parameters
have the following meanings:

sec – a number of seconds.

nsec – a number of seconds and nanoseconds.

timeval / timespec – a UNIX timeval or timespec, which is converted to auDuration value.

A UNIX timeval andtimespec value can be used to initialize or assign to auDuration value, and auDuration value
can be cast into atimeval or timespec value, e.g.:

timeval d1 = { 1, 0 }; // (seconds / microseconds)
uDuration d2 = d1, d3; // convert from timeval to uDuration (initialization)
timespec d4 = d2; // convert from uDuration to timespec (seconds / nanoseconds) (implicit cast)
d1 = (timeval)d2; // convert from uDuration to timeval (cast)
d3 = d1; // convert from timeval to uDuration (assignment)
d1 = d3; // convert from uDuration to timeval (implicit cast)

Conversion is guaranteed to be exact. The member routinenanoseconds returns the duration value as a 64 bit number
in nanoseconds.

Arithmetic operations may be performed onuDuration values, e.g.:

133

134 CHAPTER 10. REAL-TIME

class uDuration {
public :

uDuration();
uDuration(long int sec);
uDuration(long int sec, long int nsec);
uDuration(const timeval &t);
uDuration(const timespec &t);

uDuration &operator =(const timeval &t) {
uDuration &operator =(const timespec &t) {
operator timeval() const ;
operator timespec() const ;
long long int nanoseconds() const ;

uDuration &operator -=(uDuration op);
uDuration &operator +=(uDuration op);
uDuration &operator *=(long long int op);
uDuration &operator /=(long long int op);

}; // uDuration

uDuration operator -(uDuration op);
uDuration operator -(uDuration op1, uDuration op2);
uDuration operator +(uDuration op);
uDuration operator +(uDuration op1, uDuration op2);
uDuration operator *(uDuration op1, long long int op2);
uDuration operator *(long long int op1, uDuration op2);
uDuration operator /(uDuration op1, long long int op2);
long long int operator /(uDuration op1, uDuration op2);
bool operator >(uDuration op1, uDuration op2);
bool operator <(uDuration op1, uDuration op2);
bool operator >=(uDuration op1, uDuration op2);
bool operator <=(uDuration op1, uDuration op2);
bool operator ==(uDuration op1, uDuration op2);
bool operator !=(uDuration op1, uDuration op2);
ostream &operator <<(ostream &os, const uDuration op);

Figure 10.1: Duration Class

uDuration x, y, z;
int n;
x += 1; // implicitly create a uDuration of length 1 second
x = y + z; // add two uDurations producing a uDuration
x = y - z; // subtract two uDurations producing a uDuration
x = y * n; // multiply a uDuration n times
x = n * y; // multiply a uDuration n times
x = y / n; // divide a uDuration by n

In addition, relational comparison operators are defined for uDuration objects.
uTime is a class, whose instance represents an absolute time. Timecan be specified using some combination of

year, month, day, hour, minute, second, and nanosecond in UTC. It is important to note that a time value must be
in the range 00:00:00 UTC, January 1, 1970 to 03:14:07 UTC, January 19, 2038, which is the UNIX start and end
epochs. The creation and manipulation ofuTime values are performed through the member routines of classuTime
(see Figure10.2).

The overloaded constructor routinesuTime provide a choice of specifying a time value. The parameters have the
following meanings:

year – a year greater than or equal to 1970 and less than or equal to 2038.

month – a number between 0 and 11 inclusive, where 0 represents January and 11 represents December. The

10.1. DURATION AND TIME 135

class uTime {
public :

uTime();
uTime(long int sec);
uTime(long int sec, long int nsec);
uTime(int min, int sec, long int nsec);
uTime(int hour, int min, int sec, long int nsec);
uTime(int day, int hour, int min, int sec, long int nsec);
uTime(int month, int day, int hour, int min, int sec, long int nsec);
uTime(int year, int month, int day, int hour, int min, int sec, long int nsec);
uTime(const timeval &t);
uTime(const timespec &t);

uTime &operator =(const timeval &t);
uTime &operator =(const timespec &t);
operator timeval() const ;
operator timespec() const ;
long long int nanoseconds() const ;

uTime &operator -=(uDuration op);
uTime &operator +=(uDuration op);

}; // uTime

uDuration operator -(uTime op1, uTime op2);
uTime operator -(uTime op1, uDuration op2);
uTime operator +(uTime op1, uDuration op2);
uTime operator +(uDuration op1, uTime op2);
bool operator >(uTime op1, uTime op2);
bool operator <(uTime op1, uTime op2);
bool operator >=(uTime op1, uTime op2);
bool operator <=(uTime op1, uTime op2);
bool operator ==(uTime op1, uTime op2);
bool operator !=(uTime op1, uTime op2);
ostream &operator <<(ostream &os, const uTime op);

Figure 10.2: Time Class

default value for a constructor without this argument is 0.

day – a number between 0 and 30 inclusive, where 0 represents the first day of the month and 30 the last day. The
default value for a constructor without this argument is 0.

hour – a number between 0 and 23 inclusive, where 0 represents 12:00am and 23 represents 11:00pm. The default
value for a constructor without this argument is 0.

min – a number between 0 and 59 inclusive, where 0 is the first minute of the hour and 59 the last. The default
value for a constructor without this argument is 0.

sec – a number between 0 and 59 inclusive, where 0 is the first second of the minute and 59 the last.

nsec – a number between 0 and 999999999 inclusive, where 0 is the first nanosecond of the second and 999999999
the last.

timeval / timespec – a UNIX timeval or timespec, which is converted to auTime value.

It is permissible toexceedthe logical ranges for the time components; any excess is accumulative, e.g., the following
declarations are valid:

uTime t1(0,48,0,60,1000000000); // 1970 Jan 3 0:01:01:000000000 (GMT)
uTime t2(818227413, 0); // 1995 Dec 6 05:23:33:000000000 (GMT)

136 CHAPTER 10. REAL-TIME

A UNIX timeval andtimespec value can be used to initialize or assign to auTime value, and auTime value may be
cast into atimeval or timespec value, e.g.:

timeval t1;
gettimeofday(&t1, NULL); // current time (seconds / microseconds)
uTime t2 = t1, t3; // convert from timeval to uTime (initialization)
timespec t4 = t2; // convert from uTime to timespec (seconds / nanoseconds) (implicit cast)
t3 = t1; // convert from timeval to uTime (assignment)
t1 = (timeval)t2; // convert from uTime to timeval (cast)
t1 = t3; // convert from uTime to timeval (implicit cast)

Conversion is guaranteed to be exact. The member routinenanoseconds returns the absolute time value as a 64 bit
number in nanoseconds from the start of the UNIX epoch.

As for uDuration values, arithmetic and relational operations may be performed onuTime values. As well, mixed
mode operations are possible involving durations and time.A duration may be added to or subtracted from a time to
yield a new time; two times can be subtracted from each other producing a duration.

10.2 Timeout Operations

It is sometimes necessary to delay a task’s execution for a relative duration or until an absolute time. It is also necessary
to prevent certain operations from blocking indefinitely. Two such common operations are waiting for an accepted call
to occur and waiting for I/O to complete.�C++ provides mechanisms to delay execution for a time interval or terminate
an operation after a time interval.

10.2.1 Time Delay

In �C++, a time delay is expressed by either of the following two statements:

_Timeout (duration); // parenthesis required
_Timeout (time); // parenthesis required

With a duration value,_Timeout specifies a delay time relative to the start of execution of the statement (i.e., a
duration). That is, a task blocks for at least the span of timeindicated by the duration value; the task does not consume
any resources during this period, nor does it respond to any requests. With a time value,_Timeout specifies a delay
to an absolute time in the future. That is, a task blocks untilat least the specified absolute time has occurred. If the
duration value be less than or equal to zero, the task does notblock. Similarly, if the time value has already occurred,
the task does not block. The UNIX routinessleep andusleep can also be used to sleep for a duration of seconds and
microseconds, respectively.

The extended form of the_Timeout statement is:

_When (conditional-expression) // optional guard
_Timeout (duration or time) // optional timeout clause

A _When guard is considered true if it is omitted or if itsconditional-expressionevaluates to non-zero. Before the
_Timeout statement is executed, the guard must be true. In this case, the guard is the same as anif statement, e.g.:

_When (count == 0) _Timeout (. . .); � if (count == 0) _Timeout (. . .);

10.2.2 Accept Statement

The extended form of the_Accept statement may specify a timeout value through a_Timeout clause, e.g.:

_When (conditional-expression) // optional guard
_Accept (mutex-member-name-list)

statement-1 // action
or

. . .
. . .

or _When (conditional-expression) // optional guard
_Timeout (duration or time) // optional timeout clause

statement-2 // action

10.2. TIMEOUT OPERATIONS 137

The _Timeout clause must be the last clause in an_Accept statement, or the second last if followed by a terminating
else clause (see Section2.9.2.1, p. 22). When a_Timeout clause and a terminatingelse clause appear in the same
_Accept statement, the pairing is only meaningful if the terminating else clause is conditional, i.e., has a_When
guard; otherwise, theelse clause always overrides the_Timeout . If there is no guard on a timeout or the guard is
true, but a call is accepted before the timeout interval expires, the statement behaves exactly like a normal_Accept
statement. If there is no guard on a timeout or the guard is true, and no call is accepted before the timeout interval
expires, the acceptor is removed from the acceptor/signalled stack, restarts, and executes the statement associated with
the _Timeout clause.2 WARNING: Beware of the following possible syntactic confusion with the timeout clause:

_Accept (mem); _Accept (mem);
or _Timeout (uDuration(1)); _Timeout (uDuration(1));

The left example accepts a call to membermem or times out in 1 second. The right example accepts a
call to membermem and then delays for 1 second. The left example is a single accept statement, while
the right example is an accept statement and a timeout statement. 22 WARNING: Beware of the following possible syntactic confusion with the timeout clause:

_Accept (mem); _Accept (mem);
or _Timeout (uDuration(1)); _When (C1) else
_When (C1) else _Timeout (uDuration(1));

The left example accepts a call to membermem or times out in 1 second or performs the terminatingelse ,
depending on the value of its guard. The right example accepts a call to membermem or performs the
terminatingelse , depending on the value of its guard; if the terminatingelse is performed, it then delays
for 1 second. The left example is a single accept statement, while the right example is an accept statement
and a timeout statement, bracketed as follows.

_Accept (mem);
_When (C1) else {

_Timeout (uDuration(1));
} 2

10.2.3 Select Statement

The extended form of the_Select statement may specify a timeout value through a_Timeout clause, e.g.:

_When (conditional-expression) // optional guard
_Select (selector-expression)

statement-1 // action
and /or

. . .
. . .

or _When (conditional-expression) // optional guard
_Timeout (duration or time) // optional timeout clause

statement-n // action

The _Timeout clause must be the last clause in a_Select statement, or the second last if followed by a terminating
else clause (see Section3.2.1, p. 50). When a_Timeout clause and a terminatingelse clause appear in the same
_Select statement, the pairing is only meaningful if the terminating else clause is conditional, i.e., has a_When
guard; otherwise, theelse clause always overrides the_Timeout . If there is no guard on a timeout or the guard is true,
but the selector-expression associated with the entire statement becomes satisfied before the timeout interval expires,
the statement behaves exactly like a normal_Select statement. If there is no guard on a timeout or the guard is true,
and the selector-expression associated with the entire statement fails to become satisfied before the timeout interval
expires, the selector task restarts and executes the statement associated with the_Timeout clause. One or more of the
actions for select clauses composing the select statement may have already triggered when a timeout occurs.2 WARNING: Beware of the following possible syntactic confusion with the timeout clause:

138 CHAPTER 10. REAL-TIME

_Select (f1); _Select (f1);
or _Timeout (uDuration(1)); _Timeout (uDuration(1));

The left example waits for futuref1 to becomes available or times out in 1 second. The right example
waits for futuref1 to becomes available and then delays for 1 second. The left example is a single select
statement, while the right example is a select statement anda timeout statement. 22 WARNING: Beware of the following possible syntactic confusion with the timeout clause:

_Select (f1); _Select (f1);
or _Timeout (uDuration(1)); _When (C1) else
_When (C1) else _Timeout (uDuration(1));

The left example waits for futuref1 to becomes available or times out in 1 second or performs the ter-
minatingelse , depending on the value of its guard. The right example waitsfor future f1 to becomes
available or performs the terminatingelse , depending on the value of its guard; if the terminatingelse
is performed, it then delays for 1 second. The left example isa single select statement, while the right
example is a select statement and a timeout statement, bracketed as follows.

_Select (mem);
_When (C1) else {

_Timeout (uDuration(1));
} 2

10.2.4 I/O

Similarly, timeouts can be set for certain I/O operations that block waiting for an event to occur (see details in Ap-
pendixC.5.2, p. 171). Only a duration is allowed as a timeout because a relationship between absolute time and I/O
seems unlikely. A pointer to the duration value is used so it is possible to distinguish between no timeout value (NULL
pointer) and a zero-timeout value. The former usually meansto wait until the event occurs (i.e., no timeout), while
the latter can be used to poll by trying the operation and returning immediately if the event has not occurred. The I/O
operations that can set timeouts areread, readv, write, writev, send, sendto, sendmsg, recv, recvfrom andreadmsg. If
the specified I/O operation has not completed when the delay expires, the I/O operation fails by throwing an exception.
The exception types areReadTimeout for read, readv, recv, recvfrom andreadmsg, andWriteTimeout for write, writev,
send, sendto andsendmsg, respectively. For example, in:

try {
uDuration d(3, 0); // 3 second duration
fa.read(buf, 512, &d);
// handle successful read

} catch (uFileIO::ReadTimeout) {
// handle read failure

}

the read operation expires after 3 seconds if no data has arrived.

As well, a timeout can be set for the constructor of auSocketAccept anduSocketClient object, which implies that if
the acceptor or client has not made a connection when the delay expires, the declaration of the object fails by throwing
an exception (see details in AppendixC.5.4, p.174). For example, in:

try {
uDuration d(60, 0); // 60 second duration
uSocketAccept acceptor(sockserver, &d); // accept a connection from a client
// handle successful accept

} catch (uSocketAccept::OpenTimeout) {
// handle accept failure

} // try

See, also, the server examples in AppendixC.5, p.169.

10.3. CLOCK 139

10.3 Clock
A clock defines an absolute time and is used for interrogatingthe current time. Multiple clocks can exist; each one can
be set to a different time. In theory, all clocks tick together at the lowest clock resolution available on the computer.

The typeuClock creates a clock object, and is defined:

class uClock {
public :

uClock();
uClock(uTime adj);
void resetClock();
void resetClock(uTime adj);
uTime getTime();
void getTime(int &year, int &month, int &day, int &hour, int &minutes,

int &seconds, long int &nsec);
static void convertTime(uTime time, int &year, int &month, int &day, int &hour, int &minutes,

int &seconds, long int &nsec);
}; // uClock

The overloaded constructor routineuClock has the following forms:

uClock() – creates a clock as a real-time clock running at the same timeas the underlying virtual process.

uClock(uTime adj) – creates a clock as a virtual clock starting at timeadj.

The overloaded member routineresetClock resets the kind of clock between real-time and virtual, and each routine
has the following form:

resetClock() – this form sets the clock to a real-time clock, so it returns the current time of the underlying virtual
processor.

resetClock(uTime adj) – this form sets the clock to a virtual clock starting at timeadj.

The overloaded member routinegetTime returns the current time, and each routine has the followingform:

getTime() – this form returns the current time as auTime value, i.e., in nanoseconds from the start of the UNIX
epoch.

getTime(int &year, int &month, int &day, int &hour, int &minutes, int &seconds, long int &nsec) – this form re-
turns the current time broken up into the traditional non-fixed radix units of time.

The static member routineconvertTime converts the specified time in nanoseconds from the start of the UNIX
epoch into a traditional non-fixed radix units of time.

