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Abstract. In 1977 Bartussek and Parnas proposed a method for ab-
stract specifications of software modules. The method is based on as-
sertions about traces, and uses the concepts of trace legality and trace
equivalence. We identify a flaw in the definition of legality and equiva-
lence, and correct it. We then examine the modified method from the
point of view of automaton and language theory, using two examples:
first, a unary counter, which is a very special case of an unbounded stack,
and then the stack itself. In both examples, we prove the correctness of
the trace-assertion specification with respect to the automaton specifi-
cation. These results demonstrate that the original method of Bartussek
and Parnas (with some corrections) deserves to be revisited.

1 Introduction

The trace-assertion method for specifying software modules was introduced in
1977 by Bartussek and Parnas [1]; this paper was reprinted in 2001 [3]. A slightly
modified version appeared in 1978 [2]. The method has undergone several changes
since the original paper: see the papers of Parnas and Wang [7,9,10] and the
more recent work in [6] for more details.

In the present paper, our interest lies mainly in the original work of Bartussek
and Parnas, not its later versions. The model described in [1,2] is somewhat un-
usual from a theoretical point of view, and presents interesting challenges. There
is no proof of correctness of this model, and we show that no proof is possible. By
applying formal methods based on automaton and language theory, we uncover
a flaw in the original definition. We correct the flaw in a way which, we believe,
reflects the authors’ intentions. We provide a formal proof of correctness for the
modified trace-assertion specification with respect to the automaton specifica-
tion for two examples: a unary counter and its generalization, the unbounded
stack of [1]. These results demonstrate that the original method of Bartussek
and Parnas (with some corrections) deserves to be revisited.



The remainder of the paper is structured as follows. Section 2 gives some
terminology and notation. Section 3 introduces the Bartussek-Parnas model,
using a unary counter as an example, and points out a flaw in the definition.
A corrected version is then given, as well as a corrected version of a stack. In
Section 4, we specify the unary counter by an automaton. In Section 5 we provide
a formal proof of correctness of the modified trace-assertion specification with
respect to the automaton. In Section 6 we specify the stack by an automaton. The
trace-assertion specification of the stack is then verified in Section 7. Concluding
remarks are made in Section 8.

2 Terminology and Notation

We denote by Z and P the sets of integers and nonnegative integers, respectively.
If ¥ is an alphabet, then ¥t and X* denote the free semigroup and the free
monoid, respectively, generated by Y. The empty word is ¢. For w € ¥* and
a € ¥, |w| denotes the length of w, and |w|,, the number of times a appears
in w.

By a deterministic automaton, or simply automaton, we mean a tuple A =
(X,Q,6,q0, F), where X is a nonempty input alphabet, @ is a nonempty set of
states, d : @ x X — @ is the transition function, ¢o € @ is the initial state,
and F C @ is the set of final states. In general, we do not assume that X and
@ are finite. As usual, we extend the transition function to words by defining
d(q,€) = g, for all ¢ € @, and §(q,wa) = §(d(q,w),a)). A word w € E* is
accepted by A if and only if §(qo,w) € F. The language accepted by A is
L(4) = {w | 6(q0, w) € Y.

By a Mealy automaton M we mean a deterministic automaton with an output
alphabet and an output function. More precisely,

M= (E,Q,J,QO,F,Q,V),

where (X, Q,0,qo0, F) is a deterministic automaton, {2 is the output alphabet,
and v: ) X ¥ — {2 is a partial function, the output function.

For additional material on automata, see, for example, [5,8, 11].

3 The Bartussek-Parnas Model

The first example given in [1] is that of a pushdown stack for integer values.
To introduce the basic model of Bartussek and Parnas, we begin with an even
simpler example: we specialize the stack of [1] to a unary counter, and use the
counter to illustrate several issues. We then give our modified specification, which
is proved to be correct in the sequel. We also give our specification of the stack,
and prove it correct later.



3.1 The Unary Counter

Informally, a unary counter is described as follows. It is a pushdown stack, which
isinitially empty. Only two operations are possible: PUSH and POP. At any time
it is possible to PUSH the integer 1 on top of the stack. If the stack contains n
1s, where n > 0, it is possible to POP the stack; this operation removes the top
1 from the stack, leaving (rn — 1) 1s. The count is represented by the number of
1s on the stack.

