Hazard Algebras *

J. Brzozowski 7. Esik
Dept. of Computer Science Dept. of Computer Science
University of Waterloo University of Szeged
Canada Hungary
brzozo@uwaterloo.ca esik@inf.u-szeged.hu

December 11, 2001

Abstract

We introduce algebras capable of representing, detecting, identifying, and counting
static and dynamic hazard pulses that can occur in the worst case on any wire in a
gate circuit. These algebras also permit us to count the worst-case number of signal
changes on any wire. This is of interest to logic designers for two reasons: each signal
change consumes energy, and unnecessary multiple signal changes slow down the circuit
operation. We describe efficient circuit simulation algorithms based on our algebras
and illustrate them by several examples. Our method generalizes Eichelberger’s ternary
simulation and several other algebras designed for hazard detection.

1 Introduction

The problem of hazards, i.e., unwanted short pulses on the outputs of gates in logic circuits,
is of great importance. In an asynchronous circuit a hazard pulse may cause an error in
the circuit operation. Synchronous circuits are protected from such errors, since all actions
are controlled by a common clock, and all combinational circuits stabilize before the clock
pulse arises. However, an unwanted change in a signal increases the energy consumption in
the circuit. From the energy point of view it is necessary not only to detect the presence
of unwanted signal changes, but also to count them, in order to obtain an estimate of the
energy consumption. Such unwanted changes also add to the computation time. In this
paper we address the problem of counting hazards and signal changes in gate circuits.
One of the earliest simulation methods for hazard detection is ternary simulation. For
the detection of hazards, ternary algebra has been used since 1948 [14]. Ternary simulation
was then used by many authors; see, for example, [4] for a list of early references on this

*This research was supported by Grant No. OGP0000871 from the Natural Sciences and Engineering
Research Council of Canada, and Grant No. T30511 from the National Foundation of Hungary for Scientific
Research. An extended abstract of this paper has been presented at the conference Half Century of Automata
Theory, London, ON, July 26, 2000 [6].

subject, and also [3] for a detailed discussion of ternary methods. A two-pass ternary simu-
lation method was introduced by Eichelberger in 1965 [11], and later studied by others [3].
Ternary simulation is capable of detecting static hazards and oscillations, but does not de-
tect dynamic hazards. A quinary algebra was proposed by Lewis in 1972 for the detection
of dynamic hazards. A survey of various simulation algebras for hazard detection was given
in 1986 by Hayes [16]. We show that several of these algebras are special cases of the hazard
algebra presented here.

The remainder of the paper is structured as follows. In Section 2 we define our model
of gate circuits, describe the binary analysis method, and define hazards. In Section 3
we discuss our representation of transients in gate circuits. Using this representation, in
Section 4 we define Algebra C capable of counting an arbitrary number of signal changes
on any wire in a gate circuit. To make the algebra more applicable, in Section 5 we modify
it to Algebra C}, where k is any positive integer; such an algebra is capable of counting
and identifying up to & — 1 signal changes. In Section 6 we describe circuit simulation
algorithms based on Algebras C and C, and we illustrate our method by several examples.
In Section 7 we extend our definitions to arbitrary Boolean functions. Complexity issues
are then treated in Section 8. In Section 9 we discuss simulation with initial, middle, and
final values, and Section 10 concludes the paper. Several additional results about algebra
C' and three proofs related to Section 7 are given in the appendix.

Characterizations of the simulation results are briefly mentioned at the end of Section 6,
and are treated further in [13].

2 Static and Dynamic Hazards in Logic Circuits

We use V, A, and ~ for the Boolean OR, AND, and NOT operations, respectively.

S1
53
S4

X —oe

52
1

Figure 1: Circuit with hazards.

Figure 1 shows a gate circuit that we will use several times to illustrate various concepts.
We assume in this example that gates have delays, but wire delays are negligible. Hence,
the internal state of the circuit is represented by the state of the four gate outputs sy, sg,
sg, and s4. If the input X is 0 and the internal state is (s1, sg, s3,54) = (1,0,0,0), each
gate is stable, since the value of its output agrees with the value of the function computed
by the gate. Thus, the inverter is stable, because s; = 1 = X, the top AND gate is stable,
because s3=0=1A0= X A sy, etc.

Now suppose that the input changes to X = 1 and is held constant at that value. It is

clear that eventually s; becomes 0; consequently s3 becomes 0. Also, since s; becomes 1,
s4 becomes 1 as well. Thus we know that the final state of the circuit is the stable state
(s1,82,83,84) = (0,1,0,1). Assume that the specification of this circuit requires that, when
the initial state is (1,0,0,0) and the input changes from 0 to 1, s; should change once from
1 to 0, s9 and s4 should change once from 0 to 1, and s3 should not change. Does the circuit
satisfy this specification?

If we take a closer look at the analysis above, we discover that the behavior of a circuit
depends very much on the delays of its components. In the theory of asynchronous circuits,
it is usually assumed that the sizes of these delays are not known [3, 18, 19, 21]. Therefore,
the analysis considers all possible relative sizes of the delays. In our example, the initial
state is (1,0,0,0). After the input change s1, sz, and s3 are all unstable. If the delay of s; is
smaller than those of sy and s3, the next state is (0,0,0,0). If the delay of s is the smallest
of the three, then the state becomes (1,1,0,0). If the delay of s; is equal to that of sy and
smaller than that of s3, state (0,1,0,0) is reached. If all three delays are equal, the state
becomes (0,1,1,0), etc. Altogether, there are seven possible successor states, as shown in
Figure 2, where we have deleted the parentheses and commas from the state tuples, for
simplicity. Thus, 0100 represents (0, 1,0, 0), etc.

1000

1010 ~0100 ~0010

1110 ~0110
1011
0011
0001
0000
0100

0101

Figure 2: Analysis of circuit with hazards.

The binary analysis method described above is quite old—see, for example, the work of
Muller [18, 19]—and the details are outside the scope of the present paper. We refer the
reader to [3] for a formal treatment of this topic. Here we give only an example illustrating
the main ideas. The general analysis step consists of finding all possible successors of a
given state s = (s1,..., S,) in a circuit with n (internal) state variables. Any state obtained

from s by changing any nonzero number of unstable variables is a possible successor. In
this way we obtain a directed graph showing all the possible paths from the initial state.
The graph is finite, since the total number of states is finite. Part of the behavior graph of
our example circuit is shown in Fig. 2.

If we continue the analysis for our example, we find that one possible path is

p = 1000, 0000, 0100, 0101,

where the last state (0101) is stable. Along p, variable s; changes once from 1 to 0, variables
sy and s4 change once from 0 to 1, and s3 does not change. This is in agreement with the
specification. This path occurs when the initial “race” among the first three variables is
“won” by sy, that is, when the delay of sy is the shortest of the three.

The Boolean function computed by a gate is called its “excitation.” QOur model uses
so called “inertial” delays [3, 21], in which short pulses in the excitation are ignored. For
example, when the input is X = 1 and the internal state is 1000, variable s3 is unstable
because both of its inputs are 1. Variables s; and sy are also unstable. If s; wins this race,
state 0000 is reached, and now s3 is no longer unstable. By assumption, the delay of s3
is longer than the period of time during which s3 had two 1s on its inputs; this period is
the same as the delay of the fastest gate s;. Thus the short pulse in the excitation has
been ignored. This is in contrast to “pure” or “ideal” delay models [3, 21], in which every
change in the excitation causes a corresponding change in the output.

Another possible path in Fig. 2 is

i

¢ = 1000, 1010, 1011,0011, 0001, 0000, 0100, 0101.

Along ¢ the inverter output s; changes only once from 1 to 0, and variable s; changes only
once from 0 to 1. Variable s3 is 0 in both the initial and final state; thus, its value should
be “static.” However, there is a time during which s3 has the value 1. This represents a
“hazardous” behavior, since a device having s3 as input may react to this 1-signal, although
this signal is not in the specification. Such a behavior is called a “static hazard.” Variable
s4 has initial value 0 and final value 1; its behavior is therefore “dynamic.” However, it
changes from 0 to 1 twice, and this represents a “dynamic hazard.”

In summary, our example circuit may or may not satisfy its specification, depending on
the relative sizes of its delays.

We refer to the behavior of a circuit after an input change from a stable state as a
“transition.” The set of states in which a circuit can be at the end of a transition is
called the “outcome” of that transition. This concept is needed for the formal definition of
hazards [3]. In our example, the outcome is the singleton set containing the stable state
(0,1,0,1). In general, the outcome may also contain states that appear in cycles, which
represent oscillations. A static hazard is said to be present in a transition if there is a state
variable that has the same value in all the states of the outcome as it has in the initial
state, and there exists a path from the initial state to a state in the outcome along which
the variable changes (necessarily an even number of times). A dynamic hazard exists if
there is a variable which has some value v in the initial state and the complementary value

T in all the states of the outcome, but changes at least three times along some path from
the initial state to a state in the outcome.

The binary analysis method above is exponential in the number of state variables. One
objective of this paper is to find a more efficient method for detecting hazards. This method
is described in Section 6.

3 Transients

We use waveforms to represent changing binary signals. In particular, we are interested
in studying transient phenomena in circuits. For this application we consider waveforms
with a constant initial value, a transient period involving a finite number of changes, and a
constant final value. Waveforms of this type will be called transients.

Figure 3 gives four examples of transients. With each such transient we associate a
binary word, i.e., a sequence of 0Os and 1s, in a natural way. In this binary word a 0 (1)
represents a maximal interval during which the signal has the value 0 (1). Such an interval
is called a O-interval (1-interval). Of course, no timing information is represented by the
binary word. This is to our advantage, however, since we assume that the changes can
happen at any time and that the intervals between successive changes can vary arbitrarily.

(a) _ I 1 01010

(b) L1 10101
() LI LI o010
(d) 101010

Figure 3: Transients: (a) constant 0 with static hazards; (b) constant 1 with static hazards;
(c) change from 0 to 1 with dynamic hazards; (d) change from 1 to 0 with dynamic hazards.

