1 C+H Annotated Reference Manual

Version 5.5.0

Peter A. Buhi©! 1995, 1996, 1998, 2000, 2003, 2004, 2005, 2007
Peter A. Buhr and Richard A. Stroobosscl@t 1992

September 19, 2007

'Permission is granted to redistribute this manual unmatlifieany form; permission is granted to redistribute
modified versions of this manual in any form, provided the ified version explicitly attributes said modifications to
their respective authors, and provided that no modificaanade to these terms of redistribution.

Contents

Preface 1
1 pC+ Extensions 3
1.1 Design RequiremMents. i i e 3
1.2 Elementary Execution Properties 4
1.3 High-level Execution CONStructs o L e 5
2 puC+H+ Translator 7
2.1 Extending CHh . . L L e e 7
2.2 Compile Time Structure of @C+ Program e 8
2.3 puCHRuUNtime Structure e e 8
231 CIUSter o e 8
2.3.2 Virtual Processor o o e 9
24 pCHKernel. . . . o e 10
2.5 UsingtheuCH Translator o e 10
2.5.1 CompilingaCH Program e e e 10
2.5.2 PreprocessorVariables. 11
2.6 Labelled Break/Continue e e 12
2.7 COroutine. e e 13
2.7.1 Coroutine Creation and Destruction. o 14
2.7.2 Inherited Members 15
2.7.3 Coroutine Controland Communication. e 17
2.8 MUeX TYPE. . . . o o e 18
2.9 Scheduling e 21
29.1 ImplicitScheduling e 21
2.9.2 External Scheduling. e 22
2.9.21 AcceptStatement L e 22
2.9.2.2 BreakingaRendezvous. 24
2.9.2.3 Acceptingthe Destructor 24
2.9.24 Commentary e e e e e 25
2.9.3 Internal Scheduling. L 25
2.9.3.1 Condition Variables and Wait/Signal Statements. 26
2.9.3.2 Commentary e e e 27
2.10 MONITOr . . . o o e e 82
2.10.1 Monitor Creation and Destruction. 28
2.10.2 Monitor Controland Communication o 28
2.11 Coroutine MoNItor o e e 28
2.11.1 Coroutine-Monitor Creation and Destructian. 29
2.11.2 Coroutine-Monitor Control and Communication. 29
212 TaSK. . o o e 29
2.12.1 Task Creation and Destruction. e 30
2.12.2 Inherited Members 31

CONTENTS

2.12.3 Task Controland Communication. e 33
213 Commentary e e e e e e e e e e e 33
2.14 InheritanCe L e e e 34
2.15 Explicit Mutual Exclusion and Synchronizatian. oo oL 36

2.15.1 CountingSemaphore. e 36

21511 CommeENntary e e e e e e e e e 37

2152 LOCK . . . o 38

2153 OwnerLock 38

2154 ConditionLock e 39

2155 BaITIEr . . . o o o e 39
2.16 User Specified Context o e 40

2.16.1 Predefined Floating-PointContext 41
2.17 Implementation ReStrictions e 43
Asynchronous Communication 45
3.1 FULUrES . . . o 64

3.1.1 ClientOperations e e 46

3.1.2 Server Operations. e e 46

3.1.3 Explicit Storage Management o 47

3.1.4 Example . . . e e 48

3.1.5 Implicit Storage Management e 48

3.1.6 Example e 48
3.2 FULUrE ACCESS o o e e e e 49

3.2.1 SelectStatement 50

3.2.2 Wait QUEUE e 51
3.3 SEIVEIS . . o o 35
Input/Output 57
4.1 Nonblockingl/O e 57
42 CH Stream /0. 57
4.3 UNIXFIlel/O. . . o e 59

431 File ACCESS. o o 60
44 BSD SOCKEtS. e e 60

441 Client. 62

4.4.2 SEIVEL . . o o e e 64

4.4.3 Server ACCEPIOr. o i e e e e e e e e 66
Exceptions 69
51 EHM . o 69
52 pCHEHM . 70
5.3 EXCeption Type. o o o e e 70

5.3.1 Creationand Destructian. 71

5.3.2 Inherited Members L 71
5.4 RaiSING o o e 27

5.4.1 Nonlocal Propagatian. e 72

5.4.2 Enabling/Disabling Propagation. 73

5.4.3 ConcurrentPropagation L e 74
55 Handler. 57

551 Termination o e e 75

552 Resumption 75

5.5.3 Termination/Resumption. e 77

5.5.3.1 Recursive Resuming.o e 78
5.5.3.2 Preventing Recursive Resuming. 78

5533 Commentary e e e 80

CONTENTS %

5.6 BOUNDEXCEPLiONS o o o e e e 81
5.6.1 CH Exception-Handling Deficiencies. oo oL 81
5.6.2 ObjectBinding. e 82
5.6.3 BoundHandlers. 82

5.6.3.1 Matching e 82
5.6.3.2 Termination. 82
5.6.3.3 Resumption. 82

57 Inheritance 83

5.8 Predefined Exception Routines. e 84
5.8.1 terminate/setterminate 84
5.8.2 unexpected/setunexpected 85
5.8.3 uncaughtexception. 85

5.9 Programming with EXxceptions e 85
5.9.1 Terminating Propagation. e 86
5.9.2 Resuming Propagation. e 86
5.9.3 Terminating/Resuming Propagation. o 86

5.10 Predefined Exception-Types o o e 86
5.10.1 Implicitly Enabled Exception-Types.« . . e 86
5.10.2 Unhandled ExceptioninCoroutine 88
5.10.3 Breakinga Rendezvous e 89

6 Cancellation 91

6.1 UsingCancellation. e 92

6.2 Enabling/Disabling Cancellation 92

6.3 Commentary e e e e e 92

7 Errors 95

7.1 Static (Compile-time) Warnings/Errors. e e 95

7.2 Dynamic (Runtime) Warnings/Errors. o o i i e e e 99
721 ASSErtioNS o e 99
7.2.2 Terminalion e e e e 99
7.2.3 MESSAQES o i i e e 100

7.2.3.1 Default Actions. 100
7.2.3.2 Coroutine. 104
7.2.3.3 MutexType. e 107
7234 Task. . . . 111
7.2.3.5 ConditionVariable 112
7.2.3.6 AcceptStatement 113
7237 Calendar 114
7.2.38 LOCKS 114
7.2.3.9 CIUStEr. 114
7.2.3.10 Heap. o e 115
72311 1O, . 116
7.2.3.12 ProCessSOr. v v v i i it e e 116
7.2.3.13 UNIX . o 116
8 puCH Kernel 119

8.1 Pre-emptive Scheduling and Critical Sections 0o 119

8.2 Memory Management. e e e e e 119

8.3 ClUStern 119

8.4 PrOCESSOIS o v i e e e nz
8.4.1 ImplicitTask Scheduling 123
8.4.2 Idle Virtual ProCessors o i i i 124

8.4.3 Blocking Virtual Processors e 124

Vi

9

10

11

A

B

CONTENTS
Posix Threads (pthreads) 127
9.1 Combining PthreadswithC+H e 127
9.1.1 LinkinguCH and Pthreads Binaries. 127
9.1.2 Recompiling Pthreads Modules. 129
9.2 uCH TaskasaPthreadsThread e 129
9.3 Semantic Inconsistencies between Pthreadg@ad L. 130
9.3.1 TerminationoMmain e 130
9.3.2 Cleanup SemantiCs. e e 130
9.4 COMMENTAIY o o e e e e e e e e e e e 131
Real-Time 133
10.1 Durationand TIMe. e 133
10.2 Timeout Operations o i e e e e e 136
10.2.1 TimeDelay. e e 136
10.2.2 AcceptStatement. L e 136
10.2.3 Select Statement e 137
10.2.4 1O . o e 138
10.3 CIOCK . . o o 139
10.4 Periodic Task. o o e 139
10.5 SporadicTask e 141
10.6 Aperiodic Task o e 141
10.7 Priority Inheritance Protocol e 142
10.8 Real-Time Scheduling. e 143
10.9 User-Supplied Scheduler. e 143
10.10Real-Time CIUuSter. e e 144
10.10.1 Deadline Monotonic Scheduler 145
Miscellaneous 147
11.1 DefaultValues 147
1101 Task . . o o e 147
11.1.2 ProCesSOl o v v o i e e e e e e e 147
11.1.3 Heap o o 148
11.2 Symbolic Debugging L e e 148
11.3 Installation Requirements. L e e 148
114 Installation o e 148
11.5 Reporting Problems e 149
11.6 Contributors e 149
pCH Grammar 151
Data Structure Library (DSL) 153
B.1 Stack 153
B.1.1 Iterator e 154
B.2 QUEUE. e e e e e 154
B.2.1 Iterator e 155
B.3 Sequence. e 6L5
B.3.1 Iterator e 157
Example Programs 159
C.1 Readers AndWHrIter e e 159
C.2 Bounded Buffer. 161
C.2.1 Using Monitor ACCept. o o o e e 161
C.2.2 Using MonitorCondition e 162
C.2.3 UsingTask. o e 163

vii

CONTENTS
C.2.4 UsiNgPIV. . . e e 164
C.3 DiskScheduler. e 165
C.4 UNIXFilel/O. e e e e 168
C.5 UNIXSocket /O e 169
C.5.1 Client-UNIX/Datagram o0 i e e e e e 170
C.5.2 Server-UNIX/Datagram. oo i e 171
C.5.3 Client-INET/Stream e e e 172
C.5.4 Socket-INET/Stream. e e e e e e e e e 174
Bibliography 177
181

Index

viii CONTENTS

Preface

The goal of this work is to introduce concurrency into theaabjoriented language C+86{r97. To achieve this goal a

set of important programming language abstractions weaiptad to C+-, producing a new dialect calje@+. These
abstractions were derived from a set of design requirenm@mscombinations of elementary execution properties,
different combinations of which categorized existing peogming language abstractions and suggested new ones.
The set of important abstractions contains those neededptess concurrency, as well as some that are not directly
related to concurrency. Therefore, while the focus of thiskais on concurrency, all the abstractions produced from
the elementary properties are discussed. While the alistra@re presented as extensions to C+, the requirements
and elementary properties are generally applicable ta ofhiect-oriented languages.

This manual does not discuss how to use the new constructsgltbdomplex concurrent systems. An in-depth
discussion of these issues, with respect @, is available in “Understanding Control Flow with Con@nt Pro-
gramming using:CH". This manual is strictly a reference manual faZ+. A reader should have an intermediate
knowledge of control flow and concurrency issues to undedstae ideas presented in this manual as well as some
experience programming in C+.

This manual contains annotations set off from the normaludision in the following way:

O Annotation discussion is quoted with quads. |

An annotation provides rationale for design decisions dalitamhal implementation information. Also a chapter or
section may end with a commentary section, which contairfjemdéscussion about design alternatives and/or imple-
mentation issues.

Each chapter of the manual dasst begin with an insightful quotation. Feel free to add your own

CONTENTS

Chapter 1

1C+H Extensions

nCH [BD92Z] extends the C+ programming languad&rP7 in somewhat the same way that C+ extends the C
programming language. The extensions introduce new abjlkat augment the existing set of control flow facilities
and provide for lightweight concurrency on uniprocessar parallel execution on multiprocessor computers running
the UNIX operating system. The following discussion is tatganale for the particular extensions that were chosen.

1.1 Design Requirements

The following requirements directed this work:

e Any linguistic feature that affects code generationstbecome part of the language. In other words, if the com-
piler can generate code that invalidates the correctneadibfary package implementing a particular feature,
either the library feature cannot be implemented safelydditeonal capabilities must be added to the program-
ming language to support the feature. Concurrency is a Egegteature affected by code generation, and hence,
must be added to the programming langudgeh93. In the case of C+, the concurrency extensions are best
added through new kinds of objects.

e All communication among the new kinds of objects must becsly type checkable because static type check-
ing is essential for early detection of errors and efficieecgeneration. (As well, this requirement is consistent
with the fact that C+ is a statically typed programming laage.)

¢ Interaction among the different kinds of objects should bssjble, and in particular, interaction among con-
current objects, called tasks, should be possible. Thigireaent allows a programmer to choose the kind of
object best suited to the particular problem without hatmgope with communication restrictions.

In contrast, some approaches have restrictions on iniena@mong concurrent objects, such as tasks can only
interact indirectly through another non-task object. Bareple, many programming languages that support
monitors Bri75, MMS79, Hol92] require that all communication among tasks be done intjr¢crough a
monitor; similarly, the Linda systenCi[G89 requires that all communication take place through oneossibly

a small number of tuple spaces. This restriction incredsestimber of objects in the system; more objects
consume more system resources, which slows the system. Wscamunication among tasks is slowed
because of additional synchronization and data transfihsthae intermediate object.

e All communication among objects is performed using routiakls; data is transmitted by passing arguments
to parameters and results are returned as the value of thire@all. It is confusing to have multiple forms of
communication in a language, such as message passing,gaegsaues, or communication ports, as well as
normal routine call.

e Any of the new kinds of objects should have the same dectaratiopes and lifetimes as existing objects. That
is, any object can be declared at program startup, duringin®@and block activation, and on demand during
execution, using aew operator.

4 CHAPTER 1. yC+H EXTENSIONS

e All mutual exclusion must be implicitin the programming¢arage constructs and all synchronization should be
limited in scope. Requiring users to build mutual exclusiohof locks often leads to incorrect programs. Also,
reducing the scope in which synchronization can be usednbgpsulating it as part of language constructs,
further reduces errors in concurrent programs.

e Both synchronous and asynchronous communication are dérde concurrent system. However, the best
way to support this is to provide synchronous communicasisithe fundamental mechanism; asynchronous
mechanisms, such as buffering or futureigl8s, can then be built using synchronous mechanisms. Building
synchronous communication out of asynchronous mechansmusres a protocol for the caller to subsequently
detect completion, which is error prone because the callsr not obey the protocol (e.g., never retrieve a
result). Furthermore, asynchronous requests requirgdélagian of implicit queues of outstanding requests, each
of which must contain a copy of the arguments of the requéss implementation requirement creates a storage
management problem because different requests requiesetif amounts of storage in the queue. Therefore,
asynchronous communication is too complicated and exgerasnechanism to be hidden in a system.

e An object that is accessed concurrently must have someat@ver which requester it services next. There are
two distinct approaches: control can be based on the kindafast, for example, selecting a requester from
the set formed by calls to a particular entry point; or contem be based on the identity of the requester. In
the former case, it must be possible to give priorities tosts of requesters. This requirement is essential for
high-priority requests, such as a time out or a terminatemjuest. (This priority is to be differentiated from
execution priority.) In the latter case, selection conigolery precise as the next request must only come from
the specified requester. In general, the former case islysudiicient and simpler to express.

e There must be flexibility in the order that requests are cetepl. That is, a task can accept a request and
subsequently postpone it for an unspecified time, whileinairtg to accept new requests. Without this ability,
certain kinds of concurrency problems are quite difficuittplement, e.g., disk scheduling, and the amount of
concurrency is inhibited as tasks are needlessly bloodked$].

All of these requirements are satisfied; i@+ except the first, which requires compiler support. ExeoughpC+
lacks compiler support, its design assumes compiler stigpdhe extensions are easily added to any C+ compiler.

1.2 Elementary Execution Properties
Extensions to the object concept were developed based dolltvwing execution properties:

thread — is execution of code that occurs independently of and plyssoncurrently with other execution; the exe-

cution resulting from a thread is sequential. A thread’sfion is to advance execution by changing execution
state. Multiple threads provide concurrent execution. #gpamming language must provide constructs that
permit the creation of new threads and specify how threaglsised to accomplish computation. Furthermore,
there must be programming language constructs whose exeaauses threads to block and subsequently be
made ready for execution. A thread is either blocked or m@or ready. A thread islockedwhen it is waiting

for some event to occur. A threadrignning when it is executing on an actual processor. A threagasly
when it is eligible for execution but not being executed.

execution state— is the state information needed to permit independentuéieet An execution state is eithactive
or inactive, depending on whether or not it is currently being used byreatth In practice, an execution state
consists of the data items created by an object, includiigdal data, local block and routine activations, and
a current execution location, which is initialized to a stay point. The local block and routine activations
are often maintained in a contiguous stack, which consttthe bulk of an execution state and is dynamic in
size, and is the area where the local variables and exedatation are preserved when an execution state is
inactive. A programming language determines what cortetan execution state, and therefore, execution state
is an elementary property of the semantics of a language.n\Wbetrol transfers from one execution state to
another, it is called aontext switch

mutual exclusion — is the mechanism that permits an action to be performed esaurce without interruption by
other actions on the resource. In a concurrent system, irexolusion is required to guarantee consistent gen-
eration of results, and cannot be trivially or efficientlyglemented without appropriate programming language
constructs.

1.3. HIGH-LEVEL EXECUTION CONSTRUCTS 5

The first two properties represent the minimum needed toparexecution, and seem to be fundamental in that
they are not expressible in machine-independent or larggiradppendent ways. For example, creating a new thread
requires creation of system runtime control informatiorg enanipulation of execution states requires machine §peci
operations (modifying stack and frame pointers). The lasperty, while expressible in terms of simple language
statements, can only be done by algorithms that are erosrepand inefficient, e.g., Dekker-like algorithms, and
therefore, mutual exclusion must also be provided as anegitary execution property, usually through special atomic
hardware instructions.

1.3 High-level Execution Constructs

A programming language designer could attempt to providedlB execution properties as basic abstractions in a
programming languag®[L88], allowing users to construct higher-level constructsftthem. However, some com-
binations might be inappropriate or potentially dangerdueerefore, all combinations are examined, analyzing twhic
ones make sense and are appropriate as higher-level progngnenguage constructs. What is interesting is that
enumerating all combination of these elementary execygioperties produces many existing high-level abstrastion
and suggests new ones.

The three execution properties are properties of objedtsréfore, an object may or may not have a thread, may
or may not have an execution state, and may or may not haveahexttiusion. Different combinations of these three
properties produce different kinds of objects. If an objex$ mutual exclusion, this means that execution of certain
member routines are mutually exclusive of one another. &ualember routine is called_a nuat-exclusion member
(mutex membel). In the situation where an object does not have the minimiopegyties required for execution, i.e.,
thread and execution state, those of its caller are used.

Tablel.1shows the different abstractions possible when an objesstgsses different execution properties:

object properties object’s member routine properties
thread| execution state| no mutual exclusiod mutual exclusion
no no 1 class object 2 monitor
no yes 3 coroutine 4 coroutine monitor
yes no 5 (rejected) 6 (rejected)
yes yes 7 (rejected) 8 task

Table 1.1: Fundamental Abstractions

Case 1 is an object, such adree routine (a routine not a member of an object) or an object with membetimes
neither of which has the necessary execution propertiéigdcaclass object In this case, the caller’'s thread and
execution state are used to perform execution. Since this i object provides no mutual exclusion, it is normally
accessed only by a single thread. If such an object is aaténsseveral threads, explicit locking may be required,
which violates a design requirement. Case 2 is like Case @ldals with the concurrent-access problem by implicitly
ensuring mutual exclusion for the duration of each comjtaty a member routine. This abstraction isnani-

tor [Hoa74. Case 3 is an object that has its own execution state butreadh Such an object uses its caller’s thread
to advance its own execution state and usually, but not awayurns the thread back to the caller. This abstraction
is acoroutine [Mar8(. Case 4 is like Case 3 but deals with the concurrent-acaegsgm by implicitly ensuring
mutual exclusion; the nanmesroutine monitor has been adopted for this case. Cases 5 and 6 are objectsthitiad

but no execution state. Both cases are rejected becauderéael tannot be used to provide additional concurrency.
First, the object’s thread cannot execute on its own sindeés not have an execution state, so it cannot perform any
independent actions. Second, if the caller’s executiote $saused, assuming the caller’s thread can be blocked to
ensure mutual exclusion of the execution state, the effetdt have two threads successively executing portions of a
single computation, which does not seem useful. Case 7 ibj@etdhat has its own thread and execution state. Be-
cause it has both a thread and execution state it is capableatiting on its own; however, it lacks mutual exclusion.
Without mutual exclusion, access to the object’s data igiengherefore, servicing of requests would, in general,
require explicit locking, which violates a design requissrh Furthermore, there is no performance advantage over
case 8. For these reasons, this case is rejected. Case & Galfle 7 but deals with the concurrent-access problem by
implicitly ensuring mutual exclusion, calledtask.

6 CHAPTER 1. yC+H EXTENSIONS

The abstractions suggested by this categorization conne fisndamental properties of execution and not ad hoc
decisions of a programming language designer. While it sjtde to simplify the programming language design by
only supporting the task abstractioBBGF90], which provides all the elementary execution propertibis would
unnecessarily complicate and make inefficient solutionsettain problems. As will be shown, each of the non-
rejected abstractions produced by this categorizatioralmsticular set of problems it can solve, and thereford) eac
has a place in a programming language. If one of these abistrads not present, a programmer may be forced to
contrive a solution for some problems that violates abstraor is inefficient.

Chapter 2

nC+H Translator

The C+ translatot reads a program containing language extensions and tramséach extension into one or more
C+ statements, which are then compiled by an appropriatec@mnpiler and linked with a concurrency runtime
library. Becausg:C+ is only a translator and not a compiler, some restristiapply that would be unnecessary if
the extensions were part of the C+ programming languageil&sj but less extensive translators have been built:
MC [RH87 and Concurrent CH+3R8§.

2.1 Extending C+

Operations inuC+ are expressed explicitly, i.e., the abstractions eédrivom the elementary properties are used to
structure a program into a set of objects that interact,iplyssoncurrently, to complete a computation. This sitoati

is to be distinguished from implicit schemes, such as thbaé dattempt todiscoverconcurrency in an otherwise
sequential program, e.g., by parallelizing loops and actedata structures. While both schemes are complementary,
and hence, can appear together in a single programming dgegumplicit schemes are limited in their capacity
to discoverconcurrency, and therefore, the explicit scheme is esder@urrently,.C+ only supports the explicit
approach, but nothing in its design precludes the additidheoimplicit approach.

The abstractions in Table1, p.5 are expressed inC+ using two new type specifiersCoroutine and_Task,
which are extensions of th#ass construct, and hence, define new types. In this manual, adgfieed by thelass
construct and the new constructs are caltkxss type monitor type, coroutine type, coroutine-monitor type and
task type, respectively. The termdass object monitor, coroutine, coroutine monitor andtask refer to the objects
created from such types. The tewhject is the generic term for any instance created from any typé.objects
can be declared externally, in a block, or usingribe operator. Two new type qualifiersMutex and _Nomutex ,
are also introduced to specify the presence or absence afaimeitclusion on the member routines of a type (see
Table2.1). The default qualification values have been chosen bas#dtea@xpected frequency of use of the new types.
Several new statements are added to the language; eaclditouséect control in objects created by the new types.
AppendixA, p.151shows the grammar for all theC+ extensions.

object properties object’s member routine properties
thread | execution state no mutual exclusion | mutual exclusion
no no [_Nomutex]} class _Mutex class
no yes [_Nomutex] _Coroutine | _Mutex _Coroutine
yes yes N/A [_Mutex] _Task

7 [1 implies default qualification if not specified

Table 2.1: New Type Specifiers

1 CH executes on uniprocessor and multiprocessor sharetbrgeeomputers. On a uniprocessor, concurrency is
achieved by interleaving execution to give the appearanparallel execution. On a multiprocessor computer, con-

1 The term “translator” is used rather than preprocessorussaC+ programs are partially parsed and symbol tables aretrembesd. A
preprocessor, such agp, normally only manipulates strings.

8 CHAPTER 2. iCH TRANSLATOR

currency is accomplished by a combination of interleaveztetion and true parallel execution. Furtherm@@+

uses ashared-memory model This single memory may be the address space of a single Ukiéeps or a memory
shared among a set of kernel threads. A memory is populateadutine activations, class objects, coroutines, moni-
tors, coroutine monitors and concurrently executing taaksf which have the same addressing scheme for accessing
the memory. Because these entities use the same memoryaéglightweight, so there is a low execution cost for
creating, maintaining and communicating among them. Tiyis@ach has its advantages as well as its disadvantages.
Communicating objects do not have to send large data steschack and forth, but can simply pass pointers to data
structures. However, this technique does not lend itsedfdistributed environment with separate address spaces.

O Approaches taken by distributed shared-memory systemsnoayde the necessary implementation
mechanisms to make the distributed memory case similaetelibred-memory case. |

2.2 Compile Time Structure of a;C+ Program

A uCH program is constructed exactly like a normal CH progreith one exception: the main (starting) routine
is a member of an initial task calledvain, which has the following structure (Secti@l2, p. 29 details the task
construct):

_Task uMain {
private :
int argc; /Il number of arguments on the shell command line
char sxargv; /I pointers to tokens on the shell command line
int &uRetCode; /I return value to the shell
void main(); /I user provides body for this routine
public :

uMain(int argc, char =argv[]) : argc(argc), argv(argv) {}
%
A pC+ program must define the body for tiwain member routine of this initial task, e.qg.:
... Il normal C++ declarations and routines

void uMain::main() { /I body for initial task uMain
switch (argc) { /I use argc from uMain
case 2:

no = atoi(argv[l]); // use argv from uMain

uRetCode = 0; /I use uRetCode from uMain
}

1CH supplies the free routineain to initialize theuC+ runtime environment and creates the taskin, of which
routineuMain::main is a member. MembarMain::main has available, as local variables, the same two argumests th
are passed to the free routimain: argc, andargv. To return a value back to the shell, set the variaietCode and
return fromuMain::main; uRetCode is initialized to zero.

2.3 uCH Runtime Structure

The dynamic structure of an executip@+ program is significantly more complex than a normal Cegpam. In
addition to the five kinds of objects introduced by the eletagnproperties;:CH has two more runtime entities that
are used to control concurrent execution.

2.3.1 Cluster

A cluster is a collection of tasks and virtual processorsqa$sed next) that execute the tasks. The purpose of arcluste
is to control the amount of parallelism that is possible agtasks, wher@arallelism is defined as execution which
occurs simultaneously. Parallelism can only occur whertipialprocessors are presei@oncurrency is execution
that, over a period of time, appears to be parallel. For exanagprogram written with multiple tasks has the potential
to take advantage of parallelism but it can execute on a oogssor, where it magppearto execute in parallel
because of the rapid speed of context switching.

2.3. uC+H RUNTIME STRUCTURE 9

Normally, a cluster uses a single-queue multi-server gaguaodel for scheduling its tasks on its processors (see
Chapterl0, p. 133for other kinds of schedulers). This simple schedulingltesn automatic load balancing of tasks
on processors. Figuilillustrates the runtime structure ofigC+ program. An executing task is illustrated by its
containment in a processor. Because of appropriate defaultlusters, it is possible to begin writip@+ programs
after learning about coroutines or tasks. More complex goeacy work may require the use of clusters. If several
clusters exist, both tasks and virtual processors, can ek migrated from one cluster to another. No automatic
load balancing among clusters is performedu@t.

O OO

System Cluster User Cluster Other Cluster(s)

r-———~—~>~~"=-"=-=-==-- A r--—-——-~-~ - -~ -~ -~ -~ - -~ - —"—"" """ " -~ - “-~"“-—-“—" == = A r-——>—~>~>"~>">"=—=—=7 == -

| |
| |
| |
3 Blocked Tasks . Q . i
| |
| |
| |

s

Ready Tasks L Q N

ocoroutine () task < > monitor D processor cluster

Figure 2.1: Runtime Structure of;gC+ Program

When auCH program begins execution, it creates two clusters: tesysluster and a user cluster. The system
cluster contains a processor that does not execute user taskead, the system cluster handles system-related-oper
tions, such as catching errors that occur on the user chgtenting appropriate error information, and shuttingudo
nCH. A user cluster is created to contain the user tasks;$tedsk created in the user clusteunidain, which begins
executing the member routin®ain::main. Having all tasks execute on the one cluster often maximiziéigation of
processors, which minimizes runtime. However, becausinitidtions of the underlying operating system or because
of special hardware requirements, it is sometimes negessdrave more than one cluster. Partitioning into clusters
must be used with care as it has the potential to inhibit pisin when used indiscriminately. However, in some situ-
ations partitioning is essential, e.g., on some systemswognt UNIX I/O operations are only possible by exploiting
the clustering mechanism.

2.3.2 Virtual Processor

A puCH virtual processor is a “software processor” that exestiireads. A virtual processor is implemented by ker-
nel thread (normally created through a UNIX process) thatutssequently scheduled for execution on a hardware
processor by the underlying operating system. On a muttgssor, kernel threads are usually distributed across the
hardware processors and so some virtual processors ar&adbtecute in paralleluC+ uses virtual processors in-
stead of hardware processors so that programs do not gcalialtate and hold hardware processors. Programs can
be written to run using a number of virtual processors andugeeon a machine with a smaller number of hardware
processors. Thus, the way in whiglt+ accesses the parallelism of the underlying hardwatedagh an interme-
diate resource, the kernel thread. In this wa@# is kept portable across uniprocessor and differentiproltessor
hardware designs.

When a virtual processor is executingC+ controls scheduling of tasks on it. Thus, when UNIX sclesl a
virtual processor for a runtime periodC+ may further subdivide that period by executing one oreriasks. When

10 CHAPTER 2. iCH TRANSLATOR

multiple virtual processors are used to execute tasksy@¥e scheduling may automatically distribute tasks among
virtual processors, and thus, indirectly among hardwaoegssors. In this way, parallel execution occurs.

2.4 uC+ Kemel

After a uC+ program is translated and compiled, a runtime concuayréibrary is linked in with the resulting pro-
gram, called the:C+ kernel. There are two versions of th€+ kernel: the unikernel, which is designed to use a
single processor (in effect, there is only one virtual pssce); and the multikernel, which is designed to use several
processors. Thus, the unikernel is sensibly used on systéims single hardware processor or when kernel threads
are unavailable; the multikernel is sensibly used on systi@t have multiple hardware processors and when kernel
threads are available. TahPe? shows the situations where each kernel can be used. Therneilan be used in a
system with multiple hardware processors and kernel tisrbatidoes not take advantage of either of these capabili-
ties. The multikernel can be used on a system with a singkbweae processor and kernel threads but performs less
efficiently than the unikernel because it uses multiprameteshniques unnecessarily.

| no kernel threads kernel threads
single unikernel, yes unikernel, yes
processor|| multikernel,no | multikernel, yes, but inefficient
multiple unikernel, yes | unikernel, yes, but no parallelism
processorg| multikernel, no multikernel, yes

Table 2.2: When to Use the Unikernel and Multikernel

Each of theuC+ kernels has a debugging version, which performs a numbemtime checks. For example,
the uCH kernel provides no support for automatic growth of stspuice for coroutines and tasks because this would
require compiler support. The debugging version checkstfmk overflow whenever context switches occur among
coroutines and tasks, which catches many stack overflowsgver, stack overflow can still occur if insufficient
stack area is provided, which can cause an immediate ernanexplainable results. Many other runtime checks are
performed in the debugging version. After a program is dgkdgthe non-debugging version can be used to increase
performance.

2.5 Using theuC+ Translator

To use the concurrency extensions in a CH program, incheléle:
#include <uC++.h>

at the beginning of each source file needing acceg£te, and it must appear before all other include files.

2.5.1 Compiling apCH Program

Theu++ command is used to compilg&+ program. This command works just like the GNU+ [Tie9(command
for compiling C+ programs, e.g.:

u++ [C+ options] yourprogram.C [assembler and loader files]

The following additional options are available for tire+ command:

-debug The program is linked with the debugging version of the umikéor multikernel. The debug version
performs runtime checks to help during the debugging phése€+ program, but substantially slows the
execution of the program. The runtime checks should onlyebgorved after the program is completely de-
bugged.This option is the default.

-nodebug The program is linked with the non-debugging version of thikernel or multikernel, so the execution
of the program is fasteHowever, no runtime checks orasserts are performed so errors usually result in
abnormal program termination.

2.5. USING THEuC+ TRANSLATOR 11

-yield When a program is translated, a random number of contextisegtoccur at the beginning of each member
routine so that during execution on a uniprocessor therelistier simulation of parallelism. (This non-
determinism in execution is in addition to random contexitang due to pre-emptive scheduling, see Sec-
tion 8.4.1, p. 123). The extra yields of execution can help during the debugigimase of a«C+ program, but
substantially slows the execution of the program.

-noyield Additional context switches are not inserted in memberin@st This option is the default.

-verify When a program is translated, a check to verify that the dtasknot overflowed occurs at the beginning of
each member routine. (This checking is in addition to chexkesach context switch provided by thizbug
option.) Verifying the stack has not overflowed is importdating the debugging phase of&+ program,
but slows the execution of the program.

-noverify Stack-overflow checking is not inserted in member routifiéss option is the default.

-multi The program is linked with the multikernel.

-nomulti The program is linked with the unikerndthis option is the default.

-quiet The pC+ compilation message is not printed at the beginning @imalation.

-noquiet The pC+ compilation message is printed at the beginning of a datign. This option is the default.

-U++ Only the C preprocessor and th€+ translator steps are performed and the transformedaroig written
to standard output, which makes it possible to examine tde generated by theC+ translator.

-compiler path-nameThe path-name of the compiler used to compijeGH program(s). The default is the com-
piler used to compile theC+ runtime library. It is unsafe to use a different compiletess the generated
code is binary compatible. (See Sectioh3 p. 148for supported compilers.)

When multiple conflicting options appear on the command kng.,-yield followed by -noyield, the last option takes
precedence.

2.5.2 Preprocessor Variables
When programs are compiled usiagt, the following preprocessor variables are available:

__U_CPLUSPLUS__ is always available during preprocessing and its valuedstiirent major version number
of uC+2

__U_CPLUSPLUS_MINOR_ _ isalways available during preprocessing and its valuesistinrent minor version
number ofuC+-.

__U_CPLUSPLUS_PATCH_ _ is always available during preprocessing and its valuedstitrent patch version
number ofuC+-.

__U_DEBUG__ is available during preprocessing if thiebug compilation option is specified.
__U_YIELD__ is available during preprocessing if theeld compilation option is specified.
__U_VERIFY__ is available during preprocessing if therify compilation option is specified.

__U_MULTI__ is available during preprocessing if theulti compilation option is specified.

2 The C preprocessor allows only integer values in a prepeacesriable so a value like “5.5.0” is not allowed. Hence, tieed to have three
variables for the major, minor and patch version number.

12 CHAPTER 2. iCH TRANSLATOR

These preprocessor variables allow conditional compitatif programs that must work differently in these situa-
tions. For example, to allow a normal C/C+ program to be dtedusinguC+, the following is necessary:

#ifdef __U_CPLUSPLUS_ _
void uMain::main() {
#else
int main(int argc, char xargv[]) {
#endif

/l body of main routine

}

which conditionally includes the correct definition farin if the program is compiled using-+.

2.6 Labelled Break/Continue

While C+ providesreak andcontinue statements for altering control flow, both are restrictedrte level of nesting
for a particular control structure. Unfortunately, thistréction forces programmers to ugeto to achieve the equiv-
alent for more than one level of nesting. To prevent havingaée this switchyC+ extends théreak andcontinue
with a target label to support static multi-level ex@Jh85 GJSBO(. For the labelledreak, it is possible to specify
which control structure is the target for exit, e.g.:

CH pCH
for (...){ L1: for (...){
for (...){ L2: for (...){
for (...){ L3: for (...){
... goto L1, break L1; ...
... goto L2; break L2; ...
... goto L3; .../l or break ... break L3; ... // or break
} L3, }
}oL2:; }
J }

The innermost loop has three exit points, which cause teatiain of one or more of the three nested loops, respectively.
For the labelledontinue , it is possible to specify which control structure is the&drfor the next loop iteration, e.g.:

CH pCH
for (...){ L1: for (...){
for (...){ L2: for (...){
for (...){ L3: for (...){
... goto L1, continue L1;...
... goto L2; continue L2; ...
... goto L3; .../l or continue ... continue L3; ... // or continue
L3:; } }
L2:; } }
L1} }

The innermost loop has three restart points, which causeekidoop iteration to begin, respectively. For bothak
andcontinue , the target label must be directly associated witbrawhile or do statement; fobreak, the target label
can also be associated witlwaitch or compound{}) statement, e.g.:

2.7. COROUTINE 13

L1: {
... declarations ...
L2: switch (...){
L3: for (...){
... break L1; ... // exit compound statement
... break L2; ... /I exit switch
... break L3; ... // exit loop
}
}
}

Bothbreak andcontinue with target labels are simplygoto restricted in the following ways:

e They cannot be used to create a loop. This means that onlpoipénlg construct can be used to create a loop.
This restriction is important since all situations that casult in repeated execution of statements in a program
are clearly delineated.

e Since they always transfer out of containing control stites, they cannot be used to branch into a control
structure.

The advantage of the labelleckak /continue is that it allows static multi-level exits without havinguse theyoto
statement and ties control flow to the target control stmectather than an arbitrary point in a program. Furthermore,
the location of the label at tHeeginningof the target control structure informs the reader that demnpontrol flow is
occurring in the body of the control structure. Wiftto , the label at the end of the control structure fails to corthéy
important clue early enough to the reader. Finally, usingxiicit target for the transfer instead of an implicit terg
allows new nested loop @witch constructs to be added or removed without affecting othestracts. The implicit
targets of the currertreak andcontinue , i.e., the closest enclosing loop switch , change as certain constructs are
added or removed.

2.7 Coroutine

A coroutine is an object with its own execution state, soxecation can be suspended and resumed. Execution of a
coroutine is suspended as control leaves it, only to carrfram that point when control returns at some later time.
This property means a coroutineis not restarted at the begjon each activation and its local variables are preserve
Hence, a coroutine solves the class of problems associétiedimite-state machines and push-down automata, which
are logically characterized by the ability to retain staggween invocations. In contrast, a free routine or member
routine always executes to completion before returningssimcal variables only persist for a particular invocation

A coroutine executes serially, and hence there is no coeweayrimplied by the coroutine construct.
However, the ability of a coroutine to suspend its execusi@ate and later have it resumed is the precursor
to true tasks but without concurrency problems; hence, @utiore is also useful to have in a programming
language for teaching purposes because it allows incratndetelopment of these propertié&ep91.

A coroutine type has all the properties oflass . The general form of the coroutine type is the following:
[_Nomutex] _Coroutine coroutine-name {

private :
/I these members are not visible externally
protected :
/I these members are visible to descendants
void main(); /I starting member
public :
/I these members are visible externally
%

The coroutine type has one distinguished member, nanad this distinguished member is called tberoutine
main. Instead of allowing direct interaction wittain, its visibility is normally private or protected ; therefore,

14 CHAPTER 2. iCH TRANSLATOR

a coroutine can only be activated indirectly by one of theoatine’s member routines. The decision to make the
coroutine mairprivate or protected depends solely on whether derived classes can reuse th&io@emain or must
supply their own. Hence, a user interacts with a coroutiéré@etly through its member routines. This approach
allows a coroutine type to have multiple public member noegito service different kinds of requests that are stéfical
type checked. A coroutine main cannot have parameters wmnratresult, but the same effect can be accomplished
indirectly by passing values through the coroutine’s glalziables, calleccommunication variables which are
accessible from both the coroutine’s member awagh routines.

A coroutine can suspend its execution at any point by aatigainother coroutine, which is done in two ways.
First, a coroutine can implicitly reactivate the coroutthat previously activated it via membsuspend. Second, a
coroutine can explicitly invoke a member of another conoeitivhich causes activation of that coroutine via member
resume. These two forms result in two different styles of corouttoatrol flow. Afull coroutine is part of a resume
cycle, while asemi-coroutine[Mar8Q, p. 4, 37] is not part of a resume cycle. A full coroutine canfqen semi-
coroutine operations because it subsumes the notion okthe®routine; i.e., a full coroutine can use suspend to
activate the member routine that activated it or resumesgdfjtbut it must always form a resume cycle with other
coroutines.

O Simulating a coroutine with a subroutine requires retgjrdiata in variables with global scope or
variables withstatic storage-class between invocations. However, retainetg $ these ways violates
the principle of abstraction and does not generalize toipialinstances, since there is only one copy of
the storage in both cases. Also, without a separate execst#te, activation points must be managed
explicitly, requiring the execution logic to be written aseries of cases, each ending by recording the
next case to be executed on re-entry. However, explicit gemant of activation points is complex and
error-prone, for more than a small number of activation fin

Simulating a coroutine with a class solves the problem ofrabSon and does generalize to multiple
instances, but does not handle the explicit managementightion points. Simulating a coroutine with a
task, which also has an execution state to handle activagioms, is non-trivial because the organizational
structure of a coroutine and task are different. Furtheemsimulating full coroutines, which form a
cyclic call-graph, may be impossible with tasks becauseta$k’'s mutual-exclusion, which could cause
deadlock (not a problem inC+ because multiple entry is allowed by the same threadjallyj a task
is inefficient for this purpose because of the higher costatthing both a thread and execution state as
opposed to just an execution state. In this implementati@¢ost of communication with a coroutine is,
in general, less than half the cost of communication withsl,tanless the communication is dominated
by transferring large amounts of data. |

2.7.1 Coroutine Creation and Destruction

A coroutine is the same as a class object with respect taeneand destruction, e.g.:
_Coroutine C {

void main() ... /I coroutine main
public :

void r(...) ...

%

C xcp; /I pointer to a C coroutine

{ /I start a new block
C c, cal3]; /I local creation
cp = new C; /I dynamic creation
cr(...); /I call a member routine that activates the coroutine
ca[l].r(...); /I call a member routine that activates the coroutine
cp->r(...); /I call a member routine that activates the coroutine

} /I ¢, cal0], ca[l] and ca[2] are deallocated

delete cp; // cp’s instance is deallocated

When a coroutine is created, the appropriate coroutinetearier and any base-class constructors are executed in
the normal order. The coroutine’s execution-state is eckand the starting point (activation point) is initialized

2.7. COROUTINE 15

to the coroutine’smain routine visible by the inheritance scope rules from the gtine type; however, thenain
routine does not start execution until the coroutine isvatéid by one of its member routines. The location of a
coroutine’s variables—in the coroutine’s data area or imimer routinemain—depends on whether the variables
must be accessed by member routines other tiein. Oncemain is activated, it executes until it activates another
coroutine or terminates. The coroutine’s point of lasteatton may be outside of theain routine becausmain may
have called another routine; the routine called could balltcthe coroutine or in another coroutine.

A coroutine terminates when itsain routine terminates. When a coroutine terminates, it ags/éhe coroutine
or task that causeahain to start execution. This choice ensures that the starting sequeraéree, i.e., there are no
cycles. A thread can move in a cycle among a group of corosithoe termination always proceeds back along the
branches of the starting tree. This choice for terminatioesdimpose certain requirements on the starting order of
coroutines, but it is essential to ensure that cycles canrdeeh at terminationActivating a terminated coroutine
is an error. A coroutine’s destructor is invoked by the deallocatingeitt when the block containing the coroutine
declaration terminates or by an explidilete statement for a dynamically allocated coroutine.

Like a class object, a coroutine may be deleted at any &wsm if the coroutine’snain routine is started but
not terminatedi.e., the coroutine is still suspended initain routine. Before the coroutine’s destructor is run, the
coroutine’s stack is unwound via the cancellation mechar(see Sectio®, p. 91), to ensure cleanup of resources
allocated on the coroutine’s stack. This unwinding invelaa implicitresume of the coroutine being deleted.

Like a routine or class, a coroutine can access all the exfteamniables of a C+ program and the heap area. Also,
any static member variables declared within a coroutine are sharedhgralh instances of that coroutine type. If a
coroutine makes global references or kagic variables and is instantiated by different tasks, ther&ésgeneral
problem of concurrent access to these shared variablesefdhe, it is suggested that these kinds of references be
used with extreme caution.

2.7.2 Inherited Members

Each coroutine type, if not derived from some other corautype, is implicitly derived from the coroutine type
uBaseCoroutine, €.9.:

_ Coroutine coroutine-name : public uBaseCoroutine { // implicit inheritance

I3
where the interface for the base-clagaseCoroutine is:

_Coroutine uBaseCoroutine {

protected :
void resume();
void suspend();

public :
uBaseCoroutine();
uBaseCoroutine(unsigned int stackSize);
uBaseCoroutine(void sstorage, unsigned int storageSize);

void stackPointer() const ; /I stack info
unsigned int stackSize() const ;

void «stack() const;

ptrdiff_t stackFree() const ;

ptrdiff_t stackUsed() const ;

void verify();

const char xsetName(const char sname); // coroutine info
const char xgetName() const;

enum State { Halt, Active, Inactive }

State getState() const ;

uBaseCoroutine &starter() const ;

uBaseCoroutine &resumer() const ;

16 CHAPTER 2. iCH TRANSLATOR

enum CancellationState { CancelEnabled, CancelDisabled };
void cancel(); /I cancellation
bool cancelled();

bool cancellnProgress();

__Event Failure; /I exceptions
_Event UnhandledException;
h
The member routinegsume andsuspend are discussed in Secti@n7.3
The overloaded constructor routinBaseCoroutine has the following forms:

uBaseCoroutine() — creates a coroutine on the current cluster with the clgddefault stack size.

uBaseCoroutine(unsigned int stackSize) — creates a coroutine on the current cluster with the spdcifirimum
stack size (in bytes). The amount of storage for the coreigtistack is always greater than this stack size, as
extra information is stored on the stack.

uBaseCoroutine(void xstorage, unsigned int storageSize) — creates a coroutine on the current cluster using the
specified storage antaximumstorage size (in bytes) for the coroutine’s stack. The arhofistorage for
the coroutine’s stack is always less than actual storage a&zextra information is stored on the statkis
storage is NOT freed at coroutine deallocatidfithe specified storage address is zenULL), the storage
size becomes a stack size, as in the previous constructor.

A coroutine type can be designed to allow declarations toigpthe stack storage and size by doing the following:

_Coroutine C {
public :
C() : uBaseCoroutine(8192) {}; /I default 8K stack
C(unsigned int s) : uBaseCoroutine(s) {}; // user specified stack size
C(void sst, unsigned int s) : uBaseCoroutine(st,s) // user specified stack storage and size

i: X, y(16384), z(area, 32768); /I x => 8K stack, y => 16K stack, z => stack < 32K at “area”

The member routinetackPointer returns the address of the stack pointer. If a coroutine ¢hlk routine, its
current stack pointer is returned. If a coroutine calls tbigtine for another coroutine, the stack pointer savedet th
last context switch of the other coroutine is returned; th&y not be the current stack pointer value for that coroutine

The member routinstackSize returns the maximum amount of stack space that is allocateithis coroutine. A
coroutine cannot exceed this value during its executiore fflember routinstack returns the address of the stack
storage for this coroutine. On most computers, the stackgdown (high address) towards the stack-storage address
(low address). If a coroutine is created with specific stdokagje, the address of that storage is returned; otherwise,
the address of theC+ created stack storage is returned.

The member routinstackFree returns the amount of free stack space. If a coroutine daisoutine, its current
free stack space is returned. If a coroutine calls this neutdbr another coroutine, the free stack space at the last
context switch of the other coroutine is returned; this maiylre the current free stack space for that coroutine.

The member routinstackUsed returns the amount of used stack space. If a coroutine tédlsdutine, its current
used stack space is returned. if a coroutine calls thismeutr another coroutine, the used stack space at the last
context switch of the other coroutine is returned; this mai/re the current used stack space for that coroutine.

The member routineerify checks whether the current coroutine has overflowed it& stiédt has, the program
terminates. To completely ensure the stack size is nevereeed, a call teerify must be included after each set of
declarations, as in the following:

void main() {
/I declarations

verify(); /I check for stack overflow
. /I code

2.7. COROUTINE 17

Thus, after a coroutine has allocated its local variablebegk is made that its stack has not overflowed. Clearly, this
technique is not ideal and requires additional work for thregpammer, but it does handle complex cases where the
stack depth is difficult to determine and can be used to hédpglpossible stack overflow situations.

O When the-verify option is used, calls t@erify are automatically inserted at the beginning of each
member routine, but not after each set of declarations. a

The member routingetName associates a name with a coroutine and returns the prevésos.nrhe name is not
copied so its storage must persist for the duration of thewtore. The member routingetName returns the string
name associated with a coroutine. If a coroutine has not &ggigned a namegetName returns the type name of the
coroutine.uCH uses the name when printing any error message, whichpiihie debugging.

The member routingetState returns the current state of a coroutine’s execution, wtiane of the enumerated
valuesHalt, Active or Inactive.

The member routinetarter returns the coroutine’s starter, i.e., the coroutine tletggmed the first resume of
this coroutine (see Sectich7.1, p. 14). The member routineesumer returns the coroutine’s last resumer, i.e., the
coroutine that performed the last resume of this corousee Gectio2.7.3.

The member routineancel marks the coroutine/task for cancellation. The memberimegtncelled returns true
if the coroutine/task is marked for cancellation, and faldeerwise. The member routirancelinProgress returns
true if cancellation is started for the coroutine/task.tleed, p. 91 discusses cancellation in detail.

The type_Event is defined in Sectioh.3, p. 70.

The free routine:

uBaseCoroutine &uThisCoroutine();
is used to determine the identity of the coroutine executitig routine. Because it returns a reference to the base
coroutine typeuBaseCoroutine, this reference can only be used to access the public reuiitgpeuBaseCoroutine.
For example, a free routine can check whether the allocatifdis local variables has overflowed the stack of a
coroutine that called it by performing the following:
int FreeRtn(...) {
/I declarations
uThisCoroutine().verify(); /I check for stack overflow
/I code
}

As well, printing a coroutine’s address for debugging pgesomust be done like this:
cout << "coroutine:" << &uThisCoroutine() << endl; // notice the ampersand (&)

2.7.3 Coroutine Control and Communication

Control flow among coroutines is specified by the protectethbesresume andsuspend. A call to resume may
appear in any member of the coroutine, but normally it is usdg in the public members. A call teuspend may
appear in any member of the coroutine, but normally it is us®gin the coroutine main or non-public members called
directly or indirectly from the coroutine main. Membetsume andsuspend are composed of two parts. The first
part inactivates the coroutine that calls the member anddbend part reactivates another coroutine; the differince
which coroutine is reactivated. Membesume activates the current coroutine object, i.e., the cor@usipecified by
the implicitthis variable. Membesuspend activates the coroutine that previously executed a catdome for the
coroutine executing theuspend, ignoring any resumes of a coroutine to itsetf effect, these special members cause
control flow to transfer among execution states, which imesicontext switches.

It is important to understand that calling a coroutine’s rhemby another coroutine does not cause a switch to the
other coroutine. A switch only occurs whemegume is executed in the other coroutine’s member. Thereforetipg
&uThisCoroutine() in the other coroutine’s member always prints tadling coroutine’s address; printingis in the
other coroutine’s member always prints ttedled coroutine’s address (which is the coroutine tleaume switches
to). Hence, there is a difference between who is executidgrdrere execution is occurring.

Figure2.2 shows a semi-coroutine producer and consumer coroutideg dniver routine. Notice the explicit call
from Prod’s main routine todelivery and then the return back wheelivery completes.delivery always activates its
coroutine, which subsequently activatiegivery.

Figure2.3, p. 19 shows a full-coroutine producer and consumer corouting,aadriver routine. Notice the calls
to membermesume in routinespayment and delivery. The resume in routinpayment activates the execution state

18

CHAPTER 2. uC+ TRANSLATOR

Consumer

Producer

_Coroutine Cons {
int pl, p2, status;
bool done;
void main() {

/I 1st resume starts here
int money = 1;

/I communication

for ()1
cout << "cons receives: " <<
pl<<", " << p2;
if (done) break;
status += 1;

cout << " and pays $" <<
money << endl;

suspend(); // restart delivery & stop
money += 1;
}
cout << "cons stops" << endl;
}
public :

Cons() : status(0), done(false) {}
int delivery(int p1, int p2) {

Cons::pl = p1;
Cons::p2 = p2;
resume(); /I restart main

return status;

}
void stop() {

_Coroutine Prod {
Cons &cons;
int N;
void main() {

/I 1st resume starts here
int i, p1, p2, status;
for (i=1;i<=N;i+=1){
pl = rand() % 100;
p2 = rand() % 100;
cout << "prod delivers: " <<
pl<<", " << p2 << endl
status = cons.delivery(p1, p2);
cout << "prod status: " <<
status << endl;

/I communication

}

cout << "prod stops" << endl;
cons.stop();
}
public :
Prod(Cons &c) : cons(c) {}
void start(int N) {

Prod::N = N;
resume(); /I restart main
}
}; /I Prod

void uMain::main() {

done = true; Cons cons; /I create consumer
resume(); /I restart main Prod prod(cons); /I create producer
} prod.start(5); /I start producer
}; /I Cons }

Figure 2.2: Semi-Coroutine Producer-Consumer

associated witRrod::main and that execution state continues in routioas::delivery. Similarly, the resume in routine
delivery activates the execution state associated Withs::main and that execution state continuesGons::main
initially and subsequently in routinerod::payment. This cyclic control flow and the termination control flow is
illustrated in Figure?.4, p. 20.

2.8 Mutex Type

A mutex type consists of a set of variables and a set of mutexbees that operate on the variabldsmutex type
has at least one mutex memb@bjects instantiated from mutex types have the propertyrtheaex members are
executed with mutual exclusion; that is, only one task atree ttan be executing in the mutex members. Similar to an
execution state, a mutex object is either active or inactiepending on whether or not a task is executing a mutex
member (versus a task executing the coroutine main). Metclision is enforced bipcking the mutex object when
execution of a mutex member begins amdocking it when the active task voluntarily gives up control of thetenu
object by waiting in or exiting from the monitor. If anothexsk invokes a mutex member while a mutex object is
locked, the task is blocked until the mutex object becomésaled. An active task may call other mutex members
either directly from within the mutex type or indirectly bglllng another object, which subsequently calls back into
the mutex objectf an active task enters multiple mutex objects, it owns tlueax locks for these objects and can enter
anyone of them again without having to reacquire their lotkan active task releases control of one of these mutex
objects by waiting within it, which implicitly unlocks thatbject,the task does not unlock any other mutex objects it
currently owns If an active task releases control of one of these mutexctdbjey exiting from it, which implicitly
unlocks that objectthe task must do so in strict nested ordee., Last-h first-Out (LIFO) order of mutex-object

2.8. MUTEX TYPE

Consumer

Producer

_Coroutine Cons {
Prod ∏
int pl, p2, status;
bool done;
void main() {
/I 1st resume starts here
int money = 1, receipt;

/I communication

for () {
cout << "cons receives: " <<
pl<<", " << p2;
if (done) break;
status += 1;

cout << " and pays $" <<
money << endl;
receipt = prod.payment(money);
cout << "cons recei pt #" <<
receipt << endl;
money += 1;
}
cout << "cons stops" << endl;
}
public :
Cons(Prod &p) : prod(p) {
done = false;
status = 0;

int delivery(int p1, int p2) {

Cons::pl = pl; /I restart cons in
Cons::p2 = p2; // Cons:main 1st time
resume(); /I and afterwards cons

return status; // in Prod::payment

}
void stop() {

done = true;
resume();
}
}; /I Cons

_Coroutine Prod {
Cons *cons; /I communication
int N, money, receipt;
void main() {
/I 1st resume starts here
int i, p1, p2, status;
for (i=1;i<=N;i+=1){
pl = rand() % 100;
p2 = rand() % 100;
cout << "prod delivers: <<
pl << ", " << p2 << endl
status = cons->delivery(p1, p2);
cout << "prod status: " <<
status << endl;

}

cout << "prod stops" << endl;
cons->stop();

}

public :

Prod() : receipt(0) {}

int payment(int money) {
Prod::money = money;
cout << "prod paynent of $" <<

money << endl;

resume(); /I restart prod
receipt += 1; /I 'in Cons::delivery
return receipt;

}

void start(int N, Cons &c) {
Prod::N = N;
cons = &c;
resume();

}
}; 1l Prod

void uMain::main() {
Prod prod;
Cons cons(prod);
prod.start(5, cons);

}

Figure 2.3: Full-Coroutine Producer-Consumer

19

acquisition (see Section2.3.3 p.107). This LIFO restriction results solely because there da#saeem to be any
useful examples for non-LIFO locking, and it is often an oadion of an error in a program.
When_Mutex or _Nomutex qualifies a type, e.g.:

h

Mutex class M {

private :
char z(...); /I default nomutex
public :
M(); /I default nomutex
~M(); /I default mutex
int x(...); /I default mutex
float y(...); /I default mutex

it defines the default form of mutual exclusion alh public member routines, except the constructor, which v@ne

20 CHAPTER 2. iCH TRANSLATOR

Start/Terminate Sequence Thread Movement
uMain::main uMain::main
Voo
Prod::start
prod v
¢ (context switch
cons Prod::main

Cons::(*jelivery
(contex*t switch)
Cons::main
- Prod::gayment termination
) sequence
(context switch)

Cons::delivery

normal Prod:main =—
execution

4

Cons::glelivery
(contex+t switch
Prod::gayment

Cons::main

Figure 2.4: Cyclic Control Flow in Full Coroutine

mutex, and the destructor, which is always mutex for a muyge.t Hence, public member routinesandy of
mutex typeM are mutex members executing mutually exclusively of ongle@roMember routines that apeotected

and private arealwaysimplicitly _Nomutex , except for the destructor of a mutex type, which is alwaysutex
regardless of its visibilityBecause the destructor of a mutex type is always executbdnwiiual exclusion, the call to
the destructor may block, either at termination of a blocktedning a mutex object or when deleting a dynamically
allocated mutex objectf a mutex qualifier is specified on a forward declaration,:e.g

_Mutex class M; /I forward declaration

_Mutex class M {...} /I actual declaration

it must match with the actual declaratiolm general, it is bestotto put a mutex qualifier on a forward declaration so
the default can be changed on the actual declaration witheniihg to change the forward declaration.
A mutex qualifier may be needed fprotected andprivate member routines in mutex types, e.g.:
_Mutex class M {

private :
_Mutex char z(...); /I explicitly qualified member routine

%

because another task may need access to these membergoktinexample, whenfdend task calls grotected or
private member routine, these calls may need to provide mutual siaziu

A public member of a mutex type can be explicitly qualifiediwitNomutex . Such a routine is, in general, error-
prone in concurrent situations because the lack of mutudlsion permits concurrent updating to object variables.
However, there are two situations where a nomutex public neerare useful: first, for read-only member routines
where execution speed is of critical importance; and secomé&ncapsulate a sequence of calls to several mutex
members to establish a protocol, which ensures that a usaota&iolate the protocol since it is part of the type’s
definition.

