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Abstract

An involuted semilattice (S,V,™) is a semilattice (S, V) with an invo-
lution = : S — S, d.e., (S,V,”) satisfies a = @, and a Vb =@V b. In
this paper we study the properties of such semilattices. In particular,
we characterize free involuted semilattices in terms of ordered pairs
of subsets of a set. An involuted semilattice (S,V,™, 1) with greatest
element 1 is said to be complemented if it satisfies a V@ = 1. We
also characterize free complemented semilattices. We next show that
complemented semilattices are related to ternary algebras. A ternary
algebra (T, +,%,7,0,¢,1) is a de Morgan algebra with a third con-
stant ¢ satisfying ¢ = ¢, and (¢ +@) + ¢ = a +@. If we define a third
binary operation Von T as aVb=a*b+ (a+b)* ¢, then (T,V,”, )
is a complemented semilattice.

1 Semilattices

A semilattice [7, 8] (S,V) is a nonempty set S together with a binary oper-
ation V, such that equations S1-S3 below are satisfied for all a,b,c € §.

*This research was supported by Grant No. OGP0000871 from the Natural Sciences
and Engineering Research Council of Canada.



Sl. aVa=a
S2. avb=bVa
S3. av(bVe)=(aVb) Ve

We define a partial order on S as follows:
a=biff avb=5b,

and also use >, <, and > in the usual sense.
In most of this paper we are concerned with finite semilattices. Every
finite semilattice has a unique greatest element, the least upper bound, lub,

of S, which we call 1. Thus,

1:lubS:V5.

s€ES
It follows that every finite semilattice also satisfies S4 below; in this case we
denote it by (S, V, 1), to identify the constant 1.
S4. av1=1.

For any element a of a semilattice (S, V,1), we define
avVS={aVs|seSt={teS|t=a}.

Proposition 1 Let (S,V,1) be a finite semilattice. Then, for any a € S,
(aV S,V,1) is a lattice with a as zero.

Proof: Clearly, a V S is a subsemilattice of S. We need to show that every
two elements b and ¢ in S such that b,¢ > a have a greatest lower bound
(glb). Let

Q={d|d=<bandd<c}

be the set of all lower bounds of the set {b,c}. Since a € @, @ is nonempty.

Then
glb{b,c} =\ e
e€q)
Consequently, a V S is a lattice, and, by definition, a is its smallest element,
and hence the zero of the lattice. O

If glb{a,b} exists, we denote it by a A b.



2 Involuted semilattices

We use the terminology introduced by Bredikhin (see, for example, [2, 3]),
although our notation is different. We call (S, V,™ ) an involuted semigroup®
if (S,V) is a semigroup, and ~ : S — S is a unary operation of involution,
i.e., satisfies the properties

|

S5. @ = a,

and a Vb= bV a. If we are dealing with semilattices, the commutative law
S2 holds, and the latter equation takes the form

S6. aVb=aVb

Thus, by an involuted semilattice (S,V,,1) we mean an algebra satisfiying

S1-56.2 We refer to the unary operation ~ as quasi-complementation.’

Example 1 Let A be a set and let S be the set of all binary relations on
A. Then (S,U,~', Ax A), where ~' denotes the converse of a relation, is an
wnvoluted semilattice. O

Example 2 Let ¥ be a finite alphabet and ¥*, the free monoid generated
by ¥. Let w™! be the reverse of w for any w € ¥*. If L C X%, let L™! =
{w™' | w € L}. Let S be the set of all subsets of ¥*. Then (S,U,~! T*) is

an tnwvoluted semilattice. O

In an involuted semilattice S, if a = @, we say that a is self-complementary.
The set of all self-complementary elements of S will be denoted by C(S5).

If a < b and there is no ¢ such that ¢ < ¢ < b, we say that b covers a, or
a s covered by b, and denote this by a < b.

