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Abstract. Hazards pulses are undesirable short pulses caused by stray
delays in digital circuits. Such pulses not only may cause errors in the
circuit operation, but also consume energy, and add to the computa-
tion time. It is therefore very important to detect hazards in circuit
designs. Two-valued Boolean algebra, which is commonly used for the
analysis and synthesis of digital circuits, cannot detect hazard conditions
directly. To overcome this limitation several multi-valued algebras have
been proposed for hazard detection. This paper surveys these algebras,
and studies their mathematical properties. Also, some recent results uni-
fying most of the multi-valued algebras presented in the literature are
described. Our attention in this paper is restricted to the study of static
and dynamic hazards in gate circuits.

1 Introduction

The two-element Boolean algebra, Az, has been the standard algebra for circuit
analysis and design, since Shannon’s pioneering work in 1938 [40]. The problem
of hazards has been recognized very early; hazards were already discussed in
1951 in a book by Keister, Ritchie and Washburn [28]. Tn 1957 Huffman [27]
proposed informal definitions of static and dynamic hazards, and provided some
characterizations of these hazards. Roughly speaking, a static hazard is one or
more pulses occurring in a signal which should be constant, and a dynamic
hazard is one or more pulses in a signal that is changing from one binary value
to the other. A more formal treatment of hazards was given by McCluskey [33]
in 1962, and further results were obtained by Unger [42] in 1969. These early
works used the two-valued Boolean algebra for gate circuits.

Although the above-mentioned binary methods were successfully applied to
a number of problems related to hazards, they are indirect, and require the use



of such tools as Karnaugh maps, or detailed knowledge of the circuit structure
including wire delays. Consequently, researchers turned their attention to alge-
bras using more than two values, with the hope of finding a more direct method
for hazard detection.

The first nonbinary hazard algebra was the three-valued ternary algebra,
which we call Ag, introduced by Goto [22] in 1948. In 1953 a four-valued algebra,
A4, was described by Metze [34]. A five-valued algebra, As, was presented by
Lewis [32] in 1972. A six-valued algebra, Ag, was derived by Hayes [25] in 1986
for the detection of static hazards. An eight-valued algebra, Ag, is implicit in
the 1974 work of Breuer and Harrison [5]. The same algebra is also implicit
in the 1974 work of Fantauzzi [20], who presented a nine-valued algebra, Ag.
In 1986 Hayes [25] studied the then-known multi-valued algebras. He presented
general methods for constructing new algebras. Using these methods he obtained
a thirteen-valued algebra, Ays. Breuer and Harrison [5] proposed a 27-valued
algebra, A a7, for eliminating hazards in test generation.

In several papers mentioned above, little attention has been paid to the math-
ematical structure of hazard algebras. This paper summarizes the mathematical
properties of hazard algebras, and examines their completeness and usefulness
for hazard detection.

Some very recent results by Brzozowski and Esik [8,9] generalize and unify
most of the previous work on hazard algebras. An infinite algebra, C, and an
infinite number of finite algebras, Cy, were introduced for counting signal transi-
tions and hazard pulses. A characterization of the results of simulation in algebra
C for a restricted class of feedback-free circuits has been given by Gheorghiu [21].

The remainder of the paper is structured as follows. Section 2 introduces the
algebraic laws which occur in many of the hazard algebras. Sections 3-10 examine
the mathematical and hazard-detecting properties of the hazard algebras with
three, four, five, six, eight, nine, thirteen and 27 elements. Section 11 summarizes
the recent work by Brzozowski and Esik on the infinite hazard algebra, and its
application to the classification of hazard algebras.

2 Laws of hazard algebras

Logic circuits are often viewed as being constructed with OR gates, AND gates
and inverters. Thus, algebras for such circuits naturally have three operations,
+, %, and ~, corresponding to these gates. The normal logic values are denoted
by 0 and 1, and an unknown value (if present in the algebra) is represented by
@. The values 0, 1, and @ are constants in the algebras. For these reasons, we
are dealing with general algebraic systems having the form P = (A4, +,,7,0, 1},
where A is a set of elements, + and * are binary operations on .4, ~ is a unary
operation on A, and 0 and 1 are constants in .4. We take the liberty of considering
@ as a constant of the algebra whenever appropriate.

Various subsets of the following set of laws have been used to describe al-
gebraic structures defined for the study of hazard algebras. We first recall the
definitions of several algebraic systems. A semigroup is a system S = (A, +)



Table 1. Laws pertaining to hazard algebras

For all a,b,c € A:

Idempotence Llad+a=a Ll'axa=a
Commutativity 12a+b=b+a 1.2 axb=bxa
Associativity L3a+(b+c)=(a+b)+c L3 a*(b*c)=(axb)*c
Absorption Lia+ (axb)=a L4 a*x(a+b)=a
Identity Lba+0=a L axl=a

Bounding Il6a+1=1 16'ax0=0
Distributivity L7ia+ (b+c)=(a+b)*x(a+c) LT ax(b+c)=(a*xb)+ (a*c)
Involution L8 @ =a

