
Trace-Assertion Specifications of Deterministic

Software Modules

Janusz Brzozowski1 and Helmut Jürgensen2

1 School of Computer Science, University of Waterloo, Waterloo, ON,
Canada N2L 3G1

brzozo@uwaterloo.ca http://maveric.uwaterloo.ca
2 Department of Computer Science, The University of Western Ontario,

London, ON, Canada N6A 5B7
and

Institut für Informatik, Universität Potsdam,
August-Bebel-Str. 89, 14482 Potsdam, Germany

helmut@uwo.ca http://www.csd.uwo.ca/faculty helmut.htm

Abstract. Trace assertions are abstract specifications of software mod-
ules – “black-box” models of the (finite or infinite) automata represent-
ing the modules. Traces are input words, every state is represented by
a canonical word , and trace equivalence of words describes the transi-
tions of the automaton. Canonical words and trace equivalence uniquely
determine the automaton. A rewriting system is used to transform any
word to its canonical form.
For modules defined by deterministic automata, we present a simple algo-
rithm for constructing trace equivalence and the rewriting system, once a
set of canonical words has been chosen. We show that constructing trace
equivalence amounts to finding a set of generators for state equivalence,
where two words are state-equivalent if they lead to the same state. We
prove that a set of generators is correct if and only if the empty word is
canonical. If it is, the rewriting system is confluent, and it is Noetherian if
and only if the set of canonical words is prefix-closed. With prefix-closure,
the set of generators is irredundant. Finally, we derive a complete set of
trace assertions directly from the module’s automaton.

1 Introduction

Our work in this paper was motivated by a series of papers on trace-assertion
specifications written by D. Parnas and his collaborators, and other authors, over
the past 25 years. The trace-assertion method for specifying software modules
was introduced in 1977 by Bartussek and Parnas [1]. The method has undergone
several changes since the original paper: see, for instance, [7–10, 12, 13, 15, 16] for
more details and additional references.

Trace assertions are abstract specifications of software modules. For such
specifications, it is assumed that modules are representable by (finite or infinite)
automata. Trace assertions then serve as “black-box” models of the automata. In
fact, a trace-assertion specification is a particular way of defining an automaton.

In essence, a trace-assertion specification consists of five parts: syntax, canonical
traces, trace equivalence, legality, and values. Traces are sequences of function
calls of the module. The syntax part defines the domains and co-domains of
the calls; a canonical trace is a convenient representative of the set of all traces
leading to the same state of the module; equivalence identifies the traces leading
to the same state; legality distinguishes correct from incorrect sequences of calls;
the values part defines the output values produced during certain function calls.

In terms of automaton theory, traces are input words. From now on we use the
terminology of the theory of automata and languages. Every state is represented
by a canonical word , and trace equivalence of words describes the transitions
of the automaton. Given a set of canonical words and the trace equivalence,
one can reconstruct the original automaton uniquely. In choosing the canonical
words, it is important to be able to transform any word to its canonical form
algorithmically. For this purpose, one derives a rewriting system from the trace
equivalence. One of the main issues is that the rewriting process should terminate
and lead to the equivalent canonical word.

The main inspiration for our work is the 1994 paper by Wang and Par-
nas [16]. We generalize, clarify and simplify several concepts presented there.
To be precise, for modules defined by deterministic finite or infinite automata,
we present a simple algorithm for constructing trace equivalence and the rewrit-
ing system, once a set of canonical words has been chosen. A priori , canonical
words can be chosen arbitrarily, but not every choice leads to a correct trace
equivalence and well-defined rewriting system. We show that constructing trace
equivalence amounts to finding a set of generators for state equivalence, where
two words are state-equivalent if they lead to the same state. We prove that
a set of generators is correct if and only if the empty word is canonical. If it
is, the rewriting system is confluent, and it is Noetherian if and only if the set
of canonical words is prefix-closed. With prefix-closure, the set of generators is
irredundant. Finally, we show how to derive a complete set of trace assertions
directly from the module’s automaton.

The remainder of the paper is structured as follows. We give a brief survey of
previous work on trace-assertion specifications in Section 2. Section 3 introduces
our terminology and notation. Generating sets for state equivalence are next
studied in Section 4. Transformation of words to canonical form is discussed
in Section 5. Section 6 presents a construction of canonical sets of words with
desirable properties. These ideas are illustrated in Section 7 with the simple
example of a unary counter – an automaton without outputs. A more complete
example, that of a stack, is given in Section 8, where the “values” section of the
specification is introduced. In Sections 9–14 we present several more challenging
examples. Section 15 summarizes our results.

2 Background

The explicit goal of [1] was to make the specification of software modules in-
dependent of implementations, that is, to abstract from implementation and

operational issues. As mentioned above, [1] used the concepts of syntax, legality,
equivalence, and values. It was noted there that it would be important for the for-
mal verification of module correctness that equivalence and legality be recursive.
However, using the approach proposed in [1] and several subsequent papers [2,
12, 13], this cannot work in general as the definitions of equivalence and legality
depend on each other in such a way that even some obvious equivalences in the
case of a stack module cannot be proved.

In 1984, McLean provided a model-theoretic framework for the trace spec-
ification method [12]. It is based on first-order logic with equality, and with
equivalence and legality defined as special predicates. Soundness and complete-
ness (in the sense of logic) are proved, that is, any statement about traces which
has a formal proof is semantically true and every semantically true statement
has a formal proof. This, however, does not provide a feasible proof method by
which to decide equivalence. Moreover, the key problem, that the definitions of
equivalence and legality depend on each other, is still present.

The problem of the interdependence of the definitions of equivalence and le-
gality is partially recognized in the 1994 paper by Wang and Parnas [16] (see
also [13]). They propose to identify canonical traces as representatives of equiv-
alence classes and a reduction function which will transform any trace to its
canonical representative. In that paper explicit reference is made to a state
machine (deterministic and finite) representing the software module, and four
assumptions, missing in the earlier work, are introduced, namely: (1) the empty
trace must be canonical; (2) equivalence must be a right congruence; (3) the
reduction function, when applied to a canonical trace, returns that same trace;
(4) reduction of a long trace can be performed by first reducing a prefix of the
trace and then reducing the result with the remainder of the trace appended.
We show below, why this assumptions together with additional ones missing in
[16] are essential for deciding trace equivalence. No specific rule for the choice of
the canonical traces is given in [16] except assumption (1) above.

To prove trace equivalence, [16] uses term rewriting systems. Given a trace,
one applies term rewriting rules to it to obtain the equivalent canonical trace.
This process is not necessarily convergent. A sufficient condition for convergence
is that the rewriting system be confluent and Noetherian. As these properties
cannot be proved in general for an arbitrary choice of canonical words, Wang and
Parnas use a heuristics called smart trace rewriting which leads to the canonical
word in many, but not all, cases. There are two reasons for this problem as proved
below: (1) canonical words – even with the empty word canonical – cannot be
chosen in an arbitrary fashion; (2) term rewriting introduces an unmanageable
complexity into the problem; this can be avoided by string rewriting over an
infinite, but recursively enumerable alphabet. We show below that, if string
rewriting is used, it is sufficient that the set of canonical traces be prefix-closed
for the rewriting system to be confluent and Noetherian. We also show that a
state machine is a more abstract specification than a trace assertion specification.
The latter can be derived from the machine and specifies the machine up to

isomorphism. Moreover, the specification by a state machine does not require
that the machine be finite.

After [16], all publications on the trace assertion method seem to rely on an
unexplained choice of the canonical traces. This works because the “natural” or
“intuitive” choice usually happens to lead to a provably confluent and Noetherian
rewriting system.

The work reported in [9] focusses to a large extent on the implementation of
the trace assertion method including its syntactic representation. In particular,
it provides a comprehensive view of the field as of 1997. In the definition of
equivalence, this work deviates from the original proposal of [1] in that two
equivalences are considered – a “true” one (called reduction equivalence) and
an “operational” one (called behavioural equivalence); this distinction is needed
only because the choice of canonical traces is arbitrary and, therefore, proving
trace equivalence may not terminate. In [9], one also has two notions of legality;
while this may be useful for applications, it does not add a new feature to the
mathematical theory.

In [10], among other items, the problems of non-deterministic modules and
their ramifications are investigated. We do not consider non-deterministic spec-
ifications in this paper.

The trace assertion method has also been used for time-dependent systems
like communication protocols [7]. Timing conditions were not a part of the origi-
nal proposal in [1]. The work in [7, 8] proposes a “heuristics” for chosing canonical
words. We prove in this paper that these “heuristics” are indeed appropriate.