Let (S,V) and (T, o) be semilattices, and h : S — T a semilattice homo-
morphism, z.e., a mapping from S to T satisfying:

h(aV b) = h(a) o h(b),

!Bredikhin studied involuted semigroups [2] with an ezternal partial order, or ordered
by an ezternal semilattice [3], whereas we study involuted semigroups which are semilat-
tices, i.e., are idempotent and commutative.

2In this paper semilattices always have the greatest element 1.

3This is a different concept than pseudo-complementation [7].




for all a,b € S. Then, if a Vb = bin S, we have h(a) o h(b) = h(b) in T}
thus, semilattice homomorphisms preserve the semilattice order. Since the
involution ~ is a homomorphism from S to S, in fact, an automorphism of
S, we have

a < b implies @ < b.

It also follows from the definition of < that
a = ¢ and b < d implies (a Vb) < (¢ V d).
Thus, both operations are monotonic.
Proposition 2 In an involuted semilattice (S,V,”,1) we have:
1. a=biff a<0b.
a<abiff a«b.
a s self-complementary iff a = a V @.

1 is self-complementary, i.e., 1 = 1.

(C(S),V,”,1) is a sub-involuted-semilattice of S.
6. ifa #£a, then a and @ are incomparable with respect to <.

7. For every chain a,<...<a1<1 there is a corresponding chain a,<. . .<a;<l.

Proof: First,a <biffavb=biffaVb=>biffaVvb=>5 (by S6) iff a <b.
The second claim follows immediately from 1).
Third, if a =aVa, thena=aVa=aVa=aVa=aVa=a,by S6,
S5, and S2. Conversely, if a = @, then a = aVa=aVa.
Fourth, 1=aV1==aV1by S4 and S6. Thus, 1 is the greatest element.
Since the greatest element is unique, we have 1 = 1.
Fifth, if a,b € C(S), then a = @ and b = b. Hence,aVb=aVb=aVb.
Sixth, suppose that « # @ and @ = @, i.e., aVa@ =a. Thena =aVa
aV a = a, contradicting that @ # @. A similar argument holds if « < @.
The last claim follows from 2) and 4). O
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Figure 1: Involuted semilattices with < 3 elements.

Example 3 Figure 1 shows all involuted semilattices with < 3 elements. We
use the convention that, if a is an element of a Hasse diagram and there is
no element in the diagram labeled @, then a = a.

One also verifies that there are eight involuted semilattices with four el-
ements; see Fig. 2. In the first five, all elements are self-complementary.
For such semilattices S5 and S6 hold trivially; hence, there are as many such

involuted semilattices as there are semilattices. O
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Figure 2: Involuted semilattices with 4 elements.

If (S,Vv,”,1) is an involuted semilattice and a € S, let

S(a)=(aV S)U(@V5).



Thus, S(a) is the set of all elements of S that are above a or above @, or
both. Note that, if S is finite, by Proposition 1, both a V § and @V § are
lattices.

Let K(a) =(aVvV S)N(aV5s).

Proposition 3 The following hold for an involuted semilattice (S,V,”,1)
and a € S':

1. be K(a) iff b=>bVaVa; thus, K(a) = S(aV a).
2.avS={b|becaVS}.

3. K(a) 2 C(S(a)), where C(S(a)) is the set of self-complementary ele-
ments of S(a).

4. The mapping ~ :aV .S —aV § s a semilattice isomorphism.

5. If S is finite or a lattice, the mapping ~ : aV S — aV S is a lattice
1somorphism.

6. (S(a),V,”,1) and (K(a),V,”,1) are sub-involuted-semilattices of S.

Proof: First, if b € K(a), we have bVa = band bVa = b. Hence, b = bVaVa.
Conversely, b=5bV aV @ impliesb = bV a and b = bV a. It now follows that
K(a) = S(aVa).

Second, bcav Sifb=avbifb=aVbifbcaV§S.

Third, if b € S(a), and b = b, then b € K(a), by 2).

The fourth and fifth claims follow from the fact that = is an order iso-
morphism, as shown in Proposition 2, 1).