The general structure of a mutex object is shown in Figuge All the implicit and explicit data structures

2.9. SCHEDULING 21

associated with a mutex object are discussed in the follgwettions. Notice each mutex member has a queue
associated with it on which calling tasks wait if the muteyeabis locked. A nomutex member has no queue.

entry
gueue
mutex
gueues ®)
X Y (d)| order of
® @ © arrival
condition @ © @
A
acceptor/
o | signalled
O ON | shared 3 stack
. variables OO
\ o
condition
B
exit

@ activetask () blocked taskO) duplicate

Figure 2.5:C+ Mutex Object

2.9 Scheduling

For many purposes, the mutual exclusion that is providednaatically by mutex members is all that is needed, e.g.,
an atomic counter:

_Mutex class atomicounter {

int cnt;
public :
atomicounter() { cnt = 0; }
inc) {cnt+=1;} /I atomically increment counter

However, it is sometimes necessary to synchronize withstaaking or executing within the mutex object forming
different scheduling patterns. For this purpose, a taskniigex object can block until a particular external or ingérn
event occurs. At some point after a task has blocked, it meiseactivated either implicitly by the implicit scheduler
(discussed next) or explicitly by another (active) task.

2.9.1 Implicit Scheduling

Implicit scheduling occurs when a mutex object becomesakald because the active task blocks in or exits from a
mutex member. The next task to use the mutex object is thesechfoom one of a number of lists associated with the
mutex object. Figur@.5shows a mutex object with a set of tasks using or waiting tatu$®hen a calling task finds
the mutex object locked, it is added to both thatex queueof the member routine it called and teatry queue
otherwise it enters the mutex object and locks it. The entrgug is a list of all the calling tasks in chronological
order of arrival, which is important for selecting a task whkere is no active task in a mutex object. When a task in
the mutex object is blocked implicitly (see Sectid®d.2 or is reactivated by another (active) task (see Se@iér
p.25), itis added to the top of thecceptor/signalled stack

22 CHAPTER 2. iCH TRANSLATOR

When a mutex object becomes unlocked, the next task to exécaelected by aimplicit scheduler. For some
of the following scheduling statements, the implicit sahled is directed to select from a specific set of queues;
hence, there is no choice with regard to which queues areiegrdmFor other scheduling statements, the implicit
scheduler may make a choice among the queues. When a chpigssible, the implicit scheduler fpiC+ makes
selections based on the results presenteBHT9] to give the user the greatest possible control and prodficeat
performance. These selection rules are:

1. Select tasks that have entered the mutex object, bloeketinow need to continue execution over tasks that
have called and are waiting to enter.

2. When one task reactivates a task that was previously éthickthe mutex object, the restarting task always con-
tinues execution and the reactivated task continues toundltit is selected for execution by rule kignalBlock
is an exception to this rule, see page)

All other tasks must wait until the mutex object is again whied. Therefore, when selection is done implicitly, the
next task to resume is not under direct user control, butiéctal by the implicit scheduler.

2.9.2 External Scheduling

External scheduling controls state changes to a mutex olsyescheduling calls to specified mutex members, which
indirectly schedules tasks calling fromutsidethe mutex object. This technique takes advantage of thg gngue to
block tasks unconditionally when the mutex object is active, block outside) and the acceptor stack to block tasks
conditionally that have entered the monitor (i.e., blodide). Much of the scheduling that occurs and the programmer
thinks about is the outside scheduling from the entry quatteer than the internal scheduling on the acceptor stack,
which occurs implicitly. External scheduling is accompésl with the accept statement.

2.9.2.1 Accept Statement

An _Accept statement dynamically chooses the mutex member(s) thati®senext, which indirectly controls the
next accepted caller, i.e., the next caller to the acceptaggxmember(s). The simple form of théccept statement
is:
_When (conditional-expression) /I optional guard
_Accept (mutex-member-name-list);
with the restriction that constructorsgw, delete, and _Nomutex members are excluded from being accepted.
The first three member routines are excluded because thatae® are essentially part of the implicit memory-
management runtime support. That is, the object does nst extil after thenew routine is completed and a con-
structor starts; similarly, the object does not exist whielate is called. In all these cases, member routines cannot be
called, and hence accepted, because the object does nadreigsisiot initialized._Nomutex members are excluded
because they contain no code affecting the caller or accegtio respect to mutual exclusion.
The syntax for accepting a mutex operator member, such aatope, is:

_Accept (operator =);
Currently, there is no way to accept a particular overloaaednber. Instead, when an overloaded member name
appears in an Accept statement, calls to any member with that name are accepted.

O A consequence of this design decision is that once one mafia set of overloaded routines becomes
mutex, all the overloaded routines in that set become mutexiners. The rationale is that members with
the same name should perform essentially the same funetioitherefore, they all should be eligible to

accept a call. |

A _When guard is considered true if it is omitted or if itbnditional-expressiorvaluates to non-zero. The
conditional-expressioaf a _When may call a routinebut the routine must not block or context switch. The guard
must be true and an outstanding call to the specified mutexbees) must exist for a call to be accepted. A list of
mutex members can be specified in_akccept clause, e.g.:

_Accept (insert, remove);

If there are several mutex members that can be acceptedtisalpriority is established by the left-to-right placeme
of the mutex members in theAccept clause of the statement. Hence, the order of the mutex maritbére_ Accept

2.9. SCHEDULING 23

clause indicates their relative priority for selectiorhiéte are several outstanding calls. If the guard is truelzere iis
no outstanding call to the specified member(s), the accépsmcept-blocked until a call to the appropriate member(s)
is made. If the guard is false, execution continues withoogpting any call; in this case, the guard is the same as an
if statement, e.g.:

_When (count==0) _Accept(mem); = if (count==0) _Accept(mem);
Note, an accept statement with a true guard accepts onlyalheegardless of the number of mutex members listed
in the _Accept clause.

When an_Accept statement is executed, the acceptor is blocked and push#dtedop of the implicit accep-
tor/signalled stack and the mutex object is unlocked. Therimal scheduler then schedules a task from the specified
mutex-member queue(s), possibly waiting until an appedprtall occurs. The accepted member is then executed like
a member routine of a conventional class by the caller’sathrdf the caller is expecting a return value, this value
is returned using theeturn statement in the member routine. When the caller’s threéid the mutex member (or
waits, as is discussed shortly), the mutex object is unldcBecause the internal scheduler gives priority to tasks on
the acceptor/signalled stack of the mutex object overraatiasks, the acceptor is popped from the acceptor/sighalle
stack and made ready. When the acceptor becomes activs, ékblasive access to the object. Hence, the execution
order between acceptor and caller is stack order, as fodaitnaal routine call.

The extended form of theAccept statement conditionally accepts one of a group of mutex neesnéand then
allows a specific action to be performafterthe mutex member is called, e.g.:

_When (conditional-expression) /I optional guard
_Accept (mutex-member-name-list)
statement /I action
or _When (conditional-expression) /I optional guard
_Accept (mutex-member-name-list)
statement /I action
or
_When (conditional-expression) /I optional guard
else /I optional terminating clause
statement

Before an_Accept clause is executed, its guard must be true and an outstacalirtg its corresponding member(s)
must exist. If there are several mutex members that can lepssct, selection priority is established by the left-ighti
then top-to-bottom placement of the mutex members in thecept clauses of the statement. If some accept guards
are true and there are no outstanding calls to these mentherggsk is accept-blocked until a call to one of these
members is made. If all the accept guards are false, tharstatedoes nothing, unless there is a terminatisg
clause with a true guard, which is executed instead. Heheggetminating:lse clause allows a conditional attempt
to accept a call without the acceptor blocking. Again, a groti_Accept clauses is not the same as a grouif of
statements, e.g.:

if (C1l) _Accept(meml); _When (C1) _Accept(meml);

else if (C2) _Accept(mem2); or _When (C2) _Accept(mem2);
The left example accepts ontyem1 if C1 is true or onlymem2 if C2 is true. The right example accepts eithem1
or mem2 if C1 andC2 are true. Once the accepted call has completethe caller waits the statement after the
accepting Accept clause is executed and the accept statement is complete.

O Generalizing the previous example from 2 to 3 accept clawg@xonditionals results in the following
expansion:

if (C1 && C2 && C3) _Accept (meml, mem2, mem3);
elseif (Cl && C2) _Accept(meml, memz2);

else if (Cl && C3) _Accept(meml, mem3);

else if (C2 && C3) _Accept (mem2, mem3);

elseif (C1l) _Accept(meml);

else if (C2) _Accept(mem2);

else if (C3) _Accept(mem3);

24 CHAPTER 2. iCH TRANSLATOR

This form is necessary to ensure that for every true conaitioonly the corresponding members are
accepted. The general pattern férconditionals is:

N N N N -
<N> + <N B 1> + ...+ <1> =(14+1)" —1 from the binomial theorem

Having to write an exponential number of statements, 2.~ 1, to handle this case is clearly unsat-
isfactory, both from a textual and performance standpoiiite exponential number of statements are
eliminated because thewhen and the_Accept clauses are checkeatiimultaneouslyguring execution of
the accept statement instead of having to first check theiwonals and then perform the appropriate
accept clauses in an accept statement. |

O Note, the syntax of theAccept statement precludes the caller's argument values fronglsicessed
in theconditional-expressionf a _When. However, this deficiency is handled by the ability of a task t
postpone requests (see Sectod.3.2 p. 27). |

O WARNING: Beware of the following difference between thheconnector and the terminatirdse
clause:

_Accept (mem1l); _Accept (mem1);
or _Accept (mem2); else _Accept (mem2);

The left example accepts a call to either meminem1 or mem2. The right example accepts a call to
membermem1, if one is currently available; otherwise it accepts a aalitembemem?2. The syntactic
difference is subtle, and yet, the execution is signifigadifferent (see also SectidrD.2.2 p.136. O

2.9.2.2 Breaking a Rendezvous

The accept statement formsemdezvousbetween the acceptor and the accepted tasks, where a rendéza point
in time at which both tasks wait for a section of code to exet@gfore continuing.

Task Task

| - |

rendezvous

The start of the rendezvous begins when the accepted mutakendregins execution and ends when the acceptor task
restarts execution, either because the accepted taskefiresiecuting of the mutex membmrthe accepted task waits

In the latter case, correctness implies sufficient code Ban bxecuted in the mutex member before the wait occurs for
the acceptor to continue successfully. Finally, for therdigin of rendezvous, it does not matter which task executes
the rendezvous, but inC+, it is the accepted task that executes it. It can be drtwieorrectness that the acceptor
know if the accepted task does not complete the rendezvales atherwise the acceptor task continues under the
incorrect assumption that the rendezvous action has agtufo this end, a concurrent exception is implicitly raised
at the acceptor task if the accepted member terminatesmiafigr(see Sectioh.10.3 p. 89).

2.9.2.3 Accepting the Destructor

Accepting the destructor in anAccept statement is used to terminate a mutex object when it isateld (like the
terminate clause of theselect statement in AdalJni83, Sections 9.4, 9.7.1]). The destructor is accepted in theesa
way as a mutex member, e.g.:

2.9. SCHEDULING 25

for (5){
_Accept (~DiskScheduler) { /I request to terminate DiskScheduler
break;
} or _Accept (WorkRequest) { /I request from disk
} or _Accept (DiskRequest) { /I request from clients
} /I _Accept
} 1l for

/I cleanup code

However, the semantics for accepting a destructor arerdiftérom accepting a normal mutex member. When the call
to the destructor occurs, the caller blocks immediatelyabise a mutex object’s storage cannot be deallocated if it is
being used by a thread. When the destructor is acceptedaliee is blocked and pushed onto the acceptor/signalled
stack instead of the acceptor. Therefore, control restdrthe accept statememnithout executing the destructor
member, which allows a mutex object to cleanup before it ireaes. (This semantics is the samesamal, see
page27.) Only when the caller to the destructor is popped off theeptmr/signalled stack by the internal scheduler
can the destructor execute. The destructor can reactingtdlacked tasks on the acceptor/signalled stack; at this
point, the task behaves like a monitor because its threaaltisch

O While a mutex object can always be setup so that the destrdog&s all the cleanup, this can force
variables that logically belong in member routines intortheex object. Furthermore, the fact that control
would not return to the Accept statement when the destructor is accepted seemed morescantban
having special semantics for accepting the destructor. |

Accepting the destructor can be used by a mutex object to kvloen to stop without having to accept a special
call. For example, by allocating tasks in a specific way, aeseiask for a number of clients can know when the clients
are finished and terminate without having to be explicitidie.g.:

{
DiskScheduler ds; /I start DiskScheduler task
{

Clients c1(ds), c2(ds), c3(ds); /I start clients, which communicate with ds
} /I wait for clients to terminate
} /I implicit call to DiskScheduler’s destructor

2.9.2.4 Commentary

In contrast to Ada, an Accept statement inuC+ places the code to be executed in a mutex member; thuiss, it i
specified separately from theAccept statement. An Ada-style accept specifies the accept bodgrasfithe accept
statement, requiring the accept statement to provide paegmand a routine body. Since we have found that having
more than one accept statement per member is rather rar@ppuwach gives essentially the same capabilities as
Ada. As well, accepting member routines also allows virtaaitine redefinition, which is impossible with accept
bodies. Finally, an accept statement with parameters andtame body does not fit with the design of C+ because
it is like a nested routine definition, and since routinesncdrbe nested in CH, there is no precedent for such a
facility. It is important to note that anything that can benddn Ada-style accept statements can be done within
member routines, possibly with some additional code. If imers need to communicate with the block containing the
_Accept statements, it can be done by leaving “memos” in the mutpr:$yvariables. In cases where there would be
several different Ada-style accept statements for the samry, accept members would have to start with switching
logic to determine which case applies. While neither oféhsslutions is particularly appealing, the need to use them
seems to arise only rarely.

2.9.3 Internal Scheduling

A complementary approach to external scheduling is intesctzeduling. Instead of scheduling tasks from outside
the mutex object from the entry queue (the entry queue isngtilessary), most of the scheduling occurs inside the
monitor. To do schedulinmsidethe monitor requires additional queuasidethe monitor on which tasks can block
and subsequently be unblocked by other tasks. For that perpgondition variables are provided, with an associated
wait and signal statement.

26 CHAPTER 2. iCH TRANSLATOR

2.9.3.1 Condition Variables and Wait/Signal Statements

The typeuCondition creates a queue object on which tasks can be blocked anivagedtin first-in first-out order, and
is defined:

class uCondition {

public :
void wait(); /I wait on condition
void wait(long int info); /I wait on condition with information
void signal(); /I signal condition
void signalBlock(); /I signal condition

bool empty() const;
long int front() const;

_Event WaitingFailure;
%
uCondition DiskNotldle;
A condition variable is owned by the mutex object that perfethe first wait on it; subsequently, only the owner can
wait and signal that condition variable.

O Itis common to associate with each condition variable aaréiss) about the state of the mutex object.
For example, in a disk-head scheduler, a condition variatitght be associated with the assertion “the
disk head is idle”. Waiting on that condition variable wowlorrespond to waiting until the condition is
satisfied, thatis, until the disk head is idle. Correspoglyirthe active task would reactivate tasks waiting
on that condition variable only when the disk head becane itlhe association between assertions and
condition variables is implicit and not part of the language |

To block a task on a condition queue, the active task in a moitgect calls membewait, e.g.,
DiskNotldle.wait();

This statement causes the active task to block on condiigkNotldle, which unlocks the mutex object and invokes
the internal scheduler. Internal scheduling first attertpisop a task from the acceptor/signalled stack. If there are
no tasks on the acceptor/signalled stack, the internabstbieselects a task from the entry queue or waits until a call
occurs if there are no tasks; hence, the next task to entiee isrte blocked the longest. If the internal scheduling did
not accept a call at this point, deadlock would occur.

When waiting, it is possible to optionally store an integalue with a waiting task on a condition queue by passing
an argument tevait, e.g.:

DiskNotldle.wait(integer-expression);

If no value is specified in a call toait, the value for that blocked task is undefined. The integera/eain be accessed by
other tasks through theCondition member routinéont. This value can be used to provide more precise information
about a waiting task than can be inferred from its presenca particular condition variable. For example, the
value of the front blocked task on a condition can be examined signaller to help make a decision about which
condition variable it should signal next. This capabilgyiseful, for example, in a problem like the readers and write
(See AppendidC.1, p. 159for an example program using this feature, but only aftedirepSectior2.1Q p. 28 on
monitors.) In that case, reader and writer tasks wait ondaheescondition queue to preserviestIn Hrst-Qut (FIFO)
order and each waiting task is marked with a value for readerriter, respectively. A task that is signalling can first
check if the awaiting task at the head of a condition queuereader or writer task by examining the stored value
before signalling.

O The value stored with a waiting task and examined by a signsitiould not be construed as a message
between tasks. The information stored with the waiting iaskot meant for a particular task nor is it
received by a particular task. Any task in the monitor camere it. Also, the value stored with each
task isnota priority for use in the subsequent selection of a task whemrtonitor is unlocked.

If this capability did not exist, it can be mimicked by cremfiand managing an explicit queue in the
monitor that contains the values. Nodes would have to becaddd removed from the explicit queue
as tasks are blocked and restarted. Since there is alreaalyd#tion queue and its nodes are added and

2.9. SCHEDULING 27

removed at the correct times, it seemed reasonable to allevs tio store some additional data with the
blocked tasks. O

To unblock a task from a condition variable, the active taskaimutex object calls either membsgnal or
signalBlock. For membesignal, e.g.:
DiskNotldle.signal();
the effect is to remove one task from the specified conditanable and push it onto the acceptor/signalled stack.
The signaller continues execution and the signalled taskhieduled by the internal scheduler when the mutex object
is next unlocked. This semantics dferentfrom the _Accept statement, which always blocks the acceptbe
signaller does not block fatignal. For membessignalBlock, e.g.:

DiskNotldle.signalBlock();

the effect is to remove one task from the specified conditasrable and make it the active task, and push the signaller
onto the acceptor/signalled stack. The signalled taskimoes execution and the signaller is scheduled by the iatern
scheduler when the mutex object is next unlocked. This stosaslike the _Accept statement, which always blocks
the acceptor. For either kind of signal, signalling an engaiydition just continues executions, i.e., it does nothing

O The _Accept, wait, signal andsignalBlock can be executed by any routine of a mutex type. Even
though these statements block the current task, they calioled in any member routine because mem-
ber routines are executed by the caller, not the task the meislbefined in. This capability is to be
contrasted to Ada where waiting in an accept body would ctuséask to deadlock. |

The member routinempty() returnsfalse if there are tasks blocked on the queue ane otherwise. The member
routinefront returns an integer value stored with the waiting task at thetfof the condition queue. It is an error to
examine the front of an empty condition queue; thereforeralition must be checked to verify that there is a blocked
task, e.g.:

if (! DiskNotldle.empty() && DiskNotldle.front() ==1) ...

(This capability is discussed in detail shortly.)
Itis notmeaningful to read or to assign to a condition variable, @yacondition variable (e.g., pass it as a value
parameter), or use a condition variable if not its owner.

2.9.3.2 Commentary

The ability to postpone a request is an essential requireofea programming language’s concurrency facilities.
Postponement may occur multiple times during the serviofrgrequest while still allowing a mutex object to accept
new requests.

In simple cases, theWhen construct can be used to accept only requests that can bdetethpithout postpone-
ment. However, when the selection criteria become comglex, when the parameters of the request are needed to
do the selection or information is needed from multiple et is simpler to unconditionally accept a request and
subsequently postpone it if it does not meet the selectiteria. This approach avoids complex selection expression
and possibly their repeated evaluation. In addition, alnlbrmal programming language constructs and data struc-
tures can be used in the process of making a decision to pusgequest, instead of some fixed selection mechanism
provided in the programming language, as in 8R®C*88 and Concurrent CH+GR84.

Regardless of the power of a selection facility, none cahwligathe need to postpone a request after itis accepted.
In a complex concurrent system, a task may have to make rsowesther tasks as part of servicing a request. Any
of these further requests can indicate that the currenestquannot be completed at this time and must be postponed.
Thus, it is essential that a request be postponable evaritafi@ccepted because of any number of reasons during the
servicing of the request. Condition variables seem esseéntsupport this facility.

An alternative approach to condition variables is to seedéguest to be postponed to another (usually non-public)
mutex member of the object (like Ada 95'squeue statement). This action re-blocks the request on that mutex
member’s entry queue, which can be subsequently accepted thie request can be restarted. However, there are
problems with this approach. First, the postponed requagtnot be able to be sent directly from a mutex member to
another mutex member because deadlock occurs due to syecisroommunication. (Asynchronous communication
solves this problem, but as stated earlier, imposes a sutatsystem complexity and overhead.) The only altermativ
is to use a nomutex member, which calls a mutex member tatltaréquest and checks its return code to determine if

28 CHAPTER 2. iCH TRANSLATOR

the request must be postponed. If the request is to be pastpanother mutex member is invoked to block the current
request until it can be continued. Unfortunately, structyithe code in this fashion becomes complex for non-trivial
cases and there is little control over the order that reguast processed. In fact, the structuring problem is similar
to the one when simulating a coroutine using a class or stibmuvhere the programmer must explicitly handle

the different execution states. Second, any mutex memipeicisgy a request may accumulate temporary results. If
the request must be postponed, the temporary results mustuyaeed and bundled with the initial request that are
forwarded to the mutex member that handles the next stepegfribcessing; alternatively, the temporary results can
be re-computed at the next step if that is possible. In ceftwaiting on a condition variable automatically saves the
execution location and any partially computed state.

2.10 Monitor

A monitor is an object with mutual exclusion and so it can beeased simultaneously by multiple tasks. A mon-
itor provides a mechanism for indirect communication amtasks and is particularly useful for managing shared
resources. A monitor type has all the properties dhss . The general form of the monitor type is the following:

_Mutex class monitor-name {

private :
. /I these members are not visible externally
protected :
/I these members are visible to descendants
public :
. /I these members are visible externally
%

The macro name Monitor is defined to be “Mutex class ” in include file uC++.h.

2.10.1 Monitor Creation and Destruction

A monitor is the same as a class object with respect to creatid destruction, e.g.:
_Mutex class M {

public :
void r(...) ... /I mutex member
I3
M «mp; /I pointer to a M
{ /I start a new block
M m, ma[3]; /I local creation
mp = new M; /I dynamic creation

} /I wait for m, ma[0], ma[l] and ma[2] to terminate and then deallocate

delete mp; // wait for mp’s instance to terminate and then deallocate
Because a monitor is a mutex object, the execution of itgdesir waits until it can gain access to the monitor, just
like the other mutex members of a monitor, which can delaytehmination of the block containing a monitor or the
deletion of a dynamically allocated monitor.

2.10.2 Monitor Control and Communication

In pCH, both internal and external scheduling are providedgrehmost traditional monitors provide only internal
scheduling. Figur@.6 compares the traditional internal scheduling style usixglieit condition variables to the
external scheduling style using accept statements. Therds the exchange of values (telephone numbers) between
two kinds of tasks (girls and boys). (WhileAccept allows the removal of all condition variables in this cases is

not always possible.)

2.11 Coroutine Monitor

The coroutine monitor is a coroutine with mutual exclusimaking it safely accessible by multiple tasks. A coroutine-
monitor type has a combination of the properties of a conauind a monitor, and can be used where a combination

2.12. TASK 29

Internal Scheduling External Scheduling
_Monitor DatingService { _Monitor DatingService {
int GirlPhoneNo, BoyPhoneNo; int GirlPhoneNo, BoyPhoneNo;
uCondition GirlWaiting, BoyWaiting; public :
public : DatingService() {
int Girl(int PhoneNo) { GirlPhoneNo = BoyPhoneNo = -1;
if (BoyWaiting.empty()) { } /I DatingService
GirlWaiting.wait(); int Girl(int PhoneNo) {
GirlPhoneNo = PhoneNo; GirlPhoneNo = PhoneNo;
} else { if (BoyPhoneNo == -1) {
GirlPhoneNo = PhoneNo; _Accept (Boy);
BoyWaiting.signalBlock(); I f
I f int temp = BoyPhoneNo;
return BoyPhoneNo; BoyPhoneNo = -1;
} 11 Girl return temp;
int Boy(int PhoneNo) { } 11 Girl
if (Girlwaiting.empty()) { int Boy(int PhoneNo) {
BoyWaiting.wait(); BoyPhoneNo = PhoneNo;
BoyPhoneNo = PhoneNo; if (GirlPhoneNo == -1) {
} else { _Accept (Girl);
BoyPhoneNo = PhoneNo; I f
GirlWaiting.signalBlock(); int temp = GirlPhoneNo;
I f GirlPhoneNo = -1;
return GirlPhoneNo; return temp;
} /I Boy } /I Boy
}; /| DatingService }; /I DatingService

Figure 2.6: Internal versus External Scheduling

of these properties are needed, such as a finite-state neatiainis used by multiple tasks. A coroutine-monitor type
has all the properties ofdass . The general form of the coroutine-monitor type is the failog:

_Mutex _Coroutine coroutine-name {

private :
/I these members are not visible externally
protected :
/I these members are visible to descendants
void main(); /I starting member
public :
/I these members are visible externally
%

The macro name Cormonitor is defined to be “Mutex _Coroutine " in include file uC++.h.

2.11.1 Coroutine-Monitor Creation and Destruction

A coroutine monitor is the same as a monitor with respectéatoon and destruction.

2.11.2 Coroutine-Monitor Control and Communication

A coroutine monitor can make usesfspend, resume, _Accept anduCondition variablesyait, signal andsignalBlock

to move a task among execution states and to block and rests that enter it. When creating a cyclic call-graph
using a coroutine monitor, it is the programmer’s respatigitho ensure that at least one of the members in the cycle
isa_Nomutex member or deadlock occurs because of the mutual exclusion.

2.12 Task

A task is an object with its own thread of control and exeautitate, and whose public member routines provide
mutual exclusion. A task type has all the properties ciias . The general form of the task type is the following:

30 CHAPTER 2. iCH TRANSLATOR

_Task task-name {

private :
/I these members are not visible externally
protected :
/I these members are visible to descendants
void main(); /I starting member
public :
/I these members are visible externally
%

The task type has one distinguished member, named, in which the new thread starts execution; this distingedsh
member is called theask main. Instead of allowing direct interaction withain, its visibility is normally private

or protected . The decision to make the task mairivate or protected depends solely on whether derived classes
can reuse the task main or must supply their own. Hence, aintseacts with a task indirectly through its member
routines. This approach allows a task type to have multiplelip member routines to service different kinds of
requests that are statically type checked. A task main ¢drave parameters or return a result, but the same effect can
be accomplished indirectly by passing values through thleégaylobal variables, calledommunication variables
which are accessible from both the task’s memberrasid routines.

2.12.1 Task Creation and Destruction

A task is the same as a class object with respect to creatsbdestruction, e.g.:

_Task T {

void main() ... /I task main
public :

void r(...) ...

%

T «tp; /| pointer to a T task

{ /I start a new block
T t, ta[3]; /I local creation
tp = new T; /I dynamic creation
tr(...); /I call a member routine that must be accepted
ta[1].r(...); /I call a member routine that must be accepted
tp->r(...); /I call a member routine that must be accepted

} /I wait for t, ta[0], ta[1] and ta[2] to terminate and then deallocate

delete tp; // wait for tp’s instance to terminate and then deallocate

When a task is created, the appropriate task constructoaaydbase-class constructors are executed in the normal
order by the creating thread. The task’s execution-statelaead are created and the starting point for the new thread
(activation point) is initialized to the taskrsain routine visible by the inheritance scope rules from the tgpk. After
this point, the creating task executes concurrently withrtew task. The location of a task’s variables—in the task’s
data area or in member routinein—depends on whether the variables must be accessed by mewnkiees other
thanmain. main executes until its thread blocks or terminates.

A task terminates when itaain routine terminates. When a task terminates, so does this ths&ad of control.
At this point, the task becomes a monitor and can still be uisetat form. A task’s destructor is invoked by the
deallocating thread when the block containing the taskadlatibn terminates or by an explicitlete statement for a
dynamically allocated task. Because a task is a mutex qlgdabck cannot terminate until all tasks declared in the
block terminate. Similarly, deleting a task on the heap raissi wait until the task being deleted has terminated.

While a task that creates another task is conceptually thenpand the created task its childC+ makes no
implicit use of this relationship nor does it provide anyilities based on this relationship. Once a task is declared i
has no special relationship with its declarer other thantwdsults from the normal scope rules.

Like a coroutine, a task can access all the external vagabiea C+ program and the heap area. Also, any
static member variables declared within a task are shared amorigsédinces of that task type. If a task makes
global references or hasatic variables, there is the general problem of concurrent admethese shared variables.

2.12. TASK 31

Therefore, it is suggested that these kinds of referencesdxkwith extreme caution.

O A coroutine is not owned by the task that creates it; it canfgmssed” to another task. However,

to ensure that only one thread is executing a coroutine at@, the passing around of a coroutine must
involve a protocol among its users, which is the same sortatbgol required when multiple tasks share
a data structure. O

2.12.2 Inherited Members

Each task type, if not derived from some other task type, @iuitly derived from the task typeBaseTask, e.g.:
_Task task-name : public uBaseTask {

%
where the interface for the base clagaseTask is:
_Task uBaseTask : public uBaseCoroutine { // inherits from coroutine base type
public :

uBaseTask();
uBaseTask(unsigned int stackSize);
uBaseTask(void xstorage, unsigned int storageSize);
uBaseTask(uCluster &cluster);
uBaseTask(uCluster &cluster, unsigned int stackSize);
uBaseTask(uCluster &cluster, void sstorage, unsigned int storageSize);

void yield(unsigned int times = 1);
uCluster &migrate(uCluster &cluster);
uCluster &getCluster() const ;
uBaseCoroutine &getCoroutine() const ;

enum State { Start, Ready, Running, Blocked, Terminate };
State getState() const ;

int getActivePriority();
int getBasePriority();

%
The public member routines aBaseCoroutine are inherited and have the same functionality (see Segtiog p.15).
The overloaded constructor routinBaseTask has the following forms:

uBaseTask() — creates a task on the current cluster with the clusteraute$tack size (seeBaseCoroutine()
p.16).

uBaseTask(unsigned int stackSize) — creates a task on the current cluster with the speaifi@mumstack size
(in bytes) (se@BaseCoroutine(int stackSize) p. 16).

uBaseTask(void sstorage, unsigned int storageSize) — creates a task on the current cluster using the specified
storage andnaximunstorage size (in bytes) for the task’s stack
(seeuBaseCoroutine(void sstorage, unsigned int storageSize) p. 16).

uBaseTask(uCluster &cluster) — creates a task on the specified cluster with that clustefaudt stack size.

uBaseTask(uCluster &cluster, unsigned int stackSize) — creates atask on the specified cluster with the specified
stack size (in bytes).

uBaseTask(uCluster &cluster, void sstorage, unsigned int storageSize) — creates a task on the specified cluster
using the specified storage améximunstorage size (in bytes) for the task’s stack.

A task type can be designed to allow declarations to speoéyctuster on which creation occurs and the stack size by
doing the following:

32 CHAPTER 2. iCH TRANSLATOR

_Task T {
public :
T() : uBaseTask(8192) {}; /I current cluster, default 8K stack
T(unsigned int s) : uBaseTask(s) {}; /I current cluster and user specified stack size
T(void «st, unsigned int s) : uBaseCoroutine(st,s) // current cluster and user specified stack storage & size
T(uCluster &c) : uBaseTask(c) {}; /I user cluster

T(uCluster &c, unsigned int s) : uBaseTask(c, s) {}; // user cluster and stack size
T(uCluster &c, void «st, unsigned int s) : uBaseTask(c, st, s) {}; // user cluster, specified stack storage & size

I3

uCluster c; /I create a new cluster

T X, y(16384), z(areal, 32768); [/l x => 8K stack, y => 16K stack, z => stack < 32K at “areal”
Tq(c), r(c, 16384); /I q => cluster ¢ & 8K stack, r => cluster ¢ & 16K stack

T s(c, area2, 32768); /I s => cluster c, stack < 32K at “area2”

The member routine routingeld gives up control of the virtual processor to another reagdk the specified
number of times. For example, the cgitld(5) immediately returns control to theC+ kernel and the next 4 times
the task is scheduled for execution. If there are no othelyréasks, the yielding task is simply stopped and restarted
5 times (i.e., 5 context switches from itself to itself)eld allows a task to relinquish control when it has no current
work to do or when it wants other ready tasks to execute béfgerforms more work. An example of the former
situation is when a task is polling for an event, such as avinamel event. After the polling task has determined the
event has not occurred, it can relinquish control to anatbady task, e.gyield(1). An example of the latter situation
is when a task is creating many other tasks. The creatingnagknot want to create a large number of tasks before the
created tasks have a chance to begin execution. (Taskaresiturs so quickly that it is possible to create 100—-1000
tasks before pre-emptive scheduling occurs.) If after tieaton of several tasks the creator yields control, some
created tasks have an opportunity to begin execution béfiereext group of tasks is created. This facility is not a
mechanism to control the exact order of execution of tastesemptive scheduling and/or multiple processors make
this impossible.

O When thevyield option is used, calls tgield(rand() % 3) are automatically inserted at the beginning
of each member routine. |

Althoughyield is a public member routine of every task type, one task cayietd another task; a task may only
yield itself because a task can only be yielded when it is imgyrwhich is true when a task yields itself. If one task
could yield another, the yielded task may be ready or blocketlin either of these states there is no virtual processor
to yield. If the yielded task is running, it would have to béeimupted and blocked, but it may be performing a critical
operation that cannot be interrupted. Attempting to makesasles work correctly and consistently is problematic and
not particularly useful. Finally, the ability to performaua powerful operation on a task without its permission seem
unreasonable.

The member routinmigrate allows a task to move itself from one cluster to another sbitltan access resources
dedicated to that cluster’s processor(s), e.g.:

from-cluster-reference = migrate(to-cluster-reference)

Althoughmigrate is a public member routine, one task cannot migrate ano#is&r & task may only migrate itself for
the same reason as fgeld.

The member routingetCluster returns the current cluster a task is executing on. The membénegetCoroutine
returns the current coroutine being executed by a task da#keitself if it is not executing a coroutine.

The member routingetState returns the current state of a task, which is one of the eratedrvalues
uBaseTask::Start, uBaseTask::Ready, uBaseTask::Running, uBaseTask::Blocked or uBaseTask::Terminate.

Two member routines are used in real-time programming (be@terl0, p.133. The member routingetActivePriority
returns the current active priority of a task, which is areger value between 0 and 31. The member routine
getBasePriority returns the current base priority of a task, which is an ieteglue between 0 and 31.

The free routine:

uBaseTask &uThisTask();

is used to determine the identity of the task executing thisine. Because it returns a reference to the base task type,
uBaseTask, for the current task, this reference can only be used tosadte public routines of typgBaseTask and

2.13. COMMENTARY 33

uBaseCoroutine. For example, a free routine can verify the stack or yielccaken of the calling task by performing
the following:

uThisTask().verify();
uThisTask().yield();

As well, printing a task’s address for debugging purposestmane like this:
cout << "task:" << &uThisTask() << endl; // notice the ampersand (&)

2.12.3 Task Control and Communication

A task can make use ofAccept anduCondition variableswait, signal andsignalBlock to block and unblock tasks that
enter it. AppendidC.3, p. 165shows the archetypical disk scheduler implemented as dhaskiust process requests
in an order other than first-in first-out to achieve efficietilization of the disk.

2.13 Commentary

Initially, every attempt was made to add the ne@+ types and statements by creating a librarglads definitions
that were used through inheritance and preprocessor madrois approach has been used by others to provide
coroutine facilities $ho87 Lab9(q and simple parallel facilitiesG87, BLL88]. However, after discovering many
limitations with all library approaches, it was abandoneéavour of language extensions.

The most significant problem with all library approaches dmaurrency is the lack of soundness and/or effi-
ciency Buh9g. A compiler and/or assembler may perform valid sequermidimizations that invalidate a correct
concurrent program. Code movement, dead code removal,aying values into registers are just some examples
of optimizations that can invalidate a concurrent prograrg,, moving code into or out of a critical section, remov-
ing a timing loop, or copying a shared variable into a registeking it invisible to other processors. To preserve
soundness, it is necessary to identify and selectively affraptimizations for those concurrent sections of codé tha
might cause problems. However, a programmer may not be avfavben or where a compiler/assembler is using
an optimization that affects concurrency; only the comfalesembler writer has that knowledge. Furthermore, anles
the type of a variable/parameter conveys concurrent us&ifber the compiler nor the assembler can generate sound
code for separately compiled programs and libraries. Taerewhen using a concurrent library, a programmer can at
best turn off all optimizations in an attempt to ensure sm@sd, which can have a significant performance impact on
the remaining execution of the program, which is composddrge sections of sequential code that can benefit from
the optimizations.

Even if a programmer can deal with the soundness/efficienalylem, there are other significant problems with
attempting to implement concurrency via the library apploaln general, a library approach involves defining an
abstract clasSjask, which implements the task abstraction. New task typesraaed by inheritance fromask, and
tasks are instances of these types.

On this approach, thread creation must be arranged so thaask body does not start execution until all of
the task’s initialization code has finished. One approaduires the task body (the code that appears prCat
task’smain) to be placed at the end of the new class’s constructor, vatte ¢o start a new thread ifask::Task().

One thread then continues normally, returning froask::Task() to complete execution of the constructors, while
the other thread returns directly to the point where the twa& declared. This forking of control is accomplished
in the library approach by having one thread “diddle” witle tstack to find the return address of the constructor
called at the declaration. However, this scheme preventisduinheritance; it is impossible to derive a type from a
task type if the new type requires a constructor, since teaonstructor would be executed orajter the parent
constructor containing the task body. It also seems imptesgd write stack-diddling code that causes one thread to
return directly to the declaration point if the exact numbfiievels of inheritance is unknown. Another approach that
does not rely on stack diddling while still allowing inheitce is to determine when all initialization is completed so
that the new thread can be started. However, it is impossibg+ (and most other object-oriented programming
languages) for a constructor to determine if it is the lasistactor executed in an inheritance chain. A mechanism
like Simula’s [Sta87 inner could be used to ensure that all initialization had been dwafere the task’s thread is
started. However, it is not obvious hamner would work in a programming language with multiple inhenmita.

PRESTO (and now Jav&pSBO0() solved this problem by providingsaart() member routine in clasksk, which
must be called after the creation of a ta3ksk::Task() would set up the new thread, bsttrt() would set it running.

34 CHAPTER 2. iCH TRANSLATOR

However, this two-step initialization introduces a newrussponsibility: to invoketart before invoking any member
routines or accessing any member variables.

A similar two-thread problem occurs during deletion wheneatdictor is called. The destructor of a task can
be invoked while the task body is executing, but clean-upeaodst not execute until the task body has terminated.
Therefore, the code needed to wait for a thread’s terminatannot simply be placed ifask::~Task(), because it
would be executed after all the derived class destructors Brecuted. Task designers could be required to put the
termination code in the new task type’s destructor, but phetents further inheritanc&ask could provide &inish()
routine, analogous tstart(), which must be called before task deletion, but that is gorone because a user may fail
to callfinish appropriately, for example, before the end of a block caorinigi a local task.

Communication among tasks also presents difficulties. Hraty-based schemes, it is often done via message
gueues. However, a single queue per task is inadequateuthee’s message type inevitably becomes a union of
several “real” message types, and static type checkingnmgpoomised. (One could use inheritance fromlessage
class, instead of a union, but the task would still have tdoper type tests on messages before accessing them.)
If multiple queues are used, some analogue of the getiect statement is needed to allow a task to block on more
than one queue. Furthermore, there is no statically erdbieavay to ensure that only one task is entitled to receive
messages from any particular queue. Hence the implementatist handle the case of several tasks that are waiting
to receive messages from overlapping sets of queues. Fopéxa

class TaskType : Task {

public :
MsgQueueType A; /I queue associated with each instance of the task
static MsgQueueType B; /I queue shared among all instances of the task type
protected :

void main() {

_Accept i = A.front(); /I accept from either message queue
or _Accept i = B.front();

}

%

TaskType T1, T2;
TasksT1 andT2 are simultaneously accepting from two different queuesil®\ihis straightforward to check for the
existence of data in the queues, if there is no data, Dotand T2 block waiting for data to appear on either queue.
To implement this, tasks have to be associated with bothegiantil data arrives, given data when it arrives, and
then removed from both queues. Implementing this operasierpensive since the addition or removal of a message
to/from a queue must be an atomic operation across all quevmsed in a waiting task’s accept statement to ensure
that only one data item from the accepted set of queues is ¢ivihe accepting task.

If the more natural routine-call mechanism is to be used émnmunication among tasks, each public member
routine would have to have special code at the start and ljgsat the exits of each public member, which the
programmer would have to provide. Other object-orientedjpamming languages that supportinheritance of routines,
such as LOGLAN’88 CKL*88] and Beta MMPN93], or wrapper routines, as in GNU C+¥ig8§, might be able to
provide automatically any special member code. Furtheemee could not find any convenient way to provide an
Ada-like select statement without extending the language.

In the end, we found the library approach to be completelatisfactory. We decided that language extensions
would better suit our goals by providing soundness and effy, greater flexibility and consistency with existing
language features, and static checking.

2.14 Inheritance

C+ provides two forms of inheritanceirivate and protected inheritance, which provide code reuse, gnudblic
inheritance, which provides reuse and subtyping (a proofifehavioural compatibility). (These terms must not be
confused with C+ visibility terms with the same names.)

In C+, class definitions can inherit from one another usiathtsingle and multiple inheritance. pC+, there
are multiple kinds of types, e.g., class, mutex, coroutimel task, so the situation is more complex. The problem is
that mutex, coroutine and task types provide implicit fimality that cannot be arbitrarily mixed. While there are

2.14. INHERITANCE 35

some implementation difficulties with certain combinaipthe main reason is a fundamental one. Types are written
as a class, mutex, coroutine or task, and the coding stysbinseach cannot, in general, be arbitrarily mixed. For
example, an object produced by a class that inherits fronslatigpe appears to be a non-concurrent object but its
behaviour is concurrent. While object behaviour is a usgrdsthere is a significantly greater chance of problems if
users casually combine types of different kinds. TabBshows the forms of inheritance allowedig+.

base NO multiple inheritance
derived struct/class| coroutine| monitor | coroutine monitor] task
struct/class v X X X X
coroutine v v X X X
monitor v X v X X
coroutine monitor V4 V4 V4 V4 X
task v X v X v

Table 2.3: Inheritance among Type Generators

First, the case adingleprivate/protected/public inheritance among homogen&mds of type, i.e., the kinds of
the base and derived type are the same, is supporgetHn(major diagonal in Tablg.3), e.g.:

_Coroutine Cbase {};

_Coroutine Cderived : private Cbase {}; /I homogeneous private inheritance
_Monitor Mbase {};

_Monitor Mderived : protected Mbase {}; // homogeneous protected inheritance
_Cormonitor CMbase {};

_Cormonitor CMderived : public CMbase {}; /I homogeneous public inheritance
_Task Thase {};

_Task Tderived : protected Tbase {}; /I homogeneous protected inheritance

In this situation, all implicit functionality matches beten base and derived types, and therefore, there are no prob-
lems.

Second, the case singleprivate/protected/public inheritance among heteroges&mds of type, i.e., the kinds
of the base and derived type are different, is supportediist only if the derived kind is more specific than the base
kind with respect to the elementary execution properties Gectiorl.2, p.4), e.g.:

class chase {};

_Coroutine Cderived : public cbase {}; /I heterogeneous public inheritance
_Monitor Mderived : public cbase {}; /I heterogeneous public inheritance
_Cormonitor CMderivedl : private cbase {}; /I heterogeneous private inheritance
_Cormonitor CMderived2 : protected Cbase {}; // heterogeneous protected inheritance
_Cormonitor CMderived3 : public Mbase {}; /I heterogeneous public inheritance
_Task Tderivedl : protected cbase {}; /I heterogeneous protected inheritance
_Task Tderived2 : public Mbase {}; /I heterogeneous public inheritance

For example, a coroutine monitor can inherit from a classpaitor, or a coroutine because the coroutine monitor has
the elementary execution properties of each of these kihtyge: The only exception to this rule is between a task
and coroutine because the logical usenafn is completely different between these kinds of type. It seemlikely
that a task could inherit theain routine from a coroutine and have the coroutimesn perform any reasonable action
with respect to the task’s thread and mutex members.

Heterogeneous inheritance is useful for generating coetitypes from existing non-concurrent types, e.g., to
define a mutex queue by deriving from a simple queue, or forwitle container classes requiring additional link
fields. For example, to change a simple queue to a mutex gequées a monitor to inherit from the cla@seue and
redefine all of the class’s member routines so mutual exatusccurs when they are invoked, e.g.:

36 CHAPTER 2. iCH TRANSLATOR

class Queue { /I sequential queue
public :
void insert(...) ...
virtual void remove(...) ...
%
_Mutex class MutexQueue : public Queue { // concurrent queue
virtual void insert(...) ...
virtual void remove(...) ...

%

Queue xgp = new MutexQueue; // subtyping allows assignment

gp->insert(...); /I call to a non-virtual member routine, statically bound
gp->remove(...); /I call to a virtual member routine, dynamically bound

However, there is a fundamental problem with non-virtualmhers in C+, which can cause significant confu-
sion because non-virtual routine calls are statically loufor example, routineQueue::insert and Queue::remove

do not provide mutual exclusion because they are memberkeotlass, while routineBlutexQueue::insert and
MutexQueue::remove do provide mutual exclusion because they are members of exnyppe. Because the pointer
variableqgp is of typeQueue, the callgp->insert calls Queue::insert even thoughnsert is redefined irMutexQueue;

so no mutual exclusion occurs. In contrast, the catetoove is dynamically bound, so the redefined routine in the
monitor is invoked and appropriate synchronization occdise unexpected lack of mutual exclusion would cause
errors. In object-oriented programming languages thag lwaly virtual member routines, this is not a problem. The
problem does not occur with private or protected inheriéalnecause no subtype relationship is created, and hence,
the assignment tgp would be invalid.

Multiple inheritance is allowed, with the restriction ttzitmost one of the immediate base classes may be a mutex,
coroutine, or task type, e.g.:

_Coroutine Cderived : public Cbase, public cbase {};
_Monitor Mderived : public Mbase, public cbase {};
_Cormonitor CMderived : protected Cbase, public cbase {};
_Task Tderived : public Mbase, protected cbase {};

Some of the reasons for this restriction are technical ameselate to the coding styles of the different kinds of type.
Multiple inheritance is conceivable for the mutex propgotyt technically it is difficult to ensure a single root olijer
manage the mutual exclusion. Multiple inheritance of thecexion-state property is technically difficult for the sam
reason, i.e., to ensure a single root object. As well, treetled problem of selecting the correctin to execute on the
execution state, e.g., if the most derived class does noifg@emain member, there could be multipteain members

to choose from in the hierarchy. Multiple inheritance of theead property is technically difficult because only one
thread must be started regardless of the complexity of terafdhy. In general, multiple inheritance is not as useful a
mechanism as it initially seeme@&roqQ.

2.15 Explicit Mutual Exclusion and Synchronization

The following locks are low-level mechanisms for providimgtual exclusion of critical sections and synchronization
among tasks. In general, explicit locks are unnecessarwitd highly concurrent systems; the mutual exclusion
provided by monitors, coroutine monitors and tasks, andsyimehronization provided byAccept , wait, signal and
signalBlock are sufficient. Nevertheless, several low-level lock ma@ras are provided for teaching purposes and for
special situations.

2.15.1 Counting Semaphore

A semaphore ipC+ is implemented as a counting semaphore as describedkstiaiDij65]. A counting semaphore
has two parts: a counter and a list of waiting tasks. Both thater and the list of waiting tasks is managed by the
semaphore. The typeSemaphore defines a semaphore:

2.15. EXPLICIT MUTUAL EXCLUSION AND SYNCHRONIZATION 37

class uSemaphore {
public :

uSemaphore(unsigned int count =1);
void P();
bool P(uDuration duration);
bool P(uTime time);
void P(uSemaphore &s);
bool P(uSemaphore &s, uDuration duration);
bool P(uSemaphore &s, uTime time);
bool TryP();
void V(unsigned int times = 1);
int counter() const ;
bool empty() const;

%

uSemaphore X, y(1), *z;

z = new uSemaphore(4);

The declarations create three semaphore variables araliz@s them to the value 1, 0, and 4, respectively.
The constructor routineSemaphore has the following form:

uSemaphore(int count) — this form specifies an initialization value for the semaghmounter. Appropriate val-
ues are> 0. The default count is 1.

The member routine® andV are used to perform the classical counting semaphore opesaP decrements the
semaphore counter if the value of the semaphore countegasayrthan zero and continues; if the semaphore counter is
equal to zero, the calling task blocksAfs passed a semaphore, that semaphovedsbeforePing on the semaphore
object; the two operations occur atomicallyPIfs passed a duration or time value, the waiting task is uikeldafter
that period or when the specified time is exceeded even ifasle has not beevied; this form ofP returnstrue if
the waiting task i&/ed andfalse otherwise (meaning timeout occurred). (See Sectidn, p. 133for information on
typesuDuration anduTime.) The member routin@yP attempts to acquire the semaphore but does not bloge
returnstrue if the semaphore is acquired afatbe otherwiseV wakes up the task blocked for the longest time if there
are tasks blocked on the semaphore and increments the seraaplunter. I is passed a positive integer value, the
semaphore i¥ed that many times. The member routinter returns the value of the semaphore countérwhich
can be negative, zero, or positive: negative means\abis(sks are blocked waiting to acquire the semaphore, and the
semaphore is locked; zero means no tasks are waiting toradfeisemaphore, and the semaphore is locked; positive
means the semaphore is unlocked and alldwsasks to acquire the semaphore. The member roetimey returns
false if there are threads blocked on the semaphoretaedotherwise.

It is not meaningful to read or to assign to a semaphore variable,r asemaphore variable (e.g., pass it as a
value parameter).

To use counting semaphores ip@+ program, include the file:

#include <uSemaphore.h>

2.15.1.1 Commentary

Thewait andsignal operations on conditions are very similar to thandV operations on counting semaphores. The
wait statement can block a task’s execution whilsignal statement can cause resumption of another task. There
are, however, differences between them. Pheperation does not necessarily block a task, since the dermap
counter may be greater than zero. et statement, however, always blocks a task. 3igeal statement can make
ready (unblock) a blocked task on a condition just &aperation makes ready a blocked task on a semaphore. The
difference is that & operation always increments the semaphore counter; $haffdrting a subsequeRtoperation.

A signal statement on an empty condition does not affect a subsegagrstatement, and therefore, is lost. Another
difference is that multiple tasks blocked on a semaphore@sume execution without delay if enoudtoperations

are performed. In the mutex-type case, multipimal statements do unblock multiple tasks, but only one of these
tasks is able to execute because of the mutual-exclusigepsoof the mutex type.

38 CHAPTER 2. iCH TRANSLATOR

2.15.2 Lock

Alockis either closed (0) or opened (1), and tasks competedaire the lock after it is released. Unlike a semaphore,
which blocks tasks that cannot continue execution immebjiga lock may allow tasks to loop (spin) attempting to
acquire the lock (busy wait). Locks do not ensure that taskgpeting to acquire it are served in any particular order;
in theory, starvation can occur, in practice, it is usuatty & problem.

The typeuLock defines a lock:

class uLock {
public :

uLock(unsigned int value = 1);
void acquire();
bool tryacquire();
void release();

%

uLock X, y, *z;

z = new uLock(0);

The declarations create three lock variables and inigalibe first two to open and the last to closed.
The constructor routineLock has the following form:

uLock(int value) — this form specifies an initialization value for the lock. gxppriate values are 0 and 1. The
default value is 1.

The member routinescquire andrelease are used to atomically acquire and release the lock, cl@idgppening
it, respectively. acquire acquires the lock if it is open, otherwise the calling tasinspvaiting until it can acquire
the lock. The member routineyacquire makes one attempt to try to acquire the lock, i.e., it doesspot waiting.
tryacquire returnstrue if the lock is acquired anéhlse otherwiserelease releases the lock, which allows any waiting
tasks to compete to acquire the lock. Any number of releasede performed on a lock as a release simply sets the
lock to opened (1).

Itis notmeaningful to read or to assign to a lock variable, or copyki@riable (e.g., pass it as a value parameter).

2.15.3 Owner Lock

An owner lock is owned by the task that acquires it; all otlasks attempting to acquire the lock block until the owner
releases it. The owner of an owner lock can acquire the lodkipleitimes, but a matching number of releases must
occur or the lock remains in the owner’s possession and ¢dis&s cannot acquire it. (Owner locks are used in the
implementation of the non-blocking I/O stream library, Ssetion4.2, p. 57). As a result, an owner lock camly be
used for mutual exclusion, because synchronization reguire locking task to be different from the unlocking one.
The typeuOwnerLock defines an owner lock:

class uOwnerLock {
public :

uOwnerLock();
unsigned int times() const ;
uBaseTask xowner() const ;
void acquire();
bool tryacquire();
void release();

%

uOwnerLock X, y, *z;

z = new uOwnerLock;

The declarations create three owner-lock variables atidlizes them to open.

The member routinémes returns the number of times the lock has been acquired bytkewner. The member
routineowner returns the task owning the lock or NULL if there is no owneneTmember routinacquire acquires the
lock if it is open, otherwise the calling task blocks untitén acquire the lock. The member routin@cquire makes
one attempt to try to acquire the lock, i.e., it does not bjdlek valuetrue is returned if the lock is acquired affalse
otherwise. The member routineglease releases the lock, and if there are waiting tasks, one iantest, waiting tasks
are released in FIFO order.

2.15. EXPLICIT MUTUAL EXCLUSION AND SYNCHRONIZATION 39

It is not meaningful to read or to assign to an owner lock variable opy@n owner lock variable (e.g., pass it as
a value parameter).

2.15.4 Condition Lock

The condition lock is like a condition variable (see Sectiv®.3.1 p. 26), creating a queue object on which tasks
block and unblock; however, there is no monitor construdinaplify and ensure correct usage of condition locks.
Instead, a condition lock is dependent on the owner lockifdiuinctionality, and collectively these two kinds of locks
can be used to build a monitor, providing both synchroniraéind mutual exclusion. As for a condition variable, a
condition lock caronly be used for synchronization, because the wait operatioayaslWwlocks. The typeCondLock
defines a condition lock:

class uCondLock {
public :

uCondLock();
bool empty();
void wait(uOwnerLock &lock);
bool wait(uOwnerLock &lock, uDuration duration);
bool wait(uOwnerLock &lock, uTime time);
void signal();
void broadcast();

h

uCondLock X, y, *z;

z = new uCondLock;

The declarations create three condition locks and infgslthem to open.