For a survey of formal specification methods for software modules see [15].

3 Terminology and Notation

We denote by Z and P the sets of integers and nonnegative integers, respectively.
Purely for convenience, we use integers as the data that is stored in the various
modules we describe; there is no loss of generality in this assumption. If Σ is an
alphabet (finite or infinite), then Σ+ and Σ∗ denote the free semigroup and the
free monoid, respectively, generated by Σ. The empty word is ε. For w ∈ Σ∗,
|w| denotes the length of w. If w = uv, for some u, v ∈ Σ∗, then u is a prefix of
w. A set X ⊆ Σ∗ is a prefix code if no word of X is the prefix of any other word
of X . A set X is prefix-closed if, for any w ∈ X , every prefix of w is also in X .

3.1 Semiautomata and Equivalences

By a deterministic initialized semiautomaton, or simply semiautomaton, we
mean a tuple A = (Σ, Q, δ, qε), where Σ is a nonempty input alphabet, Q, a
nonempty set of states, δ : Q×Σ → Q, the transition function, and qε ∈ Q, the
initial state. In general, we do not assume that Σ and Q are finite. As usual, we
extend the transition function to words by defining δ(q, ε) = q, for all q ∈ Q, and
δ(q, wa) = δ(δ(q, w), a)). A semiautomaton is connected if every state is reach-
able from the initial state. We consider only connected semiautomata. Thus, for

every q ∈ Q, there exists w ∈ Σ∗ such that δ(qε, w) = q. For any w ∈ Σ∗, we
define qw = δ(qε, w).

For a semiautomaton S = (Σ, Q, δ, qε), the state-equivalence relation ≡δ on
Σ∗ is defined by

w ≡δ w′ ⇔ qw = qw′ , (1)

for w, w′ ∈ Σ∗. Note that ≡δ is an equivalence relation, and also a right congru-

ence, that is, for all x ∈ Σ∗,

w ≡δ w′ ⇒ wx ≡δ w′x. (2)

Given any right congruence ∼ on Σ∗, we can construct a semiautomaton
S∼ = (Σ, Q∼, δ∼, q∼), as follows. For w ∈ Σ∗, let [w]∼ be the equivalence class
of w. Let Q∼ be the set of equivalence classes of ∼, let q∼ = [ε]∼, and, for a ∈ Σ,
let δ([w]∼, a) = [wa]∼. Note that S∼ is connected.

It is well-known that the semiautomaton S∼ is isomorphic to S when ∼ = ≡δ,
with the isomorphism mapping [w]∼ onto qw; see [5].

3.2 Automata

By a deterministic automaton, we mean a tuple A = (Σ, Q, δ, qε, F), where
(Σ, Q, δ, qε) is a semiautomaton, and F ⊆ Q is the set of final states. A word
w ∈ Σ∗ is accepted by A if and only if qw ∈ F . The language accepted by A is
L(A) = {w | qw ∈ F}.

By a generalized Mealy automaton, or simply automaton, we mean a deter-
ministic automaton M with an output alphabet and an output function. More
precisely, M = (Σ, Q, δ, qε, F, Ω, ν), where (Σ, Q, δ, qε, F) is a deterministic au-
tomaton, Ω, the output alphabet, and ν : Q×Σ → Ω, a partial function called
the output function. Note that a deterministic automaton is a generalized Mealy
automaton without outputs, and a generalized Mealy automaton is a normal
Mealy automaton with accepting states. As before, L(M) = {w | qw ∈ F}.

The partial function ν : Q × Σ → Ω uniquely determines a partial function
ν′ : Σ+ → Ω as follows: For w ∈ Σ∗ and a ∈ Σ, ν′(wa) = ν(qw , a). Thus ν′(wa)
is defined if and only if ν(qw, a) is defined. We write ν ′(wa) = ν′(w′a′) if either
both sides are undefined, or both are defined and have the same value. In the
sequel, we refer to ν ′ simply as ν.

The generalized Nerode equivalence relation ≡M on Σ∗ is defined as follows:
for w, w′ ∈ Σ∗, w ≡M w′ if and only if

∀u ∈ Σ∗, ∀a ∈ Σ, wu ∈ L(M) ⇔ w′u ∈ L(M) ∧ ν(wua) = ν(w′ua). (3)

Note that the following always holds: w ≡δ w′ ⇒ w ≡M w′. An automaton M

is reduced with respect to the equivalence ≡M if and only if w ≡M w′ ⇒ w ≡δ w′.

Thus, in a reduced automaton we always have ≡M = ≡δ.

For additional material on automata, see, for example, [5, 11, 14].

3.3 Rewriting Systems

In this paper we are concerned with a very special type of rewriting system.
More information about general rewriting systems can be found in [4].

Let Σ be an alphabet (finite or infinite). A rewriting system over Σ consists
of a set T ⊆ Σ∗ × Σ∗ of transformations or rules . A transformation (u, v) ∈ T

is written as u |= v. Then |=∗ is the reflexive and transitive closure of |=. Thus,
w |=∗ w′ if and only if w = w0 |= w1 |= w2 |= · · · |= wn = w′ for some n, and n

is the length of this derivation of w′ from w. In the special cases considered in
this paper, the transformations have the pattern ux |= vx, where u, v ∈ Σ∗ are
specific words and x is an arbitrary word in Σ∗.

A rewriting system is confluent if, for any w, w1, w2 ∈ Σ∗ with w |=∗ w1 and
w |=∗ w2, there is w′ ∈ Σ∗ such that w1 |=∗ w′ and w2 |=∗ w′. It is Noetherian if
there is no word w from which a derivation of infinite length exists. A confluent
Noetherian system has two important properties:

1. For every word w ∈ Σ∗ there is a unique word wc, its canonical representa-

tive, such that, for any w1, w2 ∈ Σ∗ with w |=∗ w1 and w |=∗ w2, one has
w1 |=∗ wc and w2 |=∗ wc and there is no word w′ ∈ Σ∗ with wc |= w′.

2. |=∗ defines an equivalence ≡T as follows: w ≡T w′ if and only if wc = w′
c.

Thus, for an effectively defined confluent Noetherian system, one can compute
the canonical representative of every word and decide equivalence of words.

4 Generating Sets for State-Equivalence

Recall that we are dealing only with connected semiautomata. Our first objective
is to find a suitable generating set for the state-equivalence relation of a given
semiautomaton. The motivation for this will be given later.

Let S = (Σ, Q, δ, qε) be a semiautomaton, and χ : Q → Σ∗, an arbitrary
mapping assigning to state q a word χ(q) such that δ(qε, χ(q)) = q. By definition
χ is injective. Unless stated otherwise, we assume that χ has been selected. We
call the word χ(q) the canonical word of q. Let the set of canonical words be X.

We introduce an equivalence relation ≡ on Σ∗, called the standard equiva-

lence, as the smallest right congruence containing the set G of all pairs of words
(wa, χ(qwa)), where w ∈ X, a ∈ Σ, and wa 6∈ X. We refer to the pairs in G

as standard generators . Note that the order in which the elements of a pair are
listed is important, for reasons that will become clear soon. Note also that the
number of standard generators is infinite in general, although it is finite when
Q and Σ are finite. In the sequel, we write the pairs in G as equivalences, that
is, wa ≡ χ(qwa); moreover, we label the pairs by E1,E2, . . .

By the construction of G, we always have

≡ ⊆ ≡δ. (4)

However, the converse containment need not hold, as we now show. Consider
the semiautomaton S1 of Fig. 1. The initial state is indicated by an incoming

arrow, and each transition between two states is labelled by the input causing
the transition.

Let χ(qε) = 00, χ(q1) = 0, and χ(q2) = 1. Then G contains the follow-
ing equivalences: E1 01 ≡ 0, E2 10 ≡ 1, E3 11 ≡ 1, E4 000 ≡ 0, E5 001 ≡ 1.

The semiautomaton defined by ≡ has four states corresponding to the equiv-
alence classes of ε, 0, 1, and 00; semiautomaton S1 has only three states. Thus
≡δ 6⊆≡.

1

q1q0

q2

0

0

1

0, 1

Fig. 1. Semiautomaton S1

We define a set T of standard transformations as follows. If Ei w ≡ w′ is a
pair in G, then Ti wx |= w′x, is the corresponding standard transformation. In
these transformations, w and w′ are fixed words and x is any word.