The sixth claim is easily verified. O

Example 4 Let [n] = {1,...,n}, and let P, be the set of all ordered pairs
(A, A") of subsets of [n], where A and A’ are not both empty, i.e.,

P,={(AA) | A A C[n],AUA #0}.
Define operation V on P, as follows.

(A, AV (B,B")=(AUB,A"UB).



Furthermore, let

(4, 4) = (A, A),
and 1p = ([n],[n]). One verifies that (P,,V,” ,1p) is an involuted semilattice.
In particular, consider S = P, and a = (1,0). We show S(a) in
Fig. 3, where we denote {1} by 1, {1,2}, by 12, etc., to simplify the nota-
tion. Here, a V S = {(1,0),(12,0),(1,2),(1,1),(12,1),(12,12)}, C(S(a)) =
{(1,1),(12,12)}, and K(a) = {(1,1),(12,1),(1,12),(12,12)}. O

(12,12)

(12,0) (0,12)

(1,0) @,1)

Figure 3: Hlustrating S(a) for P,.

3 Free involuted semilattices

Let Q be any set, and define
P(Q)={(A,A") | A A" C Q,A, A are finite, and AU A’ % 0}
Define the following operations on P(Q):
(A, AV (B,B")=(AUuB,A"UB"),

and

(A, A) = (A" A).

Let 1p be an element that is not in P(Q), and define 1p V1p = 1p Vp =
pV1p=1pforallp € P(Q),and 1p = 1p. Then

<P(Q) U {1P}7 \ 1P>
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is an involuted semilattice.

Let g, = ({¢},0), for every g € @, and let G(Q) = {g, | ¢ € Q}. Then
P(Q) is generated by G(Q). In fact, any element (A, A’) of P(Q) can be

expressed as

(4,47 =V {a1,0)V Viea{a}:0) = V 90V Vien g0
q€EA q€EA
Let (S,V,™,1s) and (T, o, =, 17) be involuted semilattices,and b : § — T
a mapping from S to T'. Then & is an involuted-semilattice homomorphism

if it preserves the operations and the constant, i.e., if h(a V b) = h(a) o h(b),
h(a) = =(h(a)), and h(ls) = 17.

Theorem 1 (P(Q)U{1lp},V,”,1p) is freely generated by G(Q) in the class

of involuted semilattices.

Proof: Let (S,V,”,1) be an involuted semilattice and let u : G(Q) — S be
any mapping. We extend y to a mapping from P(Q)U {1lp} to S as follows.
If (A, A") is any element of P(Q), define

p((A, A7) =V 1(ga) V Vyen 11(ga)-
q€A
Also, let u(1p) = 1.
We need to verify that p is a semilattice homomorphism. We have

p((A,AY) = p((AA) =\ 11(9e) V Vea 1(9q)-

qeA’

On the other hand,

(A, A7) = Viea 11(9) V Ve 1#(9q) = Vaea i(ga) V V 11(gq) = (A, A7),

qeA’

Also u(Tr) = p(1p) = 1 =T = i(Tp).
For the binary operation,

p((A, AV (B, B") = p(AUB,AUB) = \/ (99 V Veeaun #(9s) =

qeEAUB

V 1(90) V'V 11(90) V Vaear 11(9q) V Vyenr 11(gq) = (A, A") V u((B, B')).

qeA q€B




Finally, u(1p V p) = p(pV 1p) = p(lp) = 1 = u(lp) V u(p) = u(p) V u(lp),
as required. Since the operations and the constant are preserved, p is a
homomorphism. Hence, our claim holds. O

One verifies that, if Q has n elements, there are 22" — 1 elements in the
free involuted semilattice P(Q).

4 Complemented semilattices
A complemented semilattice” is an involuted semilattice (S, V,™ 1) satisfying
S7. ava=1.

Proposition 4 Complemented semilattices have the following properties:

1. An involuted semilattice is complemented iff 1 is the only element that
is self-complementary, i.e., if a # 1, then a # a.