We now introduce the approach of Bartussek and Parnas, using their no-
tation. The specification is based on traces, which are sequences of operations.
It has four parts: syntax, legality, equivalence, and values. For the counter, the
values part is irrelevant, since our counter returns no values.

In this example, a trace is a word over the alphabet {PUSH, POP}. As in [1],
to indicate concatenation of traces S and T, the “dot” notation is used, that is,
S.T denotes trace S followed by trace T; the empty trace is denoted by @.

Syntax: This part of the specification defines the nature of the operations of
the module being specified. In our case, both operations map type (counter) into
the same type.

PUSH, POP : {counter) — {counter).

Legality: If S is a trace, we denote by A(S) the assertion that is true if and only
if S is legal. Bartussek and Parnas [1] assume the following general properties of
legal traces:

The empty trace is legal, that is, \(@) = true.
The prefiz of any legal trace is a legal trace, that is, A(S.T) = A(S).
If a trace cannot be proved legal by the assertions, it is illegal.

Adapting the stack to the counter, we obtain the following particular assertion
about legality:

A(S) = A(S.PUSH).

The assertions about legality define only a subset of the set of legal traces.
Other legal traces may be implied by the equivalence relation defined next.

Equivalence: Equivalence of traces is denoted by =, which is an equivalence
relation on the set of all traces with the following general property:

S and S’ are equivalent if and only if, for all traces T, S.T and S'.T are
either both legal or both illegal. In symbols,

S=S" & A(S.T) = A(S".T).
In particular, when T is the empty trace, we have

S=9 = A(S) = AS)).



For the counter, we also have the following particular property:
S.PUSH.POP = S.

Values: Bartussek and Parnas use two types of “access programs” (which we call
operations): O-functions and V-functions. V-functions return values, whereas O-
functions only change the internal state. If S is a trace and X is a V-function
(output-returning operation), then V(S.X) is the value returned when X is ap-
plied after S. For the unary counter, there are no values.

The definition in [2] is the same as that in [1]. This definition presents the
following problems. The general assertion about equivalence implies that equiv-
alence affects legality and vice versa. Moreover, equivalence of two traces cannot
be determined in finitely many steps.

One could also interpret the general assertion about equivalence as simply
the implication

S=8' = A(S.T) = \(S".T).

This also fails. For example, PUSH.PUSH.POP.POP is then not equivalent to
the empty trace, as one would like it to be.

In the 1989 technical report by Parnas and Wang [7], the definitions are
changed. Here, the equivalence of two traces S and S’ implies that both S and
S’ are legal, instead of simply having the same legality. This is unnecessarily re-
strictive. Furthermore, equivalence implies V(S) = V(S’). This is incorrect, since
two equivalent traces may end in different operations. For example, in the push-
down stack described below, traces PUSH(a).TOP and PUSH(a).DEPTH are
equivalent, but produce different outputs. The report [7] also introduces canon-
ical traces. One member from each equivalence class is selected and declared
canonical, provided that every legal trace is equivalent to exactly one canonical
trace. In the case of the counter and the stack, we show that canonical traces
are naturally derived from the equivalence relation.

The trace-assertion method of [1,2] is also briefly described in a 1991 survey
by Wang [9] with further modifications. In the notation of [1,2], these are as
follows. The general equivalence property is defined as

S=9" = A(S) = AS)).

This is indeed a step in the right direction, and we also adopt this assertion.
As we shall see later, however, an important assumption about equivalence, the
right-congruence property:

S=9 =S.T=¢9.T,

is still missing. There is also a problem with the “values” part. Wang states that
S = S implies A(S) = V(S.T.X) = V(S'.T.X), for all T, and for all output-
returning operations (V-functions) X. Here, although S is legal, S.T or S.T.X
may not be legal.



The right-congruence property is explicitly stated in the 1994 paper by Wang
and Parnas [10]. This work, as well as the later work in TAM’97 [6], continue to
use canonical traces introduced in [7].

Our own solution takes the following form.

Syntax: The PUSH and POP operations are maps of the type
PUSH, POP : {counter) — {counter}).
Legality: For all traces S,S’, there is the general assertion

L: S=S = A(S) = A(S), and two special assertions
LO: A(Q) = true,
L1: X\(S) = A(S.PUSH).

Equivalence: The equivalence relation is the smallest equivalence satisfying,
for all traces S,S’, the general assertion

E: S=9 = S.T=S"T, for all traces T, and two special assertions
EO0: POP = POP.S,
E1l: S = S.PUSH.POP.