The member routinempty() returnsfalse if there are tasks blocked on the queue anel otherwise. The routines
wait andsignal are used to block a thread on and unblock a thread from theequfea condition, respectively. The
wait routine atomically blocks the calling task and releasesatigegment owner-lock; in addition, theait routine
re-acquires its argument owner-lock before returningwdi is passed a duration or time value, the waiting task is
unblocked after that period or when the specified time iseded even if the task has not been signalled; this form of
wait returnstrue if the task is signalled anfdlse otherwise (meaning timeout occurred). (See Sectiod, p. 133for
information on typesiDuration anduTime.) Thesignal routine checks if there is a waiting task, and if so, unblacks
waiting task from the queue of the condition lock; waitingks.are released in FIFO order. Tdignal routine can be
safely called without acquiring any owner lock associatéith ¥asks waiting on the condition. Theoadcast routine
is the same as theignal routine, except all waiting tasks are unblocked.

Itis notmeaningful to read or to assign to a lock variable, or copyck l@riable (e.g., pass it as a value parameter).

2.15.5 Barrier

A barrier allowsN tasks to synchronize, possible multiple times, duringrlifeitime. Barriers are used to repeatedly
coordinate a group of tasks performing a concurrent operdtillowed by a sequential operation. iC+, a barrier

is a mutex coroutine, i.e., Cormonitor , to provide the necessary mutual exclusion and to allow ¢od®e easily
executed both before and after tNetasks synchronize on the barrier. The ty@arrier defines a barrier:

40 CHAPTER 2. uC+ TRANSLATOR

_Mutex _Coroutine uBarrier {
protected :
void main() {
for ()4
suspend();
}

}
public :
uBarrier(unsigned int total);
_Nomutex unsigned int total() const;
_Nomutex unsigned int waiters() const;
void reset(unsigned int total);
void block();
virtual void last() {
resume();

}
h
uBarrier x(10), *y;
y = new uBarrier(20);
The declarations create two barrier variables and intigalithe first to work with 10 tasks and the second to work with
20 tasks.
The constructor routineBarrier has the following form:

uBarrier(unsigned int total) — this form specifies the total number of tasks participatinidpe synchronization.
Appropriate values arg 0.

The member routinastal andwaiters return the total number of tasks participating in the syonimation and the
total number of tasks currently waiting at the barrier, szsjwely. The member routirreset changes the total number
of tasks participating in the synchronization; no tasks mayvaiting in the barrier when the total is changelhck
is called to synchronize withv tasks; tasks block until aniy tasks have calletlock. The virtual member routine
last is called by the last task to synchronize at the barrier.ritlwareplaced by subclassing framarrier to provide a
specific action to be executed when synchronization is cetaplThis capability is often used to reset a computation
before releasing the tasks from the barrier to start the cextputation. The default code feast is to resume the
coroutine main.

The coroutine main is usually replaced by subclassing tplgupe code to be executed before and after tasks
synchronize. The general form for a barnegin routine is:

void main() {
for ()1
/I code executed before synchronization (initialization)
suspend();
/I code executed after synchronization (termination)

}
}

Normally, the last action of the constructor for the subglssresuming, which switches to the coroutine main to
prime the barrier’s initialization. Whemain suspends back to the constructor, the barrier is initidlazed ready to
synchronize the first set of tasks.

It is not meaningful to read or to assign to a barrier variable, or cafarrier variable (e.g., pass it as a value
parameter).

To use barriers in aC+ program, include the file:

#include <uBarrier.h>

2.16 User Specified Context

The following facilities allow users to specify additior@routine and task context to be saved and restored during a
context switch. This facility should only be used to save egsiore processor specific data, for example, coprocessor

2.16. USER SPECIFIED CONTEXT 41

or graphics hardware data that is specific to each processartution. This facility doesotallow a shared resource,

like a single graphics device, to be accessed mutually skely by multiple tasks in a multiprocessor environment. |

a multiprocessing environment, tasks executing in pdredligupt the shared resource because their context switche
overlap. To share a resource in a multiprocessor envirohraguoires proper mutual exclusion, for example, by using a
server task. In a uniprocessor environment, this facibity be used to guarantee mutual exclusion to a shared resource
because only one task is executing at a time so the contax¢ shtared resource is saved and restored on each context
switch. Westronglydiscourage using this facility for mutual exclusion of a quocessor-specific resource because it
does not scale to the multiprocessor environment.

The user-context facility has two parts: the definition obatext save-area, containing the storage for the context
and routines to save and restore the context, and the déciaead initialization of a context save-area. The associa
tion of the additional context with a coroutine or task deggean which execution state is active when the declaration
of the context save-area occurs.

A context areanustbe derived from the abstract clagSontext:

class uContext {
public :
uContext();
uContext(void xkey);
virtual void save() = O;
virtual void restore() = 0;
}; /I uContext

The overloaded constructor routin€ontext has the following forms:
uContext() — creates a context with a unique search key (discussedyghort

uContext(void +key) — creates a context with the user supplied search key.

Multiple context areas can be declared, and hence, assdaidth a coroutine or task. However, a context is only
associated with an execution state if its search key is @nidihis requirement prevents the same context from being
associated multiple times with a particular coroutine skta

Figure2.7 shows how the context of a hardware coprocessor can be sadegstored as part of the context of
taskworker. A unique search-key for all instances@fProcessorCxt is created via the address of the static variable,
uUniqueKey, because the address of a static variable is unique withiogrgam. Therefore, the value assigned to
uUniqueKey is irrelevant, but a value must be assigned in one translaitiat for linking purposes. This address is
implicitly stored in each instance @oProcessorCxt. When a context is added to a task, a search is performedyor an
context with the same key. If a context with the same key iséhthe new context is not added; otherwise it is added
to the list of user contexts for the task.

O WARNING: Putno code into routinesave andrestore that results in a context switch, e.g., printing
usingcout or cerr (useprintf if necessary). These routines are called during a contaxtisyand a context
switch cannot be recursively invoked. |

2.16.1 Predefined Floating-Point Context

In most operating systems, the entire state of the actuakpsor is saved during a context switch between execution
states because there is no way to determine if a particujectib using only a subset of the actual processor state. All
programs use the fixed-point registers, while only some hus@dating-point registers. Because there is a significant
execution cost in saving and restoring the floating-poigisters, they are not saved automatically. If a coroutine or
task performs floating-point operations, saving the flaafioint registers must become part of the context-switghin
action for the execution state of that coroutine or task.

To save and restore the float-point registers on a contextisydeclare a single instance of the predefined type
uFloatingPointContext in the scope of the floating-point computations, such asegéining of the coroutine’s or task’s
main member, e.g.:

42 CHAPTER 2. uC+ TRANSLATOR

class CoProcessorCxt : public uContext {

static int uUniqueKey; /I unique address across all instances

int reg[3]; /I coprocessor has 3 integer registers
public :

CoProcessorCxt() : uContext(&uUniqueKey) {};

void save();

void restore();

%
int CoProcessorCxt::uUniqueKey = 0; // must initialize in one translation unit

void CoProcessor::Save() {
/| assembler code to save coprocessor registers into context area

void CoProcessor::Restore() {
/I assembler code to restore coprocessor registers from context area

}

_Task worker {

void main() {
CoProcessorCxt cpcext; /I associate additional context with task

Figure 2.7: Saving Co-processor Context

_Coroutine C {
void main() {
uFloatingPointContext fpcxt; // the name of the variable is insignificant
. Il floating-point computations can be performed safely in this scope

%
Oncemain starts, both the fixed-point and floating-point registeesrasstored or saved during a context switch to or
from instances of coroutine.

O WARNING: The member routines of a coroutine or task are executed tisgnexecution state of the
caller. Therefore, if floating-point operations occur in amber routine, including the constructor, the
caller must also save the floating-point registers. Onlyrawtine’s or task’snain routine and the routines
called bymain use the coroutine’s or task’s execution state, and thexeonly these routines can safely
perform floating-point operations. |

O WARNING: Some processors, like the SPARC, implicitly save both fixed #oating-point reg-
isters, which means it is unnecessary to create instanceBlaftingPointContext in tasks performing
floating-point operations. However, leaving aiRloatingPointContext is dangerous because the pro-
gram is not portable to other processors. Therefore, it pomant to always include an instance of
UFloatingPointContext in tasks performing floating-point operations. For prooesdike the SPARC,
uFloatingPointContext does nothing, so there is no cost. |

Additional context can be associated with a coroutine de itag free routine, member routine, or as part of a class
object to temporarily save a particular context. For exanile floating-point registers are saved when an instance of
the following class is declared:

2.17. IMPLEMENTATION RESTRICTIONS 43

class c {
private :
uFloatingPointContext fpcxt;
public :
void func() {
/I perform floating-point computations

}

%
When a coroutine or task declares an instance, dfs context switching is augmented to save the floatingvpoi
registers for the duration of the instance. This capabdilyws the implementor of to ensure that the integrity of its
floating-point calculations are not violated by anothermectine or task performing floating-point operations. lals
frees the user from having to know that the floating-poinistegs must be saved when using claskemember, if
the floating-point registers are already being saved, td@iadal association is ignored because of the unique kearc
key.

2.17 Implementation Restrictions

The following restrictions are an artifact of this implentegion. In some cases the restriction results from the featt t
nCH is only a translator and not a compiler. In all other cats restrictions exist simply because time limitations
on this project have prevented it from being implemented.

e While nC+ has extended C+ with concurrency constructs, it is raatrapiler. Therefore, it suffers from the
soundness/efficiency problem related to all concurretrmaty approaches (see Sectibm3 p.33). To mitigate
soundness problemgC+ implicitly turns on or off compiler optimizations knovta cause soundness problems.
Unfortunately, turning on these flags affects all variaptesl hence, prevents many valid optimizations. Since
it is virtually impossible to determine whether a varialder is not shared by multiple tasks, it is necessary to
take such Draconian measures to ensure that correct centprograms are sound.

e Some runtime member routines are publicly visible when gteyuld not be; thereforg,C+ programs should
not contain variable names that start with a “u” followed bgapital letter. This problem is an artifact p€+
being a translator.

e By default, uCH allows at most 128 mutex members because a 128-bit masget to test for accepted
member routines. WhenC+ is compiled, this value can be modified by setting the megssor variable
__U_MAXENTRYBITS_ .

Unfortunately, bit masks, in general, do not extend to suppaltiple inheritance. We believe that the perfor-
mance degradation required to support multiple inhergascinacceptable.

¢ When defining a derived type from a base type that is a taskroutioe and the base type has default parameters
in its constructor, the default arguments must be expjisiplecified if the base constructor is an initializer in the
definition of the constructor of the derived type, e.g.:

_Coroutine Base {
public :
Base(int i, float f = 3.0, char c ='c’);

%
_Coroutine Derived : public Base {
public :
Derived(int i) : Base(i, 3.0, 'c’); /I values 3.0 and "¢’ must be specified
%

All other uses of the constructor f@&ase are not required to specify the default values. This problem is an
artifact of uC+ being a translator.

e Anonymous coroutine and task types are not supported, e.g.:

44

CHAPTER 2. uC+ TRANSLATOR

_Task /x no name «/ { /I must have a name

} 1, 2, t3;
Both a coroutine and a task must have a constructor and destrwhich can only be created using the name
of the type constructor. Having the translator generatedddn unique name is problematic because the order

of include files may cause the generation of a different namdifferent compilations, which plays havoc with
linking because of name mangling.

There is no discrimination mechanism in th&ccept statement to differentiate among overloaded mutex mem-
ber routines. When time permits, a scheme using a formahdcin the_Accept statement to disambiguate
overloaded member routines will be implemented, e.g.:

_Accept (mem(int));
or _Accept (mem(float));

Here, the overloaded member routimesm are completely disambiguated by the type of their pararadier
cause C+ overload resolution does not use the return type.

e A try block surrounding a constructor body is not supported, e.g.

class T2 : public T1 {
const int i;
public :
T2(); /I constructor
%
T2:T2() try : T1(3), i(27) {
/I body of constructor
} catch {
/I handle exceptions from initialization constructors (e.g., T1)

}

This problem is an artifact giC+ being a translator.

Chapter 3

Asynchronous Communication

Parallelism occurs when multiple threads execute simatiasly to decrease a program’s execution, i.e., the program
takes less time to complete a computation. The computatigst tme divided along some dimension(s) and these

subdivisions are executed asynchronously by the threddusd&crease in execution time is limited by the number of

these subdivisions that can be executed simultaneouslyéhtis law).

Every practical concurrent program involves some comnatitino among threads. One thread may communicate
with another in order to provide inputs (arguments), antboeceive the output (results) produced by the other thread
If the thread providing the inputs is the same thread that la&ceives the output, then the communication pattern is
analogous to a sequential routine call, where one routiodges arguments to another and receives the result. A call
by one thread to a Mutex member of a task is an example of this communication patt®uch a call is known as
asynchronous callbecause the two tasks must synchronize in order to passghmants from caller to callee, and
because the caller remains blocked until the callee reitgmssult.

While a synchronous call is simple and useful, it may limitghi@lism because the caller task is forced to block
until the result is returned. In some cases there is a sudidivdf the computation that the caller task can perform
while the callee task is computing its result. In such a céise,more appropriate to use @asynchronous call An
asynchronous call can be thought of as two synchronous oalésto provide the inputs and a second one to receive
the output, e.g.:

callee.start(arg); /I provide arguments
/I caller performs other work asynchronously
result = callee.finish(); /I obtain result

Here, the call tatart returns as soon as the arguments are transferred fromizadialiee. Computation then proceeds
for both the caller and callee, concurrently. In an asyncbus call, the caller and callee are known as dhent
andserver, respectively. Note, the client may still have to block a dall tofinish, if the server has not yet finished
its computation. The amount of parallelism that can be olethin this way depends on the amount of concurrent
computation that can be done by the client and server. I&tlsglittle or no concurrency possible, then the overhead
of two synchronous calls outweighs the benefits gained bypatgntial parallelism, and a single synchronous call is
sufficient.

In the previous example, the client may also have to blockwvdaling thestart method, if the server is performing
some other computation at the time of the call. If the serwy bandles one outstanding asynchronous call at a time
from one client task it should always be ready to receive aspand to thetart method immediately, minimizing
blocking time for the client. Depending on the applicatibmay be necessary to have a more complicated server, one
that can manage multiple outstanding asynchronous calbs fnultiple clients simultaneously. Constructing a server
that can handle calls efficiently while minimizing blockitime for clients generally requires additional bufferirfg o
arguments and results. Different designs for servers agsed in Sectio®.3, p.53.

45

46 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

3.1 Futures

A future is an abstraction that attempts to hide some of the detaitdvied in an asynchronous call, in particular
buffering and retrieving the return valtieThe previous two synchronous calls are transformed intogleiexplicit
synchronous call and an implicit second synchronous cadinithe future is accessed:

future = callee.work(arg); /I provide arguments and get future result
/I perform other work asynchronously
i = future() + ... /I obtain actual result, may block if result not ready

In general, a future is generic in the type of the return valoe acts as a surrogate for this value. Instead of making
two calls to send arguments and then retrieve the resulbgdescall is made and the future representing the result is
returned immediately. The client continues execution #sdfcall had returned an actual result. The future is filled in
at some later time, after the server calculates the redulielclient tries to use the future before a result is inskrte
the client implicitly blocks and is subsequently unblockgdhe server after itinsertions a result in the future. Henc
there is no explicit protocol between client and server toagee a result; the protocol is implicit within the future.

nC+H provides two forms of futures, which differ in their sige-management interface. The explicit-storage-
management future=(ture_ ESM) must be allocated and deallocated explicitly by the clieftte implicit-storage-
management future=(ture_ISM) automatically allocates required storage and autonibtifraes the storage when
the future is no longer in use. The advantag€wfire_ ESM is that it allows the programmer to choose the method of
allocation, whether on the heap, on the stack, or staticahich can result in more predictable and efficient allawati
compared tdruture_ISM, which always allocates storage on the heap. The disadyawofa&uture_ESM is that the
client must ensure that the future is deallocated, but nforbe¢he server thread has inserted the result (or the aperat
has been cancelled).

There is a basic set of common operations available on bp#stgf futures. These consist of client operations,
used by a client task to retrieve the return value, and seqerations, used by a server task to fill in the value.

3.1.1 Client Operations

The future operations available to a client are:

available —returngrue if the asynchronous call has completed &ise otherwise. Note, the call could complete
because a result is available, because the server has ehamexception, or because the call has been
cancelled (through theancel method, below).

operator () — (function call) returns a copy of the future result. Theatiblocks if the future result is currently
unavailable. If an exception is returned by the server,¢kegption is thrown. A future result can be retrieved
multiple times by any task until the future is reset or degtrh

operator T — (conversion to type T) returns a copy of the future resihis kind of access must be performed only
after a blocking access, or after a call évailable returnstrue . This operation is a low-cost way of accessing
a future resuliafter the result is known to have been delivered. As vaprator (), if the server returns an
exception, that exception is thrown.

cancelled —returngrue if the future is cancelled andise otherwise.

cancel — attempts to cancel the asynchronous call the future réderall clients waiting for the result are un-
blocked, and an exception of tyjpature_ ESM::Cancellation is thrown at any client attempting to access the
result. Depending on the server, this operation may alse treveffect of preventing the requested computation
from starting, or it may interrupt the computation in pregge

3.1.2 Server Operations
The future operations available to a server are:

delivery(T result) — copy the server-generated result into the future, unlohgciny clients that are waiting for
the result. This resultis the value returned to the client.

1 Other approaches for asynchronous call involve ticketéarwll backs, but both approaches require an explicitqmaitto retrieve a result.

3.1. FUTURES 47

reset —mark the future as empty so it can be reused, after whichutrertt future value is no longer available.

exception(uBaseEvent scause) — copy a server-generated exception into the future. Adint§ waiting for the
result are unblocked, and the excepteanse is thrown at any client attempting to access the result.

A server may require storage to buffer call arguments andradlta needed for cancellation of futures. This
storage is allocated as part of the future; hence, the futagealso be generic in the type of server-management data.
A server exports this type information for use with a futuged Sectio.3, p.53).

Future cancellation affects the server computing the &suralue. Depending on the server, cancellation may
prevent the requested computation from starting, or it mégriupt the computation in progress. In both cases, the
server does not insert a result into the future. If the sezwemputation cannot be interrupted, the server may deliver a
result even though the future has been cancelled.

An ESM future’scancel member cannot return until it is known that the server no &mgferences the cancelled
future because the future’s storage may be deallocatedefine, the server must inform the future if it will or will
not not deliver a value, by supplying a member in #eeverData type with the following interface:

bool cancel();

It returnstrue if the result of the asynchronous call will not be deliveredhe future, and hence the server computation
has been interrupted, arfdse otherwise.

An ISM future allows server-specific data to be included ie thture through a special constructor parameter,
which must implement a similarancel member. However, no action need be taken by the ISM servese st is
always safe for the client to delete its copy of the futurethiis case theancel method is purely advisory, allowing
the server to avoid unnecessary computation.”

3.1.3 Explicit Storage Management

The explicit storage-management (ESM) future (see Figuemakes the client responsible for storage management
by preallocating the future and passing it as an argumeihitasynchronous call.

template <typename T, typename ServerData> _Monitor Future_ESM {
public :
Future _ESM();

/I used by client

__Nomutex bool available(); /I future result available ?

T operator ()(); /I access result, possibly having to wait
_Nomutex operator T(); /I cheap access of result after waiting
_Event Cancellation {}; /I raised if future cancelled

_Nomutex bool cancelled(); /I future result cancelled ?

void cancel(); /I cancel future result

/I used by server

ServerData serverData; /I information needed by server

void delivery(T result); /I make result available in the future
void reset(); /I mark future as empty (for reuse)

void exception(uBaseEvent xex); /I make exception available in the future

Figure 3.1: Future : Explicit Storage Management

This kind of future isnot copyable, i.e., no assignment or pass-by-value is allowedh client and server must
operate on the same future, since the future is the buffeatirwhich the result is returned. To copy the future would
be to create two buffers; a client could wait for a value to bkvéred to one buffer, whereas the server could deliver
the future to the other buffer. As a result it is necessaryasgshe future by pointer or by reference. It is possible for
many threads to wait on the same future, so long as each uséstarr reference.

48 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

Itis the client’s responsibility to ensure a future conBetio exist after a call as long as it is possible for the server
to deliver a return value or exception. It is safe to deleteftliure afteroperator () returns, wheravailable returns
true, or aftercancel returns. Note that because of this guarantee providechbgel, it may be the case thatncel
blocks until the server task acknowledges the cancellation

3.1.4 Example

This example illustrates how a client uses a number of fgtto@ommunicate asynchronously with a server:

Server server,; /I server thread to process async call
Future_ESM<int, Server::IMsg> f[10]; /I created on the stack
for (inti=0;i<10;i+=1){ /I start a number of calls
server.mem(f[i], i, 'c’); /I async call
}
/I work asynchronously while server processes requests
for (inti=0;i<10;i+=1){ /I retrieve async results
osacquire(cout) << fli]j() << " " << /Il may block on first attempt to retrieve value
fli] << endl; /I use value again (cheap access)
}

The client creates an array &f futures forint values. In general, these futures can appear in any corggutring
anint value and are used to maRéasynchronous calls to the server. For each calkteer.mem, a future is passed,

in which the server returns a result, along with appropréateiments, which are used by the server to perform the
computation. The client then proceeds asynchronouslytiwélserver to perform other work, possibly in parallel with
the server (if running multiprocessor). Finally, the clieetrieves the results from the server by first performing a
blocking access to each future. After that future is re&ib\vt can be retrieved again using the cheap nonblocking-
form (or the expensive blocking-form, but there is no pomsynchronizing more than once for each asynchronous
call.)

The key point for explicit futures is that the client prealites the future storage so the server does not perform any
dynamic memory-allocation for the futures, which can pded a substantial performance benefit. In the example, the
client is able to use low-cost stack storage for the futuessiad to interact with the server.

3.1.5 Implicit Storage Management

The implicit storage-management (ISM) future (see FiguBesimplifies the future interface relative Fature_ ESM
by automatically managing the storage required for the@symous call.

Unlike the ESM future, an ISM futuris copyable, i.e., both assignment and pass-by-value aneedloThe ISM
future functions as a “handle” or smart point&ig01] that refers to the result value. Any copy of an ISM future
refers to the same result value as the original. Although 8Mres may be allocated on the stack, on the heap,
or statically, the underlying storage for the result valaed possibly for server-management data as well) is always
implicitly allocated on the heap. This storage is freed wakifutures referring to that value are destroyed.

Server-specific data (see Sectidi.2, p. 46) can be passed to an ISM future via its constructor.

Occasionally it is useful to know whether two futures referttie result of the same asynchronous call. For
this reasonFuture_ISM has one member not found Future_ ESM. The member routinequals returnstrue if the
argument future refers to the same asynchronous call afuthig andfalse otherwise.

3.1.6 Example

This example uses ISM futures in the same way the previousgeaused ESM futures:

3.2. FUTURE ACCESS 49

template <typename T> class Future_ISM {
public :
Future _ISM();
Future_ISM(ServerData sserverData);

/I used by client

bool available(); /I future result available ?

T operator ()(); /I access result, possibly having to wait
operator T(); /I cheap access of result after waiting
_Event Cancellation {}; /I raised if future cancelled

bool cancelled(); /I future result cancelled ?

void cancel(); /I cancel future result

bool equals(const Future_ISM<T> &other); // equality of reference

/I used by server

void delivery(T result); /I make result available in the future

void reset(); /I mark future as empty (for reuse)

void exception(uBaseEvent xex); /I make exception available in the future
%

Figure 3.2: Future : Implicit Storage Management

Server server; /I server thread to process async call
Future_ISM<int> f[10]; /I created on the stack, but also uses heap
for (inti=0;i<10;i+=1){ /I start a number of calls

fli] = server.mem(i, 'c’); /I async call
}
/I work asynchronously while server processes requests
for (inti=0;i<10;i+=1){ /I retrieve async results

osacquire(cout) << fij() << " " << /Il may block on first attempt to retrieve value

fli] << endl; /I use value again (cheap access)

}

Note that the asynchronous call to the server has the futuits aeturn value, resembling a traditional return call,
unlike the ESM future. Also, an ISM future allows the intdre@rver-management data to be hidden from the client.

3.2 Future Access

After a client has created a future, passed it to a servertf@rdcontinued asynchronously, it normally accesses the
future to retrieve its value. The simplest way to access @réus to call itsoperator () member. If the client's com-
putation is reasonably structured, this approach may geogbod asynchrony, with only occasional short-blocking
because the future’s value is unavailable. However, aspngttan be curtailed if the client accesses a future tog earl
and blocks when it could do other work. A more complicated wigccessing a future is to check, using tleilable
method, whether the future is accessible before performipgtentially blocking access operation.

When a client creates multiple futures, and correspongimglkes multiple asynchronous calls using these futures,
neither of previous approaches may be satisfactory. Tkataiay only be able to proceed when some combination of
the future results are available, or it may be able to prooeedfferent ways depending on the order in which results
become available. Although it is possible to usedbmglable method to check for accessibility of a set of futures, itis
impossible to usavailable to wait on a future set without polling the futures (busy Wwaj). Hence, a more complex
future-selection mechanism is necessary. This mechardgsnbe divided into two basic forms: heterogeneous and
homogeneous.

heterogeneous:In this case, there are a number of futures that may havereliffeéypes. Complicated selection
conditions are constructed by naming individual futuresipressions. This style of selection provides great
flexibility, but does not scale to large numbers of futures.

50 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

homogeneous:In this case, there are a number of futures of related typhe.s€t of futures are stored together in
a data structure like a container or array, and hence, must $@me notion of common type. Two common
selection operations on the futures within the data streciwe wait-for-any and wait-for-all, i.e., wait for the
first future in the set to becomes available, or wait for alufas in the set to become available. This style of
selection is practical for large numbers of futures, buksate flexibility of heterogeneous selection.

3.2.1 Select Statement

1CH provides a select statement to handle heterogeneaus &élection by waiting for one or more available futures
based on a logical selection-criteria. The simplest forithefselect statement has a singkelect clause, e.g.:

_Select(selector-expression);

The selector-expression must be satisfied before execatintinues. When the selector-expression consists of a
reference to a single future, the expression is satisfiegdfomly if the future is available. For example, in:

_Select(f1l);, = f1();
the selector becomes select blocked uidvailable() is true, which is equivalent to calling the blocking futuceess-

operator. More interesting is when multiple futures appea compound selector-expression, where the futures are
related using logical operatorsand&& to specify a compound selection criteria, e.g.:

_Select(f1 || f2 && 13);

Normal operator precedence applies so the expression Igitlyparenthesized ag(f1 || (2 && f3)). Execution
waits until either futurefl is available or both future® andf3 are available. Hence, for any selector-expression
containing arj | operator, some futures in the expression may be unavaiditaethe selector-expression is satisfied.
For example, in the above selection expression, if futubecomes available, neither, one or botlfecdndf3 may be
available.

A _Select clause may be guarded with a logical expression, e.g.:

_When (conditional-expression) _Select(f1); = if (conditional-expression) _Select(f1);

The selector task is select blocked while the guard is trdelagre is no available future. AWhen guard is considered
true if it is omitted or if itsconditional-expressiomvaluates to non-zero. If the guard is false, executionicoas
without waiting for any future to become available; for thiample, the guard is the same adfastatement. Note, a
simple select-statement always waits until at least ongdus available unless its guard is false.

The complex form of the select statement conditionally exex a specific actioafter each selector-expression
evaluates to true (see select-statement grammar in Chiappefl51for complete syntax), e.g.:

_Select(selector-expression)
statement /I action

After the selector-expression is satisfied, the actiorestant is executed; in this case, the action could simplgpoll
the select statement. However, the complex form of the setatement allows relating multipleSelect clauses
using keywordsr andand, each with a separate action statement. dhandand keywords relate the Select
clauses in exactly the same way operajpend&& relate futures in a select-expression, including the sgpeeator
precedence; parentheses may be used to specify evaluatien &or example, the previous select statement with a
compound selector-expression can be rewritten into it&/atgnt complex form with actions executed for each future
that becomes available (superfluous parentheses showlpremeof evaluation):

/I superfluous parentheses

_Select(1)
statement-1 /I action
or (/I superfluous parentheses
_Select(2) /I optional guard
statement-2 /I action
and _Select (f3) /I optional guard
statement-3 /I action
) /I and
) /I or

The original selector-expression is now three connect8dlect clauses, where eachSelect clause has its own
action. During execution of the statement, eadelect-clause action is executed when its sub-selector-exjoessi

3.2. FUTURE ACCESS 51

is satisfied, i.e., when each future becomes available; \eweontrol does not continue until the selector-expoassi
associated with the entire statement is satisfied. For ebeanif2 becomes available, statement-2 is executed but
the selector-expression associated with the entire sateisinot satisfied so control blocks again. When either
f3 become available, statement-1 or 3 is executed, and thet@ekxpression associated with the entire statement is
satisfied so control continues. For this example, withination statement, it is possible to access the future using
the non-blocking access-operator since the future is krtoviae available.
An action statement is triggered only once for its seleetqression, even if the selector-expression is compound.
For example, in:
_Select(fl || f2)
statement-1
and _Select (f3)
statement-2
statement-1 is only executed once even though both fufuraed f2 may become available while waiting for the
selector-expression associated with the entire statetbéeicome satisfied. Also, in statement-1, it is unknown twhic
of futuresfl or 2 satisfied the sub-selector-expression and caused tha &ctixe triggered; hence, it is necessary to
check which of the two futures is available.
Note, a complex select-statement wittvhen guards is not the same as a group of conneitsthtements, e.g.:
if (Cl) _Select(fl); _When (C1) _Select(fl1);
else if (C2) _Select(f2); or _When (C2) _Select(f2);
The left example waits for only futurfé if C1 is true or onlyf2 if C1 is false andC2 is true. The right example waits
for eitherfl or f2 if C1 andC2 are true. Like the Accept statement, it take8" — 1 if statements to simulate a
compound_Select statement withV _When guards (see [£3).
Finally, a select statement can be made non-blocking usiegr@natingelse clause, e.g.:

_Select(selector-expression)

statement /I action
_When (conditional-expression) else // optional guard & terminating clause
statement /I action

Theelse clausemustbe the last clause of a select statement. If its guard is froenitted and the select statement is
not immediately true, then the action for thiee clause is executed and control continues. If the guard $&fahe
select statement blocks as if thlee clause is not present. (See Sectidn2.3 p. 137for timeout with_ Select.)

3.2.2 Wait Queue

1CH provides two data structures to handle homogeneoussfgtilection. As with the two future types, they have
similar behaviour but different approaches to storage mament.

ESM ISM
template < typename Selectee > template < typename Selectee >
class uWaitQueue ESM { class uWaitQueue_ISM {
public : public :
uWaitQueue ESM(); uWaitQueue _ISM();
template < typename lterator > template < typename lIterator >
uWaitQueue ESM(Iterator begin, Iterator end); uWaitQueue _ISM(Iterator begin, Iterator end);
bool empty() const; bool empty() const ;
void add(Selectee *n); void add(Selectee n);
template < typename lterator > template < typename lIterator >
void add(Iterator begin, Iterator end); void add(Iterator begin, Iterator end);
void remove(Selectee xn); void remove(Selectee #n);
Selectee xdrop(); Selectee drop();
g g

To useuWaitQueue_ISM, futures are added to the queue at construction or usingitheethods, and are removed
using thedrop method as each becomes availabiaitQueue_ESM is similar, except it operates on future pointers.
For uwaitQueue_ESM, the client must ensure added futures remain valid, i.eir #iorage persists, as long as they

52 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

are in auWaitQueue_ESM. ForuWaitQueue_ISM, the added futures must be copyable, so ISM futures can lue use
but not ESM futuresyWaitQueue_ESM is the only queue that can be used with ESM futures.
The operations available on both kinds of queue are:

uWaitQueue _ISM() / uWaitQueue _ESM() — constructs an empty queue.

uWaitQueue _ISM(Iterator begin, Iterator end) / uWaitQueue_ESM(lterator begin, Iterator end) — constructs a
queue, adding all of the futures in the range referenced éyitdnatorsbegin andend (inclusive of begin,
but exclusive oend). For the ESM queue, it is pointers to the futures that areddd the queue.

empty — returns true if there are no futures in the queue, falseraike.
add(Selectee n) —adds a single future to the queue (ISM).
add(Selectee *n) —adds a single pointer to a future to the queue (ESM).

add(Iterator begin, Iterator end) — adds all of the futures in the range referenced by the desaegin andend
(inclusive ofbegin, but exclusive otnd). For the ESM queue, itis pointers to the futures that areddd the
queue.

remove(Selectee n) —removes any futures in the queue that refer to the samelasyraus call as (ISM).
remove(Selectee «n) —removes any occurrence of the future poimtélom the queue (ESM).

drop — returns an available future from the queue, removing inftbe queue. The client blocks if there is no
available future. If multiple futures are available, onetisen arbitrarily to return; other available futures can
be obtained by further calls tvop. Calling drop on an empty ISM queue is an error; calling dro@on empty
ESM queue return§ULL.

Thedrop method is an example of “wait-any” semantics in homogenselestion: execution blocks until at least
one future is available. To provide “wait-all” semantics)eve execution only continues when all futures are avaglabl
a simple loop suffices:

uWaitQueue _ISM<Future _ISM<int> > queue; // or ESM

/I add futures to queue
while (! queue.empty()) { /I wait for all futures to become available

queue.drop();
}
Other semantics, such as “wait-(block until n futures are available), can be obtained using more completxa
logic. Indeed, it is possible to use wait queues to simulateesforms of the Select statement:

_Select(1) uWaitQueue _ISM<Future _ISM<int> > queue;
statement-1 queue.add(f1); queue.add(f2); queue.add(3);
or _Select(f2 && f3) | for (;;){
statement-2 queue.drop();

if (fl.available()) {
statement-1
break;
} else if (f2.available() && f3.available()) {
statement-2
break;

}

However, for more complex selection, the complexity of tineudation grows faster than the complexity of the equiva-
lent _Select statement. Furthermore, th&elect statement allows for different types of futures (includobaih ESM
and ISM futures) to be mixed in a single selection, whereadutures in aiwaitQueue must all have the same type.

3.3. SERVERS 53

single future Lo J

multiple futures Tt !

Figure 3.3: Basic Server Structures

3.3 Servers

A server performs a computation on behalf of a client allatime client to execute asynchronously until it needs the
result of the computation. Figuf3 shows three basic organizational structures for servens) §imple to complex
(top to bottom). The top structure is the simplest, wherenglsiclient uses a direct asynchronous call to pass a
future to the server for computation and retrieves the tefuhis computation from the future before passing another
future (one-to-one relationship between client and sgrvehis structure ensures the single client cannot block on
the asynchronous call because it synchronizes with thesedven it accesses the future, so the server should always
be available to receive arguments for the next call. Howe¥és structure may result in the server spending most
of its time blocked if the single client does significant aduial computation (such as processing the future result)
before making the next call. Note, attempting to increasestirver’'s work by sending multiple futures produces no
additional asynchrony because the server cannot accese tadls while it is working nor does it have any place to
store the additional arguments for subsequent processing.

To mitigate server blocking, a server must be restructuwedipport multiple asynchronous calls while it is work-
ing. This approach allows one or more clients (many-to-atationship between clients and server) to make one
or more asynchronous calls, supplying the server with masekwo keep it from blocking. Two key changes are
required. First, a server must provide a request bufferdrestirguments for multiple asynchronous calls. Second,
the server must poll periodically for new asynchronoussoatile it is working, otherwise clients block attempting to
insert requests into the buffer until their call is accept@His latter requirement is necessary because the bufter is
shared resource that requires mutual exclusion, i.entsli@dd to the buffer and the server removes from the buffer.
However, polling can obscure server code and polling fraqués always an issue. The only way to remove polling
is to separate the buffer’s mutual-exclusion from the gésve

The middle structure in Figur 3 handles multiple asynchronous calls by transforming thecticommunication
between client and server into indirect communication byjgosing the server as one of more worker tasks to perform
computations and a monitor buffering future requests fregnehronous calls between client(s) and worker(s). A
client places arguments into the input buffer along with tuife to return a result, and then continues. A worker
removes arguments from the input buffer for computation glades the result of the computation into the supplied
future; inserting the result implicitly unblocks any waigji client(s) attempting access to the future. Clients maglbl
if there is contention on accessing the buffer or the bufféuli; workers may block if there is contention on accessing
the buffer or the buffer is empty. Any buffer management i$grened by the client and/or worker when manipulating
the buffer(s).

The bottom structure in Figuré.3 transforms the monitor into a task, called a administra@eri81, and its
thread is used to perform complex coordination operaticta/den clients and workers. Notice, the administrator
task still needs internal buffers to hold multiple argunsgueissed asynchronously by clients. Note, this approach now

54 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

shares the buffer mutual-exclusion with the task; howeteradministrator task can mitigate this issue by not making
blocking calls and only performing simple administratioonk; so it is mostly ready to accept asynchronous calls
from clients. In this case, the administrator may spend mobiss time blocked waiting for client and/or worker calls,
but this behaviour is often a reasonable tradeoff to allawredizing of administrative duties when managing complex
requests and interactions.

Figure3.4illustrates a server composed of a monitor buffer and wadsd (middle structure in Figu&3). Both
an ESM and ISM version of the server are presented, wherdffeeetices are storage management and cancellation
of a future. Each server has server-specific dagayerData, created in each future for use in cancellation. When
a client cancels a future associated with this server, medeerData::cancel is called, and both servers mark the
position in the request queue to indicate that future iselded. The worker-task typ&putWorker, and an instance of
it, is, are local to the server for abstraction and encapsulati@sonsinputWorker reads an< integer, string > tuple
and communicates the tuple to the server via a synchrondiu® ¢the private mutex-membeput, which checks if
a future exists with a matching integer key, and if so, plabesstring into that future as its result value. The ESM
server conditionally inserts the string into the future bgcks if the future at positioralue is NULL indicating it has
been cancelled. The ISM server does not conditionally trikerstring because an empty future is inserted at position
value to hold the string if the original future is cancelled. Askinenous calls from clients are made by calling mutex
memberrequest, specifying an integer key and a future to return the assextistring read by the input worker. The
ESM server resets the future passed to it as itis about tausedeand the ISM server creates a new future. If the new
request is greater than the vector size, the vector sizerieased. The future is then buffered in vectajuests until
the input worker subsequently fills it in with a value, andveerspecific data is filled into the future in case the client
cancels the future.

3.3. SERVERS

ESM

55

ISM

_Monitor InputServer {
struct ServerData {
InputServer sserver;
int requested;

bool cancel() {
server->requests[requested] = NULL;
return true ;
} /I ServerData::cancel
ServerData() {}
}; Il ServerData

_Task InputWorker {
InputServer &is;

void main() {
int id;
string text;

while (cin >>1id) {
getline(cin, text);
is.input(id, text);
} /I while
} // main
public :
InputWorker(InputServer &is) : is(is) {}
}; /I InputWorker
public :
typedef Future_ESM< string,
ServerData > FutureType;
private :
InputWorker iw;
vector< FutureType « > requests;

_Mutex void input(int value, string text) {
if (requests.size() > value) {
if (requests[value] !'= NULL) {
requests[value]->delivery(text);
Y if
Yo
} /I input
public :
InputServer() : iw(«this) {}

void request(FutureType «f, int requested) {
f->reset();
if (requests.size() <= requested) {
requests.resize(requested + 1);
Yo
requests[requested] = f;
f->serverData.server = this;
f->serverData.requested = requested;
} /I request
}; Il InputServer

_Monitor InputServer {
struct ServerData : public Future_ISM< string >::ServerData {
InputServer sserver,
int requested;

bool cancel() {
server->requests[requested] = Future _ISM< string >();
return true ;
} /I ServerData::cancel
ServerData(InputServer s, int r) : server(s), requested(r) {
}; Il ServerData

_Task InputWorker {
InputServer &is;

void main() {
int id;
string text;

while (cin >>1id) {
getline(cin, text);
is.input(id, text);
} /I while
} // main
public :
InputWorker(InputServer &is) :is(is) {}
}; /I InputWorker
public :
typedef Future_ISM< string > FutureType;

private :
InputWorker iw;
vector< FutureType > requests;

_Mutex void input(int value, string text) {
if (requests.size() > value) {

requests[value].delivery(text);

YIif
} /I input
public :
InputServer() : iw(xthis) {}

FutureType request(int requested) {
FutureType f(new ServerData(this, requested));
if (requests.size() <= requested) {
requests.resize(requested + 1);
YIif
requests[requested] = f;

return f;
} /I request
}; Il InputServer

Figure 3.4: Example Server

56

CHAPTER 3. ASYNCHRONOUS COMMUNICATION

Chapter 4

Input/Output

A major problem with concurrency and the file system is thike, the compiler, the file system is unaware if a program
is concurrent (see Secti@nl3 p.33). To ensure multiple tasks are not performing I/O operatigimultaneously on
the same file descriptor, eapit+ file is implemented as a monitor that provides mutualwesioh on 1/0 operations.
However, there are more complex issues relating to I/O ¢jp@sin a concurrent system.

4.1 Nonblocking I/O

For a sequential program performing an I/O operation thancaproceed immediately, the normal action for the file
system is to block the program until the operation can caetir-or example, when a program needs input from the
keyboard, the file system blocks the program until data isredt This action is correct for a sequential program
because there is no other work for it to do until the new datujsplied by the user. However, this action may be
incorrect for a concurrent program because there may be witré to do even without the user data. Therefore, the
normal action by the file system, called heavy blocking (se&i8n8.4.3 p. 124), is usually inappropriate for a con-
current program because it inhibits concurrency. Theeefd© operations must be transformed from heavy blocking
to light blocking so that execution of other tasks can carinThis transformation is achieved by nonblocking I/O.
To simplify the complexity of nonblocking I/Q;C+ supplies a honblocking 1/O library.

While I/O operations can be made nonblocking, this requipegial action as the nonblocking I/0 operations may
not restart automatically when the operation completesteld, it may be necessary to poll for I/O completions, which
is done through theelect operation in UNIX, while other tasks execute. Only when adlks on a cluster are directly
or indirectly (light-) blocked, waiting for /O operatioris complete, can the virtual processor be heavy blocked.

This scenario is implemented automatically pg+ choosing a task performing 1/O to poll for completion of
any I/O operation, called theoller task; all other tasks performing 1/0 are light blocked. When & bperation
completes (e.g., eead or write), the task waiting for that operation is unblocked by thegralask. If the poller’s
I/O completes, it unblocks one of the I/O blocked tasks amd tisk becomes the 1/0 poller. Only when the poller
detects that no 1/O operations have completed and thereoaesks on the cluster to execute (i.e., the cluster’s ready
gueue is empty) does the poller perform a heavy block. Thisrse allows other tasks to progress with only a slight
degradation in performance due to the polling task.

4.2 C+ Stream I/O
Because a stream may be shared by multiple tasks, chargeteesated by the insertion operatek) and/or the
extraction operator> in different tasks may be intermixed. For example, if twdkg&sxecute the following:

task;, : cout << "abc " << "def " << endl
tasks : cout << "uvw" << "xyz " << endl;

some of the different outputs that can appear are:

57

58 CHAPTER 4. INPUT/OUTPUT

abc def

uvw xyz

uvw abc def

Xyz

abc uvw xyz

def

uvw abc xyz def

abuvwe dexfyz

In fact, concurrent operations can even corrupt the intestaée of the stream, resulting in failure. As a result, some
form of mutual exclusion is required for concurrent streameas. A coarse-grained solution is to perform all stream
operations (e.g., I/0) via a single task or within a moniprgviding the necessary mutual exclusion for the stream.
A fine-grained solution is to have a lock for each stream, Wwigacquired and released around stream operations by
each task.

nCH provides a fine-grained solution where an owner lock guaed and released indirectly by instantiating
a type that is specific to the kind stream: tyipacquire for input streams and typesacquire for output streams.
For the duration of objects of these types on an approprietars, that stream’s owner lock is held so I/O for that
stream occurs with mutual exclusion within and across I/@rations performed on the stream. The lock acquire is
performed in the object’s constructor and the release i®peed in the destructor. The most common usage is to
create an anonymous object to lock the stream during a stagladed /O expression, e.g.:

task; : osacquire(cout) << "abc " << "def " << endl; // anonymous locking object
task. : osacquire(cout) << "uvw " << "xyz " << endl; // anonymous locking object

constraining the output to two different lines in any order:

abc def | uvw xyz
uvw xyz | abc def

The anonymous locking object is only deallocated after titeecascaded 1/0O expression is completed, and it then
implicitly releases the stream’s owner lock in its destounct
Because of the properties of an owner lock, a task can aavaltiple locking objects for a specified stream,
and the stream’s owner lock is only released when the toplodsing object is deallocated. Therefore, multiple 1/0O
statements can be protected atomically using normal bloaktsire, e.g.:
{ /I acquire the lock for stream cout for block duration
osacquire acq(cout); // named stream locker
cout << "abc";
osacquire(cout) << "uvw " << "xyz " << endl; // ok to acquire and release again
cout << "def";
} /I implicitly release the lock when “acq” is deallocated

For anfstream, which can perform both input and output, bathcquire and osacquire can be used. The only
restriction is that the kind of stream locker has to matchnihd of 1/O operation, e.g.:

fstream file("abc");
osacquire(file) << ... // output operations

isacquire(file) >> ... // input operations
For protecting multiple I/O statements on fatream, eitherisacquire or osacquire can be used to acquire the stream
lock, e.g.:

fstream file("abc");

{ /I acquire the lock for stream file for block duration

osacquire acq(file); // or isacquire acq(file)
file >> ... /I input operations

file << ... /I output operations
} /I implicitly release the lock when “acq” is deallocated

WARNING: Deadlock can occur if routines are called in an 1/0O sequemaenbight block, e.g.:

4.3. UNIXFILE I/O 59

osacquire(cout) << "dat a: " << Monitor.rtn(...) << endl;

The problem occurs if the task executing the I/O sequencekblm the monitor when it is holding the 1/0O lock for
streamcout. Any other task that attempts to write enut blocks until the task holding the lock is unblocked and
releases it. This scenario can lead to deadlock if the taskiglgoing to unblock the task waiting in the monitor first
writes tocout. One simple precaution is to factor the call to the monitautiree out of the I/O sequence, e.g.:

int data = Monitor.rtn(. . .);
osacquire(cout) << "dat a: " << data << endl;

4.3 UNIX File /O

The following interface is provided to use UNIX files. A fileaspassive object that has information written into and
read from it by tasks; therefore, a file is like a monitor, whjrovides indirect communication among tasks. The
difference between a file and a monitor is that the file is ooisdary storage, and hence, is not directly accessible by
the computer’s processors; a file must be made explicitlgssible before it can be used in a program. Furthermore,
a file may have multiple accessors—although it is up to UNI¥terpret the meaning of these potentially concurrent
accessors—so there is a many-to-one relationship betwikenaad its accessors. This relationship is represented in
a C+ program by a declaration for a file and subsequent deidassfor each accessor.

Traditionally, access to a file is explicit and is achievedgadurally by a call to “open” and a subsequent call
to “close” to terminate the access. i€+, the declaration of a speciatcess objecperforms the equivalent of the
traditional open and its deallocation performs the eqeiedf the traditional close. In many cases, the accesstobjec
is a local variable so that the duration of access is tiedaaltiration of its containing block. However, by dynamically
allocating an access object and passing its pointer to btbeks, the equivalent access duration provided by trawkii
“open” and “close” can be achieved.

In pCH, a connection to a UNIX file is made by declaration of#e object, e.g.:
uFile infile("abc"), outfile("xyz");

which creates two connection variablésfjle and outfile, connected to UNIX filesmbc and xyz, respectively. The
operations available on a file object are:

class uFile {
public :
uFile(const char xname);
~uFile();

const char xgetName() const;
void status(struct stat &buf);

__Event Failure;
__Event TerminateFailure;
__Event StatusFailure;

}; /I uFile

The parameters for the first and second constructauskitef are as follows. Theame parameter is the UNIX name of
the file, which is connected to the program. The destructoFidd checks if there are any registered accessors using
the file, and raises the exceptiderminateFailure if there are.

It is notmeaningful to read or to assign taBile object, or copy aFile object (e.g., pass it as a value parameter).
The member routingetName returns the string name associated with a file.

The parameter for member routisgtus is explained in the UNIX manual entry fatat. (The first parameter to
the UNIX stat routine is unnecessary, as it is provided implicitly by tie object.) Because a file object is still
inaccessible after a connection is made, there are no mewiiénes to access its contents.

To use the interface, include the file:
#include <uFile.h>

at the beginning of each source filésile.h also includes the following UNIX system filefcntl.h>

60 CHAPTER 4. INPUT/OUTPUT

class uFileAccess {
public :
uFileAccess(uFile &f, int flags, int mode = 0644);
~uFileAccess();

int read(char buf, int len, uDuration stimeout = NULL);

int readv(const struct iovec xiov, int iovcnt, uDuration stimeout = NULL);
_Mutex int write(char buf, int len, uDuration «timeout = NULL);

int writev(const struct iovec «iov, int iovcnt, uDuration stimeout = NULL);
off_t Iseek(off_t offset, int whence);

int fsync();

int fd();

__Event Failure;
__Event OpenFailure;
__Event CloseFailure;
__Event SeekFailure;
__Event SyncFailure;
__Event ReadFailure;
_Event ReadTimeout;
__Event WriteFailure;
_Event WriteTimeout;
}; /I uFileAccess

Figure 4.1:uFileAccess Interface

4.3.1 File Access

Once a connection is made to a UNIX file, its contents can besaet by declaration ofurileAccess object, e.g.:
uFileAccess input(infile, O_RDONLY), output(outfile, O_CREAT | O_WRONLY);

which creates one access object to read from the conneotida &bc and one object to write to the connection made
to file xyz. The operations available on an access object are listeidimd=.1:

The parameters for the constructdtileAccess are as follows. Thé parameter is aFile object to be opened
for access. Thdélags and mode parameters are explained in the UNIX manual entrydiegn. The destructor of
uFileAccess terminates access to the file and deregisters with the atsdaFile object.

It is not meaningful to read or to assign tau&ileAccess object, or copy aiFileAccess object (e.g., pass it as a
value parameter).

The parameters and return value for member routiaes, readv, write, writev, Iseek andfsync are explained
in their corresponding UNIX manual entries. (The first pagten to these UNIX routines is unnecessary, as it is
provided implicitly by theuFileAccess object.) The only exception is the optional parameiteeout, which points
to a maximum waiting time for completion of the 1/0 operatlmefore aborting the operation by raising an exception
(see Sectiori0.2.4 p. 138). (The typeuDuration is defined in Sectioi0.1, p. 133) AppendixC.4, p. 168 shows
reading and writing to UNIX files.

The member routintl returns the file descriptor for the open UNIX file.

4.4 BSD Sockets

The following interface is provided to use BSD sockets. Aksbds an end point for communicating among tasks in
different processes, possibly on different computers. é&sbendpoint is accessed in one of two ways:

1. as aclient, which is one-to-many for connectionless communicatiothwwiultiple server socket-endpoints, or
one to one for peer-connection communication with a ses\arteptor socket-endpoint.

2. as aserver, which is one-to-many for connectionless communicatiotihwiultiple client socket-endpoints, or
one to one for peer-connection communication with a sesaceptorsocket-endpoint.

The relationship between connectionless and peer-caonezdmmunication is shown in Figurés2 and 4.3. For
connectionless communication (see Figdr®, any of the client socket-endpoints can communicate withaf the

4.4. BSD SOCKETS 61

client;
process servej

process

serveg

client, B?(r)\éeeﬁss
proces
serveg
clients
process

@ socket endpoint

Figure 4.2: Client/Server Connectionless

servef
process
acceptoy
serveg
acceptog process

acceptoy

@ socket endpoint @ acceptor descriptor

Figure 4.3: Client/Server Peer Connected

server socket-endpoints, and vice versa, as long as thesodaelress is known. This flexibility is possible because
each communicated message contains the address of the seretziver; the network then routes the message to this
address. For convenience, when a message arrives at aeretleé/sender’s address replaces the receiver's address,
so the receiver can reply back. For peer-connection conation (see Figurd.3), a client socket-endpoint can
only communicate with the server socket-endpoint it has coedeitt, and vice versa. The dashed lines show the
connection of the client and server. The dotted lines sheveteation of an acceptor to service the connection for peer
communication. The solid lines show the bidirectional camination among the client and server’s acceptor. Since
a specific connection is established between a client anerssocket-endpoints, messages do not contain sender
and receive addresses, as these addresses are implicitiykhrough the connection. Notice there are fewer socket
endpoints in the peer-connection communication versusdheectionless communication, but more acceptors. For
connectionless communication, a single socket-endpetpientially handles both the connection and the transfer
of data for each message. For peer-connection commumcatisingle socket-endpoint handles connections and an
acceptor transfers data in parallel. In general, peer®ciion communication is more expensive (unless large atsoun
of data are transferred) but more reliable than conne@gsdommunication.

A server socket has a hame, either a character string for Uii¥s or port-number/machine-address for an INET
address, that clients must know to communicate. For coramess communication, the server usually has a reader

62 CHAPTER 4. INPUT/OUTPUT

task that receives messages containing the client’s asldfee message can be processed by the reader task or given to
a worker task to process, which subsequently returns a usjahyg the client’'s address present in the received message.
For peer-connection communication, the server usuallyohagask in a loop accepting connections from clients, and
each acceptance creates an acceptor task. The acceptoedeisies messages from only one client socket-endpoint,
processes the message and subsequently returns a repéyaltelpwith accepting clients. Since the acceptor and
client are connected, communicated messages do not cati@ihaddresses. These relationships are represented in
a uCH program by declarations of client, server and accepigats, respectively.

The pCH+ socket interface provides a convenience feature fonectionless communication to help manage the
addresses where messages are sent. It is often the caselibat anly sends messages from its client socket-endpoint
to a single server socket-endpoint or sends a large numimeesgages to a particular server socket-endpoint. In these
cases, the address of the server remains constant for a éoiogl f time. To mitigate having to specify the server
address on each call for a message send, the client soakepiahremembershe last server address it receives a
message from, and there is a short form of send that usesthe&smbered address. The initial remembered (default)
address can be set when the client socket-endpoint is dreatget/reset at any time during its life-time. A similar
convenience feature exists for the server socket-endpeirdre the last client address it receives a message from is
remembered and can be implicitly used to send a messagdlylivack to that client.

To use the interface in @C+ program, include the file:

#include <uSocket.h>

at the beginning of each source fileuSocket.h also includes the following UNIX system filesssys/fcntl.h>,
<sys/types.h>, <sys/socket.h>,<sys/un.h>, <netdb.h>.

441 Client

In £ CH+, aclient, its socket endpoint, and possibly a connedti@ server are created by declaration oSacketClient
object, e.g.:

uSocketClient client(" abc");

which creates a client variablelient, connected to the UNIX server sockethc. The operations provided by
uSocketClient are listed in Figure.4:

The first two constructors afSocketClient are for use with the UNIX address family. The parameters lier t
constructors are as follows. Theme parameter is the name of an existing UNIX stream that thetigeconnecting
to. Thename parameter can BeULL for typeSOCK_DGRAM, if there is no initial server address. The optional default
type andprotocol parameters are explained in the UNIX manual entrysfatket. Only typesSOCK_STREAM and
SOCK_DGRAM communication can be specified, and any protocol apprepigatthe specified communication type
(usually 0). The optionalmeout parameter is a pointer to a maximum waiting time for completf a connection
for type SOCK_STREAM before aborting the operation by raising an exception (sssi@® 10.2.4 p. 138); this
parameter is only applicable for peer-connect®@CK_STREAM, communication.

The next two constructors afSocketClient are for use with the INET address family on a local host. Thaipa
eters for the constructors are as follows. Tdeet parameter is the port number of an INET port on the local host
machine. The optional defaultpe andprotocol parameters are explained in the UNIX manual entrystmket. Only
typesSOCK_STREAM and SOCK_DGRAM communication can be specified, and any protocol apprepftatthe
specified communication type (usually 0). The optional peatertimeout is a pointer to a maximum waiting time
for completion of a connection for tyg®OCK_STREAM before aborting the operation by raising an exception; this
parameter is only applicable for peer-connect®@CK_STREAM, communication.

