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Abstract

Hazards are unwanted signal changes that may affect the correctness of computations in

asynchronous circuits. For this reason, it is very important to have accurate and efficient

methods of hazard detection. Recently, Brzozowski and Ésik proposed a new infinite-

valued algebra for the detection of hazards, and a simulation algorithm based on this al-

gebra. Their simulation method seems to be able not only to detect hazards, but also to

count all the signal changes that may occur in gate circuits in the worst case. In this thesis

we study the correctness of the new simulation method, by comparing it to binary analysis.

Binary analysis is a model of behavior for asynchronous circuits that considers all possible

behaviors under different delay distributions. We prove that, for any gate circuit started in

any state, the result of the binary analysis is covered by the result of the simulation, in the

sense that all signal changes occurring in the binary analysis occur also in the simulation.

Conversely, we prove that, for feedback-free circuits composed of one- and two-input gates

and started in a stable state, the result of the simulation is covered by the result of the binary

analysis, in the sense that all the changes predicted by the simulation occur in the binary

analysis, if input, wire, and fork delays are taken into consideration.
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Chapter 1

Introduction

1.1 Asynchronous Circuits

Asynchronous circuits, in contrast to synchronous circuits, operate without a global syn-

chronization signal called clock. Although synchronous circuits are by far better under-

stood and more widely used than asynchronous ones, interest in asynchronous circuits has

grown considerably in recent years, in both academia and industry. Several successful

asynchronous microprocessors have been designed and implemented by different academic

research groups ([4, 19, 27]). Other projects have been carried out in an industrial set-

ting ([13, 24, 33]). Important contributions have been made to the theory, verification,

performance and timing analysis, testing, and synthesis of asynchronous circuits (see, as

examples, [2, 7, 15, 25, 32]).

The growing interest in asynchronous circuits is motivated by the potential of these

circuits to overcome many of the limitations that are becoming critical as modern syn-

chronous systems become more sophisticated. We list some of these limitations below (for

more detailed discussions of these issues, see Chapter 15 of [8], or see [14]).

� Clock distribution. As synchronous circuits become more complex, distributing the

1



CHAPTER 1. INTRODUCTION 2

clock evenly to all circuit components becomes more difficult. Asynchronous circuits

are not exposed to this kind or problem, since they do not need a clock.

� Power consumption. In synchronous circuits the clock contributes significantly to

power consumption, since the clock is distributed throughout the circuit, even to

some parts that are not involved in computation. In asynchronous circuits power

consumption is local to the computation sites.

� Speed. The clock must be slow enough to accommodate the slowest component

of a system. For this reason, synchronous circuits exhibit worst-case computation

time. In contrast, asynchronous circuits have average-case performance, since each

component operates at its own speed.

� Metastability. Synchronous circuits may be affected by metastability [12], which is

an unstable equilibrium that can last for an unbounded amount of time. Since these

circuits require bounded response time, if the metastability is not resolved within one

clock cycle, erroneous behavior may result. Asynchronous circuits are more robust

in such situations, since components can wait until metastability is resolved.

� Modularity. Because of the global synchronization need, synchronous circuits are

not easily composable, and do not naturally support modular design. Asynchronous

circuits, on the other hand, allow easier modular design.

Despite their advantages over synchronous circuits, asynchronous circuits are subject

to problems that can be avoided in synchronous systems. Hazards are an example of such a

problem. Hazards are unwanted signal changes that may affect the correctness of computa-

tions. For instance, a signal that should be 
 at all times during a computation but changes

from 
 to � and then to 
 has a static hazard. A signal that is supposed to change once from

� to 
 , but instead changes from � to 
 , to � , and then to 
 has a dynamic hazard. Since
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the components of an asynchronous circuit react to all signal changes on their inputs, in-

correct signals due to hazards may propagate through the circuit, causing it to malfunction.

Synchronous circuits can be protected from malfunctioning in the presence of hazards by

a careful design that ensures all signals have the correct values at each edge of the clock.

Even if they do not affect correctness, however, hazards may increase computation time

and power consumption in synchronous circuits.

Because the problem of hazards is very important for the operation of asynchronous

circuits, much of the research in the field has been dedicated to finding efficient methods

of hazard detection. These efforts have been made difficult by the fact that the behavior

of asynchronous circuits, as opposed to that of synchronous circuits, is significantly more

difficult to analyze.

Our work addresses the general problem of asynchronous circuit analysis, with appli-

cation to hazard detection in particular. In the next section we survey some of the most

important contributions made in the area, and show how our work relates to them.

1.2 Previous Work on Hazards

A widely used model for the behavior of asynchronous circuits was introduced by Muller

and Bartky [31]. The model assumes binary signal values and it exhaustively generates all

the states of a circuit that are possible as a result of a change in the inputs. While the model

captures all possible behaviors under different delay distributions, it is computationally

inefficient, since the state space has exponential worst-case complexity. That renders it

impractical, for instance for hazard detection. The model is also known as the General

Multiple Winner (GMW) model ([5, 8]), but we refer to it as the binary analysis. We

present it in Chapter 2.

Researchers have considered other, more efficient methods of circuit analysis for hazard

detection. One of the earliest treatments of hazards in digital circuits is due to Huffman
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[23], who introduces informal definitions of the static and dynamic hazards and discusses

some characterizations of these hazards. His work was later formalized by McCluskey [28]

and generalized by Unger [36]. Their approach uses Boolean algebra and Karnaugh maps

to manipulate the Boolean expressions describing circuits, in order to find so-called lift-

and drop-sets that are used to characterize hazards. The procedures are rather complicated

and depend very much on the structure of the circuits. Also, the time/space usage of the

procedures increases dramatically with the size of the circuits.

As a more efficient alternative to the binary methods mentioned above, several multi-

valued algebras have been proposed over the years for the characterization and detection of

hazards. We briefly mention some of them here; for a detailed survey we refer the reader

to [10].

One of the most successful algebras used for hazard detection is the three-valued alge-

bra that is the basis of the ternary simulation algorithm introduced by Eichelberger [16].

This simulation algorithm provides a simple and a very efficient (linear time) method of

detecting static hazards and oscillations, but is not capable of detecting dynamic hazards.

A complete characterization of the ternary simulation in terms of binary analysis is given

in [6]. The characterization states that the simulation provides a least upper bound of the

result of binary analysis, under the assumption that both gates and wires have arbitrary,

but finite delays. As a corollary, it is shown that static hazards and oscillations are cor-

rectly detected by simulation. The algorithm, originally defined for stable initial states, is

generalized in [35] to handle any initial state.

None of the other multi-valued algebras proposed for hazard analysis provides a sim-

ulation algorithm as well defined and well characterized as the ternary simulation. For

instance, Metze [29] introduces a four-valued algebra aimed at detecting both static and

dynamic hazards, but his simulation method using that algebra is described only by exam-

ples, and no algorithm is defined. A five-valued enhancement of the algebra of Metze is
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proposed by Lewis [26]. This time a simulation algorithm is defined, but in a complicated

way, and a rather informal characterization is given.

Hayes [20] makes a more rigorous study of several multi-valued algebras for hazard

representation. He shows that larger algebras can be constructed from smaller ones and

provides the rules for such constructions. By applying these rules, Hayes obtains, from the

two-valued Boolean algebra and the five-valued algebra, an eight-valued algebra capable

of representing static and dynamic hazards explicitly. No simulation algorithm is given in

[20] for this algebra, but a simulation using an identical algebra is presented in [3]. This

simulation is limited to combinational circuits, and no discussion of its results is provided.

An extension of this simulation to sequential circuits is reported in [1], but its results are

assessed only experimentally. Hayes also constructs a 
 � -valued algebra, from the ternary

and five-valued algebras. This algebra is a more complete version of the eight-valued

algebra, since in addition to static and dynamic hazards it explicitly represents unknown

behavior. A similar algebra is presented in [11], together with an informal description of a

corresponding 
 � -valued simulation.

Other multi-valued algebras have been proposed as well, such as a nine-valued algebra

[18], a 
�� -valued algebra [21], and a ��� -valued algebra [3], but they suffer from serious

flaws (see [10]).

In a recent paper [9], Brzozowski and Ésik introduce a general, infinite-valued algebra,

the change-counting algebra � , that generalizes all the successful multi-valued algebras

proposed previously for hazard analysis. On the basis of this algebra, they define a simple

polynomial time simulation algorithm that generalizes the ternary simulation. Their simu-

lation seems to be able not only to detect static and dynamic hazards, and oscillations, but

also to provide more information about the behavior of circuits. In particular, the algorithm

seems capable of counting all the signal changes in gate circuits in the worst case; this

could provide an estimation of power consumption.
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The purpose of our work is to characterize the simulation algorithm of Brzozowski and

Ésik in order to prove that it is correct with respect to binary analysis, in the sense that it

accurately predicts all the signal changes that occur in the binary analysis. We prove that

all the changes that occur in the binary analysis, also occur in the simulation; in particular,

if any hazardous change takes place, the simulation detects it. This result applies to all

gate circuits, with any initial state. Conversely, we prove that, for feedback-free circuits

started in a stable state, all the changes predicted by the simulation occur in the binary

analysis, if input, wire, and fork delays are taken into consideration. The latter result is

restricted to circuits of one- and two-input gates. These results make a step toward a full

characterization of the new general simulation in the spirit of the one previously given for

the ternary simulation.

1.3 Thesis Overview

The thesis is structured as follows.

In the remainder of this chapter we introduce some of the notational conventions that

are used throughout the text.

In Chapter 2 we define the network model of gate circuits on which our theory is based;

we also present the binary analysis, and the algebra � of transients introduced by Brzo-

zowski and Ésik.