De Morgan’s laws L9 (a+b) =@ * b L9 (a+b) =a+ b
Complement laws L10a+a=1 L10' axa=0

Ternary laws Ll (a+a)+P=a+a L1l (a*xa)«P=axa

Self-complement 1126 = &

satisfying L3. A bisemigroup [8,9] is a pair of semigroups, S} = (A, +) and
S« = (A, «), with the same underlying set. A bisemigroup is commutative if
both of its operations are commutative, i.e., if it satisfies 1.2 and 1.2/. A bisemi-
group is bounded if it has two constants 0 and 1 satisfying L5, L5, L6, and L6". A
commutative bisemigroup is de Morgan [8,9, 19] if it is bounded and has a unary
operation ~ satisfying L8, L9 and L9'. A semilattice is a semigroup satisfying L1
and L2. A bisemilattice [6] is a pair of semilattices Sy = (A4, +) and S. = (A, )
which have the same underlying set. A bisemilattice is de Morgan [6] if it is
bounded and satisfies L8, L9 and L9'. A lattice is a bisemilattice satisfying L4
and L4'. A lattice is said to be bounded if L5, L5, L6 and L6’ hold. A lattice is
said to be distributive if LT and L7 hold. A de Morgan algebra is a bounded,
distributive lattice equipped with a ~ operation satisfying L8, L9 and L9'. A de
Morgan algebra is a Boolean algebra if 110 and L.10" hold. A de Morgan algebra
is a ternary algebra [13] if it contains @, and L11, L11" and L12 hold.

A binary relation on .4 which is reflexive, antisymetric and transitive is called
a partial order on A. For a,b,¢c € A, ¢ is the least upper bound ({ub) of a and
bifa <e¢, b<e and for any d such that ¢ < d and b < d, we have ¢ < d. If
the lub exists for every pair of elements in a partially ordered set (poset), let
a + b = lub{a, b}. Then (A, +) is a semilattice. Conversely, given a semilattice
operation +, define @ < b iff @ + b = b. Then < is a partial order such that
a + b is in fact the least upper bound of @ and b, for any a,b € A. A Hasse
diagram representing such a partial order is then a convenient way of defining
the operation +.

In a bisemilattice [6] {4, +, ) there are two partial orders:

a<biffa+b=n"b,

and
aCbiffaxb=a.
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Fig. 1. Partial orders for As: (a) < and C; (b) uncertainty order

In case the bisemilattice is a lattice, these partial orders coincide.

3 The three-valued algebra

Three-valued algebra has been introduced by Goto [22,23] (1948). Other early
work using three-valued algebra for hazard detection includes the papers by
Moisil [35] (1956), Roginskii [38] (1959), Muller [36] (1959), Yoeli and Rinon [43]
(1964), and Eichelberger [17] (1965).

In three-valued algebra, 0 and 1 are logic 0 and logic 1 respectively, while
@ represents an unknown value. The operations of the three-valued algebra are
shown in Table 2. It is easily verified that the three-valued algebra is a ternary

Table 2. Operations of three-valued algebra

+(0d1 *(0P 1 ala
0021 0000 1(0
dlPdP1 b00 P b\
11111 11001 0]1

algebra (defined above). It is not a Boolean algebra, since ®+® = &+& = & +# 1,
which violates the complement law. The partial order corresponding to the +
and * operations in the three-valued algebra is given in Fig. 1(a). We can read
off the result of either binary operation from this figure. For example, @+ 1 =1
since the least upper bound of {®,1} is 1, and @ * 0 = 0 since the greatest lower
bound of {0,$} is 0.

At this point it is convenient to describe some of the results in the 1986 paper
of Hayes [25], in which the author surveys the algebras that have been used for
hazard detection and other simulation tasks. He also clarifies a number of issues,
introduces a unified notation, and describes two methods for generating new
hazard algebras from smaller ones. Here we digress to describe the first method
of Hayes, which sheds further light on algebra Ag.



The first method constructs a new algebra A’ from a given algebra A. The
underlying set A’ of A’ is a subset of the power set of the underlying set A of
A. The operations are extended from A to A’ as follows. If X1,..., X, are in
24 and f(z1,...,2,) is an n-ary operation in A, then f is extended to A’ by
defining f(X1,..., Xn) ={f(z1,...,2n) |2s € Xs,i=1,...,n}.

For example, let the given algebra be As. We can choose the following sub-
set of 21%1}: {10}, {1}, {0,1}} as the underlying set of a new algebra, A%. Hayes
observes that Aj% is isomorphic to Ag, as the reader can easily verify. The cor-
respondence is {0} — 0, {1} — 1, and {0,1} — &.

Eichelberger [17] introduces an efficient method for hazard and race detec-
tion. His ternary simulation consists of two algorithms, A and B, which use the
uncertainty partial order shown in Fig. 1(b). This partial order puts values with
more uncertainty higher in the order. We want to analyze what happens when
some inputs change from their initial binary values to their final binary values.
We first apply Algorithm A, in which the changing inputs are set to the un-
certain value @. We then simulate the circuit using the three-valued algebra to
determine whether the uncertainty introduced by the changing inputs can spread
to other gates. All unstable variables are changed at the same time. It can be
shown that in Algorithm A a variable can only change from a binary value to
@, or it can remain unchanged. Thus, Algorithm A stops in at most n steps, if
there are n gates in the circuit.