For example, consider the semiautomaton of Fig. 1, this time with χ(qε) = ε,
χ(q1) = 01, and χ(q2) = 1. Then we have the following standard equivalences
and associated transformations for all x ∈ Σ∗:

E1 0 ≡ 01, E2 10 ≡ 1, E3 11 ≡ 1, E4 010 ≡ ε, E5 011 ≡ 01.

T1 0x |= 01x, T2 10x |= 1x, T3 11x |= 1x, T4 010x |= x, T5 011x |= 01x.

Lemma 1. For all w, w′ ∈ Σ∗, w |=∗ w′ implies w ≡ w′ and therefore w ≡δ w′.

Proof. By definition, each transformation preserves≡, and ≡ is transitive. By (4),
each transformation also preserves the state. ut

Lemma 2. If χ(qε) = ε and w ∈ Σ∗, then w |=∗ χ(qw), and hence w ≡ χ(qw).

Proof. The claim holds for w = ε, because ε = χ(qε). Suppose that for all x with
|x| ≤ n, x |=∗ χ(qx) holds, and consider w = ua with |u| = n. Now w |=∗ χ(qu)a.
If χ(qu)a = χ(qua), then we are done. Otherwise, (χ(qu)a, χ(qua)) is a rule in G.
So χ(qu)a |= χ(qua), and therefore, w |=∗ χ(qw). The second statement follows
by Lemma 1. ut

Theorem 1. If χ(qε) = ε, the rewriting system T is confluent.

Proof. Suppose w ∈ Σ∗ is such that w |=∗ w1 and w |=∗ w2. By Lemma 1,
qw = qw1

and qw = qw2
. Let x1 = χ(qw1

), and x2 = χ(qw2
). By Lemma 2,

w1 |=∗ x1 and w2 |=∗ x2. Again by Lemma 1, qw1
= qx1

and qw2
= qx2

. Thus
qx1

= qx2
, and it follows that x1 = x2, since there is only one canonical word

per state. Thus w1 |=∗ x1, w2 |=∗ x1, and T is confluent. ut

Theorem 2. ≡ = ≡δ if and only if χ(qε) = ε.

Proof. If χ(qε) = ε, then w ≡ χ(qw) for all w ∈ Σ∗, by Lemma 2. Suppose
that w ≡δ w′; then qw = qw′ , and w ≡ χ(qw) = χ(qw′) ≡ w′. Thus ≡δ ⊆ ≡.
This, together with (4), shows that ≡ = ≡δ. Conversely, suppose χ(qε) 6= ε; then
χ(qε) = u, for some u ∈ Σ+. By the construction of G, ε cannot appear on either
side of any pair in G. Hence ε 6≡ u, although ε ≡δ u. ut

Suppose χ(qε) = ε. By Lemma 1, w |=∗ w′ implies qw = qw′ , and by Lemma 2,
w |=∗ χ(qw). Hence qw = qχ(qw). Therefore, in our transformation system, every
word w ∈ Σ∗ has a unique canonical representative χ(qw). Define the relation
≡T on Σ∗ as follows: w ≡T w′ if and only if χ(qw) = χ(qw′). Clearly, this is an
equivalence relation. However, one property that holds in Noetherian confluent
systems need not hold here: the property that no word can be derived from the
canonical word. For example, in the semiautomaton of Fig. 1 with χ(qε) = ε,
χ(q1) = 01, and χ(q2) = 1, the transformation 0x |= 01x is applicable to χ(q1).
This flaw will be corrected in the next section.

Even without the Noetherian property, the following holds.

Theorem 3. If χ(qε) = ε, then ≡ = ≡T.

Proof. We will show that ≡δ ⊆ ≡T ⊆ ≡. Suppose w ≡δ w′; let q = qw = qw′ ,
and let x = χ(qw) and x′ = χ(qw′). By Lemma 2, w |=∗ x and w′ |=∗ x′. By
Lemma 1, qw = qx and qw′ = qx′ . Thus we have qx = qw = q = qw′ = qx′ ,
showing that χ(qw) = χ(qw′). Thus w ≡T w′, and ≡δ ⊆ ≡T. By Lemma 2,
≡T ⊆ ≡. This concludes the proof, since ≡ = ≡δ by Theorem 2. ut

In summary, for G to generate ≡δ, it is necessary and sufficient to choose
the empty word as the canonical word for the initial state; for all other states,
the choice is arbitrary.

5 Transformation of Words to Canonical Form

Our second objective is to transform any word w to its canonical representative
χ(qw). This will be done with the aid of the set T of standard transformations.

Return to the semiautomaton of Fig. 1, with χ(qε) = ε, χ(q1) = 01, and
χ(q2) = 1. We have the following derivation leading to a canonical word:

0001001101
T1

|= 01001001101
T4

|= 01001101
T4

|= 01101
T5

|= 0101
T4

|= 1.

Note, however, that we also have the following derivation: 0
T1

|= 01
T1

|= 011
T1

|=

0111
T1

|= . . . , which never terminates, and yet another derivation 011
T5

|= 01
T1

|=

011
T5

|= 01 . . . , which is also infinite. Thus, in general, the rewriting system defined
by the standard transformations may be ill-behaved.

Let X be the set of all canonical words of a semiautomaton S, and let L be
the set of all left-hand sides of the generating equivalences Ei.

Lemma 3. If X is prefix-closed, then L is a prefix code.

Proof. Suppose there exist distinct words wa and w′a′ in L such that wa is
a prefix of w′a′. Then wa is a prefix of w′, since wa 6= w′a′. But then, wa is
canonical because X is prefix-closed and w′ is canonical. This contradicts the
fact that wa is the left-hand side of an equivalence. Hence L is a prefix code. ut

Corollary 1. If X is prefix-closed, at most one rule applies to any word.

Note that, if X is prefix-closed, then χ(qε) = ε.

Lemma 4. If X is prefix-closed and w ∈ X, then no rule in T applies to w.

Proof. As X is prefix-closed, every prefix of w is canonical. By the definition of
T, no prefix of w is in L. ut

Thus, with a prefix-closed canonical set, T is always well-behaved.

Theorem 4. If χ(qε) = ε, T is Noetherian if and only if X is prefix-closed.

Proof. Suppose that X is prefix-closed. By Corollary 1, at most one rule applies
to any word. By Lemma 2, w |=∗ χ(qw). By Lemma 4, no rule applies to χ(qw).
Therefore the rewriting system is Noetherian.

Conversely, suppose X is not prefix-closed. Let w be canonical, and let u be
the shortest prefix of w = uv that is not canonical. By the assumption that ε

is canonical, we know that u ∈ Σ+. By construction, u appears as a left-hand
side of a pair (u, u′) in G. Thus u ≡ u′ and w = uv |= u′v. Note that u′v is
not canonical, because uv is canonical, and quv = qu′v . By Lemma 2, u′v |=∗ uv.
Thus uv |= u′v |=∗ uv, and the rewriting system is not Noetherian. ut

6 Prefix-Closed Canonical Sets

It is always possible to find a prefix-closed set of canonical words as follows.
Construct a spanning tree of the state graph of the semiautomaton S, with qε

as root, and use the path from the root to a state q as its canonical word χ(q).
For example, consider the semiautomaton S2 of Fig. 2. We show three span-

ning trees for S2. The corresponding sets of generators are:

0

q1q0

q2 q3

0 1 0

0

1

1

0

1

0

0

0

0

0

1

1 1

Fig. 2. Semiautomaton S2 and spanning trees

E1 01 ≡ 1, E2 10 ≡ 00, E3 11 ≡ 1, E4 000 ≡ 1, E5 001 ≡ 0.

E1 1 ≡ 01, E2 00 ≡ 010, E3 011 ≡ 01, E4 0100 ≡ 01, E5 0101 ≡ 0.

E1 00 ≡ 10, E2 01 ≡ 1, E3 11 ≡ 1, E4 100 ≡ 1, E5 101 ≡ 0.

Theorem 5. If S = (Σ, Q, δ, qε) has n states and an alphabet of k letters, there

are nk − (n − 1) pairs in G, independently of the choice of spanning tree.

Proof. There are n canonical words, and nk transitions. Every spanning tree
uses n − 1 transitions, since qε is reached by ε, and there are only n − 1 states
to be reached by nonempty words. We claim that, if a transition is in the span-
ning tree, then it cannot be the left side of a generating pair. For suppose that
δ(qε, w) = qw, and δ(qw, a) is in the tree. Then χ(qw) is canonical, and so is
χ(qw)a. Therefore χ(qw)a cannot be the left-hand side of any rule in G.