Note that the definition of equivalence is now independent of that of legality.
Moreover, by EQ, all illegal traces are equivalent. We prove in Section 5 that this
specification is correct with respect to an automaton specification.

3.2 The Stack

The informal description is as follows. We start with an empty stack. We can
push any integer a onto the stack; this operation is represented by PUSH(a).
The POP operation, legal only when the stack in nonempty, removes the top
integer from the stack. The operation DEPTH returns the number of integers
currently stored on the stack, when it is in any legal state. The TOP operation,
is permitted only if there is at least one integer stored on the stack; it returns
the value of the top integer on the stack. Thus, in the stack, DEPTH and TOP
are V-functions, whereas PUSH(a) and POP are O-functions.

As a preview, we also state our solution for the stack. The original stack
specification suffers from the same flaw concerning legality and equivalence. A
corrected version is given below, where S and S’ are arbitrary traces.

Syntax:

POP,PUSH(a) : (stack) — (stack), forall a€ 7,
DEPTH, TOP : {(stack) — (integer).

Legality:

L: S=S = A(S) = A\(S),
LO: A(Q) = true,
L1: A(S) = A(S.PUSH(a)), forallae Z,



Equivalence:

E:S=S5 =S.T=S5".T, foralltraces T,

EO0: POP = POP.S = TOP,

E1: S = S.PUSH(a).POP, for all a € 7,

E2: S = S.DEPTH,

E3: S.PUSH(a).TOP = S.PUSH(a), for all a € 7.

Values:

V: A(S) AASX)A (S =S') = V(S.X) = V(5'.X), for any V-function X,
Vo0: V(DEPTH) = 0,

V1: A(S) = V(S.PUSH(a).DEPTH) = 1 + V(S.DEPTH), for all a € Z,
V2: A(S) = V(S.PUSH(a).TOP) = a, for all a € 7.

This specification is verified in Section 7.

4 Specification of the Counter by an Automaton

We first translate our informal description of the counter into a specification by
an automaton. For convenience, we simplify the notation by representing PUSH

by 1 and POP, by 0.

Definition 1. A counter is an automaton A = (X,Q,46,q0, F), where ¥ =
{0,1}, Q@ = PU{oo},q0=0, F = P, and for alln > 0 and a € X: §(c0,a) = oo,
3(0,0) =00, 6(0,1)=1,6(n,0)=n—1, and §(n,1) =n+ 1.

H... :.
(=)

Fig. 1. Automaton of counter

The state graph of A is shown in Fig. 1. The initial state is indicated by an
incoming arrow, and accepting states, by double circles. Each transitions between
two states is labelled by the input causing this transition. It should be clear that
this formal definition corresponds to our informal specification. A stack with n



1s is represented by state n, n > 0. In particular, the empty stack is represented
by state 0. State oo represents an illegal state, which is reached when a POP
operation (0) is applied to the empty counter.

The specification of the set A4 of legal traces of the counter by an automaton
is:

Aa = L(A).
Note that, if w is in A4, then so is each prefix of w.

The set of all traces is X = {0, 1}*. The set of all legal traces defined by the
automaton, A4 = L(A), is closely related to the Dyck language [4] D of well-
formed words over a pair of parentheses, here represented by 0 and 1. In fact,
D = L(Ao), where 49 = (X,Q,4,0,{0}) is the counter automaton modified to
accept only words leading to the initial state. The language L(A) is the set of all
words which are prefixes of words in D. Each of these words can be completed
to a well-parenthesized word.

We will require a characterization of the set of words taking automaton A
from state 0 to state n with n > 0. Let A, = (X, Q, 4,0, {n}) be the automaton
obtained from A by changing the set of accepting states to {n}. Also, for n > 0,
we denote L(Ap) by A,.

Proposition 1. The language accepted by A, is A, = (D1)*D. Moreover,

Ay = U:°:0 A,

Proof. The proof is by induction on n. By the definition of D, the language Aq
accepted by Ay is precisely D, and D = (D1)°D.

Suppose now that A, = (D1)"D, n > 0, and consider a word w € Ap 1. Let
u be the longest prefix of w that is in A,,. The letter following » in w must be 1.
Thus let w = ulv. In the run of A on w, while v is being read, the state of A
must always be some m with m > n. As v takes A from state n+ 1 back to itself,
we have v € D. Thus A,41 C (D1)"D1D = (D1)"*! D. The reverse inclusion is
obvious.