Algorithm B uses the output of Algorithm A as the initial state, and now
simulates the circuit using the final values of the changing inputs. This time a
variable can only change from & to a binary value, or it can remain constant.
Algorithm B also terminates in at most n steps.

A static hazard is detected if an output has the same value in the initial state
of Algorithm A and in the final state of Algorithm B, but has value @ in the
final state of Algorithm A. Ternary simulation cannot detect dynamic hazards,
but it can detect oscillations in sequential circuits. The method is described in
detail in [13].

Ternary simulation was shown to be correct with respect to binary analysis
by Brzozowski and Seger [11-13]. A more general version, which does not require
that the initial state of the circuit be stable, was described in [39]. Brzozowski,
Lou and Negulescu [10] gave a set-theoretic characterization of finite ternary
algebras, and this result was generalized to the infinite case by Esik [18]. Free
ternary algebras were recently characterized by Balbes [2].

The three-valued algebra has been used in circuit simulators, for example, in
the TEGAs simulator of Thompson and Szygenda [41]. Three-valued simulation
is also described in a 1976 book by Breuer and Friedman [4].

Summary: Simulation in the three-valued algebra, Ag, is an efficient method
for detecting static hazards, but cannot handle dynamic hazards. Its correctness
with respect to binary analysis has been proven. Algebra Ag is the smallest
example of ternary algebra; the mathematical properties of ternary algebra are
well understood. We return to Az in Section 11.



4 The four-valued algebra

The four-valued algebra of Metze has the form P = (A, +,%,7,0,1), where A
= {0, 1/0, 0/1, 1}, + and * are defined in Table 3, and {0,1} and {0/1,1/0}
are complementary pairs. The values 0 and 1 are the usual logic values, and 0/1
and 1/0 represent transitions from 0 to 1 and 1 to 0, respectively. The same
partial order corresponds to both operations + and x; it is in fact a total order:

0<1/0<0/1<1.

Table 3. Operations + and * in A4

+10 1/00/11 * [01/00/1 1

00 1/00/T1 0100 0 0

1/0[1/0 1/0 0/1 1 1/0[0 1/0 1/0 1/0
0/1|0/10/10/1 1 0/1|01/0 0/1 0/1
11 1 11 1]01/00/1 1

Metze observes that addition and multiplication in A4 are idempotent, com-
mutative and associative, and that the distributive, involution, and de Morgan’s
laws hold.

From Table 3 it is clear that Metze’s algebra satisfies also the absorption,
identity, and bounding laws. Hence A4 is a de Morgan algebra. It is not a Boolean
algebra, since

0/14+0/1=0/1+1/0=0/1# 1.

Since A4 does not have a self-complementary element, it is not a ternary algebra.
Metze’s algebra is at least as powerful as Ag, since the mappingh : Ay — Ag,
defined below is a surjective homomorphism:

h(1)=1, h(0)=0, h(0/1)=h(1/0)=.

Thus, if we perform a simulation in A4 and apply this homomorphism to the
results, we obtain the results of ternary simulation.

Metze presents some examples in which one can detect hazards by examining
sequences of values that can occur in a circuit output. For example, if an output
sequence is 0,1/0, 1, then there is dynamic hazard. However, these methods are
rather involved, and no general algorithm is described.

Summary: From the hazard point of view, A4 is a step in the right direction,
but has a flaw, as we discuss in the next section. Algebra A4 is a de Morgan
algebra. A set-theoretic characterization of de Morgan algebras was recently
discovered by Brzozowski [T7].



5 The five-valued algebra

In 1972 Lewis presents a successful generalization of Ag [32], and corrects the
flaw in A4. He notes that A4 has no element to represent a signal for which
neither the actual value (0 or 1) nor the direction of a transition (if there is one)
is known. Also, since Ag has no values to represent transitions without hazards,
it cannot differentiate between such transitions and the corresponding dynamic
hazards. Thus, Lewis adds @ to Metze’s algebra, and modifies the operations
so that 0/1 and 1/0 now represent transitions without hazards. He defines a
five-valued algebra, A, with values (in our notation) 0, 1, 01 (representing a
0-to-1 transition without hazards), 10 (a 1-to-0 transition without hazards), and
@ (an unknown value). Table 4 shows the operations 4+ and . The pairs {0, 1}
and {01, 10} are complementary, and & = &. Five-valued simulation is described
by Breuer and Friedman [4].

Table 4. + and * operations for Ajg

+|0 019101 * 001910 1
0(0 014101 000000
0101019 & 1 01001 ¢ & 01
P DDPD1 P00 PP P
10{10 & ¢ 101 10(0 @ & 10 10
11 1111 1100110 1

Algebra Asj is not a lattice, since the absorption law fails:
01%(01+10)=01%xP = #£01.
Distributivity does not hold because
01+ (104+1)=01#P=P+01=(01%10)+(01=x1).