The last two constructors afSocketClient are for use with the INET address family on a nonlocal hostl Al
parameters are the same as for the local host case, exceprifueal host machine-name is specified byrihme
parameter.

The destructor ofiSocketClient terminates the socket (close) and removes any temporasycfigated implicitly
for SOCK_STREAM andSOCK_DGRAM communication.

It is not meaningful to read or to assign tagocketClient object, or copy aiSocketClient object (e.g., pass it as a
value parameter).

The member routinsetServer changes the address of the default server for the short fofrsendto andrecvfrom.
The member routingetServer returns the address of the default server.

4.4. BSD SOCKETS 63

_Monitor uSocketClient {

public :

/I AF_UNIX

uSocketClient(const char xname, int type = SOCK_STREAM, int protocol = 0);

uSocketClient(const char xname, uDuration xtimeout, int type = SOCK_STREAM, int protocol = 0);

/I AF_INET, local host

uSocketClient(unsigned short port, int type = SOCK_STREAM, int protocol = 0);

uSocketClient(unsigned short port, uDuration stimeout, int type = SOCK_STREAM, int protocol = 0);

/I AF_INET, other host

uSocketClient(unsigned short port, const char xname, int type = SOCK_STREAM, int protocol = 0);

uSocketClient(unsigned short port, const char xname, uDuration stimeout, int type = SOCK_STREAM,
int protocol = 0);

~uSocketClient();

void setServer(struct sockaddr saddr, int len);
void getServer(struct sockaddr xaddr, socklen_t «len);

const struct sockaddr xgetsockaddr(); // must cast result to sockaddr_in or sockaddr_un
int getsockname(struct sockaddr xname, socklen_t «len);
int getpeername(struct sockaddr xname, socklen_t «len);

int read(char sbuf, int len, uDuration «timeout = NULL);

int readv(const struct iovec xiov, int iovcnt, uDuration stimeout = NULL);

_Mutex int write(char +buf, int len, uDuration xtimeout = NULL);

int writev(const struct iovec xiov, int iovent, uDuration stimeout = NULL);

int send(char xbuf, int len, int flags = 0, uDuration «timeout = NULL);

int sendto(char +buf, int len, int flags = 0, uDuration stimeout = NULL);

int sendto(char «buf, int len, struct sockaddr «to, socklen_t tolen, int flags = 0, uDuration stimeout = NULL);

int sendmsg(const struct msghdr *msg, int flags = 0, uDuration «timeout = NULL);

int recv(char xbuf, int len, int flags = 0, uDuration «timeout = NULL);

int recvfrom(char xbuf, int len, int flags = 0, uDuration «timeout = NULL);

int recvfrom(char «buf, int len, struct sockaddr «from, socklen_t «fromlen, int flags = 0,
uDuration xtimeout = NULL);

int recvmsg(struct msghdr xmsg, int flags = 0, uDuration stimeout = NULL);

int fd();

__Event Failure;
_Event OpenFailure;
__Event OpenTimeout;
__Event CloseFailure;
__Event ReadFailure;
__Event ReadTimeout;
__Event WriteFailure;
__Event WriteTimeout;

Figure 4.4:uSocketClient Interface

64 CHAPTER 4. INPUT/OUTPUT

The parameters and return value for the I/O members areierdlén their corresponding UNIX manual entries,
with the following exceptions:

e getpeername is only applicable for connected sockets.

e The first parameter to these UNIX routines is unnecessarit, iaprovided implicitly by theuSocketClient
object

e The lack of address for the overloaded member routredto andrecvfrom.

The client implicitly remembers the address of the initiahoection and eackecvfrom call. Therefore, no
address needs to be specified in seedto, as the data is sent directly back to the last address receive
a client needs to communicate with multiple servers, ekpiddresses can be specified in beéimdto and
recvfrom.

This capability eliminates the need to connect datagrarkeisdo use the short communication forsend
andrecv, using the connected address. In general, connected datagpckets have the same efficiency as
unconnected ones, but preclude specific addressingewidto andrecvfrom. The above scheme provides the
effect of a connected socket while still allowing specifidessing if required.

e The optional parameteimeout, which points to a maximum waiting time for completion of @ operation
before aborting the operation by raising an exception

The member routintl returns the file descriptor for the client socket.

AppendixC.5.1, p. 170shows a client communicating with a server using a UNIX sbake datagram messages.
AppendixC.5.3 p. 172shows a client connecting to a server using an INET sockestredm communication with
an acceptor.

4.4.2 Server

In uC+, a server, its socket endpoint, and possibly a connedtioa client are created by declaration of a
uSocketServer object, e.g.:

uSocketServer server(" abc");

which creates a server variablserver, and a UNIX server socket endpoirdtbc. The operations provided by
uSocketServer are listed in Figurd.5;

The first constructor ofiSocketServer is for use with the UNIX address family. The parameters fa ton-
structors are as follows. Theme parameter is the name of a new UNIX server socket that thesecreating.
The optional defaultype and protocol parameters are explained in the UNIX manual entrystarket. Only types
SOCK_STREAM and SOCK_DGRAM communication can be specified, and any protocol apprepfaatthe spec-
ified communication type (usually 0). The optional defehdtklog parameters is explained in the UNIX manual
entry for listen; it specifies a limit on the number of incoming connectiormirclients and is only applicable for
peer-connectiorSOCK_STREAM, communication.

The next two constructors efSocketServer are for use with the INET address family on a local host. The pa
rameters for the constructors are as follows. pbe parameter is the port number of an INET port on the local host
machine, or a pointer to a location where a free port numlegected by the UNIX system, is placed. The optional
defaulttype andprotocol parameters are explained in the UNIX manual entrystaket. Only typesSOCK_STREAM
and SOCK_DGRAM communication can be specified, and any protocol appr@pfatthe specified communica-
tion type (usually 0). The optional defaulticklog parameters is explained in the UNIX manual entry [fsten;
it specifies a limit on the number of incoming connectiongrfrdients and is only applicable for peer-connection,
SOCK_STREAM, communication.

The destructor ofiSocketServer terminates the socket (close) and checks if there are angteegd accessors
using the server, and raises the excepttrseFailure if there are.

It is not meaningful to read or to assign tau8ocketServer object, or copy aiSocketServer object (e.g., pass it as
a value parameter).

The member routinsetClient changes the address of the default client for the short fofrssndto andrecvfrom.
The member routingetClient returns the address of the default client.

The parameters and return value for the I/O members areierdlén their corresponding UNIX manual entries,
with the following exceptions:

4.4. BSD SOCKETS 65

_Monitor uSocketServer {
public :

/I AF_UNIX
uSocketServer(const char xname, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
/I AF_INET, local host
uSocketServer(unsigned short port, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
uSocketServer(unsigned short «port, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
~uSocketServer();

void setClient(struct sockaddr saddr, int len);
void getClient(struct sockaddr =addr, socklen_t «len);

const struct sockaddr sgetsockaddr(); // must cast result to sockaddr_in or sockaddr_un
int getsockname(struct sockaddr xname, socklen_t «len);
int getpeername(struct sockaddr xname, socklen_t «len);

int read(char xbuf, int len, uDuration «timeout = NULL);

int readv(const struct iovec xiov, int iovcnt, uDuration stimeout = NULL);

_Mutex int write(char «buf, int len, uDuration stimeout = NULL);

int writev(const struct iovec =iov, int iovent, uDuration stimeout = NULL);

int send(char xbuf, int len, int flags = 0, uDuration «timeout = NULL);

int sendto(char «buf, int len, int flags = 0, uDuration stimeout = NULL);

int sendto(char xbuf, int len, struct sockaddr xto, socklen_t tolen, int flags = 0, uDuration stimeout = NULL);

int sendmsg(const struct msghdr xmsg, int flags = 0, uDuration «timeout = NULL);

int recv(char sbuf, int len, int flags = 0, uDuration «timeout = NULL);

int recvfrom(char «buf, int len, int flags = 0, uDuration «timeout = NULL);

int recvfrom(char «buf, int len, struct sockaddr «from, socklen_t «fromlen, int flags = 0,
uDuration xtimeout = NULL);

int recvmsg(struct msghdr xmsg, int flags = 0, uDuration *timeout = NULL);

int fd();

__Event Failure;
_Event OpenFailure;
__Event CloseFailure;
__Event ReadFailure;
__Event ReadTimeout;
__Event WriteFailure;
__Event WriteTimeout;

Figure 4.5:uSocketServer Interface

e getpeername is only applicable for connected sockets.

e The first parameter to these UNIX routines is unnecessarit, iaprovided implicitly by theuSocketClient
object

e The lack of address for the overloaded member rougagsdto andrecvfrom.

The server implicitly remembers the address of the inittadrection and eactecvfrom call. Therefore, no
address needs to be specified in ¢kedto, as the data is sent directly back to the last address recelfa
server needs to communicate with multiple clients witheaponding back immediately to each request, explicit
addresses can be specified in bsghdto andrecvfrom.

This capability eliminates the need to connect datagrarkeisdo use the short communication forsend
andrecv, using the connected address. In general, connected datapckets have the same efficiency as
unconnected ones, but preclude specific addressingevidto andrecvfrom. The above scheme provides the
effect of a connected socket while still allowing specificisgssing if required.

66 CHAPTER 4. INPUT/OUTPUT

e The optional parameteimeout, which points to a maximum waiting time for completion of @ operation
before aborting the operation by raising an exception (seti@10.2.4 p. 139

The member routingl returns the file descriptor for the server socket.

AppendixC.5.2 p. 171 shows a server communicating with multiple clients usingNiXJsocket and datagram
messages. Appendi®.5.4 p. 174 shows a server communicating with multiple clients usingBT socket and
stream communication with an acceptor.

4.4.3 Server Acceptor

After a server socket is created for peer-connection conication, it is possible to accept connections from clients
by declaration of aSocketAccept object, e.g.:

uSocketAccept acceptor(server);

which creates an acceptor objestceptor, that blocks until a client connects to the UNIX sockets, represented by
server objecterver. The operations provided mGocketAccept are listed in Figuré.6:

The parameters for the constructorsuSbcketAccept are as follows. Thae parameter is aSocketServer object
through which a connection to a client is made. The optioeédtadr andlen parameters, are explained in the
UNIX manual entry foraccept, and are used to determine information about the client doepor is connected
to. The optionatimeout parameter is a pointer to a maximum waiting time for completf the connection before
aborting the operation by raising an exception (see Sedtibh.4 p. 138. The optionaldoAccept parameter is a
boolean where true means do an initial accept during ilgtitibn of the acceptor and false means do not do an initial
accept. If thedoAccept parameter is not specified, its value is true.

The destructor ofuSocketAccept terminates access to the socket (close) and deregistehnstingt associated
uSocketServer object.

Itis notmeaningful to read or to assign ta8ocketAccept object, or copy aiSocketAccept object (e.g., pass it as
a value parameter).

The member routineccept closes any existing connection to a client, and accepts acoanection with a client.
This routine uses the default valuadr, len andtimeout as specified to theSocketAccept constructor for the new
connection, unless the optiontmheout parameter is specified, which is used for the current acaaptreplaces the
defaulttimeout for subsequent accepts. The member routioge closes any existing connection to a client.

The parameters and return value for the I/O members areierdlén their corresponding UNIX manual entries,
with the following exceptions:

e The first parameter to these UNIX routines is unnecessarit, iaprovided implicitly by theuSocketClient
object

e The optional parameteimeout, which points to a maximum waiting time for completion of @ operation
before aborting the operation by raising an exception (seti@10.2.4 p. 139

The member routintl returns the file descriptor for the accepted socket.

O uCH doesnotsupport out-of-band data on sockets. Out-of-band datanesjtihe ability to install a
signal handler (see Sectidnl, p.57). Currently, there is no facility to do this. |

4.4. BSD SOCKETS 67

_Monitor uSocketAccept {

public :

uSocketAccept(uSocketServer &s, struct sockaddr sadr = NULL, socklen_t «len = NULL);

uSocketAccept(uSocketServer &s, uDuration stimeout, struct sockaddr »adr = NULL, socklen_t «len = NULL);

uSocketAccept(uSocketServer &s, bool doAccept, struct sockaddr sadr = NULL, socklen_t «len = NULL);

uSocketAccept(uSocketServer &s, uDuration stimeout, bool doAccept, struct sockaddr xadr = NULL,
socklen_t «len = NULL);

~uSocketAccept();

void accept();
void accept(uDuration stimeout);
void close();

_Mutex const struct sockaddr sgetsockaddr(); // must cast result to sockaddr_in or sockaddr_un
_Mutex int getsockname(struct sockaddr sname, socklen_t «len);
_Mutex int getpeername(struct sockaddr sname, socklen_t «len);

int read(char sbuf, int len, uDuration «timeout = NULL);

int readv(const struct iovec =iov, int iovcnt, uDuration stimeout = NULL);

_Mutex int write(char «buf, int len, uDuration stimeout = NULL);

int writev(const struct iovec xiov, int iovent, uDuration stimeout = NULL);

int send(char xbuf, int len, int flags = 0, uDuration «timeout = NULL);

int sendto(char «buf, int len, int flags = 0, uDuration stimeout = NULL);

int sendto(char xbuf, int len, struct sockaddr «to, socklen_t tolen, int flags = 0, uDuration stimeout = NULL);

int sendmsg(const struct msghdr *msg, int flags = 0, uDuration «timeout = NULL);

int recv(char sbuf, int len, int flags = 0, uDuration «timeout = NULL);

int recvfrom(char «buf, int len, int flags = 0, uDuration «timeout = NULL);

int recvfrom(char «buf, int len, struct sockaddr «from, socklen_t sfromlen, int flags = 0,
uDuration xtimeout = NULL);

int recvmsg(struct msghdr xmsg, int flags = 0, uDuration stimeout = NULL);

int fd();

__Event Failure;
_Event OpenFailure;
__Event OpenTimeout;
__Event CloseFailure;
__Event ReadFailure;
__Event ReadTimeout;
__Event WriteFailure;
__Event WriteTimeout;

Figure 4.6:uSocketAccept Interface

68

CHAPTER 4. INPUT/OUTPUT

Chapter 5

Exceptions

C+ has an exception handling mechanism (EHM) based on thgoand catching in sequential programs; however,
this mechanism does not extend to a complex executionamvient. The reason is that the C+ EHM only deals
with a single raise-mechanism and a simple execution-eniient, i.e., throwing and one stack. Ti@&+ execution
environment is more complex, and hence, it provides additimising-mechanisms and handles multiple execution-
states (multiple stacks). These enhancements requiréaddilanguage semantics and constructs; therefore, the
EHM in pC+ is a superset of that in CH, providing more advanced i@me semantics. As well, with hindsight,
some of the poorer features of C+'s EHM are replaced by betéehanisms.

5.1 EHM

An exceptional eventis an event that is (usually) known to exist but whichaiscillary to an algorithm, i.e., an
exceptional event usually occurs with low frequency. Sorales of exceptional events are division by zero, 1/0
failure, end of file, pop from an empty stack, inverse of a slagmatrix. Often an exceptional event occurs when an
operation cannot perform its desired computation (Edfabtion of contract failureNley92, p. 395]). While errors
occur infrequently, and hence, are often considered arpéroal event, it is incorrect to associate exceptionslgole
with errors; exceptions can be a standard part of a regudarihm.

An exceptional event is often represented in a programnanguage by a type name, calledexception type
An exceptionis an instance of an exception type, which is used in a spepialation, calledaising, indicating an
ancillary (exceptional) situation. Raising results inexeceptionakhange of control flow in the normal computation
of an operation, i.e., control propagates immediately tym@achically specifiechandler. To be useful, the handler
location must be dynamically determined, as opposed twaligtdetermined; otherwise, the same action and context
for that action is executed for every exceptional change.

Two actions can sensibly be taken for an exceptional event:

1. The operation can fail requiringrmination of the expression, statement or block from which the opanat
invoked. In this case, if the handler completes, control fbmntinuesafter the handler, and the handler acts as
an alternative computation for the incomplete operation.

2. The operation can fail requiring a corrective action befesumption of the expression, statement or block
from which the operation is invoked. In this case, if the Handompletes, control floweturnsto the operation,
and the handler acts as a corrective computation for theriptaie operation.

Both kinds of actions are supportedii@+. Thus, there are two possible outcomes of an operatammal completion
possibly with a correction action, or failure with changesamtrol flow and alternate computation.

O Even with the availability of modern EHMs, the common pragnaing techniques often used to
handle exceptional events are return codes and statusdldysugh this is slowly changing). Thieturn
codetechnique requires each routine to return a correctnesg al completion, where different values
indicate a normal or exceptional result during a routingécation. Alternatively, or in conjunction with
return codes, is thstatus flagtechnique requiring each routine to set a shared variablopletion,

69

70 CHAPTER 5. EXCEPTIONS

where different values indicate a normal or exceptionallteturing a routine’s execution, e.ggrno in
UNIX systems. The status value remains as long as it is nowwiteen by another routine. |

5.2 ;C+ EHM

The following features characterize th€+ EHM, and differentiate it from the C+ EHM:

e 1 C+ exceptions are generated from a specific kind of typechvbén be thrown and/or resumed. All exception
types are also grouped into a hierarchy, where the hierasdyilt by publicly inheriting among the exception
types. uC+ extends the C+ set of predefined exception-tygesering uC+ exceptional runtime and 1/0
events.

e 1 CH restricts raising of exceptions to the specific exceptimes; C+ allows any instantiable type to be raised.

e 1 C+ supports two forms of raising, throwing and resuming; @ly supports throwing. AlLC+ exception-
types can be either thrown or resumedC+ adopts a propagation mechanism eliminating recursiseming
(see Sectiorb.5.3.1 p. 78), even for concurrent exceptions. Essentiallg+ follows a common rule for
throwing and resuming: between a raise and its handler, leactiler is eligible only once.

e 1C+ supports two kinds of handlers, termination and resionptvhich match with the kind of raise; C+ only
supports termination handlers. Unfortunately, resunmptiandlers must be simulated using routines/functors
due to the lack of nested routines in C+.

e 1 CH supports raising of nonlocal and concurrent exceptganthat exceptions can be used to affect control
flow amongcoroutines and tasks. #onlocal exceptionoccurs when the raising and handling execution-states
are different, and control flow is sequential, i.e., the éldreaising the exception is also the thread handling the
exception. Aconcurrent exceptionalso has different raising and handling execution-stdteace, concurrent
exceptions are also nonlocal), but control flow is concuriien, the thread raising the exception is different from
the thread handling the exception. Th€+ kernel implicitly polls for both kinds of exceptions &t soonest
possible opportunity. It is also possible to (hierarcHigablock these kinds of exceptions when delivery would
be inappropriate or erroneous.

5.3 Exception Type

While C+ allows any type to be used as an exception ty@a+ restricts exception to types defined bivent. An
exception type has all the properties afass , and its general form is:

_Event exception-type name {

h

As well, every exception type must have a public default ajyconstructor.

O Because C+ allows any type to be used as an exception tygaerits to provide additional generality,
i.e., there is no special exception type in the language. édew in practice, this generality is almost
never used. First, using a builtin type like as an exception type is dangerous because the type has no
inherent meaning for any exceptional event. That is, omatjbroutine can raisiat to mean one thing and
another routine can rais& to mean another; a handler catchingmay have no idea about the meaning

of the exception. To prevent this ambiguity, programmeesier specific types describing the exception,
e.g.,overflow, underflow, etc. Second, these specific exception types can very rbeesiysed in normal
computations, so the sole purpose of these types is fongaisiambiguous exceptions. In essence, CH
programmers ignore the generality available in the languagl follow a convention of creating explicit
exception-types. This practice is codifiedi@+-. ad

Lstd::bad _alloc, std::bad _ cast, std::bad_typeid, std::bad_exception, std::basic_ios::failure, etc.

5.3. EXCEPTION TYPE 71

5.3.1 Creation and Destruction

An exception is the same as a class object with respect tdanesnd destruction:

_Event E{ ...}

E d; /I local exception
_Resume d;

E «dp = new E; /I dynamic exception
_Resume xdp;

delete dp;

_Throw E(); /I temporary local exception

5.3.2 Inherited Members

Each exception type, if not derived from another exceptypetis implicitly derived from the event typBaseEvent,
e.g.
__Event exception-type name : public uBaseEvent ...

where the interface for the base-clagsaseEvent is:

class UEHM {
enum RaiseKind { ThrowRaise, ResumeRaise };
bool poll();

h

class uBaseEvent {

protected :
uBaseEvent(const char xconst msg ="");
void setMsg(const char xconst msg);

public :
const char xconst message() const ;
const uBaseCoroutine &source() const;
const char xconst sourceName() const ;
UEHM::RaiseKind getRaiseKind();
void reraise() const ;
virtual uBaseEvent =duplicate() const ;
virtual void defaultTerminate() const ;
virtual void defaultTerminate();
virtual void defaultResume() const ;
virtual void defaultResume();

%
The constructor routineBaseEvent has the following form:

uBaseEvent(const char sconst msg ="") — creates an exception with specified message, which isegrint
an error message if the exception is not handled. The messagpied when an exception is created so it is
safe to use within an exception even if the context of theermisleleted.

The member routingetMsg is an alternate way to associate a message with an exception.

The member routinmessage returns the string message associated with an excepti@m@mber routinsource
returns the coroutine/task that raised the exceptiongigttteption has been raised locally, the valueL is returned.
In some cases, the coroutine or task may be deleted whendbpten is caught so this reference may be undefined.
The member routinsourceName returns the name of the coroutine/task that raised the &rcejif the exception has
been raised locally, the valde unknown= " is returned. This name is copied from the raising corout@rs&/when an
exception is created so it is safe to use even if the coroitisieis deleted. The member routigetRaiseKind returns
whether the exception is thrownEHM:: ThrowRaise) or resumed {EHM::ResumeRaise) at the raise. The member
routinereraise either rethrows or reresumes the exception depending onhexception was originally raised. The
member routineluplicate returns a copy of the raised exception, which can be usedd®e tlae same exception in a

72 CHAPTER 5. EXCEPTIONS

different context after it has been caught; the copy is alled on the heap, so it is the responsibility of the caller to
delete the exception.

The member routindefaultTerminate is implicitly called if an exception is thrown but not handjehe default
action is to calluAbort to terminate the program with the supplied message. The merbtinedefaultResume is
implicitly called if an exception is resumed but not handlle default action is to throw the exception, which begins
the search for a termination handler from the point of th&ahiesume. In both cases, a user-defined default action
may be implemented by overriding the appropriate virtuainer. Bothconst and noneonst versions of these
members are provided so an appropriate one is availablénvéthandler if an exception is caught with or without a
const qualifier.

5.4 Raising

There are two raising mechanisms: throwing and resumirghdéumore, each kind of raising can be done locally,
nonlocally or concurrently. The kind of raising for an extiep is specified by the raise statements:

_Throw [exception-type][_At uBaseCoroutine-id] ;
_Resume [exception-type][_At uBaseCoroutine-id] ;

If _Throw has noexception-typgit is arethrow, meaning the currently thrown exception continues propagalf
there is no current thrown exception but there is a curreaiymed exception, that exception is thrown. Otherwige, th
rethrow results in a runtime error. IfResume has ncexception-typgit is areresume meaning the currently resumed
exception continues propagation. If there is no currentmesi exception but there is a currently thrown exception,
that exception is resumed. Otherwise, the reresume rdasutsuntime error. The optionalAt clause allows the
specified exception or the currently propagating exceptiethrow/reresume) to be raised at another coroutine or
task.

Exceptions inuC+ are propagated differently from C+. In C+, themw statement initializes a temporary object,
the type of which is determined from the static type of therapd, and propagates the temporary objecp.@n+, the
_Throw and_Resume statements throw an exception that is the type of the ob@etenced by the operand. For
example:

CH pCH

class B {}; _Event B {};
class D : public B {}; | _Event D : public B {};
void f(B &t) { void f(B &t) {

throw t; _Throw t;
} }
D m; D m;
f(m); f(m);

in the C+ program, routinids passed an object of derived typéut throws an object of base typebecause the static
type of the operand for throw, is of typeB. However, in theuC+ program, routinéis passed an object of derived
type D and throws the original object of tyge This change makes a significant difference in the orgaoizaif
handlers for dealing with exceptions by allowing handlersdtch the specific rather than the general exception-type.

O Note, when subclassing is used, it is better to catch an &wcelpy reference for termination and re-
sumption handlers. Otherwise, the exception is truncated fts dynamic type to the static type specified
at the handler, and cannot be down-cast to the dynamic typice\ catching truncation is different from

raising truncation, which does not occurgi+. ad

5.4.1 Nonlocal Propagation

A nonlocal exception can be used to affect control flow witkpext tosequentiakxecutionamongcoroutines. That

is, @ source execution raises an exception at a faultingiérac propagation occurs in the faulting execution. The
faulting execution polls at certain points to check for pegdhonlocal-exceptions; when nonlocal exceptions are
present, the oldest matching exception is propagated (BHt@ce) as if it had been raised locally at the point of the
poll. Nonlocal exceptions among coroutines are possibdaulrge each coroutine has its own execution-state (stack).
For example, in Figur&.1 coroutinec loops until a nonlocabone exception is raised at it byMain. Since coroutine

5.4. RAISING 73

control-flow is sequential, the exception typene is not propagated immediately. In fact, the exception cay on
be propagated the next time coroutinbecomes active. HenceMain must make a call ta.mem somem resumes

c and the pending exception is propagated. If multiple ncallexceptions are raised at a coroutine, the exceptions
are delivered serially but only when the coroutine beconatisea Note,nonlocal exceptions are initially turned off
for a corouting so handlers can be set bpforeany nonlocal exception can be propagated. Propagationrdboal
exceptions is turned on via theEnable statement (see Secti@.2).

__Event Done {};

_Coroutine C {
void main() {

try {
_Enable { /I allow nonlocal exceptions
for (5){
... suspend(); ...
}
} catch(Done) { ...}
}
public :
void mem() { resume(); }
%
void uMain::main() {
Cc;
for (inti=0;i<5;i+=1) c.mem();
_Throw Done() _At c; /I deliver nonlocal exception
c.mem(); /I trigger pending exception

Figure 5.1: Nonlocal Propagation

5.4.2 Enabling/Disabling Propagation

1C+ allows dynamic enabling and disabling of nonlocal exiceppropagation. The constructs for controlling prop-
agation of nonlocal exceptions are thEnable and the_Disable blocks, e.g.:

_Enable <E1> <E2> ... { _Disable <E1> <E2> ... {
/I code in enable block /I code in disable block

} }

The arguments in angle brackets for thenable or _Disable block specify the exception types allowed to be prop-
agated or postponed, respectively. Specifying no exceptipes is shorthand for specifying all exception types.
Though a nonlocal exception being propagated may matchmetie than one exception type specified in tlinable

or _Disable block due to exception inheritance (see Sect®Bs2 p.71and 5.7, p. 83), itis unnecessary to define a
precise matching scheme because the exception type is eithbled or disabled regardless of which exception type
it matches with.

_Enable and_Disable blocks can be nested, turning propagation on/off on entdyraastablishing the delivery
state to its prior value on exit. Upon entry of &nable block, exceptions of the specified types can be propagated,
even if the exception types were previously disabled. Siryil upon entry to a Disable block, exceptions of the
specified types become disabled, even if the exception typees previously enabled. Upon exiting &nable or
_Disable block, the propagation of exceptions of the specified typesestored to their state prior to entering the
block.

Initially, nonlocal propagation is disabled for all exceph types in a coroutine or tasko handlers can be set up
before any nonlocal exceptions can be propagated, reguititne followinguC+ idiom in a coroutine or task main:

74 CHAPTER 5. EXCEPTIONS

void main() {
/I initialization, nonlocal exceptions disabled

try { /I setup handlers for nonlocal exceptions
_Enable { /I enable propagation of all nonlocal exception-types
/I rest of the code for this coroutine or task
} /I disable all nonlocal exception-types
} catch ... /I catch nonlocal exceptions occurring in enable block

/I finalization, nonlocal exceptions disabled
}
Several of the predefined kernel exception-types are intiglienabled in certain contexts to ensure their prompt
delivery (see Sectiof.10.], p. 86).
The uC+ kernel polls implicitly for nonlocal exceptions (andhcellation, see Sectidd p. 91) when the following
occur:

after a call touBaseTask::yield,

when an_Enable statement is encountered,

when auEnableCancel object is instantiated (see Sectidrz, p.92)
after a task migrates to another cluster,

after a task unblocks if it blocked when trying to enter a nboni
after a task unblocks if it blocked on arAccept statement,

after a task unblocks if it blocked when acquiringlabck,

after a task unblocks if it blocked when trying to perform /O
the first time a coroutine/task’sain routine is executed,
afteruBaseCoroutine::suspend/uBaseCoroutine::resume return.

If this level of polling is insufficient, explicit polling ipossible by calling:

bool uEHM::poll();
For terminating propagation, the return value frpatl is unaccessible because the stack frame containing thicall
poll is unwound. For resuming propagati@oll returnstrue if a nonlocal exception is delivered afadse otherwise.

In general, explicit polling is only necessary if pre-enoptis disabled, a large number of nonlocal exception-types
are arriving, or timely propagation is important.

5.4.3 Concurrent Propagation

A local exception within a task is the same as for an exceptiitinin a routine or class. An exception raised and not
handled inside a task performs the C+ default action ofrgpdérminate, which must abort (see SectiérB.1, p. 84).

As mentioned, a nonlocal exception between a task and athoeds the same as between coroutines (sequential). A
concurrent exception between tasks is more complex duetmtiitiple threads.

Concurrent exceptions provide an additional kind of comitation over a normal member call. That is, a concur-
rent exception can be used to force a communication wheneguggn state might otherwise be computing instead
of accepting calls. For example, two tasks may begin seagdioir a key in different sets; the first task to find the key
needs to inform the other task to stop searching, e.g.:

_Task searcher {
searcher &partner; /I other searching task
void main() {

try {
_Enable {

/I implicit or explicit polling is occurring
if (key==1...)
_Throw stop() _At partner; // inform partner search is finished

}cat}ch(stop Y{...}
Without this control-flow mechanism, both tasks have to fmlk call from the other task at regular intervals to know
if the other task found the key. Concurrent exceptions heattds case and others.
When a task performs a concurrent raise, it blocks only larapgh to deliver the exception to the specified task
and then continues. Hence, the communication is asynchspmdereas member-call communication is synchronous.

5.5. HANDLER 75

Once an exception is delivered to a task, the runtime systepagates it at the soonest possible opportunity. If
multiple concurrent-exceptions are raised at a task, tbepions are delivered serially.

5.5 Handler

A handler catches a propagated exception and attempts ltavileghe exceptional event. Each handler is associated
with a particular block of code, called guarded block. pC+ supports two kinds of handlers, termination and

resumption, which match with the kind of raise. An unhandbeckption is dealt with by an exception default-member
(see Sectio’.3.2 p.71).

5.5.1 Termination

A termination handler is a corrective actioafterthrowing an exception during execution of a guarded blockewW

a termination handler begins execution, the stack from tietf the throw up to and including the guarded block
is unwound; hence, all block and routine activations on thaeksat or below the guarded block are deallocated,
including all objects contained in these activations. A&tdermination handler completes, i.e., it does not perform
another throw, control continues after the guarded blogk déssociated with. A termination handler often only has
approximate knowledge of where an exceptional event oedurrthe guarded block (e.g., a failure in library code),
and hence, any partial results of the guarded-block cortiputare suspect. InC+, a termination handler is specified
identically to that in C+catch clause of ary statement. (The details of termination handlers can bedania C+
textbook.) Figuré.2shows how C+ ang C+ throws an exception to a termination handler. The difiees are using
_Throw instead othrow , throwing the dynamic type instead of the static type, agdireng a special exception type
for all exceptions.

CH pCH
class E { _Event E {
public : public :
int i int i;
E(inti):i(i){ E(int i):i(i){
3 I3
void f() { void f() {
throw E(3); _Throw E(3);
} }
int main() { void uMain::main() {
try { try {
f0); f0);
}catch(E e) { }catch(Ee){
cout << e.i << endl; cout << e.i << endl;
throw ; __Throw;
Y try Y try
} }

Figure 5.2: CH versugC+H Terminating Propagation

5.5.2 Resumption

A resumption handler is an intervention actioafter resuming an exception during execution of a guarded block.
When a resumption handler begins execution, the stauiitisnwound because control normally returns to the resume
point; hence, all block and routine activations on the statcr below the guarded block aretained including all
objects contained in these activations. After a resumgiimdler completes, i.e., it does not perform another throw,
control returns to the raise statement initiating the pgapian. To obtain precise knowledge of the exceptional gven
information about the event and variables at the resume pmerpassed to the handler so it can effect a change before
returning. Alternatively, the resumption handler may deiae a correction is impossible and throw an exception,
effectively changing the original resume into a throw. Walhormal routine calls, the call to a resumption handler is
dynamically bound rather than statically bound, so diffée®rrections can occur for the same static context.

76

CHAPTER 5. EXCEPTIONS

Actual ;CH Syntax

Ideal Syntax
_Event R1 {
public :
int &i; char &c;
R1(int &i, char &c) :i(i),c(c) {}
I8
_Event R2 {};

void f(int x, char y) { _Resume R2(); }
void g(int &x, char &y) { _Resume R1(X,y);}

_Event R1 {
public :
int &i; char &c;
R1(int &i, char &) :i(i),c(c) {}
h
_Event R2 {};

void f(int x, char y) { _Resume R2(); }
void g(int &x, char &y) { _Resume R1(x,y);}

void h1(R1 &r) {ri=1;rc="b";}
struct H2 { // functor
int &i; char &c;
H2(int &i, char &) :i(i),c(c) {}
void operator ()(R2 & r) { // required
i=2,c="c;
}
%

void uMain::main() { void uMain::main() {

try { try <R1,h1> {
int x =0; int x = 0;
char y ='a’; char y ='a’;
g(%, y); g(x,y);
H2 h2(x,y); // bind to locals
try { try <R2,h2><...>{
f(xy); f(x, y);
} resume (R2) {
x = 2;y ="c’; /Il modify local variables
} resume (...) { // just return
Y try I try
try { try <R1> {
g(% y); g(% y);
} resume (R1) { // just return
Y try Y try
} resume (R1 &r) {
/I cannot see variables x and y
ri=1;rc ="b’; /l modify arguments
Y try Y try
} }

Figure 5.3: Syntax for Resumption Handlers

In uC+, a resumption handler must be specified using a syntdéerelift from the C+catch clause of atry
statement. Figur®é.3 shows the ideal syntax for specifying resumption handlershe left, and the compromise
syntax provided by:C+ on the right. On the left, the resumption handler is, feaf a nested routine called when a
propagated resume exception is caught by the handler; wleaesumption handler completes, control returns back to
the point of the raise. Values at the raise can be modifiedttijri the handler if variables are visible in both contexts
or indirectly through reference or pointer parameters;eligeno concept of a return value from a resumption handler,
as is possible with a normal routine. Unfortunately, C+ magotion of nested routines, so it is largely impossible to
achieve the ideal resumption-handler syntax.

On the right is the simulation of the ideal resumption-handyntax. The most significant change is the movement
of the resumption-handler bodies to routirrledsand H2::operator (), respectively. Also, the direct access of local
variablesx andy in the first resume handler necessitates creating a functitvash2 can access them.

In detail, uC+ extends thery block to set up resumption handlers, where the resumptiodlgais a routine.

5.5. HANDLER 77

Any number of resumption handlers can be associated withlalock and there are 2 different forms for specifying
a resumption handler:

try <E1l,h> <E2> ... {
/| statements to be guarded
} Il possible catch clauses

The 2 forms of specifying a resumption handler are:

1. handler code for either a specific exception or catch any:

specific exception | catch any

try <E1, h>{// catch E1, call h | try <..., h> {// catch any exception, call h

} }
The exception-typ&1 or any exception type with.“.”, like catch (...), is handled by routine/functdr. Like
catch (...) clause, &...>resumption clause must appear at the end of the list of resomipandlers:
try <E1,h1> <E2,h2> <E3,h2> <...,h3> /x must appear last in list +/ {
}
The handler routine or functor must take the exception type @eference parameter:

void h(E1 &) /Il routine
void H:operator ()(E1 &) // functor

unless the exception type is."” because then the exception type is unknown. Type checkipgiformed to
ensure a proper handler is specified to handle the desigestegtion type.

2. no handler code for either a specific exception or catch any

specific exception | catch any

try <E1> { // catch E1, return | try <...>{// catch any exception, return
} }

The exception-typ&1 or any exception-type with.*.” is handled by an empty handler. This eliminates having
to create a handler routine with an empty routine body.

During propagation of a resuming raise, exception matchtrgpchiry block is similar to a throwing raise: the first
matching exception type is selected, but checking the éxaepypes is from left to right at the top of the extended
try block rather top to bottom as featch clauses.

5.5.3 Termination/Resumption

The form of the raise dictates the set of handles examinddglpropagation:

e _Throw causes propagation to ONLY examine termination handbeutsi(),
e _Resume causes propagation to ONLY examine resumption handteds (

Therefore, either the handlers at the top or the bottom ofrfhblock are examined for a matching exception-type
depending on the form of the raise. Often the set of excepyipes for the termination and resumption handlers is
disjoint because each exception type has a specific actioneter, it is possible for the set of exception types in each
handler set to overlap. For example, the exception R/pppears in both the termination and resumption handlsr-set

78 CHAPTER 5. EXCEPTIONS

_Event R {};
void h(R &) { _Throw R(); }

void uMain::main() {

try <R,h> { try { // ideal syntax
_Resume R(); _Resume R();

}catch(R &) { }resume (R &) { _Throw R(); }

} }catch(R&){...}

}

The body of thery block resumes exception-tyse which is caught by the try block and resumption-hantilés
invoked. The blocks on the call stack are now (stack grows fieft to right):

uMain::main — try <R,h>,catch(R) — h()

Handlerh throwsR and the stack is unwound until the exception is caught aggitind try block and termination-
handlercatch (R) is invoked. The termination handler is available becauseming did not unwind the stack.

5.5.3.1 Recursive Resuming

Resuming does not unwind the stack. As result, handlersetkfm previous scopes continue to be present during
resuming propagation. In terminating propagation, thedleas in previous scopes disappear as the stack is unwound.
In some languages with a resuming propagatidad?77, BMZ92, Geh92, the presence of resumption handlers in
previous scopes can cause a situation caiedrsive resuming The simplest situation where recursive resuming
can occur is when a handler for a resuming exception-typemes the same exception, e.g.:

_Event R {};
void h(R &) {

_Resume R();
}
void uMain::main() {

try <R,h> { try { /Il ideal syntax

_Resume R(); _Resume R();

} }resume(R) {... Resume R(); ...}

}

RoutineuMain::main sets up a try block for resuming exception-typwith handler routinés, respectively. Handler
is invoked by the resume in the body of ting block, and the blocks on the call stack are:

uMain::main — try<R,h> — h()
Thenh resumes an exception of tyReagain, which finds the handler just above ikRth> and invokes handler routine
h again; these steps continue until the runtime stack ovesfl®ecursive resuming is similar to infinite recursion, and
is difficult to discover both at compile time and at runtimedese of the dynamic choice of a handler. Concurrent
resuming compounds the difficulty because it can causesieuresuming where it is impossible otherwise because
the concurrent exception can be delivered at any time.

O An implicit form of recursive resuming can occuryifeld or uEHM::poll is called from within the
resumption handler. Each of these operations results ieekdor delivered exceptions, which can then
result in a call to another resumption handler. As a resdtstack can grow, possibly exceeding the task’s
stack size. In general, this error is rare because theraialysufficient stack space and the number of
delivered resuming exceptions is small. Nevertheless, warst be taken when callityggld or uEHM::poll
directly or indirectly from a resumption handler. |

5.5.3.2 Preventing Recursive Resuming

Recursive resuming is probably the only legitimate créticiagainst resuming propagation. However, not all excep-
tions handled by a resumption handler cause recursive irguiven if a resumption handler resumes the exception it
handles, which guarantees activating the same resumpitdidr again, (infinite) recursive resuming may not happen
because the handler can take a different execution pathessith of a modified execution state. Because the resuming
propagation suggested previously searches for a handmniply going down the runtime stack one stack frame at a

5.5. HANDLER 79

time, it has the recursive resuming problenC+ has a modified propagation mechanism that provides écolio
the recursive resuming problem. Furthermore, the mechmisiextended to cover concurrent exceptions.

The modified propagation mechanism goes down the executa@k sne level at a time as it does normally to
find a handler capable of handling the exception being prateag However, during propagation all the resumption
handlers at each guarded block being “visited” are markeligible (denoted by italics), whether or not a handler is
found. The mark is cleared only if the exception is handl¢degiby a termination or resumption handler.

How does this new propagation mechanism make a differenoesh @e previous runtime stack:

uMain::main — try<R,h> — h()

the handlekR,h> is marked ineligible wheR is caught at théry block andh is called. Hence, the exception cannot
be handled byR,h>, and the recursion is avoided and the default action ocauri.f Essentially,.C+ follows a
common rule for terminating and resuming propagation: betwa raise and its handler, each handler is eligible only
once.

In handling exceptions, it is common for routines to creadditgonal guarded blocks. For example, if the
resumption-handler blodkis augmented to:

void g(R &) {...} /l changes to above example

void h(R &) {
try <R,g> { try { /I ideal syntax
_Resume R(); _Resume R();
} }resume(R){...}
}

whereg is an additional resumption handler, the call stack is ekdrto the following:
uMain::imain — try<R,h> = h() = try<R,g> — g()

and the handleg is examined as it is unmarked. Using this technique, it ig®issible to construct infinite recursions
with respect to propagation; i.e:C+ resuming propagation does not preclude all infinitengouns, e.g.:

_Event R {};
void h(R &) { void f() {
try <R,h>{ try {
_Resume R(); _Resume R();
} } resume (R) { f0; }
} }
void uMain::main() {
try <R,h>{ try { /I ideal syntax
_Resume R(); _Resume R();
} } resume (R) { f(); }
}

Here each call tb creates a newy block to handle the next recursion, resulting in an infinitenbber of handlers:
uMain:main — try<R,h> — h() — try<R,h> — ...
As aresult, there is always an eligible handler to catch #x¢ exception in the recursion. This situation is considere
a programming error with respect to recursion not propagati
There is one interesting interaction between marking aaddfaultResume member (see Sectidn3.2 p. 71):

_Event R {};
void h(R &) { _Resume R(); } // resume instead of throw

void uMain::main() {

try <R,h>{ try { // ideal syntax

_Resume R(); _Resume R();
}catch(R &) { }resume (R &) { _Resume R(); }
} }catch(R &) {...}

}

which results in the following call stack:
uMain::main — try<R,h>,catch (R) — h() — defaultResume
When handleh resumesR a second time, there is no eligible handler because the mgmhandler foR is marked.

80 CHAPTER 5. EXCEPTIONS

However, when the base of the stack is reachethultResume is called, and its default action is to thré&w Terminat-
ing propagation then unwinds the stack until there is a maitihthe catch clause in thery block, so the behaviour
is same as the example in Sect@b.3 p. 77. Hence, by examining the code, it is non-intuitive thatdheh handler
can be invoked.

Finally, all handlers are considered unmarked when prapagaonlocal exceptions because the exception is
unrelated to any existing propagation. Therefore, the ggagion mechanism searches every handler on the runtime
stack. Hence, a handler ineligible to handle a local exoeptan be chosen to handle a delivered nonlocal exception,
reflecting the fact that a new propagation has started.

5.5.3.3 Commentary

Of the few languages with resumption, the language M&Hd$79 is probably the only one that also solved the
recursive resuming problem. The Mesa scheme preventssieeuesuming by not reusing a handler clause bound
to a specific invoked block, i.e., once a handler is used asgbdrandling an exception, it is not used again. The
propagation mechanism always starts from the top of th& dtafind an unmarked handler for a resume exception.
However, this unambiguous semantics is often describedrasiging.

The following program demonstrates hgsZ+ and Mesa solve recursive resuming, but with differehitgans:

_Event R1 {};
_Event R2 {};

void f() { _Resume R1(); }

void g(R2 &) { _Resume R1(); }
void h(R1 &) { _Resume R2(); }
void j(R2 &) {}

void uMain::main() {

try <R2,j> {
try <R1,h> {
try <R2,g>{
f0;
}
}
}

}
The following stack is generated at the point when resumgtiandleth is called fromf:
uMain::main — try<R2,j> — try<R1,h> — try<R2,0> — f() — h()

The potential infinite recursion occurs becabsesumes an exception of tyge, and there is resumption-handler
try <R2,g>, which resumes an exception of tyRe, while resumption-handlery <R1,h> is still on the stack. Hence,
handler bodyh invokes handler body and vice versa with no case to stop the recursion.

1CH propagation prevents the infinite recursion by markiothresumption handlers as ineligible before invoking
resuming body, e.g.:

uMain:main — try<R2,j> — try<R1,h> — try<R2,0> — f() — h()

Therefore, whern resumes an exception of tyjg2 the next eligible handler is the one with resume bpdiesa
propagation prevents the infinite recursion by only markinginhandled handler, i.e., a handler that has not returned,
as ineligible, resulting in:

uMain:main — try<R2,j> — try<R1,h> — try<R2,0> — f() — h()

Hence, wherh resumes an exception of type the next eligible handler is the one with resume bgdys a result,
handler bodyy resumes an exception of tyjga and there is no infinite recursion. However, the confusiotin wie
Mesa semantics is that there is no handlerRby even though the nesteg blocks appear to properly deal with this
situation. In fact, looking at the static structure, a pesgmer might incorrectly assume there is an infinite recuarsio
between handlets andg, as they resume one another. This programmer confusiolig@sa reticence by language
designers to incorporate resuming facilities in new laygsa However, agC+ shows, there are reasonable solutions
to these issues, and hence, there is no reason to precluseingsfacilities.

5.6. BOUND EXCEPTIONS 81

5.6 Bound Exceptions

To allow for additional control over the handling of excepis, 1C+ supports the notion dfound exceptionsThis
conceptbindsthe object raising an exception with the raised exceptioreference to the object can be used in a
handler clause for finer-grain matching, which is more cstesit with the object-oriented design of a program.

5.6.1 CH Exception-Handling Deficiencies

In C+, only the exception type of the raised exception idlushen matchingatch clauses; the object raising the
exception does not participate in the matching. In manys;asis important to know which object raised the exception
type for proper handling. For example, when reading fromeadilject, the exception-typ@Error may be raised:

file Datafile, Lodfile;

try {
... Datafile.read(); ...

... Logfile.read(); ...
} catch (IOError) {
/I handle exception from which object ?

}

The try block provides a handler fdOError exceptions generated while reading file objebigafile and Lodfile.
However, if either read raisé®Error, it is impossible for the handler to know which object failédring reading.
The handler can only infer the exception originates in sams&aince of thdile class. If other classes thro®Error,
the handler knows even less. Even if the handler can only tezexhby calls tdatafile.read() and Logfile.read(), it

is unlikely the handler can perform a meaningful action withknowing which file raised the exception. Finally, it
would be inconvenient to protect each individual read wittyablock to differentiate between them, as this would
largely mimic checking return-codes after each caletal.

Similar to package-specific exceptions in Adiat95], it is beneficial to provide object-specific handlers, e.g.

try {
... Datafile.read(); ...

... Logfile.read(); ...
} catch (Datafile.IOError) {
/I handle Datafile IOError
} catch (Lodfile.IOError) {
/I handle Logfile IOError
} catch (IOError) {
/I handler IOError from other objects

}

The first twocatch clauses qualify the exception type with an object to speedhe matching. That is, only if the
exception is generated by the specified object does the matulr. It is now possible to differentiate between the
specified files and still use the unqualified form to handlestirae exception type generated by any other objects.

O Bound exceptions cannot be trivially mimicked by other natbms. Deriving a new exception type
for each file object (e.glogfile_IOError from IOError) results in an explosion in the total number of
exception types, and cannot handle dynamically allocalbgects, which have no static name. Passing the
associated object as an argument to the handler and chatiiegargument is the bound object, as in:

catch (IOError e) { /I pass file-object address at raise
if (e.obj ==&f) ... /I deal only with f
else throw /I reraise exception

requires programmers to follow a coding convention of sngj the exception if the bound object is
inappropriate BMZ92]. Such a coding convention is unreliable, significantlyugdg robustness. In
addition, mimicking becomes infeasible for derived exmaptypes using the termination model, as in:

82 CHAPTER 5. EXCEPTIONS

class B {...} /I base exception-type
class D : public B {...} /I derived exception-type

try {
... throw D(this); /I pass object address /I bound form
}catch(D e) { } catch (01.D) {
if (e.o==&01) ... /I deal only with o1
else throw /l reraise exception
}catch(B e){ } catch (02.B) {
if (e.o==&02) ... /I deal only with 02
else throw /l reraise exception

When exception typB is raised, the problem occurs when the first handler cat¢teeddrived exception-
type and reraises it if the object is inappropriate. Theiseranmediately terminates the current guarded
block, which precludes the handler for the base exceptipe-tn that guarded block from being con-
sidered. The bound form (on the right) matches the handlgh&base exception-type. Therefore, the
“catch first, then reraise” approach is an incomplete stulistfor bound exceptions. |

5.6.2 Object Binding

In nC+, every exception derived from the three basic excepijypes can potentially be bound. Binding occurs
implicitly when usinguC+'s raising statements, i.e.Resume and_Throw . In the case of a local raise, the binding
is to the object in whose member routine the raise occurshdrptevious example, an exception raised in a call to
Datafile.read() is bound taDatafile; an exception raised in a call Lagfile.read() is bound ta_ogfile. If the raise occurs
inside a static member routine or in a free routine, ther@ibinding. In the case of a non-local raise, the binding is
to the coroutine/task executing the raise.

5.6.3 Bound Handlers

Bound handlers provide an object-specific handler for a Haxception. Matching is specified by prepending the
binding expression to the exception type using tlidi€ld-selection operator; the “catch-any” handler,, does not
have a bound form.

5.6.3.1 Matching

A bound handler matches when the binding at the handlerelaudentical to the binding associated with the currently
propagated exceptioand the exception type in the handler clause is identical to oaselype of the currently
propagated exception type.

Bound handler clauses can be mixed with normal (unboundjlbes) the standard rules of lexical precedence
determine which handler matches if multiple are eligiblay&xpression that evaluates tolaalueis a valid binding
for a handler, but in practice, it only makes sense to spegifpbject that has a member function capable of raising
an exception. Such a binding expression may or may not beateal during matching, and in the case of multiple
bound-handler clauses, in undefined order. Hence, carebratiaken when specifying binding expressions containing
side-effects.

5.6.3.2 Termination

Bound termination handlers appear in the Cateh clause:
catch (raising-object . exception-type [variable]) { ... }

In the previous exampleatch (Logfile.I0Error) is a catch clause specifying a bound handler with bindgiile and
exception-typeOError.
5.6.3.3 Resumption

Bound resumption handlers appear in tt@+ resumption handler location at the start of/ablock (see SectioB.5.2
p.75):

5.7. INHERITANCE 83

try < raising-object . exception-type , expression > // form 1, handler code
< raising-object . exception-type > // form 2, no handler code

(...}

An example of a bound resumption clausgys<uThisCoroutine().starter(), handler>, where the binding to be matched
is uThisCoroutine().starter(), which suggests a non-local exception is expected.

5.7 Inheritance

Table5.1 shows the forms of inheritance allowed among C+ typesdid exception-types. First, the casesoigle
public inheritance among homogeneous kinds of exceptipa,tie., base and derived type are the boivent, is
supported inC+ (major diagonal), e.g.:

__Event Ebase {};
_Event Ederived : public Ebase {}; // homogeneous public inheritance

In this situation, all implicit functionality matches beten base and derived types, and therefore, there are no prob-
lems. Public derivation of exception types is for buildimg texception-type hierarchy, and restricting public in-
heritance to only exception types enhances the distinti&ween the class and exception hierarchies. Single pri-
vate/protected inheritance among homogeneous kinds epé&ra types is not supported, e.g.:

_Event Ederived : private Ebase {}; /I homogeneous private inheritance, not allowed
_Event Ederived : protected Ebase {}; // homogeneous protected inheritance, not allowed

because each exception type must appear in the exceppertgrarchy, and hence must be a subtype of another
exception type. Neitherivate norprotected inheritance establishes a subtyping relationship.

base public only/ NO multiple inheritance
derived struct/class event
struct/class v X
event V4 V4

Table 5.1: Inheritance among Exception Types

Second, the case efngleprivate/protected/public inheritance among heterogeséinds of type, i.e., base and
derived type of different kind, is supported i€+ only if the base kind is an ordinary class, e.g.:

class Cbase {}; /I only struct/class allowed

_Event Ederived : public Cbase {}; // heterogeneous public inheritance

An example for using such inheritance is different exceptiges using a common logging class. The ordinary class
implements the logging functionality and can be reused antbe different exception types.

Heterogeneous inheritance among exception types and latiee of class, exception types, coroutine, mutex or
task, are not allowed, e.g.:

__Event Ebase {};

struct StructDerived . public Ebase {}; // not allowed
class ClassDerived . public Ebase {}; // not allowed
_ Coroutine CorDerived . public Ebase {}; // not allowed
_Monitor MonitorDerived . public Ebase {}; // not allowed
_Task TaskDerived . public Ebase {}; // not allowed

A structure/class cannot inherit from an exception typeabee operations defined for exception types may cause
problems when accessed through a class object. This testrines not mean exception types and non-exception-
types cannot share code. Rather, shared code must be thotdras an ordinary class and then inherited by exception
types and non-exception-types, e.g.:

84 CHAPTER 5. EXCEPTIONS

class CommonBase {};

class ClassDerived : public CommonBase {};
_Event Ederived : public CommonBase {};

Technically, it is possible for exception types to inherdrfi mutex, coroutine, and task types, but logically there
does not appear to be a need. Exception types do not needlraxtiizsion because a new exception is generated
at each throw, so the exception is not a shared resource. xaorpée, arithmetic overflow can be encountered by
different executions but each arithmetic overflow is indefnt. Hence, there is no race condition for exception
types. Finally, exception types do not need context swilglor a thread to carry out computation. Consequently, any
form of inheritance from a mutex, coroutine or task by an pxioa type is rejected.
Multiple inheritance is allowed for private/protectedifia inheritance of exception types withruct /class for

the same reason as single inheritance.

5.8 Predefined Exception Routines

C+ supplies severdluiltin routines to provide information and deal with problems dggpropagation. The semantics
of these builtin routines changes in a concurrent envirarime

5.8.1 terminate /set_terminate

The terminate routine is called implicitly in a number of different situats when a problem prevents successful
propagation (see a C+ reference manual for a completéf fisbpagation problems). The most common propagation
problem is failing to locate a matching handler. Thkeminate routine provides an indirect mechanism to call a
terminate-handler, which is a routine of tyjeeminate _handler:

typedef void (xterminate_handler)();
and is set using the builtin routiset_terminate, which has type:
terminate _handler set_terminate(terminate__handler handler) throw ();

The previously set terminate-handler is returned when ahmevdler is set. The default terminate-handler aborts the
program; a user-defined terminate-handler must also tatethe program, i.e., it may not return or raise an exception
but it can perform some action before terminating, e.g.:

void new_handler() {
/I write out message
/I terminate execution (abort/exit)

}

terminate _handler old_handler = set_terminate(new_handler);

In a sequential program, there is only one terminate-haridighe entire program, which can be set and restored as
needed during execution.

In a concurrent program, having a single terminate-harfdleall tasks does not work because the value set by
one task can be changed by another task at any time. In otheiswmo task can ensure that the terminate-handler
it sets is the one that is used during a propagation probleherefore, inuC+, each task has its own terminate-
handler, set using theet_terminate routine. Hence, each task can perform some specific acti@mnahproblem
occurs during propagation, but the terminate-handler stilsterminate the program, i.e., no terminate-handley ma
return (see Section.2.2 p.99). The default terminate-handler for each task aborts thgram.