On the other hand, if δ(qw, a) is not in the tree, then (χ(qw)a, χ(qwa)) is in G.
Consequently, there are nk − (n − 1) pairs in G, independently of the choice of
spanning tree. ut

Theorem 6. If X is prefix-closed, the standard set G of generators is irredun-

dant, that is, if any pair is removed from G, the resulting equivalence is no longer

equal to ≡δ.

Proof. Suppose (wa, w′) = (wa, χ(qwa)) is removed from G. Then wa cannot
appear as either side of any other pair in G. Thus wa ≡ w′ must be derived using
the right-congruence property of ≡. Hence we must have wa = uva, χ(qwa) =
u′va, where u ≡ u′, for some u, u′, v ∈ Σ∗. However, since w is canonical, so
is every prefix of w; hence no prefix of w can appear as the left-hand side of a
pair in G. Similarly, no prefix on w′ can appear as the left-hand side of a pair
in G, since w′ is also canonical. Hence wa 6≡ w′, although wa ≡δ w′. Therefore
G \ {(wa, w′)} no longer generates ≡δ. ut

One can reconstruct a semiautomaton from its canonical words and equiva-
lences. In fact, let S = (Σ, Q, δ, qε) be a semiautomaton, and X, a prefix-closed
set of canonical words with generating set G. Let SX = (Σ,X, δG, ε), where, for
all w ∈ X, a ∈ Σ, δ(w, a) = wa if wa is not the left-hand side of any pair in G,
and δ(w, a) = w′, if (wa, w′) ∈ G.

Proposition 1. The semiautomata S = (Σ, Q, δ, qε) and SX = (Σ,X, δG, ε)
are isomorphic, with the isomorphism mapping state q ∈ Q to canonical word

χ(q) ∈ X.

In summary, the information contained in the trace-assertion specification is
precisely the same as that in the semiautomaton in which the canonical words
have been selected. Consequently, one can view the semiautomaton as the spec-

ification, and the various prefix-closed sets of canonical words and the corre-
sponding equivalences as implementations , since they are, in fact, less abstract
than the semiautomaton.

7 Unary Counter

We now introduce our first example of an infinite semiautomaton, which is also
an automaton. We also introduce the concept of legality.

A unary counter is a pushdown stack, which is initially empty. Only two
operations are possible: PUSH and POP. If the stack is empty, POP is illegal
and leads to a special illegal state.1 If the stack contains (n + 1) entries, where
n ≥ 0, POP is legal; it removes the top 1 from the stack, leaving n entries. In
any legal state it is possible to PUSH the integer 1 on top of the stack. The
count is represented by the number of entries on the stack. For convenience, we
represent PUSH by 1 and POP, by 0.

Definition 1. The counter automaton is A = (Σ, Q, δ, qε, F), where Σ = {0, 1},
Q = P ∪ {∞}, qε = 0, F = P , and δ is defined below.2

C1′ δ(n, 1) = n + 1, ∀n ∈ P,

C2′ δ(0, 0) = ∞,

N1′ δ(∞, a) = ∞, ∀a ∈ Σ,

N2′ δ(n + 1, 0) = n, ∀n ∈ P.

The state graph of A is shown in Fig. 3, where double circles indicate final
states. It should be clear that the automaton corresponds to our informal speci-
fication. It should also be clear that a specification of a module by an automaton
should use a reduced automaton. Otherwise, unnecessary states and transitions
are introduced.

Proposition 2. The counter automaton is reduced.

Proof. State ∞ is distinguishable from every other state, because it is the only
rejecting state. To distinguish state n from state m > n, use the word 0m. Then
δ(n, 0m) = ∞ 6∈ F and δ(m, 0m) = 0 ∈ F . ut

Consider the semiautomaton S = (Σ, Q, δ, qε) of A. A natural choice for the
canonical word of state n is 1n, and, for ∞, it is 0. The set {1}∗ ∪ {0} is prefix
closed. The standard equivalences and the corresponding standard transforma-
tions are
1 In general, one could have several illegal states representing various error conditions.
2 The reason for the particular numbering of items will become apparent later.

0 1 2 n

∞

n − 1 n + 1.

0, 1

00

0

0 0

1 1 1 1

Fig. 3. Counter automaton

E1′ 00 ≡ 0, E2′ 01 ≡ 0, E3′ 10 ≡ ε, E4′ 110 ≡ 1, . . .

T1′ 00x |= 0x, T2′ 01x |= 0x, T3′ 10x |= x, T4′ 110x |= 1x, . . .

The set of equivalences is, of course, infinite. However, we can represent this
infinite set by two typical elements:

E1 0a ≡ 0, ∀a ∈ Σ,

E2 1n+10 ≡ 1n, ∀n ∈ P.

In fact, if we relabel the states with their canonical representatives, the definition
of δ becomes

C1 δ(1n, 1) = 1n+1, ∀n ∈ P,

C2 δ(ε, 0) = 0,

N1 δ(0, a) = 0, ∀a ∈ Σ,

N2 δ(1n+1, 0) = 1n, ∀n ∈ P.

Now there is a 1-1 correspondence between the Ni and the Ei. Rules Ni corre-
spond to noncanonical extensions of canonical words by letters. Rules Ci corre-
spond to canonical extensions of canonical words by letters; hence they do not
contribute to the equivalences.

We are now in a position to state the complete set of trace assertions for the
counter. Following [1], we add syntax and legality sections. The syntax asser-
tions are type declarations, and are self-explanatory. For w ∈ Σ∗, the assertion
“λ(w) = true” means that w is a legal word. Since the set of accepting states
of A is F = {1}∗, all the canonical words in {1}∗ are declared legal by L1. The
remaining legal words are obtained by the assertion:

L0 u ≡ v ⇒ λ(u) = λ(v), ∀u, v ∈ Σ∗.

Syntax:

0, 1 : 〈counter〉 → 〈counter〉.
Equivalence:

E1 0a ≡ 0, ∀a ∈ Σ,

E2 1n+10 ≡ 1n, ∀n ∈ P.

Legality:

L1 λ(1n) = true, ∀n ∈ P.

8 Stack

In this section we introduce a more general module, one that has an infinite
alphabet, and output operations called “value functions” in [1].

The stack is initially empty. We can push any integer z onto the stack using
operation PUSH(z), denoted by z. The POP operation p, legal only if the stack
is nonempty, removes the top integer from the stack. The TOP operation t, legal
only if the stack is nonempty, returns the value of the top integer. If the stack
is empty, p and t lead to the illegal state. The DEPTH operation d returns the
number of integers stored on the stack, when it is in any legal state.

We use the stack contents q = z1 . . . zn, with zn as top, as the representation
of a legal state.3 The natural choice for the canonical word of a state q ∈ Z∗ is q

itself. Let p be the canonical word for the illegal state. Clearly, Z∗∪{p} is prefix
closed.

Definition 2. The stack automaton is a generalized Mealy automaton M =
(Σ, Q, δ, qε, F, Ω, ν), where Σ = {d, p, t} ∪ Z, Q = Z∗ ∪ {p}, qε = ε, F = Z∗,

Ω = Z, and δ and ν are defined below. Note that ν = ν(q, a) is defined only if

q ∈ Z∗ and a = d, or q ∈ Z+ and a = t.

C1 δ(q, z) = qz, ∀q ∈ Z∗, z ∈ Z,

C2 δ(ε, p) = p,

N1 δ(ε, t) = p

N2 δ(q, d) = q, ∀q ∈ Z∗,

N3 δ(p, a) = p, ∀a ∈ Σ,

N4 δ(qz, t) = qz, ∀q ∈ Z∗, z ∈ Z,

N5 δ(qz, p) = q, ∀q ∈ Z∗, z ∈ Z,

O1 ν(q, d) = |q|, ∀q ∈ Z∗,

O2 ν(qz, t) = z, ∀q ∈ Z∗, z ∈ Z.

The stack automaton is illustrated in Fig. 4. For state q and input a, the
transition from q under a is labelled by a, if there is no output. If there is an
output b, the transition is labelled by (a, b). Of course, we can only illustrate a
few of the transitions, since both Q and Σ are infinite. There is one transition
from each state for each of d, p, and t, and for each integer z. Note that d

never changes the state, and t changes it only if illegally applied. For q ∈ Z∗,
ν(q, d) = |q| is the number of integers on the stack, and ν(qz, t) = z is the top
integer.

3 In the figure, we use the notation q = (z1, . . . , zn) to avoid confusion.

(3) . . .