The five-valued algebra satisfies the laws of a de Morgan bisemilattice. Details
of the verification are given in [3]. De Morgan bisemilattices were studied by
Brzozowski [6], who showed that As is even more special, since it is a locally
distributive de Morgan bilattice. He also provided a set-theoretic characteriza-
tion for locally distributive de Morgan bilattices.

The partial orders for the five-valued algebra are given in Fig. 2 (a) and (b).

Hayes [25] uses Ajg to give a second example of the application of his power-
set method. Algebra A5 can be constructed using five elements of 242X42 with
As = {0, 1}, and with the following correspondence:



Fig. 2. Partial orders for Aj: (a) <; (b) C

H

,0)}
}
01+—>{ (0, 1), (1, 1)}

10— {(1,1),(1,0), (0,0}
@+ {(0,0), (0, 1), (1,0, (1,1)}

(0,0)
= {(1,1)
(0,0)
(1,1),
Summary: Algebra Ajs is capable of detecting both static and dynamic hazards.

It is a de Morgan bisemilattice and a locally distributive de Morgan bilattice [6],
but not a de Morgan algebra. We return to Ajg in Section 11.

6 The six-valued algebra

In this section it is convenient to discuss the second method of Hayes since the
six-valued algebra is generated by this technique. This is the subdirect prod-
uct [24] method. We obtain the underlying set A of a new algebra by taking
a subset S of the direct product P of the underlying sets Aq,..., A, of some
n algebras, such that § determines a subalgebra of P, and each element of
each A; appears as the ith component of some element of S. We define the
operations on A componentwise, using the operations on the n algebras. For ex-
ample, algebra Ag is defined using Az and two copies of Aa. More specifically,
Ag = (A, +,%,7,0,1), where

As = {(0,0,0), (0,9,0),(0,8,1),(1,9,0), (1,&,1),(1,1,1)}
is a subset of Ay x A3z x A2, Ay = {0,1}, and A3 = {0,®,1}. For +, the first
and third components are added in A3, and the second component, in Ag; the
other two operations are handled similarly. For example,

(0,0,0) + (1,8,0) = (0+ 1,0+ ®,0+0) = (1,,0),

and

0,8,1) = (0,8,1) = (1,,0).
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Fig. 3. Partial order for Ag

In an algebra constructed by the subdirect product method, a law holds iff
it holds in all the component algebras. Thus, since both Ay and Ag are de
Morgan algebras, we know that Ag is also a de Morgan algebra. It is not a
Boolean algebra since the complement laws do not hold in Ags, and it is not a
ternary algebra, since there is no self-complemented element in As.

Hayes interprets the ordered triples (a, b, ¢) in Ag as follows: a is the initial
binary value of a signal, b, the transient value, and ¢, the final binary value.
Thus, (0, 0,0) represents a constant signal with value 0, and (0, &, 0) represents
a static hazard, since the transient component has the unknown value. The value
(0,9, 1) represents a 0-to-1 transition, with or without hazards. The remaining
values are similarly interpreted. It is clear that Ag is capable of representing
static hazards, but not dynamic hazards.

In our notation we represent the elements of Ag as 0, 090, 1, 1¢1, 0&1, and
1&0. The partial order corresponding to both binary operations in Ag is given
in Fig. 3.

Summary: Algebra Ag is capable of representing static, but not dynamic haz-
ards. It is a de Morgan algebra, but not a Boolean or ternary algebra. We return
to Ag in Section 11.

7 The eight-valued algebra

The recent work of Brzozowski and Esik discussed in Section 11 shows that
there is a natural seven-valued algebra, but this algebra has not been considered
before. Thus, the next value used in the past is eight.

An eight-valued algebra, Ag, is discussed by Hayes [25] in 1986 for repre-
senting static and dynamic hazards. Hayes points out that this algebra appears
already in the 1974 paper by Breuer and Harrison [5]. In that work, however,
this algebra is not explicitly used, but is part of a 27-element algebra, to which
we return later. In [5] the values consist of the pairs (0,0), (0, 1),(1,0),(1,1),
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Fig. 4. Partial orders for Ags: (a) <; (b) C

which represent the levels of a signal before and after a change, and each pair
is accompanied by a hazard status bit indicating whether or not a hazard oc-
curs during the transition, for a total of eight values. Hayes also points out that
the eight-valued algebra appears implicitly in the 1974 work of Fantauzzi [20],
but there it is a part of a nine-valued algebra. Fantauzzi uses a different set of
symbols, but the basic idea is the same. We return to his algebra in Section 8.
Eight-valued simulation is described by Breuer and Friedman [4]. Algebra Ag is
also used in [1, 26].

Using the subdirect product construction, Hayes generates the underlying set
Ag of Ag as a subset of Ay x A5 x Aj, or equivalently of A, x (2A2XA2) x As.
Algebra A, is a Boolean algebra, and thus a de Morgan bisemilattice. Algebra
Aj is a de Morgan bisemilattice, but is not a lattice. It is therefore immediate
that Ag is a de Morgan bisemilattice. The partial orders for Ag are given, in
our notation, in Fig. 4.