Chapter 3 introduces the simulation method based on algebra � . We define a more

general algorithm than that of [9], in the sense that it does not require the initial state

to be stable. Our algorithm is called Algorithm A. We also present Algorithm Ã, that is

the original definition of the simulation, with initial stable state; we show that Algorithm

Ã is equivalent to Algorithm A, under models containing input delays. We also prove

some important properties of these algorithms, namely that Algorithm A is monotonic, and

Algorithm Ã is insensitive to wire delays, for feedback-free circuits.
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In Chapter 4 we establish one side of the correspondence between binary analysis and

simulation by showing that all signal changes occurring in the binary analysis appear also

in the result of Algorithm A, for any gate circuit. This result implies that the simulation

detects all hazardous signal changes.

The subsequent three chapters are dedicated to proving a converse of the result in Chap-

ter 4, namely that all changes predicted by the simulation take place in binary analysis. This

is important in order to ensure that the simulation does not produce false negatives, in the

sense that it predicts hazards that never occur. In Chapter 5 we introduce delay automata

that model the hazard-preserving behavior of delays in binary analysis. In Chapter 6 we

introduce gate automata that characterize the worst-case behavior of gates in binary anal-

ysis. We prove an important lemma that relates delay automata and gate automata, and is

essential to our main proof. The main proof is completed in Chapter 7, where we show

by an inductive construction that there exist state sequences in binary analysis that exhibit

the behavior predicted by simulation. This result is restricted to Algorithm Ã, applied to

feedback-free circuits with one- and two-input gates; it also requires that input, wire, and

fork delays be considered in the binary analysis. The reader might find it useful to consult

Chapter 7 prior to reading Chapters 5 and 6, in order to better understand the goal of the

concepts and results presented in these two chapters.

Chapter 8 concludes the thesis, with a summary of the results and open problems.

1.4 Notational Conventions

We use
�����

to denote the set ��
�������� � �	� , for an integer
��
 � . The Boolean operations

AND, OR, NOT, and XOR are denoted � � � ��
 , and � , respectively.

For a word � , ����� is its subword determined by the characters belonging to alphabet
�

, e.g., if ������������� ��� , and
� ����� � ���! � , then ���"�	������� . We denote by # �$# � the number

of occurrences of character � in word � . The empty word is denoted by % . We sometimes
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write � � to denote the word obtained by concatenating
�

copies of word � , for a positive

integer
�

; when
� � � , � � � % . A word � is called a factor of a word � , if there exist

words ��� � such that ��� � � � .
We denote by ����� � the language recognized by an automaton � . When writing regular

expressions, we use � for union, juxtaposition for concatenation, and � for Kleene’s star

operator.

Whenever possible, we write the steps of our proofs in the form

�

	 ��
 �
�

,

where
� � � are statements or expressions,

	
is a relation such as � ��
 ��� ��� , or � , and


 is a series of facts. These deduction steps should be read as:
�

is in relation
	

with
�

,

by the facts in 
 .



Chapter 2

Preliminaries

In this chapter we introduce some basic concepts that underlie our theory. Most of the ideas

presented here are taken from [8] and [9].

2.1 Circuit Model

This section defines the mathematical model of circuits that constitutes the basis of our

theory. Our model is a variation of the model introduced by Brzozowski and Seger in [8].

We model asynchronous circuits at the gate level of abstraction. We restrict ourselves

to gate circuits composed of single-output gates, with no wired-AND, or wired-OR con-

nections (we consider AND or OR gates, respectively, in place of such connections).

Given a gate circuit with
�

inputs and � gates, we associate a variable to each input, and

call it an input variable or simply an input; we denote the input variables by
� � � �����	� � � .

We also associate a variable with the output of each gate, and call it a state variable; we

denote the state variables by � � ����� �	����� . Input and state variables take values in the binary

domain
� �������	
 � . Each state variable � � has an excitation � � , that is the Boolean function

implemented by the corresponding gate.

9
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Example 2.1.1 For the circuit of Figure 2.1, the inputs are
� � and

� � . The state variables

are � � ��� � � � � , and ��� , with excitations

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � ���� �
� �

� �

Figure 2.1: Sample gate circuit.

We assume that each excitation depends functionally on all its arguments, in the sense

that we define next.

Definition 2.1.1 (Functional dependence) Let
� 
 � be an integer. A Boolean function

��� �����	
 ��� 

	 ��� �	
 � depends on its � th argument if there exist � � ����� �	�����
� � � � ��� � �������	� � � ,
����� ��� � 
 � , for all ��� � � � �������� , such that

� ��� � ������� �����
� � ����������� � ����� �	��� � ���� � ��� � ����� � �����
� � � 
�������� � ��� ��� � � � � �

A Boolean function that does not depend on all its arguments can always be rewritten so

that it does, e.g.,
� ��� ��� � ��� is replaced with

�
� ��� � , where

�
� ��� � � � ��� ��� � , for all � .

That means we remove the wires on the inputs of a gate on which its excitation does not

depend, and the behavior of the gate is not changed. For a gate implementing a constant

function
� � � , where � ����� �	
 � , we remove any input wires it might have, and replace

the gate with a non-inverting buffer which takes its input from a circuit input
� � that has

the constant value � . The excitation of the gate is not constant any more, it is the identity

function instead, but the behavior of the gate is unchanged. Note that a state variable with

constant excitation can influence the behavior of the circuit when the variable is initially
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unstable, that is when its current state differs from its current excitation. The variable can

change once, and its change can influence other signals in the circuit. This is why we do

not eliminate gates with constant excitations.

We also assume that none of the gates has forked inputs, that is multiple inputs coming

from the same fork. The excitation of such a gate can always be rewritten in terms of its

distinct arguments. For instance, for a three-input gate, with two of its inputs being the

same, say � , we replace its excitation
� ��� ��� ��� � with

�
� ��� � � � , where

�
� ��� ��� � � � ��� ��� ��� � .

This means that we merge the two identical inputs into one input � . The behavior of the

gate is unchanged.1

Definition 2.1.2 (Network model) We model a given gate circuit by a tuple

� ��� � ��� �������	���

where:
�

is the domain of values for the inputs, state variables, and excitations of the

circuit; � � � � � ������� � � � � is the set of inputs; � � ��� � � ����� ����� � is the set of state

variables with associated excitations � � ����� � � � � ; ��
 ��� 
������ ����
���� is a set of

directed edges, where there is an edge between � and � if and only if the excitation of �
depends functionally on � . We call

�
a network. Note that

�
defines a graph ����������� �

called the network graph (that is a dependency or data flow graph of the circuit).

Example 2.1.2 For the circuit of Figure 2.1 the network graph is shown in Figure 2.2.

Note that a domain different from the binary domain may be chosen. The ternary

domain ��� ��� �	
 � has been used in [8]. In this thesis we often use the domain � of transients

defined in Section 2.5. In general, any multi-valued domain [10] can be used, as long as

one can extend each gate function from the binary domain to the multi-valued domain.

The excitations in a network with a multi-valued domain are the extensions of the Boolean

excitations. Examples of such networks are given in Chapters 3 and 4.
1Our assumption is that any wire that is supposed to have a delay will be represented as a gate, i.e., as a

non-inverting buffer, and will never be removed. Otherwise, it is safe to remove it.
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� �

� � ���� � � �

� �

Figure 2.2: Network graph for circuit of Figure 2.1.

2.1.1 Complete Network

In order to take into account wire delays that may be present in a circuit, we also use

an augmented network, called a complete network, to model the given gate circuit. The

complete network is obtained in the following way. We model the input ports and the

forks of the circuit as gates, for mathematical convenience. The reasons for doing so will

become clear in Chapter 7. An input port becomes a gate with a single input and a single

output; we call it an input gate. It operates by transferring the input signal to its output.

We use the usual symbol for a (non-inverting) buffer (shown in Figure 2.3) as a symbol for

an input gate. A
�

-way fork becomes a gate with a single input and
�

outputs, as shown

Figure 2.3: Symbol for non-inverting buffer.

in Figure 2.4; we call it a fork gate. Note the new symbol for a fork gate. The operation

of a fork gate consists of repeating the signal from its input to each of its outputs. Input

�
�����

(a) Usual fork.

����� �

(b) Fork gate.

Figure 2.4: A
�

-way fork.
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gates are inherited from the original model introduced by Brzozowski and Seger.2 Fork

gates are new in our model.3 To obtain the complete network, we keep the state variables

of the initial circuit and assign additional state variables to the outputs of input gates and

fork gates, and to the wires of the augmented circuit.

Example 2.1.3 The augmented version of the circuit of Figure 2.1 is shown in Figure 2.5.

We label input-gate, fork-gate and wire variables with subscripted � , � , and � labels, re-

spectively.

� � � �

� ����� �

����
�

� �

�
�

� �

���
� �

���
� � � �

� �
� �

� � � �
� �
���

Figure 2.5: Augmented version of circuit of Figure 2.1.

The excitations of the added state variables are identity functions. Figure 2.6 shows

generic wire, input-gate, and fork-gate variables with their input variables. The corre-

� �� �

(a) Wire.

� �� �

(b) Input gate.

� �
�
�

� ������

(c) Fork gate.

Figure 2.6: Variables with identity functions.

sponding excitations are:

� � � � � � 	�� � � � � 
 � � � ������
 � � � � �
2In [8] input gates are called “input delays”; we find the name “input gates” more appropriate for our

approach.
3The use of fork gates was suggested by J. A. Brzozowski.
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� �� �
� �

�����

Figure 2.7: Gate variable.

where � � represents an input-gate, fork-gate or any other gate variable. For a gate variable

other than that of an input gate or a fork gate, the excitation is the Boolean function imple-

mented by that gate applied to the new wire variables on its input wires. Figure 2.7 shows a

generic gate with its input wire variables � � ����� � � � � . Assuming the gate implements func-

tion � , its excitation is � � � � � � � ������� � � � � . The initial and added state variables together

with their excitations determine the complete network.