As mentioned, each virtual processor has its own real-time clock. The current time is available from a virtual
processor via the calluThisProcessor().getClock().getTime(); hence, it is unnecessary to create a clock to get the
current time.

10.4 Periodic Task
Without a programming language construct to specify periodicity, and without programming language facilities to
express time, it is almost impossible to accurately expresstime specifications within a program. Specifying a periodic
task in a language without proper time constructs can introduce catastrophic inaccuracies. For example, in:

1 for (; ;) {
2 // periodic work
3 uDuration DelayTime = NextTime - CurrentTime();
4 _Timeout (DelayTime);
5 }

if the task is context-switched after executing line 3 (or context-switched after the call toCurrentTime in line 3), the
DelayTime would be inaccurate. As a result, the blocking time of the program is erroneous.

140 CHAPTER 10. REAL-TIME

The above problem can be eliminated by specifying an absolute time to_Timeout (specifyingNextTime as the
parameter to_Timeout). However, with this form of periodic task specification, itis infeasible to specify other forms
of deadlines. Ada only supports the periodic task specification using delays, and the system guarantees a periodic task
delays for a minimum time specified inDelayTime, but makes no guarantee as to when the periodic task actuallygets
to execute [BP91]. As a result, a task can request to block for 10 seconds (and Ada guarantees it blocks for at least 10
seconds), but end up executing 20 seconds later.

To circumvent this problem,�C++ provides a periodic task. The general form of the periodic task type is the
following:

_PeriodicTask task-name {
private :

. . . // these members are not visible externally
protected :

. . . // these members are visible to descendants
void main(); // starting member

public :
. . . // these members are visible externally

};

Like a task, a periodic task type has one distinguished member, namedmain, in which the new thread starts execution.
If not derived from some other periodic task type, each periodic task type is implicitly derived from the task type
uPeriodicBaseTask, e.g.:

_Task task-name : public uPeriodicBaseTask {
. . .

};

where the interface for the base classuPeriodicBaseTask is:

_Task uPeriodicBaseTask {
protected :

uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;
uDuration period;

public :
uPeriodicBaseTask(uDuration period, uCluster &cluster = uThisCluster());
uPeriodicBaseTask(uDuration period, uTime firstActivateTask, uTime endTime,

uDuration deadline, uCluster &cluster = uThisCluster());
uPeriodicBaseTask(uDuration period, uEvent firstActivateEvent, uTime endTime,

uDuration deadline, uCluster &cluster = uThisCluster());
uPeriodicBaseTask(uDuration period, uTime firstActivateTask, uEvent firstActivateEvent,

uTime endTime, uDuration deadline, uCluster &cluster = uThisCluster());
uDuration getPeriod() const ;
uDuration setPeriod(uDuration period);

};

A periodic task starts by one of two mechanisms. The first is byspecifying a start time,FirstActivateT, at which
the periodic task begins execution. The second is by specifying an event,FirstActivateE (an interrupt), upon receipt the
event the periodic task begins execution. If both start timeand event are specified, the task starts either on receipt of an
event or when the specified time arrives, whichever comes first. If neither time nor event are specified, the periodic task
starts immediately. An end time,EndTime, may also be specified. When the specified end time occurs, theperiodic
task halts after execution of the current period. A deadline, Deadline, may also be specified. A deadline is expressed
as the duration from the beginning of a task’s period by whichits computation must be finished. A zero argument
for any of the parameters indicates the task is free from the constraints represented by the parameter (the exception is
Period, which cannot have a zero argument). For example, if theFirstActivate parameter is zero, the task is scheduled
for initial execution at the next available time it can be accommodated. Finally, thecluster parameter specifies which
cluster the task should be created in. Should this parameterbe omitted, the task is created on the current cluster.

An example of a periodic task declaration that starts at a specified time and executes indefinitely (without any
deadline constraints) is:

10.5. SPORADIC TASK 141

_PeriodicTask task-name {
void main() { periodic task body }

public :
task-name(uDuration period, uTime time) : uPeriodicBaseTask(period, time, 0, 0) { };

};

The task body, i.e., routinemain, is implicitly surrounded with a loop that performs the taskbody periodically. As a
result, terminating the task body requires areturn (or the use of an end time); falling off the end of themain routine
does not terminate a periodic task.

10.5 Sporadic Task

A sporadic task is similar to a periodic task, except there isa minimum duration between executions instead of a
fixed period. In the declaration of a sporadic task, this minimum duration is specified as aframe. It is the user’s
responsibility to ensure the execution does not exceed the specified minimum duration (i.e., frame); otherwise, the
scheduler cannot ensure correct execution. The reason the scheduler cannot automate this process, as it does for
periodic tasks, is because of the unpredictable nature of the inter-arrival time of sporadic tasks.

In �C++, a sporadic task is similar to a periodic task. A_SporadicTask task type, if not derived from some other
sporadic task type, is implicitly derived from the task typeuSporadicBaseTask, e.g.:

_Task uSporadicBaseTask {
protected :

uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;
uDuration frame;

public :
uSporadicBaseTask(uDuration frame, uCluster &cluster = uThisCluster());
uSporadicBaseTask(uDuration frame, uTime firstActivateTask, uTime endTime,

uDuration deadline, uCluster &cluster = uThisCluster());
uSporadicBaseTask(uDuration frame, uEvent firstActivateEvent, uTime endTime,

uDuration deadline, uCluster &cluster = uThisCluster());
uSporadicBaseTask(uDuration frame, uTime firstActivateTask, uEvent firstActivateEvent,

uTime endTime, uDuration deadline, uCluster &cluster = uThisCluster());
uDuration getFrame() const ;
uDuration setFrame(uDuration frame);

};

10.6 Aperiodic Task

An aperiodic task has a non-deterministic start pattern. Asa result, aperiodic tasks should only be used in soft real-time
applications.

In �C++, an aperiodic task is similar to a periodic task. A_RealTimeTask task type, if not derived from some
other aperiodic task type, is implicitly derived from the task type_RealTimeTask , e.g.:

142 CHAPTER 10. REAL-TIME

_Task uRealTimeBaseTask {
protected :

uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;

public :
uRealTimeBaseTask(uCluster &cluster = uThisCluster());
uRealTimeBaseTask(uTime firstActivateTask, uTime endTime, uDuration deadline,

uCluster &cluster = uThisCluster());
uRealTimeBaseTask(uEvent firstActivateEvent, uTime endTime, uDuration deadline,

uCluster &cluster = uThisCluster());
uRealTimeBaseTask(uTime firstActivateTask, uEvent firstActivateEvent, uTime endTime,

uDuration deadline, uCluster &cluster = uThisCluster());
uDuration getDeadline() const ;
uDuration setDeadline(uDuration deadline);

};

10.7 Priority Inheritance Protocol

The priority-inheritance protocol attacks the problem of priority inversion, where a high-priority task waits while
lower-priority tasks prevent it from executing. Rajkumar proposed thebasic priority-inheritance protocol [RSL88,
SRL90, Raj91], which puts a bound on the occurrence of priority inversion. The solution is to execute a critical section
at the priority of the highest blocked task waiting to enter it. The basic priority-inheritance protocol bounds the time
priority inversion occurs: should there ben lower-priority tasks in the system, and then lower-priority tasks accessm distinct critical sections, a task can be blocked by at mostmin(n;m) critical sections. Despite this bound, the
blocking duration for a task can still be significant, however. Suppose at timet0, a low-priority task�2 arrives and
locks monitorM0. At time t1, a medium priority task�1 arrives, pre-empts�2, and locks monitorM1. At time t2, a
high-priority task�0 arrives, needing to sequentially access both monitorsM0 andM1. Since both monitors are locked
by two lower-priority tasks,�0 must wait for the duration of two critical sections (tillM1 is released by�1, then,M0
is released by�2). This problem is known aschain blocking. Finally, this priority-inheritance protocol does not deal
with the problem of deadlock.

In �C++, tasks wait for entry into a mutex object on a prioritized-entry queue. More specifically, each of the mutex
object’s member routines have an associated prioritized-entry queue. When the mutex object becomes unlocked, the
next task that enters is the one with the highest priority among all the entry queues. Should a mutex object be locked
and a higher-priority task arrives, the current task executing inside the mutex object “inherits” the priority of the
highest-priority task awaiting entry. This semantics ensures the task inside the mutex object can only be interrupted by
a higher-priority task, allowing the task in the mutex object to complete and leave as soon as possible, which speeds
entry of a waiting higher-priority task.

Condition variables and their associated queues of waitingtasks are also a fundamental part of mutex objects.
Signalling a condition variable makes the highest-priority task on the queue eligible to run. In�C++, the signaller
continues execution after signalling, at the priority of the highest-priority task awaiting entry to the mutex object.As
well, the signalled task is given preference over other tasks awaiting entry to the mutex object. Therefore, the signalled
task is the next to execute in the mutex object, regardless ofwhether there are higher-priority tasks waiting in the entry
queues. This behaviour, in turn, creates the possibility ofpriority inversion. Should a high-priority task be awaiting
entry to the mutex object, and a lower-priority task executing in the mutex object signals a condition queue whose
most eligible task has a lower priority than a task awaiting entry to the mutex object, priority inversion results. Hence,
the semantics of�C++ mutex objects increases the original algorithm’s boundfor priority inversion by the amount it
takes to complete the execution of all the tasks in the signalled stack.

Finally, in �C++, tasks running inside a mutex object have the additionalcapability of specifically accepting any
one of the mutex member routines. This capability also brings about the possibility of bypassing higher-priority tasks
waiting on other entry queues. When a member routine is accepted, the acceptor is moved to the signalled stack,
thus causing the acceptor to block; the highest-priority task waiting on the accepted member routine then executes.
When a task leaves a mutex object, the next task that executesis selected first from the signalled stack not the entry
queues. Thus, the amount of time when priority inversion cantake place when accepting specific member routines is

10.8. REAL-TIME SCHEDULING 143

unbounded, since tasks can continually arrive on a member routine’s entry queue, and tasks executing in the mutex
object can continually accept the same specific member routine.

10.8 Real-Time Scheduling

The notion of priority becomes a crucial tool for implementing various forms of scheduling paradigms [AGMK94,
BW90, Gol94]. In general, the termpriority has no single meaning. The priority of a task may signify its logical
importance to a programmer, or may simply be a property determined by its periodic characteristics, as is the case
with certain scheduling algorithms.

In �C++, the notion of priority simply determines the order by which a set of tasks executes. As far as the real-time
system is concerned, the ready task with the highest priority is the most eligible task to execute, with little or no
regard for the possible starvation of lower-priority readytasks. This form of scheduling is referred to as aprioritized
pre-emptive scheduling.

Each task’s priority can be redefined and queried by the routines provided from the following abstract class (dis-
cussed further in the next section):

template <class Node> class uBaseSchedule {
protected :

uBaseTask &getInheritTask(uBaseTask &task) const ;
int getActivePriority(uBaseTask &task) const ;
int setActivePriority(uBaseTask &task1, uBaseTask &task2);
int getBasePriority(uBaseTask &task) const ;
int setBasePriority(uBaseTask &task, int priority);

}; // uBaseScheduleFriend

Scheduler objects inherit fromuBaseSchedule to use these routines, not replace them. These routines provide suffi-
cient information about the dynamic behaviour of tasks on a cluster to schedule them in various ways.

To provide the facilities for implementing various priority-changing scheduling algorithms (such as priority in-
heritance), a�C++ task has two priorities associated with it: abase priority and anactive priority . It is up to the
scheduler implementor or programmer to set the appropriatepriority values, or to determine whether the base priority
or the active priority is the priority utilized in scheduling tasks, if used at all.1

The member routinegetInheritTask returns the task that this task inherited its current activepriority from or NULL.
The member routinesgetActivePriority andsetActivePriority read and write a task’s active priority, respectively. The
member routinesgetBasePriority andsetBasePriority read and write a task’s base priority, respectively.

A task’s priority can be used for more than just determining which task executes next; priorities can also dictate the
behaviour of various synchronization primitives such as semaphores and monitors [BW90]. �C++ monitors have been
extended so that entry queues (see Section2.9.1, p.21) are prioritized.2 The highest-priority task that calls into a mon-
itor always enters the monitor first, unless a particular entry queue is explicitly accepted (see Section2.9.2.1, p. 22),
in which case, the highest-priority task in the particular entry queue executes. Condition queues (see Section2.9.3.1,
p. 26) within a monitor are also prioritized: signaling a condition queue schedules the highest-priority task waiting on
the queue. Thus, both the monitor entry queues and the condition queues are prioritized, with FIFO used within each
priority level. The current implementation provides 32 priority levels. Support for more or less priority levels can be
implemented (see Section10.9).

If an application is not real-time, all tasks are assigned anequal, default priority level. Thus, all tasks have one
active priority, and the scheduling is FIFO.

10.9 User-Supplied Scheduler

One of the goals of real-time in�C++ is to provide a flexible system, capable of being adapted to various real-time
environments and applications. The wide availability of various real-time scheduling algorithms, coupled with each
algorithm’s suitability for different forms of real-time applications, makes it essential that the language and runtime
system provide as few restrictions as possible on which algorithms may be utilized and implemented.

1�C++ sets the base and the active priority of a task to a uniformdefault value, if no other priority is specified.
2A task’s active priority is utilized by a�C++ monitor to determine a task’s priority value

144 CHAPTER 10. REAL-TIME

Scheduling is the mechanism by which the next task to run is chosen from a set of runnable tasks. However,
this selection mechanism is closely tied to the data structure representing the set of runnable tasks. In fact, the data
structure containing the set of runnable tasks is often designed with a particular scheduling algorithm in mind.

To provide a flexible scheduler, the ready “queue”3 is packaged as an independent entity – readily accessible and
replaceable by a scheduler designer. Consequently, the rules and mechanisms by which insertion and removal take
place from the ready data-structure is completely up to the implementor.

A ready data-structure is generic in the type of nodes storedin the structure and must inherit from the abstract
class:

template <class Node> class uBaseSchedule {
public :

virtual void add(Node *node) = 0;
virtual Node *pop() = 0;
virtual bool empty() const = 0;
virtual bool checkPriority(Node &owner, Node &calling) = 0;
virtual void resetPriority(Node &owner, Node &calling) = 0;
virtual void addInitialize(uSequence<uBaseTaskDL> &taskList) = 0;
virtual void removeInitialize(uSequence<uBaseTaskDL> &taskList) = 0;
virtual void rescheduleTask(uBaseTaskDL *taskNode, uBaseTaskSeq &taskList) = 0;

};

The�C++ kernel uses the routines provided byuBaseSchedule to interact with the user-defined ready queue.4 A user
can construct different scheduling algorithms by modifying the behaviour of member routinesadd andpop, which add
and remove tasks from the ready queue, respectively. To implement a dynamic scheduling algorithm, an analysis of
the set of runnable tasks is performed for each call toadd and/orpop by the kernel; these routines alter the priorities
of the tasks accordingly. The member routineempty returns true if the ready queue is empty and false otherwise.The
member routinecheckPriority provides a mechanism to determine if a calling task has a higher priority than another
task, which is used to compare priorities in priority changing protocols, such as priority inheritance. Its companion
routineresetPriority performs the same check, but also raises the priority of the owner task to that of the calling task
if necessary.addInitialize is called by the kernel whenever a task is added to the cluster, andremoveInitialize is called
by the kernel whenever a task is deleted from the cluster. In both cases, a pointer to the ready queue for the cluster
is passed as an argument so it can be reorganized if necessary. The typeuSequence<uBaseTaskDL> is the type of
a system ready queue (see AppendixB, p. 153for information about theuSequence collection). The list node type,
uBaseTaskDL, stores a reference to a task, and this reference can be retrieved with member routinetask:

class uBaseTaskDL : public uSeqable {
public :

uBaseTaskDL(uBaseTask &_task);
uBaseTask &task() const ;

}; // uBaseTaskDL

Note, adding (or deleting) tasks to (or from) a cluster is notthe same as adding or popping tasks from the ready queue.
With a static scheduling algorithm, for example, task-set analysis is only performed upon task creation, making the
addInitialize function an ideal place to specify such analysis code. The member routinerescheduleTask is used to
recalculate the priorities of the tasks on a cluster based onthe fact that a given task,taskNode, may have changed
some of its scheduling attributes.