Summary: Algebra Ag is capable of representing both static and dynamic
hazards. It is a de Morgan bisemilattice, but not a lattice. We return to Ag in
Section 11.

8 The nine-valued algebra

As we have mentioned above, a nine-valued algebra, Ag, was introduced by
Fantauzzi [20] in 1974. The values are those of Ag together with a value called
“ambiguous” by the author; we represent this value by @.

Like all hazard algebras, Ag has two binary operations, + and *, and a unary
operation ~. Hayes [25] argues that the set A9 = Ag U {®} is not closed under
the operations * and +. When Ag is viewed as consisting of ordered triples, it
is easy to see that this is indeed the case. While (1, ®,0)  ($, P, $) should give
(@,®,0), this last value is not in Ag. Fantauzzi defines (1,9,0) * (P, P, P) to be
(®,®,P), and this results in operations * and 4+ which are not associative.

Algebra Ag is also used in [31].
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Fig. 5. Partial order < for A;s

Summary: Algebra Ag is flawed, since the binary operations are ill defined.
The subalgebra Ag of Ag is well defined, as we have stated above. There does
exist a useful hazard algebra with nine-elements, as we show in Section 11.1

9 The 13-valued algebra

As shown in Section 11, there is a hazard algebra with eleven elements, but the
next value considered in the literature is thirteen.

Algebra A1z is due to Hayes [25]. It is generated by the subdirect product
construction, and its underlying set is a subset of A3 x A5 x A3. The laws of a
ternary algebra are a superset of those of a de Morgan bisemilattice. Algebra Aj
is a ternary algebra, and As is a de Morgan bisemilattice. Hence, A1z is a de
Morgan bisemilattice. This was first observed by Beare and Brzozowski [3]. The
partial order < corresponding to + for A1z is shown in Fig. 5 in our notation.

! A nine valued algebra is used by Muth [37] to generalize the D-algorithm for test
generation, but has not been applied to hazard detection. It is the direct product
A3z X Ag, and so is a ternary algebra. A nine-valued simulator is also used by
Knudsen for NMOS circuits [29, 30]. The nine values are 0, 1, three rising values
(below threshold, critically near threshold, and above threshold), three falling values,
and the unknown value. The simulator has some hazard-detecting capabilities, but
NMOS circuits are outside the scope of this paper.
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The thirteen-valued algebra can represent all of the states used in the eight-
valued algebra. In addition, there are values to represent a completely unknown
signal, ($,®,P) (which we denote simply by @), signals (0,¥,P) and (1,P,P)
starting at 0 or 1 and becoming unknown (we denote them by 0@ and 1),
and signals (@,®,0) and (&, P, 1) (denoted by $0 and $1), which begin in an
unknown state and change to 0 or 1. In our notation each element is a word over
the alphabet {0, 1,®}, as is further explained in Section 11.

Chakraborty, Agrawal and Bushnell [14] rediscovered the thirteen-valued al-
gebra independently in 1992. They give an alternate method of constructing
A13. They examine all triples in Az x As X Agz. The first coordinate is the
initial value, the third coordinate is the final value and the second coordinate
indicates whether or not a hazard occurs in the transition. The eighteen elements
so obtained are reduced to thirteen by noting that for signals with unknown ini-
tial or final states, it is not useful to specify the presence or absence of hazards.
Hence, any two signals (a, b, 0) and (a, b, 1) are identified, if either a or b or both
are @. Algebra Ag is also used in [15,16]. Precise simulation algorithms (like
Algorithms A and B for ternary simulation) for general sequential circuits have
not been studied for As.

Summary: Algebra A;g is the most complete of the algebras discussed above
for analyzing circuits with respect to hazards and unknown signals, provided
that counting hazard pulses (see Section 11) is not important. Algebra Aqg is
capable of representing static and dynamic hazards and unknown values. It is
de Morgan bisemilattice, but not a lattice.

10 The 27-valued algebra

Next, we briefly consider the 27-valued algebra introduced by Breuer and Har-
rison [5] for eliminating static and dynamic hazards in test generation.? This
algebra is the direct product Ag x Ag, with an additional three-valued compo-
nent, and the following interpretation. Each element of the algebra is an ordered
triple (a, b, ¢), where a and b are the initial and final values of a transition, each
from the set {0,&,1} (in our notation), and ¢ is the hazard status component
taking its values from {hf, hsu, hp} representing “hazard-free,” “hazard status
unknown,” and “hazard present.” The algebra is flawed, as (0, 1, Ap) x (1, 1, Asu)
should give (0, 1, hp), but instead is defined as (0, 1, hsu). This results in a non-
associative algebra. For example,

((0,1, Ap) x (1, 1, hsu)) = (0, 1, hsu) # (0, 1, hp) * ((1, 1, hsu) * (0, 1, hsu)).