. . .

1 pp, t

53

p p

(d, 0)

(d, 2), (t, 1)

(d, 2), (t, 5)(d, 1), (t, 3)

d, p, t, z

(3, 1)

(3, 5)ε

p

Fig. 4. Stack automaton

Proposition 3. The stack automaton is reduced.

Proof. State p is a rejecting state and all the states in Z∗ are accepting. Among
the accepting states, if i < j, then any state q of length i is distinguishable from
a state q′ of length j by the word pj . Suppose now that q and q′ 6= q are of equal
length, and their longest common suffix is qi+1 . . . qn; then qi 6= q′i. Now q and
q′ are distinguishable by pn−it. ut

The standard equivalences are shown below as part of the complete trace-
assertion specification. Equivalence ≡ is the right congruence generated by the
rules E1–E5. These rules are obtained as follows. By Theorem 2, ε must be
canonical. Hence we examine all the words of the form εa = a, with a ∈ Σ. If a =
z, the extension is canonical; hence, there is no contribution to the equivalences
from C1. If a = p, again the extension is canonical, and there is no contribution
from C2. If a = t, we have the equivalence E1 t ≡ p. If a = d, we obtain
d ≡ ε. However, this case can be handled with all the other cases of the form
wd ≡ w, since the transition function has the value δ(q, d) = q, for all q ∈ Z∗.
Thus we obtain E2. For the illegal state, we obtain E3 from N3. For all the
canonical states of the form qz, we again examine all the extensions by letters.
The extension by another integer is already covered by C1. The extension by d

is covered by E2. For t, we have E4, and for p, E5. Again, there is an obvious
1-1 correspondence between the Ni and the Ei.

Since the set of accepting states of M is F = Z∗, all the canonical words in
Z∗ are declared legal by L1. The remaining legal words are obtained by L0.

Until now, we have ignored the output values produced by operations t and
d. With the aid of O1 and O2, we specify the values for canonical legal words,
and then make the values applicable to all words by the assertion

V0 : w ≡ w′ ⇒ ν(wa) = ν(w′a), ∀w, w′ ∈ Σ∗, a ∈ Σ.

We now state the complete set of trace assertions for the stack:

Syntax:

p, z : 〈stack〉 → 〈stack〉, ∀z ∈ Z,

d, t : 〈stack〉 → 〈integer〉.
Equivalence:

E1 t ≡ p,

E2 wd ≡ w,

E3 pa ≡ p, ∀a ∈ Σ,

E4 wzt ≡ wz, ∀w ∈ Z∗, z ∈ Z,

E5 wzp ≡ w, ∀w ∈ Z∗, z ∈ Z.

Legality:

L1 λ(w) = true, ∀w ∈ Z∗.

Values:
V1 ν(wd) = |w|, ∀w ∈ Z∗,

V2 ν(wzt) = z, ∀z ∈ Z, w ∈ Z∗.

By construction, this trace-assertion specification of the stack is correct with
respect to the stack automaton.

In the rest of our examples we give only the annotated automaton definitions.

The interested reader may then easily construct the corresponding trace-assertion

specifications. Also, from now on we use generalized Mealy automata.

We include these examples to illustrate the construction of specifications of

modules by automata. Some of these examples were previously incorrectly speci-

fied by trace assertions in the literature.

We find it very useful to draw partial state graphs of the semiautomata we

study. They help in deriving the formal definitions and in checking whether all

transitions have been considered.

9 Queue

This example is from [1]. A queue is either empty or contains a list (z1, . . . , zn) of
integers, where n > 0. In the latter case, z1 is the front of the queue and zn, its
tail . If n = 1, z1 is both the front and the tail. If the queue is nonempty, operation
REMOVE, denoted by r, removes z1 and the queue now contains (z2, . . . , zn).
Also, if the queue is nonempty, operation FRONT, denoted by f , returns z1

without changing the queue. For each z ∈ Z, operation ADD(z), denoted by z,
adds z at the tail of the queue, resulting in (z1, . . . , zn, z). If the queue is empty,
r and f are illegal.

We choose q ∈ Z∗ to represent the state of the automaton when the queue
contains the word q = z1 . . . zn, and r for the illegal state. The canonical word
for any state is then the state itself. The set Z∗ ∪ {r} is prefix-closed.

The queue semiautomaton is illustrated in Fig. 5.

Definition 3. The queue automaton is M = (Σ, Q, δ, qε, F, Ω, ν), where Σ =
{f, r} ∪ Z, Q = Z∗ ∪ {r}, qε = ε, F = Z∗, Ω = Z, and δ and ν are defined

below. Note that ν = ν(q, a) is defined only if q ∈ Z+ and a = f .

z3

z1

r

z2 z3 z4

z2

z1z2z1ε

f, r

z2 r

f f f

fff

a ∈ Σ

r

z2z3 z2z3z4

z1z2z3

r r

z4

Fig. 5. Queue semiautomaton

C1 δ(q, z) = qz, ∀q ∈ Z∗, z ∈ Z,

C2 δ(ε, r) = r,

N1 δ(ε, f) = r,

N2 δ(r, a) = r, ∀a ∈ Σ,

N3 δ(zq, f) = zq, ∀q ∈ Z∗, z ∈ Z.

N4 : δ(zq, r) = q, ∀q ∈ Z∗, z ∈ Z,

O1 : ν(zq, f) = z, ∀q ∈ Z∗, z ∈ Z.

Proposition 4. The queue automaton is reduced.

Proof. State r is rejecting and all the states in Z∗ are accepting. Among the
accepting states, if i < j, then any state q of length i is distinguishable from q′

of length j by rj . Suppose now that q and q′ 6= q are of equal length, and their
longest common prefix is q1 . . . qi−1; then qi 6= q′i. Now q and q′ are distinguish-
able by rn−if . ut

10 Maximal-Element Module

This example is derived from [1] from the example of the “sorting queue.” A mem

(maximal-element module) is either empty or is a multiset (bag) of integers
(duplicates are permitted). If the mem is nonempty, REMOVE, denoted by r,
removes one occurrence of the largest integer in the mem. Otherwise, REMOVE
is illegal. If the mem is nonempty, MAX, denoted by m, returns the largest

integer in the mem without changing it. For each integer z ∈ Z, INSERT(z),
denoted by z, inserts z in the mem.

A multiset of integers is a mapping σ : Z → P such that, for every z ∈ Z,
σ(z) denotes the number of occurrences (multiplicity) of z in the multiset. We
represent σ as the formal power series

σ = . . . + σ(−2)x−2 + σ(−1)x−1 + σ(0)x0 + σ(1)x1 + σ(2)x2 + . . .

where x is a new symbol. The carrier of σ is the set

carrier(σ) = {xz | σ(z) 6= 0}.

A multiset σ is said to be finite or empty, if carrier(σ) is finite or empty, respec-
tively. For multisets, addition is defined component-wise. Subtraction is also
component-wise, but is defined only when no co-efficient becomes less than 0.

For a finite, non-empty multiset σ over Z, let

max σ = max {z | xz ∈ carrier(σ)} .

Let 0 denote the empty multiset, that is,

0 = . . . + 0x−2 + 0x−1 + 0x0 + 0x1 + 0x2 +

If σ 6= 0, r removes a largest element of carrier(σ), resulting in σ−xmax σ, and
m returns maxσ and leaves σ unchanged. For each z ∈ Z, operation z inserts
an additional occurrence of z, resulting in σ + xz .

The mem semiautomaton is illustrated in Fig. 6.

Definition 4. The mem automaton is M = (Σ, Q, δ, qε, F, Ω, ν), where Σ =
{m, r} ∪ Z, Q = Q′ ∪ {∞}, Q′ is the set of all finite multisets over Z, qε = 0,

F = Q′, Ω = Z, and

M1 δ(σ, z) = σ + xz , ∀σ ∈ Q′, z ∈ Z,

M2 δ(0, r) = ∞,

M3 δ(0, m) = ∞,

M4 δ(∞, a) = ∞, ∀a ∈ Σ,

M5 δ(xz + σ, m) = xz + σ, ∀σ ∈ Q′, z ∈ Z,

M6 δ(xz + σ, r) = xz + σ − xmax(xz+σ), ∀σ ∈ Q′, z ∈ Z,

O ν(xz + σ, m) = max(xz + σ), ∀σ ∈ Q′, z ∈ Z.