Notice, the terminate-handler is associated with a taskugea coroutine. The reason for this semantics is that the
coroutine is essentially subordinate to the task becawsedioutine is executed by the task’s thread. While propaga-
tion problems can occur while executing on the coroutinesks these problems are best dealt with by the task execut-
ing the coroutine because the program must terminate gidimis. In fact, for the propagation problem of failing to lo-
cate a matching handler, the coroutine implicitly raisesgredefined exceptiarBaseCoroutine::UnhandledException
in its last resumer coroutine (see Sectib@.3.1 p. 100, which ultimately transfers back to a task that either hesd
this exception or has its terminate-handler invoked.

5.9. PROGRAMMING WITH EXCEPTIONS 85

5.8.2 unexpected /set_unexpected

The unexpected routine is called implicitly for the specific propagatioroptem of raising an exception that does not
appear in aroutine’s exception specificatigndw list), e.g.:
int rtn(...) throw (Ex1) { /I exception specification
... throw Ex2; ... /I Ex2 not in exception specification

}

The unexpected routine provides an indirect mechanism to call an unexpelk#ndler, which is a routine of type
unexpected_handler:

typedef void (xunexpected_handler)();
and is set using the builtin routirset_unexpected, which has type:
unexpected_handler set_unexpected(unexpected__handler handler) throw ();

The previously set unexpected-handler is returned whemwdaadler is set. The default unexpected-handler calls the
terminate routine; like a terminate-handler, a user-defined unexggebaindler may not return, but it can perform some
action and either terminat® raise an exception, e.g.:

void new_handler() {

/I write out message
/Il raise new exception

}

unexpected_handler old__handler = set_unexpected(new_handler);
In a sequential program, there is only one unexpected-bafatithe entire program, which can be set and restored as
needed during execution.

In a nC+ program, having a single unexpected-handler for athetines/tasks does not work for the same reason
as for the terminate-handler, i.e., the value can changeyatime. Because it is possible to handle this specific
propagation-problem programmatically (e.g., raise areption) versus terminating the program, a coroutine can
install a handler and deal with this problem during prop&gedn its stack. Therefore, inC+, each coroutine (and
hence, task) has its own unexpected-handler, set usirgethenexpected routine. The default unexpected-handler
for each coroutine/task calls tierminate routine.

5.8.3 uncaught _exception

Theuncaught_exception routine returns true if propagation is in progress. prG+ program, the result of this routine
is specific to the coroutine/task that raises the exceptitance, the occurrence of propagation in one coroutine/task
is independent of that occurring in any other coroutin&/t&sr example, a destructor may not raise a new exception
if it is invoked during propagation; if it does, therminate routine is called. It is possible to usecaught_exception
to check for this case and handle it differently from nornmedtductor execution, e.g.:
~T() { /I destructor
if (... && ! uncaught_exception()) { /I prevent propagation problem
/] raise an exception because cleanup problem
} else {
/I cleanup as best as possible

}

5.9 Programming with Exceptions

Like many other programming features, an EHM aims to mak&iteprogramming tasks easier and improve the
overall quality of a program. Indeed, choosing to use the Ebldr other available flow control mechanisms is a
tradeoff. For example, a programmer may decide to use ércepdver some conditional statement for clarity. This
decision may sacrifice runtime efficiency and memory spaneothier words, universal, crisp criteria for making a
decision do not exist. Nevertheless, some important gimelebre given to encourage good use of exceptions.

First, use exceptions to indicate exceptional event iratjpicode to ensure a library user cannot ignoring the
event, as is possible with return codes and status valuexe;exceptions improve safety and robustness, while still
allowing a library user to explicitly catch and do nothingaban exception. Second, use exceptions to improve clarity

86 CHAPTER 5. EXCEPTIONS

and maintainability over techniques like status returuealand status flags where normal and exceptional control-
flow are mixed together within a block. Using exceptions midy@eparates the normal flow in a guarded block from
the exceptional flow in handlers, but also avoids mixing redrmaturn-values with exceptional return-values. This
separation makes subsequent changes easier. Third, egiers to indicate conditions that happen rarely at ruatim
for the following reasons:

e The normal flow of the program should represent what shoybgéra most of the time, allowing programmers
to easily understand the common functionality of a code segnirhe exceptional flow then represents subtle
details to handle rare situations, such as boundary conditi

e Because the propagation mechanism requires a search foaridéer, it is usually expensive. Part of the cost is
a result of the dynamic choice of a handler. Furthermors,dizghamic choice can be less understandable than
a normal routine call. Hence, there is a potential for hightimae cost with exceptions and control flow can be
more difficult to understand. Nevertheless, the net conifyiéx reduced using exceptions compared to other
approaches.

5.9.1 Terminating Propagation

Typical use of terminating propagation is for graceful teration of an operation, coroutine, task or program. Ter-
mination is graceful if it triggers a sequence of cleanupoast in the execution context. Examples of abrupt (or
non-graceful) termination include thibort routine @bort in C) and thekill -9 command in UNIX. Graceful termina-
tion is more important in a concurrent environment becauseaxecution can terminate while others continue. The
terminating operation must be given a chance to releaselared resources it has acquired (the cleanup action) in
order to maintain the integrity of the execution environin&or example, deadlock is potentially a rare condition and
a thrown exception can force graceful termination of an apen, consequently leading to the release of some shared
resources and breaking of the deadlock.

5.9.2 Resuming Propagation

Typical use of resuming propagation is to do additional cotagion, in the form of a resumption handler, for an
exceptional event or as a form of polymorphism, where aroads left unspecified (e.g., in a library routine) and
specified by a user using dynamic lookup (similar to a virtealtine in a class). The additional computation may
modify the state of the execution, which can be useful fara®covery. Alternatively, it may cause information about
the execution to be gathered and saved as a side-effectutgffectively modifying the execution’s computation.

5.9.3 Terminating/Resuming Propagation

Any exception type can be both thrown or resumed. When fegsths best to initially resume an exception-type to
avoid loss of local information. If no resumption handlentiees the exception, the same exception-type can be thrown
(default action). For example, in a real-time applicatimissing a real-time constraint, say an execution canndafini
before a deadline, is considered an exceptional event. dfoe @pplications, the constraint violation can result in
termination. Other applications can modify internal paggams to increase execution by sacrificing the quality of the
solution or by acquiring more computing resources to speestecution.

5.10 Predefined Exception-Types

1C+H provides a number of predefined exception-types, whielstuctured into the hierarchy in Figuse!, divided

into two major groups: kernel and I/O. The kernel exceptigpes are raised by theC+ runtime kernel when prob-
lems arise using theC+ concurrency extensions. The I/O exception-types aseday theuC+ 1/O library when
problems arise using the file system. Only the kernel exargiipes are discussed, as the 1/0 exception-types are OS
specific.

5.10.1 Implicitly Enabled Exception-Types

Certain of the predefined kernel exception-types are intjylienabled in certain contexts to ensure prompt delivery
for nonlocal exceptions. The predefined exception-tyRa&seCoroutine::Failure is implicitly enabled and polling is
performed when a coroutine restarts after a suspend or gesurhe predefined exception-typ8erial:Failure is

5.10. PREDEFINED EXCEPTION-TYPES

uBaseEvent
uKernelFailure
uSerial::Failure
uSerial::EntryFailure
uSerial::RendezvousFailure
uCondition::WaitingFailure
uBaseCoroutine::Failure
uBaseCoroutine::UnhandledException
uPthreadable::Failure
uPthreadable::CreationFailure
ulOFailure
uFile::Failure
uFile::TerminateFailure
uFile::StatusFailure
uFileAccess::Failure
uFileAccess::OpenFailure
uFileAccess::CloseFailure
uFileAccess::SeekFailure
uFileAccess::SyncFailure
uFileAccess::ReadFailure
uFileAccess::ReadTimeout
uFileAccess::WriteFailure
uFileAccess::WriteTimeout
uSocket::Failure
uSocket::OpenFailure
uSocket::CloseFailure
uSocketServer::Failure
uSocketServer::OpenFailure
uSocketServer::CloseFailure
uSocketServer::ReadFailure
uSocketServer::ReadTimeout
uSocketServer::WriteFailure
uSocketServer::WriteTimeout
uSocketAccept::Failure
uSocketAccept::OpenFailure
uSocketAccept::OpenTimeout
uSocketAccept::CloseFailure
uSocketAccept::ReadFailure
uSocketAccept::ReadTimeout
uSocketAccept::WriteFailure
uSocketAccept::WriteTimeout
uSocketClient::Failure
uSocketClient::OpenFailure
uSocketClient::OpenTimeout
uSocketClient::CloseFailure
uSocketClient::ReadFailure
uSocketClient::ReadTimeout
uSocketClient::WriteFailure
uSocketClient::WriteTimeout

Figure 5.4:,C+ Predefined Exception-Type Hierarchy

87

88 CHAPTER 5. EXCEPTIONS

implicitly enabled and polling is performed when a task aest from blocking on entry to a mutex member. This
situation also occurs when a task restarts after being btbok an_Accept or await. The predefined exception-type
uSerial::RendezvousFailure is implicitly enabled and polling is performed when an atcoepask restarts after blocking
for a rendezvous to finish.

5.10.2 Unhandled Exception in Coroutine

An exception raised and not handled inside a coroutine teates it and implicitly resumes a nonlocal exception of
type uBaseCoroutine::UnhandledException at the coroutine’s last resumer rather than performing gfaudt action
(which may abort the program). For example, in:

_Event E {};

_Coroutine C {
void main() { _Throw E(); }
public :
void mem() { resume(); }

%
void uMain::main() {
Cc;
try {
c.mem();
} catch (uBaseCoroutine::UnhandledException) {
}
}

the call toc.mem resumes coroutine, and then inside.main an exception is raised that is not handled locally by
c. When the exception of typE reaches the top aof's stack without finding an appropriate handler, corouttne

is terminated and the nonlocal exception of ty@aseCoroutine::UnhandledException is implicitly raised atuMain,
since it isc’s last resumer. This semantics reflects the fact that thedasmer is most capable of understanding and
reacting to a failure of the operation it just invoked. Ferthore, the last resumer (coroutine or task) is guaranteed t
be restartable because it became inactive when it did thedssme. Finally, when the last resumer is restarted, the
implicitly raised nonlocal exception is immediately delied because the context switch back tiplicitly enables
uBaseCoroutine::UnhandledException, which triggers the propagation of the exception.

In many cases, the resumer of a coroutine is unaware of tluenezbs coroutine’s implementation, and hence,
cannot respond directly to unhandled exceptions forwafo®d the resumed coroutine, which is why the general
uBaseCoroutine::UnhandledException exception is raised at the resumer rather than the specifiziine exception.

To provide for the case where a resumer does know about éasphat may be forwarded from a resumed coroutine,
the exceptioruBaseCoroutine::UnhandledException contains a copy of the initial exception not caught in theinesd
coroutine. When handling@aseCoroutine::UnhandledException, a resumer can trigger the copied exception in the
handler using member routitéggerCause. For example, in:

. as above ...
void uMain::main() {
Cc;
try {
c.mem(); /I first call fails
} catch (uBaseCoroutine::UnhandledException &ex) {
ex.triggerCause(); // trigger copied exception

}
}

the call to c.mem indirectly _Resumes a nonlocal exception of typeBaseCoroutine::UnhandledException,
because c.main does not handle exceptions of type. uMain:main has no resumption handler for
uBaseCoroutine::UnhandledException; hence, its default handlerThrow s the exception (see SectiérB.2 p. 71),
which is caught. The handler triggers a copy of the initi@eption of typeE, which is raised in exactly the same way
as the raise in the resumed coroutine (i.e., matchifigrow or _Resume). In this way, the resumer coroutine can
use all exception matching mechanisms provideg®y+ to identify the initial exception.

5.10. PREDEFINED EXCEPTION-TYPES 89

5.10.3 Breaking a Rendezvous

As mentioned in SectioR.9.2.2 p. 24, the accept statement forms a rendezvous between the acaagithe accepted
tasks, where a rendezvous is a point in time at which bottstaslt for a section of code to execute before continuing.
It can be crucial to correctness that the acceptor know ifitteepted task does not complete the rendezvous code,
otherwise the acceptor task continues under the incorsscinaption that the rendezvous action has occurred. To this
end, an exception of typ&Serial::RendezvousFailure is raised at the acceptor task if the accepted member tet@sina
abnormally. It may also be necessary for a mutex member tovkhthe acceptor has restarted, and hence, the
rendezvous has ended. This situation can happen if the rmésnber calls a private member, which may conditionally
wait, which ends the rendezvous. The maaRendezvousAcceptor can be used only inside mutex types to determine
if a rendezvous has ended:

uBaseCoroutine xuRendezvousAcceptor();

It returnsNULL if the rendezvous is ended; otherwise it returns the addvetise rendezvous partner. In addition,
calling uRendezvousAcceptor has the side effect of cancelling the implicit resumei®érial::RendezvousFailure at
the acceptor. This capability allows a mutex member to teate with an exception without informing the acceptor.

90

CHAPTER 5. EXCEPTIONS

Chapter 6

Cancellation

Cancellationis a mechanism to safely terminate the execution of a carewtr task. Any coroutine/task may can-
cel itself or another coroutine/task by callingaseCoroutine::cancel() (see Sectior2.7.2 p. 15). The deletion of a
non-terminated coroutine (see pa@y® implicitly forces its cancellationCancelling a coroutine/task does not result
in immediate cancellation of the object; cancellation domégins when the coroutine/task encountecsuacellation
checkpoint, such asiIEHM::poll() or uBaseTask::yield() (see pag&4 for a complete list), which starts the cancellation
for the cancelled object. Note, all cancellation pointsoling points for asynchronous exceptions and vice-versa
The more frequently cancellation checkpoints are encoedi¢he timelier the cancellation starts. There is no pro-
vision to “uncancel” a coroutine/task once it is cancellethwever, it is possible for the cancelled coroutine/task to
control if and where cancellation starts (see Secsidh

Once cancellation starts, the stack of the coroutine/taskivound, which executes the destructors of objects
allocated on the stacks well as catch-any exception handlérs.,catch (...)). Executing this additional code during
unwinding allows safe cleanup of any objects declared imaeléed coroutine/task via their destructors, and sugport
the common C+ idiom of using catch-any handlers to perfdearwp actions during exceptional control-flow and
then reraising the exception. The C+ idiom follows from fhet that a catch-any handler has no specific information
about an exception, and hence, cannot properly handleitefibre, it only makes sense to execute local cleanup in the
catch-any handler and continue propagation by reraisiag@xlaeption so a specific handler can be found.

There are two scenarios in which a catch-any handler maynfihighe first scenario, all exceptions raised directly
or indirectly from a guarded block are handled by a commoioactvith normal program execution continuing after
it. However, using a catch-any handler to specify the comawtion is considered poor style. If a group of exceptions
has a common handling action, itis highly likely all its megnbare logically related, and hence, should be structured
into an exception hierarchy (see Sectton, p.83) allowing all the group members to be caught by the hierdsatopt
rather than a catch-any. In the second scenario, all exuepére caught at a high level (often the top-most level) in a
task in order to prevent the program’s termination due toramaught exception. In this case, code after the handler is
often finalization/restart code to be performed unconddlty before ending or restarting the task.

Unlike a nonlocal exception (see Sectiod, p. 72), cancellation cannot be caught or stopped unless thewgean
code aborts the program, which is the ultimate terminatioallccoroutines/tasks. Therefore, if a catch-any handler
finishes during cancellation, i.e., without throwing ortrewing, the only logical behaviour is for stack unwinding
to continue. This behaviour is different from normal contigle of a catch-any handler, which continues after the
handler. The correctness of a program relying on executiocohtinue after a catch-any handler for convenience
(scenario 1) or restart (scenario 2) reasons is unaffeated sancellation ultimately terminates the task, and éenc
normal execution/restart cannot be expected. Howevergdirectness of programs relying on execution to continue
after a catch-any handler for finalization reasons (scer®ris compromised by cancellation. Such programs are in-
compatible with cancellation as control cannot logicabiytinue after the handler. In this situation, the progranstmu
be restructured to check for cancellation and invoke théifimdon code within the handler. It is possible to program-
matically check for an ongoing cancellation by calling iogtuBaseCoroutine::cancellnProgress (see Sectior2.7.2
p. 15) during cleanup (catch-any handler or destructor), whscinialogous to usingd::uncaught_exception.

Cancellation does not work if mewexception is thrown inside a catch-any handler becausetdlok snwinding
due to termination cannot be altered, e.g.:

91

92 CHAPTER 6. CANCELLATION

catch (...) {
. _Throw anotherException(); ...
}
The resulting program behaviour is undefined, and such earistmust be avoided if cancellation is to be used. Again,
routineuBaseCoroutine::cancellnProgress (see Sectio.7.2 p.15) can be used to check for this situation, so the throw
can be conditional. Alternatively, ensuring a coroutimasn routine terminates prevents implicit cancellation.

6.1 Using Cancellation

Cancellation is used in situations where the work of a tashoisrequired any more and its resources should be
freed. Figures.1shows a generic example in which a solution space is dividdsub-domains and worker tasks are
dispatched to search their respective sub-domain for atseisolution. For this particular problem class, any djeci
solution is sufficient. In the program, afteMain creates the tasks, it waits for a solution to be found by anphef
Worker tasks. If aworker task finds a solution, it stores it in tiResult monitor and restarteMain (if appropriate).
Since a solution has been found, the other worker solutiomeat required and allowing these workers to proceed
is a waste of resources. Henedjain marks them all for cancellation and uses the result. Afterrésult has been
processeduMain deletes the worker tasks, which allows for execution oyedfresult processing with the worker
tasks detecting, starting, and finishing cancellationedatively,uMain can delete the workers right away, with the
consequence that it may have to wait for the worker tasks ighficancellation before processing the result.

6.2 Enabling/Disabling Cancellation

A cancellee may not stop cancellation once in progresst baicontrol when the cancellation starts. The ability to de
fer the start of cancellation can be used to ensure a blookd# s completely executed, similar to enabling/disabling
propagation (see Secti@¥.2 p.73).

By default, cancellation is implicitly enabled for a cormg/task (which is the opposite of nonlocal excep-
tions). Explicitly enabling/disabling cancellation isrtoolled by declaring an instance of one of the followingegp
uEnableCancel or uDisableCancel. The object’s constructor saves the current cancellatate ¢enabled or disabled)
and sets the state appropriately; the object’s destruesets the cancellation state to the previous state, e.g.:

{

uDisableCancel cancelDisable; // save current state, set to disable (variable name unimportant)

uEnableCancel cancelEnable; // save current state, set to enable (variable name unimportant) and
/I implicit poll/cancellation checkpoint
} /I revert back to disabled

} /I revert back to previous cancellation status

Note, creating an instance ofEnableCancel is a cancellation checkpoint, which polls for both cand&llaand asyn-
chronous exceptions.

6.3 Commentary

Despite their similarities, cancellation and nonlocalept@ons are fundamentally different mechanismg@+. As a
result, the approach of usingenable / _Disable with a specialiCancellation type to control cancellation delivery was
rejected, e.g.:

_Enable <uCancellation> <...> /x asynchronous exceptions «/ {

}
This approach is rejected because it suggests cancellatpant of the exception handling mechanism represented by
the exception typ&Cancellation, which is not the case. There is no way to raise or catch a Hatioa as there is
with exceptions. In addition, the blankeEnable / _Disable , which applies to all nonlocal exceptions, does not affect
cancellation.

6.3. COMMENTARY

#include <uC++.h>

const int NumOfWorkers = 16;
const unsigned int Domain = OXxffffffff;

_Monitor Result {
int res;
uCondition c;
public :

Result() : res(0) {}

int getResult() {
if (res == 0) c.wait(); /I wait if no result has been found so far
return res;

void finish(int r) {

res =r; /I store result
c.signal(); /I wake up uMain
}
h
_Task Worker {
Result &r;
int subdomain;
public :
Worker(int sub, Result &res) : subdomain(sub), r(res) {}
void main() {
int finalresult;
/I perform calculations with embedded cancellation checkpoints
r.finish(finalresult); /I if result is found, store it in Result
}
h

void uMain::main () {
Worker »w[NumOfWorkers];
Result r;
for (int i = 0; i < NumOfWorkers; i += 1) {
w[i] = new Worker(i + Domain / NumOfWorkers, r); // create worker tasks
}
int result = r.getResult();
for (int i = 0; i < NumOfWorkers; i += 1) {
wli]->cancel(); /I mark workers for cancellation

/I do something with the result
for (int i = 0; i < NumOfWorkers; i += 1) {
delete wfi]; /I only block if cancellation has not terminated worker

}

Figure 6.1: Cancellation Example

94

CHAPTER 6. CANCELLATION

Chapter 7

Errors

The following are examples of the static/dynamic warnieg®frs that can occur during the compilation/execution of
a uCH program.

7.1 Static (Compile-time) Warnings/Errors

These static warnings/errors are generated by:t& translator not by the underlying C+ compiler. Thesenwar
ings/errors are specific to usage problems with i3+ concurrency extensions. The following examples show
different situations, the message generated and an exjolamd the message. While not all warning/error situations
are enumerated, the list covers the common one present iry/@es programs.

The following program:

#include <uC++.h>
_Task T{
public :
void mem() {}
private :
void main() {
fini:
for (inti=0;i<10;i+=1){
_Accept (mem) {
break fini;
} else;

%
generates these warnings when using-Wal compiler flag (actually generated by the C+ compiler pGt+):
test.cc:17: warning: label ‘_U_C_fini’ defined but not used

test.cc:11: warning: label ‘_U_L0O00001’ defined but not used
test.cc:8: warning: label ‘fini’ defined but not used

These warning messages appear due to thepdty generates code. Labels are generated in a number ofiate
are not always used depending on what happens later in tlee tasltoo difficult to detect all these cases and remove
the labels that are unnecessary. All of these kinds of wgshlan be suppressed by adding the extra flag:

-Wall -Wno-unused-label

The following program:

95

96 CHAPTER 7. ERRORS

#include <uC++.h>

_Task T {
void main() {

_Accept (mem);
}
public :

void mem() {}

h

generates this error:

test.cc:4: uC++ Translator error: accept on a nomutex member "mem?”, possibly caused by accept state-
ment appearing before mutex-member definition.

because the accept of membeem appeardeforethe definition of membemem, and hence, theC+ translator
encounters the identifienem before it knows it is a mutex member. C+ requires definitiefobe use in most

circumstances.
The following program:

#include <uC++.h>
_Task T {
public :
void mem() {}
private :
void main() {
_Accept (mem);
or _Accept (mem);
}
%

generates this error:

test.cc:8: uC++ Translator error: multiple accepts of mutex member "mem”.

because the accept statement specifies the same membertwice. The second specification is superfluous.
The following program:
#include <uC++.h>
_Task T1 {};
_Task T2 {
private :
void main() {
_Accept (~T1);
}
%

generates this error:

test.cc:6: uC++ Translator error: accepting an invalid destructor; destructor name must be the same as the
containing class "T2".

because the accept statement specifies the destructor fildfarant classT1, within classT2.
The following program:

#include <uC++.h>

_Mutex class M {};

_Coroutine C : public M {};
_Task T1 : public C {};

_Task T2 : public M, public C {};

generates these errors:

test.cc:3: uC++ Translator error: derived type "C” of kind "COROUTINE” is incompatible with the base type

"M” of kind "MONITOR”; inheritance ignored.
test.cc:4: uC++ Translator error: derived type "T1” of kind "TASK” is incompatible with the base type "C” of

7.1. STATIC (COMPILE-TIME) WARNINGS/ERRORS 97

kind "COROUTINE”; inheritance ignored.
test.cc:5: uC++ Translator error: multiple inheritance disallowed between base type "M” of kind "MONITOR”
and base type "C” of kind "COROUTINE"; inheritance ignored.

because of inheritance restrictions among kinds of typeit (see Sectiof.14 p.34).
Similarly, the following program:
#include <uC++.h>
_Event T1 {};

_Event T2 : private T1 {};
_Event T3 : public T1, public T2 {};

generates these errors:

test.cc:3: uC++ Translator error: non-public inheritance disallowed between the derived type "T2” of kind
"EVENT” and the base type "T1” of kind "EVENT”; inheritance ignored.

test.cc:4: uC++ Translator error: multiple inheritance disallowed between base type "T1” of kind "EVENT”
and base type "T2” of kind "lEVENT”; inheritance ignored.

because of inheritance restrictions among exception tiype€+ (see Sectioh.7, p.83).
The following program:
#include <uC++.h>

_Task T; /I prototype
_Coroutine T {}; /I definition

generates this error:

test.cc:3: uC++ Translator error: "T” redeclared with different kind.

because the kind of type for the prototyp&ask, does not match the kind of type for the definitiorGoroutine .
The following program:
#include <uC++.h>
_Mutex class M1 {};

_Mutex class M2 {};
_Mutex class M3 : public M1, public M2 {}; // multiple inheritance

generates this error:

test.cc:4: uC++ Translator error: multiple inheritance disallowed between base type "M1” of kind "MONI-
TOR” and base type "M2” of kind "MONITOR?”; inheritance ignored.

because only one base type can be a mutex type when inheriting
The following program:

#include <uC++.h>
_Task T{
public :
_Nomutex void mem();
h
Mutex void T:mem() {}

generates this error:

test.cc:6: uC++ Translator error: mutex attribute of "T::mem” conflicts with previously declared nomutex
attribute.

because the kind of mutual exclusionNomutex , for the prototype ofmem, does not match the kind of mutual
exclusion, Mutex, for the definition.

The following program:

98 CHAPTER 7. ERRORS

#include <uC++.h>

_Task T {
public :

_Nomutex T() {} /I must be mutex
_Mutex void *operator new (size_t) {} /I must be nomutex
_Mutex void operator delete (void x) {} /I must be nomutex
_Mutex static void mem() {} /I must be nomutex
_Nomutex ~T() {} /I must be mutex

%

generates these errors:

test.cc:4: uC++ Translator error: constructor must be mutex, nomutex attribute ignored.

test.cc:5: uC++ Translator error: "new” operator must be nomutex, mutex attribute ignored.

test.cc:6: uC++ Translator error: "delete” operator must be nomutex, mutex attribute ignored.
test.cc:7: uC++ Translator error: static member "mem” must be nomutex, mutex attribute ignored.
test.cc:9: uC++ Translator error: destructor must be mutex for mutex type, nomutex attribute ignored.

because certain members may or may not have the mutex prdpesany mutex typeThe constructor(s) of a mutex
type must be mutex because the thread of the constructikdstastive in the object. Operatonsw anddelete of
a mutex type must be nomutex because it is superfluous to rhake ihutex when the constructor and destructor
already ensure the correct form of mutual exclusion. Sthic member(s) of a mutex type must be nomutex because
it has no direct access to the object’s mutex propertiesthere is nahis variable in astatic member to control the
mutex object. Finally, a destructor must be mutex if it is amber of a mutex type because deletion requires mutual
exclusion.
The following program:
#include <uC++.h>
_Mutex class T1,;

class T1 {}; /I conflict between forward and actual qualifier
class T2 {};

_Mutex class T2; /I conflict between forward and actual qualifier
_Mutex class T3; /I conflicting forward declaration qualifiers

_Nomutex class T3; /I ignore both forward declaration qualifiers

_Mutex class T4 {
void mem(int); /I default nomutex
public :
void mem(int, int); // default mutex
h

generates these errors:

test.cc:3: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Ignoring
previous declaration.

test.cc:6: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Ignoring
this declaration.

test.cc:9: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Assuming
default attribute.

test.cc:14: uC++ Translator error: mutex attribute of "T4::mem” conflicts with previously declared nomutex
attribute.

because there are conflicts between mutex qualifiers. FefMtythe mutex qualifier for the forward declaration does
not match with the actual declaration because the defaalifgpr for aclass is _Nomutex . For typeT2, the mutex
qualifier for the later forward declaration does not matcthwine actual declaration for the same reason. For type
T3, the mutex qualifiers for the two forward declarations aneflicting so they are ignored at the actual declaration.
For mutex typer4, the default mutex qualifiers for the overloaded memberineyinem, are conflicting because one

is private, default Nomutex , the other is public, defaultMutex, and pC+ requires overloaded members to have
identical mutex properties (see Secti@8.2.1 p.22and 2.17, p. 43).

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 99

The following program:

#include <uC++.h>
_Task /+ no name «/ {};

generates this error:

test.cc:2: uC++ Translator error: cannot create anonymous coroutine or task because of the need for
named constructors and destructors.

because a type without a name cannot have constructorstouctess since both are named after the type, and the
1 CH- translator needs to generate constructors and destsuichot present for certain kinds of types.

7.2 Dynamic (Runtime) Warnings/Errors

These dynamic warnings/errors are generated by runtime system not by the C+ runtime system. These
warnings/errors are specific to usage problems withAB& concurrency extensions. The following examples show
different situations, the message generated and an exjolamd the message. While not all warning/error situations
are enumerated, the list covers the common one present iry/@es programs.

7.2.1 Assertions
Assertions define runtime checks that must be true or the Blgirithm is incorrect; if the assertion is false, a messag
is printed and the program is aborted. Assertions are wiritggng the macrassert:
assert(boolean-expression);
Asserts can be turned off by defining the preprocessor MarlbEBUG before includingassert.h. All asserts are

implicitly turned off when the compiler flagodebug is specifiedsee Sectio2.5.1, p. 10).
To use assertions ingC+ program, include the file:

#include <assert.h>

7.2.2 Termination

A pC+ program can be terminated due to a failure using the UNLXineabort, which stops all thread execution and
generates a core file for subsequent debugging (assumirsipétidimits allow a core file to written). To terminate a
program, generate a core filndprint an error message, use @&+ free routinaiAbort:

void uAbort(char sformat ="", ...)

format is a string containing text to be printed apdntf style format codes describing how to print the following
variable number of arguments. The number of elements indhiable argument list must match with the number
of format codes, as fagrintf. In addition to printing the user specified message, whiaimadly describes the error,
routineuAbort prints the name of the currently executing task type, pbsadming the type of the currently executing
coroutine if the task’s thread is not executing on its owrcetien state at the time of the call.

A pC+ program can be terminated using the UNIX routési, which stops all thread execution and returns a
status code to the invoking shell:

void exit(int status);

Note, whenexit is used to terminate a program, all global destructors alleegecuted. Any tasks, clusters, or
processors not deleted by this paane not flagged with an erromunlike normal program termination.

O Because routinexit eliminates some error checking, it should not be used tai&fath::main to pass
back a return code to the shell, e.g.:

void uMain::main() {
exit(0);
}

Use the variableRetCode from uMain::main instead (see Sectidh2, p. 8). |

100 CHAPTER 7. ERRORS

7.2.3 Messages

The following examples show different error situationg &mror message generated and an explanation of the error.
While not all error situations are enumerated, the list cHMbe common errors present in mes&+ programs.
Finally, most of these errors are generated only when usiagiébug compilation flag (see Sectidh5.1, p. 10).

7.2.3.1 Default Actions

The following examples show the default actions taken whantai exceptions are not caught and handled by the
program (see Sectidn3.2 p.71). In all these cases, the default action is print appropeator message and terminate
the program. While not all default actions are enumeratesllist covers the common problems present in matiyt
programs.

The following program:
#include <uC++.h>

void f() throw () { // throw no exceptions
throw 1;

}

void uMain::main() {
} f0;

generates this error:

uC++ Runtime error (UNIX pid:20242) Exception propagated through a function whose exception-specification
does not permit exceptions of that type. Type of last active exception: int Error occurred while executing
task uMain (0xffbef828).

because routinedefines it raises no exceptions and then an exception igris® within it.
The following program:
#include <uC++.h>
void uMain::main() {
throw 1;

}

generates this error:

uC++ Runtime error (UNIX pid:13901) Propagation failed to find a matching handler. Possible cause is
a missing try block with appropriate catch clause for specified or derived exception type, or throwing an
exception from within a destructor while propagating an exception. Type of last active exception: int Error
occurred while executing task uMain (0xffbef000).

because noy statement with an appropriatetch clause is in effect so propagation fails to locate a matchargdler.
The following program:
#include <uC++.h>
void uMain::main() {
throw ; /I rethrow

}

generates this error:

uC++ Runtime error (UNIX pid:13291) Attempt to rethrow/reresume but no active exception. Possible
cause is a rethrow/reresume not directly or indirectly performed from a catch clause. Error occurred while
executing task uMain (Oxffbef000).

because a rethrow must occur in a context with an activea@yreaised) exception so that exception can be raised
again.
The following program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS

#include <uC++.h>
_Task T1 {
uCondition w;
public :
void mem() { w.wait(); }
private :
void main() {
_Accept(mem); //let T2 in so it can wait
w.signal(); /I put T2 on acceptor/signalled stack
_Accept (~T1); /I uMain is calling the destructor
}
|5
_Task T2 {
T1 &t1;
void main() { tL.mem(); }
public :
T2(T1 &1) : t1(t1) {3
|5
void uMain::main() {
T1 «t1 = new T1;
T2 xt2 = new T2(«tl1);
delete t1; /I delete in same order as creation
delete t2;
}

generates this error:

uC++ Runtime error (UNIX pid:23337) (uSerial &)0x84470 : Entry failure while executing mutex destructor,
task uMain (Oxffbef008) found blocked on acceptor/signalled stack. Error occurred while executing task T2

(0x8d550).

101

because tasi is allowed to wait on condition variablein t1.mem, and then taskl signals conditionv, which moves
taskt2 to the acceptor/signalled stack, and accepts its destruksaa result, when taskMain attempts to delete task

t1, it finds task2 still blocked on the acceptor/signalled stack. Similatthg following program:

#include <uC++.h>
_Task T1 {
public :
void mem() {}
private :
void main() { _Accept (~T1); }
%
_Task T2 {
T1 &tl;
public :
T2(T1 &t1) : t1(t1) {
private :
void main() { tL.mem(); }
%
void uMain::main() {
T1 «t1 = new T1;
T2 %12 = new T2(«tl1);
delete ti1;
delete t2;
}

generates this error:

uC++ Runtime error (UNIX pid:23425) (uSerial &)0x84230 : Entry failure while executing mutex destructor,
task uMain (0xffbef008) found blocked on entry queue. Error occurred while executing task T2 (0x8d310).

102 CHAPTER 7. ERRORS

because tast happens to block on the call tbomem, and then taskl accepts its destructor. As a result, when task
uMain attempts to delete task, it finds taske2 still blocked on the entry queue df.

The following program:

#include <uC++.h>
_Event E {};

_Task T {
uBaseTask &t;
public :
T(uBaseTask &t) : t(t) {}
void mem() {
1l uRendezvousAcceptor();
_Throw E();
}
private :
void main() {
_Accept (mem);
}
%

void uMain::main() {
T t(uThisTask());

try {
t.mem();

}catch (E &e) {
}
}

generates this error:

uC++ Runtime error (UNIX pid:23512) (uSerial &)0x83120 : Rendezvous failure in accepted call from task
uMain (Oxffbef008) to mutex member of task T (0x82ff0). Error occurred while executing task T (0x82ff0).

because in the call tomem from taskuMain, the rendezvous terminates abnormally by raising an eixuoepf type

E. As a resultuMain implicitly resumes an exception of typeSerial::RendezvousFailure concurrently at task so

it knows the call did not complete and can take appropriateective action (see Sectidn10.3 p. 89). If the call
uRendezvousAcceptor() is uncommented, an exception of typ®erial::RendezvousFailure is not resumed at task
and task restarts as if the rendezvous completed. A more complexoreds this situation occurs when a blocked
call is aborted, i.e., before the call even begins. The ¥alg program:

#include <uC++.h>
_Event E {};

_Task T {
uBaseTask &t;
public :
T(uBaseTask &t) : t(t) {}
void mem() {}
private :
void main() {
_Throw E() _At t;
_Accept (mem);

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 103

void uMain::main() {
T t(uThisTask());
try {
_Enable {
t.mem();

}
}catch (E &e) {
}
}

generates this error:

uC++ Runtime error (UNIX pid:23656) (uSerial &)0x83260 : Rendezvous failure in accepted call from task
uMain (0xffbef008) to mutex member of task T (0x83130). Error occurred while executing task T (0x83130).

because the blocked call tonem from taskuMain is interrupted by the concurrent exception of typeWhen the
blocked call fromuMain is accepteduMain immediately detects the concurrent exception and doeganttke call.
As a result,uMain implicitly resumes an exception of typeSerial::RendezvousFailure concurrently at task so it
knows the call did not occur and can take appropriate caveeattion (see Sectiof10.3 p. 89).

The following program:

#include <uC++.h>
_Task T1 {
uCondition w;
public :
void mem() { w.wait(); }
private :
void main() { _Accept (mem); }

h

_Task T2 {
T1 &tl;
void main() { tL.mem(); }
public :
T2(T1 &t1) : t1(t1) {¢
%

void uMain::main() {
T1 «t1 = new T1;
T2 xt2 = new T2(«tl1);
delete t1;
delete t2;

}

generates this error:

uC++ Runtime error (UNIX pid:23856) (uCondition &)0x84410 : Waiting failure as task uMain (0xffbef008)
found blocked task T2 (0x8d470) on condition variable during deletion. Error occurred while executing task
T2 (0x8d470).

because the call ta.mem blocks task2 on condition queu# and then tasklL implicitly accepts its destructor when
its main terminates. As a result, when taglain attempts to delete task; it finds task? still blocked on the condition
queue.

The following program:

104 CHAPTER 7. ERRORS

#include <uC++.h>
_Event E {};

_Coroutine C {
void main() { _Throw E(); }
public :
void mem() { resume(); }

%
void uMain::main() {

Cc;

c.mem(); /I first call fails
}

generates this error:

uC++ Runtime error (UNIX pid:23979) (uBaseCoroutine &)0xffbef008 : Unhandled exception in coroutine
uMain raised non-locally from resumed coroutine C (0x82970), which was terminated due to an unhandled
exception of type E. Error occurred while executing task uMain (0xffbef008).

because the call tamem resumes coroutineand then coroutinethrows an exception it does not handle. As a result,
when the top ot’s stack is reached, an exception of tyg@aseCoroutine::UnhandledException is raised atiMain,
since it last resumeel A more complex version of this situation occurs when thei@liesume chain and no coroutine
along the chain handles the exception. The following prnogra

#include <uC++.h>
_Event E {};

_Coroutine C2 {
void main() { _Throw E(); }
public :
void mem() { resume(); }
%
_Coroutine C1 {
void main() {
C2 c2;
c2.mem();

}
public :
void mem() { resume(); }
%
void uMain::main() {
C1 c1;
cl.mem(); /I first call fails

}

generates this error:

uC++ Runtime error (UNIX pid:24080) (uBaseCoroutine &)0xffbef008 : Unhandled exception in coroutine
uMain raised non-locally from coroutine C1 (0x82ec0), which was terminated due to a series of unhandled
exceptions — originally an unhandled exception of type E inside coroutine C2 (0x8acc0). Error occurred
while executing task uMain (0xffbef008).

because the call tal.mem resumes coroutinetl, which creates coroutirne and call toc2.mem to resume it, and then
coroutinec2 throws an exception it does not handle. As a result, wherojheftc2’s stack is reached, an exception of
typeuBaseCoroutine::UnhandledException is raised atiMain, since it last resumed

7.2.3.2 Coroutine

Neither resuming to nor suspending from a terminated caresis allowed; a coroutine is terminated whemitsn
routine returns. The following program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 105

#include <uC++.h>
_Coroutine C {
void main() {}
public :
void mem() { resume(); }

%
void uMain::main() {
Cc;
c.mem(); /I first call works
c.mem(); /I second call fails
}

generates this error:

uC++ Runtime error (UNIX pid:24169) Attempt by coroutine uMain (0xffbef008) to resume terminated
coroutine C (0x823a0). Possible cause is terminated coroutine’s main routine has already returned. Error
occurred while executing task uMain (Oxffbef008).

because the first call tomem resumes coroutineand then coroutine terminates. As a result, whemain attempts
the second call to.mem, it finds coroutine terminated. A similar situation can be constructed usirgpend, but is
significantly more complex to generate, hence it is not dised in detail.

Membersuspend resumes the last resumer, and therefore, there must beraadmfore a suspend can execute
(see Sectio.7.3 p.17). The following program:

#include <uC++.h>

_Coroutine C {
void main() {}

public :
void mem() {
suspend(); /I suspend before any resume

}

%

void uMain::main() {
Cc;
c.mem();

}

generates this error:

uC++ Runtime error (UNIX pid:24258) Attempt to suspend coroutine C (0x82390) that has never been
resumed. Possible cause is a suspend executed in a member called by a coroutine user rather than by the
coroutine main. Error occurred while executing task uMain (Oxffbef008).

because the call t6::mem executes a suspend before the coroutimalim member is started, and hence, there is no
resumer to reactivate. In general, membespend is only called within the coroutine main or non-public memsbe
called directly or indirectly from the coroutine main, natgublic members called by other coroutines.

Two tasks cannot simultaneously execute the same corootiheone task can use the coroutine’s execution at a
time. The following program:

#include <uC++.h>
_Coroutine C {
void main() {
uThisTask().yield();
}
public :
void mem() {
resume();

}

106 CHAPTER 7. ERRORS

_Task T {
C &c;
void main() {
c.mem();
}
public :
T(C&c):c(c){
I8
void uMain::main() {
Cc;
Ttl(c), t2(c);

generates this error:

uC++ Runtime error (UNIX pid:24393) Attempt by task T (0x82ea0) to resume coroutine C (0x831e0) cur-
rently being executed by task T (0x83040). Possible cause is two tasks attempting simultaneous execution
of the same coroutine. Error occurred while executing task T (0x82ea0).

becausel’s thread first calls routin€::mem and then resumes coroutingwhere it yields the processae’s threads
now calls routinec::mem and attempts to resume coroutinkuttl is currently using’'s execution-state (stack). This
same error occurs if the coroutine is changed to a coroutorétor and taskl waits in corouting after resuming it:

#include <uC++.h>
_Cormonitor CM {
uCondition w;
void main() {
w.wait();
}
public :
void mem() {
resume();

}

|5
_Task T {
CM &cm;
void main() {
cm.mem();
}
public :
T(CM &m) : cm(cm) {§
b
void uMain::main() {
CM cm;
Ttl(cm), t2(cm);
}

When a coroutine (or task) is created, there must be suffisiemory to allocate its execution state. The following
program:
#include <uC++.h>
unsigned int uMainStackSize() {
return 1000000000; /I very large stack size for uMain
}
void uMain::main() {

}

generates this error:

uC++ Runtime error (UNIX pid:24848) Attempt to allocate 1000000000 bytes of storage for coroutine or

task execution-state but insufficient memory available. Error occurred while executing task uBootTask
(0x4d6b0).

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 107

because the declarationaflain by theuBootTask fails due to the request for a 1000000000-byte stackitzin.

As mentioned in Sectiof.4, p. 10, the uC+ kernel provides no support for automatic growth of stsygice for
coroutines and tasks. Several checks are made to mitigatiéepns resulting from lack of dynamic stack growth. The
following program:

#include <uC++.h>

void uMain::main() {
char x[uThisCluster().getStackSize()]; /I array larger than stack space

verify();
generates this error:

uC++ Runtime error (UNIX pid:24917) Stack overflow detected: stack pointer 0x7a650 below limit 0x7a820.
Possible cause is allocation of large stack frame(s) and/or deep call stack. Error occurred while executing
task uMain (0xffbef008).

because the declaration of the arrayiitain uses more than the current stack space.
The following program:

#include <uC++.h>
void uMain::main() {

{
char x[uThisCluster().getStackSize()]; /I array larger than stack space
for (int i = 0; i < uThisCluster().getStackSize(); i += 1) {
X[i] =’a’; /I write outside stack space
}
} /I delete array
verify();

generates this error:

uC++ Runtime error (UNIX pid:24968) Stack corruption detected. Possible cause is corrupted stack frame
via overwriting memory. Error occurred while executing task uMain (0xffbef008).

because the declaration of the arrayiivtain uses more than the current stack space, and by writing ietartiay, the
current stack space is corrupted (and possibly anothd¢, siaavell).

7.2.3.3 Mutex Type

It is a restriction that a task must acquire and release nultgects in nested (LIFO) order (see Sectibf, p. 18).
The following program:

#include <uC++.h>

_Task T;

_Cormonitor CM {

T «t;
void main();
public :
void mem(T #t) { /I task owns mutex object
CM:t =t
resume(); /I begin coroutine main
}

108 CHAPTER 7. ERRORS

_Task T {
CM &cm;
void main() {
cm.mem(this); /I call coroutine monitor
}
public :
T(CM &cm) : cm(cm) {}
void mem() {

resume(); /I restart task in CM::mem
}
%
void CM:main() {
t->mem(); /I call back into task
}
void uMain::main() {
CM cm;
Tt(cm);
}

generates this error:

uC++ Runtime error (UNIX pid:25043) Attempt to perform a non-nested entry and exit from multiple ac-
cessed mutex objects. Error occurred while executing task T (0x835f0).

because's thread first calls mutex routir@v::mem (and now owns coroutine monitoim) and then resumes coroutine
cm, which now calls the mutex routirfe:mem (t already owns itself). The coroutieen resumes from within T::mem,
which restarts ircM::mem (full coroutining) and exits before completing the nestedl to mutex routiner:mem
(wherecm is suspended). Therefore, the calls to these mutex roudime®st terminate in LIFO order. The following
program is identical to the previous one, generating theesamor, but the coroutine monitor has been separated into
a coroutine and monitor:

#include <uC++.h> void C:main() {
_Monitor M; m->mem2();
_Task T; }
_Task T {
_Coroutine C { M &m;
M «m; C &c;
void main(); void main() {
public : m.mem1(this); // call monitor
void mem(M «m) { }
C:m=m; public :
resume(); /I begin coroutine main T(M&m, C&c): m(m), c(c){}
} void mem() {
h resume(); /I restart task in C::mem
_Monitor M { }
C &c; 3
T A void M:mem2() {
public : t->mem(); /I call back into task
M(C&c):c(c){} }
void meml1(T «t) { // task owns mutex object | void uMain::main() {
M:t = t; Cc;
c.mem(this); M m(c);
Tt(m,c)
void mem2(); }
%

Ownership of a mutex object by a task applies through anyutore executed by the task. The following program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS

#include <uC++.h>
_Task T;

_Coroutine C {
T «t;
void main();
public :
void mem(T t) {
Cit=t
resume();

%
_Task T{
C &c;
void main() {
c.mem(this);
yield();
}
public :
T(C&c):c(c){
void mem() {
resume();
}
%
void C:main() {
t->mem();
}
void uMain::main() {
Cc;
Ttl(c), t2(c);
}

generates this error:

uC++ Runtime error (UNIX pid:25216) Attempt by task T (0x83050) to activate coroutine C (0x833c0) cur-
rently executing in a mutex object owned by task T (0x83208). Possible cause is task attempting to logically
change ownership of a mutex object via a coroutine. Error occurred while executing task T (0x83050).

109

becausel’s thread first calls routin€::mem and then resumes coroutici@vhich now calls the mutex routirfe:mem.
t1 restarts inC::mem and returns back t0::main and yields the processae’s threads now calls routin@::mem and

attempts to resume coroutingewhich would restart2 via c in T::mem. However, this resumption would result in a
logical change in ownership becaugénas not acquired ownershipaf This same error can occur if the coroutine is
changed to a coroutine monitor and taskvaits in coroutine after resuming it:

#include <uC++.h>
_Task T;

_Coroutine C {
T «t;
void main();
public :
void mem(T #t) {
Cit=t
resume();

110 CHAPTER 7. ERRORS

_Task T {
uCondition w;
C &c;
void main() {
c.mem(this);
w.wait();
}
public :
T(C&c):c(c){}
void mem() {
resume();
}
5
void C::main() {
t->mem();
}
void uMain::main() {
Cc;
Ttl(c), t2(c);

Itis incorrect storage management to delete any objectitthre outstanding nested calls to the object’s members.
1CH detects this case only for mutex objects. The followirggpam:

#include <uC++.h>
class T;

_Monitor M {
public :
void mem(T #t);
%
class T {
M *m:;
public :
void mem1() {
m = new M; /I allocate object
m->mem(this); /I call into object

void mem2() {
delete m; /I delete object with pending call

}
%
void M:mem(T «t) {
t->mem2(); /I call back to caller

}

void uMain::main() {
Tt
t.mem1();

}

generates this error:

uC++ Runtime error (UNIX pid:25337) Attempt by task uMain (Oxffbef008) to call the destructor for uSerial
0x83278, but this task has outstanding nested calls to this mutex object. Possible cause is deleting a
mutex object with outstanding nested calls to one of its members. Error occurred while executing task
uMain (Oxffbef008).

It is incorrect to perform more than one delete on a mutexabpjghich can happen if multiple tasks attempt
to perform simultaneous deletes on the same objeCtt+ detects this case only for mutex objects. The following
program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 111

#include <uC++.h>
_Monitor M {
uCondition w;
public :
~MQ) {

w.wait(); /I force deleting task to wait
}
}.

_Task T{
M «m;
void main() {
delete m; /I delete mutex object

}
public :

T(M+m) : mm) {

5

void uMain::main() {
M «m = new M; /I create mutex object
Tt(m); /I create task
delete m; /I also delete mutex object

}

generates this error:

uC++ Runtime error (UNIX pid:25431) Attempt by task T (0x82cd0) to call the destructor for uSerial
0x83a48, but this destructor was already called by task uMain (Oxffbef008). Possible cause is multiple
tasks simultaneously deleting a mutex object. Error occurred while executing task T (0x82cd0).

7.2.3.4 Task

One task cannot yield another task; a task may only yieldf ifgsee Sectior?2.12.2 p. 31). The following program:

#include <uC++.h>
_Task T{
void main() {}

h
void uMain::main() {
Tt;
tyield(); /Il yielding another task

generates this error:

uC++ Runtime error (UNIX pid:25487) Attempt to yield the execution of task T (0x827c0) by task uMain
(Oxffbef008). A task may only yield itself. Error occurred while executing task uMain (0xffbef008).

One task cannot migrate another task; a task may only migsak for the same reason as for yielding (see
Section2.12.2 p. 31). The following program:

#include <uC++.h>
_Task T{
void main() {}

%
void uMain::main() {

Tt;

t.migrate(uThisCluster()); // migrating another task
}

generates this error:

uC++ Runtime error (UNIX pid:25576) Attempt to migrate task T (0x82750) to cluster userCluster (0x72f80).
A task may only migrate itself to another cluster. Error occurred while executing task uMain (0xffbef008).

112 CHAPTER 7. ERRORS

The destructor of a task cannot execute if the thread of #skt has not finished (halted) because the destructor
deallocates the environment in which the task’s threadasing. The following program:

#include <uC++.h>

_Task T {
uCondition w;
void main() {

_Accept (~T); /I uMain invokes destructor
w.wait(); /I' T continues but blocks, which restarts uMain
}
h
void uMain::main() {
Tt

} /1 implicitly invoke T::~T

generates this error:

uC++ Runtime error (UNIX pid:25719) Attempt to delete task T (0x82900) that is not halted. Possible cause
is task blocked on a condition queue. Error occurred while executing task uMain (Oxffbef008).

because the call to the destructor restarts the accepinsiatésee Section.9.2.3 p.24), and the thread afblocks on
conditionw, which restarts the destructor. However, the destructamatcleanup without invalidating any subsequent
execution of task.

7.2.3.5 Condition Variable

Only the owner of a condition variable can wait and signaltgeeée Sectio2.9.3.1 p.26). The following program:

#include <uC++.h>
_Task T {
uCondition &w;
void main() {
w.wait();

}
public :
T(uCondition &w) : w(w) {}
%
void uMain::main() {
uCondition w;
Tt(w)
w.wait();

}

generates this error:

uC++ Runtime error (UNIX pid:6605) Attempt to wait on a condition variable for a mutex object not locked
by this task. Possible cause is accessing the condition variable outside of a mutex member for the mutex
object owning the variable. Error occurred while executing task T (0x826c8).

because the condition variables passed fronaMain tot, and then there is a race to wait on the condition. The error
message shows thatlain waited first so it became the condition owner, and tfeattempt to wait fails. Changing
wait in T::main to signal generates a similar message with respect to signallingditbomnot owned by mutex object
t. Itis possible for one mutex object to create a conditioneak it to another, as long as the creator does not wait on
it before passing it.

The same situation can occur if a wait or signal is incoryegthced in a nomutex member of a mutex type. The
following program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 113

#include <uC++.h>
_Task T{
uCondition w;
void main() { w.wait(); }

public :
_Nomutex void mem() {
w.signal();

}

b _ _

void uMain::main() {
Tt;
yield();
t.mem();

}

generates this error:

uC++ Runtime error (UNIX pid:6502) Attempt to signal a condition variable for a mutex object not locked
by this task. Possible cause is accessing the condition variable outside of a mutex member for the mutex
object owning the variable. Error occurred while executing task uMain (0xffbef008).

because taskis first to wait on condition variable due to theyield in uMain::main, and theruMain does not lock
mutex-object when callingmem as it is nomutex. Only ifiMain hast locked can it access any condition variable
owned byt. Changingsignal in T::mem to wait generates a similar message with respect to waiting on datcamdot
locked by mutex objeaiMain.
A condition variable must be non-empty before examiningddbdred with the front task blocked on the queue
(see Sectio2.9.3.1 p. 26). The following program:
#include <uC++.h>
void uMain::main() {
uCondition w;
int i = w.front();

}

generates this error:

uC++ Runtime error (UNIX pid:2411) Attempt to access user data on an empty condition. Possible cause
is not checking if the condition is empty before reading stored data. Error occurred while executing task
uMain (Oxffbef870).

because the condition variables empty so there is no data to return.

7.2.3.6 Accept Statement

An _Accept accept statement can only appear in a mutex member. Thefogrogram:

#include <uC++.h>
_Monitor M {
public :
void mem1() {}
_Nomutex void mem2() {
_Accept (mem1); // not allowed in nomutex member

}

I3

void uMain::main() {
M m;
m.mem2();

}

generates this error:

uC++ Runtime error (UNIX pid:2159) Attempt to accept in a mutex object not locked by this task. Possible
cause is accepting in a nomutex member routine. Error occurred while executing task uMain (0xffbef008).

114 CHAPTER 7. ERRORS

7.2.3.7 Calendar

When creating an absolute time value usifigne (see Sectioi0.2.1, p. 136), the value must be in the range 00:00:00
UTC, January 1, 1970 to 03:14:07 UTC, January 19, 2038, wikithe UNIX start and end epochs. The following
program:
#include <uC++.h>
void uMain::main() {
uTime t(-17);
}

generates this error:

uC++ Runtime error (UNIX pid:2243) Attempt to create uTime(year=1970, month=0, day=0, hour=0,
min=0, sec=-17, nsec=0), which exceeds range 00:00:00 UTC, January 1, 1970 to 03:14:07 UTC, January
19, 2038. Error occurred while executing task uMain (0xffbef008).

7.2.3.8 Locks

The argument for theLock constructor (see Sectidh15.2 p.38) must be 0 or 1. The following program:
#include <uC++.h>
void uMain::main() {
uLock 1(3);
}

generates this error:

uC++ Runtime error (UNIX pid:2328) Attempt to initialize uLock 0x91030 to 3 that exceeds range 0-1. Error
occurred while executing task uMain (0xffbef008).

because the value 3 passed to the constructaradk is outside the range 0-1.

7.2.3.9 Cluster

A cluster cannot be deleted with a task still on it, regarsilgfsvhat state the task is in (i.e., blocked, ready or running
The following program:
#include <uC++.h>
_Task T {
void main() {}
%
void uMain::main() {
T+t =new T;

}

generates this error:

uC++ Runtime error (UNIX pid:2404) Attempt to delete cluster userCluster (0x82260) with task T (0x92770)
still on it. Possible cause is the task has not been deleted. Error occurred while executing task uBootTask
(0x5d6f0).

because theBootTask happens to delete the user cluster (see Seéti@m. 119 afteruMain::main terminates before
the dynamically allocated tagkhas terminated. Deleting the task associated wiibfore uMain::main terminates
solves the problem.
Similarly, a cluster cannot be deleted with a processdrigtibited on it, regardless of what state the processor is

in (i.e., running or idle). The following program:

#include <uC++.h>

void uMain::main() {

uProcessor &p = xnew uProcessor(uThisCluster());

}

generates this error:

uC++ Runtime error (UNIX pid:2488) Attempt to delete cluster userCluster (0x81770) with processor
0x91c80 still on it. Possible cause is the processor has not been deleted. Error occurred while execut-
ing task uBootTask (0x5cc00).

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 115

because theBootTask deletes the user cluster (see Sectod) p. 119 afteruMain::main terminates but the dynam-
ically allocated processar is still on the user cluster. Deleting the processor astetiavith p beforeuMain::main
terminates solves the problem.