2.2 Delay Model

It is important to notice that, by differentiating between a state variable and its excitation,

we associate a delay with that state variable. This interpretation of state variables is de-

picted in Figure 2.8. Each component is seen as consisting of two parts: a delay-free gate

realizing the excitation function and a delay element. The value of a state variable is the

output of the delay to which its excitation is the input. We assume the delays are inertial,

i.e., very short pulses of the excitation may not be transferred into the state. This is why we

cannot consider the excitation as the next-state function. Figure 2.9 illustrates the differ-

ence between inertial and ideal delays. An ideal delay does not alter the shape of its input

waveforms, only their timing, whereas an inertial delay tends to smooth out the signals, by

ignoring very short pulses. The inertial delay model is more realistic, since physical delays

do have an inertial behavior.
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�	� � � � � �

(a) Wire delay.

� � �� ��

(b) Input delay.

�	� �
�	� �

�����
�	���� � �

� � �

(c) Fork delays.

� � � �
� � �

� � �

�� ���

(d) Gate delay.

Figure 2.8: Delays for state variables.

� �

� �

� �

ideal delay

inertial delay

Figure 2.9: Inertial versus ideal delay.

2.3 Terminology Related to Networks

In the following we introduce, for later use, more terminology related to networks. Let
�

be a network. For any state variable � � � � , we define its fan-in set
� ��� � � as

� � � � � ����� � #�� � � � �	� � �	� � � � � � � �

and its fan-out set ��� � � � as

����� � � ����� � #�� ��� � � ��� � ��� � � � � � �
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The variables in
� ��� � � are called the fan-in variables of � � and those in � ��� � � , the fan-out

variables of � � .
For any two state variables � � and � � we say that � � precedes � � if � � � � � � , where � �

is the transitive closure of � , with � seen as a binary relation. We then say that � � is a

predecessor of � � and � � a successor of � � . If � � does not precede � � , and � � does not

precede � � , then we say that � � and � � are unrelated by the precedence relation.

A state of
�

is an � -tuple � of values from
�

assigned to state variables � � ��� ��� � � � .

A total state of
�

is an � � � � � -tuple � � � � � of values from
�

, the first
�

values (the
�

-tuple � ) being the values of the inputs, and the remaining � values (the � -tuple � ) being

the values of the state variables. The dot “ � ” is used for convenience, to separate inputs

from state variables.

Each excitation � � is a function of some inputs
� � � �������	� � ��� ��� , and some state

variables � � � ����� �	���	����� � , i.e.,

� � � � � � � � ����� � � � ������� � � � �����	��� � �	���
where

� � ��� � � 
 	
�

. It is often convenient to treat � � as a function from
� � � � into

�
.

Thus we define
�
� � � � � � � 

	

�
by

�
� ��� � � �	� � � � � � � ��� ���	� � � � ��� � � ����� � �������	���

for any total state � � � . From now on we write � � for
�
� � ; it is clear from the context which

definition we use.

For any � � � � � , the value of excitation � � in total state � � � is denoted � � � � � �	� . The

values � � � � � �	������� � � � � � � � �	� of all excitations in any total state � � � constitute an � -tuple

denoted � � � � �	� . For any total state � � � , we define the set
� � � � � � of unstable state variables

as those variables for which the current state differs from the current excitation. Formally,

� � � � � � ����� � # � � �� � � � � � �	� � �

Therefore, state � � � is stable if and only if
� � � � �	� �	� , i.e., � � � � �	� � � .
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2.4 Analysis of Binary Networks

In response to changes of its inputs, a circuit passes through a sequence of states as its

internal signals change. Analyzing the behavior of a circuit means exploring all sequences

of states that are possible as a result of a change in the inputs. This section describes a for-

mal model of analysis called the General Multiple Winner (GMW) model. This model was

originally introduced in [31] and later used in [5, 8, 30] and elsewhere. Our presentation of

the model follows that of [8]. We refer to the GMW model as binary analysis.

A binary network is a network
� � � � ��� ��� � �	� having the binary domain, i.e.,

� �
��� � 
 � . A total state � � � of network

�
is an � � � � � -tuple of binary values, that is

� � ��� ��� �	
 � � � � .

We describe how the behavior of a network evolves when it is started in a given initial

state and the input is kept constant at the value � � ��� �	
 � � , by defining a binary relation
� � on the set ��� � 
 � � of states of

�
.

For any ��� ��� � 
 � � ,

� � � � , if
� � � � �	� � � , i.e., total state � � � is stable,

� � � ��� , if
� � � � �	���� � , and � is any nonempty subset of

� � � � � � ,
where by � � we mean � with all the variables in � complemented. No other pairs of states

are related by
� � . The relation

� � is called the General Multiple Winner (GMW) relation

(see [8] for more details).

We associate a directed graph ��� � � ������� �	� to the
� � relation, where

� ��� ��� #�� � � � ����� � � �	� � � ����� �	��� � � � ��� �	
 � � � ,
i.e., the elements of � � are the word equivalents of binary state tuples, and

� � ����� ��� � � #�� � � � � � � � � �	��� � ��� ��� � � � � � � � � � ������� � � � � � .
For given � � ��� �	
 � � , and � � ��� �	
 � � we define the set of all states reachable from �

in relation
� � as

�  ����� � � � � � � � ����� #�� �
	� � � �
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where
� 	� is the reflexive and transitive closure of

� � . We denote by �������	� the subgraph of

� � corresponding to �  ����� � � �����	� � . We refer to graph �������	� as the result of binary analysis

for
�

started in total state � � � .

� �� �� �� �

Figure 2.10: Sample circuit for binary analysis.

Example 2.4.1 For the circuit in Figure 2.10 the excitation functions are:

� � � � � � � � � � � � � � � � � � � � �

Suppose we start in total state � � � , where � � � � � � and � � ����� . The corresponding

� � ������� � graph is shown in Figure 2.11(a). The unstable variables are underlined in each

state. Note that the graph contains no stable states. Another graph, � � � 
�
�
 � , is shown in

Figure 2.11(b). This time the graph has one stable state.

While binary analysis is an exhaustive analysis of the behavior of a circuit, it is com-

putationally inefficient, since the state space is exponential in the worst case. Simulation

using multi-valued domains is a more efficient alternative, if not all the information from

binary analysis is needed.

2.5 Transients

Transients were introduced in [9] to represent signal waveforms in an algebraic setting.

The set � of transients is defined as the set of all nonempty binary words over ��� � 
 � in

which no two consecutive symbols are the same, i.e.,

��� � � 
 � � 	 � 
�� � 
�� 	 � ��� 
 � � 	 
 � 
�����
�� 	 ���
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(b)

Figure 2.11: Sample ����� � � graphs for circuit of Figure 2.10.

Transients are associated to waveforms in the natural way, as shown in the examples of

Figure 2.12.

��
	� 



 � 
	��



	��
	�

� 
 �

Figure 2.12: Transients as words for waveforms.

We use boldface symbols to denote transients, tuples of transients, and functions of

transients. For any transient
�

we denote by � � � � and � � � � its first and last characters, re-

spectively. A transient can be obtained from any nonempty binary word by contraction, i.e.,

the elimination of all duplicates immediately following a symbol (e.g., the contraction of

����� 
�
	����
	��� 
�
 is � 
 � 
 � 
 ). For a binary word � we denote by �� the result of its contraction.

For any
� � � � � � , we denote by

���
� the concatenation of

�
and

�
� .

Definition 2.5.1 (Prefix and suffix) Two partial orders are considered on � : the prefix

order denoted 
 , and the suffix order denoted � . For any two transients
�

and
�
� ,
�

is a
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prefix of
�
� if

� � �
� , or there exists a transient

�
� � such that

�
� � � �

� � ;
�

is a suffix of
�
� if

� � �
� , or there exists a transient

�
� � such that

�
��� �

� �
�
.

In this thesis we use only the prefix order, described by the following inequalities, together

with the reflexive and transitive laws:

� 
 � 
 
 ��
	� 
 � 
 � 
 
 � 
	��
	� 
 � ���	�

 
 
	� 
 
 � 
 
 
	��
	� 
 
	� 
 � 
 
 � �����

We extend the prefix order to tuples of transients.

Definition 2.5.2 (Prefix on tuples) For � � � � � ������� � � � � ����� ��� � � ����� ��� � � � � � , we

say that � is a prefix of � and write � 
�� , if � � 
�� � , for all � � � � � .

Extensions of Boolean functions to functions of transients are defined in [9]. Any Boolean

function
� ��� �

	
�

is extended to a function � � � � 	 � so that, for any tuple

� � � ����� �	� � � � of transients, � produces the longest transient when
� � �������	� � � are applied to

the inputs of a gate performing the Boolean function
�

. We give an example of extended

Boolean function next.