? Hlawiczka and Badura [26] describe a 16-valued algebra for analyzing flow tables of
asynchronous circuits in order to detect various types of conditions, such as critical
races, essential hazards, and D-trios [42]. A discussion of their work is outside the
scope of this paper. The authors observe that their algebra satisfies laws L1-L3, L5,
L8, 1.9, and their primed versions. Since this algebra also satisfies L6, it is, in fact,
a de Morgan bisemilattice.
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(a) R 01010

(b) L1 10101
(¢) LI LI o10101
(d) 101010

Fig. 6. Transients: (a) constant 0 with static hazards; (b) constant 1 with static haz-
ards; (c¢) change from 0 to 1 with dynamic hazards; (d) change from 1 to 0 with dynamic
hazards

Summary: The 27-valued algebra is flawed, since it labels an output as “hazard
status unknown” when there should be a hazard. Consequently, it is not an
associative algebra. As we have mentioned above, the eight-valued subalgebra
Ag of A,z is well defined and useful.

11 Change-counting algebras

This section is a summary of the recent work of Brzozowski and Esik [8,9] on
an infinite hazard algebra.

11.1 The infinite algebra C

Consider waveforms with a constant initial value, a transient period involving
a finite number of changes, and a constant final value. Waveforms of this type
are called transients. Figure 6 gives four examples of transients. With each such
transient is associated a binary word, i.e., a sequence of 0s and 1s, in a natural
way. In this binary word a 0 (1) represents a maximal interval during which the
signal has the value 0 (1). Such an interval is called a 0-interval (1-interval).

In this section we use V, A, and ~ for the Boolean OR, AND, and NOT opera-
tions, respectively. For the present, assume that circuits are constructed with 2-
input OR gates, 2-input AND gates and inverters. We examine how transients are
processed by such gates. The case of the inverter is the easiest one. If t = a; .. .a;
is the binary word of a transient at the input of an inverter, then its output has
the transient ¢ = aj...a;. For example, in Fig. 6, the first two transients are
complementary, as are the last two. The following propositions show the largest
number of changes possible at the output of an OR gate and an AND gate.

Proposition 1. If the inputs of an OR gate have m and n 0O-intervals respec-
tively, then the mazimum number of O-intervals in the output signal is 0 if m = 0
orn =0, and is m+n — 1, otherwise.
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Proposition 2. If the inputs of an AND gate have m and n 1-intervals respec-
tively, then the mazimum number of 1-intervals in the output signal is 0 if m = 0
orn =0, and is m+n — 1, otherwise.

Let
T=1{0,1,01,10,010,101,0101, 1010, 01010, ...}

be the set of all binary words of alternating 0s and 1s. In regular expression
notation,

T = 0(10)* U 1(01)* U0(10)*1 U 1(01)*0.

This is the set of all transients. The change-counting algebra is defined as C =
(T,+,*,7,0,1), where 4+, * and ~ are defined below. For any ¢ € T define z(#)
(z for zeros) and u(t) (u for units) to be the number of 0s in ¢ and the number
of 1s in ¢, respectively. Let «(t) and w(t) be the first and last letters of ¢, and let
l(t) denote the length of ¢. For example, if # = 10101, then z(t) = 2, u(t) = 3,
a(t) =w(t) =1, and [(t) = 5.

Operations 4+ and * are binary operations on T intended to represent the
worst-case OR-ing and AND-ing of two transients at the inputs of a gate. We
assume that input changes specified by the transients occurring at the inputs of
a gate can take place at any time. For example, consider an OR gate with inputs
X, and X3 and transients 01 and 010, respectively. The input changes can occur
in any one of the following orders: X7 X2 X2, X2X1 X5, or X2 X3X;. One verifies
that, in the first two cases, the output transient is 01, whereas in the last case,
that transient is 0101. Therefore, we define 01 4+ 010 = 0101. In general, the +
and * operations are defined as follows:

t+0=0+t=¢t, t+1=1+t=1,

for any t € T. If w and w’ are words in T of length > 1, and their sum is denoted
by t = w+ w’, then ¢ is that word in T that begins with a(w) V a(w’), ends with
w(w) Vw(w'), and has z(t) = z(w) + z(w') — 1, by Proposition 1. For example,
010+ 1010 = 101010.

Next, define

txl=1xt=1t, tx0=0%x¢t=0,

for any t € T. Consider now the product of two words w,w’ € T of length
> 1, and denote it by + = w * w’. Then ¢ is that word in T that begins with
a(w) A a(w'), ends with w(w) Aw(w'), and has u(t) = u(w) + u(w’) — 1, by
Proposition 2. For example, 0101 %« 10101 = 01010101.

The (quasi-)complement t of a word ¢ € T is obtained by complementing
each letter in t. For example, 1010 = 0101. The constants 0 and 1 are the words
0 and 1 of length 1.

Proposition 3. Algebra C = (T,+,*,7,0,1), is a commutative de Morgan
bisemigroup.
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11.2 Counting changes to a threshold

Since the underlying set T of algebra C is infinite, an arbitrary number of changes
can be counted. An alternative is to count only up to some threshold k& > 1, and
consider all transients with length £ or more as equivalent.