2. All chains a,<...a1<41 and a, <...a; <1 are disjoint except for 1.

3. Ifa # 1, there is no element ¢ such that ¢ < a and ¢ < @. Consequently,
a Aa does not exist.

4. A finite complemented semilattice has an odd number of elements.

5. In a finite complemented semilattice there is an even number of ele-
ments a such that a<1.

Proof: First, suppose a = @ for some a € S. Thena =aVa=aVa=1.
Conversely, suppose a = @ implies a = 1 for all @ € §. Since aVa = a V @,
we must have a Va = 1.

The second claim follows, since only 1 is self-complementary.

Third, if ¢ < @ and ¢ < @, then also ¢ < a and ¢ < @. Hence, ¢V ¢ <
aVa=aand cVe=a ButcVe=1ina complemented semilattice. Hence
a = 1, which is a contradiction.

Fourth, S is the union of sets of the form {a,a}, all of which have two
elements, except in the case when a = 1.

For the fifth claim, suppose there is an odd number of elements covered
by 1. Then there must be at least one a such that a <1, but @ <1 is false.
But this contradicts Proposition 2 (2) that @ <1, i.e., a < 1. O



1
b b a a b b
1
1 1

1 1
b b a a
a a
c ¢ b ¢ b ¢
Figure 4: Complemented semilattices with 5 and 7 elements.

Example 5 There is one complemented semilattice with one element, namely
S1, and one with three elements, namely Ss3, as shown in Fig. 1. Comple-
mented semilattices with five and seven elements are shown in Fig. 4. O

For a complemented semilattice (S, V,”,1) and a € S, we have:
K(a)=S(aVva)={1}.

Example 6 Return to Ezample /. Let ~ be the equivalence relation on
Py(a) from Ezample 4 which puts into one class I all the pairs (A, A") such
that AN A" # 0, and treats all other pairs as singleton classes. Consider
(Ey,V,” I, where Ey is the set of equivalence classes with respect to ~. We
obtain the semilattice of Fig. 5, where the singleton classes are identified with
their elements. O

4This notion still differs from that of a pseudo-complemented semilattice [7].
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(12,0) (#,12)

(1,0) @,1)

Figure 5: Hlustrating S(a) for E,.

5 Free complemented semilattices

Return now to the involuted semilattice (P(Q)U{1p},V,”,1p) of Section 3.
Define an equivalence relation ~ on P(Q) U {1p} as follows:

if ANA"=0, then (A,A)~ (B,B' )it A=B, and A' = B’,
if ANA"#£ 1, then (A, A) ~(B,B) it BN B ' # ) and (A4, A") ~ 1p,

also 1p ~ 1p.

Let [(A, A')] denote the equivalence class of (A, A’) with respect to ~. There
are two types of equivalence classes. For each pair (A4, A’) of subsets of @,

(A, AN ={(4,A}if AN A =0,

and

I={(AA)|AnA #£0}U{lp}.

Let E(Q) denote the set of all equivalence classes of ~. The operations V and
~ are defined on E(Q) in the usual way: for p,q € P(Q), [p] V¢ =[pV 4],
and [p] = [p]. One verifies that the operations V and ~ are well defined on
E(Q). Clearly, [p] is unique if [p] is a singleton. Otherwise, p must be of the
form (A, A"), where AN A" # (), or p=1p. Any ¢ equivalent to p also has the
nonempty intersection property or is 1p, and the same is true of q. Hence,
[p] = [q] = I. For V, suppose at least one of p,q is in I. Then so is pV ¢, and
[pV q] is uniquely I. If neither p nor ¢ is in I, then [p] and [¢] are singletons,
and [p V ¢| is uniquely defined.

It follows that (E(Q),V,”,I) is a complemented semilattice. Now, let

H(Q) = {lgq] | g € Q}, where g, = ({q},0).

11



Theorem 2 (E(Q),V,” ,I) is freely generated by H(Q) in the class of com-

plemented semilattices.