Example 2.5.1 We take
�

to be the two-input Boolean OR and we want to find its extension

� . Suppose we want to compute ��� � 
���� 
 � � . We construct a directed graph 
�����
�����
	��� in

which the nodes consist of all the pairs � � � � � � of transients such that � � � � � � 
 ��� 
���� 
 � � ,
and there is an edge between any two pairs 	 �
	 � such that 	 � , compared to 	 , has one

additional character in one coordinate, all other coordinates being the same. The result-

ing graph is shown in Figure 2.13(a). For each node � � � � � � in the graph we consider

as its label the value
� � � � � � � � � � � � � . This results in a graph of labels, as shown in Fig-

ure 2.13(b). The value of ��� � 
���� 
 � � is the contraction of the label sequence of those paths

in the graph of labels that have the largest number of alternations between � and 
 . There-

fore, ��� � 
���� 
 � � � � 
	��
 .
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����
�����
��

� � ����
	� � ����
�����
	� �

����
������� � �����

������� 
 �

(a)

�




�










(b)

Figure 2.13: Graph 
�����
�����
	� � with labels.

In general, to evaluate � � � � ��� ���	� � � � we construct graph 
�� � � ������� � � � � whose nodes are

tuples � � � ����� �	� � � � such that � � � ������� � � � � 
 � � � ����� �	� � � � and there is an edge between

any two tuples � ��� such that � , compared to � , has one additional character in one coor-

dinate, all other coordinates being the same. To any node � � � ����� � � � � � we associate the

label
� � � � � � ������� � � � � � � � � and obtain a graph of labels. The value of ��� � � ��� ��� � � � � is the

contraction of the label sequence of those paths in the graph of labels that have the largest

number of alternations between � and 
 .
Let � � � � and � � � � denote the number of � s and the number of 
 s in a transient

�
, re-

spectively. We denote by � and � the extensions, defined as above, of the Boolean AND

and OR operations, respectively. It is shown in [9] that for any � ��� � ��� of length

 
 ,

����� � � �
, where

� � � is such that

� � � � � � �	� �	� � �	� � ���
� � � � � � �
� �	� � �	� � � � and

� � � � � � �	� � � � �
� � � 
 
 �

Similarly, ����� � � �
, where

� � � is such that

� � � � � � �	� � � � �
� � ���
� � � � � � �
� � � � �	� � ��� and

� � � � ��� �
� � ��� �	� � � 
 
 �
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If one of the arguments is � or 
 (i.e., a transient of length 
 ) the following rules apply for

any
� � � :

�
� � � � � � � � � �

� 
 � 
 � � � 
��
�
� 
�� 
 � � � � � �

� �$� � � � � ���

A complement operation is also defined; the complement
�

of any
� ��� is obtained by

complementing each character of
�
. For example, 
 � 
 �$� ��
	� 
 .

The set � , together with the operations � , � and 
 , and the constants � and 
 con-

stitute an algebra � � � � � � � � ��
 ��� � 
�� , called the change-counting algebra, which is a

commutative de Morgan bisemigroup [9].

For
� � � � ��� , we denote by

�
�
�
� the concatenation followed by contraction, i.e.,

�
�
�
� � �� �

� .

Remark 2.5.1 The operation � satisfies the following properties, for all
� � � � � � � � ��� and

��� �����	
 � :

1. associativity, i.e., � � �
�
� � �

�
� � � �

� � � � �
�
� � �

(from now on we omit parentheses and write
�

�
�
� �

�
� � );

2. if
� 
 �

� then � �
� 
 � �

�
� ;

3.
� � � ����� �

� � � �� � ����� � � .

2.6 Conclusions

In this chapter we have presented some concepts that are fundamental to the theory we

develop in subsequent chapters. We have introduced network models of gate circuits, with

inputs, state variables, and excitations, in which state variables may be assigned either only

to gates, or to gates, input ports, forks, and wires. We have also introduced our delay
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model that assumes inertial delays associated to state variables. We have described the

binary analysis method that exhaustively explores all state sequences that are possible from

a given initial state of a network. We have also described the algebra of transients, that is

an infinite-value algebra for representing signal waveforms, and provides extensions of the

Boolean functions. Most of the notation introduced here is summarized in the glossary on

page 112.



Chapter 3

Simulation with Algebra
�

A simulation algorithm using algebra � has been proposed in [9]; it generalizes ternary

simulation [8]. The algorithm is shown in [9] to have polynomial time complexity in the

number of inputs and state variables, for feedback-free gate circuits. Hence, this simulation

provides a more efficient method of analysis of circuits, compared to binary analysis. The

simulation, however, does not provide all the information that is provided by binary analysis

about the behavior of a circuit.

In this section we give a more general version of the simulation algorithm proposed in

[9] and show how it relates to the original version. This extension parallels the extension

of ternary the simulation from stable initial state to any initial state, given in [8, 35]. In

subsequent chapters we study the correctness of the simulation by comparing it to binary

analysis. The aim is to show that the simulation accurately predicts the changes that happen

to state variables in binary analysis.

Given any circuit, we use two networks to model it: a binary network

� � � ��� �	
 � ��� ��� � �	�

and its counterpart �
��� � ��� �������	�

24
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having set � of transients as the domain. We call

�
a transient network. The two networks

have the same inputs and the same state variables. A state of network

�
is a tuple of

transients; the value of the excitation of a variable is also a transient. Excitations in

�
are

the extensions of the Boolean excitations in
�

, as defined for algebra � . It is shown in

[9] that an extended Boolean function depends on one of its arguments if and only if the

corresponding Boolean function depends on that argument. Therefore
�

and

�
have the

same set of edges.

Binary variables, words, tuples and excitations in
�

are denoted by italic characters

(e.g., � , � ). Transients, tuples of transients, and excitations in

�
are denoted by boldface

characters (e.g., � ,
�

). We refer to individual components of a tuple by subscripts (e.g., � � ,
� � ).

Example 3.0.1 For the circuit of Figure 2.1 on page 10 the transient network has inputs
� � and

� � and state variables � � � � � � � � � � � , with excitations

� � � � � � � � � � � � � � � � � � � � � � � � � � � � ��� � � �

where we denote by � the extension to transients of the Boolean XOR operation � .

3.1 General Simulation: Algorithm A

Our simulation method using algebra � is a generalization of Algorithm A of [9] that, in

turn, generalizes Algorithm A of ternary simulation [8]. In our Algorithm A we start with

a binary total state of a network

�
(i.e., each variable is either � or 
 ), and at each step we

change all the unstable variables to follow their excitations. For example, suppose we have

a variable with current state � and excitation 
 ; in this case we want to set the new value

of this variable to � 
 , the transient that shows this variable changes once from � to 
 . The

changes in the excitation also accumulate in a transient that can only become longer, as we
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will prove shortly. If the excitation for the same variable next becomes 
	� 
 , for instance,

we want to set the variable to ��
	��
 , to mirror the changes in the excitation.

In general, we want to record in the value of a variable all the changes in that variable

since the start of the simulation, as dictated by its excitation. For variables that are stable

initially, since the initial state agrees with the initial excitation, the state transient and the

excitation transient will be the same, so at each step we just copy the excitation into the

variable. For example, with initial state � and excitation � , if the excitation becomes next

� 
 , we set the variable to ��
 , and so on. For variables that are initially unstable, we first

record the initial state, and then the excitation. This is just the case we outlined in the

previous paragraph, with initial state � and excitation 
 . In this case, at each step we

append the excitation to the initial value. The operator that gives us the desired result in

both cases is � ; thus we have new value � initial value � excitation.

Let � � � be a (binary) total state of

�
. The general algorithm of the simulation is defined

as follows.

Definition 3.1.1 (Algorithm A)

Algorithm A

begin

� � � � � �

� � � 
 �
��� � � � �

� � � � � � � �

while � � ��� 
 � � � � � do

� � � � � 
 �
� � � � � �

� � � � � � � � � �
od

end
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where � is applied to tuples component-wise, i.e., for all � -tuples � ��� of transients, � � � �
� , where � is such that � � � � � � � � , for all � � � � � .

Algorithm A produces a sequence

� � � �
�

�������	� � � ����� �

of states, where � � � � � � � � � � � �������	� � �� � � � � , for all � � � . This sequence can be finite,

if we reach � � � � � � � � � for some � �

 � , or infinite otherwise. For convenience, we

sometimes consider the finite sequences as being infinite, with � � � � � � � , for all �



� � .

It is shown in [9] that any extended Boolean function � � � � 

	 � is monotonic with

respect to the prefix order, i.e., for any � ��� � � � , if � 
 � , then ��� � � 
 ���	� � .

Proposition 3.1.1 The sequence resulting from Algorithm A is monotonic or nondecreas-

ing with respect to the prefix order, that is, for all � � � , � � 
 � � � � .

Proof: Since extended Boolean functions are monotonic with respect to the prefix order, it

follows that excitations in

�
are monotonic with respect to the prefix order. We prove the

proposition by induction on � .

Basis, � � � . For any � � � � � ,
� �

�
= � definition of Algorithm A

�

� �

 � Remark 2.5.1

�

� � �
� � � � � � � �

= � definition of Algorithm A
�

�
�

� .

Induction hypothesis: � � � � 
 � � for some � � 
 .
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Induction step. For any � � � � � ,
� ��

= � definition of Algorithm A
�

��� �
� � � � � ��� � � �


 � induction hypothesis, monotonicity of excitation, and Remark 2.5.1
�

� � �
� � � � � � � �

= � definition of Algorithm A
�

� � � �� .

Thus, the claim holds for all � � � .
�

We refer to the property stated in Proposition 3.1.1 as the monotonicity of Algorithm A.

For feedback-free circuits, the sequence resulting from Algorithm A is finite. We can

easily see this if we order the state variables using levels as follows: level � consists of all

state variables that depend only on external inputs; level 
 is comprised of all state variables

whose fan-in variables belong to level � , and in general level � consists of all state variables

whose fan-in variables belong to levels � � , and which have at least one fan-in variable

in level � 
 
 . Such an ordering is possible since there is no feedback (i.e., there are no

loops). Since the inputs do not change during simulation, level- � variables change at most

once, in the first step of Algorithm A. Level- 
 variables change at most twice, in the first

and second step of the simulation, because after that none of the inputs or the variables in

level � changes. In general, level- � variables change at most � � 
 times. Since the number

of levels is finite, our claim follows. This analysis also shows that the running time of the

algorithm for feedback-free circuits is polynomial in the number of state variables.