Relation ~ in algebra C = (T, +, *,” , 0, 1) is defined as follows: For t,s € T,
t ~i s if either t = s or t and s are both of length > %.

Proposition 4. Relation ~j is a congruence relation on C, by which we mean
that it is an equivalence relation on T such that for allt,s,w € T, t ~ s implies
(w+1) ~k (w+s), and t ~y s; this then implies that (w xt) ~g (w * s) whenever
t ~E S.

The equivalence classes of the quotient algebra Cx = C/~, are of two types.
Each transient ¢ with [(¢) < k is in a class by itself, and all the words of length > &
constitute a class, which is denoted by ®. The operations on equivalence classes
are as follows. The complement of the class containing ¢ is the class containing
t. The sum (product) of the class containing ¢ and the class containing ¢’ is the
class containing ¢ + ¢ (¢ * t'). Thus, the quotient algebra Cy is a commutative
de Morgan bisemigroup with 2k — 1 elements.

Ezample 1. The following are examples of quotient algebras:

— For k = 2, the operations +, *, and ~ are those of the 3-element ternary
algebra Ag. Hence Ag is isomorphic to Cs.

— For k = 3, the operations are those of the 5-element ternary algebra As.
Hence Ajg is isomorphic to Cs.

— In general, for each k& > 2 there is an algebra Ck with 2k — 1 elements. O

11.3 Circuit Simulation in algebras C and Cy

The following example illustrates how static hazards are detected by ternary
simulation.

Fig. 7. Circuit with hazards
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Table 5. Ternary simulation

initial state

result A

X
0
[
[
[
1
1
1

OO W ==
- =1 =1 3
S LR E=1E=1F]
— RSO olol2

result B

FEzample 2. Consider the circuit shown in Fig. 5. Refer now to Table 5. The
values of the input variable X and the state variables sq,...,s4 are shown in
rows as the simulation progresses. We begin in the initial state 01000, which is
stable. We wish to study the behavior of the circuit when the input changes from
0 to 1 and is kept constant at 1.

Ternary simulation consists of two algorithms, A and B. In Algorithm A,
the input changes to the uncertain or unknown value @. Instead of Boolean
functions, we now use the ternary functions as defined in Section 3. Thus we use
the excitation equations

51:Y, Sy =1%X, S3= X x5y, S4 = 52 + s3.

After X changes to @, Gates 1, 2, and 3, become unstable in the ternary model.
All unstable variables are changed at the same time. This results in the second
row of Algorithm A. Now Gate 4 becomes unstable and changes, to yield the
third row of Algorithm A.

In Algorithm A we introduce uncertainty in the circuit inputs and we see
how this uncertainty spreads throughout the circuit. In Algorithm B we start in
the state produced by Algorithm A, but now we set the changing inputs from
@ to their final values, thus reducing uncertainty. In our example, X becomes
1. We again use the ternary excitation functions to see whether the uncertainty
will be removed from any gates. The final result is the vector 10101, showing
that each gate reaches a binary value after the transient is over.

It is clear from the circuit diagram that s; changes from 1 to 0 and sz changes
from 0 to 1 without any hazards. By Boolean analysis, it can be verified [13] that
a dynamic hazard is present in s4.

This example illustrates that ternary simulation is capable of detecting static
hazards. Gate s3 is 0 at the beginning and 0 at the end, but it is @ at the end
of Algorithm A, and this indicates a static hazard [13]. Our example also clearly
shows that ternary simulation is not capable of detecting dynamic hazards. Gates
s and s4 both change from 0 to @ to 1, yet s2 has no dynamic hazard, while s4
has one. O

In the examples that follow, we show how the accuracy of the simulation
improves when we use algebra Ck as k increases.
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Frample 3. In Table 6 we repeat the simulation, this time using five-valued gate
functions as defined in Cs. Instead to changing X to @, we change it to 01
in Algorithm A, since this is the change we wish to study. From the result of
Algorithm A we see that s; changes from 1 to 0 and sy changes from 0 to 1,
both without hazards. The static hazard in s3 is detected as before, as is the
dynamic hazard in s4. This example shows that quinary simulation is capable
of detecting both static and dynamic hazards. O

Table 6. Quinary simulation

X 81 82 83 84
initial state 0 1 0 0 O
011 00O
01100101 0
011001 @& 01
result A 011001 & &
11001 & @
1 01109
result B 1 0101

Table 7. Septenary simulation

X 81 82 83 S84
initial state 0 1 0 0 O
011 0 0 O
011001 01 O
01 10 01 010 01
result A 011001 010 @
1 1001010 @
1 01 10 @
result B 1 01 0 1

Ezxample 4. We repeat the simulation now using algebra C4 with seven values.
Refer to Table 7. This time Algorithm A not only reveals that there is a static
hazard in s3, but also identifies it as 010. Note, however, that the dynamic hazard
is still not identified. O