10.10 Real-Time Cluster

A real-time cluster behaves just like a normal�C++ cluster, except a real-time cluster can have a special ready data-
structure associated with it (the ready data-structure, inturn, has a scheduling or task-dispatching policy associated
with it). The ready data-structure must inherit from theuBaseSchedule class, however, and passed as an argument
when creating a real-time cluster. A real-time cluster has the following constructors:

3The term “ready queue” is no longer appropriate because the data structure may not be a queue.
4Operating systems such as Amoeba [TvRvS+90], Chorus [RAA+88], and Apertos [Yok92] employ a similar mechanism by which the kernel

utilizes external modules to modify its behaviour.

10.10. REAL-TIME CLUSTER 145

Priority 0

Priority 31 Task

Priority 30

Priority 2

Priority 1

Figure 10.3: Deadline Monotonic Ready-Queue

class uRealTimeCluster : public uCluster {
public :

uRealTimeCluster(uBaseSchedule<uBaseTaskDL> &rq, int size = uDefaultStackSize(),
const char *name = "");

uRealTimeCluster(uBaseSchedule<uBaseTaskDL> &rq, const char *name);
~uRealTimeCluster() {};

};

10.10.1 Deadline Monotonic Scheduler

Thedeadline monotonicscheduling algorithm is an example of a task-dispatching policy requiring a special ready
data-structure, which can be plugged into a real-time cluster. The underlying ready data-structure for the deadline
monotonic implementation is a prioritized ready-queue, with support for 32 priority levels. Theadd routine adds a
task to the ready-queue in a FIFO manner within a priority level. Thepop routine returns the most eligible task with
the highest priority from the ready-queue. Bothadd andpop utilize a constant-time algorithm for the location of the
highest-priority task. Figure10.3illustrates this prioritized ready-queue.

The addInitialize routine contains the heart of the deadline monotonic algorithm. In addInitialize, each task in the
ready-queue is examined, and tasks are ordered in increasing order by deadline. Priorities are, in turn, assigned to
every task. With the newly assigned priorities, the ready queue is re-evaluated, to ensure it is in a consistent state. As
indicated in Section10.9, p.143, this routine is usually called only by the kernel. If a task is removed from the cluster,
the relative order of the remaining tasks is unchanged; hence, the task is simply deleted without a need to re-schedule.

A sample real-time program is illustrated in Figure10.4. To utilize the deadline-monotonic algorithm include
header fileuDeadlineMonotonic.h. In the example, the creation of the real-time scheduler andcluster is done at
the beginning ofuMain::main. Note, the argument passed to the constructor ofuRealTimeCluster is an instance of
uDeadlineMonotonic, which is a ready data-structure derived fromuBaseSchedule.

The technique used to ensure that the tasks start at a critical instance is not to associate a processor with the cluster
until after all tasks are createdand scheduledon the cluster. As each task is added to the clusteraddInitialize is called,
and cluster’s task-set is analyzed and task priorities are (re)assigned. After priority assignment, the task is added to the
ready queue, and made eligible to execute. Only when all tasks are created is a processor finally associated with the
real-time cluster. This approach ensures that when the processor is put in place, the task priorities are fully determined,
and the critical instant is ensured.

146 CHAPTER 10. REAL-TIME

#include <uC++.h>
#include <uDeadlineMonotonic.h>

_PeriodicTask PeriodicTask1 {
public :

PeriodicTask1(uDuration period, uTime endtime, uDuration deadline, uCluster &cluster) :
uPeriodicBaseTask(period, uTime(0), endtime, deadline, cluster) {

}
void main() {

// periodic task body
}

};

_PeriodicTask PeriodicTask2 {
public :

PeriodicTask2(uDuration period, uTime endtime, uDuration deadline, uCluster &cluster) :
uPeriodicBaseTask(period, uTime(0), endtime, deadline, cluster) {

}
void main() {

// periodic task body
}

};

void uMain::main() {
uDeadlineMonotonic dm; // create real-time scheduler
uRealTimeCluster RTClust(dm); // create real-time cluster with scheduler
uProcessor *processor;
{

// These tasks are created, but they do not begin execution until a
// processor is created on the “RTClust” cluster. This is ideal, as
// “addInitialize” is called as each task is added to the cluster.

uTime currTime = uThisProcessor().getClock().getTime();
PeriodicTask1 t1(15, currTime+90, 5, RTClust); // 15 sec period, 5 sec deadline
PeriodicTask2 t2(30, currTime+90, 10, RTClust); // 30 sec period, 5 sec deadline
PeriodicTask1 t3(60, currTime+90, 20, RTClust); // 60 sec period, 20 sec deadline

// Only when all tasks are on the cluster, and the scheduling algorithm
// as ordered the tasks, is a processor associated with cluster
// “RTClust” to execute the tasks on the cluster.

processor = new uProcessor(RTClust);
} // wait for t1, t2, and t3 to finish
delete processor;

}

Figure 10.4: Sample Real-Time Program

Chapter 11

Miscellaneous

11.1 Default Values�C++ has a number of environment variables set to reasonable initial values for a basic concurrent program. However,
some concurrent programs may need to adjust these values to obtain correct execution or enhanced performance.
Currently, these variables affect tasks, processors, and the heap.

A default value is specified indirectly via a default routine, which returns the specific default value. A routine
allows an arbitrary computation to generate an appropriatevalue. Each default routine can be replaced by defining a
routine with the same name and signature in an application, e.g.:

unsigned int uDefaultStackSize() {
return 64 * 1024; // 64K default stack size

}

If the value of a global variable is used in the computation, the application can change the default value dynamically by
changing this global variable; hence, actions performed atdifferent times are initialized with different default values
(unless overridden locally). However, the global variablemust be statically initializedbecause its value may be used
to initialize objects at the start of the�C++ runtime, i.e., before the application’s code starts execution.

11.1.1 Task

The following default routines directly or indirectly affect tasks:

unsigned int uDefaultStackSize(); // cluster coroutine/task stack size (bytes)
unsigned int uMainStackSize(); // uMain task stack size (bytes)
unsigned int uDefaultPreemption(); // processor scheduling pre-emption duration (milliseconds)

RoutineuDefaultStackSize returns a stack sizeto initialize a cluster’s default stack-size(versus being used directly to
initialize a coroutine/task stack-size). A coroutine/task created on a cluster without an explicit stack size is initialized
to the cluster’s default stack-size; hence, there is a levelof indirection between this default routine and its use for
initializing a stack size. As well, a cluster’s default stack-size can be explicitly changed after the cluster is created
(see Section8.3, p. 119). RoutineuMainStackSize is used directly to provide a stack size for the implicitly declared
initial task of typeuMain (see Section2.2, p. 8). Since this initial task is defined and created by�C++, it has a separate
default routine so it can be adjusted differently from the application tasks. RoutineuDefaultPreemption returns a time
in millisecondsto initialize a virtual processor’s default pre-emption time(versus being used directly to initialize a
task’s pre-emption time). A task executing on a processor isrescheduled after no more than this amount of time (see
Section8.4, p.121).

11.1.2 Processor

The following default routines directly affect processors:

unsigned int uDefaultSpin(); // processor spin amount before becoming idle
unsigned int uDefaultProcessors(); // number of processors created on the user cluster

RoutineuDefaultSpin returns the maximum number of times the cluster’s ready queue is checked for an available
task to execute before the processor blocks. As well, a processor’s default spin can be explicitly changed after the

147

148 CHAPTER 11. MISCELLANEOUS

processor is created (see Section8.4, p. 121). RoutineuDefaultProcessors returns the number of implicitly created
virtual processors on the user cluster (see Section2.3.2, p. 9). When the user cluster is created, at least this many
processors are implicitly created to execute tasks concurrently.

11.1.3 Heap

The following default routine directly affects the heap:

unsigned int uDefaultHeapExpansion(); // heap expansion size (bytes)

RoutineuDefaultHeapExpansion returns the amount to extend the heap size once all the current storage in the heap is
allocated (see Section7.2.3.10, p.115).

11.2 Symbolic Debugging

The symbolic debugging tools (e.g.,dbx, gdb) do not work perfectly with�C++. This is because each coroutine and
task has its own stack, and the debugger does not know that there are multiple stacks. When a program terminates
with an error, only the stack of the coroutine or task in execution at the time of the error is understood by the debugger.
Furthermore, in the multiprocessor case, there are multiple kernel threads that are not necessarily handled well by all
debuggers. Some debuggers do handle multiple kernel threads (which correspond to�C++ virtual processors), and
hence, it is possible to examine at least the active tasks running on each kernel thread. Nevertheless, it is possible
to use many debuggers on programs compiled with the unikernel. At the very least, it is usually possible to examine
some of the variables, externals and ones local to the current coroutine or task, and to discover the statement where
the error occurred.

For most debuggers it is necessary to tell them to let the�C++ runtime system handle certain UNIX signals. Signals
SIGALRM andSIGUSR1 are handled by�C++ to perform pre-emptive scheduling. In gdb, the following debugger
command allows the application program to handle signalSIGALRM andSIGUSR1:

handle SIGALRM nostop noprint pass ignore
handle SIGUSR1 nostop noprint pass ignore

11.3 Installation Requirements�C++ comes configured to run on any of the following platforms (single and multiple processor):� solaris-sparc : Solaris 8/9/10, SPARC� irix-mips : IRIX 6.x, MIPS� linux-x86 : Linux 2.4.x/2.6.x, Intel IA-32� linux-ia64 : Linux 2.4.x/2.6.x, Intel IA-64 (Itanium)� linux-x86 32 : Linux 2.4.x/2.6.x, AMD 32� linux-x86 64 : Linux 2.4.x/2.6.x, AMD 64� freebsd-x86 : FreeBSD 6.0, FreeBSD 6.0, Intel & AMD 32�C++ requires at least GNU [Tie90] gcc-3.4.x or greater, or Intel icc 8.1 or 9.x. These compilers can be obtained free
of charge.�C++ works reasonably well with GNU gcc-3.3.x, but there are some user compilation situations that fail
(e.g., some usages ofosacquire/isacquire). However,�C++ does not build with gcc-3.3.x on Solaris 10.�C++ does
NOT compile using other compilers.

11.4 Installation

The current version of�C++ can be obtained by anonymous ftp from the following location (remember to set your ftp
mode tobinary):

plg.uwaterloo.ca:pub/uSystem/u++-5.5.0.tar.gz

Execute the following command to unpack the source:

% gunzip -c u++-5.5.0.tar.gz | tar -xf -

TheREADME file contains instructions on how to build�C++.

11.5. REPORTING PROBLEMS 149

11.5 Reporting Problems
If you have problems or questions or suggestions, send e-mail to usystem@plg.uwaterloo.ca or mail to:�System Project

c/o Peter A. Buhr
School of Computer Science
University of Waterloo
Waterloo, Ontario
N2L 3G1
CANADA

As well, visit the�System web site at:http:// plg.uwaterloo.ca/~usystem

11.6 Contributors
While many people have made numerous suggestions, the following people were instrumental in turning this project
from an idea into reality. The original design work, Version1.0, was done by Peter Buhr, Glen Ditchfield and Bob
Zarnke [BDZ89], with additional help from Jan Pachl on the train to Wengen.Brian Younger built Version 1.0 by
modifying the AT&T 1.2.1 C++ compiler [You91]. Version 2.0 was designed by Peter Buhr, Glen Ditchfield, Rick
Stroobosscher and Bob Zarnke [BDS+92]. Version 3.0 was designed by Peter Buhr, Rick Stroobosscher and Bob
Zarnke. Rick Stroobosscher built both Version 2.0 and 3.0 translator and kernel. Peter Buhr wrote the documentation
and built the non-blocking I/O library as well as doing othersundry coding. Version 4.0 kernel was designed and
implemented by Peter Buhr. Nikita Borisov and Peter Buhr fixed several problems in the translator. Amir Michail
started the real-time work and built a working prototype. Philipp Lim and Peter Buhr designed the first version of
the real-time support and Philipp did most of the implementation with occasional help from Peter Buhr. Ashif Harji
and Peter Buhr designed the second version of the real-time support and Ashif did most of the implementation with
occasional help from Peter Buhr. Russell Mok and Peter Buhr designed the first version of the extended exception
handling and Russell did most of the implementation with occasional help from Peter Buhr. Roy Krischer and Peter
Buhr designed the second version of the extended exception handling and Roy did most of the implementation with
occasional help from Peter Buhr. Version 5.0 kernel was designed and implemented by Richard Bilson and Ashif
Harji, with occasional help from Peter Buhr. Tom, Sasha, Tom, Raj, and Martin, the “gizmo guys”, all helped Peter
Buhr and Ashif Harji with the gizmo port. Finally, the many contributions made by all the students in CS342/CS343
(Waterloo) and CSC372 (Toronto), who struggled with earlier versions of�C++, is recognized.

The indirect contributers are Richard Stallman for providingemacs andgmake so that we could accomplish useful
work in UNIX, Michael D. Tiemann and Doug Lea for providing the initial version of GNU C++ and Dennis Vadura
for providingdmake (used beforegmake).

150 CHAPTER 11. MISCELLANEOUS

Appendix A�C++ Grammar

The grammar for�C++ is an extension of the grammar for C++ given in [Int98, Annex A]. The ellipsis in the following
rules represent the productions elided from the C++ grammar.

function-specifier :
. . .
mutex-specifier

mutex-specifier :
_Mutex queue-typesopt
_Nomutex queue-typesopt

queue-types :
< class-name>
< class-name, class-name>

class-key :
mutex-specifieropt class
. . .
mutex-specifieropt _Coroutine
mutex-specifieropt _Task queue-typesopt
_RealTimeTask queue-typesopt
_PeriodicTask queue-typesopt
_SporadicTask queue-typesopt
_Event

statement :
. . .
accept-statement;
_AcceptWait ((mutex-)identifier-list) expression;
_AcceptWait ((mutex-)identifier-list) expression_With expression;
_AcceptReturn ((mutex-)identifier-list) expressionopt ;
select-statement;
_Disable (exception-)identifier-listopt statement;
_Enable (exception-)identifier-listopt statement;

exception-list :
< class-name> exception-listopt

jump-statement :
break identifieropt ;
continue identifieropt ;
. . .

151

152 APPENDIX A. �C++ GRAMMAR

accept-statement :
or-accept
or-accept timeout-clause
or-accept else-clause
or-accept timeout-clause else-clause

or-accept :
accept-clause
or-acceptor accept-clause

accept-clause :
when-clauseopt _Accept ((mutex-)identifier-list) statement

select-statement :
or-select
or-select timeout-clause
or-select else-clause
or-select timeout-clause else-clause

or-select :
and-select
or-selector and-select

and-select :
select-clause
and-selectand select-clause

select-clause :
when-clauseopt (or-select)
when-clauseopt _Select ((selector-)expression) statement

when-clause :
_When (expression)

else-clause :
when-clauseopt else statement

timeout-clause :
or when-clauseopt _Timeout ((time-)expression) statement

try-block :
try resumption-handler-seq compound-statement handler-seq

handler :
. . .
catch (lvalue. exception-declaration) compound-statement

resumption-handler-seq :
resumption-handler resumption-handler-seqopt

resumption-handler :
< class-name>
< class-name, expression>
< lvalue. class-name>
< lvalue. class-name, expression>
< . . . , expression>
< . . . >

throw-expression :
. . .
_Throw assignment-expressionopt at-expressionopt
_Resume assignment-expressionopt at-expressionopt

at-expression :
_At assignment-expression

Appendix B

Data Structure Library (DSL)�C++ makes use of several basic data structures to manage objects in its runtime environment: stack, queue and
sequence. Since these data structures are needed at compiletime because of inlining, it is possible to use them in a�C++ application program. When appropriate, reusing code byan application programmer can save significant time
and effort. However, be forewarned that the�C++ DSL is only as extensive as needed to implement�C++; it is not
meant to be a complete data structure library (such as LEDA orthe STL).