For display reasons, in examples of simulation we write binary states as words, but

during computations they are regarded as tuples.

Example 3.1.1 Consider the feedback-free circuit in Figure 3.1. The excitations are:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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� �
� �

� �� �

� � � �

Figure 3.1: Circuit with finite simulation.

For the initial state � � ��� 
�
 � 
 � 
�
 , Algorithm A results in Table 3.1.

Table 3.1: Result of Algorithm A.

� � � � � � � � � � � � state


 
 
 � 
 
 � �


 
 
	� ��
 
 
 �
�


 
 
	� ��
	� 
 � 
 �
�


 
 
	� ��
	� 
	��
 
	��
	� � �


 
 
	� ��
	� 
	��
 
	��
	� 
 � �

For circuits with feedback the simulation sequence may be infinite because, in a loop, a

change in a variable can eventually trigger another change in the same variable, and so on.

Example 3.1.2 Consider the circuit with feedback in Figure 3.2. The excitation functions

are:
� � � � � � � � � � � � � � �

We run Algorithm A for this network started in state � � � � 
 � 
 � ; the resulting sequence

of states, which is infinite, is illustrated in Table 3.2.

3.2 Simulation with Stable Initial State: Algorithm Ã

Algorithm A above makes no assumptions about the starting state � � � . If the network starts

in a stable total state and the inputs change, then we have a slightly simpler formulation of
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� �� �� �

Figure 3.2: Circuit with infinite simulation.

Table 3.2: Infinite simulation.

� � � � � � state


 
 � � �


 
 � � �
�


 
 � � 
 �
�


 
	��
 � 
 � �


 
	��
 ��
	� � �

 
	��
	� ��
	� � �


 
	��
	� � 
 � 
 � �

. . . . . . . . . . . .

Algorithm A, in which, at each step, each variable takes the value of its excitation; we call

this version Algorithm Ã; this is the version given in [9]. Assume

�
is started in stable

total state
�� � � and the input tuple changes to � . Algorithm Ã is defined in Definition 3.2.1.

The algorithm results in a sequence

�� � � ��
�

����� �	� �� � � �����	�

of states, where
�� � � � �� � � � �� � � � ����� � �� �� � � � � , for all � � � .

Example 3.2.1 We illustrate Algorithm Ã with the network in Figure 3.1, started in (stable)

state
�� � � � 
�
 � ��� 
�
 , with the input changing to 
 � . The result is shown in Table 3.3.
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Definition 3.2.1 (Algorithm Ã)

Algorithm Ã

begin

� � �� � � �
�� � � � � �

�
� � 
 �

�� � � � � � � � �� � � �

while � �� � � 
 �� � � � � do

� � � � � 
 �
�� � � � � � � � �� � � � � �

od

end

where � is applied component-wise.

Table 3.3: Simulation using Algorithm Ã.

� � � � �� � �� � �� � �� � state


 
 � � � 
 
 �� �


 
 � ��
 � 
 
 �� �


 
 � ��
 � 
 
 
 �� �


 
 � ��
 � 
 
 � 
 �� �


 
 � ��
 � 
 
 � 
	��
 �� �

It is shown in [9] that the sequence of states resulting from Algorithm Ã is nondecreas-

ing with respect to the prefix order, i.e., Algorithm Ã is monotonic.

The following result shows that Algorithms A and Ã are equivalent for any network

�

started in a stable state, provided that

�
contains input-gate variables.
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Proposition 3.2.1 Let

�
be a transient network containing input-gate variables. Let

�� � � ��
�

�������	� �� � ����� �

be the sequence of states produced by Algorithm Ã for this network started in the stable

(binary) total state
�� � � with the input tuple changing to � . Then, for all � � � ,

�� � � � � �

where

� � � �
�

�������	� � � ����� �
is the sequence of states produced by Algorithm A for the same network started in total

state � � � .

Proof: We prove the proposition by induction on � .

Basis, � � � . Since �
� � � � �� �

, the basis holds.

First step, � � 
 . In states
�� �

and �
�

only input-gate variables can be unstable; therefore

only they can change in the first step of Algorithm Ã, and in the first step of Algorithm A.

Let � � be any input-gate variable; suppose
� � � � � . Then the value of � � after the first step

of Algorithm Ã is
�� �� � � � � � � � � � � � � �� � � � � . The value of � � after the first step of

Algorithm A is �
�

� � � � �
� � � � � �	� � �� � � � � , where � � � �� � by the stability of

�� � � . Therefore
�� �� � �

�

� , for any input-gate variable � � . For any other state variable � � , since � � does not

change,
�� �� � �� �� � � �� � �

�

� , by the basis. Hence
�� � � �

�

.

Induction hypothesis:
�� � � � � � � � � for some �


 
 .
Induction step. For any � � � � � , if � � is an input-gate variable then � �� � � � � �� and

�� �� � �� � � �� , because in both algorithms the input-gate variables do not change after the first

step, since the input is constant. By the induction hypothesis, we have � �� � �� �� . If � � is not

an input-gate variable, then it is initially stable in both algorithms, and its excitation does

not depend on the input tuple, i.e.,
� � � � � � � � � � � � � � � , for any (internal) state tuple � .
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Then

����
= � definition of Algorithm A, and stability of � � �
� � � � � � � � � �

= � induction hypothesis and observation above
�

� ��� � � ���� � � �
= � definition of Algorithm Ã

�
�� �� .

Hence
�� �� � � �� , for all � � � � � . �

3.3 Simulation of Feedback-Free Circuits without Wire

Delays

In later chapters we often use Algorithm Ã with the complete network modeling a circuit,

for mathematical convenience. Recall that a complete network contains input-gate, fork-

gate, and wire variables that are added to the initial set of state variables whose behavior

we need to study. We show that the result of Algorithm Ã with respect to the initial set

of state variables is the same if we use the complete network. We prove this by showing

that Algorithm Ã is insensitive (in a sense that we define formally) to the removal of state

variables having identity excitation functions. We restrict our attention to feedback-free

circuits.

The different network notations
�

�
�
�

�
defined here are local to this section, and must

not be remembered later.

Let

�
� � � ��� �������	� be a feedback-free transient network with � state variables

and
�

inputs. We assume that

�
contains at least one state variable whose excitation is

the identity function. Without loss of generality, we assume the last state variable, � � , is
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such a variable. We can always renumber the variables in such a way that the assumption

holds. Let
� � � � , where � � � � � � � � � � . Since

�
is feedback-free,

� � does not

depend on � � . Hence, for any total state � � � � � � of

�
and for all � � � � � , we have

� � ��� � � � � ��� � ��� ���	��� � � � � � � � � , where
�

is any transient.

Let
�

�
� ��� ��� �

�

� �
�

�	� be the network obtained from

�
by removing state variable � �

as described below. The set
�

� of state variables is � � � � � � , with labels
�� � ����� � � �� � � � and

excitations
�� � � ����� � �� � � � , respectively. The excitations in

�

�
are defined as follows, for all

� � � � 
 
 � and any total state � � � � � � � � of
�

�
:

�� � ��� � � � � ��� � � � ��� � � � ���

where
�

is any transient.

Example 3.3.1 Consider the network

�
whose graph is in Figure 3.3(a).

� �

� � � �

� �

� �

(a)

� �
�� � �� �

� �

(b)

Figure 3.3: Illustration of state variable removal.

The excitations in

�
are

� � � � � � � � � � � � � � � � � � � � �

In Figure 3.3(b) we show the network
�

�
obtained from

�
by removing � � . The new excita-

tions are
�� � � � � �

�� � � �� � �
� � �

Proposition 3.3.1 Let
�� � � be a binary total state of

�
, and let

�� � �

� be a binary total state

of
�

�
, where

�

���	� � � , for all � � � � 
 
 � . If
�� � � is stable, then

�� � �

� is also stable.
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Proof: For any � � � � 
 
 � ,
�

� �
= � hypothesis

�

���
= � stability of

�� � � �
� � � �� � �	�

= ��� � � �

� � , for all � � � � 
 
 � �
� ��� �� � � �

� ��� � � �
= � stability of � � in state

�� � � �
� � � �� � � �

� � � � � �� � �	� � �
= ��� � � �

� � , for all � � � � 
 
 � �
� ��� �� � � �

� � � � � �� � � �

����� � � � � �
= � definition of

�� � �
�� � � �� � �

�	� .

Thus, state
�� � �

� is stable.
�

Proposition 3.3.2 Let �
�

be the result of Algorithm Ã for

�
started in binary stable state

�� � � , with the input changing to � . Let
���� be the result of Algorithm Ã for

�

�
started in

binary state
�� � �

� , with the input changing to � , where
�

� � � � � for all � � � � 
 
 � . Then, for

all � � � � 
 
 � ,
�
�
� � �� �� �

Proof: By Proposition 3.3.1, state
�� � �

� is stable, so that we can run Algorithm Ã. Hence

the claim of the proposition is well defined.

Let the sequence resulting from Algorithm Ã for

�
be �

� ��� ��� � � � , and that resulting

from Algorithm Ã for
�

�
be

�� � � ����� � ���� . We consider both sequences infinite, with � � � � � ,

for all �

��

, and
�� � � �� � , for all �


 � .
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It is enough if we show that, for each � � � there exists � 
 � such that, for all

� � � � 
 
 � ,
� �� 
 �� �� 
 � � � �� � (3.1)

Since both sequences resulting from Algorithm Ã for

�
and

�

�
converge, from (3.1) the

claim of the proposition follows immediately.