Proof: Let (S,Vv,”,1) be a complemented semilattice. Let p: H(Q) — S
be any mapping. Extend p to E(Q) as follows. If [(A, A")] is a singleton, let

p([(A,A) =V 1lga)) V Vaenr 1([g4])-

q€A
Also let p(I) = 1. To verify that g is a homomorphism, first consider the
case where [(A, A")] is a singleton. Then the argument in the proof on Propo-
sition 1 applies, and

p([(A, A1) = u([(A, A)]).
Also L
p(I) = p(I)=1=1=p(I),
as required.
Note that

p([(A, A) V (B, B)]) = p([(AU B, A"U B')]).

If [([AUB, A’UB')] is a singleton, then the argument of Proposition 1 applies
and

p([(4, A) v (B, B')]) = p([(A, A)]) V u([(B, B)]).
Next, if one of the arguments is I, we have
p(I V(A A)]) = p() =1 =1V pu([(A, A)]) = p(I) v u(((A, A)]).
Finally, we have the case where [(A, A")] and [(B, B’)] are both singletons,
but [(AU B,A’U B’)] = I. Then
p(((A, ANV (B, B)]) = p(I) =1,

and

n([(A, ANVel(B,B))) = V 1((9a))V Veea 1([9a))V V 1(19a))V Vyenr 11([g4])-

qeA q€B

We know that (AUB)N(A'UB’) # 0; so suppose that ¢ € (AUB)N(A'UB’).
Then the expression on the right must contain p([g,]) V p([g,]), which is 1,

since S is complemented. Hence

p((A, ) v u((B, BY)]) =1,

as required. O

12



Example 7 The free complemented semilattice on zero generators is the
semilattice S1 of Fig. 1. For one free generator, we have Ss3 of Fig. 1,
and for two free generators, we have the semilattice of Fig. 6. In general,
the free complemented semilattice on n free generators has 3" elements. This
follows because each generator can be chosen for the left component, or the
right component, or not at all. This gives us 3" elements, one of which s
empty and not permatted. This empty element is therefore discarded, but I is
added in its place. O

(0,12)

K

(L,8) (2,0) (0,2) (0,1)

Figure 6: Free complemented semilattice Ej.

A finite involuted semilattice is piecewise distributive® if for each element
a € S, the lattice a V § is distributive. The involuted semilattice of Fig. 3 is
not piecewise distributive because (1,0) V S contains Ms. A complemented
semilattice that is not piecewise distributive because it contains N5 is shown

in Fig. 7.

Figure 7: A semilattice that is not piecewise distributive.

5This notion differs from that of Gratzer’s distributive semilattice.
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Table 1: Equations of ternary algebra

Tla+a=a Tl'axa=a
T2a+b=b+a T2 axb=bxa
T3a+(b+c¢)=(a+b)+c T3 ax(b*xc)=(ax*xb)*c
Tda+ (axdb)=a T4 a*(a+b)=a
Tha+0=a T ax1=a
T6a+1=1 T6' ax0=0

T7 (@) = a

T8 a+ (bxc)=(a+b)*(a+c¢) T8 ax(b+c)=(axb)+ (ax*c)
T9 (a+b)=axb TY (axb)=a+b

T10 (a+a)+¢=a+a T10' (axa)*d=ax*a
Tl ¢ = ¢

6 Ternary algebras

For a short history of ternary algebras see Brzozowski, Lou, and Negulescu [4].
Here we follow Brzozowski and Seger [5] in defining a ternary algebra as
a de Morgan algebra with an additional constant ¢ satisfying ¢ = ¢ and
(a + @) + ¢ = a+ a. More recently, free ternary algebras were studied by
Balbes [1].

A ternary algebra is an algebra (T,4,%,7,0,¢,1), where T is a set, +
and * are binary operations (which we call addition and multiplication) on
T7
constants in 7', and the equations of Table 1 are satisfied for all a, b and ¢
in 7.

We define the partial order in a ternary algebra, as we do in any lattice:®

~ is a unary operation on 7', called quasi-complementation, 0, ¢ and 1 are

a<biff a+b=0.
This is equivalent to
a<b iff axb=a.