Clearly, the language accepted by A is the union of the A,. O

Some important properties of automata are discussed next. The well-known
Nerode equivalence =x of a language X over an alphabet X is defined as fol-

lows [8]:
w =x w' if and only if, for all u € ¥*, wu € X & w'u € X.

The equivalence class of =x containing w is [w]x.

A (finite or infinite) automaton A = (X, @, d, qo, F) is reduced if, whenever
u and v take the initial state of A to two different states, then u and v are
distinguishable (not equivalent) with respect to the Nerode equivalence =p,(4),
where L(A) is the language accepted by A. In symbols,

6(q07 u) ;é J(qu U) =>u -/i—L(A) V.



Equivalently, A is reduced if
u =r(4) v = d(q0, u) = §(qo, v)-

Given a language X, we obtain its reduced (finite or infinite) automaton
Ax = (X,Qx,0x,q0,x, Fx) accepting X as follows. The state set @ x is the set
of equivalence classes of =x. The initial state qo x is the class of ¢, the set Fx
of final states is the set of the classes of words in X, and the transition function
is 0x ([w]x,a) = [wa]x.

The following is easily verified:
Proposition 2. The counter automaton A of Fig. 1 is reduced.
Let ||w]| = |w|1 — |w|o- The next result is well known in language theory [4].

Proposition 3. A word w is accepted by automaton A if and only if no prefix
u of w has more 0s than 1s, that is, L(A) = {w | w = uv, implies ||u|| > 0}.

Note that one could specify the unary counter as follows:
A trace w is legal if and only if ||u|| > 0, for every prefix u of w.

This specification is a type of trace-assertion specification, though, of course, not
in the style of Bartussek and Parnas.

5 Verification of the Unary Counter

In this section we prove the correctness of our modified trace-assertion specifica-
tion of the unary counter. For convenience, we use the notation of the previous
section. The specification takes the following form:

Syntax:
0, 1 : {counter) — {counter).
Legality: For all w,w’ € X*,

L:w=w = A(w) = A(v'),
LO: A(e) = true,
L1: A(w) = A(wl), for all w € X*.

Equivalence: The equivalence relation is the smallest equivalence satisfying,
for all w, w’ € X*,

E: w=vw = wu=wu, forallueX*
EO0: 0 = Ow,
El: w = wl0.

First we show that every word w € X* has a canonical representative w such
that w = .



Proposition 4. For every w € X*, either w = 0, or there is an i € P such that
w= 1%

Proof. We repeatedly apply the following =-equivalence-preserving transforma-
tions to w:

1. If w = 170 for some j > 0 and v € X*, then w — 17" 1p.
2. If we 0X*, then w — 0.

Transformation 1 preserves = because we have 170 = 17-1(10) = 19~ by El,
and then 170v = 17~y by E. Transformation 2 preserves = by E0. Note that
no transformation is applicable if w = 0, or w = 17 for j > 0. Thus the process
stops with one of these words. a

Proposition 5. Let = be the smallest right congruence satisfying F0 and F1.

1. = is the Nerode equivalence of the language L(A) = Aa accepted by A.

2. For every w € X*, either w = 0, or there is a unique i € P such that w = 1°.
Moreover, 0 £ 1 £ 17, for i, >0 and i # j.

3. The equivalence classes of = are the languages DOX* and A, for n > 0.

Proof. Let =f, be the Nerode equivalence of the language I = L(A) of automaton
A of Fig. 1. Clearly, =, satisfies E. Also, since A is reduced, the states of A
correspond to the =p-classes via the mapping

i — [1']1, for i >0, and oo — [0]f,

in a one-to-one fashion. By definition of A, d(q,10) = ¢, for all ¢ € @, and
4(0,0) = 4(0,0w), for all w € X*. Therefore, [w10]y = [w]L, and [0]r = [0w]L.
Thus =1, is a right congruence satisfying E0 and E1. Since = is the smallest
right congruence satisfying E0 and E1, we must have = C =.