7.2.3.10 Heap

1CH provides its own concurrent dynamic memory allocatmutines. Unlike most C/C+ dynamic memory alloca-
tion routinesC+ does extra checking to ensure that some aspects of dymaeniory usage are done correctly. The
following program:
#include <uC++.h>
void uMain::main() {
int «ip = (int «)1; /I invalid pointer address
delete ip;
}

generates this error:

uC++ Runtime error (UNIX pid:2535) Attempt to free storage Ox1 outside the current heap range:0x5e468
to 0x91b78. Possible cause is invalid pointer. Error occurred while executing task uMain (Oxffbef008).

because the value of pointeris not within the heap storage area, and therefore, cannielleted.
The following program:
#include <uC++.h>
void uMain::main() {
int «ip = new int [10];
delete &ip[5]; /I not the start of the array
}

generates this error:

uC++ Runtime error (UNIX pid:2607) Attempt to free storage 0x91cl14 with corrupted header. Possible
cause is duplicate free on same block or overwriting of header information. Error occurred while executing
task uMain (0xffbef008).

because the pointer passediétete must always be the same as the pointer returned fram In this case, the value
passed talelete is in the middle of the array instead of the start.
The following program:
#include <uC++.h>
_Task T{
void main() {}
public :
void mem() {}
%
void uMain::main() {
T+t =new T;
delete t;
t->mem(); /I use deleted storage

}

generates this error:

uC++ Runtime error (UNIX pid:2670) (uSpinLock &)0x92a50.acquire() : internal error, attempt to multiply
acquire spin lock by same task. Error occurred while executing task uMain (0xffbef008).

because an attempt is made to use the storage fot adiwk it is deleted, which is always incorrect. This storaggy
have been reallocated to another task and now contains etehptifferent information. The problem is detected
inside of theuC+ kernel, where there are assertion checks for invalidg@rpost-conditions. In this case, the invalid
storage happened to trigger a check for a task acquiringrelegk twice, which is never suppose to happen. Using
storage incorrectly can trigger other “internal errorgifrthepC+ kernel.

As well, a warning message is issued at the end of a progrdirstbaage is not freed.

116 CHAPTER 7. ERRORS

uC++ Runtime warning (UNIX pid:3914) : program terminating with 32(0x20) bytes of storage allocated
but not freed. Possible cause is unfreed storage allocated by the program or system/library routines called
from the program.

This is not an error; it is a warningWhile this message indicates unfreed storage, it does mayithe storage is
allocated by the user’s code. Many system (e.g., exceptamtslibrary (e.g.string type and socket I/O) operations
allocate storage (such as buffers) for the duration of tbggam, and therefore, there is little reason to free thegeor
at program termination. (Why cleanup and then terminatef?rd is nothing that can be done about this unfreed
storage. Therefore, the value printed is only a guide inrdeteng if all of a user’s storage is freed.

What use is this message? Any sudden increase of unfreedstotom some base value may be a strong indication
of unfreed storage in the user’s program. A quick check ofiyreamic allocation can be performed to verify all user
storage is being freed.

7.2.3.11 1/O

There are many different /O errors; only those related &qi#6+ kernel are discussed. The following program:

#include <uC++.h>

void uMain::main() {
uThisCluster().select(-1, 0, NULL);

}

generates this error:

uC++ Runtime error (UNIX pid:2962) Attempt to select on file descriptor -1 that exceeds range 0-1023.
Error occurred while executing task uMain (Oxffbef008).

The following program:
#include <uC++.h>
void uMain::main() {
uThisCluster().select(-1, NULL, NULL, NULL, NULL);
}

generates this error:

uC++ Runtime error (UNIX pid:3008) Attempt to select with a file descriptor set size of -1 that exceeds
range 0-1024. Error occurred while executing task uMain (0xffbef008).

7.2.3.12 Processor

The following program:

#include <uC++.h>
#include <uSemaphore.h>
void uMain::main() {
uSemaphore s(0);
s.P(); /I block only thread => synchronization deadlock

}

generates this error:

uC++ Runtime error (UNIX pid:3110) No ready or pending tasks. Possible cause is tasks are in a synchro-
nization or mutual exclusion deadlock. Error occurred while executing task uProcessorTask (0x82740).

because the only thread blocks so there are no other taskedate, resulting in a synchronization deadlock. This
message also appears for the more complex form of deadlsakirg from mutual exclusion.

7.2.3.13 UNIX

There are many UNIX related errors, of which only a small stilase handled specially hyC+.
A common error in CH programs is to generate and use an ¢hgalinter. This situation can arise because of an
incorrect pointer calculation, such as an invalid subscfiipe following program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 117

#include <uC++.h>
void uMain::main() {
int «ip = NULL; /I set address to O
#p += 1; /I use the bad address

}

generates this error:

uC++ Runtime error (UNIX pid:3241) Attempt to address location 0x0. Possible cause is reading out-
side the address space or writing to a protected area within the address space with an invalid pointer or
subscript. Error occurred while executing task uMain (Oxffbef008).

because the value of pointieris probably within the executable code, which is read-ololy,an attempt to write is
occurring.

If a uCH program is looping for some reason, it may be necessatgrioinate its execution. Termination is
accomplished using a sh&lll command, sending signBIGTERM to the UNIX processyuC+ receives the termination
signal and attempts to shutdown the application, which irtant in multikernel mode with multiple processors. The
following program:

#include <uC++.h>
#include <unistd.h> /I getpid prototype
void uMain::main() {
kill(getpid(), SIGTERM); /I send SIGTERM signal to program

generates this error:

uC++ Runtime error (UNIX pid:3315) Application interrupted by a termination signal. Error occurred while
executing task uMain (Oxffbef008).

because theC+ program sent itself a terminatioBIGTERM) signal.

118 CHAPTER 7. ERRORS

Chapter 8

1C+H Kernel

The C+ kernel is a library of classes and routines that proweelevel lightweight concurrency support on unipro-
cessor and multiprocessor computers running the UNIX dipgraystem. On uniprocessors, parallelism is simulated
by rapid context switching at non-deterministic points gor@grammer cannot rely on order or speed of execution.
Some of the following facilities only have an effect on mpitticessor computers but can be called on a uniprocessor
so that a program can be seamlessly transported betweemdlaedhitectures.

The pC+ kernel does not call the UNIX kernel to perform a contexitch or to schedule tasks, and uses shared
memory for communication. As a result, performance for eiiea of and communication among large numbers of
tasks is significantly increased over UNIX processes. Thamam number of tasks that can exist is restricted only by
the amount of memory available in a program. The minimunmksséze for an execution state is machine dependent,
but can be as small as 256 bytes. The storage managemenj@falbbjects and the scheduling of tasks on virtual
processors is performed by th€+ kernel.

8.1 Pre-emptive Scheduling and Critical Sections

Care must be taken when writing threaded programs callirtgicdJNIX library routines that araotthread-safe. For
example, the UNIX random number generatord maintains an internal state between successive calls angligino
mutual exclusion on this internal state. Hence, one tastutirey the random number generator can be pre-empted and
the generator state can be modified by another task, whichresayt in problems with the generated random values
or errors. Therefore, when writingC+ programs, always use the thread-safe versions of UNE&Hy routines, such
asrand_r to generate random numbers.

For some non-thread-safe UNIX library-routing€+ provides a thread-safe equivalent, sucla@st/uAbort,
exit (see Sectiofr.2.2 p. 99), sleep, usleep, and theuC+- I/O library (see Chaptet, p.57).

8.2 Memory Management

In uCH+, all user data is located in memory that is accessibldltkemel threads started yC+. In order to make
memory management operations safe, the C+ memory manageperatorsiew anddelete are indirectly redefined
through the C routinemalloc and free to allocate and free memory correctly by multiple tasks. sehenemory
management operations provide identical functionaliheC+ and C equivalent ones.

8.3 Cluster

As mentioned in Sectio.3.1, p. 8, a cluster is a collection giC+ tasks and processors; it provides a runtime
environment for execution. This environment controls thmant of parallelism and contains variables to affect how
coroutines and tasks behave on a cluster. Environmentolesiare used implicitly, unless overridden, when creating
an execution state on a cluster:

stack sizeis the default stack size, in bytes, used when coroutinesséstare created on a cluster.

The variable(s) is either explicitly set or implicitly agaied auC+ default value when the cluster is created. A cluster
is used in operations like task or processor creation toifsptbe cluster on which the task or processor is associated.

119

120 CHAPTER 8. C+ KERNEL

After a cluster is created, it is the user’s responsibilityassociate at least one processor with the cluster so it can
execute tasks.
The cluster interface is the following:
class uCluster {
public :

uCluster(unsigned int stackSize = uDefaultStackSize(), const char sname = "*unnanmeds");

uCluster(const char «nhame);

uCluster(uBaseSchedule<uBaseTaskDL> &ReadyQueue,

unsigned int stackSize = uDefaultStackSize(), const char sname = " +unnanmed*");
uCluster(uBaseSchedule<uBaseTaskDL> &ReadyQueue, const char xname = "xunnaned*");

const char xsetName(const char xhame);

const char xgetName() const ;

unsigned int setStackSize(unsigned int stackSize);
unsigned int getStackSize() const;

static const int readSelect;

static const int writeSelect;

static const int exceptSelect;

int select(int fd, int rwe, timeval «timeout = NULL);

int select(fd_set «rfd, fd_set »wfd, fd_set «efd, timeval «timeout = NULL);

int select(int nfds, fd_set «rfd, fd_set swfd, fd_set »efd, timeval stimeout = NULL);

const uBaseTaskSeq &getTasksOnCluster();
const uProcessorSeq &getProcessorsOnCluster();

h

uCluster clus(8196, "cl us") // 8K default stack size, cluster name is “clus”
The overloaded constructor routin€luster has the following forms:

uCluster(unsigned int stackSize = uDefaultStackSize(), const char *name ="+unnamed=") — this form uses
the user specified stack size and cluster name (see Sédtityp. 147 for the first default value).

uCluster(const char sname) — this form uses the user specified name for the cluster andutlient cluster’s
default stack size.

When a cluster terminates, it must have no tasks executingamd all processors associated with it must be freed.
It is the user’s responsibility to ensure no tasks are ekaguwin a cluster when it terminates; therefore, a cluster can
only be deallocated by a task on another cluster.

The member routingetName associates a name with a cluster and returns the previous ffdra member routine
getName returns the string name associated with a cluster.

The member routinsetStackSize is used to set the default stack size value for the stackgroofi each execution
state allocated on a cluster and returns the previous deftmak size. The new stack size is specified in bytes. For
example, the caltlus.setStackSize(8000) sets the default stack size to 8000 bytes.

The member routingetStackSize is used to read the value of the default stack size for a ¢luste example, the
statement = clus.getStackSize() setsi to the value 8000.

The overloaded member routieelect works like the UNIXselect routine, but on a per-task basis per cluster. That
is, all I/0 performed on a cluster is managed by a poller taskifat cluster (see Secti@nl, p.57). In generalselect
is used only in esoteric situations, e.g., wh& file objects are mixed with standard UNIX file objects oa same
cluster. These members return the total number of file dascs set in all file descriptor masks, and each routine has
the following form:

select(int fd, int rwe, timeval «timeout = NULL) — this form is a shorthand select for a single file descriptbe
mask,rwe, is composed of logically “or’ing flageadSelect, writeSelect, andexceptSelect. The timeout value
points to a maximum delay value, specified asnaval, to wait for the 1/0 to complete. If the timeout pointer
is null, the select blocks until the I/O operation complatesails. This form is more efficient than the next
forms with complete file descriptor sets, but handles oniyngls file.

8.4. PROCESSORS 121

select(fd_set srfd, fd_set «wfd, fd_set sefd, timeval «timeout = NULL) — this form examinesll 1/O file descrip-
tors in the sets pointed to bfd, wfd, andefd, respectively, to see if any of their file descriptors arelyefor
reading, or writing, or have exceptional conditions pegdiffhe timeout value points to a maximum delay
value, specified astaneval, to wait for an I/O to complete. If the timeout pointer is ndiie select blocks until
one of the 1/0O operations completes or fails.

select(int nfds, fd_set «rfd, fd_set swfd, fd_set +efd, timeval stimeout = NULL) —same as above, except only the
first nfds 1/O file descriptors in the sets are examined.

There does not seem to be any standard semantics action wigplenkernel threads access the same file de-
scriptor inselect. Some systems wake all kernel threads waiting for the samédicriptor; others wake the kernel
threads in FIFO order of their request for the common file dpgar. C+ adopts the former semantic and wakes all
tasks waiting for the same file descriptor. In general, thigdt a problem becausdl ;«C+ file routines retry their 1/0
operation, and only one succeeds in obtaining data (whieli®non-deterministic).

Finally, it is impossible to precisely deliveselect errors to the task that caused it. For example, if one task
in waiting for 1/0 on a file descriptor and another task closgesfile descriptor, the UNIX select fails but with no
information about which file descriptor caused the erroreréfore,.C+ wakes up all tasks waiting on tlelect at
the time of the error and the tasks must retry their I/O op@natAgain,all ¢ C+ file routines retry their I/O operations
after waiting onselect.

O Unfortunately, UNIX does not provide adequate facilitiessnsure that signals sent to wake up a
blocked UNIX process or kernel thread is always deliverder€ is a window between sending a signal
and blocking using a UND$elect operation that cannot be closed. Therefore, the polleriiasko wake
up once a second to deal with the rare event that a signalseraie it up is missed. This problem only
occurs when a task is migrating from one cluster to anothetet on which 1/0 is being performed.d

The member routingetTasksOnCluster returns a list of all the tasks currently on the cluster. Theaniber routine
getProcessorsOnCluster returns a list of all the processors currently on the clustérese routines are useful for
profiling and debugging programs.

The free routine:

uCluster &uThisCluster();
is used to determine the identity of the current cluster latasides on.

8.4 Processors

As mentioned in SectioB.3.2 p. 9, auC+ virtual processor is a “software processor”; it progderuntime environ-
ment for parallel thread execution. This environment coistaariables to affect how thread execution is performed
on a processor. Environment variables are used implicitliess overridden, when executing threads on a processor:

pre-emption times the default time, in milliseconds, to the next implicield of the currently executing task to
simulate non-deterministic execution (see Secfighl, p.123.

spin amountis the default number times the cluster’s ready queue iseufor an available task to execute before
the processor blocks (see Sectta.2 p.124).

processorsis the default number of processors created implicitly ofuater.

The variables are either explicitly set or implicitly agségl a;:C+ default value when the processor is created.

In uC+, a virtual processor is implemented as a kernel threass{ply via a UNIX process) that is subsequently
scheduled for execution on a hardware processor by the lyirdgoperating system. On a multiprocessor, kernel
threads are usually distributed across the hardware moxeand so some execute in parallel. The maximum number
of virtual processors that can be created is indirectlytiohby the number of kernel/processes the operating system
allows a program to create, as the sum of the virtual processoall clusters cannot exceed this limit.

As stated previously, there are two versions of i@+ kernel: the unikernel, which is designed to use a single
processor; and the multikernel, which is designed to userakyprocessors. The interfaces to the unikernel and
multikernel are identical; the only difference is that th@kernel has only one virtual processor. In particular, in

122 CHAPTER 8. C+ KERNEL

the unikernel, operations to increase or decrease the muwhkgtual processors are ignored. The uniform interface
allows almost all concurrent applications to be designetitasted on the unikernel, and then run on the multikernel
after re-linking.
The processor interface is the following:
class uProcessor {
public :
uProcessor(unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin());
uProcessor(bool detached, unsigned int ms = uDefaultPreemption(),
unsigned int spin = uDefaultSpin());
uProcessor(uCluster &cluster, unsigned int ms = uDefaultPreemption(),
unsigned int spin = uDefaultSpin());
uProcessor(uCluster &cluster, bool detached, unsigned int ms = uDefaultPreemption(),
unsigned int spin = uDefaultSpin());

uClock &getClock() const ;

uPid_t getPid() const;

uCluster &setCluster(uCluster &cluster);
uCluster &getCluster() const ;

uBaseTask &getTask() const ;

bool getDetach() const ;

unsigned int setPreemption(unsigned int ms);
unsigned int getPreemption() const;
unsigned int setSpin(unsigned int spin);
unsigned int getSpin() const ;

bool idle() const;

h

uProcessor proc(clus); // processor is attached to cluster clus

A processor can be non-detached or detached with respéstassiociated cluster. A non-detached processor is auto-
matically/dynamically allocated and its storage is maddggethe programmer. A detached processor is dynamically
allocated and its storage is managed by its associatececlugt., the processor is automatically deleted when its
cluster is deleted.

The overloaded constructor routinrocessor has the following forms:

uProcessor(unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin()) — creates a non-
detached processor on the current cluster with the useifiggetme-slice and processor-spin duration (see
Sectionll.], p. 147for the default values).

uProcessor(bool detached, unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin())
— creates a detached/non-detached processor on the cdlustdr with the user specified time-slice and
processor-spin duration (see Sectidnl, p. 147for the default values). The indicator for detachmerialise
for non-detached aneue for detached.

uProcessor(uCluster &cluster, unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin())
— creates a non-detached processor on the specified clggtgrthe user specified time-slice and processor-
spin duration.

uProcessor(uCluster &cluster, bool detached, unsigned int ms = uDefaultPreemption(), unsigned int spin =
uDefaultSpin()) — creates a detached/non-detached processor on the spetifiter using the user specified
time-slice and processor-spin duration. The indicatordieiachment igalse for non-detached angue for
detached.

The member routingetClock) returns the clock used to control timing on this processee Sectioi0.3 p.139.

The member routingetPid returns the current UNIX process id that the processor iscéa®d with.

The member routineetCluster moves a processor from its current cluster to another clasie returns the cur-
rent cluster. The member routigetCluster returns the current cluster the processor is associatéd aid hence,
executing tasks for.

8.4. PROCESSORS 123

The member routingetTask returns the current task that the processor is executing.

The member routingetDetach returns if the processor is non-detachfadké) or detachedtfue).

The member routineetPreemption is used to set the default pre-emption duration for a pracei&ee Sec-
tion 8.4.1 and returns the previous default pre-emption duratiore fiilme duration between interrupts is specified
in milliseconds. For example, the calloc.setPreemption(50) sets the default pre-emption time to 0.05 seconds for
a processor. To turn pre-emption off, catbc.setPreemption(0). The member routingetPreemption is used to read
the current default pre-emption time for a processor. Famge, the statement proc.getPreemption() setsi to the
value 50.

The member routingetSpin is used to set the default spin-duration for a processorgseton8.4.2 and returns
the previous default spin-duration. The spin duration ec#fed as the number of times the cluster’s ready queue is
checked for an available task to execute before the procbkstks. For example, the caltoc.setSpin(500) sets the
default spin-duration to 500 checks for a processor. To $pinning off, callproc.setSpin(0). The member routine
getSpin is used to read the current default spin-duration for a peme For example, the statemeéntproc.getSpin()
setsi to the value 500.

The member routinglle indicates if this processor is currently idle, i.e., the MNdrocess has blocked because
there were no tasks to execute on the cluster it is associatied

The free routine:

uBaseProcessor &uThisProcessor();

is used to determine the identity of the current processaslkis executing on.

The following are points to consider when deciding how margcpssors to create for a cluster. First, there is
no advantage in creating significantly more processorsttimaverage number of simultaneously active tasks on the
cluster. For example, if on average three tasks are eligpbEmultaneous execution, creating significantly mowanth
three processors does not achieve any execution speedupaates resources. Second, the processors of a cluster
are really virtual processors for the hardware processmisthere is usually a performance penalty in creating more
virtual processors than hardware processors. Having miogalprocessors than hardware processors can result
in extra context switching of the underlying kernel threadoperating system processes (see Se@idr used
to implement a virtual processor, which is runtime expemsivhis same problem can occur among clusters. If a
computational problem is broken into multiple clusters #reltotal number of virtual processors exceeds the number
of hardware processors, extra context switching occutseabperating system level. Finallyp &+ program usually
shares the hardware processors with other user progranesefdle, the overall operating system load affects how
many processors should be allocated to avoid unnecessatgxtswitching at the operating system level.

O Changing the number of processors is expensive, since asetgumade to the operating system to
allocate or deallocate kernel threads or processes. Thigtpn often takes at least an order of magnitude
more time than task creation. Furthermore, there is oftemallanaximum number of kernel threads
and/or processes (e.g., 20—40) that can be created in sapnogherefore, processors should be created
judiciously, normally at the beginning of a program. |

8.4.1 Implicit Task Scheduling

Pre-emptive scheduling is enabled by default on both uni&&end multikernel. Each processor is periodically inter-
rupted in order to schedule another task to be executed. tNaténterrupts are not associated with a task but with a
processor; hence, a task does not receive a time-slice amalyibe interrupted immediately after starting execution
because the processor’s pre-emptive scheduling occurarasttier task is scheduled. A task is pre-empted at a non-
deterministic location in its execution when the processore-emptive scheduling occurs. Processors on a cluster
may have different pre-emption times. The default proaesste-slice is machine dependent but is approximately
0.1 seconds on most machines. The effect of this pre-emgtiveduling is to simulate parallelism. This simulation is
usually accurate enough to detect most situations on aasgpsor where a program might be dependent on order or
speed of execution of tasks.

O On many systems the minimum pre-emption time may be 10 mdltinds (0.01 of a second). Setting
the duration to an amount less than this simply sets therirgetime interval to this minimum value.O

O The overhead of pre-emptive scheduling depends on thednaguof the interrupts. Furthermore,
because interruptsinvolve entering the UNIX kernel, theyralatively expensive if they occur frequently.

124 CHAPTER 8. C+ KERNEL

An interrupt interval of 0.05 to 0.1 seconds gives adequateuarrency and increases execution cost by
less than 1% for most programs. |

8.4.2 Idle Virtual Processors

When there are no ready tasks for a virtual processor to exettie idle virtual processor has to spin in a loop or block
or both. In theuC+ kernel, an idle virtual processor spins for a user-ggechumber of checks of the cluster’s ready
gueue before it blocks. During the spinning, the virtualggssor is constantly checking for ready tasks, which would
be made ready by other virtual processors. An idle virtuatpssor is ultimately blocked so that machine resources
are not wasted. The reason that the idle virtual processos $p because the block/unblock time can be large in
comparison to the execution of tasks in a particular apfitina If an idle virtual processor is blocked immediately
upon finding no ready tasks, the next executable task hasitdawaompletion of an operating system call to restart
the virtual processor. If the idle processor spins for atsperiod of time, any task that becomes ready during the
spin duration is processed immediately. Selecting a spouaitris application dependent and it can have a significant
effect on performance.

8.4.3 Blocking Virtual Processors

To ensure maximum parallelism, it is desirable that a tagkerecute an operation that causes the processor it is
executing on to block. It is also essential that all processoa cluster be interchangeable, since task execution may
be performed by any of the processors of a cluster. When tasgsocessors cannot satisfy these conditions, it is
essential that they be grouped into appropriate clustessdar to avoid adversely affecting other tasks or guarantee
correct execution. Each of these points is examined.

There are two forms of blocking that can occur:

heavy blocking which is done by the operating system on a virtual processar r@sult of certain system requests
(e.g., I/O operations).

light blocking which is done by theC+ kernel on a task as a result of certai@+ operations (e.g., Accept , wait
and calls to a mutex routine).

The problem with heavy blocking is that it removes a virtualgessor from use until the operation is completed; for
each virtual processor that blocks, the potential for paliam decreases on that cluster. In those situations where
maintaining a constant number of virtual processors formatation is desirable, tasks should block lightly rather
than heavily, which is accomplished by keeping the numbeaslis that block heavily to a minimum and relegated
to a separate cluster. This can be accomplished in two ways, fasks that would otherwise block heavily instead
make requests to a task on a separate cluster which therstiieekily. Second, tasks migrate to the separate cluster
and perform the operation that blocks heavily. This mairg@ constant number of virtual processors for concurrent
computation in a computational cluster, such as the usstasiu

On some multiprocessor computers not all hardware processe equal. For example, not all of the hardware
processors may have the same floating-point units; somemait be faster than others. Therefore, it may be necessary
to create a cluster whose processors are attached to thesicspardware processors. (The mechanism for attaching
virtual processors to hardware processors is operatirtgrayspecific and not part gfC+H. For example, the Dynix
operating system from Sequent provides a routire_affinity to lock a UNIX process on a processor.) All tasks that
need to perform high-speed floating-point operations casrdrted/placed on this cluster. This segregation stiis|
tasks that do only fixed-point calculations to continue oather cluster, potentially increasing parallelism, but no
interfering with the floating-point calculations.

O pCH tasks are not implemented with kernel threads or opeyatystem processes for two reasons.
First, kernel threads have a high runtime cost for creatiwh @ntext switching. Second, an operating
system process is normally allocated as a separate adga@ss @r perhaps several) and if the system
does not allow memory sharing among address spaces, tagk®tmmmunicate using pipes and sockets.
Pipes and sockets are runtime expensive. If shared memamgikble, there is still the overhead of
entering the operating system, page table creation, andgeament of the address space of each process.
Therefore, kernel threads and processes are chi#aslyweightbecause of the high runtime cost and
space overhead in creating a separate address space fatemgrand the possible restrictions on the

8.4. PROCESSORS 125

forms of communication among themu.C+ provides access to kernel threads only indirectly thhou
virtual processors (see Secti@mi3.2 p. 9). A user is not prohibited from creating kernel threads or

processes explicitly, but such threads are not adminéstiay theyC+ runtime environment. ad

126 CHAPTER 8. C+ KERNEL

Chapter 9

Posix Threads (pthreads)

Posix threadgpthreads) is a relatively low-level C-language threduldiy providing two basic concurrency mech-
anisms: threads and locks. As pthreads is designed for @rrtan C+, pthreads does not take advantage of any
high-level features of C+. A thread is started (forked) iroatine, possibly passing a single type-unsafe argument,
and another thread can wait for this thread’s terminatiom}j possibly returning a single type-unsafe value. Two
kinds of locks are available: for synchronizatipthread _cond, which is likepC+’s uCondLock (see Sectio2.15.4

p. 39), and for mutual exclusiompthread_mutex, which is like 4 C+’s uOwnerLock (see Sectio2.15.3 p. 38). See a
pthreads reference-manu@Ut97 for complete details on the syntax and semantics of usiiggitirary to construct
concurrent programs.

9.1 Combining Pthreads with;C+

Pthreads is the threading standard for Posix-compliantésysand has become the de-facto standard for concurrent
programming in C; hence, there exists a significant numbappfications and libraries built using pthreads. To help
concurrent programmers leverage this existing resourbdestill writing high-level concurrent programs in C+,
#CH provides a subset of the most commonly used pthreadmesutsee Figur®.1). Thus, auC+ programmer

can use high-level concurrent features i@+, along with existing C/C+ source code or pre-compiledecthat
uses pthreads functionality. It is also possible to taketare@threads programs and — with only minor changes —
convert it to auC+ program usingC+’s pthreads support. In this way, programmers can inergafly transform

and extend pthreads applications to use higher-level Gatoaghes, starting with a combination of low-level pthead
threads/locks and high-levglC+ capabilities, and ultimately moving to all high-levekamanisms. There are three
basic ways in whichuC+ can be used in conjunction with pthreads:

e linking against pre-compiled binaries using pthreads,
e recompilation of separate translation units using pthsead
e recompilation of entire pthreads programs.

9.1.1 Linking nC+ and Pthreads Binaries

In most cases, existing object files using pthreads routiarde directly linked with aC+ program. For example,
a C+ programprogram.cc, is compiled and linked with a pthreads-dependent objéstglib.o, by:

u++ [CH options] program.cc plib.o

Note, the standard pthreads libraligpthread, mustnot be linked with this program (i.e-Jpthreads) as only the
pthreads routines provided yC+ work. However, this approach failsgfib.o uses routines not provided CH+
(see Figur®.1), the object file defines the entry point into the program,(r@utinemain), or if plib.o calls pthreads
routines inside global constructors or destructors. Tloerse and third cases can be corrected if the sourcglifoo
can be changed and recompiled (described next).

127

128 CHAPTER 9. POSIX THREADS (PTHREADS)

BRI Creation HHHHITHIHTHITHIHTHEHIHIHIHHI

int pthread_create(pthread_t snew_thread_id, const pthread_attr_t «attr, void = (xstart_func)(void =), void »arg);
int pthread_attr_init(pthread_attr_t «attr);

int pthread_attr_destroy(pthread_attr_t sattr);

int pthread_attr_setscope(pthread_attr_t sattr, int contentionscope);

int pthread_attr_getscope(const pthread_attr_t »attr, int xcontentionscope);

int pthread_attr_setdetachstate(pthread_attr_t »attr, int detachstate);

int pthread_attr_getdetachstate(const pthread_attr_t «attr, int »detachstate);

int pthread_attr_setstacksize(pthread_attr_t «attr, size_t stacksize);

int pthread_attr_getstacksize(const pthread_attr_t sattr, size_t «stacksize);

int pthread_getattr_np(pthread_t threadID, pthread_attr_t «attr); // GNU extension
int pthread_yield(void); // GNU extension

[t T EXIU S i

void pthread_exit(void xstatus);

int pthread_join(pthread_t threadID, void xxStatus);

int pthread_tryjoin_np(pthread_t threadID, void =xstatus); // GNU extension

int pthread_timedjoin_np(pthread_t threadID, void =sStatus, const struct timespec =abstime); // GNU extension
int pthread_detach(pthread_t threadID);

[A R Parallelism sttt I IR

int pthread_getconcurrency(void); /I XOPEN extension

int pthread_setconcurrency(int new_level); // XOPEN extension

[IR Thread Specific Data #H#H#HIHEHHIHIHHIHEHIHHEHT
void pthread_deletespecific_(void «pthreadData); // see uMachContext::invokeTask
int pthread_key_ create(pthread_key_t key, void (xdestructor)(void =));

int pthread_key_delete(pthread_key_t key);

int pthread_setspecific(pthread_key_t key, const void =xvalue);

void «pthread_ getspecific(pthread_key_t key);

[t T (D i i i i

pthread_t pthread_self(void);

int pthread_once(pthread_once_t xonce_control, void (xinit_routine)(void));
[I A Cancellation #H B THITHIHHITHEHIH R

int pthread_cancel(pthread_t threadID);

int pthread_setcancelstate(int state, int xoldstate);

int pthread_setcanceltype(int type, int xoldtype);

void pthread_testcancel(void);

void pthread_cleanup_pop(int ex);

void pthread_cleanup_push(void (xroutine) (void), void =args);

BRI IR MUteX BB R

int pthread_mutex_init(pthread_mutex_t «smutex, const pthread_mutexattr_t «attr);
int pthread_mutex_destroy(pthread_mutex_t »mutex);

int pthread_mutex_lock(pthread_mutex_t «mutex);

int pthread_mutex_trylock(pthread_mutex_t smutex);

int pthread_mutex_unlock(pthread_mutex_t »mutex);
[Condition #HRHEHHITHEHHITHEHEHEHHEHHE

int pthread_cond_init(pthread_cond_t «cond, const pthread_condattr_t «attr);

int pthread_cond_destroy(pthread_cond_t scond);

int pthread_cond_wait(pthread_cond_t xcond, pthread__mutex_t smutex);

int pthread_cond_timedwait(pthread_cond_t cond, pthread_mutex_t smutex, const struct timespec xabstime);
int pthread_cond_signal(pthread_cond_t xcond);

int pthread_cond_broadcast(pthread_cond_t scond);

Figure 9.1: Implemented Pthreads Routines

9.2. nC+H TASK AS A PTHREADS THREAD 129

9.1.2 Recompiling Pthreads Modules

If a translation unit declares global objects with condiois and destructors that call pthreads routines (be-,
fore/afterthe initial starting routine), a source-level change isassary to ensure theC+ runtime system is initial-
ized first, as the order of global constructors/destru@nrsng C/C+ translation units is undefined. The sourcd-leve
change consists of adding the include file++.h at the start of the translation unit (see Sectof p. 10) and this
translation unit must be recompiled with the+ command (see Sectich5.1, p. 10). (It is never a mistake to in-
cludeuC++.h, as a precaution, in all translation units.) This changelmamade conditionally usingjfdefs (see
Section2.5.2, p.11) to allow a pthreads program to conditionally switch betwagnning native pthreads or simulated
pthreads in:C+ depending on whether the program is compiled with or u++, e.g.:

#ifdef __U_CPLUSPLUS_ _
#include <uC++.h> /I only include if compiled with u++
#endif

As well, if the pthreads module contains the initial entryirppanain, it must be converted to theC+ member
uMain::main (see Sectior2.2, p. 8). Again, conditional compilation can be used to switch e native pthreads
and pthreads ipC+, e.g.:

#ifdef U CPLUSPLUS

void uMain::main() { /I only change starting routine if compiled with u++

#else

int main(int argc, char sargv[]) {

#endif

/I body of pthreads main routine

}

With these changes, the entire program can be compiledgaithor another compatible C+ compiler, to use native
pthreads and linked with the pthreadstfread) library. Alternatively, the program can be complied with+, using
the pthreads simulation provided pZ+-.

9.2 uC+ Task as a Pthreads Thread

In order to ease the co-operation with pthreads code, argilpppbelp transition from low-level pthreads concurrency
to high-levelpC+ concurrency, aC+ task can become a quasi-pthreads thread by inheribng(Pthreadable:

_Task uPthreadable { /I abstract class (inheritance only)
protected :
void «joinval; /I pthreads return value
pthread_attr_t pthread_ attr; /I pthread attributes

uPthreadable(const pthread_attr_t «attr_);

uPthreadable(uCluster &cluster, const pthread_attr_t «attr_);

uPthreadable(); /I same constructors as for uBaseTask
uPthreadable(unsigned int stackSize);

uPthreadable(uCluster &cluster);

uPthreadable(uCluster &cluster, unsigned int stackSize);

public :
_Nomutex pthread_t pthreadld(); /I returns a pthread id for a uC++ task
__Event Failure; /I exceptions
__Event CreationFailure;
h
_Task T : public uPthreadable { /I inherit so uC++ task can mimic pthreads task
public :

T(...) : uPthreadable(...) { /I initialize uPthreadable as for uBaseTask

130 CHAPTER 9. POSIX THREADS (PTHREADS)

It is best to think of auPthreadable task as g:C+ task that can mimic a pthreads thread by providing soimeptls
properties and capabilities. (Note, tyrethreadable is an abstract class for inheritance only; it cannot be inisited
directly.) The duality of aiPthreadable task allows it to use all the high-level features;@+ concurrency and yet
interact with existing pthreads code, which is helpful ituations where pthreads ap€+ are mixed, and provides a
path to transition from pthreads t&C+ concurrency.

A derived class of typaPthreadable has direct access to variabieswal andpthread_attr. Variablejoinval must
be assigned by the derived class to return a value fstmead_join. Variablepthread_attr is the task’s pthreads
attributes, which can be read and written by appropriatesptts attribute routines.

The overloaded constructor routinethreadable has the following forms:

uPthreadable(const pthread_attr_t »attr_) — creates a task on the current cluster with the specifieceadsr
attributes. Currently, only the stack-size attribute iseed by theiPthreadable task. The other values are
stored, but are otherwise ignored by tirthreadable task.

uPthreadable(uCluster &cluster, const pthread_attr_t sattr_) — creates a task on the specified cluster with the
specified pthreads attributes.

uPthreadable(...) are the same as foBaseTask (see Sectior2.12.2 p. 31).

An exception of typeiPthreadable::CreationFailure is thrown during task instantiation if a pthread identifianonot be
created.

The member routinpthreadld returns a unique pthreads identifier for the task. This jgitiseédentifier, which is
also returned when @Pthreadable task callspthread_self, can be passed to any pthreads routine takipth@ad_t
type, includingpthread _join andpthread_cancel. As a result, pthreads threads can join with or canéghreadable
tasks with correct pthreads cleanup functionality. Nate)iegistering a cleanup handler usptigread _cleanup_push/-
pop can be performed by any kind of thread but only when execusimg pthreads arPthreadable task’s stack; the
cleanup handler is associated with the stack frame on tkis stack where the (de)registration occurs.

It is important to note that aPthreadable task followsuC+ semantics rather than pthreads semantics and is not
considered a pthreads thread, which is defined as a taslkedribgpthread_create. In particular, the life time of a
uPthreadable task is the same as an ordina@+ task, and it becomes a monitor aftemitsin routine ends. The task
uMain is auPthreadable task.

9.3 Semantic Inconsistencies between Pthreads ap@&+

The combination of pthreads ap+ creates some conflicts, which are resolved in the foligways:

9.3.1 Termination of main

When the startingnain routine ends, pthreads semantics cause immediate teraniradtthe program and any out-
standing threads, wherea€+ semantics require that all threads be programmatitaitginated. This inconsistency
is resolved dynamically in favour of pthreads if any pthigtideads are running wheMain::main ends. In this case,
the application is shut-down causing all threads (pthreedk.:C+) to be terminated abruptly, i.e., no finalization
code is executed for any of these threads. Recalluhteadable tasks are not considered pthreads threads.

9.3.2 Cleanup Semantics

The ability to perform cleanup is important in writing rolbesncurrent programs. Pthreads generalized the notion of
cleanup to thread termination (exit or cancellation) bpwihg cleanup routines to be registered/de-registeratgusi
pthread_ cleanup_push andpthread_cleanup_pop. An equivalent capability is provided in C+ using classtdegors
andcatch clauses. When aC+ program has a combination of both C+ and pthreads ctearachanisms, both are
invoked during thread termination.

Cleanup routines are executed in the reverse order of ratisst (LIFO). However, within a routine, the ordering
between C+ and pthreads cleanups is undefined, e.g., ifjanta® declared before a call tohread_cleanup_push
in the same routine, its destructor may be executed befergttireads cleanup. Note, among themselves, C+ and
pthreads cleanups always execute in proper order.

9.4. COMMENTARY 131

As part of a pthreads thread termination, all C+’s catch+aandlers €atch (.. .)) are also executed, which is the
same behaviour as farCH cancellation (see Secti@in p. 91). When all C+ and pthreads cleanups have been exe-
cuted, the thread terminates. The reason for executing-eatg handlers is the same as fdz+ cancellation, which
is to support the common C+ idiom of using catch-any hasdieperform cleanup actions. LikeC+ cancellation,
if a catch-any handler finishes, control does not resume tigery-block it guards, but instead, termination conéisiu
with its associated stack unwinding. This behaviour difgsom some pthreads implementations that mix C+ and
pthreads cleanup. In these implementations, the prograindged if a catch-any handler finishes during pthreads
cleanup. The rationale for aborting is that the normal seit&ief resuming execution after the handler’s try-block
is incompatible with the termination semantics for a threddwever, such a design is inconsistent witG+ can-
cellation (see Sectiof, p. 91 for the rationale). As well, if the catch-any handler throsvsew exception during
cancellation, the program’s behaviour is undefined, ag @i cancellation.

9.4 Commentary

The pthreads simulation igaC+ also provides implicit compatibility and safety for grams calling Posix-compliant
library routines in UNIX:

All functions defined by this volume of IEEE Std 1003.1-200al be thread-safe, except that the fol-
lowing functions need not be thread-safe.

... small subset of Posix functions
Implementations shall provide internal synchronizatimutual exclusionfis necessary in order to satisfy
this requirement.|[EEOQ, pp. 50-51]

The most common mechanism to provide mutual exclusion wihth library routines is to use pthreads locks. As
well, some Posix compliant routines rely on thread-speddia provided by pthreads. Once pthreads calls are embed-
ded into standard UNIX implementations, it is difficult toeusther thread designs due to the problems of interaction
between thread libraries. For example, a conflict occurslahguage/library concurrency system (e gG+) does

not use pthreads for its underlying concurrency, i.e., #mgliage/library implements the whole concurrency system
directly using atomic instructions and kernel threads. fidsson a language/library may build its own concurrency
runtime is to achieve specialized behaviour that is diffefeom pthreads (e.g., unblocking order, task scheduling,
priorities, thread model, etc.). However, when a langudgefy thread calls a Posix routine, the routine may call
a pthreads routine for thread safety resulting in two déiférconcurrency systems’ attempting to manage the same
thread. For example, a pthreads lock in a Posix routine ntaynat to block the executing thread, but if the thread is
created and managed by a different concurrency systenoghrstion is logically inconsistent and is likely to faibh&
1CH pthreads simulation handles this problem by interppgpthreads routines so they are called from within the
Posix-compliant library routines. The simulation rousre®rrectly interact with theC+ runtime system, while still
providing thread-safe access to Posix library routinesa Assult, .C+ program is portable among Posix-compliant
systems and provides access to most legacy pthreads code.

132 CHAPTER 9. POSIX THREADS (PTHREADS)

Chapter 10

Real-Time

Real-time programming is defined by the correctness of arpmglepending on both the accuracy of the reantt
when the resultis produced. The latter criterion is notg@més normal programming. Without programming language
facilities to specify timing constraints, real-time pragrs are usually built in ad-hoc ways (e.g., cyclic exec)itiaad

the likelihood of encountering timing errors increase®tiyh manual calculations. The introduction of real-time
constructs is a necessity for accurately expressing tiaweur, as well as providing a means for the runtime system
to evaluate whether any timing constraints have been brokemthermore, explicit time-constraint constructs can
drastically minimize coding complexity as well as analysiarious programming language constructs for real-time
environments are discussed B)92 Mar78 LN88, KS86, KK91, ITM90, HM92, GR91, CD95 Rip9d.

10.1 Duration and Time

The convenient manipulation &fme is an essential characteristic in any time-constrained@mment. Manipulating
time, in turn, yields another metric that expresses a spatu@tion of time. uDuration is a class whose instances
represent a span of time, e.g., subtracting two time valkemdts in a difference that is a time duration (2:00:30 =
30 minute duration). The creation and manipulatiombfiration values are performed through the member routines
of classuDuration (see Figurel0.1).

The overloaded constructor routingSuration provide a choice of specifying a duration value. The paramset
have the following meanings:

sec —a number of seconds.
nsec —a number of seconds and nanoseconds.
timeval / timespec —a UNIX timeval or timespec, which is converted to aDuration value.

A UNIX timeval andtimespec value can be used to initialize or assign toCaration value, and aiDuration value
can be cast into imeval or timespec value, e.g.:

timeval d1 ={ 1,0 }; /I (seconds / microseconds)

uDuration d2 = d1, d3; /I convert from timeval to uDuration (initialization)

timespec d4 = d2; /I convert from uDuration to timespec (seconds / nanoseconds) (implicit cast)
d1l = (timeval)d2; /I convert from uDuration to timeval (cast)

d3 = di; /I convert from timeval to uDuration (assignment)

dl = ds3; /I convert from uDuration to timeval (implicit cast)

Conversion is guaranteed to be exact. The member roodimeseconds returns the duration value as a 64 bit number
in nanoseconds.

Arithmetic operations may be performed @buration values, e.g.:

133

134 CHAPTER 10. REAL-TIME

class uDuration {
public :
uDuration();
uDuration(long int sec);
uDuration(long int sec, long int nsec);
uDuration(const timeval &t);
uDuration(const timespec &t);

uDuration &operator =(const timeval &t) {
uDuration &operator =(const timespec &t) {
operator timeval() const;

operator timespec() const;

long long int nanoseconds() const ;

uDuration &operator -=(uDuration op);

uDuration &operator +=(uDuration op);

uDuration &operator +=(long long int op);

uDuration &operator /=(long long int op);
}; /I uDuration

uDuration operator -(uDuration op);

uDuration operator -(uDuration opl, uDuration op2);
uDuration operator +(uDuration op);

uDuration operator +(uDuration opl1, uDuration op2);
uDuration operator »(uDuration opl, long long int op2);
uDuration operator »(long long int opl, uDuration op2);
uDuration operator /(uDuration op1, long long int op2);
long long int operator /(uDuration opl, uDuration op2);
bool operator >(uDuration opl, uDuration op2);

bool operator <(uDuration opl, uDuration op2);

bool operator >=(uDuration opl, uDuration op2);

bool operator <=(uDuration opl1, uDuration op2);

bool operator ==(uDuration opl1, uDuration op2);

bool operator !=(uDuration opl1, uDuration op2);
ostream &operator <<(ostream &o0s, const uDuration op);

Figure 10.1: Duration Class

uDuration X, y, z;

int n;

X +=1; /I implicitly create a uDuration of length 1 second
X=y+z /I add two uDurations producing a uDuration
X=Y-2Z /I subtract two uDurations producing a uDuration
X =y xn; /I multiply a uDuration n times

X=nNxY; /I multiply a uDuration n times

Xx=y/ln; /I divide a uDuration by n

In addition, relational comparison operators are definedBaration objects.

uTime is a class, whose instance represents an absolute time. céimee specified using some combination of
year, month, day, hour, minute, second, and nanosecond @ WTs important to note that a time value must be
in the range 00:00:00 UTC, January 1, 1970 to 03:14:07 UTQuaky 19, 2038, which is the UNIX start and end
epochs. The creation and manipulatiorudfme values are performed through the member routines of ciasse
(see Figurd 0.2.

The overloaded constructor routingEme provide a choice of specifying a time value. The parametave lthe
following meanings:

year — a year greater than or equal to 1970 and less than or equaB& 2

month — a number between 0 and 11 inclusive, where O representsryaand 11 represents December. The

10.1. DURATION AND TIME 135

class uTime {
public :

uTime();
uTime(long int sec);
uTime(long int sec, long int nsec);
uTime(int min, int sec, long int nsec);
uTime(int hour, int min, int sec, long int nsec);
uTime(int day, int hour, int min, int sec, long int nsec);
uTime(int month, int day, int hour, int min, int sec, long int nsec);
uTime(int year, int month, int day, int hour, int min, int sec, long int nsec);
uTime(const timeval &t);
uTime(const timespec &t);

uTime &operator =(const timeval &t);
uTime &operator =(const timespec &t);
operator timeval() const;

operator timespec() const;

long long int nanoseconds() const ;

uTime &operator -=(uDuration op);
uTime &operator +=(uDuration op);
}; I/ uTime

uDuration operator -(uTime opl, uTime op2);
uTime operator -(uTime opl, uDuration op2);
uTime operator +(uTime opl, uDuration op2);
uTime operator +(uDuration opl1, uTime op2);
bool operator >(uTime opl, uTime op2);
bool operator <(uTime opl, uTime op2);
bool operator >=(uTime opl, uTime op2);
bool operator <=(uTime opl, uTime op2);
bool operator ==(uTime opl, uTime op2);
bool operator !=(uTime opl, uTime op2);
ostream &operator <<(ostream &o0s, const uTime op);

Figure 10.2: Time Class

default value for a constructor without this argument is 0.

day —a number between 0 and 30 inclusive, where 0 representsshedy of the month and 30 the last day. The
default value for a constructor without this argument is 0.

hour —a number between 0 and 23 inclusive, where 0 represent8d:@nd 23 represents 11:00pm. The default
value for a constructor without this argument is 0.

min — a number between 0 and 59 inclusive, where 0 is the first miofithe hour and 59 the last. The default
value for a constructor without this argument is 0.

sec —a number between 0 and 59 inclusive, where 0 is the first segbime minute and 59 the last.

nsec —anumber between 0 and 999999999 inclusive, where 0 is ghadinosecond of the second and 999999999
the last.

timeval / timespec —a UNIX timeval or timespec, which is converted to aTime value.

Itis permissible teexceedhe logical ranges for the time components; any excess igradative, e.g., the following
declarations are valid:

uTime t1(0,48,0,60,1000000000); // 1970 Jan 3 0:01:01:000000000 (GMT)
uTime t2(818227413, 0); /I 1995 Dec 6 05:23:33:000000000 (GMT)

136 CHAPTER 10. REAL-TIME

A UNIX timeval andtimespec value can be used to initialize or assign t@Téme value, and aTime value may be
cast into a&imeval or timespec value, e.g.:

timeval t1;

gettimeofday(&t1, NULL); // current time (seconds / microseconds)

uTime t2 = t1, t3; /I convert from timeval to uTime (initialization)

timespec t4 = t2; /I convert from uTime to timespec (seconds / nanoseconds) (implicit cast)
t3 = t1; /I convert from timeval to uTime (assignment)

t1 = (timeval)t2; /I convert from uTime to timeval (cast)

t1 = t3; /I convert from uTime to timeval (implicit cast)

Conversion is guaranteed to be exact. The member rongimeseconds returns the absolute time value as a 64 bit
number in nanoseconds from the start of the UNIX epoch.

As for uDuration values, arithmetic and relational operations may be peroronuTime values. As well, mixed
mode operations are possible involving durations and tiénduration may be added to or subtracted from a time to
yield a new time; two times can be subtracted from each otteelyzing a duration.

10.2 Timeout Operations

Itis sometimes necessary to delay a task’s execution fdatve duration or until an absolute time. Itis also necgssa
to prevent certain operations from blocking indefiniteljolsuch common operations are waiting for an accepted call
to occur and waiting for /0O to completgC+H provides mechanisms to delay execution for a time iale@mwterminate

an operation after a time interval.

10.2.1 Time Delay

In puCH, a time delay is expressed by either of the following ttedesments:

_Timeout (duration); /I parenthesis required
_Timeout (time); /I parenthesis required

With a duration value, Timeout specifies a delay time relative to the start of execution efgtatement (i.e., a
duration). That is, a task blocks for at least the span of tidated by the duration value; the task does not consume
any resources during this period, nor does it respond to equyasts. With a time value,Timeout specifies a delay
to an absolute time in the future. That is, a task blocks wntiéast the specified absolute time has occurred. If the
duration value be less than or equal to zero, the task doddaxk. Similarly, if the time value has already occurred,
the task does not block. The UNIX routingleep andusleep can also be used to sleep for a duration of seconds and
microseconds, respectively.

The extended form of theTimeout statement is:

_When (conditional-expression) /I optional guard
_Timeout (duration or time) /I optional timeout clause

A _When guard is considered true if it is omitted or if it®nditional-expressionvaluates to non-zero. Before the
_Timeout statement is executed, the guard must be true. In this dasguard is the same as i&ustatement, e.g.:

_When (count ==0) _Timeout(...); = if (count ==0) _Timeout(...);

10.2.2 Accept Statement

The extended form of theAccept statement may specify a timeout value throughrémeout clause, e.g.:

_When (conditional-expression) /I optional guard
_Accept (mutex-member-name-list)
statement-1 /I action
or
or _When (conditional-expression) /I optional guard
_Timeout (duration or time) /I optional timeout clause

statement-2 /I action

10.2. TIMEOUT OPERATIONS 137

The _Timeout clause must be the last clause in_afccept statement, or the second last if followed by a terminating
else clause (see Sectioch9.2.1 p.22). When a_Timeout clause and a terminatirgse clause appear in the same
_Accept statement, the pairing is only meaningful if the termingtéfse clause is conditional, i.e., has_avhen
guard; otherwise, thelse clause always overrides theTimeout . If there is no guard on a timeout or the guard is
true, but a call is accepted before the timeout intervalrespithe statement behaves exactly like a normalcept
statement. If there is no guard on a timeout or the guard & fnd no call is accepted before the timeout interval
expires, the acceptor is removed from the acceptor/sigehatick, restarts, and executes the statement associtted w
the Timeout clause.

O WARNING: Beware of the following possible syntactic confusion witle timeout clause:
_Accept (mem); _Accept (mem);
or _Timeout (uDuration(1)); _Timeout (uDuration(1));

The left example accepts a call to membem or times out in 1 second. The right example accepts a
call to membemem and then delays for 1 second. The left example is a singlepastatement, while
the right example is an accept statement and a timeout statem |

O WARNING: Beware of the following possible syntactic confusion witle timeout clause:

_Accept (mem); _Accept (mem);
or _Timeout (uDuration(1)); _When(C1) else
_When(C1) else _Timeout (uDuration(1));

The left example accepts a call to membem or times out in 1 second or performs the terminatitsg,
depending on the value of its guard. The right example ascagill to membemem or performs the
terminatingelse, depending on the value of its guard; if the terminagiwg is performed, it then delays
for 1 second. The left example is a single accept stateméili the right example is an accept statement
and a timeout statement, bracketed as follows.

_Accept (mem);

_When(C1) else {

_Timeout (uDuration(1));

}

10.2.3 Select Statement

The extended form of theSelect statement may specify a timeout value throughrémeout clause, e.g.:

_When (conditional-expression) /I optional guard
_Select(selector-expression)
statement-1 /I action
and/or
or _When (conditional-expression) /I optional guard
_Timeout (duration or time) /I optional timeout clause
statement-n /I action

The _Timeout clause must be the last clause in &elect statement, or the second last if followed by a terminating
else clause (see Sectiah2.l, p. 50). When a_Timeout clause and a terminatingse clause appear in the same
_Select statement, the pairing is only meaningful if the termingtétse clause is conditional, i.e., has_avhen
guard; otherwise, thelse clause always overrides th&imeout . If there is no guard on a timeout or the guard is true,
but the selector-expression associated with the entitersémt becomes satisfied before the timeout interval expire
the statement behaves exactly like a normatlect statement. If there is no guard on a timeout or the guard & tru
and the selector-expression associated with the entirenséat fails to become satisfied before the timeout interval
expires, the selector task restarts and executes the statessociated with theTimeout clause. One or more of the
actions for select clauses composing the select statensnhave already triggered when a timeout occurs.

O WARNING: Beware of the following possible syntactic confusion witle timeout clause:

138 CHAPTER 10. REAL-TIME

_Select(f1); _Select(f1);
or _Timeout (uDuration(1)); _Timeout (uDuration(1));

The left example waits for futurfl to becomes available or times out in 1 second. The right eb@amp
waits for futurefl to becomes available and then delays for 1 second. The lefiigbe is a single select
statement, while the right example is a select statemenaaingeout statement. |

O WARNING: Beware of the following possible syntactic confusion witle timeout clause:

_Select(f1); _Select(f1);
or _Timeout (uDuration(1)); _When(C1) else
_When(C1) else _Timeout (uDuration(1));

The left example waits for futurl to becomes available or times out in 1 second or performsethe t
minatingelse, depending on the value of its guard. The right example wait$uture f1 to becomes
available or performs the terminatirtse, depending on the value of its guard; if the terminatifeg

is performed, it then delays for 1 second. The left exampke single select statement, while the right
example is a select statement and a timeout statement dbeacks follows.

_Select(mem);
_When(C1) else {
_Timeout (uDuration(1));

}

10.2.4 1/0

Similarly, timeouts can be set for certain 1/O operatiorat thiock waiting for an event to occur (see details in Ap-
pendixC.5.2 p.171). Only a duration is allowed as a timeout because a reldtiprizetween absolute time and 1/0
seems unlikely. A pointer to the duration value is used sopbissible to distinguish between no timeout value (NULL
pointer) and a zero-timeout value. The former usually meangait until the event occurs (i.e., no timeout), while
the latter can be used to poll by trying the operation and'nitg immediately if the event has not occurred. The 1/O
operations that can set timeouts efed, readv, write, writev, send, sendto, sendmsg, recv, recvfrom andreadmsg. If

the specified I/O operation has not completed when the dgfgiyes, the I/O operation fails by throwing an exception.
The exception types aReadTimeout for read, readv, recv, recvfrom andreadmsg, andwWrite Timeout for write, writev,
send, sendto andsendmsg, respectively. For example, in:

try {
uDuration d(3, 0); /I 3 second duration

fa.read(buf, 512, &d);
/I handle successful read

} catch (uFilelO::ReadTimeout) {
/I handle read failure

}

the read operation expires after 3 seconds if no data hasduri

As well, a timeout can be set for the constructor aBacketAccept anduSocketClient object, which implies that if
the acceptor or client has not made a connection when the egpéres, the declaration of the object fails by throwing
an exception (see details in Appendixs.4 p.174). For example, in:

try {
uDuration d(60, 0); /I 60 second duration

uSocketAccept acceptor(sockserver, &d); /I accept a connection from a client
/I handle successful accept

} catch (uSocketAccept::OpenTimeout) {
/I handle accept failure

Y try

See, also, the server examples in Appertlix p. 169

10.3. CLOCK 139

10.3 Clock

A clock defines an absolute time and is used for interrogatiegurrent time. Multiple clocks can exist; each one can
be set to a different time. In theory, all clocks tick togethethe lowest clock resolution available on the computer.
The typeuClock creates a clock object, and is defined:
class uClock {
public :
uClock();
uClock(uTime adj);
void resetClock();
void resetClock(uTime adj);
uTime getTime();
void getTime(int &year, int &month, int &day, int &hour, int &minutes,
int &seconds, long int &nsec);
static void convertTime(uTime time, int &year, int &month, int &day, int &hour, int &minutes,
int &seconds, long int &nsec);
}; /1 uClock

The overloaded constructor routin€lock has the following forms:
uClock() — creates a clock as a real-time clock running at the sameaéntiee underlying virtual process.
uClock(uTime adj) — creates a clock as a virtual clock starting at tadg

The overloaded member routiresetClock resets the kind of clock between real-time and virtual, aaheoutine
has the following form:

resetClock() — this form sets the clock to a real-time clock, so it retulresdurrent time of the underlying virtual
processor.

resetClock(uTime adj) — this form sets the clock to a virtual clock starting at tiadg
The overloaded member routigetTime returns the current time, and each routine has the follofang:

getTime() — this form returns the current time asi@me value, i.e., in nanoseconds from the start of the UNIX
epoch.

getTime(int &year, int &month, int &day, int &hour, int &minutes, int &seconds, long int &nsec) —this formre-
turns the current time broken up into the traditional noredixadix units of time.