This definition is not in standard form; we remedy this next. Define function
sort : Z∗ → Z∗ as follows: sort(ε) = ε, and if w = z1 . . . zn is any word in
Z+, sort(w) is the word that consists of the integers z1, . . . , zn arranged in non-
increasing order. For example, sort(1, 3, 3, 7, 6,) = (7, 6, 3, 3, 1). Let sort(Z∗) =
{sort(z) | z ∈ Z∗}.

Legal states are of the form q ∈ sort(Z∗), and the illegal state is ∞. The
natural choice for the canonical word of q is q itself. Let r be the canonical
word for ∞. The set of canonical words is prefix-closed. We now construct the
automaton from these canonical words.

r

2

r

2 2

r

2

7 7

2

2x2x20

m m m

mm

2

m, r

r

x2 + 2x7x2 + x7

m

3x2

a ∈ Σ

7

rr

x7

rr

Fig. 6. Mem semiautomaton

Definition 5. The standard mem automaton is M = (Σ, Q, δ, qε, F, Ω, ν), where

Σ = {m, r} ∪ Z, Q = sort(Z∗) ∪ r, qε = ε, F = sort(Z∗), Ω = Z, and

C1 δ(q, z) = sort(qz), ∀q ∈ sort(Z∗), z ∈ Z,

C2 δ(ε, r) = r,

N1 δ(ε, m) = r,

N2 δ(r, a) = r, ∀a ∈ Σ,

N3 δ(zq, m) = zq, ∀zq ∈ sort(Z∗), z ∈ Z.

N4 δ(zq, r) = q, ∀zq ∈ sort(Z∗), z ∈ Z,

O1 ν(zq, m) = z, ∀zq ∈ sort(Z∗), z ∈ Z.

This automaton is reduced; the proof is very similar to that for the queue.
Moreover, the standard mem automaton is isomorphic to the mem automaton of
Definition 4. In fact, the seven parts of each definition are in 1-1 correspondence.
It is clear that the standard mem automaton is a particular implementation of
the more abstract mem automaton.

This example illustrates the fact that the “natural” representation of a mod-
ule by an automaton is not necessarily the one using canonical words. To get the
standard mem automaton, we selected a prefix-closed set of canonical words, and
then used the construction of Proposition 1. More examples of this type follow.

11 Set

This example is derived from the“intset” example [6], discussed also in [15]. We
start with an empty set S. We can add any integer z to S using INSERT(z),

denoted by z; it does not change S if z ∈ S. DELETE(z), denoted by z̄, removes
z from S, and does nothing if z 6∈ S. MEMBER(z), denoted by ż, returns false
if z 6∈ S, and true if z ∈ S.

Let Z̄ = {z̄ | z ∈ Z}, and Ż = {ż | z ∈ Z}. The obvious definition of a set
automaton uses all finite sets of integers as states.

The set semiautomaton is illustrated in Fig. 7.

{2, 6, 7}

∅ {2, 7}{7}
7

7̄ 2̄

2 4

1̄1

11

1̄, 7̄, 1̇, 7̇, . . . 7, 7̇, 1̄, . . .7, 7̇, 1̄, . . . 7, 7̇, 1̄, . . .

6

7

7̄

6 6

2

2̄
{6, 7}{6}

11

1̄1

6, 7̇, 1̄, . . .

6̄ 6̄ 6̄

4̄

{2, 4, 7}

Fig. 7. Set semiautomaton

Definition 6. The set automaton is M ′ = (Σ, Q′, δ′, q′0, F
′, Ω, ν′), where Σ =

Z ∪ Z̄ ∪ Ż, Q′ is the set of all finite subsets of Z, q′0 = ∅, F ′ = Q′, Ω =
{true, false}, and

M1 δ′(q′, z) = q′ ∪ {z}, ∀q′ ∈ Q′, z ∈ Z,

M2 δ′(q′, z̄) = q′ \ {z} ∀q′ ∈ Q′, z ∈ Z,

M3 δ′(q′, ż) = q′, ∀q′ ∈ Q′, z ∈ Z,

O ν′(q′, ż) = z ∈ q′, ∀q′ ∈ Q′, z ∈ Z.

As was the case with our first definition of mem, this definition is not in our
standard form. As with mem, the representative of a state is not a word in Σ∗.
Furthermore, rule M1 represents both the case where the extension leads to a
new canonical state, and the case where the state does not change. To obtain a
standard form we need to choose a new state representation.

Define the function setsort : Q′ → Z∗ as follows: setsort(∅) = ε, and if
q′ = {z1, . . . , zn} ∈ Q′, setsort(q′) is the word that consists of z1, . . . , zn arranged
in decreasing order. Note that the image setsort(Q′) is the set of all sorted
words without repeated letters. Define function set : Z∗ → Q′ as follows. If
w = z1 . . . zn ∈ Z∗, then set(w) = {z1, . . . , zn}. Define sort as we did for the
mem. For w ∈ Z∗ and z ∈ Z, we write z ∈ w if letter z appears in word w. We

now represent states by words in Q = sort(Z∗). This set is prefix closed. For the
canonical word of state q′ ∈ Q′, we now choose setsort(q′). All words are legal.

Definition 7. The standard set automaton is M = (Σ, Q, δ, qε, F, Ω, ν), where

Σ = Z ∪ Z̄ ∪ Ż, Q = setsort(Q′), qε = ε, F = Q, Ω = {true, false}, and

C1 δ(q, z) = setsort(set(q) ∪ {z}), ∀q ∈ Q, z ∈ Z, z 6∈ q,

N1 δ(q, z) = q, ∀q ∈ Q, z ∈ Z, z ∈ q,

N2 δ(q, z̄) = setsort(set(q) \ {z}), ∀q ∈ Q, z ∈ Z,

N3 δ(q, ż) = q, ∀q ∈ Q, z ∈ Z,

O1 ν(q, ż) = false, ∀q ∈ Q, z ∈ Z, z 6∈ q,

O2 ν(q, ż) = true, ∀q ∈ Q, z ∈ Z, z ∈ q.

One verifies that the two automata are isomorphic and reduced.

12 Linked List

This example is similar to the Table/List of [1]. A linked list, which we call llist , is
initially empty. When nonempty, the llist contains a list of integers and a pointer
to the current element in the llist. For example, the notation z4z1z3ż1z2 means
that the llist now contains (z4, z1, z3, z1, z2), and the current pointer points to
the fourth element in the list. The INSERT(z) operation, denoted by z, inserts
z to the left of the current element, and z becomes the current element. Thus,
the new llist is z4z1z3żz1z2. Operations LEFT and RIGHT, denoted l and r,
move the current pointer to the left and right, respectively. Operation DELETE
removes the current element and the element to its right becomes current. It
is possible to move to the right past the last element in the llist, but not any
further.4 It is not possible to move to the left past the first element. For example,
the trace z3z2rrz1lldd produces the following consecutive llists, starting with the
empty llist, ε:

ε, (ż3), (ż2, z3), (z2, ż3), (z2, z3), (z2, z3, ż1), (z2, ż3, z1), (ż2, z3, z1), (ż3, z1), (ż1).

In the list (z2, z3) the pointer is just to the right of the last element. Another
move to the right is illegal. In (ż3) a move to the left is illegal.

The llist also has operation CURRENT, denoted by c, which returns the
value of the current integer, if there is one, and is illegal, otherwise.

For our first definition, in our state representation we use a pair (u, v) of
words, and the current pointer is assumed to be on the first letter of v.

The llist semiautomaton is illustrated in Fig. 8.

Definition 8. The llist automaton is M = (Σ, Q′, δ, q′0, F
′, Ω, ν′), where Σ =

{c, d, l, r} ∪ Z, Q′ = (Z∗ ×Z∗) ∪ {∞}, q′0 = (ε, ε), F ′ = (Z∗ ×Z∗), Ω = Z, and

4 In an implementation, one would require another pointer or a doubly linked list.
However these issues are not of interest to the specification.

c

ε, z2z1ε, z1ε, ε

a ∈ Σ

z1 z2 z3

l

z3, z2z1

z3z2, z1

z2, z1

∞

d d

z4

r r
d

c

d
r l l

z1, ε

z2z1, ε

ε, z3z2z1

z3z2z1, ε

l lrr

lr

c, d, l, r

c c c

l

c, d, r

c, d, r

l

c

c

l
d

z2, ε

c, d, r
z5

z2z1, z5

c

c

Fig. 8. Llist semiautomaton

M1 δ′((u, v), z) = (u, zv), ∀u, v ∈ Z∗, z ∈ Z,

M2 δ′((u, zv), r) = (uz, v), ∀u, v ∈ Z∗, z ∈ Z,

M3 δ′((u, ε), c) = ∞, ∀u ∈ Z∗,

M4 δ′((u, ε), d) = ∞, ∀u ∈ Z∗,

M5 δ′((u, ε), r) = ∞, ∀u ∈ Z∗,

M6 δ′((ε, v), l) = ∞, ∀v ∈ Z∗,

M7 δ′(∞, a) = ∞, ∀a ∈ Σ,

M8 δ′((u, zv), d) = (u, v), ∀u, v ∈ Z∗, z ∈ Z,

M9 δ′((uz, v), l) = (u, zv), ∀u, v ∈ Z∗, z ∈ Z,

M10 δ′((u, zv), c) = (u, zv), ∀u, v ∈ Z∗, z ∈ Z,

O ν′((u, zv), c) = z, ∀u, v ∈ Z∗, z ∈ Z.