It was shown in [4] that
a<b iff a>b,

5Previously, we used < as the partial order of an upper semilattice. We reserve that
symbol for another upper semilattice that will be associated with a ternary algebra.

14



and, in particular,

a<é iff @a>é.

It was noted in [4] that every finite ternary algebra contains an odd num-
ber of elements, and that for each odd integer n > 3, there is at least one
ternary algebra with n elements.

7 Subset-pair algebras

Let S be an arbitrary set, and P(S), the set of all ordered pairs (A, A") of
subsets of S such that AU A’ = 5. Define 0, ¢ and 1 as follows:

0=(S,0), 6= (S,8), 1 =(0,5).

Furthermore, define the following operations on P(S):

(A, A+ (B,B')=(AnB,A'"UB'),
A AN« (B,B")=(AUB,A'NB,
(A, AN = (A"} A).
Let R be any subset of P(S). Then (R,+,%,7,0,¢,1) is a subset-pair

algebra if R is closed under +, * and ~, and contains 0, ¢, and 1.
It is easy to verify that every subset-pair algebra is a ternary algebra, i.e.,

~—~

satisfies the equations of Table 1. The converse result, that every ternary
algebra is isomorphic to a subset-pair algebra has been proved by Brzozowski,
Lou, and Negulescu [4] for the finite case, and by Esik [6] for the infinite case.
Thus we have

Theorem 3 FEuvery subset-pair algebra is a ternary algebra, and every ternary
algebra is isomorphic to a subset-pair algebra.

From now on we use this result freely, and usually assume that the ternary
algebra we are studying has already been represented in the subset-pair no-
tation. Thus, if @ and b are elements of a ternary algebra T', we use (A, A)
and (B, B’) to denote the corresponding elements of the subset-pair algebra
isomorphic to T, or simply write a = (A, A’) and b = (B, B’).

We have the following representation of the partial order < in the subset-
pair algebra:

(A,A)< (B,B) iff AD Band A'CB.

15



0,12) =1

(1,12) = b (2,12) =a
(12,12) = ¢
(12,2) =a (12,1)=b
(12,8) =0

Figure 8: A subset-pair algebra T7.

Example 8 Figure 8 shows a Hasse diagram of a subset-pair algebra with
seven elements. We label the elements with their subset-pair representatives,
and also with the symbols 0,@,b, ¢,b, a,1, as shown in the figure. The addition
table for these elements is constructed by using the join, and the multiplica-
tion table, using the meet, as shown in Table 2. The unary operation ~ 1is
clear from the notation, i.e., the complementary pairs are (a,a), (b,b), (0,1),
and (¢, ¢). We return to this ezample later. O

Table 2: 4+ and * operations for T

*

j=all el

= a oD o e o+
— 2 o0 o e Oo|lo
— Q o O S 9 el
— a o O oo
— Q oS O S oS
—o o O O O O | o
— Q ~ Q 2 8 2|8
e e e e e B
= Q o B o] O
o 00 o0 o o oo
2 Q 9 O 2 o9
S N N N N O O o
>R O (O
>R R R O
QR OB oNe O
— Qa ot R o e O

S e o o
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8 Uncertainty partial order

Figure 9 shows the lattice order of the three-element ternary algebra, and
also its wuncertainty partial order [5], where ¢ represents the highest value
(unknown or uncertain), and 0 and 1 are the known or certain values. It was
noted in [5] that the least upper bound of {a,b} in this partial order can be
expressed as a * b + (a + b) * ¢. We now apply this operation to arbitrary
ternary algebras.

—_

Figure 9: Ternary partial orders.

We use the convention that multiplication takes precedence over addition.
In any ternary algebra (T, +,%,7,0,¢,1) define

aVb=axb+ (a+b)*o,

and, as before,
a=biff avb=na.

Proposition 5 The algebra (T,V,” ,¢) is a complemented semilattice with
greatest element .