In general, transients are of the following types:

e If a signal is supposed to have the constant value 0, but has ¢ > 0 l-intervals, these
intervals represent i static-hazard pulses. This transient is denoted by the word
0(10)* = (01)'0, has 2i unwanted signal changes, and (i + 1) O-intervals. In regu-
lar expression notation [2, 3, 20], the set of all words of this type is 0(10)* = (01)*0.

e If a signal is supposed to have the constant value 1, but has ¢ > 0 0O-intervals, these
intervals represent ¢ static-hazard pulses. This transient is denoted by the word
1(01)* = (10)'1, has 2 unwanted signal changes, and (i + 1) l-intervals. The set
of all words of this type is 1(01)* = (10)*1.

e If a signal is supposed to change from 0 to 1, but has ¢ > 0 unwanted 0-intervals after
the first change, these 0-intervals represent ¢ dynamic-hazard pulses. Such a transient

is denoted by 01(01)" = 0(10)'1 = (01)'01, has 27 unwanted signal changes, (i + 1)
l-intervals, and (¢ + 1) O-intervals. The set of all words of this type is 01(01)* =
0(10)*1 = (01)*0L.

e If a signal is supposed to change from 1 to 0, but has ¢ > 0 unwanted l-intervals after
the first change, these 1-intervals represent ¢ dynamic-hazard pulses. Such a transient
is denoted by 10(10)' = 1(01)0 = (10)'10, has 27 unwanted signal changes, (i + 1)
l-intervals, and (¢ + 1) O-intervals. The set of all words of this type is 10(10)* =
1(01)*0 = (10)*10.

For the present, we assume that our circuits are constructed with 2-input OR gates,
2-input AND gates and inverters; these restrictions will be removed in Section 7. Given a
transient at each input of a gate, we wish to find the longest possible transient at the output
of that gate. The case of the inverter is the easiest one. If = a; ...qa; is the binary word of
a transient at the input of an inverter, then its output has the transient ¢ = @y ...@;. For
example, in Fig. 3, the first two transients are complementary, as are the last two.

For the or and AND gates, we assume that the changes in each input signal can occur at
arbitrary times. The following proposition permits us to find the largest number of changes
possible at the output of an OR gate.

ProrosiTIiON 3.1 If the two inputs of an OR gate have m and n 0-intervals respectively,
then the mazimum number of 0-intervals in the output signal is 0 if m =0 or n = 0, and
is m+n — 1, otherwise.

Proof: We postpone the proof until Section 7, where it is shown that this proposition is
a special case of a result concerning OR gates with an arbitrary number of inputs. O

Example 1 Figure 4 shows waveforms of two inputs X; and Xs and output y of an OR
gate. The input transients are 010 and 1010, and the output transient is 101010. Here,
the inputs have two 0-intervals each, and the output has three 0-intervals, as predicted by
Proposition 3.1.

X, [010
X, L[] 1010
y N 101010

Figure 4: 0O-intervals in OR GATE.

By an argument similar to that for Proposition 3.1, we obtain:

ProprosITION 3.2 If the two inputs of an AND gate have m and n 1-intervals respectively,
then the mazimum number of 1-intervals in the output signal is 0 if m =0 or n = 0, and
is m+n — 1, otherwise.

These two results will be used in the next section to define operations on transients.

4 Change-Counting Algebra

Let T = 0(10)* U 1(01)* U 0(10)*1 U 1(01)*0; this is the set of all nonempty words over 0
and 1, in which no two consecutive letters are the same. As explained above, elements of
T are called transients. Note that every transient is uniquely determined by its first letter
and length, by its last letter and length, by its first and last letters and the number of Os,
and by its first and last letters and the number of 1s. These characterizations may help the
reader in understanding some proofs that follow.

We define the (signal) change-counting algebra C = (T,$,®,”,0,1). Forany t € T
define z(t) (z for zeros) and u(t) (u for units) to be the number of Os in ¢ and the number of
1s in ¢, respectively. Let a(f) and w(t) be the first and last letters of ¢, and let /(#) denote
the length of ¢t. For example, if ¢ = 10101, then 2(t) = 2, u(t) = 3, a(t) = w(t) = 1, and
I(t) = 5.

Operations ¢ and ® are binary operations on 7T intended to represent the worst-case
OR-ing and AND-ing of two transients at the inputs of a gate. They are defined as follows:

te0=0dt=t tedl=1at=1,

for any t € T. Furthermore, if w and w’ are words in T of length > 1, their sum, denoted by
wdw', is defined as the unique word ¢ that begins with a(w)Va(w’), ends with w(w)Vw(w’)
and has z(t) 0s, where z(t) = z(w) + z(w’) — 1. By Proposition 3.1, t is the longest transient
that can be produced at the output of an OR gate, if transients w and w’ appear at the
inputs of the or gate. For example, 010§ 1010 = 101010, as illustrated in Fig. 4.
Next, define
tel=1t=t t@0=0Qt=0,

for any t € T. Consider now the product of two words w, w’ € T of length > 1, and denote
this product by t = w ® w’. Then t is the unique word in T that begins with a(w) A a(w’),
ends with w(w) Aw(w'), and has u(t) = u(w)+ u(w’) — 1, by Proposition 3.2. For example,
0101 ® 10101 = 01010101.

The (quasi-)complement t of a word t € T is obtained by complementing each letter in
t. For example, 1010 = 0101. Finally, the constants 0 and 1 of C are the words 0 and 1 of
length 1.

In this paper we use several algebraic structures. These structures are fully defined
in the paper; consequently, the paper is self-contained. For more details and backround
material, we refer the reader to a text on universal algebra, for example [8, 15]. Also, a
recent survey of various algebraic structures used for hazard detection and of the algebraic
properties these structures satisfy appears in [7].

A commutative bisemigroup is an algebra C' = (S,®,®), where S is a set, and & and
® are associative and commutative binary operations on S, i.e., (S, @) and (S, ®) are both
commutative semigroups with the same underlying set. Thus a commutative bisemigroup
satisfies equations L1, L2, L1’, L2’ in Table 1, where the laws are listed in dual pairs.
A commutative bisemigroup is de Morgan if it has two constants 0 and 1, and a unary
operation ~ satisfying L3-L6, L3, L4’, and L6’. All the laws of Table 1 are also satisfied
by Boolean algebras, but several laws of Boolean algebras are not necessarily satisfied by
de Morgan bisemigroups. Thus, de Morgan bisemigroups are generalizations of Boolean
algebras.

Note that the set of laws in Table 1 is redundant. For example, one can obtain all the
primed laws from L1-L6. Also, 0 = 1 and 1 = 0 hold in any commutative de Morgan
bisemigroup.

Table 1: Laws of change-counting algebra.

Ll zdy=ydz Ll zQy=yQ®«x

2 zad(ydz)=@ady bz L2 2Q0@H02)=(0y) 2
L3 zp1=1 L3 z®0=0

L4 z0=2=x L4 z@l==z

L T==x

L6 20y=7QY L6 zQy=7Z07

ProposITION 4.1 The change-counting algebra C = (T, $,®,™,0,1), is a commutative de
Morgan bisemigroup, i.e., it satisfies the equations of Table 1.

Proof: Operation ¢ is commutative by definition. Clearly, associativity holds if one of
the components is 0 or 1. Suppose now that u, v, w are all of length > 1. Then, using the
associativity of disjunction,

alud (vhw)) = alu)V(alv)Valw))
= (a(u)Vav))Va(w)
(u & v) @ w).
Similarly, w(u @ (v@ w)) = w((u @ v) & w). Thus we have ud (vd w) = (v B v) B w if the

two words have the same number of zeros. But

= of

Hud (vdw) = 2(u)+ (v w) - 1
<<> 2(w) = 1) - 1

())+Z() 1

Il
n

I
—_
[
—_
=

Il
N

Laws L3 and L4 are obvious by definition of ¢, and law L5 is immediate by the definition of
quasi-complementation. Also L6 is clear when one of the two words has length 1. Suppose
now that z,y have length > 1. Then, using de Morgan’s law for the Boolean operations,

2

oFTY) = a@Val)
= a(@) Aay)

= a(TRTY).

In the same way, w(z @ y) = w(T®7). Since the number of onesin z Gy is z(z)+2(y) -1 =
u(Z) + u(y) — 1, it follows that z @ y = T® 7. Finally, laws L1'-L4’, and L6’ can be derived
from L1-L6. a

We note some further properties of the operations in C'. For any two binary words ¢ and
t', we denote by #t' the word obtained by concatenating ¢ and #', i.e., by writing the letters
of t' after those of . We say that ¢ is a prefiz of ¢’ if there exists a (possibly empty) binary
word t" such that #' = t#". The prefix relation is a partial order on the set of binary words,
i.e., it is reflexive, antisymmetric and transitive. We use < to denote the prefix order.

The prefix order restricted to T is represented by the inequalities below together with
the reflexive and transitive laws:

0<01<010<0101<01010< ...,

1<10<101<1010< 10101 <.
Recall that a function f(z1,...,z,) is nondecreasing or monotonic with respect to a

partial order < if and only if

1 <al,... z, <zl implies f(zq,...,z,) < f(zf,...,2)).

Similarly, f is nonincreasing if
T1 S $/17...7$n S $;'z 1mphes f(mlv"wmn) Z f(mll77$:z)

For example, we know that 01 ® 10 = 010. Since ® is monotonic, as will be shown below,
and since 01 < 0101 and 10 < 10101, we know that 010 is a prefix of the result 0101®10101.
In fact that result is 01010101.

PROPOSITION 4.2 The P, ® and ~ operations are monotonic with respect to the prefix order.

Proof: This proposition is a special case of Proposition 7.2, proved in Section 7. 1l

The two transients 01 and 10 play an important role in Algebra C, since they represent
signal changes from 0 to 1 and from 1 to 0, respectively. Suppose that an arbitrary transient
t occurs at one input of a gate, and a single change (01 or 10) occurs at the other input.
The next lemma completely characterizes the output of the OrR and AND gates for these
inputs.