A data structure is defined to be a group of nodes, containing user data, organized into a particular format, with
specific operations peculiar to that format. For all data structures in this library, it is the user’s responsibility to create
and delete all nodes. Because a node’s existence is independent of the data structure that organizes it, all nodes are
manipulated by address not value; hence, all data structureroutines take and return pointers to nodes and not the nodes
themselves.

Nodes are divided into two kinds: those with one link field, which form a collection, and those with two link fields,
which form a sequence.

data

data

collection node sequence node

uStack anduQueue are collections anduSequence is a sequence. To get the appropriate link fields associated with a
user node, it must be a public descendant ofuColable or uSeqable, respectively, e.g.:

class stacknode : public uColable { . . . }
class queuenode : public uColable { . . . }
class seqnode : public uSeqable { . . . }

A node inheriting fromuSeqable can be put in a collection data structure but not vice versa. Along with providing the
appropriate link fields, the typesuColable anduSeqable also provide one member routine:

bool listed() const ;

which returnstrue if the node is an element of any collection or sequence andfalse otherwise.
Finally, no header files are necessary to access the�C++ DSL; all necessary definitions are included when file

<uC++.h> is included.
Some�C++ DSL restrictions are:� None of the member routines are virtual in any of the data structures for efficiency reasons. Therefore, pointers

to data structures must be used with care or incorrect memberroutines may be invoked.

B.1 Stack
A uStack is a collection that defines an ordering among the nodes: nodes are returned bypop in the reverse order that
they are added bypush.

153

154 APPENDIX B. DATA STRUCTURE LIBRARY (DSL)

stack

top

datadatadata

0/

template <class T> class uStack {
public :

uStack();
bool empty() const ;
T *head() const
T *top() const ;
void addHead(T *n);
void add(T *n);
void push(T *n);
T *drop();
T *pop();

};

T must be a public descendant ofuColable.
The member routineempty returnstrue if the stack has no nodes andfalse otherwise. The member routinehead

returns a pointer to the top node of the stack without removing it or NULL if the stack has no nodes. The member
routinetop is a synonym forhead. The member routineaddHead adds a node to the top of the stack. The member
routineadd is a synonym foraddHead. The member routinepush is a synonym foraddHead. The member routine
drop removes a node from the top of the stack and returns a pointer to it or NULL if the stack has no nodes. The
member routinepop is a synonym fordrop.

B.1.1 Iterator

The iteratoruStackIter<T> generates a stream of the elements of auStack<T>.

template <class T> class uStackIter {
public :

uStackIter();
uStackIter(const uStack<T> &s);
void over(const uStack<T> &s);
bool operator >>(T *&tp);

};

It is used to iterate over the nodes of a stack from the top of the stack to the bottom.
The overloaded constructor routineuStackIter has the following forms:

uStackIter() – creates an iterator without associating it with a particular stack; the association must be done sub-
sequently with memberover.

uStackIter(const uStack<T> &s) – creates an iterator and associates it the specified stack; the association can be
changed subsequently with memberover.

The member routineover resets the iterator to the top of the specified stack. The member routine>> attempts to
move the iterator’s internal cursor to the next node. If the bottom (end) of the stack has not been reached, the argument
is set to the address of the next node andtrue is returned; otherwise the argument is set toNULL andfalse is returned.

FigureB.1 illustrates creating and using a stack and stack iterator.

B.2 Queue
A uQueue is a collection that defines an ordering among the nodes: nodes are returned bydrop in the same order that
they are added byadd.

head tail

queue

datadatadata

/0

B.2. QUEUE 155

struct stackNode : public uColable {
int v;
stackNode(int v) : v(v) {}

};
void uMain::main() {

uStack<stackNode> stack;
uStackIter<stackNode> stackgen;
stackNode *sp;
int i;

for (i = 0; i < 10; i += 1) { // fill stack
stack.push(new stackNode(2 * i));

} // for

for (stackgen.over(stack); stackgen >> sp;) { // print stack
cout << sp->v << " ";

} // for
cout << endl;

for (i = 0; i < 10; i += 1) { // empty stack
sp = stack.pop();
delete sp;

} // for
}

Figure B.1: DSL Stack

template <class T> class uQueue {
public :

uQueue();
bool empty() const ;
T *head() const
T *tail() const ;
T *succ(T *n) const ;
void addHead(T *n);
void addTail(T *n);
void add(T *n);
T *dropHead();
T *drop();
T *dropTail();
void remove(T *n);

};

T must be a public descendant ofuColable.
The member routineempty returnstrue if the queue has no nodes andfalse otherwise. The member routinehead

returns a pointer to the head or first node of the queue withoutremoving it orNULL if the queue has no nodes. The
member routinetail returns a pointer to the tail or last node of the queue withoutremoving it. The member routinesucc
returns a pointer to the successor node after the specified node (toward the tail) orNULL if the specified node is the
last node in the sequence. The member routineaddHead adds a node to the head or front of the queue. The member
routineaddTail adds a node to the tail or end of the queue. The member routineadd is a synonym foraddTail. The
member routinedropHead removes a node from the head or front of the queue and returns apointer to it orNULL if
the queue has no nodes. The member routinedrop is a synonym fordropHead. The member routinedropTail removes
a node from the tail or end of the queue and returns a pointer toit or NULL if the queue has no nodes. The member
routineremove removes the specified node from the queue (any location).

B.2.1 Iterator

The iteratoruQueueIter<T> generates a stream of the elements of auQueue<T>.

156 APPENDIX B. DATA STRUCTURE LIBRARY (DSL)

struct queueNode : public uColable {
int v;
queueNode(int v) : v(v) {}

};
void uMain::main() {

uQueue<queueNode> queue;
uQueueIter<queueNode> queuegen;
queueNode *qp;
int i;

for (i = 0; i < 10; i += 1) { // fill queue
queue.add(new queueNode(2 * i));

} // for

for (queuegen.over(queue); queuegen >> qp;) { // print queue
cout << qp->v << " ";

} // for
cout << endl;

for (i = 0; i < 10; i += 1) { // empty queue
qp = queue.drop();
delete qp;

} // for
}

Figure B.2: DSL Queue

template <class T> class uQueueIter {
public :

uQueueIter();
uQueueIter(const uQueue<T> &q);
void over(const uQueue<T> &q);
bool operator >>(T *&tp);

};

It is used to iterate over the nodes of a queue from the head of the queue to the tail.
The overloaded constructor routineuQueueIter has the following forms:

uQueueIter() – creates an iterator without associating it with a particular queue; the association must be done
subsequently with memberover.

uQueueIter(const uQueue<T> &q) – creates an iterator and associates it the specified queue; the association can
be changed subsequently with memberover.

The member routineover resets the iterator to the head of the specified queue. The member routine>> attempts to
move the iterator’s internal cursor to the next node. If the tail (end) of the queue has not been reached, the argument is
set to the address of the next node andtrue is returned; otherwise the argument is set toNULL andfalse is returned.

FigureB.2 illustrates creating and using a queue and queue iterator.

B.3 Sequence
A uSequence is a collection that defines a bidirectional ordering among the nodes: nodes can be added and removed
from either end of the collection; furthermore, nodes can beinserted and removed anywhere in the collection.

sequence

datadatadata

head tail

/0

/0

B.3. SEQUENCE 157

template <class T> class uSequence {
public :

uSequence();
bool empty() const ;
T *head() const
T *tail() const ;
T *succ(T *n) const ;
T *pred(T *n) const ;
void insertBef(T *n, T *bef);
void insertAft(T *aft, T *n);
void addHead(T* n);
void addTail(T* n);
void add(T* n);
T *dropHead();
T *drop();
T *dropTail();
void remove(T *n);

};

T must be a public descendant ofuSeqable.
The member routineempty returnstrue if the sequence has no nodes andfalse otherwise. The member routine

head returns a pointer to the head or first node of the sequence without removing it orNULL if the sequence has no
nodes. The member routinetail returns a pointer to the tail or last node of the sequence without removing it orNULL if
the sequence has no nodes. The member routinesucc returns a pointer to the successor node after the specified node
(toward the tail) orNULL if the specified node is the last node in the sequence. The member routinepred returns a
pointer to the predecessor node before the specified node (toward the head) orNULL if the specified node is the first
node in the sequence. The member routineinsertBef adds a node before the specified node or at the end (tail) ifbef is
NULL. The member routineinsertAft adds a node after the specified node or at the beginning (head)if aft is NULL. The
member routineaddHead adds a node to the head or front of the sequence. The member routineaddTail adds a node
to the tail or end of the sequence. The member routineadd is a synonym foraddTail. The member routinedropHead
removes a node from the head or front of the sequence and returns a pointer to it orNULL if the sequence has no nodes.
The member routinedrop is a synonym fordropHead. The member routinedropTail removes a node from the tail or
end of the sequence and returns a pointer to it orNULL if the sequence has no nodes. The member routineremove
removes the specified node from the sequence (any location).

A sequence behaves like a queue when membersadd anddrop are used. The example program in SectionC.3,
p. 165makes use of a sequence and modifies it so that nodes are maintained in order.

B.3.1 Iterator

The iteratoruSeqIter<T> generates a stream of the elements of auSequence<T>.

template <class T> class uSeqIter {
public :

uSeqIter();
uSeqIter(const uSequence<T> &s);
void over(const uSequence<T> &s);
bool operator >>(T *&tp);

};

It is used to iterate over the nodes of a sequence from the headof the sequence to the tail.
The iteratoruSeqIterRev<T> generates a stream of the elements of auSequence<T>.

template <class T> class uSeqIterRev {
public :

uSeqIterRev();
uSeqIterRev(const uSequence<T> &s);
void over(const uSequence<T> &s);
bool operator >>(T *&tp);

};

158 APPENDIX B. DATA STRUCTURE LIBRARY (DSL)

struct seqNode : public uSeqable {
int v;
seqNode(int v) : v(v) {}

};
void uMain::main() {

uSequence<seqNode> seq;
uSeqIter<seqNode> seqgen;
seqNode *sp;
int i;

for (i = 0; i < 10; i += 1) { // fill sequence
seq.add(new seqNode(2 * i));

} // for

for (seqgen.over(seq); seqgen >> sp;) { // print sequence forward
cout << sp->v << " ";

} // for
cout << endl;

for (uSeqIterRev<seqNode> seqgenrev(seq); seqgenrev >> sp;) { // print sequence reverse
cout << sp->v << " ";

} // for
cout << endl;

for (seqgen.over(seq); seqgen >> sp;) { // empty sequence
seq.remove(sp); // can remove nodes during iteration
delete sp;

} // for
}

Figure B.3: DSL Sequence

It is used to iterate over the nodes of a sequence from the tailof the sequence to the head.
The overloaded constructor routineuSeqIter has the following forms:

uSeqIter() – creates an iterator without associating it with a particular sequence; the association must be done
subsequently with memberover.

uSeqIter(const uSeq<T> &q) – creates an iterator and associates it the specified sequence; the association can
be changed subsequently with memberover.

The member routineover resets the iterator to the head or tail of the specified sequence depending on which iterator
is used. The member routine>> attempts to move the iterator’s internal cursor to the next node. If the head (front) or
tail (end) of the sequence has not been reached depending on which iterator is used, the argument is set to the address
of the next node andtrue is returned; otherwise the argument is set toNULL andfalse is returned.

FigureB.3 illustrates creating and using a sequence and sequence iterator.

Appendix C

Example Programs

C.1 Readers And Writer

The readers and writer problem deals with controlling access to a resource that can be shared by multiple readers, but
only one writer can use it at a time (e.g., a sequential file). While there are many possible solutions to this problem,
each solution must deal with unbounded waiting of reader and/or writer tasks if a continuous stream of one kind of
task is arriving at the monitor. For example, if readers are currently using the resource, a continuous stream of reader
tasks should not make an arriving writer task wait forever. Furthermore, a solution to the readers and writer problem
should provide FIFO execution of the tasks so that a read thatis requested after a write does not execute before the
write, thus reading old information. This phenomenon is called thestale readersproblem. Hoare gave a monitor
solution in [Hoa74] that has a bounded on waiting but non-FIFO execution.

// -*- Mode: C++ -*-
//
// uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
//
// RWEx1.cc – Readers and Writer Problem
//
// Author : Peter A. Buhr
// Created On : Thu Aug 2 11:51:34 1990
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Nov 30 08:41:15 2005
// Update Count : 95
//

#include <uC++.h>
#include <iostream>
using std::cout;
using std::osacquire;
using std::endl;

_Monitor ReaderWriter {
int ReadCount, WriteUsage;
uCondition ReaderAndWriter;
enum RW { READER, WRITER };

public :
ReaderWriter() {

ReadCount = WriteUsage = 0;
} // ReaderWriter

void StartRead() {
if (WriteUsage | | ! ReaderAndWriter.empty()) {

ReaderAndWriter.wait(READER);
} // if
ReadCount += 1;
if (! ReaderAndWriter.empty() && ReaderAndWriter.front() == READER) {

ReaderAndWriter.signal();
} // if

159

160 APPENDIX C. EXAMPLE PROGRAMS

} // ReaderWriter::StartRead

void EndRead() {
ReadCount -= 1;
if (ReadCount == 0) {

ReaderAndWriter.signal();
} // if

} // ReaderWriter::EndRead

void StartWrite() {
if (WriteUsage | | ReadCount != 0) {

ReaderAndWriter.wait(WRITER);
} // if
WriteUsage = 1;

} // ReaderWriter::StartWrite

void EndWrite() {
WriteUsage = 0;
ReaderAndWriter.signal();

} // ReaderWriter::EndWrite
}; // ReaderWriter

volatile int SharedVar = 0; // shared variable to test readers and writers

_Task Worker {
ReaderWriter &rw;

void main() {
yield(rand() % 100); // don’t all start at the same time
if (rand() % 100 < 70) { // decide to be a reader or writer

rw.StartRead();
osacquire(cout) << "Reader:" << this << ", shared:" << SharedVar << endl;
yield(3);
rw.EndRead();

} else {
rw.StartWrite();
SharedVar += 1;
osacquire(cout) << "Writer:" << this << ", wrote:" << SharedVar << endl;
yield(1);
rw.EndWrite();

} // if
} // Worker::main

public :
Worker(ReaderWriter &rw) : rw(rw) {
} // Worker::Worker

}; // Worker

#define MaxTask 50

void uMain::main() {
ReaderWriter rw;
Worker *workers;

workers = new Worker[MaxTask](rw);
delete [] workers;

osacquire(cout) << "successful completion" << endl;
} // uMain::main

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ RWEx1.cc” //
// End: //

C.2. BOUNDED BUFFER 161

C.2 Bounded Buffer

Two processes communicate through a unidirectional queue of finite length.

C.2.1 Using Monitor Accept

// -*- Mode: C++ -*-
//
// uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
//
// MonAcceptBB.cc – Generic bounded buffer problem using a monitor and uAccept
//
// Author : Peter A. Buhr
// Created On : Thu Aug 2 11:35:05 1990
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Nov 30 08:41:30 2005
// Update Count : 124
//

#include <uC++.h>

template <typename ELEMTYPE> _Monitor BoundedBuffer {
const int size; // number of buffer elements
int front, back; // position of front and back of queue
int count; // number of used elements in the queue
ELEMTYPE *Elements;

public :
BoundedBuffer(const int size = 10) : size(size) {

front = back = count = 0;
Elements = new ELEMTYPE[size];

} // BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete [] Elements;

} // BoundedBuffer::~BoundedBuffer

_Nomutex int query() {
return count;

} // BoundedBuffer::query

void insert(ELEMTYPE elem);
ELEMTYPE remove();

}; // BoundedBuffer

template <typename ELEMTYPE> inline void BoundedBuffer<ELEMTYPE>::insert(ELEMTYPE elem) {
if (count == size) { // buffer full ?