FEzxample 5. We repeat the simulation using algebra Cs with nine values. Refer
to Table 8. This time Algorithm A identifies the dynamic hazard as 0101.
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Table 8. Nonary simulation

X s1 82 83 84
initial state 0 1 0 O 0
011 0 0 O
011001 01 O
01 10 01 010 01
result A 01 10 01 010 0101
1 10 01 010 0101
1 0 1 10 0101
result B 1 01 0 1

Observe that the same table results if we simulate our circuit in algebra Cy
with any & > 5, or in algebra C. Note also, that for £ > 4 Algorithm B is no
longer necessary, since the entire history of worst-case signal changes is recorded
on each wire. O

A characterization of the results of simulation in algebra C has been recently
obtained by Gheorghiu [21] for feedback-free circuits consisting of 2-input AND
gates, 2-input OR gates and inverters.

11.4 Simulation with initial, transient, and final values

In a number of simulators [14, 25], the signal values are ordered triples containing
the initial, transient, and final values of a signal. We now show how such algebras
can be described in our framework.

Relation &% in the algebra C = (T,+,*,7,0,1) is defined as follows. For
t,s €T, try sif either t = s or a(t) = a(s), w(t) = w(s), and ¢ and s are both
of length > k. Denote by A (for left) and p (for right) the congruences defined
by t As iff a(t) = a(s), tps iff w(t) = w(s). Then & = AN~ Np.

Proposition 5. Relation ~ is a congruence relation on C.

The quotient algebra Cj = C/=~ is a commutative de Morgan bisemigroup
with 2(k—1) +4 = 2k + 2 elements. Each word ¢ € T with {(#) < k determines a
singleton congruence class. In addition, for any by, by € {0, 1}, the words t € T
with {(t) > k, a(t) = b1, and w(t) = by determine a congruence class that we
denote by b1®bs. Since ~s, C~yp, Ck is a quotient of Ci. It can be constructed
from Cj_ by identifying the four elements 060, 081, 180, and 141. Also, if k < m,
then Cj is a quotient of C,.

Proposition 6. C| is isomorphic to a subdirect product of two copies of the
2-element Boolean algebra A, and algebra Cy.

Ezample 6. The following are examples of algebras Cy:
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— For k = 2, there is a six-element algebra C5. It is isomorphic to Ag.
— For k = 3, there is a eight-element algebra Cj. It is isomorphic to As.
— In general, for any k > 2 there is a (2k + 2)-element algebra Cj. O

It is shown in [9] that simulation in Cj may not terminate for circuits with
feedback; hence this approach is not suitable for such circuits.

11.5 Simulation with unknown values

As Hayes [25] points out, most digital simulators include an unknown value.
Algebra Ajg is an example of an algebra that allows us to represent a value that
is completely unknown, as well as a value that is unknown initially, but becomes
known at the end, and one that is known initially, but unknown at the end. This
example can be generalized as follows. Consider Cy = (T}, +,*,,0, 1), where

T, = Ty \ {®} U {060, 01, 160, 161},

and the operations of Cj are defined as above. We define a new algebra, Cy/, by
adjoining five elements to C} . Let

T/ = T, U {0, 16, 0,81, P}

We consider all the elements of T}’ to be words over the alphabet {0,1,&}.
Complementation in Cj, is letter by letter complementation in the three-valued
algebra Ag. For example, 01 = 190. Addition is defined as follows. First,

t+0=0+t=¢t, t+1=1+t=1,

for any ¢t € T}/. Next, if w and w’ are words in T} of length > 1, then their sum is
denoted by t = w+w’, and is a word in T}/ that begins with a(t) = a(w)Va(w’),
and ends with w(t) = w(w)Vw(w'). It remains to compute the middle portion of
t,ifany. We havet = @ ifa(t) = w(t) = &,t = Pa,ifa(t) = P,w(t) = a € {0, 1},
andt =ad,ifa(t)=a€ {0,1},w(t) = .

There remain only the cases where both «(t) and w(¢) are in {0,1}, i.e.,
where both w and w’ are in T]. Here the rules of Cj apply.

Ezample 7. The following are examples of algebras Cy:

— For k = 3, there is a thirteen-element algebra Cj. It is isomorphic to Aqs.
— In general, for any k > 2 there is a 2k + 7-element algebra Cj.. O

Summary: Algebra C leads to a general theory of simulation of gate circuits
for the purpose of hazard detection, identification, and counting. The same sim-
ulation algorithms can be used to count the number of signal changes during
a given input change of a circuit. This provides an estimate of the worst-case
energy consumption of that input change. If a circuit has m inputs and n gates,
the simulation algorithms run in O(m + n?) time. By choosing the value of the
threshold k& one can count signal changes and hazards to any degree of accuracy.
For further properties of these algebras see [8,9].
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12 Conclusions

We have presented a survey of the algebras that have been designed for the
detection of static and dynamic hazards. We have generalized the simulation
algorithms, previously used only in the three-valued algebra, to the change-
counting algebra C and its related algebras Cx. We have provided a single
framework which includes all the successful hazard algebras as special cases.
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