LEMMA 4.3 For all wordst € T,

v A Lo IS
&
€
o~
Il
—_
S
P
D
3
o~
b2y
=
)
Il
o~
)
Il
2
—_
o~
~—
SH
=
o+
P
®
3
g
.
)
o
o~
X
=
jem)
Il
S

. It follows from the observations above that either t or t is a prefiz of t & 10, t ® 01,
tp 01, and t ® 10.

Proof: First, consider the case where t begins and ends with a 0, i.e., has the form
t= (01)’0, for some 7z > 0. Adding 10 to t produces a word w that begins with 1, ends with
0, and has z(w) = z(t) + 2(10) — 1 = z(¢), by Proposition 3.1. Therefore, w must be the
word w = 1t = 1(01)'0 = (10)'10 = #0 = #w(t). Similarly, if ¢ ends with 1, then ¢ = (01)*,
for some i > 1, and w must be w = 1t = 1(01)* = (10)'1 = fw(¢#). If ¢ begins with a 1 and
ends with a 0, then adding 10 results in ¢, since the first letter, last letter, and number of
0s in the output w is the same as it is in ¢. This proves the first claim; the remaining three
cases follow by similar arguments. The last claim holds, since we have examined all the
possible cases. 0

The next lemma establishes the fact that for any #,s € T, t or t is always a prefix of
t@® s, if s£1, and t or t is always a prefix of t ® s, if s # 0. This lemma has an important
corollary below.

LEMMA 4.4 Suppose thatt,s € T.

1. If a(s) =0, thent <t P s.
2. Ifa(s)=1, thent <t ®s.
3. Ifa(s)=1ands# 1, thent <t@®s ort<tds.
4- Ifa(s)=0ands#0, thent <t®s ort <t®s.

Proof: If a(s) =0, then 0 is a prefix of s, i.e., 0 < s. Because & is monotonic with respect
to the prefix order, we have t =t @ 0 < t @ s. This proves the first claim, and the second
claim follows similarly.

For the third claim, assume that a(s) = 1 and s # 1. Then s must have at least two
letters, and begins with 10, i.e., 10 < s. By monotonicity of ¢, we have t ® 10 < ¢t &P s, and
also t ® 10 <t @ s. By Lemma 4.3, either t < ¢t & 10 or £ < ¢ ¢ 10. Thus the claim holds.
The last claim follows similarly. 0

The next result shows that the length of a word ¢ cannot be decreased by adding another
word s # 1, or by multiplying it by another word s # 0.

COROLLARY 4.5 Suppose thatt,s € T.

1. If s# 1, then l(t) <Il(t & s).

10

2. If s#0, then l(t) < It ® s).

Proof: If s # 1, then either t <t@® sort <t P s, by Lemma 4.4. Hence, I(t) < I(t D s).

The second claim follows by duality. 0
For any word w, let w~! denote the mirror image of w. It is clear that w € T iff w=! € T.
Moreover,
(tEBs)_1 = t st
(t@s)_l = t1gs!

for all t € T. Since also (t7')~! =, we have:

PROPOSITION 4.6 The function w +— w™', w € T, defines an automorphism of C, i.e., a
one-to-one and onto mapping T — T which preserves the operations &, ®, ~, and constants
0 and 1.

The suffix order on T is represented by the inequalities below together with the reflexive
and transitive laws:

0<10 <010 < 1010 < 01010 < ...,
1<01<101<0101< 10101 <

It follows from Proposition 4.6 that the operations @ and ® also preserve the suffix
order.
Some additional properties of the algebra C' are given in the appendix.

5 Counting Changes to a Threshold

Since the underlying set T of Algebra C is infinite, an arbitrary number of changes can be
counted. An alternative is to count only up to some threshold & — 1, & > 1, and consider
all transients with length k or more as equivalent.

Recall that a congruence relation of an algebra is an equivalence relation on the under-
lying set of the algebra preserved by the operations. Since the & operation in Algebra C
is commutative, and by de Morgan’s law L6, it follows that an equivalence relation ~ on
T is a congruence relation of C' if for all transients ¢,s,w € T with t ~ s we have that
(wet) ~ (wds) and t ~ 5. When ~ is a congruence relation of C, there is a unique
algebra C/~= (T/~,®,®,”,0,1), defined on the quotient set T/~ of equivalence classes
of T with respect to ~, such that the map taking a transient to its equivalence class is a
homomorphism, i.e., such that it preserves the operations and constants. For any equiv-
alence classes [s]. and [t]. containing the transients s and ¢, respectively, we have in the
quotient algebra C/~ that [s]< @ [t]~ = [s D t]~, [s]~ @ [t~ = [s @ t]~ and [tlo = [F]~.

Moreover, the constants 0,1 in C/ ~ are the congruence classes [0]. and [1].. The fact

11

that the operations are well-defined is a consequence of the congruence property of ~. It is
known (see, e.g., [15, 8]) that C'// ~ satisfies any equation that holds in C. Thus, when ~ is
a congruence relation, C'/~ is a commutative De Morgan bisemigroup.

Suppose that £ > 1. Relation ~y is defined on the set T of transients as follows: For
t,s €T, t ~ sif either t = s or ¢t and s are both of length > k.

ProPOSITION 5.1 Relation ~y is a congruence relation on C.

Proof: Relation ~y is clearly an equivalence relation. Suppose now that ¢t ~p s. It is clear
that £ ~; 5. We argue by induction on the length of ¢ to show that (w @ t) ~; (w & s),
for all transients w. When the length of ¢ is less than k£ we have ¢ = s, and our claim is
obvious. When ¢ is of length > k then, by Corollary 4.5, w @t and w & s are both of length
> k, so that (w @ t) ~p (W s). a

The equivalence classes of the quotient algebra Cp = C/ ~p are of two types. Each
transient ¢ with /(f) < k is in a class by itself, and all the words of length > k constitute a
class, which is denoted by ®. We denote by T} this set of equivalence classes, and we denote
by t the equivalence class consisting of the singleton ¢. Thus T = {¢t | I(t) < k} U{®}. The
operations on equivalence classes are as follows. The complement of the class containing ¢ is
the class containing #. The sum (product) of the class containing ¢ and the class containing
t' is the class containing ¢t & #' (¢ ® #'). Thus, the quotient algebra C} is a commutative de
Morgan bisemigroup with 2k — 1 elements.

Table 2: OorR and AND operations for k£ = 2.

&0 @ 1 ®|0 & 1

00 @ 1 0(0 0 O

1P P 1 10 & @

11 1 1 110 & 1

Table 3: Ternary laws.

L7 rPhr==zx L7 z2®@z==z
I8 zd(zRy) == L8 z@(xdy) ==
L9 z8(yez)=0@ay)0@ez) LY 20uez)=@0ye(@a2)
L1I0 =9
L1l (z97)dP=247T L1l z@7)@®=2®T
L12 (z47)3(yRy) =267T L12Y 2@7T)Q (yay) =207T

12

Example 2 For k = 2, the & and ® operations are shown in Table 2. These are the
operations of the well known 3-element ternary algebra [3]. In addition to laws L1-L6, and
their duals, ternary algebra also satisfies the laws of Table 3. Ternary algebras are closely
related to Boolean algebras. Ternary algebras obey L1-L9, and their duals, which all hold
in Boolean algebras. Notably absent from ternary algebras are the laws for complements:

rdz=1 z2®@7=0.
Laws L10-L12 and their duals do not hold in Boolean algebras. O
Example 3 The OrR and AND operations for the case k = 3 are shown in Table 4. This is
the quinary algebra introduced in 1972 by Lewis [17], and studied also in [5, 9, 16]. Note

that both binary operations are idempotent, i.e., laws L7 and L7 hold; hence, we have a
bisemilattice [5]. ad

Table 4: orR and AND operations for k = 3.

|0 01 & 10 1 ® |0 01 & 10 1
0|0 01 & 10 1 0/0 0 0 O O
01(01 01 & @ 1 01|/0 01 & & 01
|1 & ¢ & 1 |10 ¢ & & ¢
1010 & @ 10 1 10/0 & & 10 10
171 1 1 1 1 1 (0 01 & 10 1

Example 4 For k = 4, the OR and AND operations are shown in Table 5. In this case, the
binary operations are no longer idempotent. O

In the following proposition we examine which of the ternary laws hold in algebras Cj,
for k£ > 3.

ProprosITION 5.2 The following results apply to Algebras Cy, for k > 3:
e (3 satisfies L7 and L7, but Cy, with k > 4 does not.
e C} with k > 3 does not satisfy L8, L9, L8, and LY.
o For k> 3, C} satisfies L10.
e Cj3 satisfies L11, L12, L11', and L12, but C) does not satisfy these laws for k > 4.

Proof: We show the arguments only for the unprimed laws; the primed laws follow by
duality.

13

Table 5: OrR and AND operations for k = 4.

D 0 01 o010 ¢ 101 10 1 ® |0 01 010 ¢ 101 10 1

0 0 01 o010 ¢ 101 10 1 0 |0 0 0 0 0 0 0

0101 01 ¢ ¢ 101 101 1 01 (0 01 010 ¢ ¢ 010 01
00|00 & ¢ @ ¢ @ 1 010 ({0 010 010 & & 010 010
® | ¢ & ¢ & ¢ I 1 ® |0 ¢ ¢ ¢ ¢ @ @
101101 101 ¢ & 101 101 1 010 ¢ & @& @& @ 101
10 | 10 101 @ @ 101 10 1 10 |0 010 010 ¢ @ 10 10
1 1 1 1 1 1 1 1 1 /0 01 010 ¢ 101 10 1

e For Cj3, the operation tables show that L7, L7" hold. For k > 4, we have k —2 > 2. If
k is even, then (k—2)/2is an integer > 1. Let t = (01)*~2)/20. Then I(t) = k—1, and
t by itself constitutes an equivalence class of ~j. By the definition of ¢ in Algebra C,
tadt = (01)*=20. Thus [(t®t) = 2k—3 = k+(k—3) > k, and ¢t is in the equivalence
class ®, showing that t ¢ & ¢. If k is odd, then & > 5. Let t = (01)(k_3)/20; then
I(t) =k —2 < k. However, t &t = (01)*=30, and I(t ®t) =2k -~ 5=k + (k- 5) > k,
showing again that t £t $¢.

e Let z = 01 and y = 10. In algebra C, we have 2 & (z ® y) = 01 ¢ 010 = 0101. For
each k > 3, z and 2 & (z ® y) are in different equivalence classes. Hence L8 does not
hold.