_Accept (remove); // only allow removals
} // if

Elements[back] = elem;
back = (back + 1) % size;
count += 1;

} // BoundedBuffer::insert

template <typename ELEMTYPE> inline ELEMTYPE BoundedBuffer<ELEMTYPE>::remove() {
ELEMTYPE elem;

if (count == 0) { // buffer empty ?
_Accept (insert); // only allow insertions

} // if

elem = Elements[front];
front = (front + 1) % size;
count -= 1;

return elem;
} // BoundedBuffer::remove

162 APPENDIX C. EXAMPLE PROGRAMS

#include "ProdConsDriver.i"

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ MonAcceptBB.cc” //
// End: //

C.2.2 Using Monitor Condition

// -*- Mode: C++ -*-
//
// uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
//
// MonConditionBB.cc – Generic bounded buffer problem using a monitor and condition variables
//
// Author : Peter A. Buhr
// Created On : Thu Aug 2 11:35:05 1990
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Nov 30 08:41:43 2005
// Update Count : 57
//

#include <uC++.h>

template <typename ELEMTYPE> _Monitor BoundedBuffer {
const int size; // number of buffer elements
int front, back; // position of front and back of queue
int count; // number of used elements in the queue
ELEMTYPE *Elements;
uCondition BufFull, BufEmpty;

public :
BoundedBuffer(const int size = 10) : size(size) {

front = back = count = 0;
Elements = new ELEMTYPE[size];

} // BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete [] Elements;

} // BoundedBuffer::~BoundedBuffer

_Nomutex int query() {
return count;

} // BoundedBuffer::query

void insert(ELEMTYPE elem) {
if (count == size) {

BufFull.wait();
} // if

Elements[back] = elem;
back = (back + 1) % size;
count += 1;

BufEmpty.signal();
}; // BoundedBuffer::insert

ELEMTYPE remove() {
ELEMTYPE elem;

if (count == 0) {
BufEmpty.wait();

} // if

elem = Elements[front];
front = (front + 1) % size;
count -= 1;

C.2. BOUNDED BUFFER 163

BufFull.signal();
return elem;

}; // BoundedBuffer::remove
}; // BoundedBuffer

#include "ProdConsDriver.i"

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ MonConditionBB.cc” //
// End: //

C.2.3 Using Task

// -*- Mode: C++ -*-
//
// uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
//
// TaskAcceptBB.cc – Generic bounded buffer using a task
//
// Author : Peter A. Buhr
// Created On : Sun Sep 15 20:24:44 1991
// Last Modified By : Peter A. Buhr
// Last Modified On : Sun Jul 31 18:50:16 2005
// Update Count : 74
//

#include <uC++.h>

template <typename ELEMTYPE> _Task BoundedBuffer {
const int size; // number of buffer elements
int front, back; // position of front and back of queue
int count; // number of used elements in the queue
ELEMTYPE *Elements;

public :
BoundedBuffer(const int size = 10) : size(size) {

front = back = count = 0;
Elements = new ELEMTYPE[size];

} // BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete [] Elements;

} // BoundedBuffer::~BoundedBuffer

_Nomutex int query() {
return count;

} // BoundedBuffer::query

void insert(ELEMTYPE elem) {
Elements[back] = elem;

} // BoundedBuffer::insert

ELEMTYPE remove() {
return Elements[front];

} // BoundedBuffer::remove
protected :

void main() {
for (;;) {

_Accept (~BoundedBuffer)
break ;

or _When (count != size) _Accept (insert) {
back = (back + 1) % size;
count += 1;

} or _When (count != 0) _Accept (remove) {
front = (front + 1) % size;
count -= 1;

164 APPENDIX C. EXAMPLE PROGRAMS

} // _Accept
} // for

} // BoundedBuffer::main
}; // BoundedBuffer

#include "ProdConsDriver.i"

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ TaskAcceptBB.cc” //
// End: //

C.2.4 Using P/V

// -*- Mode: C++ -*-
//
// uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
//
// SemaphoreBB.cc –
//
// Author : Peter A. Buhr
// Created On : Thu Aug 15 16:42:42 1991
// Last Modified By : Peter A. Buhr
// Last Modified On : Sun Jul 31 18:48:08 2005
// Update Count : 54
//

#include <uC++.h>
#include <uSemaphore.h>

template <typename ELEMTYPE> class BoundedBuffer {
const int size; // number of buffer elements
int front, back; // position of front and back of queue
uSemaphore full, empty; // synchronize for full and empty BoundedBuffer
uSemaphore ilock, rlock; // insertion and removal locks
ELEMTYPE *Elements;

BoundedBuffer(BoundedBuffer &); // no copy
BoundedBuffer &operator =(BoundedBuffer &); // no assignment

public :
BoundedBuffer(const int size = 10) : size(size), full(0), empty(size) {

front = back = 0;
Elements = new ELEMTYPE[size];

} // BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete Elements;

} // BoundedBuffer::~BoundedBuffer

void insert(ELEMTYPE elem) {
empty.P(); // wait if queue is full

ilock.P(); // serialize insertion
Elements[back] = elem;
back = (back + 1) % size;
ilock.V();

full.V(); // signal a full queue space
} // BoundedBuffer::insert

ELEMTYPE remove() {
ELEMTYPE elem;

full.P(); // wait if queue is empty

rlock.P(); // serialize removal
elem = Elements[front];

C.3. DISK SCHEDULER 165

front = (front + 1) % size;
rlock.V();

empty.V(); // signal empty queue space
return elem;

} // BoundedBuffer::remove
}; // BoundedBuffer

#include "ProdConsDriver.i"

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ SemaphoreBB.cc” //
// End: //

C.3 Disk Scheduler

The following example illustrates a fully implemented diskscheduler. The disk scheduling algorithm is the elevator
algorithm, which services all the requests in one directionand then reverses direction. A linked list is used to store
incoming requests while the disk is busy servicing a particular request. The nodes of the list are stored on the stack of
the calling processes so that suspending a request does not consume resources. The list is maintained in sorted order
by track number and there is a pointer which scans backward and forward through the list. New requests can be added
both before and after the scan pointer while the disk is busy.If new requests are added before the scan pointer in the
direction of travel, they are serviced on that scan.

The disk calls the scheduler to get the next request that it services. This call does two things: it passes to the
scheduler the status of the just completed disk request, which is then returned from scheduler to disk user, and it
returns the information for the next disk operation. When a user’s request is accepted, the parameter values from the
request are copied into a list node, which is linked in sortedorder into the list of pending requests. The disk removes
work from the list of requests and stores the current requestit is performing inCurrentRequest. When the disk has
completed a request, the request’s status is placed in theCurrentRequest node and the user corresponding to this
request is reactivated.

// -*- Mode: C++ -*-
//
// uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
//
// LOOK.cc – Look Disk Scheduling Algorithm
//
// The LOOK disk scheduling algorithm causes the disk arm to sweep
// bidirectionally across the disk surface until there are no more
// requests in that particular direction, servicing all requests in
// its path.
//
// Author : Peter A. Buhr
// Created On : Thu Aug 29 21:46:11 1991
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Nov 30 13:18:48 2005
// Update Count : 279
//

#include <uC++.h>
#include <iostream>
using std::cout;
using std::osacquire;
using std::endl;

typedef char Buffer[50]; // dummy data buffer

const int NoOfCylinders = 100;
enum IOStatus { IO_COMPLETE, IO_ERROR };

class IORequest {
public :

int track;

166 APPENDIX C. EXAMPLE PROGRAMS

int sector;
Buffer *bufadr;
IORequest() {}
IORequest(int track, int sector, Buffer *bufadr) {

IORequest::track = track;
IORequest::sector = sector;
IORequest::bufadr = bufadr;

} // IORequest::IORequest
}; // IORequest

class WaitingRequest : public uSeqable { // element for a waiting request list
WaitingRequest(WaitingRequest &); // no copy
WaitingRequest &operator =(WaitingRequest &); // no assignment

public :
uCondition block;
IOStatus status;
IORequest req;
WaitingRequest(IORequest req) {

WaitingRequest::req = req;
}

}; // WaitingRequest

class Elevator : public uSequence<WaitingRequest> {
int Direction;
WaitingRequest *Current;

Elevator(Elevator &); // no copy
Elevator &operator =(Elevator &); // no assignment

public :
Elevator() {

Direction = 1;
} // Elevator::Elevator

void orderedInsert(WaitingRequest *np) {
WaitingRequest *lp;
for (lp = head(); // insert in ascending order by track number

lp != 0 && lp->req.track < np->req.track;
lp = succ(lp));

if (empty()) Current = np; // 1st client, so set Current
insertBef(np, lp);

} // Elevator::orderedInsert

WaitingRequest *remove() {
WaitingRequest *temp = Current; // advance to next waiting client
Current = Direction ? succ(Current) : pred(Current);
uSequence<WaitingRequest>::remove(temp); // remove request

if (Current == 0) { // reverse direction ?
osacquire(cout) << "Turning" << endl;
Direction = !Direction;
Current = Direction ? head() : tail();

} // if
return temp;

} // Elevator::remove
}; // Elevator

_Task DiskScheduler;

_Task Disk {
DiskScheduler &scheduler;
void main();

public :
Disk(DiskScheduler &scheduler) : scheduler(scheduler) {
} // Disk

}; // Disk

_Task DiskScheduler {

C.3. DISK SCHEDULER 167

Elevator PendingClients; // ordered list of client requests
uCondition DiskWaiting; // disk waits here if no work
WaitingRequest *CurrentRequest; // request being serviced by disk
Disk disk; // start the disk
IORequest req;
WaitingRequest diskterm; // preallocate disk termination request

void main();
public :

DiskScheduler() : disk(*this), req(-1, 0, 0), diskterm(req) {
} // DiskScheduler
IORequest WorkRequest(IOStatus);
IOStatus DiskRequest(IORequest &);

}; // DiskScheduler

_Task DiskClient {
DiskScheduler &scheduler;
void main();

public :
DiskClient(DiskScheduler &scheduler) : scheduler(scheduler) {
} // DiskClient

}; // DiskClient

void Disk::main() {
IOStatus status;
IORequest work;

status = IO_COMPLETE;
for (;;) {

work = scheduler.WorkRequest(status);
if (work.track == -1) break ;

osacquire(cout) << "Disk main, track:" << work.track << endl;
yield(100); // pretend to perform an I/O operation
status = IO_COMPLETE;

} // for
} // Disk::main

void DiskScheduler::main() {
uSeqIter<WaitingRequest> iter; // declared here because of gcc compiler bug

CurrentRequest = NULL; // no current request at start
for (;;) {

_Accept (~DiskScheduler) { // request from system
break ;

} or _Accept (WorkRequest) { // request from disk
} or _Accept (DiskRequest) { // request from clients
} // _Accept

} // for

// two alternatives for terminating scheduling server
#if 0

for (; ! PendingClients.empty();) { // service pending disk requests before terminating
_Accept (WorkRequest);

} // for
#else

WaitingRequest *client; // cancel pending disk requests before terminating

for (iter.over(PendingClients); iter >> client;) {
PendingClients.remove(); // remove each client from the list
client->status = IO_ERROR; // set failure status
client->block.signal(); // restart client

} // for
#endif

// pending client list is now empty

// stop disk
PendingClients.orderedInsert(&diskterm); // insert disk terminate request on list

168 APPENDIX C. EXAMPLE PROGRAMS

if (! DiskWaiting.empty()) { // disk free ?
DiskWaiting.signal(); // wake up disk to deal with termination request

} else {
_Accept (WorkRequest); // wait for current disk operation to complete

} // if
} // DiskScheduler::main

IOStatus DiskScheduler::DiskRequest(IORequest &req) {
WaitingRequest np(req); // preallocate waiting list element

PendingClients.orderedInsert(&np); // insert in ascending order by track number
if (! DiskWaiting.empty()) { // disk free ?

DiskWaiting.signal(); // reactivate disk
} // if

np.block.wait(); // wait until request is serviced

return np.status; // return status of disk request
} // DiskScheduler::DiskRequest

IORequest DiskScheduler::WorkRequest(IOStatus status) {
if (CurrentRequest != NULL) { // client waiting for request to complete ?

CurrentRequest->status = status; // set request status
CurrentRequest->block.ignal(); // reactivate waiting client

} // if

if (PendingClients.empty()) { // any clients waiting ?
DiskWaiting.wait(); // wait for client to arrive

} // if

CurrentRequest = PendingClients.remove(); // remove next client’s request
return CurrentRequest->req; // return work for disk

} // DiskScheduler::WorkRequest

void DiskClient::main() {
IOStatus status;
IORequest req(rand() % NoOfCylinders, 0, 0);

yield(rand() % 100); // don’t all start at the same time
osacquire(cout) << "enter DiskClient main seeking:" << req.track << endl;
status = scheduler.DiskRequest(req);
osacquire(cout) << "enter DiskClient main seeked to:" << req.track << endl;

} // DiskClient::main

void uMain::main() {
const int NoOfTests = 20;
DiskScheduler scheduler; // start the disk scheduler
DiskClient *p;

srand(getpid()); // initialize random number generator

p = new DiskClient[NoOfTests](scheduler); // start the clients
delete [] p; // wait for clients to complete

cout << "successful execution" << endl;
} // uMain::main

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ LOOK.cc” //
// End: //

C.4 UNIX File I/O

The following example program reads in a file and copies it into another file.

C.5. UNIX SOCKET I/O 169

// -*- Mode: C++ -*-
//
// uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
//
// File.cc – Print multiple copies of the same file to standard output
//
// Author : Peter A. Buhr
// Created On : Tue Jan 7 08:44:56 1992
// Last Modified By : Peter A. Buhr
// Last Modified On : Sat Sep 2 09:20:34 2006
// Update Count : 42
//

#include <uC++.h>
#include <uFile.h>
#include <iostream>
using std::cout;
using std::cerr;
using std::endl;

_Task Copier {
uFile &input;

void main() {
uFileAccess in(input, O_RDONLY);
int count;
char buf[1];

for (int i = 0;; i += 1) { // copy in-file to out-file
count = in.read(buf, sizeof (buf));

if (count == 0) break ; // eof ?
cout << buf[0];
if (i % 20 == 0) yield();

} // for
} // Copier::main

public :
Copier(uFile &in) : input(in) {
} // Copier::Copier

}; // Copier

void uMain::main() {
switch (argc) {

case 2:
break ;

default :
cerr << "Usage: " << argv[0] << " input-file" << std::endl;
exit(-1);

} // switch

uFile input(argv[1]); // connect with UNIX files
{

Copier c1(input), c2(input);
}

} // uMain::main

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ File.cc” //
// End: //

C.5 UNIX Socket I/O
The following example illustrates bidirectional communication between a client and server socket. A client starts a
task to read from standard input and write the data to a serversocket. The server or its acceptor for that client, reads
the data from the client and writes it directly back to the client. The client also starts a task that reads the data coming
back from the server or its acceptor and writes it onto standard output. Hence, a file is read from standard input and

170 APPENDIX C. EXAMPLE PROGRAMS

written onto standard output after having made a loop through a server. The server can deal with multiple simultaneous
clients.