The static member routinenvertTime converts the specified time in nanoseconds from the stahieofUNIX
epoch into a traditional non-fixed radix units of time.

As mentioned, each virtual processor has its own real-tilmekc The current time is available from a virtual
processor via the caliThisProcessor().getClock().getTime(); hence, it is unnecessary to create a clock to get the
current time.

10.4 Periodic Task

Without a programming language construct to specify pécitd and without programming language facilities to
express time, it is almost impossible to accurately expiiess specifications within a program. Specifying a periodic
task in a language without proper time constructs can inicedatastrophic inaccuracies. For example, in:

1 for (55){

2 /I periodic work

3 uDuration DelayTime = NextTime - CurrentTime();
4 _Timeout (DelayTime);

5 }

if the task is context-switched after executing line 3 (ontext-switched after the call tOurrentTime in line 3), the
DelayTime would be inaccurate. As a result, the blocking time of thegpam is erroneous.

140 CHAPTER 10. REAL-TIME

The above problem can be eliminated by specifying an absadine to_Timeout (specifyingNextTime as the
parameter to Timeout). However, with this form of periodic task specificationiginfeasible to specify other forms
of deadlines. Ada only supports the periodic task speci@inatsing delays, and the system guarantees a periodic task
delays for a minimum time specified belayTime, but makes no guarantee as to when the periodic task actyetly
to execute BP91. As a result, a task can request to block for 10 seconds (alzdgiarantees it blocks for at least 10
seconds), but end up executing 20 seconds later.

To circumvent this problemyuC+ provides a periodic task. The general form of the pecdddsk type is the
following:

_ PeriodicTask task-name {

private :
/| these members are not visible externally
protected :
/I these members are visible to descendants
void main(); /I starting member
public :
/I these members are visible externally
%

Like a task, a periodic task type has one distinguished membaeednain, in which the new thread starts execution.
If not derived from some other periodic task type, each mcivask type is implicitly derived from the task type
uPeriodicBaseTask, e.9.:

_Task task-name : public uPeriodicBaseTask {

5
where the interface for the base cla®eriodicBaseTask is:

_Task uPeriodicBaseTask {
protected :
uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;
uDuration period;
public :
uPeriodicBaseTask(uDuration period, uCluster &cluster = uThisCluster());
uPeriodicBaseTask(uDuration period, uTime firstActivateTask, uTime endTime,
uDuration deadline, uCluster &cluster = uThisCluster());
uPeriodicBaseTask(uDuration period, uEvent firstActivateEvent, uTime endTime,
uDuration deadline, uCluster &cluster = uThisCluster());
uPeriodicBaseTask(uDuration period, uTime firstActivateTask, uEvent firstActivateEvent,
uTime endTime, uDuration deadline, uCluster &cluster = uThisCluster());
uDuration getPeriod() const ;
uDuration setPeriod(uDuration period);

h

A periodic task starts by one of two mechanisms. The first isgmBcifying a start timeFirstActivateT, at which
the periodic task begins execution. The second is by spegiBn eventFirstActivateE (an interrupt), upon receipt the
event the periodic task begins execution. If both start timet event are specified, the task starts either on receipt of a
event or when the specified time arrives, whichever comas fiirseither time nor event are specified, the periodic task
starts immediately. An end tim&ndTime, may also be specified. When the specified end time occurgetiiedic
task halts after execution of the current period. A deadleadline, may also be specified. A deadline is expressed
as the duration from the beginning of a task’s period by wlisttomputation must be finished. A zero argument
for any of the parameters indicates the task is free from éhstcaints represented by the parameter (the exception is
Period, which cannot have a zero argument). For example, iftis¢Activate parameter is zero, the task is scheduled
for initial execution at the next available time it can bea@omodated. Finally, theluster parameter specifies which
cluster the task should be created in. Should this pararhetemitted, the task is created on the current cluster.

An example of a periodic task declaration that starts at aipe time and executes indefinitely (without any
deadline constraints) is:

10.5. SPORADIC TASK 141

_ PeriodicTask task-name {
void main() { periodic task body }
public :
task-name(uDuration period, uTime time) : uPeriodicBaseTask(period, time, 0, 0) { };

h

The task body, i.e., routineain, is implicitly surrounded with a loop that performs the tdsidy periodically. As a
result, terminating the task body requireseaurn (or the use of an end time); falling off the end of tiain routine
does not terminate a periodic task.

10.5 Sporadic Task

A sporadic task is similar to a periodic task, except thera minimum duration between executions instead of a
fixed period. In the declaration of a sporadic task, this minn duration is specified asfeame. It is the user’s
responsibility to ensure the execution does not exceedpéeified minimum duration (i.e., frame); otherwise, the
scheduler cannot ensure correct execution. The reasorchieelder cannot automate this process, as it does for
periodic tasks, is because of the unpredictable natureedfiter-arrival time of sporadic tasks.

In 4CH, a sporadic task is similar to a periodic task. 8poradicTask task type, if not derived from some other
sporadic task type, is implicitly derived from the task tyj8poradicBaseTask, e.g.:

_Task uSporadicBaseTask {
protected :
uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;
uDuration frame;
public :
uSporadicBaseTask(uDuration frame, uCluster &cluster = uThisCluster());
uSporadicBaseTask(uDuration frame, uTime firstActivateTask, uTime endTime,
uDuration deadline, uCluster &cluster = uThisCluster());
uSporadicBaseTask(uDuration frame, uEvent firstActivateEvent, uTime endTime,
uDuration deadline, uCluster &cluster = uThisCluster());
uSporadicBaseTask(uDuration frame, uTime firstActivateTask, uEvent firstActivateEvent,
uTime endTime, uDuration deadline, uCluster &cluster = uThisCluster());
uDuration getFrame() const;
uDuration setFrame(uDuration frame);

10.6 Aperiodic Task

An aperiodic task has a non-deterministic start patterra fesult, aperiodic tasks should only be used in soft read-ti
applications.

In pC+, an aperiodic task is similar to a periodic task._RealTimeTask task type, if not derived from some
other aperiodic task type, is implicitly derived from thekaype_RealTimeTask , e.g.:

142 CHAPTER 10. REAL-TIME

_Task uRealTimeBaseTask {
protected :
uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;
public :
uRealTimeBaseTask(uCluster &cluster = uThisCluster());
uRealTimeBaseTask(uTime firstActivateTask, uTime endTime, uDuration deadline,
uCluster &cluster = uThisCluster());
uRealTimeBaseTask(uEvent firstActivateEvent, uTime endTime, uDuration deadline,
uCluster &cluster = uThisCluster());
uRealTimeBaseTask(uTime firstActivateTask, uEvent firstActivateEvent, uTime endTime,
uDuration deadline, uCluster &cluster = uThisCluster());
uDuration getDeadline() const;
uDuration setDeadline(uDuration deadline);

10.7 Priority Inheritance Protocol

The priority-inheritance protocol attacks the problem of priority inversion, where a highapty task waits while
lower-priority tasks prevent it from executing. Rajkumaoposed thévasic priority-inheritance protocol [RSL88
SRL9Q Raj91], which puts a bound on the occurrence of priority inversidine solution is to execute a critical section
at the priority of the highest blocked task waiting to enteiThe basic priority-inheritance protocol bounds the time
priority inversion occurs: should there belower-priority tasks in the system, and thdower-priority tasks access
m distinct critical sections, a task can be blocked by at moeat(n,m) critical sections. Despite this bound, the
blocking duration for a task can still be significant, howevBuppose at timé,, a low-priority taskr, arrives and
locks monitorM,. At timet;, a medium priority task; arrives, pre-empts,, and locks monito/;. At time¢,, a
high-priority taskr arrives, needing to sequentially access both monitfyend M, . Since both monitors are locked
by two lower-priority tasksy, must wait for the duration of two critical sections (t#l; is released by, then, M,

is released by-). This problem is known ashain blocking. Finally, this priority-inheritance protocol does not tHea
with the problem of deadlock.

In pC+, tasks wait for entry into a mutex object on a prioritizatry queue. More specifically, each of the mutex
object’s member routines have an associated prioritizedrgueue. When the mutex object becomes unlocked, the
next task that enters is the one with the highest priorityragrall the entry queues. Should a mutex object be locked
and a higher-priority task arrives, the current task exaguinside the mutex object “inherits” the priority of the
highest-priority task awaiting entry. This semantics easuhe task inside the mutex object can only be interrupted b
a higher-priority task, allowing the task in the mutex objeccomplete and leave as soon as possible, which speeds
entry of a waiting higher-priority task.

Condition variables and their associated queues of watdggs are also a fundamental part of mutex objects.
Signalling a condition variable makes the highest-pryotdisk on the queue eligible to run. prC+, the signaller
continues execution after signalling, at the priority af thighest-priority task awaiting entry to the mutex objecs.
well, the signalled task is given preference over othergaskaiting entry to the mutex object. Therefore, the siguill
task is the next to execute in the mutex object, regardleafether there are higher-priority tasks waiting in thegntr
qgueues. This behaviour, in turn, creates the possibilifyrimfrity inversion. Should a high-priority task be awagin
entry to the mutex object, and a lower-priority task exemyitin the mutex object signals a condition queue whose
most eligible task has a lower priority than a task awaitintyyeto the mutex object, priority inversion results. Hence
the semantics ofiC+ mutex objects increases the original algorithm’s bolamgbriority inversion by the amount it
takes to complete the execution of all the tasks in the sligaiatack.

Finally, in 4CH+, tasks running inside a mutex object have the additicapbility of specifically accepting any
one of the mutex member routines. This capability also riaigput the possibility of bypassing higher-priority tasks
waiting on other entry queues. When a member routine is &edethe acceptor is moved to the signalled stack,
thus causing the acceptor to block; the highest-priorigk taaiting on the accepted member routine then executes.
When a task leaves a mutex object, the next task that exeisusetected first from the signalled stack not the entry
gueues. Thus, the amount of time when priority inversionteste place when accepting specific member routines is

10.8. REAL-TIME SCHEDULING 143

unbounded, since tasks can continually arrive on a memhgines entry queue, and tasks executing in the mutex
object can continually accept the same specific membemm@uti

10.8 Real-Time Scheduling

The notion of priority becomes a crucial tool for implemagtivarious forms of scheduling paradigndggMK94,
BW90, Gol94. In general, the ternpriority has no single meaning. The priority of a task may signify atgi¢al
importance to a programmer, or may simply be a property oeted by its periodic characteristics, as is the case
with certain scheduling algorithms.

In uC+, the notion of priority simply determines the order byietha set of tasks executes. As far as the real-time
system is concerned, the ready task with the highest pritgithe most eligible task to execute, with little or no
regard for the possible starvation of lower-priority readsks. This form of scheduling is referred to gximritized
pre-emptive scheduling

Each task’s priority can be redefined and queried by themestprovided from the following abstract class (dis-
cussed further in the next section):

template <class Node> class uBaseSchedule {
protected :

uBaseTask &getinheritTask(uBaseTask &task) const ;
int getActivePriority(uBaseTask &task) const ;
int setActivePriority(uBaseTask &taskl, uBaseTask &task2);
int getBasePriority(uBaseTask &task) const ;
int setBasePriority(uBaseTask &task, int priority);

}; I/ uBaseScheduleFriend

Scheduler objects inherit fromBaseSchedule to use these routines, not replace them. These routineglprsuwffi-
cient information about the dynamic behaviour of tasks oluster to schedule them in various ways.

To provide the facilities for implementing various prigrithanging scheduling algorithms (such as priority in-
heritance), auC+ task has two priorities associated with itbase priority and anactive priority . It is up to the
scheduler implementor or programmer to set the approppiébety values, or to determine whether the base priority
or the active priority is the priority utilized in schedujiasks, if used at al.

The member routingetinheritTask returns the task that this task inherited its current agti@rity from or NULL.

The member routinegetActivePriority andsetActivePriority read and write a task’s active priority, respectively. The
member routinegetBasePriority andsetBasePriority read and write a task’s base priority, respectively.

A task’s priority can be used for more than just determiniingolr task executes next; priorities can also dictate the

behaviour of various synchronization primitives such anagghores and monitorBW90]. ;. C+ monitors have been
extended so that entry queues (see Sedibrd, p. 21) are prioritizec? The highest-priority task that calls into a mon-
itor always enters the monitor first, unless a particulanegtieue is explicitly accepted (see Sectibf.2.1 p. 22),
in which case, the highest-priority task in the particulairg queue executes. Condition queues (see Se2tiB.],
p. 26) within a monitor are also prioritized: signaling a conditiqueue schedules the highest-priority task waiting on
the queue. Thus, both the monitor entry queues and the éomditieues are prioritized, with FIFO used within each
priority level. The current implementation provides 32apitly levels. Support for more or less priority levels can be
implemented (see Sectid®.9).

If an application is not real-time, all tasks are assignee@qunal, default priority level. Thus, all tasks have one
active priority, and the scheduling is FIFO.

10.9 User-Supplied Scheduler

One of the goals of real-time inC+ is to provide a flexible system, capable of being adaptedatious real-time
environments and applications. The wide availability afi@as real-time scheduling algorithms, coupled with each
algorithm’s suitability for different forms of real-timepalications, makes it essential that the language andmenti
system provide as few restrictions as possible on whichritlgos may be utilized and implemented.

1.C+ sets the base and the active priority of a task to a unittefault value, if no other priority is specified.
A task’s active priority is utilized by aC+ monitor to determine a task’s priority value

144 CHAPTER 10. REAL-TIME

Scheduling is the mechanism by which the next task to run éseh from a set of runnable tasks. However,
this selection mechanism is closely tied to the data straatepresenting the set of runnable tasks. In fact, the data
structure containing the set of runnable tasks is oftergdesi with a particular scheduling algorithm in mind.

To provide a flexible scheduler, the ready “quetis’packaged as an independent entity — readily accessitlle an
replaceable by a scheduler designer. Consequently, tee amd mechanisms by which insertion and removal take
place from the ready data-structure is completely up tortigémentor.

A ready data-structure is generic in the type of nodes storéde structure and must inherit from the abstract
class:

template <class Node> class uBaseSchedule {
public :

virtual void add(Node *node) = 0;

virtual Node =pop() = 0;

virtual bool empty() const = 0;

virtual bool checkPriority(Node &owner, Node &calling) = 0;

virtual void resetPriority(Node &owner, Node &calling) = 0;

virtual void addlnitialize(uSequence<uBaseTaskDL> &taskList) = 0;

virtual void removelnitialize(uSequence<uBaseTaskDL> &taskList) = 0;

virtual void rescheduleTask(uBaseTaskDL staskNode, uBaseTaskSeq &taskList) = 0O;

%

The C+ kernel uses the routines provideduBaseSchedule to interact with the user-defined ready quéu&user
can construct different scheduling algorithms by modifytihe behaviour of member routinesd andpop, which add
and remove tasks from the ready queue, respectively. Teemmght a dynamic scheduling algorithm, an analysis of
the set of runnable tasks is performed for each cadldband/orpop by the kernel; these routines alter the priorities
of the tasks accordingly. The member routénepty returns true if the ready queue is empty and false otherwise.
member routineheckPriority provides a mechanism to determine if a calling task has aehighority than another
task, which is used to compare priorities in priority charggprotocols, such as priority inheritance. Its companion
routineresetPriority performs the same check, but also raises the priority of theeotask to that of the calling task
if necessaryaddinitialize is called by the kernel whenever a task is added to the c|ustdremovelnitialize is called
by the kernel whenever a task is deleted from the cluster.oth bases, a pointer to the ready queue for the cluster
is passed as an argument so it can be reorganized if nece3$atypeuSequence<uBaseTaskDL> is the type of
a system ready queue (see Appenjp. 153for information about the@Sequence collection). The list node type,
uBaseTaskDL, stores a reference to a task, and this reference can bevestnivith member routin@sk:

class uBaseTaskDL : public uSegable {
public :
uBaseTaskDL(uBaseTask &_task);
uBaseTask &task() const ;
}; /I uBaseTaskDL

Note, adding (or deleting) tasks to (or from) a cluster isthetsame as adding or popping tasks from the ready queue.
With a static scheduling algorithm, for example, task-setlgsis is only performed upon task creation, making the
addlnitialize function an ideal place to specify such analysis code. Thelmee routinerescheduleTask is used to
recalculate the priorities of the tasks on a cluster basetherfact that a given taskaskNode, may have changed
some of its scheduling attributes.

10.10 Real-Time Cluster

A real-time cluster behaves just like a normalC+ cluster, except a real-time cluster can have a spea@dyrdata-
structure associated with it (the ready data-structuréyiin, has a scheduling or task-dispatching policy assediat
with it). The ready data-structure must inherit from tiBaseSchedule class, however, and passed as an argument
when creating a real-time cluster. A real-time cluster hasfollowing constructors:

3The term “ready queue” is no longer appropriate becauseatsestructure may not be a queue.
4Operating systems such as AmoebaRRvSt 90|, Chorus RAAt 88|, and Apertos Yok92] employ a similar mechanism by which the kernel
utilizes external modules to modify its behaviour.

10.10. REAL-TIME CLUSTER 145

Priority 0 %@—’Q
\
Y

Priority ﬂ
Priority 2 $W
i |

Priority 30

\

Priority 3@ Q Task

Figure 10.3: Deadline Monotonic Ready-Queue

class uRealTimeCluster : public uCluster {
public :
uRealTimeCluster(uBaseSchedule<uBaseTaskDL> &rq, int size = uDefaultStackSize(),
const char xname ="");
uRealTimeCluster(uBaseSchedule<uBaseTaskDL> &rq, const char xname);
~uRealTimeCluster() {};

h

10.10.1 Deadline Monotonic Scheduler

The deadline monotonicscheduling algorithm is an example of a task-dispatchirgpoequiring a special ready
data-structure, which can be plugged into a real-time etusthe underlying ready data-structure for the deadline
monotonic implementation is a prioritized ready-queuahwupport for 32 priority levels. Thadd routine adds a
task to the ready-queue in a FIFO manner within a prioritglleThepop routine returns the most eligible task with
the highest priority from the ready-queue. Batld andpop utilize a constant-time algorithm for the location of the
highest-priority task. Figur&0.3illustrates this prioritized ready-queue.

The addInitialize routine contains the heart of the deadline monotonic allgari In addinitialize, each task in the
ready-queue is examined, and tasks are ordered in incgeasiler by deadline. Priorities are, in turn, assigned to
every task. With the newly assigned priorities, the readsugus re-evaluated, to ensure it is in a consistent state. As
indicated in Section0.9 p. 143 this routine is usually called only by the kernel. If a taskamoved from the cluster,
the relative order of the remaining tasks is unchanged;dehe task is simply deleted without a need to re-schedule.

A sample real-time program is illustrated in Figur@.4 To utilize the deadline-monotonic algorithm include
header fileuDeadlineMonotonic.h. In the example, the creation of the real-time scheduler dnster is done at
the beginning ouMain::main. Note, the argument passed to the constructarRefalTimeCluster is an instance of
uDeadlineMonotonic, which is a ready data-structure derived fraBaseSchedule.

The technique used to ensure that the tasks start at a kiristance is not to associate a processor with the cluster
until after all tasks are createohd scheduledn the cluster. As each task is added to the clustémitialize is called,
and cluster’s task-set is analyzed and task prioritiesrajagsigned. After priority assignment, the task is addede
ready queue, and made eligible to execute. Only when alstask created is a processor finally associated with the
real-time cluster. This approach ensures that when thepsoc is put in place, the task priorities are fully deteedin
and the critical instant is ensured.

146 CHAPTER 10. REAL-TIME

#include <uC++.h>
#include <uDeadlineMonotonic.h>

_ PeriodicTask PeriodicTaskl {
public :
PeriodicTask1(uDuration period, uTime endtime, uDuration deadline, uCluster &cluster) :
uPeriodicBaseTask(period, uTime(0), endtime, deadline, cluster) {

void main() {
/I periodic task body
}
%

_ PeriodicTask PeriodicTask2 {
public :
PeriodicTask2(uDuration period, uTime endtime, uDuration deadline, uCluster &cluster) :
uPeriodicBaseTask(period, uTime(0), endtime, deadline, cluster) {

void main() {
/I periodic task body
}
%

void uMain::main() {
uDeadlineMonotonic dm; /I create real-time scheduler
uRealTimeCluster RTClust(dm); /I create real-time cluster with scheduler
uProcessor xprocessor;
{
/I These tasks are created, but they do not begin execution until a
/I processor is created on the “RTClust” cluster. This is ideal, as
/I “addlInitialize” is called as each task is added to the cluster.

uTime currTime = uThisProcessor().getClock().getTime();

PeriodicTaskl t1(15, currTime+90, 5, RTClust); /I 15 sec period, 5 sec deadline
PeriodicTask2 t2(30, currTime+90, 10, RTClust); /I 30 sec period, 5 sec deadline
PeriodicTaskl t3(60, currTime+90, 20, RTClust); /I 60 sec period, 20 sec deadline

/I Only when all tasks are on the cluster, and the scheduling algorithm
/I as ordered the tasks, is a processor associated with cluster
/I “RTClust” to execute the tasks on the cluster.

processor = new uProcessor(RTClust);

} I/ wait for t1, t2, and t3 to finish
delete processor;

Figure 10.4: Sample Real-Time Program

Chapter 11

Miscellaneous

11.1 Default Values

#CH has a number of environment variables set to reasonaikied values for a basic concurrent program. However,
some concurrent programs may need to adjust these valudstaim @orrect execution or enhanced performance.
Currently, these variables affect tasks, processors,rentdap.

A default value is specified indirectly via a default routimeéhich returns the specific default value. A routine
allows an arbitrary computation to generate an appropviaiee. Each default routine can be replaced by defining a
routine with the same name and signature in an applicatign, e

unsigned int uDefaultStackSize() {
return 64 « 1024; /I 64K default stack size
}
If the value of a global variable is used in the computatibadpplication can change the default value dynamically by
changing this global variable; hence, actions performetifidrent times are initialized with different default vals
(unless overridden locally). However, the global variablest be statically initializethecause its value may be used
to initialize objects at the start of theC+ runtime, i.e., before the application’s code startsetien.

11.1.1 Task
The following default routines directly or indirectly affetasks:
unsigned int uDefaultStackSize(); /I cluster coroutine/task stack size (bytes)
unsigned int uMainStackSize(); /I uMain task stack size (bytes)
unsigned int uDefaultPreemption(); /I processor scheduling pre-emption duration (milliseconds)

RoutineuDefaultStackSize returns a stack siz® initialize a cluster’s default stack-sifeersus being used directly to
initialize a coroutine/task stack-size). A coroutineteseated on a cluster without an explicit stack size isatized

to the cluster’s default stack-size; hence, there is a le@direction between this default routine and its use for
initializing a stack size. As well, a cluster’s default dtagize can be explicitly changed after the cluster is cebate
(see Sectio.3, p. 119. RoutineuMainStackSize is used directly to provide a stack size for the implicitlcldeed
initial task of typeuMain (see Sectio2.2, p. 8). Since this initial task is defined and createddiy#+, it has a separate
default routine so it can be adjusted differently from thplagation tasks. RoutineDefaultPreemption returns a time

in millisecondsto initialize a virtual processor’s default pre-emptiom (versus being used directly to initialize a
task’s pre-emption time). A task executing on a processamrssheduled after no more than this amount of time (see
Section8.4, p.121).

11.1.2 Processor

The following default routines directly affect processors

unsigned int uDefaultSpin(); /I processor spin amount before becoming idle
unsigned int uDefaultProcessors(); /Il number of processors created on the user cluster

RoutineuDefaultSpin returns the maximum number of times the cluster’'s ready gugchecked for an available
task to execute before the processor blocks. As well, a psocs default spin can be explicitly changed after the

147

148 CHAPTER 11. MISCELLANEOUS

processor is created (see Sectdd, p. 121). RoutineuDefaultProcessors returns the number of implicitly created
virtual processors on the user cluster (see Se@i8r?, p. 9). When the user cluster is created, at least this many
processors are implicitly created to execute tasks coentiyr

11.1.3 Heap

The following default routine directly affects the heap:
unsigned int uDefaultHeapExpansion(); // heap expansion size (bytes)

RoutineuDefaultHeapExpansion returns the amount to extend the heap size once all the ¢wtamage in the heap is
allocated (see Sectionh2.3.1Q p. 115).

11.2 Symbolic Debugging

The symbolic debugging tools (e.glhx, gdb) do not work perfectly with.C+-. This is because each coroutine and
task has its own stack, and the debugger does not know thrat ahe multiple stacks. When a program terminates
with an error, only the stack of the coroutine or task in exiecuat the time of the error is understood by the debugger.
Furthermore, in the multiprocessor case, there are melkipinel threads that are not necessarily handled well by all
debuggers. Some debuggers do handle multiple kernel thi@ddch correspond tpC+ virtual processors), and
hence, it is possible to examine at least the active tasksimgron each kernel thread. Nevertheless, it is possible
to use many debuggers on programs compiled with the unikefié¢he very least, it is usually possible to examine
some of the variables, externals and ones local to the durocgautine or task, and to discover the statement where
the error occurred.

For most debuggers it is necessary to tell them to let:tB& runtime system handle certain UNIX signals. Signals
SIGALRM and SIGUSR1 are handled by:C+ to perform pre-emptive scheduling. In gdb, the follogvolebugger
command allows the application program to handle sigi@ALRM andSIGUSRL:

handle SIGALRM nostop noprint pass ignore
handle SIGUSR1 nostop noprint pass ignore

11.3 Installation Requirements

1C+H comes configured to run on any of the following platforsiagle and multiple processor):

solaris-sparc : Solaris 8/9/10, SPARC

irix-mips : IRIX 6.x, MIPS

linux-x86 : Linux 2.4.x/2.6.x, Intel IA-32

linux-ia64 : Linux 2.4.x/2.6.x, Intel IA-64 (Itanium)
linux-x86.32 : Linux 2.4.x/2.6.x, AMD 32

linux-x86.64 : Linux 2.4.x/2.6.x, AMD 64

freebsd-x86 : FreeBSD 6.0, FreeBSD 6.0, Intel & AMD 32

nCH requires at least GNUe9(gcce-3.4.x or greater, or Intel icc 8.1 or 9.x. These compilzan be obtained free
of charge..C+ works reasonably well with GNU gcc-3.3.x, but there amme user compilation situations that fail
(e.g., some usages o$acquiref/isacquire). However,C+ does not build with gcc-3.3.x on Solaris 10C+ does
NOT compile using other compilers.

11.4 Installation
The current version giC+ can be obtained by anonymous ftp from the following lmoa{remember to set your ftp
mode tobinary):
plg.uwaterloo.ca:pub/uSystem/u++-5.5.0.tar.gz
Execute the following command to unpack the source:
% gunzip -c u++-5.5.0.tar.gz | tar -xf -
The README file contains instructions on how to buildC+-.

11.5. REPORTING PROBLEMS 149

11.5 Reporting Problems

If you have problems or questions or suggestions, send etonaystem@plg.uwaterloo.ca or mail to:

1System Project

c/o Peter A. Buhr

School of Computer Science
University of Waterloo
Waterloo, Ontario

N2L 3G1

CANADA

As well, visit theuSystem web site atittp:/ plg.uwaterloo.ca/~usystem

11.6 Contributors

While many people have made numerous suggestions, thevfoligpeople were instrumental in turning this project
from an idea into reality. The original design work, Versib®, was done by Peter Buhr, Glen Ditchfield and Bob
Zarnke BDZ89], with additional help from Jan Pachl on the train to Weng&mnian Younger built Version 1.0 by
modifying the AT&T 1.2.1 C+ compilerYou91]. Version 2.0 was designed by Peter Buhr, Glen Ditchfiel&kRi
Stroobosscher and Bob Zarnke)St92]. Version 3.0 was designed by Peter Buhr, Rick Stroobossahé Bob
Zarnke. Rick Stroobosscher built both Version 2.0 and ZaOdfator and kernel. Peter Buhr wrote the documentation
and built the non-blocking I/O library as well as doing otlsendry coding. Version 4.0 kernel was designed and
implemented by Peter Buhr. Nikita Borisov and Peter Buhrdigeveral problems in the translator. Amir Michalil
started the real-time work and built a working prototypeilipp Lim and Peter Buhr designed the first version of
the real-time support and Philipp did most of the implemgaitawith occasional help from Peter Buhr. Ashif Harji
and Peter Buhr designed the second version of the real-tipyost and Ashif did most of the implementation with
occasional help from Peter Buhr. Russell Mok and Peter Behigthed the first version of the extended exception
handling and Russell did most of the implementation withesa@nal help from Peter Buhr. Roy Krischer and Peter
Buhr designed the second version of the extended excepgiodling and Roy did most of the implementation with
occasional help from Peter Buhr. Version 5.0 kernel wasgihesi and implemented by Richard Bilson and Ashif
Harji, with occasional help from Peter Buhr. Tom, Sasha, ,TB@j, and Martin, the “gizmo guys”, all helped Peter
Buhr and Ashif Harji with the gizmo port. Finally, the manyrtdbutions made by all the students in CS342/CS343
(Waterloo) and CSC372 (Toronto), who struggled with easlersions ofuC+, is recognized.

The indirect contributers are Richard Stallman for pravgsimacs andgmake so that we could accomplish useful
work in UNIX, Michael D. Tiemann and Doug Lea for providingetimitial version of GNU C+ and Dennis Vadura
for providingdmake (used beforgmake).

150 CHAPTER 11. MISCELLANEOUS

Appendix A

pnCH Grammar

The grammar foy:C+ is an extension of the grammar for C+ givenlm98, Annex A]. The ellipsis in the following
rules represent the productions elided from the C+ grammar

function-specifier :

mutex-specifier

mutex-specifier :
_Mutex queue-types,
_Nomutex queue-types;

gueue-types :
< class-name
< class-name class-name

class-key :
mutex-specifigp, class

mutex-specifig, _Coroutine
mutex-specifigp, _Task queue-types,
_RealTimeTask queue-types;
_PeriodicTask queue-types;
_SporadicTask queue-types;

__Event

statement :

accept-statement

_AcceptWait ((mutex-)identifier-lisy expression

_AcceptWait ((mutex-)identifier-lisy expression With expression
_AcceptReturn ((mutex-)identifier-lisj expressiog,; ;
select-statement

_Disable (exception-)identifier-lisf,; statement

_Enable (exception-)identifier-lis,; statement

exception-list :
< class-name exception-lis,,
jump-statement :

break identifier,,, ;
continue identifier,; ;

151

152 APPENDIX A. 1CH GRAMMAR

accept-statement :

or-accept

or-accept timeout-clause

or-accept else-clause

or-accept timeout-clause else-clause
or-accept :

accept-clause

or-acceptor accept-clause

accept-clause :
when-clausg,; _Accept ((mutex-)identifier-lisj statement

select-statement :
or-select
or-select timeout-clause
or-select else-clause
or-select timeout-clause else-clause

or-select :

and-select

or-selector and-select
and-select :

select-clause

and-selectind select-clause

select-clause :
when-clausg,; (or-select)
when-clausg,; _Select ((selector-)expressionstatement
when-clause :
_When (expressior)
else-clause :
when-clausg, else statement
timeout-clause :
or when-clausg,, _Timeout ((time-)expressiopstatement

try-block :
try resumption-handler-seq compound-statement handler-seq

handler :

catch (lvalue. exception-declaratiohcompound-statement

resumption-handler-seq :
resumption-handler resumption-handler-sgq

resumption-handler :
< class-name
< class-name expressior»
<lIvalue. class-name
< lvalue. class-name expression-
<..., expressior-
<...>

throw-expression :

_Throw assignment-expressign at-expressioy),;

_Resume assignment-expressign at-expressiog),;
at-expression :

_At assignment-expression

Appendix B

Data Structure Library (DSL)

#CH makes use of several basic data structures to managetobjeits runtime environment: stack, queue and
sequence. Since these data structures are needed at ctimpilgecause of inlining, it is possible to use them in a
nCH application program. When appropriate, reusing codarbgpplication programmer can save significant time
and effort. However, be forewarned that th€+ DSL is only as extensive as needed to implemedt; it is not
meant to be a complete data structure library (such as LEDA@STL).

A data structure is defined to be a group of nodes, contairseg data, organized into a particular format, with
specific operations peculiar to that format. For all datactires in this library, it is the user’s responsibility teate
and delete all nodes. Because a node’s existence is indepenidthe data structure that organizes it, all nodes are
manipulated by address not value; hence, all data struaiutmes take and return pointers to nodes and not the nodes
themselves.

Nodes are divided into two kinds: those with one link field jefiform a collection, and those with two link fields,
which form a sequence.

collection node sequence node

B _—

data -~

data

uStack anduQueue are collections andSequence is a sequence. To get the appropriate link fields associatédaw
user node, it must be a public descendani@dlable or uSeqable, respectively, e.g.:
class stacknode : public uColable { ...}
class queuenode : public uColable { ...}
class segnode : public uSeqable { ...}
A node inheriting fromuSeqable can be putin a collection data structure but not vice versandwith providing the
appropriate link fields, the typesolable anduSeqable also provide one member routine:
bool listed() const ;
which returngrue if the node is an element of any collection or sequencefasel otherwise.
Finally, no header files are necessary to accesg:@¥ DSL; all necessary definitions are included when file
<uC++.h> is included.
SomeuC+H DSL restrictions are:

¢ None of the member routines are virtual in any of the datactires for efficiency reasons. Therefore, pointers
to data structures must be used with care or incorrect merobé&nes may be invoked.

B.1 Stack

A uStack is a collection that defines an ordering among the nodes:shadereturned byop in the reverse order that
they are added byush.

153

154 APPENDIX B. DATA STRUCTURE LIBRARY (DSL)

stack

top — ™ 0

data data data

template <class T> class uStack {
public :

uStack();
bool empty() const;
T «head() const
T «top() const;
void addHead(T *n);
void add(T =n);
void push(T =n);
T «drop();
T «pop();

%

T must be a public descendantuolable.

The member routinempty returnstrue if the stack has no nodes afalse otherwise. The member routihead
returns a pointer to the top node of the stack without remgitiror NULL if the stack has no nodes. The member
routinetop is a synonym fohead. The member routinaddHead adds a node to the top of the stack. The member
routineadd is a synonym folmddHead. The member routinpush is a synonym fomddHead. The member routine
drop removes a node from the top of the stack and returns a pomtieror NULL if the stack has no nodes. The
member routin@op is a synonym fotrop.

B.1.1 lterator

The iteratouStacklter<T> generates a stream of the elements o$@ck<T>.
template <class T> class uStacklter {
public :
uStacklter();
uStacklter(const uStack<T> &s);
void over(const uStack<T> &s);
bool operator >>(T *&tp);
%
It is used to iterate over the nodes of a stack from the topeétack to the bottom.
The overloaded constructor routingtackliter has the following forms:

uStacklter() — creates an iterator without associating it with a particstack; the association must be done sub-
sequently with membeaver.

uStacklter(const uStack<T> &s) — creates an iterator and associates it the specified steckssociation can be
changed subsequently with memioger.

The member routinever resets the iterator to the top of the specified stack. The reenadwtine>> attempts to
move the iterator’s internal cursor to the next node. If todim (end) of the stack has not been reached, the argument
is set to the address of the next node and is returned; otherwise the argument is sefltét L andfalse is returned.

FigureB.1illustrates creating and using a stack and stack iterator.

B.2 Queue

A uQueue is a collection that defines an ordering among the nodes:sa@ereturned byrop in the same order that
they are added bydd.

queue

head 0 =~ tail

data data data

B.2. QUEUE 155

struct stackNode : public uColable {
int v;
stackNode(int v) :v(v) {}

h

void uMain::main() {
uStack<stackNode> stack;
uStacklter<stackNode> stackgen;
stackNode #sp;
int i;

for (i=0;i<10;i+=1){ /I fill stack
stack.push(new stackNode(2 i));
} 1 for

for (stackgen.over(stack); stackgen >> sp;) { /I print stack
cout << sp->v << " "

} 1l for

cout << endl;

for (i=0;i<10;i+=1){ /I empty stack
sp = stack.pop();
delete sp;

} 1l for

Figure B.1: DSL Stack

template <class T> class uQueue {
public :

uQueue();
bool empty() const;
T «head() const
T «tail() const;
T *succ(T *n) const ;
void addHead(T *n);
void addTail(T «n);
void add(T *n);
T «dropHead();
T +drop();
T «dropTail();
void remove(T *n);

%

T must be a public descendantuolable.

The member routinempty returnstrue if the queue has no nodes afatse otherwise. The member routihead
returns a pointer to the head or first node of the queue witteabving it orNULL if the queue has no nodes. The
member routineail returns a pointer to the tail or last node of the queue witheuibving it. The member routirseicc
returns a pointer to the successor node after the specified (howard the tail) oNULL if the specified node is the
last node in the sequence. The member rouihtitiead adds a node to the head or front of the queue. The member
routineaddTail adds a node to the tail or end of the queue. The member rcadihes a synonym foladdTail. The
member routinelropHead removes a node from the head or front of the queue and retyvomer to it orNULL if
the queue has no nodes. The member routiog is a synonym fodropHead. The member routinéropTail removes
a node from the tail or end of the queue and returns a pointieéotoNULL if the queue has no nodes. The member
routineremove removes the specified node from the queue (any location).

B.2.1 Iterator

The iteratouQueuelter<T> generates a stream of the elements oQaeue<T>.

156 APPENDIX B. DATA STRUCTURE LIBRARY (DSL)

struct queueNode : public uColable {
int v;
queueNode(int v):v(v) {}

%

void uMain::main() {
uQueue<queueNode> queue;
uQueuelter<queueNode> queuegen;
queueNode *qp;

int i

for (i=0;i<10;i+=1){ /I fill queue
queue.add(new queueNode(2 xi));

} 1l for

for (queuegen.over(queue); queuegen >> qgp;) { /I print queue
cout << gp->v << " ";

} 1l for

cout << endl;

for (i=0;i<10;i+=1){ /I empty queue
gp = queue.drop();
delete qgp;

} 1l for

Figure B.2: DSL Queue

template <class T> class uQueuelter {
public :
uQueuelter();
uQueuelter(const uQueue<T> &Qq);
void over(const uQueue<T> &Qq);
bool operator >>(T *&tp);

%
It is used to iterate over the nodes of a queue from the hedteafueue to the tail.
The overloaded constructor routin@ueuelter has the following forms:

uQueuelter() — creates an iterator without associating it with a particgueue; the association must be done
subsequently with memberer.

uQueuelter(const uQueue<T> &q) — creates an iterator and associates it the specified gue@ssociation can
be changed subsequently with membesr.

The member routinever resets the iterator to the head of the specified queue. Thdarawutine>> attempts to
move the iterator’s internal cursor to the next node. If gik(end) of the queue has not been reached, the argument is
set to the address of the next node and is returned; otherwise the argument is setitd L andfalse is returned.

FigureB.2llustrates creating and using a queue and queue iterator.

B.3 Sequence

A uSequence is a collection that defines a bidirectional ordering amdreggrtodes: nodes can be added and removed
from either end of the collection; furthermore, nodes caimberted and removed anywhere in the collection.

sequence

head—* 0 ~— tail

data data data

B.3. SEQUENCE 157

template <class T> class uSequence {
public :

uSequence();
bool empty() const;
T «head() const
T «tail() const;
T xsucc(T *n) const ;
T «pred(T #n) const ;
void insertBef(T xn, T «bef);
void insertAft(T aft, T xn);
void addHead(T* n);
void addTail(T+ n);
void add(T* n);
T «xdropHead();
T +drop();
T «dropTail();
void remove(T *n);

%

T must be a public descendantusieqable.

The member routinempty returnstrue if the sequence has no nodes dside otherwise. The member routine
head returns a pointer to the head or first node of the sequenceutitemoving it oNULL if the sequence has no
nodes. The member routitel returns a pointer to the tail or last node of the sequenceowttfemoving it oINULL if
the sequence has no nodes. The member rosticrereturns a pointer to the successor node after the specifigel no
(toward the tail) oNULL if the specified node is the last node in the sequence. The ererabtinepred returns a
pointer to the predecessor node before the specified noglarftdhe head) oKULL if the specified node is the first
node in the sequence. The member rouitinertBef adds a node before the specified node or at the end (tadj i§
NULL. The member routineasertAft adds a node after the specified node or at the beginning (fesft)s NULL. The
member routineddHead adds a node to the head or front of the sequence. The membtgreraddTail adds a node
to the tail or end of the sequence. The member routiitels a synonym formddTail. The member routindropHead
removes a node from the head or front of the sequence andsetyoointer to it oNULL if the sequence has no nodes.
The member routindrop is a synonym fodropHead. The member routingropTail removes a node from the tail or
end of the sequence and returns a pointer to NOEL if the sequence has no nodes. The member routineve
removes the specified node from the sequence (any location).

A sequence behaves like a queue when memiiitsanddrop are used. The example program in Secti®,

p. 165makes use of a sequence and modifies it so that nodes are imadhitaorder.

B.3.1 Iterator

The iteratoluSeqlter<T> generates a stream of the elements o$equence<T>.

template <class T> class uSeqlter {
public :

uSeqlter();
uSeqlter(const uSequence<T> &s);
void over(const uSequence<T> &sS);
bool operator >>(T *&tp);

%

Itis used to iterate over the nodes of a sequence from thedfeéhd sequence to the tail.
The iteratoluSeqlterRev<T> generates a stream of the elements e$aquence<T>.

template <class T> class uSeqlterRev {
public :
uSeqlterRev();
uSeqlterRev(const uSequence<T> &S);
void over(const uSequence<T> &s);
bool operator >>(T *&tp);

158 APPENDIX B. DATA STRUCTURE LIBRARY (DSL)

struct seqNode : public uSeqable {
int v;
seqNode(int v) :v(v) {}

%

void uMain::main() {
uSequence<seqNode> seq;
uSeqlter<seqNode> seqgen;
segNode *sp;
int i

for (i=0;i<10;i+=1){ /I fill sequence
seq.add(new segNode(2 «i));
} 1l for

for (seqgen.over(seq); seqgen >> sp;) { /I print sequence forward
cout << sp->v << " "

} 1 for

cout << endl;

for (uSeglterRev<seqNode> seqgenrev(seq); seqgenrev >> sp;) { // print sequence reverse
cout << sp->v << " "

} 1l for

cout << endl;

for (seqgen.over(seq); seqgen >> sp;) { /I empty sequence
seq.remove(sp); /I can remove nodes during iteration
delete sp;

} 1l for

Figure B.3: DSL Sequence

Itis used to iterate over the nodes of a sequence from theftdik sequence to the head.
The overloaded constructor routingeqlter has the following forms:

uSeqlter() — creates an iterator without associating it with a paréicsequence; the association must be done
subsequently with memberer.

uSeqlter(const uSeq<T> &q) — creates an iterator and associates it the specified sezjubecassociation can
be changed subsequently with membesr.

The member routinever resets the iterator to the head or tail of the specified sespu@epending on which iterator
is used. The member routine attempts to move the iterator’s internal cursor to the nexten If the head (front) or
tail (end) of the sequence has not been reached dependinbio iterator is used, the argument is set to the address
of the next node antlue is returned; otherwise the argument is setitd L andfalse is returned.

FigureB.3 illustrates creating and using a sequence and sequenatiter

Appendix C

Example Programs

C.1 Readers And Writer

The readers and writer problem deals with controlling a&tes resource that can be shared by multiple readers, but
only one writer can use it at a time (e.g., a sequential filehilg\there are many possible solutions to this problem,
each solution must deal with unbounded waiting of readefanariter tasks if a continuous stream of one kind of
task is arriving at the monitor. For example, if readers ameently using the resource, a continuous stream of reader
tasks should not make an arriving writer task wait foreventfiermore, a solution to the readers and writer problem
should provide FIFO execution of the tasks so that a readishrauested after a write does not execute before the
write, thus reading old information. This phenomenon idechthestale readersproblem. Hoare gave a monitor
solution in Hoa74 that has a bounded on waiting but non-FIFO execution.

1 -x- Mode: C++ -x-

1

/I uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
1

/I RWEx1.cc — Readers and Writer Problem

1

/I Author : Peter A. Buhr

/I Created On : Thu Aug 2 11:51:34 1990
/I Last Modified By : Peter A. Buhr

/I Last Modified On : Wed Nov 30 08:41:15 2005
/I Update Count 1 95

1

#include <uC++.h>
#include <iostream>
using std::cout;
using std::osacquire;
using std::endl;

_Monitor ReaderWriter {
int ReadCount, WriteUsage;
uCondition ReaderAndWriter;
enum RW { READER, WRITER },
public :

ReaderWriter() {

ReadCount = WriteUsage = 0;
} /I ReaderWriter

void StartRead() {

if (WriteUsage || ! ReaderAndWriter.empty()) {
ReaderAndWriter.wait(READER);

I if

ReadCount += 1,

if (! ReaderAndWriter.empty() && ReaderAndWriter.front() == READER) {
ReaderAndWriter.signal();

Y if

159

160 APPENDIX C. EXAMPLE PROGRAMS

} /I ReaderWriter::StartRead

void EndRead() {
ReadCount -= 1,
if (ReadCount ==0) {
ReaderAndWriter.signal();
Y Iif
} /I ReaderWriter::EndRead

void StartWrite() {
if (WriteUsage || ReadCount !=0) {
ReaderAndWriter.wait(WRITER);
Y Iif
WriteUsage = 1;
} /I ReaderWriter::StartWrite

void EndWrite() {
WriteUsage = 0;
ReaderAndWriter.signal();
} /I ReaderWriter::EndWrite
}; /I ReaderWriter

volatile int SharedVar = 0; /I shared variable to test readers and writers

_Task Worker {
ReaderWriter &rw;

void main() {
yield(rand() % 100); /I don’ t all start at the same time
if (rand() % 100 < 70) { /I decide to be a reader or writer
rw.StartRead();
osacquire(cout) << "Reader:" << this << ", shared:" << SharedVar << endl;
yield(3);
rw.EndRead();
} else {
rw.StartWrite();
SharedVar += 1,
osacquire(cout) << "Witer:" << this <<", wote:" << SharedVar << endl;
yield(1);
rw.EndWrite();
Y Iif
} 1/ Worker::main
public :
Worker(ReaderWriter &rw) @ rw(rw) {
} /I Worker::Worker
}; /I Worker

#define MaxTask 50

void uMain::main() {
ReaderWriter rw;
Worker sworkers;

workers = new Worker[MaxTask](rw);
delete [] workers;

osacquire(cout) << "successful conpl etion" << endl;
} /I uMain::main

/I Local Variables: //

/I tab-width: 4 //

/I compile-command: “u++ RWEx1l.cc” //
/I End: /I

C.2. BOUNDED BUFFER 161

C.2 Bounded Buffer

Two processes communicate through a unidirectional quEfigite length.

C.2.1 Using Monitor Accept

1 -+ Mode: C++ -x-

1

/I uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
1

/I MonAcceptBB.cc — Generic bounded buffer problem using a monitor and uAccept
1

/I Author : Peter A. Buhr

/I Created On : Thu Aug 2 11:35:05 1990

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Wed Nov 30 08:41:30 2005

/I Update Count 1124

1

#include <uC++.h>

template <typename ELEMTYPE> _Monitor BoundedBuffer {

const int size; /I number of buffer elements
int front, back; /Il position of front and back of queue
int count; /I number of used elements in the queue
ELEMTYPE xElements;
public :

BoundedBuffer(const int size = 10) : size(size) {
front = back = count = 0;
Elements = new ELEMTYPE[size];

} /I BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete [] Elements;
} /I BoundedBuffer::~BoundedBuffer

_Nomutex int query() {
return count;
} /I BoundedBuffer::query

void insert(ELEMTYPE elem);
ELEMTYPE remove();
}. 11 BoundedBuffer

template <typename ELEMTYPE> inline void BoundedBuffer<ELEMTYPE>::insert(ELEMTYPE elem) {
if (count == size) { /I buffer full ?
_Accept (remove); /I only allow removals
Yy Iif

Elements[back] = elem;
back = (back + 1) % size;
count += 1;

} /I BoundedBuffer::insert

template <typename ELEMTYPE> inline ELEMTYPE BoundedBuffer<ELEMTYPE>::remove() {
ELEMTYPE elem;

if (count==0) { /I buffer empty ?
_Accept (insert); /I only allow insertions
Y if

elem = Elements[front];
front = (front + 1) % size;
count -= 1;

return elem;
} /I BoundedBuffer::remove

162 APPENDIX C. EXAMPLE PROGRAMS

#include "ProdConsDriver.i"

/I Local Variables: //

/I tab-width: 4 //

/I compile-command: “u++ MonAcceptBB.cc” //
/I End: /I

C.2.2 Using Monitor Condition

1 -+- Mode: C++ -x-

1

/I uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
1

/I MonConditionBB.cc — Generic bounded buffer problem using a monitor and condition variables
1

/I Author . Peter A. Buhr

/I Created On : Thu Aug 2 11:35:05 1990

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Wed Nov 30 08:41:43 2005

/I Update Count . 57

1

#include <uC++.h>

template <typename ELEMTYPE> _Monitor BoundedBuffer {

const int size; /I number of buffer elements
int front, back; /I position of front and back of queue
int count; /I number of used elements in the queue

ELEMTYPE xElements;
uCondition BufFull, BufEmpty;
public :
BoundedBuffer(const int size = 10) : size(size) {
front = back = count = 0;
Elements = new ELEMTYPE[size];
} /I BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete [] Elements;
} /I BoundedBuffer::~BoundedBuffer

_Nomutex int query() {
return count;
} /I BoundedBuffer::query

void insert(ELEMTYPE elem) {
if (count == size) {
BufFull.wait();
I if

Elements[back] = elem;
back = (back + 1) % size;
count += 1,

BufEmpty.signal();
}; /I BoundedBuffer::insert

ELEMTYPE remove() {
ELEMTYPE elem;

if (count==0) {
BufEmpty.wait();
Y if

elem = Elements[front];
front = (front + 1) % size;
count -= 1;

C.2. BOUNDED BUFFER

BufFull.signal();
return elem;
}; /I BoundedBuffer::remove
}. 11 BoundedBuffer

#include "ProdConsDriver.i"

/I Local Variables: //

/I tab-width: 4 //

/I compile-command: “u++ MonConditionBB.cc” //
/I End: //

C.2.3 Using Task

1 -+ Mode: C++ -x-

1

/I uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
1

/I TaskAcceptBB.cc — Generic bounded buffer using a task
1

/I Author : Peter A. Buhr

/I Created On 1 Sun Sep 15 20:24:44 1991

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Sun Jul 31 18:50:16 2005

/I Update Count 174

1

#include <uC++.h>

template <typename ELEMTYPE> _Task BoundedBuffer {

const int size; /I number of buffer elements
int front, back; /Il position of front and back of queue
int count; /I number of used elements in the queue

ELEMTYPE xElements;
public :
BoundedBuffer(const int size = 10) : size(size) {
front = back = count = 0;
Elements = new ELEMTYPE[size];
} /I BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete [] Elements;
} /I BoundedBuffer::~BoundedBuffer

_Nomutex int query() {
return count;
} /I BoundedBuffer::query

void insert(ELEMTYPE elem) {
Elements[back] = elem;
} /I BoundedBuffer::insert

ELEMTYPE remove() {
return Elements[front];
} /I BoundedBuffer::remove
protected :
void main() {
for () {
_Accept (~BoundedBuffer)
break;
or _When (count != size) _Accept (insert) {
back = (back + 1) % size;
count += 1,

} or _When (count !=0) _Accept (remove) {

front = (front + 1) % size;
count -= 1;

163

164 APPENDIX C. EXAMPLE PROGRAMS

} /I _Accept
} 11 for
} // BoundedBuffer::main
}; /I BoundedBuffer

#include "ProdConsDriver.i"

/I Local Variables: //

/I tab-width: 4 //

/I compile-command: “u++ TaskAcceptBB.cc” //
/I End: /I

C.2.4 Using PIV

1 -x- Mode: C++ -x-

1

/I uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
1

/I SemaphoreBB.cc —

1

/I Author . Peter A. Buhr

/I Created On : Thu Aug 15 16:42:42 1991
/I Last Modified By : Peter A. Buhr

/I Last Modified On : Sun Jul 31 18:48:08 2005
/I Update Count 1 54

1

#include <uC++.h>
#include <uSemaphore.h>

template <typename ELEMTYPE> class BoundedBuffer {

const int size; /I number of buffer elements

int front, back; /I position of front and back of queue
uSemaphore full, empty; /I synchronize for full and empty BoundedBuffer
uSemaphore ilock, rlock; /I insertion and removal locks

ELEMTYPE «Elements;

BoundedBuffer(BoundedBuffer &); /I no copy
BoundedBuffer &operator =(BoundedBuffer &); /I no assignment
public :

BoundedBuffer(const int size = 10) : size(size), full(0), empty(size) {
front = back = 0;
Elements = new ELEMTYPE[size];

} /I BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete Elements;
} /I BoundedBuffer::~BoundedBuffer

void insert(ELEMTYPE elem) {
empty.P(); /I wait if queue is full

ilock.P(); /I serialize insertion
Elements[back] = elem;

back = (back + 1) % size;

ilock.V();

full.V(); /I signal a full queue space
} /I BoundedBuffer::insert

ELEMTYPE remove() {
ELEMTYPE elem;

full.P(); /I wait if queue is empty

rlock.P(); /I serialize removal
elem = Elements[front];

C.3. DISK SCHEDULER 165

front = (front + 1) % size;
rlock.V();

empty.V(); /I signal empty queue space
return elem;
} /I BoundedBuffer::remove
}; /I BoundedBuffer

#include " ProdConsDriver.i"

/I Local Variables: //

/I tab-width: 4 //

/I compile-command: “u++ SemaphoreBB.cc” //
/I End: //

C.3 Disk Scheduler

The following example illustrates a fully implemented distheduler. The disk scheduling algorithm is the elevator

algorithm, which services all the requests in one directind then reverses direction. A linked list is used to store

incoming requests while the disk is busy servicing a paldictequest. The nodes of the list are stored on the stack of
the calling processes so that suspending a request doesnseie resources. The list is maintained in sorted order
by track number and there is a pointer which scans backwatdcaward through the list. New requests can be added

both before and after the scan pointer while the disk is blisiew requests are added before the scan pointer in the
direction of travel, they are serviced on that scan.

The disk calls the scheduler to get the next request thatvtcgs. This call does two things: it passes to the
scheduler the status of the just completed disk requesthnikithen returned from scheduler to disk user, and it
returns the information for the next disk operation. Wherseris request is accepted, the parameter values from the
request are copied into a list node, which is linked in societkr into the list of pending requests. The disk removes
work from the list of requests and stores the current requésperforming inCurrentRequest. When the disk has
completed a request, the request’s status is placed i@dhentRequest node and the user corresponding to this
request is reactivated.

I -+~ Mode: C++ -+-

I

/I uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994

I

/l LOOK.cc — Look Disk Scheduling Algorithm

I

/I The LOOK disk scheduling algorithm causes the disk arm to sweep

/I bidirectionally across the disk surface until there are no more
/I requests in that particular direction, servicing all requests in

/I its path.