For L9, use z = 01, y = 10, and z = 0. Then in Algebra C, 2 & (y® z) = 0140 = 01,
while (z @ y) ® (z & z) = 010 ® 01 = 010. Again, the two results are in different
equivalence classes of ~j for all £ > 3.

e L[10 holds, because ~y is a congruence, and the complement of a word of length > k
has length > k.

e For k = 3, L11 and L12 are easily verified from the operation tables.
For k> 4,014 01 =014 10 = 101, but (014 01) & ® = 1014 ® = & # 101. Thus
L11 fails for & > 4.
For L12, (014 01) & (01 ® 01) = 101 4 010 = 10101 and 01 4 01 = 101. For k > 4,
101 and 10101 are in diferent equivalence classes of ~. Hence L12 is not satisfied. [J

We now discuss some further properties of Algebras Ci. Roughly speaking, the next
lemma shows that, if two words s and ¢ are congruent with respect to a congruence 6 on C
and end in the same letter, then we can always find longer words s’ and ¢’ which are also
congruent with respect to 6.

14

LEMMA 5.3 Suppose thatt,s € T with t # s and w(t) = w(s). If 8 is a congruence relation
on C with tBs, then for each m > 0 there exist t',s' € T with t' # &', w(t') = w(s'), 65,
It =1t)+m and I(s") = 1(s) + m.

Proof: It is sufficient to prove the claim for m = 1. If £ and s both end in 0, then by
Lemma 4.3 ¢ 01 =¢1 and s & 01 = sl. Since 6 is a congruence, (£ 01) 6 (s 01). Thus,
(t1) 6 (s1). If ¢t and s both end in 1, then take ' =0 =t ® 10 and s’ = s0 = s ® 10. a

PRrROPOSITION 5.4 Suppose that k > 2. Then ~y_1 is the smallest congruence relation of C
strictly containing ~p.

Proof: Suppose that 6 is a congruence relation of C strictly containing ~. We first show
that there is a transient u of length £ — 1 which is congruent modulo € to some transient v
of length > k.

If @ strictly contains ~y, then there exist distinct transients ¢, s € T with #8s, I(t) < I(s)
and I(t) < k. Suppose first that w(s) # w(t). If w(s) =0 and w(t) =1, then s§ 01 = sl
and t @ 01 = ¢, by Lemma 4.3(3). Thus tfsl. If w(s) = 1 and w(t) = 0, then s ® 10 = s0
and t ® 10 = ¢, by Lemma 4.3(4). Thus ¢6s0. In either case, we have two transients ¢
and s', where s’ is s0 or sl, congruent with respect to 6, and such that I(¢) < I(s'). If
I(t) = k — 1, we are done: let v = ¢t and v = s’. Otherwise, note that w(t) = w(s).
Consider the transients tb and s’b, where b denotes the last letter of . By Lemma 5.3 we
have that tb# s’b. Continuing in the same way, by repeated applications of Lemma 5.3 we
can construct transients u and v with ufv, [(uv) =k — 1 and I(v) > k.

In case w(s) = w(t), consider tb and sb, where b = w(#), and apply Lemma 5.3, as above.

Note that there are exactly two transients of any given length, one beginning with 0
and the other with 1. Having found u and v as above, we claim that all transients of length
> k — 1 are congruent with respect to . Indeed, since @ contains ~, we have that ufw for
all transients w of length > k. Thus, using the congruence property for ~, also whw for all
trasients w with length > k. Moreover, by transitivity, also ufw. Thus, # contains ~j_q.

O

COROLLARY 5.5 The lattice of congruences of each Cy is isomorphic to a chain of length k.
By Corollary 5.5, we immediately have:
COROLLARY 5.6 FEach Cy with k > 2 is subdirectly irreducible.

The last result means that Cj is not a subalgebra of a direct product of algebras with
fewer elements. Informally, this means that Cy cannot be constructed from simpler algebras.
This implies, for example, that C cannot be expressed in any nontrivial way as an algebra
of ordered triples [16], where each component of the triple is evaluated in its own algebra.

As we did for T, we define two partial orders on T}; these are derived from the prefix
and suffix orders. The class consisting of t is < the class consisting of ¢’ if and only if ¢ is

15

010 101 010 101
01 10 10 01
0 1 0 1

(a) (b)
Figure 5: Partial orders on Ty: (a) <; (b) <.

a prefix of ¢, and every class is < ®. The second partial order is similarly defined using
suffixes. For example, the Hasse diagrams of the two orders on T are shown in Fig. 5.

As was the case in C, the three operations &, ®, and ~ in C} are monotonic with respect
to both partial orders. This property plays an important role in the simulation algorithms
described in the next section.

6 Circuit Simulations

For a logic circuit with n gates, the binary analysis described in Section 2 may have as many
as 2" states. If one can be satisfied with partial information about the circuit behavior,
then simulation in a change-counting algebra is often an efficient method for finding that
information.

For the detection of hazards, ternary algebra has been used since 1948 [14]. A two-pass
ternary simulation method was introduced by Eichelberger in 1965 [11], and later studied by
many authors (see [3] for further details). The following is an adaptation of these algorithms
to change-counting algebra.

We denote vectors by unsubscripted letters and their components by subscripted letters.
Let N be a circuit with X = (Xy,...,X,,) as the vector of input variables, and s =
(S1,...,5n) as the vector of state variables. Each state variable has a Boolean excitation
function S; : {0,1}™ x {0,1}" — {0, 1}, i.e., the vector S(z,y) = (S1(z,y),...,Sn(z,y)) is
the vector of excitations of the circuit.

For example, the circuit of Fig. 1 has input vector X = (X), state vector s =
(s1,...,54), and excitation functions given by the following Boolean expressions:

51:Y, So=1AX, S3=X Asy, S4=89V s3,

where we have identified X with X, since X has only one component.

Suppose initially the input X has the value X = @ = (a1, ..., @), and the state has the
value s = b= (by,...,by,), where all the a; and b; are in the set {0,1}. We assume that the
circuit is initially stable, i.e., that S(a,b) = b, and the input changes to a = (ay, ..., am).

16

We define an operation o as follows. For a,b € {0,1},if « = b, then aob = a. For a # b,
if the simulation is done in algebra Cy, which is ternary algebra, then a ob = boa = ®.
Otherwise, if @ # b, and the simulation uses algebra C' or algebra Cj with k& > 2, then
@ o b = ab, where ab represents the concatenation of ¢ and b. This notation is extended to
vectors. If @ = (@1,...,0,) and a = (a1, ..., am)

Goa=(G10a1,...,0m 0 Q).

For example, (1,0,0,1)0 (1,1,0,0) = (1,%,0,®) in Cy; otherwise, (1,0,0,1)0 (1,1,0,0) =
(1,01,0,10). In case of Cy, @ o a indicates by a ® all those variables that change in going
from @ to a. In the other cases, @ oa specifies the change as being either from 0 to 1 or from
1 to 0. Such detail is not possible in the case of Cy, since only one value ® is available for
denoting a value that is neither 0 nor 1.

For the simulation algorithms we use the extensions of Boolean functions to transients.
This topic is discussed in Section 7; for now we use circuits constructed with OR gates, AND
gates, and inverters, for which the extensions are @, ®, and complement in the appropriate
algebra. Variables and their values in a change-counting algebra are denoted in boldface.
For example, for the circuit of Fig. 1, the excitation equations become

Sl :X, 82:1®X7 S3:X®sl, S4:SQ@S3.

Our simulation consists of two parts, called Algorithms A and B. Algorithm A starts
with the circuit in the stable (binary) initial state (@, b). The input is then set toa =doa,
and is kept constant at that value for the duration of the algorithm. After the input change,
some state variables become unstable. We change all unstable variables at the same time
to their excitations. This can be viewed as the “unit-delay” model, in which all gates have
the same (unit) delay. We obtain a new internal state (a vector of transients from the set
T or T}, of the change-counting algebra used), and the process is then repeated. Formally,
Algorithm A is specified below.

Algorithm A
h:=0;
a:=aoa;
sV 1= b;
repeat
h:=h+1;
sh .= S(a,s"1);

— gh—1.

until s” :

Recall that < is the prefix relation on transients. We extend this notion to vectors
of transients. Thus, if t = (ty,...,t,) and t’' = (t},...,t],), then t < t' iff t; < t! for
it = 1,...,m. Note that @ < @ oa = a. By the stability of the initial state we have
b= S(a,b). Since the transient operations 4, ®, and complement agree with their Boolean
counterparts on binary values, we have S(a,b) = S(a,b). Hence, s® = b = S(a,b) =
S(a,b) < S(a,b) = S(a,s’) = s', where the inequality follows by Proposition 4.2, which

17

states that @, ®, and complement are monotonic with respect to the prefix order. It then
follows by induction on h that Algorithm A results in a nondecreasing state sequence:

sV<s'<...<sh< L.

Algorithm A may not terminate in Algebra C, but it must terminate in every algebra C,
k > 2. Let the result of Algorithm A be state s, if the algorithm terminates. Note that
s? = S(a,s?), i.e., that the circuit is again in a stable state at the end of Algorithm A.
Example 5 below illustrates Algorithm A for C9, and further examples follow.
The second part of the simulation consists of Algorithm B, which is applicable when
Algorithm A terminates. Let the result of Algorithm A be state s4. Algorithm B starts

with the circuit in state s#, and input a, and the input is changed to a. Algorithm B is
defined below.

Algorithm B
h:=0;
t0 = SA;
repeat

h:=h+1;

th .= S(a, t"1);
until th = th-1;

Recall now that < is the suffix order on transients, and that &, ®, and complement are
monotonic with respect to the suffix order, as a consequence of Proposition 4.6. It is easy
to verify that Algorithm B results in a nonincreasing sequence of states:

sh=t" =t - .. = tP,

Again we reach a stable state, since t? = S(a, t?).
Both algorithms compute fixed points.