C.5.1 Client - UNIX/Datagram

// -*- Mode: C++ -*-
//
// uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1999
//
// ClientUNIX2.cc – Client for UNIX/datagram socket test. Client reads from
// standard input, writes the data to the server, reads the data from the
// server, and writes that data to standard output.
//
// Author : Peter A. Buhr
// Created On : Thu Apr 29 16:05:12 1999
// Last Modified By : Peter A. Buhr
// Last Modified On : Thu Sep 6 09:10:32 2007
// Update Count : 31
//

#include <uC++.h>
#include <uSemaphore.h>
#include <uSocket.h>
#include <iostream>
using std::cin;
using std::cout;
using std::cerr;
using std::osacquire;
using std::endl;

unsigned uMainStackSize() { return 40000; }

#define EOD ’\377’
// minimum buffer size is 2, 1 character and string terminator, ’\0’
#define BufferSize (65)

int rcnt = 0, wcnt = 0;

// Datagram sockets are lossy (i.e., drop packets). To prevent clients from
// flooding the server with packets, resulting in dropped packets, a semaphore
// is used to synchronize the reader and writer tasks so at most N writes occur
// before a read. As well, if the buffer size is increase substantially, it may
// be necessary to decrease N to ensure the server buffer does not fill.

const int MaxWriteBeforeRead = 5;
uSemaphore readSync(MaxWriteBeforeRead);

_Task reader {
uSocketClient &client;

void main() {
char buf[BufferSize];
int len;

for (;;) {
len = client.recvfrom(buf, sizeof (buf));
// osacquire(cerr) << “Client::reader read len:” << len << endl;

if (len == 0) uAbort("(uSocketClient &)0x%p : EOF ecountered without EOD", &client);
readSync.V();
// The EOD character can be piggy-backed onto the end of the message.

if (buf[len - 1] == EOD) {
rcnt += len - 1;
cout.write(buf, len - 1); // do not write the EOD
break ; }

rcnt += len;
cout.write(buf, len);

C.5. UNIX SOCKET I/O 171

} // for
} // reader::main

public :
reader(uSocketClient &client) : client (client) {
} // reader::reader

}; // reader

_Task writer {
uSocketClient &client;

void main() {
char buf[BufferSize];

for (;;) {
cin.get(buf, sizeof (buf), ’\0’); // leave room for string terminator
int len = strlen(buf);
// osacquire(cerr) << “Client::writer read len:” << len << endl;

if (buf[0] == ’\0’) break ;
wcnt += len;
readSync.P();
client.sendto(buf, len);

} // for
buf[0] = EOD;
readSync.P();
client.sendto(buf, sizeof (char));

} // writer::main
public :

writer(uSocketClient &client) : client(client) {
} // writer::writer

}; // writer

void uMain::main() {
switch (argc) {

case 2:
break ;

default :
cerr << "Usage: " << argv[0] << " socket-name" << endl;
exit(-1);

} // switch

uSocketClient client(argv[1], SOCK_DGRAM); // connection to server
{

reader rd(client); // emit worker to read from server and write to output
writer wr(client); // emit worker to read from input and write to server

}
if (wcnt != rcnt) {

uAbort("not all data transfered\n");
} // if

} // uMain::main

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++-work -o Client ClientUNIX2.cc” //
// End: //

C.5.2 Server - UNIX/Datagram

// -*- Mode: C++ -*-
//
// uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1999
//
// ServerUNIX2.cc – Server for UNIX/datagram socket test. Server reads data
// from multiple clients. The server reads the data from the client and writes
// it back.
//
// Author : Peter A. Buhr
// Created On : Fri Apr 30 16:36:18 1999

172 APPENDIX C. EXAMPLE PROGRAMS

// Last Modified By : Peter A. Buhr
// Last Modified On : Sat Sep 2 09:22:17 2006
// Update Count : 30
//

#include <uC++.h>
#include <uSocket.h>
#include <iostream>
using std::cerr;
using std::osacquire;
using std::endl;

#define EOD ’\377’
#define BufferSize (8 * 1024)

_Task reader {
uSocketServer &server;

void main() {
uDuration timeout(10, 0); // timeout for read
char buf[BufferSize];
int len;

try {
for (;;) {

len = server.recvfrom(buf, sizeof (buf), 0, &timeout);
// osacquire(cerr) << “Server::reader read len:” << len << endl;

if (len == 0) uAbort("(uSocketServer &)0x%p : EOF ecountered without EOD", &server);
server.sendto(buf, len); // write byte back to client

} // for
} catch (uSocketServer::ReadTimeout) {
} // try

} // reader::main
public :

reader(uSocketServer &server) : uBaseTask(64000), server(server) {
} // reader::reader

}; // reader

void uMain::main() {
switch (argc) {

case 2:
break ;

default :
cerr << "Usage: " << argv[0] << " socket-name" << endl;
exit(-1);

} // switch

uSocketServer server(argv[1], SOCK_DGRAM); // create and bind a server socket
{

reader rd(server); // execute until EOD
}

} // uMain

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++-work -o Server ServerUNIX2.cc” //
// End: //

C.5.3 Client - INET/Stream

// -*- Mode: C++ -*-
//
// uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
//
// ClientINET.cc – Client for INET/stream socket test. Client reads from
// standard input, writes the data to the server, reads the data from the
// server, and writes that data to standard output.

C.5. UNIX SOCKET I/O 173

//
// Author : Peter A. Buhr
// Created On : Tue Jan 7 08:42:32 1992
// Last Modified By : Peter A. Buhr
// Last Modified On : Sat Sep 2 09:19:04 2006
// Update Count : 143
//

#include <uC++.h>
#include <uSocket.h>
#include <iostream>
using std::cin;
using std::cout;
using std::cerr;
using std::osacquire;
using std::endl;

#define EOD ’\377’
// minimum buffer size is 2, 1 character and string terminator, ’\0’
#define BufferSize (65)

int rcnt = 0, wcnt = 0;

_Task reader {
uSocketClient &client;

void main() {
char buf[BufferSize];
int len;

for (;;) {
len = client.read(buf, sizeof (buf));
// osacquire(cerr) << “Client::reader read len:” << len << endl;

if (len == 0) uAbort("(uSocketClient &)0x%p : EOF ecountered without EOD", &client);
// The EOD character can be piggy-backed onto the end of the message.

if (buf[len - 1] == EOD) {
rcnt += len - 1;
cout.write(buf, len - 1); // do not write the EOD
break ; }

rcnt += len;
cout.write(buf, len);

} // for
} // reader::main

public :
reader(uSocketClient &client) : client (client) {
} // reader::reader

}; // reader

_Task writer {
uSocketClient &client;

void main() {
char buf[BufferSize];

for (;;) {
cin.get(buf, sizeof (buf), ’\0’); // leave room for string terminator
int len = strlen(buf);
// osacquire(cerr) << “Client::writer read len:” << len << endl;

if (buf[0] == ’\0’) break ;
wcnt += len;
client.write(buf, len);

} // for
buf[0] = EOD;
client.write(buf, sizeof (char));

} // writer::main
public :

writer(uSocketClient &client) : client(client) {

174 APPENDIX C. EXAMPLE PROGRAMS

} // writer::writer
}; // writer

void uMain::main() {
switch (argc) {

case 2:
break ;

default :
cerr << "Usage: " << argv[0] << " port-number" << endl;
exit(-1);

} // switch

uSocketClient client(atoi(argv[1])); // connection to server
{

reader rd(client); // emit worker to read from server and write to output
writer wr(client); // emit worker to read from input and write to server

}
if (wcnt != rcnt) {

uAbort("not all data transfered\n");
} // if

} // uMain::main

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++-work -o Client ClientINET.cc” //
// End: //

C.5.4 Socket - INET/Stream

// -*- Mode: C++ -*-
//
// uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
//
// ServerINET.cc – Server for INET/stream socket test. Server accepts multiple
// connections from clients. Each client then communicates with an acceptor.
// The acceptor reads the data from the client and writes it back.
//
// Author : Peter A. Buhr
// Created On : Tue Jan 7 08:40:22 1992
// Last Modified By : Peter A. Buhr
// Last Modified On : Thu Aug 9 20:20:43 2007
// Update Count : 176
//

#include <uC++.h>
#include <uSocket.h>
#include <iostream>
using std::cout;
using std::cerr;
using std::osacquire;
using std::endl;

#define EOD ’\377’
#define BufferSize (8 * 1024)

_Task server; // forward declaration

_Task acceptor {
uSocketServer &sockserver;
server &s;

void main();
public :

acceptor(uSocketServer &socks, server &s) : uBaseTask(64000), sockserver(socks), s(s) {
} // acceptor::acceptor

}; // acceptor

C.5. UNIX SOCKET I/O 175

_Task server {
uSocketServer &sockserver;
acceptor *terminate;
int acceptorCnt;
bool timeout;

public :
server(uSocketServer &socks) : sockserver(socks), acceptorCnt(1), timeout(false) {
} // server::server

void connection() {
} // server::connection

void complete(acceptor *terminate, bool timeout) {
server::terminate = terminate;
server::timeout = timeout;

} // server::complete
private :

void main() {
new acceptor(sockserver, *this); // create initial acceptor
for (;;) {

_Accept (connection) {
new acceptor(sockserver, *this); // create new acceptor after a connection
acceptorCnt += 1;

} or _Accept (complete) { // acceptor has completed with client
delete terminate; // delete must appear here or deadlock
acceptorCnt -= 1;

if (acceptorCnt == 0) break ; // if no outstanding connections, stop
if (timeout) {

new acceptor(sockserver, *this); // create new acceptor after a timeout
acceptorCnt += 1;

} // if
}; // _Accept

} // for
} // server::main

}; // server

void acceptor::main() {
try {

uDuration timeout(10, 0); // timeout for accept
uSocketAccept acceptor(sockserver, &timeout); // accept a connection from a client
char buf[BufferSize];
int len;

s.connection(); // tell server about client connection
for (;;) {

len = acceptor.read(buf, sizeof (buf)); // read byte from client
// osacquire(cerr) << “Server::acceptor read len:” << len << endl;

if (len == 0) uAbort("(uSocketAccept &)0x%p : EOF ecountered without EOD", &acceptor);
acceptor.write(buf, len); // write byte back to client
// The EOD character can be piggy-backed onto the end of the message.

if (buf[len - 1] == EOD) break ; // end of data ?
} // for
s.complete(this , false); // terminate

} catch (uSocketAccept::OpenTimeout) {
s.complete(this , true); // terminate

} // try
} // acceptor::main

void uMain::main() {
switch (argc) {

case 1:
break ;

default :
cerr << "Usage: " << argv[0] << endl;
exit(-1);

} // switch

176 APPENDIX C. EXAMPLE PROGRAMS

short unsigned int port;
uSocketServer sockserver(&port); // create and bind a server socket to free port

cout << port << endl; // print out free port for clients
{

server s(sockserver); // execute until acceptor times out
}

} // uMain

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++-work -o Server ServerINET.cc” //
// End: //

Bibliography

[AGMK94] B. Adelberg, H. Garcia-Molina, and B. Kao. Emulating Soft Real-Time Scheduling Using Traditional
Operating System Schedulers. InProc. IEEE Real-Time Systems Symposium, pages 292–298, 1994.
143

[Ale01] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design PatternsApplied.
Addison-Wesley Professional, February 2001.48

[AOC+88] Gregory R. Andrews, Ronald A. Olsson, Michael Coffin, Irving Elshoff, Kelvin Nilsen, Titus Purdin,
and Gregg Townsend. An Overview of the SR Language and Implementation. ACM Transactions on
Programming Languages and Systems, 10(1):51–86, January 1988.27

[BD92] Peter A. Buhr and Glen Ditchfield. Adding Concurrencyto a Programming Language. InUSENIX C++
Technical Conference Proceedings, pages 207–224, Portland, Oregon, U.S.A., August 1992. USENIX
Association. 3

[BDS+92] P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke.�C++: Concurrency
in the Object-Oriented Language C++. Software—Practice and Experience, 22(2):137–172, February
1992. 149

[BDZ89] P. A. Buhr, Glen Ditchfield, and C. R. Zarnke. Adding Concurrency to a Statically Type-Safe Object-
Oriented Programming Language.SIGPLAN Notices, 24(4):18–21, April 1989. Proceedings of the
ACM SIGPLAN Workshop on Object-Based Concurrent Programming, Sept. 26–27, 1988, San Diego,
California, U.S.A. 149

[BFC95] Peter A. Buhr, Michel Fortier, and Michael H. Coffin.Monitor Classification.ACM Computing Surveys,
27(1):63–107, March 1995.22

[BLL88] B. N. Bershad, E. D. Lazowska, and H. M. Levy. PRESTO:A System for Object-oriented Parallel
Programming.Software—Practice and Experience, 18(8):713–732, August 1988.5, 33

[BMZ92] Peter A. Buhr, Hamish I. Macdonald, and C. Robert Zarnke. Synchronous and Asynchronous Handling
of Abnormal Events in the�System. Software—Practice and Experience, 22(9):735–776, September
1992. 78, 81

[Boa05] OpenMP Architecture Review Board. OpenMP Application Program Interface Version 2.5. Technical
report, May 2005.

[BP91] T. Baker and O. Pazy. Real-Time Features of Ada 9X. InProc. IEEE Real-Time Systems Symposium,
pages 172–180, 1991.140

[Bri75] Per Brinch Hansen. The Programming Language Concurrent Pascal.IEEE Transactions on Software
Engineering, 2:199–206, June 1975.3

[Buh85] P. A. Buhr. A Case for Teaching Multi-exit Loops to Beginning Programmers.SIGPLAN Notices,
20(11):14–22, November 1985.12

[Buh95] Peter A. Buhr. Are Safe Concurrency Libraries Possible? Communications of the ACM, 38(2):117–120,
February 1995.3, 33

177

178 BIBLIOGRAPHY

[But97] David R. Butenhof.Programming with POSIX Threads. Professional Computing. Addison-Wesley,
1997. 127

[BW90] Alan Burns and A. J. Wellings. The Notion of Priority in Real-Time Programming Languages.Computer
Language, 15(3):153–162, 1990.143

[Car90] T. A. Cargill. Does C++ Really Need Multiple Inheritance? InUSENIX C++ Conference Proceedings,
pages 315–323, San Francisco, California, U.S.A., April 1990. USENIX Association.36

[CD95] Tai M. Chung and Hank G. Dietz. Language Constructs and Transformation for Hard Real-time Systems.
In Proc. Second ACM SIGPLAN Workshop on Languages, Compilers,and Tools for Real-Time Systems,
June 1995.133

[CG89] Nicholas Carriero and David Gelernter. Linda in Context.Communications of the ACM, 32(4):444–458,
April 1989. 3

[CKL+88] Boleslaw Ciesielski, Antoni Kreczmar, Marek Lao, Andrzej Litwiniuk, Teresa Przytycka, Andrzej
Salwicki, Jolanta Warpechowska, Marek Warpechowski, Andrzej Szalas, and Danuta Szczepanska-
Wasersztrum. Report on the Programming Language LOGLAN’88. Technical report, Institute of Infor-
matics, University of Warsaw, Pkin 8th Floor, 00-901 Warsaw, Poland, December 1988.34

[DG87] Thomas W. Doeppner and Alan J. Gebele. C++ on a Parallel Machine. InProceedings and Additional
Papers C++Workshop, pages 94–107, Santa Fe, New Mexico, U.S.A, November 1987. USENIX Asso-
ciation. 33

[Dij65] Edsger W. Dijkstra. Cooperating Sequential Processes. Technical report, Technological University,
Eindhoven, Netherlands, 1965. Reprinted in [Gen68] pp. 43–112. 36

[Geh92] N. H. Gehani. Exceptional C or C with Exceptions.Software—Practice and Experience, 22(10):827–
848, October 1992.78

[Gen68] F. Genuys, editor.Programming Languages. Academic Press, New York, 1968. NATO Advanced Study
Institute, Villard-de-Lans, 1966.178

[Gen81] W. Morven Gentleman. Message Passing between Sequential Processes: the Reply Primitive and the
Administrator Concept.Software—Practice and Experience, 11(5):435–466, May 1981.4, 53

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification. Addison-
Wesley, second edition, 2000.12, 33

[Gol94] David B. Golub. Operating System Support for Coexistence of Real-Time and Conventional Scheduling.
Technical report, Carnegie Mellon University, November 1994. 143

[GR88] N. H. Gehani and W. D. Roome. Concurrent C++: Concurrent Programming with Class(es).Software—
Practice and Experience, 18(12):1157–1177, December 1988.7, 27