By Prop. 4, every word w € X* is =-equivalent to either 0, or 1? for some
i > 0. Note that 0 £z 1' #1, 1. Since = C =, we also have 0 # 1° # 17. This
then proves that = = =, and thus the first and second claims. The third claim
is obvious from the automaton. O

Observe that the transformations described in Prop. 4, together with Prop. 5
provide an effective and efficient procedure (linear in the sum of the lengths of
the two words) for deciding whether two words are equivalent. The minimality
assumption plays a crucial role in the proof of Prop. 5. Without this assumption
one could have 0 = ¢, and this is certainly not the intention in [1], for it would
imply that every trace is legal. The minimality assumption is not explicitly
stated in [1]. This assumption could be avoided by adding the assertion that
A(0) = false.

Our assertion E0, which is not present in [1], serves the purpose of mak-
ing all illegal traces equivalent. This simplifies the mathematical model without
changing the intended meaning. If one wanted to identify several different error
conditions, one could use a more refined definition of = on illegal traces.
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We now turn our attention to the definition of legality. In the trace-assertion
specification method there are only three possible ways to conclude that a word
is legal: First, we know by L0 that € is legal. Second, if w is legal, we conclude
that w1 is legal by L1. Third, if w is legal and w’ = w, we conclude that w’
is legal, by L. Thus, one could construct the set of legal words starting with ¢
and then applying L. and L1. This could be done in many different orders. It
turns out to be convenient to do it in the following fashion. We start with e,
and close it under the equivalence =, as permitted by L. This way we obtain
the equivalence class [€]. Next we apply L1, obtaining [¢]1. We close [¢]] under
equivalence, obtaining [1], etc.

Theorem 1. Let A be the set of legal words in the trace-assertion specification.

Then A= Ay,

Proof. Starting with {c} as the basic set of legal words, we apply L, and then
repeatedly L1 followed by L. We count only the number of applications of L1.

With zero applications of L1, we get the equivalence class of the empty word.
By Prop. 5, this is the language Ap.

Assume now that the set of words constructed using i applications of L1 is
the language A;. The next application of L1 results in A;1. The application of L
to A;1 results in the closure of A;1 under =, yielding A; 4.

By Prop. 1, Ax = ;2 Ai; hence, A = A4. O

An assertion specification is complete, if every word in the automaton speci-
fication A4 is generated in A. It is consistent!, if every word generated in A is in
A . Thus Theorem 1 states that the assertion specification of the unary counter
is complete and consistent with respect to the language specification.

6 Stack Specification by an Automaton

For any integer z € Z, the operation PUSH(z) is denoted simply by z, the POP
operation, by p, DEPTH, by d, and TOP, by t.

Each legal state of the stack is represented by the stack contents, that is, by
a word g in Z*. The illegal state is co.

Definition 2. A stack is a Mealy automaton M = (¥, Q, 6, qo, F, £2,v), where
YX={dpt}UZ, Q=72"U{x}, g =¢ F =27 2=27,and § and v
are defined below. Note that § is a total function, while v is a partial function,
defined only ifg € Z* anda=d, orq € Zt anda=1t. Foralla € X, q € Z*,
and z € 7, we have:

— (00, a) = oo,

- 6((]7'2) =4z,

- d(qad) =4q, and V(qad) = |q|;
- d(qz,p) =1q,

! The terms complete and consistent are used in a different sense in [1, 3].
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- d(e,p) = 00,
— d(qz,t) = qz, and v(qz,t) = z,
— (e, t) = oc0.

Note that d never changes the state of the stack, and ¢ changes it only if
illegally applied. If ¢ is illegal, the stack goes to state co. For each state ¢ € Z*,
that is, for each legal stack state, v(q,d) = |q| gives the number of integers on
the stack. For each state ¢ € Z7T, that is, for each nonempty stack state, gz,
v(qz,t) = z gives the top integer on the stack.

The Mealy automaton for the stack is illustrated in Fig. 2. Given state ¢ and
input a, if there is no output, the transition from ¢ under a is labelled by a.
If there is an output b, the transition is labelled by the pair (a,b). If we treat
all the integer inputs together as a PUSH input, then PUSH and p (POP) act
exactly as they do in the counter. In the figure, we can only indicate a few typical
features of the automaton. The initial state is marked €. There is one transition
from this state for each of d, p, and t. There is also one transition from ¢ for
each integer; hence the number of such transitions is infinite. If we apply input
3, representing PUSH(3), the automaton moves to state (3). If we then apply 5,
the state becomes (3, 5), etc.

Fig. 2. Mealy automaton of stack

The legal traces of the stack are now specified by Ayr = L(M). Note that if
w is in Aps, then so is each of its prefixes.