PROPOSITION 6.1 Suppose that Algorithm A terminates with state s*. Then s* is the least
fized point of the function S(a,x) over b, i.e.,

S(a,s?) =s?, and (1)
b<s & S(a,s)=s = s <s. (2)

Proof: Recall that Algorithm A terminates if and only if a state vector s” is reached with
sh = s"=1 and then s* = s" = S(a,s"~!) = S(a,s?). This proves (1).

Suppose now that the premisses of (2) hold for a state vector s. We prove by induction on
h using the monotonicity of the ¢, ® and complement operations with respect to the prefix
order that s” < s. The basis case h = 0 is obvious, since s® = b and b < s, by assumption.
Assuming the claim for A — 1, where h > 0, we obtain s” = S(a,s"™!) < S(a,s) = s, by the
induction hypothesis. 0

18

As noted above, Algorithm A always terminates in any Algebra Cj. Moreover, by
Proposition 6.1, it computes the least fixed point of the function S(a, x) over b with respect
to the prefix order.

In Algebra C', we have:

ProOPOSITION 6.2 Algorithm A terminates in Algebra C if and only if there is a fized point
of the function S(a,x) over b.

Proof: One direction follows from Proposition 6.1. Indeed, if the algorithm terminates,
then it computes a fixed point of S(a,x) over b. For the opposite direction, suppose that
s is a fixed point of S(a,x) over b. As above, we have that sh <'s, for each h. Since there
are only a finite number of vectors < s, the nondecreasing sequence s” < s' < ... must be
eventually constant. 0

In Section 8 we prove that Algorithm A terminates in Algebra C if the circuit is feedback-
free.

Algorithm B always terminates, independently of the algebra used. The proof of the
following fact is similar to that of Proposition 6.1, and is therefore omitted.

ProposSITION 6.3 Algorithm B computes the greatest fized point of function S(a,x) below

s? with respect to the suffiz order.

Table 6: Ternary simulation.

initial state

result A

- I - R=1E=1N]

X
0
P
P
P
1
1
1

SO KK B |®
o BB o|o|®
— o ool

result B

Example 5 Consider the circuit shown in Fig. 1. Refer now to Table 6. The values of
the input variable X and the state variables s1,...,s4 are shown in rows as the simulation
progresses. We begin in the initial state 01000, which is stable. We wish to study the
behavior of the circuit when the input changes from 0 to 1 and is kept constant at 1.

In Algorithm A, the input changes to the uncertain or unknown value ®. Instead of
Boolean functions, we now use the ternary extensions of these functions as they are defined
in Algebra Cy. After X changes to ®, Gates 1, 2, and 3, become unstable in the ternary
model. After all unstable variables are changed, we obtain the second row of Table 6. Now

19

Gate 4 becomes unstable and changes, to yield the third row. Since this state is stable,
Algorithm A terminates here.
In the case of Cy the two partial orders < and < coincide and are given by

0<®, 1<® 0<0,1<1, &< 3.

This partial order is known as the uncertainty partial order [3].

In our example, the input became more uncertain by changing from 0 to ®. Since the gate
operations preserve this order, the gate outputs can only become more uncertain. Thus the
sequence of states produced by Algorithm A is nondecreasing, and the process terminates in
at most n steps if there are n gates in the circuit. Intuitively, in Algorithm A we introduce
uncertainty in the circuit inputs and we see how this uncertainty spreads throughout the
circuit.

In Algorithm B we start in the state produced by Algorithm A, but now we change the
inputs to their final values from ®, thus reducing uncertainty. In our example, X becomes 1.
We again use the ternary excitation functions to see whether the uncertainty will be removed
from any gates. This time Algorithm B produces a nonincreasing sequence of states, which
must terminate in no more than n steps. The final result is the vector 10101, showing that
each gate reaches a binary value after the transient is over. Of course, this is the answer
we expect since the circuit is feedback-free.

It is clear from the circuit diagram that sy changes from 1 to 0 and sy changes from 0
to 1 without any hazards. As we have shown in Section 2, there is a static hazard in ss,
and a dynamic hazard in s,.

This example illustrates that ternary simulation is capable of detecting static hazards.
Gate s3 is 0 at the beginning and 0 at the end, but it is ® at the end of Algorithm A, and
this indicates a static hazard [3]. Our example also clearly shows that ternary simulation is
not capable of detecting dynamic hazards. Gates sy and s4 both change from 0 to ® to 1,
yet sy has no dynamic hazard, while s4 has one. O

In the examples that follow, we show how the accuracy of the simulation improves when
we use Algebra C}, as k increases.

Example 6 In Table 7 we repeat the simulation, this time using quinary extensions of
gates as defined in Table 4. Instead of changing X to ®, we change it to 01 in Algorithm A,
since this is the change we wish to study. From the result of Algorithm A we see that sy
changes from 1 to 0 and sy changes from 0 to 1, both without hazards. The static hazard in
s3 s detected as before, as is the dynamic hazard in s,. This example shows that quinary
simulation is capable of detecting both static and dynamic hazards. O

Example 7 We repeat the simulation now using Algebra C4 with seven values. Refer to
Table 8. This time Algorithm A not only reveals that there is a static hazard in s3, but also
identifies it as 010. Note, however, that the dynamic hazard is still not identified. O

20

Table 7: Quinary simulation.

X S1 S2 S3 5S4
initial state 0 1 0 0 0
0r 1 0 0 O
01 10 01 01 O
01 10 01 @ 01
result A 01 10 01 & @
1 10 01 & <@
1 0 1 10 @
result B 1 0 1 0 1

Table 8: Septenary simulation.

X S1 S92 S3 S4
initial state 0 1 0 0 0
01 1 0 0 0
01 10 01 01 O
01 10 01 010 01
result A 01 10 01 010 @
1 10 01 010 @

result B 1 0 1 0 1

Example 8 We repeat the simulation using Algebra Cs with nine values. Refer to Table 9.
This time Algorithm A identifies the dynamic hazard as 0101.

Observe that the same table results if we simulate our circuit in Algebra C), with any
k > 5 or in Algebra C. Note also, that for k > 4 Algorithm B is no longer necessary for
this circuit, since the entire history of worst-case signal changes is recorded on each gate
output. O

Example 9 The simulation of the circuit of Fig. 6 is shown in Table 10. Here, if we use
Algebra C', Algorithm A does not terminate. Binary analysis of this circuit shows that there
are transient oscillations during this input change. After the input changes to 1, the NAND
gate can oscillate while the OR gate is unstable. For further details see [8]. The OR gate
must eventually change, since it has a finite delay. However, it is not possible to bound the
number of oscillations of the NAND gate without the knowledge of the relative sizes of the
gate delays. Hence the result obtained from the simulation is correct. If one uses Algebra
Cs, for example, Algorithm A does terminate in four steps after the input change, and
Algorithm B predicts state 101 as the final outcome of the input change. O

21

Table 9: Nonary simulation.

X S1 S92 S3 S4
initial state 0 1 0 0 0
01 1 0 0 0
01 10 01 01 0
01 10 01 010 01
result A 01 10 01 010 o0101
1 10 01 010 0101
1 0 1 10 0101
result B 1 0 1 0 1

=5

S9 L S3
> T}

Figure 6: Circuit with transient oscillations.

Table 10: Simulation of circuit with transient oscillations.

X S1 S92 S3
initial state 0 0 1 1
0L 0 1 1
01 01 1 10
01 01 10 101
01 01 10 10101

Example 10 Consider the circuit of Fig. 7. As in Erxample 9, Algorithm A using Algebra
C does not terminate, this time because there is a nontransient oscillation in the OR gate
and the wire delay in the feedback loop. For more details see [3]. Simulation in Algebra Cy,
does, of course, terminate. In Table 11 we show the simulation with Cy. The nontransient
oscillation is detected by the presence of ® in the result of Algorithm B. This example also
shows that multiple input changes can be handled by our simulation. O

Example 11 Consider the circuit of Fig. 7, again. Suppose that X1 = 1, but input X,
and the initial state of the circuit are initially unknown. This is accounted for by setting

22

JY 1
JY2

S1
52

Figure 7: Circuit with nontransient oscillation.

Table 11: Simulation of circuit with nontransient oscillation.

X1 X2 S1 S92

initial state 1 0 0 0
10 01 0O 0

0

1

10 01 010

10 01 010 010
result A 10 01 010 @

0 1 010 &
result B 0 1 0 P

X9 = 51 = s9 = ®. The initial state is now stable in Algebra Cy. Suppose now input X,
changes to 0. No information is obtained from Algorithm 1, since the gate variables are in

a state of maximal uncertainty. Algorithm B, does however provide the information that sq
becomes 0. 0

Table 12: Simulation of circuit with unknown initial values.

X1 X2 S1 S92
initial state 1 & & &
result A P & & P

0o & & @
result B 0o @& 0 9

The detailed discussion of the relation between the simulations described above and
binary analysis of Section 2 is beyond the scope of the present paper. A complete char-
acterization of ternary simulation is given in [3]. In [13] it is shown that the result of
Algorithm A for a feedback-free circuit NV in Algebra C agrees with the result of binary

analysis of a circuit N, which is obtained from N by adding a sufficient number of wire
delays.

23

7 Extensions of Boolean Functions

In this section we show that simulation in Algebra C' or Cj is not limited to 2-input OR
and AND gates and inverters. Let B = {0,1}. We now show how to extend any Boolean
function f : B" — B to a function f : T — T. We use the notation [r] to mean {1,...,n}.