[GR91] N. Gehani and K. Ramamritham. Real-Time Concurrent C: A Language for Programming Dynamic
Real-Time Systems.Journal of Real-Time Systems, 3(4):377–405, December 1991.133

[Hal85] Robert H. Halstead, Jr. Multilisp: A Language for Concurrent Symbolic Programming.ACM Transac-
tions on Programming Languages and Systems, 7(4):501–538, October 1985.4

[HM92] W.A. Halang and K. Mangold. Real-Time Programming Languages. In Michael Schiebe and Saskia
Pferrer, editors,Real-Time Systems Engineering and Applications, chapter 4, pages 141–200. Kluwer
Academic Publishers, 1992.133

[Hoa74] C. A. R. Hoare. Monitors: An Operating System Structuring Concept.Communications of the ACM,
17(10):549–557, October 1974.5, 159

[Hol92] R. C. Holt. Turing Reference Manual. Holt Software Associates Inc., third edition, 1992.3

BIBLIOGRAPHY 179

[IEE01] IEEE and The Open Group.1003.1 Standard for Information Technology – Portable Operating System
Interface (POSIX), System Interface, Issue 6, 2001. 131

[Int95] International Standard ISO/IEC.Ada Reference Manual, 6.0 edition, 1995.81

[Int98] International Standard ISO/IEC 14882:1998 (E), www.ansi.org.Programming Languages – C++, 1998.
151

[ITM90] Y. Ishikawa, H. Tokuda, and C.W. Mercer. Object-Oriented Real-Time Language Design: Constructs
for Timing Constraints. InProc. ECOOP/OOPSLA, pages 289–298, October 1990.133

[KK91] K.B. Kenny and K.J.Lin. Building Flexible Real-TimeSystems using the Flex Language.IEEE Com-
puter, 24(5):70–78, May 1991.133

[KS86] E. Klingerman and A.D. Stoyenko. Real-Time Euclid: ALanguage for Reliable Real-Time Systems.
IEEE Transactions on Software Engineering, pages 941–949, September 1986.133

[Lab90] Pierre Labrèche. Interactors: A Real-Time Executive with Multiparty Interactions in C++. SIGPLAN
Notices, 25(4):20–32, April 1990.33

[LN88] K.J. Lin and S. Natarajan. Expressing and Maintaining Timing Constratins in FLEX. InProc. IEEE
Real-Time Systems Symposium, pages 96–105, 1988.133

[Mac77] M. Donald MacLaren. Exception Handling in PL/I.SIGPLAN Notices, 12(3):101–104, March 1977.
Proceedings of an ACM Conference on Language Design for Reliable Software, March 28–30, 1977,
Raleigh, North Carolina, U.S.A.78

[Mar78] T. Martin. Real-Time Programming Language PEARL – Concept and Characteristics. InIEEE Com-
puter Society 2nd International Computer Software and Applications Conference, pages 301–306, 1978.
133

[Mar80] Christopher D. Marlin. Coroutines: A Programming Methodology, a Language Design and an Im-
plementation, volume 95 ofLecture Notes in Computer Science, Ed. by G. Goos and J. Hartmanis.
Springer-Verlag, 1980.5, 14

[Mey92] Bertrand Meyer.Eiffel: The Language. Prentice Hall Object-Oriented Series. Prentice-Hall, 1992. 69

[MMPN93] Ole Lehrmann Madsen, Birger Møller-Pedersen, andKristen Nygaard.Object-oriented Programming
in the BETA Programming Language. Addison-Wesley, 1993.34

[MMS79] James G. Mitchell, William Maybury, and Richard Sweet. Mesa Language Manual. Technical Report
CSL–79–3, Xerox Palo Alto Research Center, April 1979.3, 80

[RAA+88] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M.Guillemont, F. Hermann, C. Kaiser,
S. Langlois, P. Leonard, and W. Neuhauser. Chorus Distributed Operating Systems.Computing Systems,
1(4):305–370, 1988.144

[Raj91] Ragunathan Rajkumar.Synchronization in Real-Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, 1991.142

[RH87] A. Rizk and F. Halsall. Design and Implementation of aC-based Language for Distributed Real-time
Systems.SIGPLAN Notices, 22(6):83–100, June 1987.7

[Rip90] David Ripps.An Implementaion Guide to Real-Time Programming. Yourdon Press, 1990.133

[RSL88] Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky.Real-Time Synchronization Protocols for Mul-
tiprocessors. InProc. IEEE Real-Time Systems Symposium, pages 259–269, 1988.142

[SBG+90] Robert E. Strom, David F. Bacon, Arthur P. Goldberg, AndyLowry, Daniel M. Yellin, and
Shaula Alexander Yemini. Hermes: A Language for Distributed Computing. Technical report, IBM
T. J. Watson Research Center, Yorktown Heights, New York, U.S.A., 10598, October 1990.6

180 BIBLIOGRAPHY

[SD92] A.E.K. Sahraoui and D. Delfieu. ZAMAN, A Simple Language for Expressing Timing Constraints. In
Real-Time Programming, IFAC Workshop, pages 19–24, 1992.133

[Sha86] Alan Shaw. Software Clocks, Concurrent Programming, and Slice-Based Scheduling. InProc. IEEE
Real-Time Systems Symposium, pages 14–18, 1986.

[Sho87] Jonathan E. Shopiro. Extending the C++ Task System for Real-Time Control. InProceedings and Ad-
ditional Papers C++Workshop, pages 77–94, Santa Fe, New Mexico, U.S.A, November 1987. USENIX
Association. 33

[SRL90] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Approach to Real-Time
Synchronization.IEEE Transactions on Computers, 39(9):1175–1185, September 1990.142

[Sta87] Standardiseringskommissionen i Sverige.Databehandling – Programspråk – SIMULA, 1987. Svensk
Standard SS 63 61 14.33

[Str97] Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley, third edition, 1997.1, 3

[Tie88] Michael D. Tiemann. Solving the RPC problem in GNU C++. In Proceedings of the USENIX C++
Conference, pages 343–361, Denver, Colorado, U.S.A, October 1988. USENIX Association. 34

[Tie90] Michael D. Tiemann. User’s Guide to GNU C++. Free Software Foundation, 1000 Mass Ave., Cam-
bridge, MA, U.S.A., 02138, March 1990.10, 148

[TvRvS+90] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gregory J. Sharp, Sape J. Mullender,
Jack Jansen, and Guido van Rossum. Experiences with the Amoeba Distributed Operating System.
Communications of the ACM, 33(12):46–63, December 1990.144

[Uni83] United States Department of Defense.The Programming Language Ada: Reference Manual,
ANSI/MIL-STD-1815A-1983 edition, February 1983. Published by Springer-Verlag.24

[Yea91] Dorian P. Yeager. Teaching Concurrency in the Programming Languages Course.SIGCSE BULLETIN,
23(1):155–161, March 1991. The Papers of the Twenty-SecondSIGCSE Technical Symposium on
Computer Science Education, March. 7–8, 1991, San Antonio,Texas, U.S.A. 13

[Yok92] Yasuhiko Yokote. The Apertos Reflective Operating System: The Concept and Its Implementation. In
Proc. Object-Oriented Programming Systems, Languages, and Applications, pages 414–434, 1992.144

[You91] Brian M. Younger. Adding Concurrency to C++. Master’s thesis, University of Waterloo, Waterloo,
Ontario, Canada, N2L 3G1, 1991.149

Index

-U++ option,11
-compiler option,11
-debug option,10
-multi option,11
-nodebug option,10
-nomulti option,11
-noquiet option,11
-noverify option,11
-noyield option,11
-quiet option,11
-verify option,11, 17
-yield option,10, 32
<<, 57
>>, 57, 154, 156, 158
asynchronous call,45
synchronous call,45
_Accept , 22, 23, 137
_At , 72
_Cormonitor , 29, 39
_Coroutine , 7, 13
_Disable , 73
_Enable , 73
_Event , 17, 70
_Monitor , 28
_Mutex , 7, 19
_Mutex _Coroutine , 29

_Cormonitor , 29, 39
_Mutex class , 28

_Monitor , 28
_Nomutex , 7, 13, 19
_PeriodicTask , 140
_RealTimeTask , 141
_Resume , 72
_Select , 50, 137
_SporadicTask , 141
_Task, 7, 30
_Throw , 72
_Timeout , 136, 137
_When , 22, 23, 50, 136, 137
_ _U_CPLUSPLUS_MINOR_ _, 11
_ _U_CPLUSPLUS_PATCH_ _, 11
_ _U_CPLUSPLUS_ _, 11
_ _U_DEBUG_ _, 11
_ _U_MULTI_ _, 11

_ _U_VERIFY_ _, 11
_ _U_YIELD_ _, 11

abort, 99, 119
accept-blocked,23
acceptor,60
acceptor/signalled stack,21, 23, 25, 27
access object,59
acquire, 38
activation point,14, 30
Active, 17
active,4, 18
active priority,143
add, 154, 155, 157
addHead, 154, 155, 157
addTail, 155, 157
administrator,53
Amdahl’s law,45
aperiodic task,141
argc, 8
argv, 8
assert, 99
assert.h, 99
asynchronous call,45, 181

barrier,39
base priority,143
basic priority-inheritance protocol,142
binomial theorem,24
block, 40
Blocked, 32
blocked,4
bound exception,81
break , 12

labelled,12
busy wait,38
busy waiting,49

cancel, 17
cancelInProgress, 17
cancellation,91

safe cleanup,91
cancellation checkpoint,91
cancelled, 17
chain blocking,142

181

182 BIBLIOGRAPHY

class , 7
class object,5, 7
class type,7
client,45, 60
CloseFailure, 60, 63–65, 67, 87
cluster,8
code reuse,34
communication variables,14, 30
compilation option

-U++, 11
-compiler, 11
-debug, 10
-multi, 11
-nodebug, 10
-nomulti, 11
-noquiet, 11
-noverify, 11
-noyield, 11
-quiet, 11
-verify, 11, 17
-yield, 10, 32
u++, 10, 11, 129

compile-time
errors,95
warnings,95

concurrency,8, 121
concurrent exception,24, 70, 72, 74, 78, 79, 103
condition lock,39
condition variable,25
context switch,4, 17, 22, 123
continue , 12

labelled,12
convertTime, 139
coroutine,5, 7, 13

full, 14
inherited members,15
semi,14
termination,15

coroutine main,13
coroutine monitor,5, 7, 28
coroutine type,7
coroutine-monitor type,7
counter, 37
CreationFailure, 87, 130

data structure library,153
dbx, 148
deadline monotonic,145
deadlock,14, 26, 27, 29, 59, 86, 116, 142
debugging

symbolic,148
default action,72, 79, 88, 100
Dekker,5
detached,122

drop, 154, 155, 157
dropHead, 155, 157
dropTail, 155, 157
duration,133
dynamic

errors,99
warnings,99

empty, 27, 37, 39, 154, 155, 157
entry queue,21, 26
EntryFailure, 87
epoch,134
equals, 48
errors,95

accept statement,113
calendar,114
cluster,114
compile-time,95
condition variable,112
coroutine,104
default action,100
dynamic,99
heap,115
I/O, 116
lock, 114
mutex type,107
processor,116
runtime,99
static,95
task,111
UNIX, 116
warnings,95, 99

exception,69
bound,81
concurrent,24, 72, 74, 78, 79, 103
default action,74
inherited members,71
local,74
nonlocal,72–74, 80, 86, 88
resume,70
throw,70
type,69, 70

exceptional event,69
execution state,4

active,4
inactive,4

exit, 99, 119
external variables,15, 30

Failure, 16, 60, 63, 65, 67, 86, 87, 130
fd, 60, 64, 66
finite-state machine,13, 29
fixed-point registers,41
floating-point registers,41

BIBLIOGRAPHY 183

frame,141
free, 119
free routine,5
front, 27
full coroutine,14
functor,76
future,46
Future_ESM

available, 47
cancel, 47
Cancellation, 47
cancelled, 47
delivery, 47
exception, 47
operator T(), 47
operator ()(), 47
reset, 47

Future_ISM
available, 49
cancel, 49
Cancellation, 49
cancelled, 49
delivery, 49
equals, 49
exception, 49
operator T(), 49
operator ()(), 49
reset, 49

gdb, 148
getActivePriority, 32
getBasePriority, 32
getClient, 64
getClock, 122
getCluster, 32, 122
getCoroutine, 32
getDetach, 123
getName, 17, 59, 120
getPid, 122
getPreemption, 123
getProcessorsOnCluster, 121
getServer, 62
getSpin, 123
getStackSize, 120
getState, 17, 32
getTask, 123
getTasksOnCluster, 121
getTime, 139
GNU C++,10, 129, 148
goto

restricted,13
guarded block,75

Halt, 17

handler,69, 70, 75
resumption,70, 75, 76
termination,70, 75

head, 154, 155, 157
heap area,15, 30, 147

expansion size,148
heavy blocking,124
heavyweight process,124

idle, 123
implementation problems,43
implicit scheduler,22
Inactive, 17
inactive,4, 18
inheritance,34

multiple,36, 84
private,34
protected,34
public,34
single,35, 83

inherited members
coroutine,15
exception type,71
task,31

initial task
uMain, 8

insertAft, 157
insertBef, 157
internal scheduler,26
interrupt,123
intervention,75
isacquire, 58
istream

isacquire, 58

kernel thread,9, 121
keyword, additions

_Accept , 22, 23, 137
_At , 72
_Coroutine , 13
_Event , 70
_Mutex , 19
_Nomutex , 13, 19
_PeriodicTask , 140
_RealTimeTask , 141
_Resume , 72
_Select , 50, 137
_SporadicTask , 141
_Task, 30
_Throw , 72
_Timeout , 136, 137
_When, 22, 23, 50, 136, 137

labelled

184 BIBLIOGRAPHY

break , 12
continue , 12

light blocking,124
lightweight process,8
local exception,74
lock, 38
locking,18

main, 8
malloc, 119
migrate, 32
monitor,5, 7, 28

active,18
inactive,18

monitor type,7
multi-level exit,12
multikernel,10, 121
mutex member,5, 18
mutex queue,21
mutex type,18
mutex-type state

locked,18
unlocked,18

mutual exclusion,4

nested loop,12
non-detached,122
nonblocking I/O,57
nonlocal exception,70, 72–74, 80, 86, 88, 91

object,7
OpenFailure, 60, 63, 65, 67, 87
OpenTimeout, 63, 67, 87
ostream

osacquire, 58
out-of-band data,66
over, 154, 156, 158
owner, 38
owner lock,38

P, 37
parallel execution,8
parallelism,8
periodic task,140
poll, 74
poller task,57, 120, 121
pop, 154
Posix Threads,127
pre-emption,74

default,147
time,121
uDefaultPreemption, 147

pre-emptive
scheduling,11, 32, 119, 123, 148

pred, 157
preprocessor variables

_ _U_CPLUSPLUS_MINOR_ _, 11
_ _U_CPLUSPLUS_PATCH_ _, 11
_ _U_CPLUSPLUS_ _, 11
_ _U_DEBUG_ _, 11
_ _U_MULTI_ _, 11
_ _U_VERIFY_ _, 11
_ _U_YIELD_ _, 11

priming
barrier,40

prioritized pre-emptive scheduling,143
priority, 143
priority level,143
priority-inheritance protocol,142
process

heavyweight,124
lightweight,8
UNIX, 124

processor
detached,122
non-detached,122
number on cluster,121
pre-emption time,121
spin amount,121

propagate,72
pthread_attr_ destroy, 128
pthread_attr_ getdetachstate, 128
pthread_attr_ getscope, 128
pthread_attr_ getstacksize, 128
pthread_attr_ init, 128
pthread_attr_ setdetachstate, 128
pthread_attr_ setscope, 128
pthread_attr_ setstacksize, 128
pthread_cancel, 128
pthread_cleanup_pop, 128
pthread_cleanup_push, 128
pthread_cond_broadcast, 128
pthread_cond_destroy, 128
pthread_cond_init, 128
pthread_cond_signal, 128
pthread_cond_timedwait, 128
pthread_cond_wait, 128
pthread_create, 128
pthread_deletespecific_, 128
pthread_detach, 128
pthread_exit, 128
pthread_getattr_ np, 128
pthread_getconcurrency, 128
pthread_getspecific, 128
pthread_join, 128
pthread_key_create, 128
pthread_key_delete, 128