We prove (3.1) by induction on � � � .

Basis, � � � . By the definition of Algorithm Ã, and the hypothesis of the proposition,

we have �
�

� � � � � �� �

� , for all � � � � 
 
 � . By the monotonicity of Algorithm Ã, we know

� �


 �
�

. Then �
�

� 
 �� �

� 
 �
�

� , for all � � � � 
 
 � . So the basis holds, with � � 
 .
Induction hypothesis. Suppose (3.1) holds for some � � � .

Induction step. We show that there exists �

 � such that, for all � � � � 
 
 � ,

� � � �� 
 �� � � �� 
 � � � � � �� �
For any � � � � 
 
 � the following argument applies:

� � � ��
= � definition of Algorithm Ã

�
� � � � � � � �


 � induction hypothesis, and monotonicity of excitations
�

� � � � � � �� � � � �� � �
= � definition of Algorithm Ã

�
� � � � � � �� � � � � � � � � � � � � � �


 � induction hypothesis, and monotonicity of excitations
�

� � � � � � �� � � � � � � � � �� � � � � � � � �� � � � �

 � monotonicity of Algorithm Ã, and monotonicity of excitations

�
� ��� � � � ���� � � � � � � � ���� � � �� � � � � .

Hence

� � � �� 
 � � � � � � �� � � � � � � � � �� � � � �� � � � � � (3.2)
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Next, we note that
� � � � � � �� � � � � � � � � �� � � � �� � � � � � �� � � �� � (3.3)

since
� � � � � � �� � � � � � � � � �� � � � �� � � � � �

�� � � � � �� � � � �� � � �� �

by the definitions of
�� � and Algorithm Ã.

We have

� � � � � � �� � � � � � � � � �� � � � �� � � � �

 � induction hypothesis, monotonicity of Algorithm Ã and of excitations

�
� ��� � � � � � � �� � �����	� � � � �� � � � � � � � � � � � � � � �

= � definition of Algorithm Ã
�

� � � � � � � � � �� � �����	� � � � �� � � � � � � � �
�

� � �

 � monotonicity of Algorithm Ã and of excitations

�
� ��� � � ��� � � � � �

= � definition of Algorithm Ã
�

� � � � � �� .

Thus,
� � � � � � �� � � � � � � � � �� � � � �� � � � � 
 � � � � � �� � (3.4)

By (3.2), (3.3), and (3.4), the claim of the induction step follows, with � � � � 
 . �

Let
�

�
����� ��� �

�
� �

�
� � be the complete network corresponding to a feedback-free net-

work

�
� ��� � � � � ���	� . All variables in

�
� � � are input-gate, fork-gate, or wire variables

with identity excitation functions. We run Algorithm Ã for
�

�
started in (binary) stable total

state
�� � �� , with the input changing to � . We also run Algorithm Ã for

�
started in state

�� � � , with the input changing to � , where � � � �
� � , for all � � � � . Applying Proposition 3.3.2

repeatedly, we eliminate the variables in
�
� � � one by one, and in the end conclude that the

result �
�

of Algorithm Ã for
�

�
is the same as the result � � of Algorithm Ã for

�
, with

respect to the variables in � .
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3.4 Conclusions

We have defined a general simulation algorithm, Algorithm A, using algebra � of tran-

sients. We have shown that this algorithm is monotonic with respect to the prefix order; we

have also shown that the version of the simulation with initial stable state, Algorithm Ã, is a

particular case of the general algorithm, for networks with input-gate variables. Algorithm

Ã is also insensitive to the removal of state variables having identity excitations functions.

Therefore, the result of Algorithm Ã for a given feedback-free network is the same, with

respect to the initial variables, as the result of the same algorithm for the complete version

of the given network.

The simulation produces transients corresponding to the state variables. We claim that

those transients represent the changes of the state variables during binary analysis. In the

remainder of the thesis we prove our claim by comparing the transients resulting from

simulation against binary analysis.



Chapter 4

From Binary Analysis to Simulation

4.1 Preliminaries

Given the two networks
�

and

�
modeling a gate circuit, we perform the binary analysis

for
�

and Algorithm A for

�
, both with the same starting total state � � � . The binary

analysis results in graph �������	� . Let the state sequence resulting from Algorithm A be

� � � �
�

����� �	� � � � ����� , where � � � � � � � � � � � ��� ���	� � �� � � � � , for all � � � .

In this chapter we show that the circuit behavior revealed by binary analysis is covered

by the result of Algorithm A in the following sense. We look at any path from the initial

state � in graph �������	� . Suppose the length of the path is � . For each state variable � � we

consider the transient that shows the changes of that variable along the path. We show

that this transient is a prefix of the value � �� that variable � � takes in the � -th iteration of

Algorithm A.

Example 4.1.1 Consider the binary counterpart of the transient network in Figure 3.1 on

page 29. The excitations are:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

In � � � � 
	� 
�
�� , with the same initial total state as that for the simulation in Example 3.1.1

39
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on page 28, we find, for instance, path

� � 
	��
�
��	
�
�
�
�� � 
�
�
���������


of length � � �
. If we follow state variable � � , for example, it changes from 
 to � along

this path, so the corresponding transient is 
	� . Observe that we can compute this transient

by contracting the sequence of values of the variable along the path, i.e.,
�


�
�
	� � 
	� . The

value of � � in the third step of Algorithm A, as shown in Table 3.1, is �
�� � 
	��
 , which has


	� as a prefix. This holds for all components, since � 
	����� 
 � �	
 � �	
 � 
 � 
	����� 
 � �	
 � 
�� 
	� 
	� � .

Definition 4.1.1 (History) Let � � � � ������� ��� � be a path of length � � � in � � � � � . Recall

that each � � � ��� has the form � � � ����� � � � . For any � � � � � , we denote by ���� the transient
�

� �

� ������� �� , which shows the changes of the � -th state variable along path � . We refer to it

as the history of variable � � along the path. We also define
� �� to be

�

� � , where � � �
� � � � � � � � � � � � � � � ����� � � � � � � � � � , and we call it the excitation history of variable � � along

path � . The histories of all variables along � constitute tuple ��� � � ��� � ����� � � ���� � . The

histories of all excitations along � form tuple
� � � � � � � ��� ��� � � �� � .

Note that � �� and
� �� are not always the same. If � � is unstable initially, they are obviously

different, since their first characters are different, that is � �

� �� � � � � � � �

� � . Even if the variable

is stable initially, ���� and
� �� can still be different, due to the inertial nature of the delay

associated to � � ; the delay might lose changes, so that the variable changes less than its

excitation.

Example 4.1.2 An example of a path in graph � � � � 
 � 
�
 � of the previous example, on

which a variable changes less than its excitation is path

� � 
	��
�
�� � 
�
�
������ 
�
��

On this path we have ���� � 
 , whereas
� �� � 
 � 
 .

The exact relation between � �� and
� �� is proved in the next section.
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4.2 Covering of Binary Analysis by Simulation

Let � � be the state produced by Algorithm A after � steps, and let � � � � ������� ��� � be a path

of length � � � in � �����	� , with � � � � . We prove that � � 
 � � .

Proposition 4.2.1 Let � � � � ����� � ��� � � � � � � be a path in �������	� , and let � � � � � ������� ��� � .
Then, for all � � � � � ,

� �� 
 � �
�

� � � � � � � � � � �

Proof: For any variable � � we have one of the following cases.

Case I, � � changes during the transition from � � to � � � � . Then � � must be unstable in

state � � , i.e., � � � � � � � � �� � �� , and � � � �� � � � � � � � � � . Hence

����
= � definition

�
�

� �

� ����� � �� � � �
�

�
= � definition of �

�
�

� �

� ����� � �� � � � � ��
= � definition of ���

�

� and � � � �� � � � � � � � � � from above
�

� �
�

� � � � � � � � � � .

Case II, � � does not change during the transition from � � to � � � � . Then � � � �� � � �� .
Thus

����
= � definition

�
�

� �

� ����� � �� � � �
�

�
= � definition of contraction and � � � �� � � �� from above

�
�

� �

� ����� � ��
= � definition of � �

�

� �
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���
�

�

 � definition of �

�
� �

�

� � � � � � � � � � .

Thus our claim holds in any case.
�

Corollary 4.2.1 For any path � � � � ����� � ��� � � � � � � in � � � � � , with � � � � � �������	� � � we have,

for all � � � � � ,
� �� 
 � �

� �
� �

�

� �

Proof: The following argument applies for any � � � � � :
����


 � Proposition 4.2.1
�

���
�

� � � � � � � � � �

 � Proposition 4.2.1 applied recursively

�

� � ��� � ��� �

� � � � � � � � � � � � � � � � � � � � � � ����� � � � � � � � � � �
= � associativity of �

�

� �

� � � � � � � � � � � � � � � � � � � � � ����� � � � � � � � � � �
= � definition of

� �
�

� �

� �

� �
� �

�

� . �

Corollary 4.2.2 Let � � � � ��� ���	��� � be a path in �������	� . For all variables � � that are stable

in � �

,

� �� 
 � �� � (4.1)

Proof: If � � � then ���� � � �

� and
� �� � � � � � � � � � for all variables � � . For � � initially stable

we have � �

� � � � � � � � � � by the definition of stability. The claim follows immediately.
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For �

 � the following argument applies for any � � initially stable:

����

 � Corollary 4.2.1 with � � � � � ������� ��� � � � �

� �

� �
� �

�

�
= � stability of � � in � �

, and � � � �
�

� � � � � � � � � � � �
� �

�

�

 � definition of

� �� as
� �� � � �

�

� � � � � � � � � � �
� �� . �

In Chapter 5 we study paths for which equality holds in (4.1); we call those hazard-

preserving paths.