Consider a simple example first. Suppose that a 2-input gate performs Boolean function
f, and that the two inputs have transients 01 and 101, respectively. We want to find the
maximum number of changes that can appear at the output of the gate, assuming that the
input changes may occur at any time. Initially, the gate ‘sees’ the first letters of the two
transients, i.e., 0 and 1; hence the output of the gate is f(0,1). One possibility is that
the second transient occurs while the first input has the value 0. Then the gate would see
the consecutive ordered pairs (0,1), (0,0), (0,1), and finally (1,1). Another possible order
would be (0, 1), (0,0), (1,0), and (1,1), and the third possible order would be (0, 1), (1, 1),
(1,0), and (1,1). Note that we do not need to consider sequences like (0, 1), (1,0),(1,1),in
which both inputs change in some steps, since each such sequence is a subsequence of one
of the three sequences above. The corresponding output sequence in the first case would
be f(0,1), £(0,0), f£(0,1), f(1,1), in the second case, f(0,1), f(0,0), f(1,0), f(1,1), and in
the third case, f(0,1), f(1,1), f(1,0), f(1,1). If f is the OoR function, we would have the
sequences 1011, 1011, and 1111, respectively. The corresponding transients would be 101,
101, and 1. Since we are looking for the longest possible transient, we have 101 as the
result of the operation 01 ¢ 101, which, of course, agrees with our definition in Section 4.
Similarly, if f is the AND function, we get the result 0101, and if it is the XOR function, we
have 1010.

This example is generalized as follows. Suppose that z = (z1,...,z,), where z; € T, for
each ¢ € [n]. Define the directed graph D(z) to have as vertices n-tuples y = (y1,...,Yn),
where each y; is a prefix of length > 0 of z;, for each i € [n]. There is an edge from vertex
y=(y1,...,Yyn) to vertex y' = (yi,...,y,) iff y and ¢y differ in exactly one coordinate, say
i, and y, = y;a, where a € B. It is clear that the graph D(z) shows all possible orders
in which the n variables can change, while undergoing a transition from the initial values
(a(z1),...,a(zy)) to the final values (z1,...,z,). For the example given above, we have
the graph of Fig. 8.

(0,1) ——— (01,1)

| |

(0,10) —— (01,10)

| |

(0,101) —— (01,101)
Figure 8: Graph D(01, 101).

24

Let z =by...0, € T. Call a word y an ezpansion of z if y results from z by replacing
each letter b;, i € [n] by b."¢, for some m; > 0. Note that for any nonempty word y over B
there is a unique word = € T such that y is an expansion of z. We call z the contraction of
y. For example, ¥y = 000110010 is an expansion of z = 01010, and z is the contraction of y.

Returning now to graph D(z), we label each vertex y = (y1,...,y,) of D(z) with the
value f(a1,...,a,), where a; is the last letter of y;, i.e., a; = w(y;), for each 7 € [n].

Definition 1 Given a Boolean function f : B™ — B, we define functionf to be that
function from T™ to T which, for any n-tuple (z1,...,x,) of transients, produces the longest
transient when x4, ..., x, are applied to the inputs of a gate performing function f.

The following proposition is now clear from the definition of f and the graph D(z).

ProrosiTION 7.1 The value of f(;rl, ..., Zn) is the contraction of the label sequence of
those paths in D(z) from (a(z1),...,a(z,)) to (z1,...,2,) which have the largest number
of alternations between 0 and 1.

We now give a complete description of the extension of the n-input XOR function f :
B™ — B to function f :T™ — T'. For this function, no two adjacent vertices have the same
label. Hence, the length of the transient f(.rl, ..., %) is the length of any path in D(z)
from (a(z1),...,a(z,)) to (z1,...,2,) (all such paths have the same length). One easily
verifies that y = f(a;l, ..., &) is that word in T satisfying the conditions

wly) = flw),. .., w(zn))
I(y) = 1—|—El) - 1) —1—n—|—Zl

3

where the expression for the length of y has 1 for the initial state and I(z;) — 1 for the
changes in variable i, for each 1.

For the oR function, consider first an example with two inputs z; and z3. Suppose we
have reached a vertex (yi,y2) in D(z) = D((x1,2)), where (y1,y2) is not the final vertex
and f(w(y1),w(y2)) = 0. Then we must have w(y;) = w(y2) = 0. The two successor vertices
must be (y11,y2) and (y1,y21), because of the alternating nature of transients. Thus, the
next value of f must be 1, independently of the successor vertex. Suppose that vertex
(y1,y2) is labeled 1, so that f(w(y1),w(y2)) = 1. Then it has a successor labeled 0 exactly
when only one of y; and y; ends in 1. Moreover, if w(y;) = 1 and w(yz) = 0, say, then
the vertex has a successor labeled 0 if and only if (110, y2) is a successor, so that 10 is a
prefix of z1. It follows that to obtain the maximum number of alternations in the output
sequence, we should take a path with the largest number of vertices labeled 0, since any
change is caused by entering, or leaving such a vertex.

In general, for any n-tuple (zi,...,z,) of transients, the maximum number of 0Os is

=1+ (2(z1)—1)+...4 (2(zn) — 1). This holds, because we get the first 0 when we reach
the first 0s in all the n transients, and then each variable i contributes z; — 1 additional Os,

25

while the remaining variables are held at 0. For example, for z = (01010,0101) there are
three sequences with 1+ 2+ 1 = 4 zeros:

(0,0), (01,0), (010, 0), (0101, 0), (01010, 0, (01010, 01), (01010, 010), (01010, 0101),

and
(0,0), (0,01), (0, 010), (01,010), (010,010), (0101,010), (01010, 010), (01010,0101),
and
(0,0), (01,0),(010,0), (010,01), (010,010), (0101,010), (01010, 010), (01010, 0101).
In summary, y = f(m, ..., Zy) is the word in T determined by the conditions
aly) = a(z)V...Va(z,)
wy) = w(z)V...Vw(z,)
Ay) = 0 if Jien]a =1
vro= 14537 (2(z;) = 1) otherwise.

~

Dually, if f is the n-input AND function, then y = f(z1,...,2,) € T is given by

aly) = a(zi)A...Aa(z,)
w(y) = w(:cl)/\.../\w(wn)

B 0 if 3i€efn]z;=0
uly) = { 14+ 37" (u(z;) — 1) otherwise.

One easily verifies that the extension of the NOR (NAND) function of any number of
arguments is the complement of the extension of the orR (AND) function. Note, however,
that function composition does not preserve extensions in general. For a two input XOR gate
with inputs 01 and 101 the output is 1010. Suppose now that the XOR gate is constructed
with OR gates, AND gates and inverters. Then

(01 101) & (01 @ T01) = (10 ® 101) & (01 ® 010) = 1010 & 010 = 101010.

Thus, the hazard properties of the XOR function are quite different from those of the network
N consisting of an OR gate, two AND gates, and two inverters. This difference can be
explained as follows. The network N has wires connecting the inverters to AND gates
and the AND gates to the OR gate. In our simulation algorithm we compute the worst-
case transient for each gate output, given the transients at the gate inputs. In computing
this transient we assume that the input changes may occur in all possible orders. This is
equivalent to taking into account the wire delays. In contrast to this, if we consider the
XOR function as being realized by a single component, these “intermediate” wire delays are
not taken into account. Hence, a shorter transient may result in the latter case.

The following proposition and its corollary show that the monotonicity results of Sec-
tion 4 for two-input OR gates, AND gates, and inverters, and consequently the monotonicity
of Algorithms A and B, apply also to gates realizing arbitrary Boolean functions.

26

ProprosITION 7.2 Let f be a Boolean function and f its extension to transients. Thenf
is monotonic with respect to the prefir order.

Proof: When z = (21,...,2,) and 2’ = (2},...,2]) with z; < zf, for all ¢ € [n], D(z)

is a subgraph of D(z'). Also a(z;) = a(z}), for all i € [n], so that any path from a(z) =
!

(a(z1),...,a(zyn)) to z in D(z) can be continued to a path from a(z’) = (a(z)),..., a(z)))

to z’. Thus, each label sequence corresponding to a path from a(z) to z is a prefix of the
label sequence corresponding to a path from a(z’) to z’. It follows that f(zy,...,z,) <

flal, ..., z0). a

COROLLARY 7.3 f is monotonic with respect to the suffiz order.

It also follows from the definition of f that the length of f(m, ..., Zy) is bounded by

n

1+ E(l(ac,) -1) = 1-n+ zj:l(ac,)

=1

When n = 1, this bound can be achieved for the identity function and function ~, and for
n > 1, for the n-input XoR function.

The next proposition and two lemmas are technical results needed in the proof of Propo-
sition 7.7.

PROPOSITION 7.4 Suppose that f depends on each of its arguments and none of the x; is
a single letter. Then the length of f(z1,...,2,) is at least the mazimum of the lengths of
the z;.

Proof: See Appendix. 0

For a function f : B™ — B, integer ¢ € [n] and b € B, let f;; : B"~! — B denote the
function obtained by fixing the ¢th argument of f at b, i.e.,

fi,b(bh"-7bi—17bi+17"'7bn) - f(bh"'7bi—17b7bi+17"'7bn)7
for all b; € B, j € [n], j # 1.

LEMMA 7.5 Forallz; € T, j € [n], if z; = b is a single letter, then

~

For,mn) = fip(er, - micn, Tiga, -, T). (3)

Proof: See Appendix. 0

LEMMA 7.6 If f : B — B does not depend on its ith argument, then f does not depend
on that argument either.

Proof: See Appendix. 0

27

ProOPOSITION 7.7 Let k > 1, and let ~p, be the equivalence relation on T, defined before.
Then ~y, is a congruence in the sense that, for any Boolean function f: B" — {0,1}, and
Tlyeeoy Ty @, .oyl €T, if a0 ~p @), o 2y ~g @), then f(zq, ..., 2,) ~k f(2],...,20).

Proof: Our claim is clear for £ = 1, since all transients are equivalent with respect to ~j.
Hence we may assume that k > 1. It suffices to show that, if z; ~; 2} and z; = m; for
j # i, then f(acl, cey Tn) N f(ac’l, ..., z}). The claim then follows by applying this result
to each z;. (For example, for n = 2, we first show that f(ml, Tg) ~g f(:v’l, z3), and then that
f($’1,ac2) ~k f($’1, z}), and each step involves changing just one variable.) Since & > 1, z;
is a single letter iff z! is a single letter, in which case z; = 2} and our claim is obvious. By
Lemmas 7.5 and 7.6, we may thus assume that f depends on all of its arguments and none
of the z; is a single letter, so that z} is not a single letter either. But then Proposition 7.4
applies and the result follows. 0

Since ~p is a congruence relation on 7', it is meaningful to extend any Boolean function
to Ty. For example, the XOR table for £ = 3 is shown in Table 13. It follows that the
extension preserves the prefix and suffix order on T%.