While this is a reasonable choice for the state representation, it does not give
us a standard automaton because the state representatives are not words in Σ∗.

For w ∈ Σ∗, let wρ be the reversal of w. For the canonical trace leading to
state (u, v) we choose (uv)ρr|u|, and we pick c for ∞. This set is prefix-closed.
Thus, legal canonical traces are all of the form w = z1 . . . znrk, where 0 ≤ k ≤ n.
We introduce the following notation: if i ≤ j, then w|ji = zi . . . zj . Observe that,
when w = z1 . . . zn is applied, the resulting state is (ε, zn . . . z1). If r is now
applied n times, the result is (zn . . . z1, ε). In any such state, operations c, d, and
r are illegal, while l results in (zn . . . z2, z1), and z yields (zn . . . z1, z). In case
k < n, the final state is (zn . . . zn−k+1, zn−k . . . z1). Operations c, d, r and z are
legal, and l is legal provided k > 0. We are now ready to state our standard
definition.

Definition 9. The standard llist automaton is M = (Σ, Q, δ, qε, F, Ω, ν), where

Σ = {c, d, l, r} ∪ Z, F = {wrk | w ∈ Z∗, 0 ≤ k ≤ |w|}, Q = F ∪ {∞}, qε = ε,

Ω = Z, and, for w = z1 . . . zn,

C1 δ(wrk , z) = w|n−k
1 zw|nn−k+1r

k, ∀w ∈ Z∗, k ≤ n = |w|,
C2 δ(wrk , r) = wrk+1, ∀w ∈ Z+, k < n = |w|,
C3 δ(ε, c) = c,

N1 δ(wr|w|, c) = c, ∀w ∈ Z+,

N2 δ(wr|w|, d) = c, ∀w ∈ Z∗,

N3 δ(wr|w|, r) = c, ∀w ∈ Z∗,

N4 δ(w, l) = c, ∀w ∈ Z∗,

N5 δ(c, a) = c, ∀a ∈ Σ,

N6 δ(wrk , d) = w|n−k−1
1 w|nn−k+1r

k , ∀w ∈ Z+, k < n = |w|,
N7 δ(wrk , l) = wrk−1 , ∀w ∈ Z+, 0 < k < n = |w|,
N8 δ(wrk , c) = wrk , ∀w ∈ Z+, k < n = |w|,
O1 ν(wrk , c) = zn−k, ∀w ∈ Z+, k < n = |w|.

Note that the following are corresponding pairs: (M1, C1), (M2, C2), (M4,

N2), (M5, N3), (M6, N4), (M7, N5), (M8, N6), (M9, N7), (M10, N8), and
(O, O1). Rules C3 and N1 combined correspond to M3. One verifies that this
automaton is reduced, and isomorphic to the automaton in our first definition.

13 Traversing Stack

This example, taken from [8], has some features of both the stack of Section 8
and the linked list of Section 12.

A traversing stack, which we call tstack , is initially empty. When nonempty,
the tstack contains a list of integers and a pointer to the current element in the
tstack. For example, the notation z4z1z3ż1z2 means that the tstack now contains
(z4, z1, z3, z1, z2), and the current pointer points to the fourth element in the list.
The PUSH(z) operation, denoted by z, is permitted only if either the tstack is
empty, or the current pointer points to its leftmost element, which is the top
of the tstack. When legal, operation PUSH(z) inserts z to the left of the top
element, and z becomes the new top. Operation POP, denoted by p, is legal
only if the stack is nonempty and the top element is the current one. Operation
RIGHT (called “down” in [8]), denoted r, moves the current pointer to the right,
provided there is at least one element to the right of the current one. Operation
TOP, legal when the tstack is nonempty, moves the current pointer to the top
element. Operation CURRENT, denoted by c, returns the value of the current
element.

As in the case of the llist, in our first definition of the tstack we represent each
legal state by a pair (u, v) of words. Either both u and v are empty, or v 6= ε and
the current pointer is assumed to be on the first letter of v. Let R = {ε} × Z+

and S = Z+ × Z+.
The tstack semiautomaton is illustrated in Fig. 9.

z, p

ε, z2z1 ε, z3z2z1ε, z1ε, ε

a ∈ Σ

z1 z2 z3

p
t t

z, p, r

z3, z2z1

z3z2, z1

z2, z1

∞

c, p, r, t

z, p, r

c, t c, tc, t

p p

z4

r

r r
p

t

r

c c

c

Fig. 9. Tstack semiautomaton

Definition 10. The tstack automaton is M = (Σ, Q′, δ, q′ε, F
′, Ω, ν′), where

Σ = {c, p, r, t} ∪ Z, Q′ = R ∪ S ∪ {(ε, ε),∞}, q′ε = (ε, ε), F ′ = Q′ \ ∞, Ω = Z,

and

M1 δ′((ε, v), z) = (ε, zv), ∀v ∈ Z∗, z ∈ Z,

M2 δ′((u, zz′v), r) = (uz, z′v), ∀u, v ∈ Z∗, z, z′ ∈ Z,

M3 δ′((ε, ε), c) = ∞,

M4 δ′((ε, ε), p) = ∞,

M5 δ′((ε, ε), r) = ∞,

M6 δ′((ε, ε), t) = ∞,

M7 δ′(∞, a) = ∞, ∀a ∈ Σ,

M8 δ′(q, c) = q, ∀q ∈ R ∪ S,

M9 δ′((ε, zv), p) = (ε, v), ∀v ∈ Z∗, z ∈ Z,

M10 δ′(q, p) = ∞, ∀q ∈ S,

M11 δ′((u, a), r) = ∞, ∀u ∈ Z∗, a ∈ Σ,

M12 δ′((u, v), t) = (ε, uv), ∀u ∈ Z∗, v ∈ Z+,

M13 δ′((u, v), z) = ∞, ∀u, v ∈ Z+, z ∈ Z,

O ν′((u, zv), c) = z, ∀u, v ∈ Z∗, z ∈ Z.

For the canonical trace leading to state (u, v) we choose (uv)ρr|u|, and we pick
c for ∞. This set is prefix-closed. Thus, legal canonical traces are all of the form
w = z1 . . . znrk, where 0 ≤ k < n. When w = z1 . . . zn is applied, the resulting
state is (ε, zn . . . z1). If r is applied (n − 1) times, the result is (zn . . . z2, z1). In
any such state, operations p, r, and z are illegal, while c does not change the
state, and t moves the state back to (ε, zn . . . z1). In case 1 < k < n−1, the final

state is (zn . . . zn−k+1, zn−k . . . z1). Operations c, r and t are legal, but p and z

are illegal. We are now ready to state our standard definition.

Definition 11. The standard tstack automaton is M = (Σ, Q, δ, qε, F, Ω, ν),
where Σ = {c, p, r, t} ∪ Z, F = {wrk | w ∈ Z∗, 0 ≤ k < |w|}, Q = F ∪ {∞},
qε = ε, Ω = Z, and, for w = z1 . . . zn,

C1 δ(u, z) = uz, ∀u ∈ Z∗, z ∈ Z,

C2 δ(wrk , r) = wrk+1, ∀w ∈ Z∗, k < |w| − 1,

C3 δ(ε, c) = c,

N1 δ(ε, p) = c,

N2 δ(ε, r) = c,

N3 δ(ε, t) = c,

N4 δ(c, a) = c, ∀a ∈ Σ,

N5 δ(wrk , c) = wrk , ∀w ∈ Z+, k < |w| − 1,

N6 δ(wz, p) = w, ∀w ∈ Z∗, z ∈ Z,

N7 δ(wrk , p) = c, ∀w ∈ Z+, 0 < k,

N8 δ(wrk , r) = c, ∀w ∈ Z+, k = |w| − 1,

N9 δ(wrk , t) = w, ∀w ∈ Z+, 0 ≤ k < |w|,
N10 δ(wrk , z) = c, ∀w ∈ Z+, 0 < k < |w|,
O1 ν(wrk , c) = zn−k, ∀w ∈ Z+, n = |w|.