Proposition 4.2.2 For any path � � � � ��� ��� � � � in � � ���	� , and for all � � � � � ,
� �� 
 � � � � � � � � �

Proof: Let � � � � � ������� ��� � , for all � such that � 
 � 
 � . Then ���
� 
 ��� � 
 � ��� 
 ��� .

Thus � � ��� � 
 � � ��� � 
 ��� � 
�� � ��� , which means that � � ��� � � � � ��� � � ����� � � � ��� is a

subsequence � of nodes on a path � from � � � � � � � ������� � � � �� � � � � � � ��� � � � �

to � � � � in

the graph 
�� � � ��� � . For any � � � � � , we consider the labeling of graph 
 � � � � � � through

Boolean excitation � � . Let � be the sequence of labels of � . The sequence of labels on �

is � � � � � � � � � � ��� � � � � � � � ��� �����	� � � � � � � � � . Since � is a subsequence of � ,
�

� � 
 �� . By

the definition of extended Boolean functions,
� ��� � � � � � is the longest transient obtained by

the contraction of the label sequences of paths from � � � � �

to � � � � in graph 
�� � � � � � .
Hence �� 
 � � � � � ��� � . By the definition of the excitation history,

� �� �
�

� � . It follows that
� �� 
 � � � � � ��� � . �

Corollary 4.2.3 Let path � be as in Proposition 4.2.2 and let � � , with ��� � � � , be a gate

variable whose excitation computes Boolean function
� � ��� � 
 � � 

	 �����	
 � that depends
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only on state variables. Let ��� � � ������� ��� � � � be the fan-in set of � � . Then

� �� 
 ��� � �� � � ����� � � �� � � � (4.2)

Proof: Since the excitation � � computes function
�

that depends only on state variables,

and the fan-in set of � � is ��� � � ������� ���	��� � , we have � � � � ���	� � � ����� ���	��� � . From the definition

of excitations in

�
we have

� � � � � ��� � � ��� ���� � ����� �	� � ���� � . Applying Proposition 4.2.2, the

claim follows immediately.
�

In Chapter 6 we study paths for which equality holds in (4.2); we call those worst-case

paths.

Theorem 4.2.1 For all paths � � � � � �����	��� � in � ��� � � , with � � � � ,

� � 
 � � �

where � � is the � � � 
 � st state in the sequence resulting from Algorithm A.

Proof: We prove the proposition by induction on � � � .
Basis, � � � . We have � � � � � ��� � �

; hence � � � � � � � �

, so the claim holds.

Induction hypothesis. The claim holds for some � � � , i.e., for all paths � of length �

from � in �������	� , we have ��� 
 � � .

Induction step. Let � � � � ������� ��� � ��� � � � be a path of length � � 
 from � in ����� � � .
Then � � � � ������� ��� � is a path of length � . For all � � � � � ,

��� �

 � Corollary 4.2.1

�

� �

� �
� ��


 ��� � � � and Proposition 4.2.2
�

� � �
� � � � � ��� �


 � induction hypothesis, monotonicity of excitations, and Remark 2.5.1
�

� � �
� � � � � � � �
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= � definition of Algorithm A
�

� � � �� . �

Corollary 4.2.4 If Algorithm A terminates with state �
�

, then for any path � from � in

� ��� � � we have ��� 
 � � .

Proof: We prove the claim by contradiction.

Suppose there exists a path � from � in �������	� that satisfies ���� 
 � �� , for some � � � � � .
Let � be the length of � .

If � 

�

, Theorem 4.2.1 shows that ��� 
 � � . We also have � � 
 � � , by Proposi-

tion 3.1.1. So � � 
 � � , and in particular � �� 
 � �� , which contradicts our supposition.

If �

 �

, then Theorem 4.2.1 states that � � 
 � � . By our convention, � � � � � . So,

again we have ���� 
 � �� , which is a contradiction.
�

4.3 Conclusions

In conclusion, in this chapter we have proved that all the changes that occur in any state

variable in binary analysis are shown by the result of the simulation. In particular, if any

hazardous change takes place, the simulation detects it. The next question that arises is

whether all the changes predicted by the simulation occur in binary analysis. We address

this question in the following chapters.



Chapter 5

Characterization of Hazard-Preserving

Paths

5.1 Preliminaries

In Chapter 4 we have shown that, for any given circuit, the result of binary analysis is

covered by the result of simulation. From now on we concentrate on showing the converse,

namely that the result of simulation is covered by the result of binary analysis. That would

conclude the equivalence of the two analysis methods. Because the simulation may not

terminate for circuits with feedback, we only consider feedback-free circuits from now on.

For the rest of this chapter, we work with the following premises:

� a given feedback-free circuit;

� the complete network
�

of the given circuit;

� the graph �������	� resulting from the binary analysis of
�

started in total state � � � , in

which the only variables that are unstable are input-gate variables.

46
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Note that the simulation computes the longest transients at each step, by virtue of the

extended excitations. We want to show that there exist paths in � ��� � � whose histories

match those transients. Those are paths on which no changes are lost, that is the history of

a variable is the same as its excitation history, for variables that are initially stable; hence

the paths we are looking for are hazard-preserving, as defined next (a formal argument for

the necessity of hazard-preserving paths is presented later in Chapter 7).

Definition 5.1.1 (Hazard-preserving path) Let � be a path from � in � �����	� , and � � a state

variable that is initially stable in � � ���	� . We call � hazard-preserving with respect to ��� if

���� � � �� . For a set � 
�� , path � is hazard-preserving with respect to � if it is hazard-

preserving with respect to each � � � � .

Example 5.1.1 Consider the complete binary network in Figure 5.1 with its � � � � � graph,

where � � � 
 and � � 
	��
	� 
 . A hazard-preserving path with respect to � � , for in-

stance, is � � 
 � 
	��
������ 
 � 
���������� 
 , since ���� � 
 � and
� �� � 
 � . In contrast, path

� � � 
 � 
	��
������ 
 � 
 is not hazard-preserving with respect to � � , since ���
�� � 
 but

� �
�� � 
 � .

Another example of a non-hazard-preserving path was given earlier in Example 4.1.2 on

page 40.

� �
���

� �

� � � �
� � � � 
 � 
	� 



 
�
 � 



 
�
�
�
� 
 � 
�
 � 
�
 
�


��
�
 � 


� 
 ��� 
��� ����


��� 
 � 


� 
	��� ���� ����� � 
 � 
	�

Figure 5.1: Simple circuit with � � ���	� graph.
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In this chapter we give a characterization of hazard-preserving paths using a special

kind of finite-state machine named delay automaton (delay automata are due to J. A. Brzo-

zowski1). This characterization is used in Chapter 7 to find hazard-preserving paths in the

binary analysis.

Let � �� � � � be the subgraph of � � � � � containing all paths on which exactly one variable

changes at each step. Note that ����� � � and ���� � � � share the initial state � .

Definition 5.1.2 (Equivalent paths) We call two paths � and � � in �������	� equivalent if they

have the same history, i.e., if � � � � � �

.

Proposition 5.1.1 For any path � in � � ���	� with simultaneous changes, i.e., � not belong-

ing to ���� ���	� , there exists an equivalent path � � without simultaneous changes, i.e., � � be-

longing to ���� ���	� .

Proof: Take any path � � � � ����� � ��� � � � ��� � ��� ��� � � � , with � � � 
 � . Let � � ������� ��� � be the

variables that change in step � . Since the circuit has no feedback, the graph of
�

is acyclic,

so there exists a topological ordering of its state variables. Let � � ������� ��� � be the order of the
�

variables in the topological order, i.e., if � � � � ��� � � , then � 
 � , for � ��� � � � � . It follows

that for any � � � � � , � � �� � � � � � , for all � such that � 
 � 
 �
. This means that changing � �

in a state in which � � ��� ��� � � � are all unstable, leads to a state in which � � ��� ��� � � � � � are still

unstable, where � � � � 
 
 � . This allows us to replace step � of � with a sequence � � ������� � � �

of
�

steps, where � � � � � � � � � � � � �
, and for any � � � � � only � � changes in step � . The new

path � � � � � � ����� ��� � � � � � � ������� � � � � � ��� � ����� � ��� � has the same history as � , i.e., � � � ���
�

.

In a similar way we eliminate all steps with simultaneous changes, and in the end obtain an

equivalent path with no simultaneous changes.
�

From here on we restrict our attention to � �� � � � . The result above guarantees that by

doing so we do not lose any information, in terms of path histories.
1Personal communication.
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Remark 5.1.1 Since
�

is feedback-free, no state variable is related to itself by the prece-

dence relation.

Proposition 5.1.2 For any state variables � � ��� � (not necessarily distinct), if � � does not

precede � � then �	� and � � do not change simultaneously in � �� ���	� .

Proof: Since � � does not precede � � we have � � �� � ��� � � . Therefore, if � � and � � changed in

the same step it would mean that a variable in
� � ��� � , and thus different from � � , changed in

the same step; but that contradicts the definition of � �� ���	� . �

Corollary 5.1.1 In � �� ���	� no state variable changes simultaneously with its excitation.

Proof: Immediate from Remark 5.1.1 and Proposition 5.1.2.
�

Proposition 5.1.3 Any two state variables with distinct excitations have disjoint fan-in

sets.