Table 13: Operation of a XOR gate for k = 3.

Xor |0 01 @ 10 1
0 0 01 & 10 1
01 0 & & & 10
P > & & ¢ P
10 10 & & & 01
1 1 10 & 01 1

8 Complexity Issues

In this section we give an estimate of the worst case performance of the simulation algo-
rithms.

Using Algebra C, Algorithm A may not terminate unless the circuit is feedback-free. So
suppose that we are given an m-input feedback-free circuit with n gates. We assume that
each gate is an OR or AND gate, or an inverter, or more generally, a gate with a bounded
number of inputs such that the extension of the binary gate function to 7' can be computed
in linear time when each transient ¢ is represented by the triple («(t), z(¢),w(t)). Here, we
assume that z(t), the number of Os in ¢ is stored in binary.

Suppose the circuit is in a stable state and some of the inputs are supposed to change.
If an input is to change from 0 to 1 (1 to 0), we set it to 01 (10). It takes O(m) time to
record these changes. Let sq,...,s, denote the state variables corresponding to the gates.
Initially, each s; has a binary value. For each i € [n], let h; denote the height of the ith gate,
i.e., the length of the longest path from an input to the gate corresponding to s;. We clearly

28

have that h; < n, for each i € [n]. In the first step of Algorithm A, all state variables s;
with h; = 1 will be set to their respective final values. More generally, after step j, all state
variables s; with h; < j will assume their final values. Thus, Algorithm A terminates in
O(n) steps. In each step, each variable s; is set to a value according to its current excitation.
Of course, this value may be the same as the value currently attained by the variable. For
example, when the 7th gate is an OR gate which takes its inputs from the jth and kth gates,
then s; is set to s; @ sy, the sum of the current values of s; and s;. The @ operation is that
of Algebra C. Using the triple representation of transients, the middle component of the
new value of s; is at most twice the maximum of the middle components of s; and s, so
that its binary representation is at most one longer than the maximum of the lengths of the
middle components of s; and s;. Since the algorithm terminates in O(n) steps, it follows
that the value of any state variable can be stored in O(n) space. Moreover, we see that
updating the value of s; in a step takes O(n) time, and since there are n state variables,
each step requires O(n?) time. Thus, in O(n) steps, we can set all n state variables to their
final values in O(n®) time, showing that Algorithm A runs in O(m + n®) time.

If the gates are given in topological order so that each s; depends at most on the input
variables and the state variables s; with j < 7, then a better performance can be achieved by
an alternative algorithm that runs in n steps. In step i, it sets s; to its final value according
to its excitation. The time required is now O(m + n?). Since topological sort can be done
within this time limit, the same bound applies if the gates are given in an arbitrary order.

If in Algorithm A we use Algebra Cy, for a fixed k, then at each step, the value of any
state variable can be stored in space O(logk) and updated in time O(klogk) by a simple
table look-up. In this case, Algorithm A terminates in O(n) steps for all circuits, including
those with feedback, since T} is finite, and the subsequent values of each state variable
form a nondecreasing sequence with respect to the prefix order. This follows from the fact,
proved in Section 7, that the extension of any Boolean function preserves the prefix order
on Ty. Thus, using Algebra Cy, Algorithm A runs in O(m+n%klogk) time, even for circuits
with feedback.

If we use Algorithm A with Algebra C for a feedback-free circuit, then Algorithm B
becomes unnecessary. The last letter of the final value of each state variable gives the
response of the circuit to the intended change in the input. Moreover, the final value of
each state variable is the transient that describes all of the (unwanted) intermediate changes
that can take place in worst case at the respective gate. The same holds if we use C, for any
circuit, which now may contain cycles, such that upon termination of Algorithm A, each
state variable assumes a value other than ®. However, if the final value of a state variable
is ®, Algorithm B does become necessary. It will stop in no more than n steps, since the
subsequent values of each state variable now form a nonincreasing sequence with respect to
the suffix order. The total time required by Algorithm B is O(n?klog k).

It follows from the arguments presented above that the following decision problem is
decidable in polynomial time: For a given circuit in a stable initial state, a given input
change, and an integer k, are there k or more (unwanted) signal changes on the output of
any given gate, or in the entire circuit, during that input change? Also, it is decidable in
nondeterministic polynomial time, for a given circuit in a stable initial state and an integer

29

k, whether there exists an input change that would cause k or more (unwanted) signal
changes on the output of any given gate, or in the entire circuit.

ProrosITION 8.1 It is NP-complete to decide for an n-input Boolean function f given in
conjunctive normal form, a tuple of transients x = (z1,...,z,) and integer k whether the
length of f(z1,...,2,) is > k.

Proof: We can guess a path in the graph D(z) and verify in polynomial time if the
contraction of the associated label sequence is longer than k, showing that the problem
belongs to NP. As for NP-hardness, consider an m-input Boolean function f given by a
conjunctive normal form ¢ such that f(0,...,0) = 0. Then ¢ is satisfiable iff f(()l, ..., 01)
is not 0, i.e., when the length of f(()l, ...,01) is > 1. To see this, suppose first that ¢ is
satisfiable and let z = (01,...,01). Since ¢ is satisfiable, there is some b = (by,...,b,) €
{0,1}" such that f(b) = 1. Now let y; = 0 if b; = 0, and let y; = 01, if b; = 1, for each
i € [n]. Thus, w(y) = (w(1),...,w(ys)) = b, so that y = (y1,...,yn) is a vertex of D,
labeled by f(b) = 1. Take any path from «a(z) = (0,...,0) to z going through y. Since
vertex (0,...,0) is labeled by 0 and y is labeled by 1, the contraction of the label sequence
associated with this path has length at least 2, showing that the length of f(()l, ..., 01)
is > 1. On the other hand, if the length of f(()l, ...,01) is > 1, then at least one vertex
Y= (Y1,...,yn) of D(z) is labeled by 1. Thus, letting b = w(y) = (w(y1),...,w(yn)), We
have that f(b) = 1, so that ¢ is satisfiable. a

9 Simulation with Initial, Middle, and Final Values

In a number of simulators [9, 16], the signal values are ordered triples containing the initial,
transient, and final values of a signal. We now show how such algebras can be described in
our framework.

For k > 1, relation = in the algebra C = (T,®,®,”,0,1) is defined as follows: For
t,s €T, t ry s if either t = s or a(t) = a(s), w(t) = w(s), and t and s are both of length
> k. Denote by A (for left) and p (for right) the congruences defined by

tAsiff a(t) = als),

tpsiff w(t) =w(s).

Then
RE= AN~ Np.

ProPOSITION 9.1 Relation = is a congruence relation on C.

Proof: Since A, p, and ~j, are congruences, so is x. 0

The quotient algebra C}, = C'// &, is a commutative de Morgan bisemigroup with 2(k —
1) +4 = 2k + 2 elements. Each word ¢ € T with I(t) < k determines a singleton congruence
class. In addition, for any by, by € B, the words ¢ € T with I(t) > k, a(t) = by, and w(t) = by

30

determine a congruence class that we denote by b;®by. Since =~ Cr~yp, Ck is a quotient of
C}. It can be constructed from Cj by identifying the four elements 020, 021, 10, and
1®1. Also, if k < m, then C}, is a quotient of C,,.

PRrROPOSITION 9.2 CY is isomorphic to a subdirect product (i.e., is a subalgebra of the direct
product) of two copies of the 2-element Boolean algebra B and Algebra Cy,.

Proof: This follows from the fact that & = AN ~ N p, and that C/X and C/p are both
isomorphic to B. 0

Let T} = Tp\{®}U{020,0®1,120,1®1}. We can extend any Boolean function B” — B
to a function (T})" — T by using the congruence property of .

Example 12 Consider the circuit consisting of a 2-input XOR gate with output s and inputs
X and s. If the circuit is started in state X = 0, s = 0, it is stable. The simulation in C}
is shown in Table 14 when the input changes to 0®1. This simulation does not terminate.

O

Table 14: Simulation with initial, middle, and final values.

X s
initial state 0 0
0®1 0

021 091

021 090

021 091

10 Conclusions

We conclude the paper with a short summary of our results. Our main contribution is a
general treatment of signal changes and hazards that encompasses the existing methods and
permits a systematic study and comparison of these approaches. Some detailed properties
of our method are highlighted below.

e Hazards
We have presented a general theory of simulation of gate circuits for the purpose of
hazard detection, identification, and counting.

e Energy Estimation
The same simulation algorithms can be used to count the number of signal changes
during a given input change of a circuit. This provides an estimate of the worst-case
energy consumption of that input change.

31

e Efficiency
If a circuit has m inputs and n gates, our simulation algorithms run in O(m + n?)
time, if the gates are sorted, and in O(m + n3) time, otherwise.

e Accuracy
Our unified model shows in a very natural way the fact that capability for identifying
hazards increases monotonically with the number of symbols used in multivalued
extensions of Boolean algebras. By choosing the value of the threshold k one can
count signal changes and hazards to any degree of accuracy.

o Feedback-Free Circuits

— In Algebra C' Algorithm A always terminates, and Algorithm B is not required.

— In Algebra C} Algorithm A produces a result without ®s if k is sufficiently large.
In that case, Algorithm B is not needed.

— Simulation with (initial, middle, final) values terminates in Algebra Cj.

e Circuits with Feedback
— In Algebra C' Algorithm A may not terminate.

— Simulation in Algebra C} always terminates.

— Simulation with (initial, middle, final) values may not terminate; hence, it is not
suitable for such circuits.

e Multivalued Algebras

Many known algebras are included as special cases in our theory:
— Ternary algebra is isomorphic to Algebra Cj.
— The quinary algebra of Lewis [17] is isomorphic to Algebra Cs.
— The 6-valued algebra Hg of Hayes [16] is isomorphic to C4.