Proof: It is easily verified that (T, V,” , ¢) satisfies equations S1-S7. a

It is also easy to see that we have the following representation in terms
of the subset-pairs:

(A, AV (B,B")=(AUB,A"UB'"),

(A,A) < (B,B")if AC Band A' C B'.

Proposition 6 Let a and b be elements of a ternary algebra T. Then

17



1. Ifa< ¢ thenaVb=a+bxdo.
Ifa> ¢ thenaVb=axb+ ¢.
If a,b < ¢ thenaVb=a+b.
Ifa,b> ¢ thenaVb=axb.

Ifa < ¢ <bthenaVb=g.

Proof: First, suppose a < ¢. Then aVb = axb+(a+b)*¢ = ab+axp+bxd =
axb+a+bxd=a+bxa.
Second, if a > ¢, then aVb = a*b+axp+bxdp = axb+od+bxd = axb+ ¢.
Third, if a,b < ¢, then aVb=a*xb+a*xdp+bxp=axb+a+b=a+b.
Fourth, if a > ¢, then a Vb = a * b+ ¢, as above. If also b > ¢, then

aVb=a*xbt+d=a+b+d=(a+b)xp=axd+bxd

—a%xd+bxd=a+od+b+o=a+b=uaxb.
Fifth,if a < ¢ <b,thenaVb=axb+a*xd+bxd=a+a+d=a+ ¢ =
a* o+ o= ao. O

Example 9 Consider ternary algebra Ty defined in Fig. 8. It is clear from
the figure that 0,a,b < ¢, and 1,a,b > ¢. Let Tcy = {e | e < ¢} =
{0,a,b,¢}, and Tsy = {e | e > ¢} = {1,a,b,¢}. Using Proposition 6, we
immediately obtain Table 3 of the V operation for Ty, from Table 2. We have
aVb=a+bifa,bec Ty, aVb=axbifa,bec Tsy4, and aVb = ¢, otherwise.

The partial order < is shown in Fig 4. It is the second semilattice with
seven elements, where ¢ = 1 and ¢ = 0. This semilattice is also isomorphic
to the one of Fig. 5. O

Example 10 Consider the Hasse diagram in Fig. 10 (left part) of the ternary
algebra T11. This is the free ternary algebra on one generator [1]. Let
T<s = {0,a,b,¢,¢}, and Tsy = {1,a,b, ¢, ¢}. By Proposition 6, tVy = v+y
whenever © € T<y and y € T<y, Vy = xxy whenever x € T>y and y € Ty,
and x V' y = ¢ whenever x € Tcy and y € T>y, or x € Tsy and y € T<y, or
x=¢ ory=¢. Thus, we only have to calculate the entries involving d and
d to obtain the table of the operation V, as shown in Table 4.

The partial order < for Tyy is shown in Fig. 10 (right part). O
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Table 3: V operation for T

VIO @ b ¢ b a1
010 a b ¢ ¢ ¢ ¢
ala a ¢ ¢ ¢ ¢ 9
blb ¢ b ¢ ¢ ¢ ¢
Pld b @ b P o P
blo & ¢ & b ¢ b
alg ¢ & ¢ ¢ a a
1(¢ & ¢ ¢ b a 1

Figure 10: Hasse diagram for Ty and its < order.

Some additional properties of the operation V are shown below; they are
easily verified.

VI ax(bVe)=(axb)V (axc)
V2 a+(bVe)=(a+b)V(a+c)

V3 ax(avVb)=a+(aVbd)=aV(a+b)=a+ (bxq)
V4 aV(axb)=ax(b+¢)
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Table 4: Operation V for T,

]
ol
QU

QB ol ol o o<
> ol o R 8
S D o o o | o
O 9. 0 © 9 a9 oo oAl
S R S T < N S SN S S [~
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e e e e S N T S T oY I & S o Y I oY
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XRR 0

— 8 o o

9
9

RS S e S oY I S S T oY B T =Y B e B
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