One verifies that this automaton is reduced, and isomorphic to the automaton
in our first definition.

14 Bounded Stacks

In practice, stacks are finite in two senses. First, the size of the stack is limited
by some maximum capacity n. Second, the size of the integer is limited to some
maximum value b.

Let B = {z | 0 ≤ z ≤ b}, and let Bn =
⋃n

i=0 Bi. It is illegal to push an integer
if either that integer is not in B, or the stack is full, that is, has depth n. The
stack automaton of Section 8 needs to be modified. For canonical representatives
of legal states we choose q ∈ Bn, and for the illegal state we pick p.

The bounded stack semiautomaton is illustrated in Fig. 10, with n = 2, and
B = {0, 1}.

Definition 12. The bounded stack automaton is a Mealy automaton M =
(Σ, Q, δ, qε, F, Ω, ν), where Σ = {d, p, t} ∪ Z, Q = Bn ∪ {p}, qε = ε, F = Bn,

Ω = B ∪ {p}, and

0, 1

d ε

10

01 10 1100

p

p, t

0 1
pp

p p
10 0 1

pp

d, t

d, t d, t

d, t

a ∈ Σ

0, 1
d, td, t0, 1

0, 1

Fig. 10. Bounded stack semiautomaton

C1 δ(q, z) = qz, ∀q ∈ Bn−1, z ∈ B,

C2 δ(ε, p) = p,

N1 δ(q, z) = p, if q ∈ Bn or z ∈ Z \ B,

N2 δ(ε, t) = p

N3 δ(q, d) = q, ∀q ∈ Bn,

N4 δ(p, a) = p, ∀a ∈ Σ,

N4 δ(qz, t) = qz, ∀q ∈ Bn−1, z ∈ B,

N5 δ(qz, p) = q, ∀q ∈ Bn−1, z ∈ B,

O1 ν(q, d) = |q|, ∀q ∈ Bn,

O2 ν(qz, t) = z, ∀q ∈ Bn−1, z ∈ B.

It is clear that such simple modifications can also be made in the other
modules we have described to handle the bounded cases.

As a second example, we illustrate how different errors can be handled. Sup-
pose we wish to distinguish the following cases:

– “stack empty”: operation is illegal because the stack is empty,
– “illegal input”: operation is illegal because input data is out of bounds,
– “stack full”: operation is illegal because the stack is full.

We split the illegal state p above into three states: a state, also called p,
corresponding to the empty stack violation; state −1, representing all illegal in-
tegers; and state 0n+1, representing stack overflow. The modified stack definition
is given below. There are no inherent difficulties in handling such error condi-
tions, except for the larger number of cases that need to be distinguished. When

an attempt is made to push an illegal integer onto a full stack, we arbitrarily
decide to provide the error message “illegal input”.

Definition 13. The error-handling stack automaton is a Mealy automaton M =
(Σ, Q, δ, qε, F, Ω, ν), where Σ = {d, p, t} ∪ Z, Q = Bn ∪ {p,−1, 0n+1}, qε = ε,

F = Bn, Ω = B ∪ { stack empty, illegal input, stack full }, and

C1 δ(q, z) = qz, ∀q ∈ Bn−1, z ∈ B,

C2 δ(ε, p) = p,

C3 δ(ε, z) = −1, ∀z ∈ Z \ B,

C4 δ(q, z) = 0n+1, ∀q ∈ Bn, z ∈ B,

N1 δ(q, z) = −1, ∀q ∈ Bn \ {ε}, z ∈ Z \ B,

N2 δ(ε, t) = p,

N3 δ(q, d) = q, ∀q ∈ Bn,

N4 δ(p, a) = p, ∀a ∈ Σ,

N5 δ(−1, a) = −1, ∀a ∈ Σ,

N6 δ(0n+1, a) = 0n+1, ∀a ∈ Σ,

N7 δ(qz, t) = qz, ∀q ∈ Bn−1, z ∈ B,

N8 δ(qz, p) = q, ∀q ∈ Bn−1, z ∈ B,

O1 ν(q, d) = |q|, ∀q ∈ Bn,

O2 ν(qz, t) = z, ∀q ∈ Bn−1, z ∈ B,

O3 ν(ε, p) = stack empty,
O4 ν(ε, t) = stack empty,
O5 ν(q, z) = illegal input, ∀q ∈ Bn, z ∈ Z \ B,

O6 ν(q, z) = stack full, ∀q ∈ Bn, z ∈ B.

15 Conclusions

We have shown that the problem of finding equivalence assertions for a module is
equivalent to the problem of finding a generating set for its semiautomaton. We
proved that a canonical set of traces generates the state-equivalence if and only
if the empty word is canonical. Furthermore, the associated re-writing system is
well-behaved if and only if the canonical set is prefix-closed. The canonical sets
are then irredundant. We point out that a specification should use a reduced au-
tomaton. These results hold for finite and infinite automata. Finally, we provide
trace-assertion specifications of several common modules.

Acknowledgments: This research was supported by the Natural Sciences and
Engineering Research Council of Canada under grants No. OGP0000871 and
OGP0000243. The authors thank Jack Chen for suggesting the example of the
set module.

References

1. Bartussek, W. and Parnas, D.: Using Assertions About Traces to Write Abstract
Specifications for Software Modules. Report No. TR77-012, University of North
Carolina at Chapel Hill, December (1977) 111–130

2. Bartussek, W. and Parnas, D.: Using Assertions About Traces to Write Abstract
Specifications for Software Modules. Inform. Syst. Methodology, in Lecture Notes

in Computer Science 65 , Springer (1978) 211–236
3. Bartussek, W. and Parnas, D.: Using Assertions About Traces to Write Abstract

Specifications for Software Modules. Software Fundamentals (Collected Works by
D. L. Parnas), D. M. Hoffman and D. M. Weiss, eds., Addison-Wesley (2001) 9–28

4. Book, R. V. and Otto, F.: String-Rewriting Systems. Springer-Verlag, Berlin (1993)
5. Gécseg, F. and Peák, I.: Algebraic Theory of Automata. Akadémiai Kiadó, Bu-

dapest (1972)
6. Guttag, J. V., Horowitz, E. and Musser, R.: The Design of Data Type Specifica-

tions. In Current Trends in Programming Methodology , vol. IV, R. T. Yeh, ed.,
Prentice-Hall, (1978) 60–79

7. Hoffman, D.: The Trace Specification of Communications Protocols. IEEE Trans.
Computers, vol. C34, no. 12, (1985), 1102–1113

8. Hoffman, D. and Snodgrass, R.: Trace Specifications: Methodology and Models.
IEEE Trans. Software Engineering, vol. 14, no. 9, (1988), 1243–1252

9. Iglewski, M., Kubica, M., Madey, J., Mincer-Daszkiewicz, J. and Stencel, K.:
TAM’97: The Trace Assertion Method of Module Interface Specification. Refer-
ence Manual, (1997), http://w3.uqah.uquebec.ca/iglewski/public html/TAM/

10. Janicki, R. and Sekerinski, E.: Foundations of the Trace Assertion Method of
Module Interface Specifications. IEEE Trans. Software Engineering, vol. 27, no. 7,
(2001), 577–598

11. Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York (1978)
12. McLean, J.: A Formal Method for the Abstract Specification of Software. J. ACM,

vol. 31, no. 3, July (1984), 600–627
13. Parnas, D. L. and Wang, Y.: The Trace Assertion Method of Module Interface

Specification. Tech. Rept. 89–261, Queen’s University, C&IS, Telecommunication
Research Institute of Ontario (TRIO), Kingston, ON, Canada (1989)

14. Starke, P. H.: Abstract Automata. North-Holland, Amsterdam (1972)
15. Wang, Y.: Formal and Abstract Software Module Specifications — A Survey.

Tech. Rept. 91–307, Computing and Information Science, Queen’s University,
Kingston, ON, (1991)

16. Wang, Y. and Parnas, D. L.: Simulating the Behavior of Software Modules by
Trace Rewriting. IEEE Trans. on Software Engineering, vol. 20, no. 10, October
(1994) 750–759