— The 8-valued algebra of Breuer and Harrison [1] and Fantauzzi [12, 16] is isomor-
phic to Cj.

e Decision Problems

— For a given circuit in a stable initial state, a given input change, and an integer
k, it is decidable in polynomial time whether there are & or more (unwanted)
signal changes on the output of any given gate, or in the entire circuit, during
that input change.

— For a given circuit in a stable initial state and an integer k, it is decidable
in nondeterministic polynomial time whether there exists an input change that
would cause &k or more (unwanted) signal changes on the output of any given
gate, or in the entire circuit.

Acknowledgement
The authors thank Steve Nowick for his careful reading of our paper and for his constructive
comments.

32

11 Appendix

Additional Properties of Algebra C

We now state without proof some basic properties of C'. Each word in T is generated by
the two transients 01 and 10 representing up and down changes. Since C' is a bisemigroup,
both operations are used. The word 0 is the trivial sum of zero generators, and 1 is the
trivial product of zero generators'. Words 10 and 01 are the generators themselves. Next
010 =01 ® 10, 101 =104 01, 0101 = 0104 01 =01 ® 10 4 01, etc.

We refer to any expression of the form 10901 ®10401...0or 01® 10901 ®10...as an
alternation of generators. One can verify that the order in which the operations are applied
is immaterial, for example, (10601)®(10401) = ((10401)®10)401 = (104 (01®10))&01.

Every word in ¢ € T is an alternation of generators. In general, we can obtain this
representation of ¢ as follows. Duplicate all the letters in ¢, except the first and the last.
This expresses t as a concatenation of up and down changes. Insert & between every pair
of 0s, and ® between every pair of 1s. The resulting expression is a representation of ¢ in
terms of the two generators. If /(#) = n, then ¢ is an alternation of n — 1 generators. For
example, let ¢ = 01010101. We first find 01100110011001 and then insert the operations, to
obtain 01 ® 10 01 ® 104 01 ® 104 01.

- ©10
(oa0) I J0(10)1)
B01

@01

(101) [- 1(01)"0)

Figure 9: Operations in C.

Figure 9 shows how addition of a generator or multiplication by a generator affects any
word in T. The figure shows a transition graph with four states, each labeled by a regular
expression. The languages denoted by the four regular expressions are pairwise disjoint.
Given a word t € T, start in that state ¢ whose expression contains t. To find ¢ ©® g, where
(®is @ or ® and g is a generator, look for a transition labeled »g. If there is no such
transition, then ¢t © g = ¢t. Otherwise, follow the transition indicated; let the state reached
be ¢'. Then t© g is the word of length /(¢) 4+ 1 that is contained in the regular expression of

! This agreement is standard in algebra, and is analogous to considering any nonnegative integer n as a
sum of n 1s; then the integer 0 is the sum of zero 1s.

33

¢'. For example, 1010 belongs to state 1(01)*0. From that state we find 10106 01 = 10101,
1010 ¢ 10 = 1010, 1010 ® 01 = 01010, and 1010 ® 10 = 1010.

From the graph of Fig. 9 one can also read off t ¢ and t ®t' for any two words t,t' € T.
Start in the state containing ¢, and follow the transitions in the alternation of #. For exam-
ple, consider t+ = 1010 and # = 010. The alternation of # is 01 ® 10. We start in the state
labeled 1(01)*0 which contains 1010. To find t ® t' we first look for ®01; this leads us to
01010. Next we look for ©10; there is no change of state. Hence, the result is 01010.

Proof of Proposition 7.4: Let z; be one of the longest of the words zy,...,2, € T,
and let m denote the length of z,;. For each k € [m], let z; denote the prefix of z; of length
k. Since f depends on its ith argument, there exist b; € B, j # 7 such that

flbry .o bi21,0,0540, .. 0,0,) # f(b1, ... bic1, 1, biga, .. by (4)
Since none of the z; is a single letter, there is a vertex in D(z) of the form
(@/17 ey Y1y 21 Vit 1 - - -7yn)
such that w(y;) = b;, for all j # 7. It follows that for each k € [m],
Uk = (Y1, Yin1s 2o Vit 1y -5 Un)

is a vertex of D(z); moreover, there is a path p form vy to v, whose internal vertices are
V2, ..., Um—1. By (4), the label sequence associated with this path is alternating. Thus, the

contraction of the label sequence of any path from (a(z1),...,a(z,)) to (z1,...,2z,) which
contains p as a subpath has length at least k. 0
Proof of Lemma 7.5: Any vertex (y1,...,yn) € D(z), where z = (21,...,2,), has a
single b as its ith component, i.e., y; = b. Thus, denoting 2’ = (z1,..., Ti—1, Tit1, ..., Tn),
it holds that (y1,...,¥i—1,Yit1,---,yn) € D(z’) and

fw), .. wlyn) = fislw)s .- w¥iz1),w(¥it1), - @ (Yn))- (5)
Hence any label sequence corresponding to a path from a(z) = (a(z1),...,a(z,)) to =
in D(z) determined by function f is also the label sequence of a path from a(z’) =
(afz1), ..., a(zi—1), @(zit1), .. ., a(zy,)) to 2’ in D(z') determined by function f;p.

Conversely, if the (n — 1)-tuple (y1,...,Yi—1,Yi+1,---,Yn) is in D(z’), then

(yh .. '7yi—17b7yi+17 .. 7yn)

is in D(z). It follows that any word which is the label sequence of a path from a(z’) to 2’
in D(z') determined by f; 5 is a label sequence of a path from a(z) to z in D(z) determined

by f. 0

Proof of Lemma 7.6: If f: B"™ — B does not depend on its ¢th argument, then for all
z1,...,¢n €T, for any (y1,...,yn) in D(z), where z = (z1,...,2,), and for any b € B,

flwln), - ywlyn) = flwln), - wWiz1),b,w(Yit1), -« w(yn)).

34

It follows that

~

f(mlw'wxn) — f(xh"'7xi—17b7$i+17"'7$n)7

proving that f is independent of z;. 0

References

[1]

[2]

[3]
[4]

[5]

[11]

[12]

M. A. Breuer and L. Harrison, “Procedures for Eliminating Static and Dynamic Haz-
ards in Test Generation,” IEEE Trans. on Computers, vol. C-23, pp. 1069-1078,
October 1974.

J. A. Brzozowski, “A Survey of Regular Expressions and Their Applications,” IRE
Trans. on Electronic Computers, Vol. EC-11, No. 3, pp. 324-335, 1962.

J. A. Brzozowski and C-J. H. Seger, Asynchronous Circuits, Springer-Verlag, 1995.

J. A. Brzozowski, “Some Applications of Ternary Algebras,” Publicationes Mathemat-
icae (Debrecen). Vol. 54, Supplement, pp. 583-599, 1999.

J. A. Brzozowski, “De Morgan Bisemilattices,” Proc. 30th Int. Symp. on Multiple-
Valued Logic, Portland, OR, pp. 173-178, IEEE Computer Society Press, Los Alamitos,
CA, May 2000.

J. A. Brzozowski and Z.]:Ilsik7 “Hazard Algebras” (Extended Abstract), A Half-Century
of Automata Theory, A. Salomaa, D. Wood, and S. Yu, eds., pp. 1-19, World Scientific,
Singapore, 2001.

J. A. Brzozowski, Z.]:i)sik7 and Y. Iland, “Algebras for Hazard Detection,” Proc. 31st
Int. Symp. on Multiple- Valued Logic, Warsaw, Poland, pp. 3-12, IEEE Computer So-
ciety Press, Los Alamitos, CA, May 2000.

S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag,
1981.

S. Chakraborty and D. L. Dill, “More Accurate Polynomial-Time Min-Max Simula-
tion,” Proc. 8rd Int. Symp. on Advanced Research in Asynchronous Circuits and Sys-
tems, Eindhoven, The Netherlands, pp. 112-123, IEEE Computer Society Press, Los
Alamitos, CA, April 1997.

B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge Uni-
versity Press, 1990.

E. B. Eichelberger, “Hazard Detection in Combinational and Sequential Switching
Circuits,” IBM J. Research and Development, vol. 9, pp. 90-99, March 1965.

G. Fantauzzi, “An Algebraic Model for the Analysis of Logic Circuits,” IEEFE Trans. on
Computers, vol. C-23, pp. 576-581, June 1974.

35

[13]

[14]

[18]

[19]

[20]
[21]

M. Gheorghiu, Circuit Sitmulation Using a Hazard Algebra, MMath Thesis, Department
of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1,
December 2001. http://maveric.uwaterloo.ca/publication.html

M. Goto, “Application of Three-Valued Logic to Construct the Theory of Relay Net-
works” (in Japanese), Proceedings of the Joint Meeting of IEE, IECE, and I.of Illumi-
nation E. of Japan, 1948.

G. Gritzer, Universal Algebra, Second Edition, Springer-Verlag, 1979.

J. P. Hayes, “Digital Simulation with Multiple Logic Values,” IEFE Trans. on
Computer-Aided Design, vol. CAD-5, no. 2, April 1986.

D. W. Lewis, Hazard Detection by a Quinary Simulation of Logic Devices with Bounded
Propagation Delays, MSc Thesis, Electrical Engineering, Syracuse University, Syracuse,
NY, January 1972.

D. E. Muller, A Theory of Asynchronous Circuits. Technical Report 66, Digital
Computer Laboratory, University of Illinois, Urbana-Champaign, Illinois, USA, 1955.

D. E. Muller and W. S. Bartky, A Theory of Asynchronous Circuits. In Proceedings of
an International Symposium on the Theory of Switching, Annals of the Computation
Laboratory of Harvard University, Harvard University Press, pp. 204—243, 1959.

A. Salomaa, Theory of Automata. Pergamon Press, Oxford, 1969.

S. H. Unger, Asynchronous Sequential Switching Circuits. Wiley-Interscience, 1969.

36