BIBLIOGRAPHY 185

pthread_mutex_destroy, 128
pthread_mutex_init, 128
pthread_mutex_lock, 128
pthread_mutex_trylock, 128
pthread_mutex_unlock, 128
pthread_once, 128
pthread_self, 128
pthread_setcancelstate, 128
pthread_setcanceltype, 128
pthread_setconcurrency, 128
pthread_setspecific, 128
pthread_testcancel, 128
pthread_timedjoin_np, 128
pthread_tryjoin_np, 128
pthread_yield, 128
pthreads,127

see Posix Threads,
push, 154
push-down automata,13

raising,69, 70, 72
resuming,70, 72
throwing,70, 72

ReadFailure, 60, 63, 65, 67, 87
ReadTimeout, 60, 63, 65, 67, 87
Ready, 32
ready,4
real-time cluster,144
recursive resuming,78
release, 38
remove, 155, 157
rendezvous,24, 89
RendezvousFailure, 87–89, 102, 103
reresume,72
reset, 40
resetClock, 139
resume, 16, 17
resumer, 17
resumption,69
resumption handler,75, 76
rethrow,72
return code,69
Running, 32
running,4
runtime

errors,99
warnings,99

SeekFailure, 60, 87
select, 57, 120
select blocked,50
semaphore,36
semi-coroutine,14
server,45, 60

set_terminate, 84
set_unexpected, 85
setClient, 64
setCluster, 122
setName, 17, 120
setPreemption, 123
setServer, 62
setSpin, 123
setStackSize, 120
shared-memory model,8
signal, 27
signalBlock, 27
sleep, 119, 136
socket,60

endpoint,60
spin

amount,121
default,147
lock, 38
uDefaultSpin, 147
virtual processor,124

sporadic task,141
stack,4, 153

acceptor/signalled,21, 23, 25, 27
amount,16
automatic growth,10, 107
current,16
data structure,153
default size,16, 31, 119, 120, 147
diddling,33
free,16
minimum size,119
overflow,16, 33, 107
recursive resuming,78
storage,16
uDefaultStackSize, 147
uMainStackSize, 147
used,16

stack, 16
stackFree, 16
stackPointer, 16
stackSize, 16
stackUsed, 16
stale readers,159
Start, 32
starter, 17
static

errors,95
warnings,95

static storage,15, 30
static multi-level exit,12
status flag,69
StatusFailure, 59, 87

186 BIBLIOGRAPHY

subtyping,34
succ, 155, 157
suspend, 16, 17
SyncFailure, 60, 87
synchronous call,45, 181
system cluster,9

tail, 155, 157
task,5, 7, 29

aperiodic,141
inherited members,31
periodic,140
sporadic,141
termination,30

task main,30
task type,7
Terminate, 32
terminate, 84
terminate_handler, 84
TerminateFailure, 59, 87
termination,69
termination handler,75
thread,4

blocked,4
running,4

time,133
time-slice,123
times, 38
top, 154
total, 40
translator,7

problems,43
tryacquire, 38
TryP, 37

u++, 10, 11, 129
uAbort, 99, 119
uBarrier, 39

block, 40
last, 40
reset, 40
total, 40
waiters, 40

uBarrier.h, 40
uBaseCoroutine, 16, 33, 139

cancel, 16
cancelInProgress, 16
cancelled, 16
Failure, 16, 86, 87
getName, 16
getState, 16
resume, 16
resumer, 16
setName, 16

stack, 16
stackFree, 16
stackPointer, 16
stackSize, 16
stackUsed, 16
starter, 16
suspend, 16
UnhandledException, 16, 87
verify, 16

uBaseEvent, 71, 87
defaultResume, 71
defaultTerminate, 71
duplicate, 71
getRaiseKind, 71
message, 71
reraise, 71
setMsg, 71
source, 71
sourceName, 71
uIOFailure, 87
uKernelFailure, 87

uBaseSchedule
add, 144
addInitialize, 144
checkPriority, 144
empty, 144
getActivePriority, 143
getBasePriority, 143
getInheritTask, 143
pop, 144
removeInitialize, 144
rescheduleTask, 144
resetPriority, 144
setActivePriority, 143
setBasePriority, 143

uBaseTask, 31
getActivePriority, 31
getBasePriority, 31
getCluster, 31
getCoroutine, 31
getState, 31
migrate, 31
yield, 31

uBaseTask::Blocked, 32
uBaseTask::Ready, 32
uBaseTask::Running, 32
uBaseTask::Start, 32
uBaseTask::Terminate, 32�C++ translator,7
uC++.h, 10, 28, 29, 153�C++ kernel,10, 119
uClock

convertTime, 139

BIBLIOGRAPHY 187

getTime, 139
resetClock, 139

uCluster, 120
exceptSelect, 120
getName, 120
getProcessorsOnCluster, 120
getStackSize, 120
getTasksOnCluster, 120
readSelect, 120
select, 120
setName, 120
setStackSize, 120
writeSelect, 120

uColable, 153
listed, 153

uCondition, 26
empty, 26
front, 26
owner,26
signal, 26
signalBlock, 26
wait, 26
WaitingFailure, 26, 87

uCondLock, 39, 127
broadcast, 39
empty, 39
signal, 39
wait, 39

uContext, 41
uDefaultHeapExpansion, 148
uDefaultPreemption, 147

seesetPreemption and pre-emption,
uDefaultProcessors, 147
uDefaultSpin, 147

seesetSpin and spin,
uDefaultStackSize, 147

seesetStackSize and stack,
uDuration, 133
uEHM

poll, 71, 74, 91
RaiseKind, 71

uFile, 59
Failure, 59, 87
getName, 59
status, 59
StatusFailure, 59, 87
TerminateFailure, 59, 87

uFile.h, 59
uFileAccess, 60

CloseFailure, 60, 87
Failure, 60, 87
fd, 60
fsync, 60

lseek, 60
OpenFailure, 60, 87
read, 60
ReadFailure, 60, 87
ReadTimeout, 60, 87
readv, 60
SeekFailure, 60, 87
SyncFailure, 60, 87
write, 60
WriteFailure, 60, 87
WriteTimeout, 60, 87
writev, 60

uFloatingPointContext, 41
uIOFailure, 87
uKernelFailure, 87
uLock, 38

acquire, 38
release, 38
tryacquire, 38

uMain, 8
argc, 8
argv, 8
uRetCode, 8

uMain::main, 8
uMainStackSize, 147

seesetStackSize and stack,
uncaught_exception, 85
unexpected, 85
unexpected_handler, 85
UnhandledException, 16, 84, 87, 88, 104

triggerCause, 88
unikernel,10, 121
UNIX epoch,134
UNIX process,121
unlocking,18
uOwnerLock, 38, 127

acquire, 38
owner, 38
release, 38
times, 38
tryacquire, 38

uPeriodicBaseTask
getPeriod, 140
setPeriod, 140

uProcessor, 122
getClock, 122
getCluster, 122
getDetach, 122
getPid, 122
getPreemption, 122
getSpin, 122
getTask, 122
idle, 122

188 BIBLIOGRAPHY

setCluster, 122
setPreemption, 122
setSpin, 122

uPthreadable, 129
CreationFailure, 87, 130
Failure, 87, 130
pthreadId, 130

uQueue
add, 155
addHead, 155
addTail, 155
drop, 155
dropHead, 155
dropTail, 155
empty, 155
head, 155
remove, 155
succ, 155
tail, 155

uQueueIter, 155
>>, 156
over, 156

uRealTimeBaseTask
getDeadline, 142
setDeadline, 142

uRendezvousAcceptor, 89
uRetCode, 8
uSemaphore, 36

counter, 37
empty, 37
P, 37
TryP, 37
V, 37

uSemaphore.h, 37
uSeqable, 153

listed, 153
uSeqIter, 157

>>, 157
over, 157

uSeqIterRev, 157
>>, 158
over, 158

uSequence
add, 157
addHead, 157
addTail, 157
drop, 157
dropHead, 157
dropTail, 157
empty, 157
head, 157
insertAft, 157
insertBef, 157

pred, 157
remove, 157
succ, 157
tail, 157

user cluster,9
uSerial

EntryFailure, 87
Failure, 86, 87
RendezvousFailure, 87–89, 102, 103

usleep, 119, 136
uSocket

CloseFailure, 87
Failure, 87
OpenFailure, 87

uSocket.h, 62
uSocketAccept, 66, 138

accept, 67
close, 67
CloseFailure, 67, 87
Failure, 67, 87
fd, 67
getpeername, 67
getsockaddr, 67
getsockname, 67
OpenFailure, 67, 87
OpenTimeout, 67, 87
read, 67
ReadFailure, 67, 87
ReadTimeout, 67, 87
readv, 67
recv, 67
recvfrom, 67
recvmsg, 67
send, 67
sendmsg, 67
sendto, 67
write, 67
WriteFailure, 67, 87
WriteTimeout, 67, 87
writev, 67

uSocketClient, 62, 138
CloseFailure, 63, 87
Failure, 63, 87
fd, 63
getpeername, 63
getServer, 63
getsockname, 63
OpenFailure, 63, 87
OpenTimeout, 63, 87
read, 63
ReadFailure, 63, 87
ReadTimeout, 63, 87
readv, 63

BIBLIOGRAPHY 189

recv, 63
recvfrom, 63
recvmsg, 63
send, 63
sendmsg, 63
sendto, 63
setServer, 63
write, 63
WriteFailure, 63, 87
WriteTimeout, 63, 87
writev, 63

uSocketServer, 64
CloseFailure, 65, 87
Failure, 65, 87
fd, 65
getClient, 65
getpeername, 65
getsockaddr, 65
getsockname, 65
OpenFailure, 65, 87
read, 65
ReadFailure, 65, 87
ReadTimeout, 65, 87
readv, 65
recv, 65
recvfrom, 65
recvmsg, 65
send, 65
sendmsg, 65
sendto, 65
setClient, 65
write, 65
WriteFailure, 65, 87
WriteTimeout, 65, 87
writev, 65

uSporadicBaseTask
getFrame, 141
setFrame, 141

uStack, 153
add, 154
addHead, 154
drop, 154
empty, 154
head, 154
pop, 154
push, 154
top, 154

uStackIter, 154
>>, 154
over, 154

uThisCluster, 121
uThisCoroutine, 17
uThisProcessor, 123

uThisTask, 32
uTime, 134

V, 37
verify, 16
version number,11
virtual processor,9, 121, 125

wait, 26
wait-all,52
wait-any,52
wait-for-all,50
wait-for-any,50
waiters, 40
WaitingFailure, 26, 87
warnings

compile-time,95
runtime,99

WriteFailure, 60, 63, 65, 67, 87
WriteTimeout, 60, 63, 65, 67, 87

yield, 33, 111, 121
compilation option,10, 32
preprocessor,11

yield, 32, 91

	Title
	Contents
	Preface
	uC++ Extensions
	Design Requirements
	Elementary Execution Properties
	High-level Execution Constructs

	uC++ Translator
	Extending C++
	Compile Time Structure of a uC++ Program
	uC++ Runtime Structure
	Cluster
	Virtual Processor

	uC++ Kernel
	Using the uC++ Translator
	Compiling a uC++ Program
	Preprocessor Variables

	Labelled Break/Continue
	Coroutine
	Coroutine Creation and Destruction
	Inherited Members
	Coroutine Control and Communication

	Mutex Type
	Scheduling
	Implicit Scheduling
	External Scheduling
	Accept Statement
	Breaking a Rendezvous
	Accepting the Destructor
	Commentary

	Internal Scheduling
	Condition Variables and Wait/Signal Statements
	Commentary

	Monitor
	Monitor Creation and Destruction
	Monitor Control and Communication

	Coroutine Monitor
	Coroutine-Monitor Creation and Destruction
	Coroutine-Monitor Control and Communication

	Task
	Task Creation and Destruction
	Inherited Members
	Task Control and Communication

	Commentary
	Inheritance
	Explicit Mutual Exclusion and Synchronization
	Counting Semaphore
	Commentary

	Lock
	Owner Lock
	Condition Lock
	Barrier

	User Specified Context
	Predefined Floating-Point Context

	Implementation Restrictions

	Asynchronous Communication
	Futures
	Client Operations
	Server Operations
	Explicit Storage Management
	Example
	Implicit Storage Management
	Example

	Future Access
	Select Statement
	Wait Queue

	Servers

	Input/Output
	Nonblocking I/O
	C++ Stream I/O
	UNIX File I/O
	File Access

	BSD Sockets
	Client
	Server
	Server Acceptor

	Exceptions
	EHM
	uC++ EHM
	Exception Type
	Creation and Destruction
	Inherited Members

	Raising
	Nonlocal Propagation
	Enabling/Disabling Propagation
	Concurrent Propagation

	Handler
	Termination
	Resumption
	Termination/Resumption
	Recursive Resuming
	Preventing Recursive Resuming
	Commentary

	Bound Exceptions
	C++ Exception-Handling Deficiencies
	Object Binding
	Bound Handlers
	Matching
	Termination
	Resumption

	Inheritance
	Predefined Exception Routines
	terminate/set_terminate
	unexpected/set_unexpected
	uncaught_exception

	Programming with Exceptions
	Terminating Propagation
	Resuming Propagation
	Terminating/Resuming Propagation

	Predefined Exception-Types
	Implicitly Enabled Exception-Types
	Unhandled Exception in Coroutine
	Breaking a Rendezvous

	Cancellation
	Using Cancellation
	Enabling/Disabling Cancellation
	Commentary

	Errors
	Static (Compile-time) Warnings/Errors
	Dynamic (Runtime) Warnings/Errors
	Assertions
	Termination
	Messages
	Default Actions
	Coroutine
	Mutex Type
	Task
	Condition Variable
	Accept Statement
	Calendar
	Locks
	Cluster
	Heap
	I/O
	Processor
	UNIX

	uC++ Kernel
	Pre-emptive Scheduling and Critical Sections
	Memory Management
	Cluster
	Processors
	Implicit Task Scheduling
	Idle Virtual Processors
	Blocking Virtual Processors

	Posix Threads (pthreads)
	Combining Pthreads with uC++
	Linking uC++ and Pthreads Binaries
	Recompiling Pthreads Modules

	uC++ Task as a Pthreads Thread
	Semantic Inconsistencies between Pthreads and uC++
	Termination of main
	Cleanup Semantics

	Commentary

	Real-Time
	Duration and Time
	Timeout Operations
	Time Delay
	Accept Statement
	Select Statement
	I/O

	Clock
	Periodic Task
	Sporadic Task
	Aperiodic Task
	Priority Inheritance Protocol
	Real-Time Scheduling
	User-Supplied Scheduler
	Real-Time Cluster
	Deadline Monotonic Scheduler

	Miscellaneous
	Default Values
	Task
	Processor
	Heap

	Symbolic Debugging
	Installation Requirements
	Installation
	Reporting Problems
	Contributors

	uC++ Grammar
	Data Structure Library (DSL)
	Stack
	Iterator

	Queue
	Iterator

	Sequence
	Iterator

	Example Programs
	Readers And Writer
	Bounded Buffer
	Using Monitor Accept
	Using Monitor Condition
	Using Task
	Using P/V

	Disk Scheduler
	UNIX File I/O
	UNIX Socket I/O
	Client - UNIX/Datagram
	Server - UNIX/Datagram
	Client - INET/Stream
	Socket - INET/Stream

	Bibliography
	Index