1

/I Author : Peter A. Buhr

/I Created On : Thu Aug 29 21:46:11 1991

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Wed Nov 30 13:18:48 2005
/I Update Count 1 279

1

#include <uC++.h>
#include <iostream>
using std::cout;
using std::osacquire;
using std::endl;

typedef char Buffer[50]; /l dummy data buffer

const int NoOfCylinders = 100;
enum |OStatus { I0_COMPLETE, I0_ERROR };

class IORequest {
public :
int track;

166 APPENDIX C. EXAMPLE PROGRAMS

int sector;

Buffer xbufadr;

IORequest() {}

IORequest(int track, int sector, Buffer «bufadr) {
IORequest::track = track;
IORequest::sector = sector;
IORequest::bufadr = bufadr;

} I/ IORequest::IORequest

}; 11 IORequest

class WaitingRequest : public uSeqgable { /I element for a waiting request list
WaitingRequest(WaitingRequest &); /I no copy
WaitingRequest &operator =(WaitingRequest &); /I no assignment
public :

uCondition block;

IOStatus status;

IORequest req;

WaitingRequest(IORequest req) {
WaitingRequest::req = req;

} /11 WaitingRequest
class Elevator : public uSequence<WaitingRequest> {

int Direction;
WaitingRequest «Current;

Elevator(Elevator &); /I no copy
Elevator &operator =(Elevator &); /I no assignment
public :

Elevator() {
Direction = 1,
} /I Elevator::Elevator

void orderedInsert(WaitingRequest «np) {
WaitingRequest +Ip;

for (Ip = head(); /I insert in ascending order by track number
Ip = 0 && Ip->req.track < np->req.track;
Ip = succ(lp));

if (empty()) Current = np; /I 1st client, so set Current

insertBef(np, Ip);
} /I Elevator::orderedinsert

WaitingRequest sremove() {

WaitingRequest stemp = Current; /I advance to next waiting client
Current = Direction ? succ(Current) : pred(Current);
uSequence<WaitingRequest>::remove(temp); /I remove request

if (Current ==0) { /I reverse direction ?

osacquire(cout) << "Tur ni ng" << endl;
Direction = !Direction;
Current = Direction ? head() : tail();
Y Iif
return temp;
} /I Elevator::remove
}; /I Elevator

_Task DiskScheduler;

_Task Disk {
DiskScheduler &scheduler;
void main();
public :
Disk(DiskScheduler &scheduler) : scheduler(scheduler) {
} /I Disk
}; /I Disk

_Task DiskScheduler {

C.3. DISK SCHEDULER 167

Elevator PendingClients; /I ordered list of client requests
uCondition DiskWaiting; /I disk waits here if no work
WaitingRequest «CurrentRequest; /I request being serviced by disk
Disk disk; /I start the disk
IORequest req;
WaitingRequest diskterm; /I preallocate disk termination request
void main();

public :

DiskScheduler() : disk(«this), req(-1, 0, 0), diskterm(req) {
} /I DiskScheduler
IORequest WorkRequest(10Status);
IOStatus DiskRequest(IORequest &);
}; /1 DiskScheduler

_Task DiskClient {
DiskScheduler &scheduler;
void main();
public :
DiskClient(DiskScheduler &scheduler) : scheduler(scheduler) {
} /I DiskClient
}; /1 DiskClient

void Disk::main() {
IOStatus status;
IORequest work;

status = 10_COMPLETE;
for () {
work = scheduler.WorkRequest(status);
if (work.track == -1) break;
osacquire(cout) << "Di sk nmai n, track:" << work.track << endl;

yield(100); /I pretend to perform an I/O operation
status = 10_COMPLETE;
} 11 for
} /I Disk::main
void DiskScheduler::main() {
uSeqlter<WaitingRequest> iter; /I declared here because of gcc compiler bug
CurrentRequest = NULL, /I no current request at start
for (;;){
_Accept (~DiskScheduler) { /I request from system
break;
} or _Accept (WorkRequest) { /I request from disk
} or _Accept (DiskRequest) { /I request from clients
} I _Accept
} 11 for
/I two alternatives for terminating scheduling server
#f 0
for (; ! PendingClients.empty();) { /I service pending disk requests before terminating
_Accept (WorkRequest);
} 11 for
#else
WaitingRequest xclient; /I cancel pending disk requests before terminating

for (iter.over(PendingClients); iter >> client;) {

PendingClients.remove(); /I remove each client from the list
client->status = 10_ERROR,; /I set failure status
client->block.signal(); /I restart client

} 11 for

#endif
/I pending client list is now empty

/I stop disk
PendingClients.orderedInsert(&diskterm); /I insert disk terminate request on list

168 APPENDIX C. EXAMPLE PROGRAMS

if (! DiskWaiting.empty()) { /I disk free ?

DiskWaiting.signal(); /I wake up disk to deal with termination request
} else {

_Accept (WorkRequest); /I wait for current disk operation to complete
Yy it

} /I DiskScheduler::main

I0Status DiskScheduler::DiskRequest(IORequest &req) {

WaitingRequest np(req); /I preallocate waiting list element
PendingClients.orderedInsert(&np); /I insert in ascending order by track number
if (! DiskWaiting.empty()) { /I disk free ?

DiskWaiting.signal(); /I reactivate disk
Yy it
np.block.wait(); /I wait until request is serviced
return np.status; /I return status of disk request

} /I DiskScheduler::DiskRequest

IORequest DiskScheduler::WorkRequest(10Status status) {

if (CurrentRequest != NULL) { /I client waiting for request to complete ?
CurrentRequest->status = status; /I set request status
CurrentRequest->block.ignal(); /I reactivate waiting client

Y Iif

if (PendingClients.empty()) { /I any clients waiting ?
DiskWaiting.wait(); /I wait for client to arrive

Y if

CurrentRequest = PendingClients.remove(); /I remove next client’ s request

return CurrentRequest->req; /I return work for disk

} /I DiskScheduler::WorkRequest

void DiskClient::main() {
IOStatus status;
IORequest req(rand() % NoOfCylinders, 0, 0);

yield(rand() % 100); /I don’ t all start at the same time
osacquire(cout) << "enter Di skd i ent main seeki ng:" << reg.track << endl;
status = scheduler.DiskRequest(req);
osacquire(cout) << "enter Di skd i ent main seeked to:" << reqg.track << endl;

} /I DiskClient::main

void uMain::main() {
const int NoOfTests = 20;

DiskScheduler scheduler; /I start the disk scheduler

DiskClient «p;

srand(getpid()); /I initialize random number generator
p = new DiskClient{[NoOfTests](scheduler); /I start the clients

delete [] p; /I wait for clients to complete

cout << "successful execution" << endl;
} /I uMain::main
/I Local Variables: //
/I tab-width: 4 //

/I compile-command: “u++ LOOK.cc” //
/I End: /I

C.4 UNIXFilel/O

The following example program reads in a file and copies @ artother file.

C.5. UNIX SOCKET I/O 169

1 -+~ Mode: C++ -x-

1

/I uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
1

/I File.cc — Print multiple copies of the same file to standard output
1

/I Author . Peter A. Buhr

/I Created On : Tue Jan 7 08:44:56 1992

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Sat Sep 2 09:20:34 2006

/I Update Count 142

1

#include <uC++.h>
#include <uFile.h>
#include <iostream>
using std::cout;
using std::cerr;
using std::endl;

_Task Copier {
uFile &input;

void main() {
uFileAccess in(input, O_RDONLY);
int count;
char buf[1];

for (inti=0;i+=1){ /I copy in-file to out-file
count = in.read(buf, sizeof (buf));
if (count == 0) break; Il eof ?

cout << buf[0];
if (i% 20 == 0) yield();
} 1l for
} /I Copier::main
public :
Copier(uFile &in) : input(in) {
} /I Copier::Copier
}; /I Copier

void uMain::main() {
switch (‘argc) {
case 2:
break;
default :
cerr << "Usage: " << argv[0] << " input-file" << std:endl
exit(-1);
} /I switch

uFile input(argv[1]); /I connect with UNIX files
Copier c1(input), c2(input);
} /I uMain::main
/I Local Variables: //
/I tab-width: 4 //

/I compile-command: “u++ File.cc” //
/I End: //

C.5 UNIX Socket I/O

The following example illustrates bidirectional commuation between a client and server socket. A client starts a
task to read from standard input and write the data to a sepeket. The server or its acceptor for that client, reads
the data from the client and writes it directly back to thewti The client also starts a task that reads the data coming
back from the server or its acceptor and writes it onto stahdatput. Hence, a file is read from standard input and

170 APPENDIX C. EXAMPLE PROGRAMS

written onto standard output after having made a loop thin@usgerver. The server can deal with multiple simultaneous
clients.

C.5.1 Client - UNIX/Datagram

1 -+- Mode: C++ -x-

1

/I uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1999

1

/I ClientUNIX2.cc — Client for UNIX/datagram socket test. Client reads from
/I standard input, writes the data to the server, reads the data from the
/I server, and writes that data to standard output.

1

/I Author . Peter A. Buhr

/I Created On : Thu Apr 29 16:05:12 1999

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Thu Sep 6 09:10:32 2007

/I Update Count 031

1

#include <uC++.h>
#include <uSemaphore.h>
#include <uSocket.h>
#include <iostream>
using std::cin;

using std::cout;

using std:cerr;

using std::osacquire;
using std::endl;

unsigned uMainStackSize() { return 40000; }

#define EOD '\ 377’
/I minimum buffer size is 2, 1 character and string terminator, '\0’
#define BufferSize (65)

int rcnt = 0, went = O;

/I Datagram sockets are lossy (i.e., drop packets). To prevent clients from

/I flooding the server with packets, resulting in dropped packets, a semaphore
/I is used to synchronize the reader and writer tasks so at most N writes occur
/I before a read. As well, if the buffer size is increase substantially, it may

/I be necessary to decrease N to ensure the server buffer does not fill.

const int MaxWriteBeforeRead = 5;
uSemaphore readSync(MaxWriteBeforeRead);

_Task reader {
uSocketClient &client;

void main() {
char buf[BufferSize];
int len;

for () {
len = client.recvfrom(buf, sizeof (buf));
/I osacquire(cerr) << “Client::reader read len:” << len << endl;
if (len == 0) uAbort("(uSocket Cient & Ox% : EOF ecountered wi t hout EOQD", &client);
readSync.V();
/I The EOD character can be piggy-backed onto the end of the message.
if (bufflen - 1] == EOD) {
rent += len - 1;
cout.write(buf, len - 1); /I do not write the EOD
break; }
rent += len;
cout.write(buf, len);

C.5. UNIX SOCKET I/O 171

} 11 for
} /I reader::main
public :
reader(uSocketClient &client) : client (client) {
} /I reader::reader
}; Il reader

_Task writer {
uSocketClient &client;

void main() {
char buf[BufferSize];

for (;;){
cin.get(buf, sizeof (buf), '\ 0"); /I leave room for string terminator
int len = strlen(buf);
/I osacquire(cerr) << “Client::writer read len:” << len << endl;
if (‘bufl0] =="\0") break;
went += len;
readSync.P();
client.sendto(buf, len);
} 11 for
buf[0] = EOD;
readSync.P();
client.sendto(buf, sizeof (char));
} /I writer::main
public :
writer(uSocketClient &client) : client(client) {
} 11 writer::writer
Y 11 writer

void uMain::main() {
switch (‘argc) {
case 2:
break;
default :
cerr << "Usage: " << argv[0] << " socket -nane" << endl;
exit(-1);
} /I switch

uSocketClient client(argv[l], SOCK_DGRAM); /I connection to server

reader rd(client); /I emit worker to read from server and write to output
writer wr(client); /I emit worker to read from input and write to server
}
if (went!=rent) {
uAbort("not all data transfered\n");
Y Iif
} /I uMain::main

/I Local Variables: //

/I tab-width: 4 //

/I compile-command: “u++-work -0 Client ClientUNIX2.cc” //
/I End: //

C.5.2 Server - UNIX/Datagram

1 -x- Mode: C++ -x-

1

/I uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1999
1

/I ServerUNIX2.cc — Server for UNIX/datagram socket test. Server reads data
/I from multiple clients. The server reads the data from the client and writes
/it back.

1

/I Author . Peter A. Buhr

/I Created On . Fri Apr 30 16:36:18 1999

172 APPENDIX C. EXAMPLE PROGRAMS

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Sat Sep 2 09:22:17 2006
/I Update Count : 30

1

#include <uC++.h>
#include <uSocket.h>
#include <iostream>
using std:cerr;
using std::osacquire;
using std::endl;

#define EOD '\ 377’
#define BufferSize (8 x 1024)

_Task reader {
uSocketServer &server;

void main() {
uDuration timeout(10, 0); /I timeout for read
char buf[BufferSize];
int len;

try {
for (;;){
len = server.recvfrom(buf, sizeof (buf), 0, &timeout);
/I osacquire(cerr) << “Server::reader read len:” << len << endl;
if (len == 0) uAbort(" (uSocket Server &) Ox% : ECF ecountered wi t hout EOD", &server);

server.sendto(buf, len); /I write byte back to client
} 11 for
} catch (uSocketServer::ReadTimeout) {
Y try
} /I reader::main
public :

reader(uSocketServer &server) : uBaseTask(64000), server(server) {
} /I reader::reader
}. 1l reader

void uMain::main() {
switch (‘argc) {
case 2:
break;
default :
cerr << "Usage: " << argv[0] << " socket -nane" << endl;
exit(-1);
} /1 switch

uSocketServer server(argv[1l], SOCK_DGRAM); /I create and bind a server socket
reader rd(server); /I execute until EOD
}
} // uMain

/I Local Variables: //

/I tab-width: 4 //

/I compile-command: “u++-work -0 Server ServerUNIX2.cc” //
/I End: /I

C.5.3 Client - INET/Stream

1 -+~ Mode: C++ -x-

1

/I uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994

1

/I ClientINET.cc — Client for INET/stream socket test. Client reads from
/I standard input, writes the data to the server, reads the data from the
/I server, and writes that data to standard output.

C.5. UNIX SOCKET I/O 173

1
/I Author . Peter A. Buhr
/I Created On : Tue Jan 7 08:42:32 1992

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Sat Sep 2 09:19:04 2006
/I Update Count 0 143

1

#include <uC++.h>
#include <uSocket.h>
#include <iostream>
using std::cin;

using std::cout;
using std:cerr;
using std::osacquire;
using std::endl;

#define EOD ’\ 377’
/I minimum buffer size is 2, 1 character and string terminator,
#define BufferSize (65)

\0'

int recnt = 0, went = 0;

_Task reader {
uSocketClient &client;

void main() {
char buf[BufferSize];
int len;

for (;;){
len = client.read(buf, sizeof (buf));
/I osacquire(cerr) << “Client::reader read len:” << len << endl;
if (len ==0) uAbort("(uSocketClient & Ox% : EOF ecountered wi t hout EOD", &client);
/I The EOD character can be piggy-backed onto the end of the message.
if (‘bufflen - 1] == EOD) {
rent += len - 1;

cout.write(buf, len - 1); /I do not write the EOD
break; }
rent += len;
cout.write(buf, len);
} 11 for
} /I reader::main

public :
reader(uSocketClient &client) : client (client) {
} /I reader::reader
}; Il reader

_Task writer {
uSocketClient &client;

void main() {
char buf[BufferSize];

for () {
cin.get(buf, sizeof (buf), '\ 0"); /I leave room for string terminator
int len = strlen(buf);
/I osacquire(cerr) << “Client::writer read len:” << len << endl;
if (‘bufl0] =="\0") break;
went += len;
client.write(buf, len);
} 11 for
buf[0] = EOD;
client.write(buf, sizeof (char));
} /I writer::main
public :
writer(uSocketClient &client) : client(client) {

174 APPENDIX C. EXAMPLE PROGRAMS

} 11 writer::writer
Y 11 writer

void uMain::main() {
switch (‘argc) {
case 2:
break;
default :
cerr << "Usage: " << argv[0] << " port-nunber" << endl;
exit(-1);
} /I switch

uSocketClient client(atoi(argv[1])); /I connection to server

reader rd(client); /I emit worker to read from server and write to output
writer wr(client); /I emit worker to read from input and write to server
}
if (went!=rent) {
uAbort("not all datatransfered\n"),
Yy it
} /I uMain::main

/I Local Variables: //

/I tab-width: 4 //

/I compile-command: “u++-work -0 Client ClientINET.cc” //
/I End: /I

C.5.4 Socket - INET/Stream

1 -+~ Mode: C++ -x-

1

/I uC++ Version 5.5.0, Copyright (C) Peter A. Buhr 1994
1

/I ServerINET.cc — Server for INET/stream socket test. Server accepts multiple
/I connections from clients. Each client then communicates with an acceptor.
/I The acceptor reads the data from the client and writes it back.

I
/I Author . Peter A. Buhr
/I Created On : Tue Jan 7 08:40:22 1992

/I Last Modified By : Peter A. Buhr

/I Last Modified On : Thu Aug 9 20:20:43 2007
/I Update Count 1 176

1

#include <uC++.h>
#include <uSocket.h>
#include <iostream>
using std::cout;
using std::cerr;
using std::osacquire;
using std::endl;

#define EOD "\ 377’
#define BufferSize (8 x 1024)

_Task server; /I forward declaration

_Task acceptor {
uSocketServer &sockserver;
server &s;

void main();

public :
acceptor(uSocketServer &socks, server &s) : uBaseTask(64000), sockserver(socks), s(s) {
} /I acceptor::acceptor

/I acceptor

o~

C.5. UNIX SOCKET I/O 175

_Task server {
uSocketServer &sockserver;
acceptor sterminate;
int acceptorCnt;
bool timeout;

public :

server(uSocketServer &socks) : sockserver(socks), acceptorCnt(1), timeout(false) {
} /I server::server

void connection() {
} /I server::connection

void complete(acceptor sterminate, bool timeout) {
server::terminate = terminate;
server::timeout = timeout;

} /I server::complete

private :
void main() {
new acceptor(sockserver, this); /I create initial acceptor
for () {
_Accept (connection) {
new acceptor(sockserver, sthis); /I create new acceptor after a connection
acceptorCnt += 1;
} or _Accept (complete) { /I acceptor has completed with client
delete terminate; /I delete must appear here or deadlock
acceptorCnt -= 1;
if (‘acceptorCnt == 0) break; /I if no outstanding connections, stop
if (timeout) {
new acceptor(sockserver, sthis); // create new acceptor after a timeout
acceptorCnt += 1;
Y if
} 11 _Accept
} 11 for
} /I server::main
}. 1l server

void acceptor::main() {
try {
uDuration timeout(10, 0); /I timeout for accept
uSocketAccept acceptor(sockserver, &timeout); // accept a connection from a client
char buf[BufferSize];

int len;
s.connection(); /I tell server about client connection
for (;;){

len = acceptor.read(buf, sizeof (buf)); /I read byte from client

/I osacquire(cerr) << “Server::acceptor read len:” << len << endl;
if (len ==0) uAbort(" (uSocket Accept & Ox% : EOF ecountered w t hout ECD', &acceptor);

acceptor.write(buf, len); /I write byte back to client
/I The EOD character can be piggy-backed onto the end of the message.
if (bufflen - 1] == EOD) break; /I end of data ?
} 11 for
s.complete(this, false); /I terminate
} catch (uSocketAccept::OpenTimeout) {
s.complete(this, true); /I terminate

Y try
} /I acceptor::main

void uMain::main() {
switch (‘argc) {
case 1:
break;
default :
cerr << "Usage:
exit(-1);
} /I switch

<< argv[0] << end|;

176 APPENDIX C. EXAMPLE PROGRAMS

short unsigned int port;

uSocketServer sockserver(&port); /I create and bind a server socket to free port
cout << port << endl; /I print out free port for clients
{
server s(sockserver); /I execute until acceptor times out
}
} // uMain

/I Local Variables: //

/I tab-width: 4 //

/I compile-command: “u++-work -0 Server ServerINET.cc” //
/I End: /I

Bibliography

[AGMK94]

[Ale01]

[AOC+88]

[BD92]

[BDS+92]

[BDZ89]

[BFC95]

[BLLSS]

[BMZ92]

[Boa05]

[BP91]

[Bri75]

[Buh8s]

[Buh9s]

B. Adelberg, H. Garcia-Molina, and B. Kao. Emulagj Soft Real-Time Scheduling Using Traditional
Operating System Schedulers. Pnoc. IEEE Real-Time Systems Symposipages 292—-298, 1994.
143

Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design PatteAgplied
Addison-Wesley Professional, February 2001

Gregory R. Andrews, Ronald A. Olsson, Michael Coffin,itiy Elshoff, Kelvin Nilsen, Titus Purdin,
and Gregg Townsend. An Overview of the SR Language and Ingi&ation. ACM Transactions on
Programming Languages and Systefif3(1):51-86, January 19887

Peter A. Buhr and Glen Ditchfield. Adding Concurrertoya Programming Language. WSENIX G+
Technical Conference Proceedingmges 207-224, Portland, Oregon, U.S.A., August 1992 NUSE
Association. 3

P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Yiger, and C. R. Zarnkg.CH-: Concurrency
in the Object-Oriented Languaget€. Software—Practice and Experien@2(2):137-172, February
1992. 149

P. A. Buhr, Glen Ditchfield, and C. R. Zarnke. Addingi@urrency to a Statically Type-Safe Object-
Oriented Programming Languag&IGPLAN Notices24(4):18-21, April 1989. Proceedings of the
ACM SIGPLAN Workshop on Object-Based Concurrent PrograngnSept. 26—27, 1988, San Diego,
California, U.S.A. 149

Peter A. Buhr, Michel Fortier, and Michael H. Coffidonitor ClassificationACM Computing Surveys
27(1):63-107, March 199522

B. N. Bershad, E. D. Lazowska, and H. M. Levy. PREST®System for Object-oriented Parallel
Programming Software—Practice and Experiende3(8):713—-732, August 1988, 33

Peter A. Buhr, Hamish |. Macdonald, and C. Robertrda. Synchronous and Asynchronous Handling
of Abnormal Events in theSystem. Software—Practice and Experienc2(9):735-776, September
1992. 78 81

OpenMP Architecture Review Board. OpenMP Applmafrogram Interface Version 2.5. Technical
report, May 2005.

T. Baker and O. Pazy. Real-Time Features of Ada 9XProt. IEEE Real-Time Systems Symposium
pages 172-180, 1991140

Per Brinch Hansen. The Programming Language CarotiPascal.lEEE Transactions on Software
Engineering 2:199-206, June 19753

P. A. Buhr. A Case for Teaching Multi-exit Loops todening Programmers.SIGPLAN Notices
20(11):14-22, November 1985.2

Peter A. Buhr. Are Safe Concurrency Libraries Pae$i Communications of the ACN8(2):117-120,
February 1995.3, 33

177

178

[But97]

[BW9O]

[Car90]

[CDY5]

[CG89]

[CKL+88]

[DG87]

[Dij65]

[Geh92]

[Gen68]

[Gen81]

[GJISBOO]

[Gol94]

[GR8S]

[GRO1]

[Halg5]

[HM92]

[Hoa74]

[Hol92]

BIBLIOGRAPHY

David R. Butenhof. Programming with POSIX ThreadsProfessional Computing. Addison-Wesley,
1997. 127

Alan Burns and A. J. Wellings. The Notion of PriorityReal-Time Programming Languag&mputer
Language15(3):153-162, 1990143

T. A. Cargill. Does &+ Really Need Multiple Inheritance? MSENIX G+ Conference Proceedings
pages 315-323, San Francisco, California, U.S.A., ApRILYSENIX Association.36

Tai M. Chung and Hank G. Dietz. Language ConstruatSiaansformation for Hard Real-time Systems.
In Proc. Second ACM SIGPLAN Workshop on Languages, CompilsdsTools for Real-Time Systems
June 1995.133

Nicholas Carriero and David Gelernter. Linda in GxttCommunications of the ACN32(4):444—-458,
April 1989. 3

Boleslaw Ciesielski, Antoni Kreczmar, Marek Lao, Anefrditwiniuk, Teresa Przytycka, Andrzej
Salwicki, Jolanta Warpechowska, Marek Warpechowski, gegd6zalas, and Danuta Szczepanska-
Wasersztrum. Report on the Programming Language LOGLANT@8hnical report, Institute of Infor-
matics, University of Warsaw, Pkin 8th Floor, 00-901 WarsBaiand, December 19884

Thomas W. Doeppner and Alan J. Gebelg+®n a Parallel Machine. IRroceedings and Additional
Papers G+ Workshoppages 94-107, Santa Fe, New Mexico, U.S.A, November 198ENJX Asso-
ciation. 33

Edsger W. Dijkstra. Cooperating Sequential Preess Technical report, Technological University,
Eindhoven, Netherlands, 1965. Reprinted@eh68 pp. 43-112.36

N. H. Gehani. Exceptional C or C with Exceptioi@ftware—Practice and Experien@2(10):827—
848, October 199278

F. Genuys, editoProgramming Language#cademic Press, New York, 1968. NATO Advanced Study
Institute, Villard-de-Lans, 1966178

W. Morven Gentleman. Message Passing between Stgjuerocesses: the Reply Primitive and the
Administrator ConceptSoftware—Practice and Experiendel (5):435-466, May 19814, 53

James Gosling, Bill Joy, Guy Steele, and Gilad Baad' he Java Language SpecificatioAddison-
Wesley, second edition, 2000.2, 33

David B. Golub. Operating System Support for Coeage of Real-Time and Conventional Scheduling.
Technical report, Carnegie Mellon University, Novembe®49143

N. H. Gehani and W. D. Roome. ConcurrestCConcurrent Programming with Class(eSpftware—
Practice and Experiencel8(12):1157-1177, December 1988.27

N. Gehani and K. Ramamritham. Real-Time ConcurrenfCanguage for Programming Dynamic
Real-Time Systemslournal of Real-Time Systen8{4):377-405, December 199133

Robert H. Halstead, Jr. Multilisp: A Language forr@oirrent Symbolic Programmin@CM Transac-
tions on Programming Languages and Systeni):501-538, October 19851

W.A. Halang and K. Mangold. Real-Time Programmingngaages. In Michael Schiebe and Saskia
Pferrer, editorsReal-Time Systems Engineering and Applicatiechapter 4, pages 141-200. Kluwer
Academic Publishers, 1992133

C. A. R. Hoare. Monitors: An Operating System Stuauictg Concept.Communications of the ACM
17(10):549-557, October 1974, 159

R. C. Holt. Turing Reference ManuaHolt Software Associates Inc., third edition, 1992.

BIBLIOGRAPHY 179

[IEEO1]

[Int95]
[Int98]

[ITM90]

[KK91]

[KS86]

[Lab90]

[LN8S8]

[Mac77]

[Mar78]

[Mar80]

[Mey92]

[MMPN93]

[MMS79]

[RAA+88]

[Rajo1]

[RH87]

[Rip90]
[RSL88]

[SBG+90]

IEEE and The Open Group003.1 Standard for Information Technology — Portable @giag System
Interface (POSIX), System Interface, Issy2@1. 131

International Standard ISO/IE@da Reference Manug.0 edition, 1995.81

International Standard ISO/IEC 14882:1998 (E),wwansi.org.Programming Languages <€, 1998.
151

Y. Ishikawa, H. Tokuda, and C.W. Mercer. Object-&mted Real-Time Language Design: Constructs
for Timing Constraints. IfProc. ECOOP/OOPSLApages 289—-298, October 199033

K.B. Kenny and K.J.Lin. Building Flexible Real-TimBystems using the Flex Languad&EE Com-
puter, 24(5):70-78, May 1991133

E. Klingerman and A.D. Stoyenko. Real-Time Euclid:LAnguage for Reliable Real-Time Systems.
IEEE Transactions on Software Engineeripgges 941-949, September 198&3

Pierre Labreche. Interactors: A Real-Time Exaeutvith Multiparty Interactions in €. SIGPLAN
Notices 25(4):20-32, April 1990.33

K.J. Lin and S. Natarajan. Expressing and Maintainiiming Constratins in FLEX. IProc. IEEE
Real-Time Systems Symposjpages 96—-105, 1988133

M. Donald MacLaren. Exception Handling in PL/B&IGPLAN Notices12(3):101-104, March 1977.
Proceedings of an ACM Conference on Language Design foaBleliSoftware, March 28-30, 1977,
Raleigh, North Carolina, U.S.A78

T. Martin. Real-Time Programming Language PEARL enCept and Characteristics. IBEE Com-
puter Society 2nd International Computer Software and ispfibns Conferencepages 301-306, 1978.
133

Christopher D. Marlin. Coroutines: A Programming Methodology, a Language Desigd an Im-
plementationvolume 95 ofLecture Notes in Computer Science, Ed. by G. Goos and J. ldartm
Springer-Verlag, 19805, 14

Bertrand MeyerEiffel: The LanguagePrentice Hall Object-Oriented Series. Prentice-Hal§2.969

Ole Lehrmann Madsen, Birger Mgller-Pedersen, Kndten Nygaard.Object-oriented Programming
in the BETA Programming Languag@ddison-Wesley, 199334

James G. Mitchell, William Maybury, and Richard Sete Mesa Language Manual. Technical Report
CSL-79-3, Xerox Palo Alto Research Center, April 197980

M. Rozier, V. Abrossimov, F. Armand, |. Boule, M. Gien, Muillemont, F. Hermann, C. Kaiser,
S. Langlois, P. Leonard, and W. Neuhauser. Chorus Dis&ibOperating System€omputing Systems
1(4):305-370, 1988144

Ragunathan Rajkumar.Synchronization in Real-Time Systems: A Priority Inheri& Approach
Kluwer Academic Publishers, 199142

A. Rizk and F. Halsall. Design and Implementation df-dased Language for Distributed Real-time
Systems SIGPLAN Notices22(6):83-100, June 1987.

David Ripps.An Implementaion Guide to Real-Time Programmi¥gurdon Press, 1990133

Ragunathan Rajkumar, Lui Sha, and John P. Lehodzkgl-Time Synchronization Protocols for Mul-
tiprocessors. liProc. IEEE Real-Time Systems Symposipages 259-269, 1988142

Robert E. Strom, David F. Bacon, Arthur P. Goldberg, Andgwry, Daniel M. Yellin, and
Shaula Alexander Yemini. Hermes: A Language for Distridu®mputing. Technical report, IBM
T. J. Watson Research Center, Yorktown Heights, New YorE,Al, 10598, October 19906

180

[SD92]

[Sha86]

[Sho87]

[SRL9O]

[Sta87]

[Str97]
[Tie88]

[Tie90]

[TVRvST90]

[Unig3]

[Yea91]

[Yok92]

[You91]

BIBLIOGRAPHY

A.E.K. Sahraoui and D. Delfieu. ZAMAN, A Simple Langieafor Expressing Timing Constraints. In
Real-Time Programming, IFAC Workshqgages 19-24, 1992133

Alan Shaw. Software Clocks, Concurrent Progrargiramd Slice-Based Scheduling. Pnoc. IEEE
Real-Time Systems Symposipages 14-18, 1986.

Jonathan E. Shopiro. Extending thig-Qask System for Real-Time Control. Rroceedings and Ad-
ditional Papers G+ Workshoppages 77-94, Santa Fe, New Mexico, U.S.A, November 198ZNUS
Association. 33

L. Sha, R. Rajkumar, and J. P. Lehoczky. Prioritydritance Protocols: An Approach to Real-Time
SynchronizationlEEE Transactions on Compute?9(9):1175-1185, September 199042

Standardiseringskommissionen i SveriBatabehandling — Programsprak — SIMULA987. Svensk
Standard SS 63 61 1433

Bjarne Stroustruplhe G+ Programming LanguageAddison-Wesley, third edition, 19971, 3

Michael D. Tiemann. Solving the RPC problem in GNWHC In Proceedings of the USENIX+E
Conferencepages 343-361, Denver, Colorado, U.S.A, October 1988 NIISEssociation. 34

Michael D. Tiemann. User’'s Guide to GNUHE Free Software Foundation, 1000 Mass Ave., Cam-
bridge, MA, U.S.A., 02138, March 199010, 148

Andrew S. Tanenbaum, Robbert van Renesse, Hans van&ta@regory J. Sharp, Sape J. Mullender,
Jack Jansen, and Guido van Rossum. Experiences with the baridistributed Operating System.
Communications of the ACN3(12):46—63, December 199044

United States Department of DefenseThe Programming Language Ada: Reference Manual
ANSI/MIL-STD-1815A-1983 edition, February 1983. Publkshby Springer-Verlag24

Dorian P. Yeager. Teaching Concurrency in the Roogning Languages Cours8lGCSE BULLETIN
23(1):155-161, March 1991. The Papers of the Twenty-Se&&LSE Technical Symposium on
Computer Science Education, March. 7-8, 1991, San Antderi@s, U.S.A. 13

Yasuhiko Yokote. The Apertos Reflective Operatingt®m: The Concept and Its Implementation. In
Proc. Object-Oriented Programming Systems, LanguagesAaplicationspages 414-434, 199244

Brian M. Younger. Adding Concurrency toHE. Master’s thesis, University of Waterloo, Waterloo,
Ontario, Canada, N2L 3G1, 1991149

Index

-U++ option,11

-compiler option,11

-debug option,10

-multi option,11

-nodebug option,10

-nomulti option,11

-noquiet option,11

-noverify option,11

-noyield option,11

-quiet option,11

-verify option,11, 17

-yield option, 10, 32

<<, 57

>> 57,154, 156 158

asynchronous calt{5

synchronous caly5

_Accept, 22, 23,137

_At, 72

_ Cormonitor , 29, 39

_Coroutine , 7,13

_Disable, 73

__Enable, 73

_Event, 17,70

_Monitor , 28

_Mutex, 7,19

_Mutex _Coroutine , 29
__Cormonitor , 29, 39

_Mutex class , 28
_Monitor , 28

_Nomutex , 7,13, 19

_ PeriodicTask , 140

_RealTimeTask , 141

_Resume, 72

_Select, 50, 137

_SporadicTask , 141

_Task, 7,30

_Throw, 72

_Timeout , 136, 137

_When, 22, 23,50, 136, 137

__U_CPLUSPLUS_MINOR__, 11

__U_CPLUSPLUS_PATCH__, 11

__U_CPLUSPLUS__, 11

__U_DEBUG__,11

__U_MULTI__,11

181

__U_VERIFY__,11
_ _U_YIELD__,11

abort, 99, 119
accept-blocked?23
acceptorp0
acceptor/signalled stacRk], 23, 25, 27
access objech9
acquire, 38

activation point,14, 30
Active, 17

active,4, 18

active priority,143

add, 154 155 157
addHead, 154, 155 157
addTail, 155 157
administratorp3
Amdahl’s law,45
aperiodic task141
argc, 8

argv, 8

assert, 99

assert.h, 99
asynchronous calt5, 181

barrier,39

base priority,143

basic priority-inheritance protocadl42

binomial theorem24

block, 40

Blocked, 32

blocked 4

bound exceptiong1

break, 12
labelled,12

busy wait,38

busy waiting49

cancel, 17
cancellnProgress, 17
cancellation91

safe cleanup1
cancellation checkpoing1
cancelled, 17
chain blocking,142

182

class, 7
class object5, 7
class typey
client, 45, 60
CloseFailure, 60, 63-65, 67, 87
cluster,8
code reuse34
communication variabled 4, 30
compilation option

-U++, 11

-compiler, 11

-debug, 10

-multi, 11

-nodebug, 10

-nomulti, 11

-noquiet, 11

-noverify, 11

-noyield, 11

-quiet, 11

-verify, 11, 17

-yield, 10, 32

u++, 10,11, 129
compile-time

errors,95

warnings95
concurrencyg, 121
concurrent exceptior24, 70, 72, 74, 78,79, 103
condition lock,39
condition variable25
context switch4, 17, 22, 123
continue , 12

labelled,12
convertTime, 139
coroutinepb, 7, 13

full, 14

inherited membersl5

semi,14

termination,15
coroutine main3
coroutine monitors, 7, 28
coroutine typey
coroutine-monitor type/
counter, 37
CreationFailure, 87, 130

data structure libraryi 53
dbx, 148
deadline monotonid,45
deadlock14, 26, 27, 29,59, 86, 116, 142
debugging
symbolic,148
default actiony2, 79, 88, 100
Dekker,5
detached]22

BIBLIOGRAPHY

drop, 154, 155 157
dropHead, 155 157
dropTail, 155 157
duration,133
dynamic
errors,99
warnings,99

empty, 27, 37, 39, 154, 155 157
entry queue?l, 26
EntryFailure, 87
epoch,134
equals, 48
errors,95
accept statement, 13
calendar114
cluster,114
compile-time 95
condition variable112
coroutine, 104
default action, .00
dynamic,99
heap,115
I/0, 116
lock, 114
mutex type 107
processorl16
runtime,99
static,95
task,111
UNIX, 116
warnings95, 99
exception69
bound,81
concurrent4, 72, 74,78, 79, 103
default actiony/4
inherited members]1
local, 74
nonlocal,72-74, 80, 86, 88
resume,70
throw, 70
type,69, 70
exceptional eveny9
execution state}
active,4
inactive,4
exit, 99,119
external variablesl5, 30

Failure, 16, 60, 63, 65, 67, 86, 87, 130
fd, 60, 64, 66

finite-state maching,3, 29
fixed-point registers41
floating-point registers}1

BIBLIOGRAPHY

frame,141

free, 119

free routineb

front, 27

full coroutine,14

functor,76

future,46

Future_ ESM
available, 47
cancel, 47
Cancellation, 47
cancelled, 47
delivery, 47
exception, 47
operator T(), 47
operator ()(), 47
reset, 47

Future_ISM
available, 49
cancel, 49
Cancellation, 49
cancelled, 49
delivery, 49
equals, 49
exception, 49
operator T(), 49
operator ()(), 49
reset, 49

gdb, 148
getActivePriority, 32
getBasePriority, 32
getClient, 64
getClock, 122
getCluster, 32, 122
getCoroutine, 32
getDetach, 123
getName, 17, 59, 120
getPid, 122
getPreemption, 123
getProcessorsOnCluster, 121
getServer, 62
getSpin, 123
getStackSize, 120
getState, 17, 32
getTask, 123
getTasksOnCluster, 121
getTime, 139
GNU C+-,10, 129, 148
goto

restricted,13
guarded blocky5

Halt, 17

handlerg9, 70, 75
resumptiony0, 75, 76
termination,70, 75

head, 154, 155 157

heap areal5, 30, 147
expansion sizel48

heavy blocking124

heavyweight proces&24

idle, 123
implementation problemg,3
implicit scheduler22
Inactive, 17
inactive,4, 18
inheritance34
multiple, 36, 84
private,34
protected34
public,34
single,35, 83
inherited members
coroutine15
exception type71
task,31
initial task
uMain, 8
insertAft, 157
insertBef, 157
internal schedulef6
interrupt,123
intervention,75
isacquire, 58
istream
isacquire, 58

kernel thread9, 121
keyword, additions
_Accept, 22,23, 137
_At, 72
_ Coroutine , 13
_Event, 70
_ Mutex, 19
_Nomutex , 13,19
_ PeriodicTask , 140
_RealTimeTask , 141
_Resume, 72
_Select, 50, 137
_SporadicTask , 141
_Task, 30
_Throw, 72
_Timeout , 136, 137
_When, 22, 23,50, 136, 137

labelled

183

184

break, 12
continue , 12
light blocking,124
lightweight process3
local exception74
lock, 38
locking, 18

main, 8
malloc, 119
migrate, 32
monitor,5, 7, 28
active,18
inactive,18
monitor type,7
multi-level exit,12
multikernel, 10, 121
mutex member5, 18
mutex queue?l
mutex type18
mutex-type state
locked,18
unlocked,18
mutual exclusion4

nested loopl2

non-detached]22

nonblocking /057

nonlocal exception/0, 72-74, 80, 86, 88, 91

object,7
OpenFailure, 60, 63, 65, 67, 87
OpenTimeout, 63, 67, 87
ostream

osacquire, 58
out-of-band data56
over, 154, 156 158
owner, 38
owner lock,38

P, 37
parallel executiong
parallelism38
periodic task,L140
poll, 74
poller task57, 120 121
pop, 154
Posix Threads] 27
pre-emptiony4
default,147
time, 121
uDefaultPreemption, 147
pre-emptive
schedulingl1, 32,119 123 148

BIBLIOGRAPHY

pred, 157
preprocessor variables
__U_CPLUSPLUS_MINOR__, 11
__U_CPLUSPLUS _PATCH__, 11
__U_CPLUSPLUS__, 11
__U_DEBUG__,11
__U_MULTI__,11
__U_VERIFY__,11
__U_YIELD__,11
priming
barrier,40
prioritized pre-emptive scheduling43
priority, 143
priority level, 143
priority-inheritance protocoll 42
process
heavyweight124
lightweight,8
UNIX, 124
processor
detached122
non-detached]22
number on clustef,21
pre-emption timel121
spin amountl121
propagatey/?2
pthread_attr_destroy, 128
pthread_attr_getdetachstate, 128
pthread_attr_getscope, 128
pthread_attr_ getstacksize, 128
pthread _attr_init, 128
pthread _attr_setdetachstate, 128
pthread_attr_setscope, 128
pthread _attr_setstacksize, 128
pthread_cancel, 128
pthread_cleanup_pop, 128
pthread_cleanup_push, 128
pthread_cond_broadcast, 128
pthread _cond_destroy, 128
pthread_cond _init, 128
pthread _cond_signal, 128
pthread _cond_timedwait, 128
pthread _cond_ wait, 128
pthread _create, 128
pthread _deletespecific_, 128
pthread _detach, 128
pthread _exit, 128
pthread _getattr_np, 128
pthread _getconcurrency, 128
pthread _getspecific, 128
pthread_join, 128
pthread _key_create, 128
pthread _key_delete, 128

BIBLIOGRAPHY

pthread _mutex_destroy, 128
pthread _mutex_init, 128
pthread _mutex_lock, 128
pthread _mutex_trylock, 128
pthread _mutex_unlock, 128
pthread _once, 128
pthread _self, 128
pthread _setcancelstate, 128
pthread _setcanceltype, 128
pthread _setconcurrency, 128
pthread _setspecific, 128
pthread _testcancel, 128
pthread _timedjoin_np, 128
pthread _tryjoin_np, 128
pthread_yield, 128
pthreads127

see Posix Threads,
push, 154
push-down automatd,3

raising,69, 70, 72
resuming,70, 72
throwing,70, 72

ReadFailure, 60, 63, 65,67, 87

ReadTimeout, 60, 63, 65, 67, 87

Ready, 32

ready,4

real-time cluster144

recursive resuming;8

release, 38

remove, 155 157

rendezvous?4, 89

RendezvousFailure, 8789, 102, 103

reresumey?2

reset, 40

resetClock, 139

resume, 16, 17

resumer, 17

resumptionf9

resumption handler5, 76

rethrow,72

return codeg9

Running, 32

running,4

runtime
errors,99
warnings,99

SeekFailure, 60, 87
select, 57, 120
select blocked50
semaphore36
semi-coroutinel4
server4bs, 60

185

set_terminate, 84
set_unexpected, 85
setClient, 64
setCluster, 122
setName, 17, 120
setPreemption, 123
setServer, 62
setSpin, 123
setStackSize, 120
shared-memory modes,
signal, 27
signalBlock, 27
sleep, 119 136
socket,60
endpoint,60
spin
amount,121
default,147
lock, 38
uDefaultSpin, 147
virtual processor] 24
sporadic task]41
stack,4, 153
acceptor/signalled1, 23, 25, 27
amount,16
automatic growth10, 107
current,16
data structurel 53
default size16, 31, 119 120 147
diddling,33
free, 16
minimum size, 119
overflow, 16, 33, 107
recursive resuming;8
storage16
uDefaultStackSize, 147
uMainStackSize, 147
used,16
stack, 16
stackFree, 16
stackPointer, 16
stackSize, 16
stackUsed, 16
stale readers],59
Start, 32
starter, 17
static
errors,95
warnings 95
static storage15, 30
static multi-level exit12
status flagb69
StatusFailure, 59, 87

186

subtyping34

succ, 155 157

suspend, 16, 17
SyncFailure, 60, 87
synchronous caly5, 181
system cluste

tail, 155, 157

task,5, 7, 29
aperiodic,141
inherited members31
periodic,140
sporadic141
termination,30

task main 30

task type,/

Terminate, 32

terminate, 84

terminate__handler, 84

TerminateFailure, 59, 87

termination69

termination handler75

thread 4
blocked 4
running,4

time, 133

time-slice,123

times, 38

top, 154

total, 40

translator,”
problems43

tryacquire, 38

TryP, 37

u++, 10,11, 129
uAbort, 99, 119
uBarrier, 39
block, 40
last, 40
reset, 40
total, 40
waiters, 40
uBarrier.h, 40

uBaseCoroutine, 16, 33, 139

cancel, 16
cancellnProgress, 16
cancelled, 16
Failure, 16, 86, 87
getName, 16
getState, 16

resume, 16

resumer, 16
setName, 16

stack, 16
stackFree, 16
stackPointer, 16
stackSize, 16
stackUsed, 16
starter, 16
suspend, 16

BIBLIOGRAPHY

UnhandledException, 16, 87

verify, 16
uBaseEvent, 71, 87
defaultResume, 71
defaultTerminate, 71
duplicate, 71
getRaiseKind, 71
message, 71
reraise, 71
setMsg, 71
source, 71
sourceName, 71
ulOFailure, 87
uKernelFailure, 87
uBaseSchedule
add, 144
addInitialize, 144
checkPriority, 144
empty, 144
getActivePriority, 143
getBasePriority, 143
getinheritTask, 143
pop, 144
removelnitialize, 144
rescheduleTask, 144
resetPriority, 144
setActivePriority, 143
setBasePriority, 143
uBaseTask, 31
getActivePriority, 31
getBasePriority, 31
getCluster, 31
getCoroutine, 31
getState, 31
migrate, 31
yield, 31
uBaseTask::Blocked, 32
uBaseTask::Ready, 32
uBaseTask::Running, 32
uBaseTask::Start, 32
uBaseTask:: Terminate, 32
nCH translatory
uC++.h, 10, 28, 29, 153
nCH kernel 10,119
uClock
convertTime, 139

BIBLIOGRAPHY

getTime, 139
resetClock, 139
uCluster, 120
exceptSelect, 120
getName, 120
getProcessorsOnCluster, 120
getStackSize, 120
getTasksOnCluster, 120
readSelect, 120
select, 120
setName, 120
setStackSize, 120
writeSelect, 120
uColable, 153
listed, 153
uCondition, 26
empty, 26
front, 26
owner,26
signal, 26
signalBlock, 26
wait, 26
WaitingFailure, 26, 87
uCondLock, 39, 127
broadcast, 39
empty, 39
signal, 39
wait, 39
uContext, 41
uDefaultHeapExpansion, 148
uDefaultPreemption, 147
seesetPreemption and pre-emption,
uDefaultProcessors, 147
uDefaultSpin, 147
seesetSpin and spin,
uDefaultStackSize, 147
seesetStackSize and stack,
uDuration, 133
uEHM
poll, 71, 74,91
RaiseKind, 71
uFile, 59
Failure, 59, 87
getName, 59
status, 59
StatusFailure, 59, 87
TerminateFailure, 59, 87
uFile.h, 59
uFileAccess, 60
CloseFailure, 60, 87
Failure, 60, 87
fd, 60
fsync, 60

Iseek, 60
OpenFailure, 60, 87
read, 60
ReadFailure, 60, 87
ReadTimeout, 60, 87
readv, 60
SeekFailure, 60, 87
SyncFailure, 60, 87
write, 60
WriteFailure, 60, 87
WriteTimeout, 60, 87
writev, 60
uFloatingPointContext, 41
ulOFailure, 87
uKernelFailure, 87
uLock, 38
acquire, 38
release, 38
tryacquire, 38
uMain, 8
argc, 8
argv, 8
uRetCode, 8
uMain::main, 8
uMainStackSize, 147
seesetStackSize and stack,
uncaught_exception, 85
unexpected, 85
unexpected_handler, 85
UnhandledException, 16, 84, 87, 88, 104
triggerCause, 88
unikernel, 10, 121
UNIX epoch,134
UNIX process 121
unlocking,18
uOwnerLock, 38, 127
acquire, 38
owner, 38
release, 38
times, 38
tryacquire, 38
uPeriodicBaseTask
getPeriod, 140
setPeriod, 140
uProcessor, 122
getClock, 122
getCluster, 122
getDetach, 122
getPid, 122
getPreemption, 122
getSpin, 122
getTask, 122
idle, 122

187

188

setCluster, 122

setPreemption, 122

setSpin, 122
uPthreadable, 129

CreationFailure, 87, 130

Failure, 87, 130

pthreadlid, 130
uQueue

add, 155

addHead, 155

addTail, 155

drop, 155

dropHead, 155

dropTail, 155

empty, 155

head, 155

remove, 155

succ, 155

tail, 155
uQueuelter, 155

>> 156

over, 156
uRealTimeBaseTask

getDeadline, 142

setDeadline, 142
uRendezvousAcceptor, 89
uRetCode, 8
uSemaphore, 36

counter, 37

empty, 37

P, 37

TryP, 37

v, 37
uSemaphore.h, 37
uSeqable, 153

listed, 153
uSegqlter, 157

>> 157

over, 157
uSeglterRev, 157

>> 158

over, 158
uSequence

add, 157

addHead, 157

addTail, 157

drop, 157

dropHead, 157

dropTail, 157

empty, 157

head, 157

insertAft, 157

insertBef, 157

pred, 157
remove, 157
succ, 157
tail, 157
user cluster9
uSerial
EntryFailure, 87
Failure, 86, 87

BIBLIOGRAPHY

RendezvousFailure, 87-89, 102, 103

usleep, 119 136
uSocket
CloseFailure, 87
Failure, 87
OpenFailure, 87
uSocket.h, 62
uSocketAccept, 66, 138
accept, 67
close, 67
CloseFailure, 67, 87
Failure, 67, 87
fd, 67
getpeername, 67
getsockaddr, 67
getsockname, 67
OpenFailure, 67, 87
OpenTimeout, 67, 87
read, 67
ReadFailure, 67, 87
ReadTimeout, 67, 87
readv, 67
recv, 67
recvfrom, 67
recvmsg, 67
send, 67
sendmsg, 67
sendto, 67
write, 67
WriteFailure, 67, 87
WriteTimeout, 67, 87
writev, 67
uSocketClient, 62, 138
CloseFailure, 63, 87
Failure, 63, 87
fd, 63
getpeername, 63
getServer, 63
getsockname, 63
OpenFailure, 63, 87
OpenTimeout, 63, 87
read, 63
ReadFailure, 63, 87
ReadTimeout, 63, 87
readv, 63

BIBLIOGRAPHY

recv, 63

recvfrom, 63

recvmsg, 63

send, 63

sendmsg, 63

sendto, 63

setServer, 63

write, 63

WriteFailure, 63, 87

WriteTimeout, 63, 87

writev, 63
uSocketServer, 64

CloseFailure, 65, 87

Failure, 65, 87

fd, 65

getClient, 65

getpeername, 65

getsockaddr, 65

getsockname, 65

OpenFailure, 65, 87

read, 65

ReadFailure, 65, 87

ReadTimeout, 65, 87

readv, 65

recv, 65

recvfrom, 65

recvmsg, 65

send, 65

sendmsg, 65

sendto, 65

setClient, 65

write, 65

WriteFailure, 65, 87

WriteTimeout, 65, 87

writev, 65
uSporadicBaseTask

getFrame, 141

setFrame, 141
uStack, 153

add, 154

addHead, 154

drop, 154

empty, 154

head, 154

pop, 154

push, 154

top, 154
uStacklter, 154

>> 154

over, 154
uThisCluster, 121
uThisCoroutine, 17
uThisProcessor, 123

189

uThisTask, 32
uTime, 134

V, 37

verify, 16

version number] 1

virtual processor, 121, 125

wait, 26
wait-all, 52
wait-any,52
wait-for-all, 50
wait-for-any,50
waiters, 40
WaitingFailure, 26, 87
warnings
compile-time,95
runtime,99
WriteFailure, 60, 63, 65, 67, 87
WriteTimeout, 60, 63, 65, 67, 87

yield, 33,111,121
compilation option10, 32
preprocessodq,1

yield, 32, 91

	Title
	Contents
	Preface
	uC++ Extensions
	Design Requirements
	Elementary Execution Properties
	High-level Execution Constructs

	uC++ Translator
	Extending C++
	Compile Time Structure of a uC++ Program
	uC++ Runtime Structure
	Cluster
	Virtual Processor

	uC++ Kernel
	Using the uC++ Translator
	Compiling a uC++ Program
	Preprocessor Variables

	Labelled Break/Continue
	Coroutine
	Coroutine Creation and Destruction
	Inherited Members
	Coroutine Control and Communication

	Mutex Type
	Scheduling
	Implicit Scheduling
	External Scheduling
	Accept Statement
	Breaking a Rendezvous
	Accepting the Destructor
	Commentary

	Internal Scheduling
	Condition Variables and Wait/Signal Statements
	Commentary

	Monitor
	Monitor Creation and Destruction
	Monitor Control and Communication

	Coroutine Monitor
	Coroutine-Monitor Creation and Destruction
	Coroutine-Monitor Control and Communication

	Task
	Task Creation and Destruction
	Inherited Members
	Task Control and Communication

	Commentary
	Inheritance
	Explicit Mutual Exclusion and Synchronization
	Counting Semaphore
	Commentary

	Lock
	Owner Lock
	Condition Lock
	Barrier

	User Specified Context
	Predefined Floating-Point Context

	Implementation Restrictions

	Asynchronous Communication
	Futures
	Client Operations
	Server Operations
	Explicit Storage Management
	Example
	Implicit Storage Management
	Example

	Future Access
	Select Statement
	Wait Queue

	Servers

	Input/Output
	Nonblocking I/O
	C++ Stream I/O
	UNIX File I/O
	File Access

	BSD Sockets
	Client
	Server
	Server Acceptor

	Exceptions
	EHM
	uC++ EHM
	Exception Type
	Creation and Destruction
	Inherited Members

	Raising
	Nonlocal Propagation
	Enabling/Disabling Propagation
	Concurrent Propagation

	Handler
	Termination
	Resumption
	Termination/Resumption
	Recursive Resuming
	Preventing Recursive Resuming
	Commentary

	Bound Exceptions
	C++ Exception-Handling Deficiencies
	Object Binding
	Bound Handlers
	Matching
	Termination
	Resumption

	Inheritance
	Predefined Exception Routines
	terminate/set_terminate
	unexpected/set_unexpected
	uncaught_exception

	Programming with Exceptions
	Terminating Propagation
	Resuming Propagation
	Terminating/Resuming Propagation

	Predefined Exception-Types
	Implicitly Enabled Exception-Types
	Unhandled Exception in Coroutine
	Breaking a Rendezvous

	Cancellation
	Using Cancellation
	Enabling/Disabling Cancellation
	Commentary

	Errors
	Static (Compile-time) Warnings/Errors
	Dynamic (Runtime) Warnings/Errors
	Assertions
	Termination
	Messages
	Default Actions
	Coroutine
	Mutex Type
	Task
	Condition Variable
	Accept Statement
	Calendar
	Locks
	Cluster
	Heap
	I/O
	Processor
	UNIX

	uC++ Kernel
	Pre-emptive Scheduling and Critical Sections
	Memory Management
	Cluster
	Processors
	Implicit Task Scheduling
	Idle Virtual Processors
	Blocking Virtual Processors

	Posix Threads (pthreads)
	Combining Pthreads with uC++
	Linking uC++ and Pthreads Binaries
	Recompiling Pthreads Modules

	uC++ Task as a Pthreads Thread
	Semantic Inconsistencies between Pthreads and uC++
	Termination of main
	Cleanup Semantics

	Commentary

	Real-Time
	Duration and Time
	Timeout Operations
	Time Delay
	Accept Statement
	Select Statement
	I/O

	Clock
	Periodic Task
	Sporadic Task
	Aperiodic Task
	Priority Inheritance Protocol
	Real-Time Scheduling
	User-Supplied Scheduler
	Real-Time Cluster
	Deadline Monotonic Scheduler

	Miscellaneous
	Default Values
	Task
	Processor
	Heap

	Symbolic Debugging
	Installation Requirements
	Installation
	Reporting Problems
	Contributors

	uC++ Grammar
	Data Structure Library (DSL)
	Stack
	Iterator

	Queue
	Iterator

	Sequence
	Iterator

	Example Programs
	Readers And Writer
	Bounded Buffer
	Using Monitor Accept
	Using Monitor Condition
	Using Task
	Using P/V

	Disk Scheduler
	UNIX File I/O
	UNIX Socket I/O
	Client - UNIX/Datagram
	Server - UNIX/Datagram
	Client - INET/Stream
	Socket - INET/Stream

	Bibliography
	Index