Let M, = (X, Q,4,¢,{q}, 22,v) be the automaton obtained from M by chang-
ing the set of accepting states to {¢}, where ¢ € Z*. Also, denote L(M,) by A,.

Then
Ay = quz* Ag.

Let I' be the set of output-returning operations (V-functions) in X; then
X'\ I is the set of O-functions. For any w € X* and a € I', the partial function
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v(wa) is defined by
v(wa) = v(§(e, w), a).

We use the convention that v(wa) = v(w'a) means that either v(wa) and v(w'a)
are both undefined, or are both defined and have the same value. The equivalence
relation =37 on X* is defined as follows: w =p; w' if and only if,

forallu e ¥* wu e Ay © w'ue Ay A foralla €I, v(wua) = v(w'ua).

A Mealy automaton M is reduced with respect to the equivalence =, if and
only if
w =y w = 86, w) = §e, w').

Proposition 6. The stack automaton M of Fig. 2 is reduced.

Proof. First, state co is a rejecting state and all the states in Z* are accepting.
Among the accepting states, if i < j, then any state g of length 7 is distinguishable
from a state ¢’ of length j by the word p’. Suppose now that q and ¢’ # ¢ are of
equal length, and their longest common suffix is ¢;11 .. .¢n. Then ¢; # q;. Now
q and ¢’ are distinguishable by p"~it. O

We now characterize the language accepted by M. Let ||w|| = |w|z — |w]p,
where |w|z is the number of integers appearing in w.

Proposition 7.
LM)={w]|w=uv=|lul| >0, and w = utv = [|u]| > 0}.
Proof. Since this result is not used, we leave its verification to the reader. O

As for the counter, this result could be used as a type of trace-assertion
specification for the set of legal traces.

7 Verification of the Stack
In our notation, the stack specification becomes as follows. Here w is an arbitrary
word of X*.

Syntax:

p, z : {stack) — (stack), for all z € Z,
d,t : {stack) — (integer).

Legality:

L: w=w = ANw) = A(v'),
LO: A(e) = true,
L1: A(w) = AMwz), forall z€ Z,
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Equivalence: The equivalence relation is the smallest equivalence satisfying

E: w=vw = wu=wu, forallueX*
EO0: p = pw ={,

El: w = wzp,

E2: w = wd,

E3: wzt = wz.

Values: Here we denote the output function as 6 to distinguish it from the
output function v of the automaton. As before, let I" be the subset of X' consisting
of the V-functions. For all w € X*, we have

Vi A(w) AXMwa) Aw = w' = 0(wa) =0(w'a), for any a € T,
Vo: 6(d) = 0,

V1: Aw) = 0(wzd) = 14 6(wd),

V2: Aw) = O(wzt) = z.

We first show that every word w € X* has a canonical representative.

Proposition 8. For every w € X*, either w = p or there exists ¢ € Z* such
that w = q.

Proof. We apply the following =-equivalence-preserving transformations to w,
as explained below. In all cases u,v € X*.

If w = pu or w = tu, then w — p.
If w = uzpv, then w — wv.

If w = udv, then w — uv.

If w = uztv and then w — uzv.

wheEe

Transformation 0 preserves = by E0 and E. Transformation 1 preserves =
because uzp = u by El, and uzpv = uv by E. Transformation 2 preserves =
because ud = u by E2, and udv = wuv by E. Transformation 3, preserves =
because uzt = uz by E3, and uztv = uzv by E.

To be more precise, we proceed as follows:

(a) By repeatedly applying transformation 2 we remove all occurrences of d.
From now on assume that w does not contain d.

(b) If w = pu or w = tu, then w — p by transformation 0.

(¢) By repeatedly applying transformation 1, we remove all occurrences of zp.
Note that removing an occurrence of zp may create an occurrence of zt (but
in a shorter word). For example, zzpt — zt. Also, using this transformation
may introduce a word beginning with ¢. For example, zpt — 1.

(d) By repeatedly applying transformation 3, we reduce all occurrences of zt
to z. Note that reducing zt to z, may create an occurrence of zp (but in a
shorter word). For example, zip — zp.

Apply steps (b)—(d) repeatedly until the word is p, or there are no more
occurrences of zp and zt. This leaves a word in Z* as the only possibility.
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Note that no transformation is applicable if w = p, or w € Z*. Hence our
claim holds. O

Proposition 9. Let = be the smallest right congruence satisfying EO-E3. Then
1. ===y.
2. For every w € X*, either w = p, or there is a unique ¢ € Z* such that

w = q. Moreover, pZq % ¢, forq,q € Z* and ¢ # q'.
3. The equivalence classes of = are precisely the languages A.(pUt)X* and A,

forq e Z*.

Proof. Since M is reduced with respect to =37, the states of M correspond to
the =ps-classes via the mapping

q — [q]m for g € Z*, and co = [p]m,

in a one-to-one fashion. By definition of M,

— d(e,p) = d(e, pw) = (e, t), for all w € X*,
(g, 2p) = ¢, for all ¢ € Q,
d(¢q,d) = g, for all ¢ € @, and
— Forall g € Z*, gz = §(qz,t) = 6(d(q, 2),t) = (g, zt). Since (g, z) = qz, we
have d(q, zt) = (g, 2).
Therefore,
— [plm = [pw]m = [t]m, for all w € X*,
[wzp]pm = [w]ar, for all w € X,

[wd]pr = [w]ar, for all w € X¥*, and
— [wzt]ap = [wz]m, for all w € Z*.

Thus =ps is a right congruence satisfying E0O-E3. Since = is the smallest
right congruence satisfying E0—E3, we must have = C =j,.

By Prop. 8, every word w € X* is =-equivalent to either p, or ¢ for some
g € Z*. Note that p Zy g Zm ¢, if ¢ # ¢'. Since = C =p, we also have
p Z q Z ¢'. This then proves that = = =/, and thus the first and second claims.
The third claim is obvious from the automaton. O

As in the case of the counter, the transformations of Prop. 8 constitute an
efficient algorithm for deciding the equivalence of two words.

Theorem 2. Let A be the set of legal words in the trace-assertion specification.

Then A = Apr.

Proof. Given a set of legal words, we can find new legal words by using rules L1
and L. The set of words obtained using L alone is the equivalence class of the
empty word. By Prop. 9, this is A,.

Assume now that the set of words constructed using ¢ applications of L1 with
integers z1,..., % and L is the language A,, where ¢ = z1...z;. The (i 4+ 1)st
application of L1 results in A,2;41. The application of L. to A4z;4; results in the
closure of A;z;11 under =, yielding Ay, ,,.

Altogether, A = quQ Aq. As we have observed in Section 6, Ay = quQ Aq.
Hence Ap = A. O
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To complete the verification of the stack specification, we prove that the
output produced in the trace-assertion specification is always the same as that
produced by the automaton.

Proposition 10. For every w € Z*, v(w,d) = 6(wd).

Proof. First, v(w,d) = |w|, by definition of M. For 0, we proceed by induction
on the length of w. If |w| = 0, then O(wd) = 6(d) = 0, by V0. Since |¢| = 0, the
claim holds. Assume now that 6(wd) = |w| for all w of length less than or equal
to n, and consider wzd, where |w| = n, and z € Z. Since A(w) = true if w € Z*,
by Theorem 2, V1 is applicable. Also, A(wz) = true by L1, and Awzd) = true
by E2 and L. By V1, 6(wzd) = 1 4+ 0(wd) = 1 + n = |wz|. Hence the induction
goes through and the claim follows. O

Proposition 11. For every w € Z%, v(w,t) = 0(wt).

Proof. In the automaton M, we have v(wz,t) = z, while in the trace-assertion
specification, 8(wzt) = z by V2, and the claim follows. O

Theorem 3. The output values of the trace-assertion specification of the stack
are correct with respect to those of the stack automaton.

Proof. We have shown in Props. 10 and 11 that the outputs agree for all canonical
traces. Suppose now that w is any legal trace, and w is its canonical representa-
tive. Then w and @ take M to the same state, and will produce the same output
when d is applied. By V, w = @ = 0(wd) = 6(wd). The same type of reasoning
applies if the input is . O

8 Conclusions

We have used a formal method for studying trace-assertion specifications. We
have shown that there are flaws in the earlier definitions of the Bartussek-Parnas
model. We have corrected these flaws, and proved the correctness of the trace-
assertion method for a counter and a stack. We have shown that, in the cases of
the counter and stack, canonical representatives of traces can be derived directly
from the trace specification in a natural way, and need not be artificially intro-
duced. In view of these results, the original method of Bartussek and Parnas
(with the indicated corrections) deserves to be revisited.
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