Proof: Since
�

is complete, all state variables except wire variables that are inputs of fork

gates have zero or one fan-out variable; hence each such variable belongs to at most one

fan-in set. Therefore, all state variables except fork-gate variables have distinct excitations

and disjoint fan-in sets.
�

Proposition 5.1.4 For any two state variables � � ��� � with distinct excitations, at most one

of � � � � � changes at each step in ���� � � � .

Proof: If � � and � � changed at the same step in � �� ���	� , it would mean that the single state

variable that changes in that step belonged to both
� ��� � � and

� ��� � � . But that contradicts

Proposition 5.1.3.
�
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5.2 Delay Automata

From now on, for any set � 
 � we denote by
� � � � the set of excitation labels of the state

variables in � , that is
� � � � ��� � � #��	� � � � �

Consider a set � of state variables in � that are initially stable in � �� ���	� . For simplicity

of notation, suppose ������� � ����� � ��� � � . Suppose these variables are unrelated to each other

by the precedence relation and their excitations � � � ����� � � � are pairwise distinct. Recall

from Section 2.1 that every state variable represents a delay. The delays associated with

the variables in � are depicted in Figure 5.2. We describe the hazard-preserving behavior

� � � �

� �
� �

� �

��� �

� �

Figure 5.2: Delays for variables in � .

of these delays in � �� ���	� , that is we are interested in those paths on which the
�

delays do

not any changes.

Proposition 5.2.1 In � �� ���	� at most one of � � ��� ���	��� � � � � ��� ���	� � � changes at each step.

Proof: By the definition of � �� � � � , no two variables � � ��� � , with � ��� � � � � can change in the

same step. Since � � ������� ��� � are unrelated to themselves or to each other by the precedence

relation, by Proposition 5.1.2 and Corollary 5.1.1 no � � and � � change simultaneously in

� �� � � � , where � ��� � � � � . Since � � ����� � ��� � have distinct excitations, by Proposition 5.1.4, no

two excitations � � � � � change simultaneously in � �� � � � . Hence the claim is true.
�

Consider any variable � � � � . In any state of ���� � � � � � can be either stable or unstable;

in the initial state � � � is stable. In any state of � �� � � � , regardless of � � being stable or
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unstable, if any of the ��� , or � � , with � � � � � ������ � , changes, the (in)stability of � � is not

altered, due to Proposition 5.2.1. When � � is stable, it cannot change. If � � changes when � �
is stable, � � becomes unstable. Since on any hazard-preserving path a variable changes as

many times as its excitation, it follows that � � must change each time it is unstable. Thus,

the excitation � � cannot change when � � is unstable, but first � � must change and become

stable.

Therefore, we can describe the paths in � �� ���	� that are hazard-preserving with respect

to � � by the automaton depicted in Figure 5.3; we call this automaton the delay automaton

for variable � � . The label on a transition of the automaton shows the excitation or variable

that changes in that transition. Subscript � ranges over
� � � � � . The label of each automaton

state shows whether � � is stable (label is � ) or unstable (label is ��� � � ) in that state.

� �

� �
� ��� � �

� � ��� �� � � � �

Figure 5.3: Delay automaton for variable � � .

Definition 5.2.1 (Delay automaton for one variable) Let
� � � � � � � � � . We denote

by
� �� the delay automaton for variable � � . Automaton

� �� is formally defined as
� �� �

� � � � � � � � � �
� � 
 � ��� �� � , where:

� � � � �������
	 � � � �!��� � ��� is the set of states,
� � is the alpha-

bet, � �
� � � is the initial state, 
 � ��� � �

�

�
is the set of final states, and the transition function

� �� � � � � 
 � � 
 	
� � � is defined as

� �� � � � � � � ����� � � ��� �� � ��� � � ��� � � � � �

and for all � � � � � ����� � � � � � � � � � � ,

� �� � � ��� � � � �

Transitions � �� � � ���	� � and � �� � ���	� � � � � � are undefined.
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Each delay automaton
� �� , for � � � � �

, describes the histories of � � and its excitation � �
along paths that are hazard-preserving with respect to � � . We want to describe paths that

are hazard-preserving with respect to all variables � � � � at the same time, so we need an

automaton that, for each � � � � � , behaves like
� �� . Thus, we need to take the direct product

[17] of
� �� ������� � �� .

By definition, the direct product of
� �� ������� � �� is an automaton

� � � � � � � � � � � � � 
 � � � �

with
� � � � �� 
 ����� 
 � � � � � � � � � �

� ��� ���	� � �
� ����
���
 � 
 � ��� 
 
 � , and transition function

� � � � � 
 � � 
 	
� � defined for any � � � ��� ���	� � � � � � � and � � � � as

� � � � � � ��� ���	� � � ��� � � � � � � � ������� � � �� � iff � �� � � �	� � � � � �� � for all � � � � � �

Definition 5.2.2 (Delay automaton) We call
� � the delay automaton of set � .

Example 5.2.1 With � � ��� � ��� � � , the delay automata for � � and � � are shown in Fig-

ure 5.4, and their direct product is shown in Figure 5.5.

� �
� ��� � � � ��� � �

� �
� � ��� � � � ��� �� � ��� �

� �

� � ��� �
� �

Figure 5.4: Delay automata
� �� and

� �� .

Note that the nonempty components of an automaton state show the variables that are

unstable in that state.

Definition 5.2.3 (Balanced word) A word � � � 	� is called balanced with respect to � if

� � ��� � � � .
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� ��� � � � � �
� �

� �

� � � �

� � ����� � � �

� � � �

� � � � �

� �
� ��� � � �!��� � � �

� �

Figure 5.5: Delay automaton of set � .

By the definition of the direct product, we have � � � � � � ��� �
�
� � � ����� � ��� � �� � . From

the definition of each
� �� , it is easy to see that a word � � � 	� belongs to � � � �� � iff

� � � � ��� � � 	 � � � � � � ����� , for some integer � � � � . Then, the following fact holds.

Remark 5.2.1 A word � � � 	� is balanced with respect to � iff, for all � � � � ,

��� � � ��� ��� 	 � � � � �	� � ��� �

for some integer � � � � .

The language ��� � � � is a regular subset of the Dyck language 
 � [22, 34] that is the

context-free language of well-balanced parentheses of
�

types. Our language can be defined

as the subset of 
 � containing all words � over
� � such that, for each prefix � of � and

each ��� � � � , the number of occurrences of � � in � equals or is one more than the number

of occurrences of � � in � , and these numbers are equal if � is � (the connection between

our language and the Dyck language, and this particular description have been suggested

by Z. Ésik).

5.2.1 Delay Automata and Hazard-Preserving Paths

In the following we establish the exact relation between hazard-preserving paths and delay

automata. Let � be a set of state variables defined as before. By choosing � , we limit our
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� �
���

� �

� � � �
� � � � 
 � ��� 
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 ��� 

���� �� �

� � ��� � � � � 
 
 ��� 
��
 ��� 
 ��
 � � 
� 
 ��� 
��� ��� 


� 
 � � 
��� � � 


� 
 ��� ���
 ��� ���� ��� �

� �� �

���

���

Figure 5.6: Sample circuit with � �� � � � graph.

interest to paths that are hazard-preserving with respect to � . To any path � in � �� � � � we

associate a word � � � � 	� called the path-word with respect to � in the following way: we

label each step of the path with � � iff excitation � � changes, and with � � iff unstable variable

� � changes in that step, for � � � � � � ��� � � � � . Other steps are labeled by the empty word.

By Proposition 5.2.1, it is guaranteed that each step has a single label. The path-word � �
is the concatenation of the labels along path � .

Example 5.2.2 Consider the circuit and the � �����	� graph from Example 5.1.1. We choose

� � ��� � ����� � and show the labeled subgraph � �� � � � in Figure 5.6 beside the circuit. The

values of � � � � � are shown in boldface in each state. If we take

� � 
 � 
 � 
�� ��� 
 � 
�����
�
 ��
���� 
�
�
�
�� � 
	� 
�


for instance, then the path-word of � with respect to � is � � � � � � � ��� � � .

We denote by � � the set of all paths from � in ���� � � � that are hazard-preserving with respect

to � , that is

� � ��� � # � is a path from � in � �� ���	��� and for all � ��� � � � �� � � �� � �

We denote by � � the set of path-words of all hazard-preserving paths in � � , that is

� � ����� � # � ��� � � �
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Note that the delay automaton is quite general, and it applies to any network
�

, and

any � �� ���	� , as long as we find a set � that satisfies the necessary requirements. For a

particular network
�

, and a particular � �� ���	� , not all words accepted by the delay automaton

correspond to paths in � �� ���	� . We find a necessary and sufficient condition for a balanced

word to be a path-word; that condition is relevance, as defined next.

Definition 5.2.4 (Relevant word) A balanced word � � ��� � � � is relevant to ���� ���	� if

there exists a path � in ���� ���	� such that � � ��� ��� � � � � ��� ��� . We denote by ��� � � � � � �� �	�
� the

set of all words in � � � � � that are relevant to � �� � � � .

Example 5.2.3 For the circuit and the � �� � � � of Example 5.2.2, with � � ��� � ����� � , the

delay automaton
� � is that of Figure 5.5, with � � ��� � � � � � ��� taking the roles of � � ��� � � � � ��� � ,

respectively. Sample relevant words are in this case � � � � � � � � and � � � � � � � � , and sample

irrelevant words are � � � � � � � � � � ��� and � � � � ����� ��� � ��� .

The following proposition states that a balanced word is the path-word of a hazard-preserving

path if and only if it is relevant. This result reduces the problem of finding a hazard-

preserving path to finding a relevant balanced word. In Chapter 7 we find relevant balanced

words and then apply this result to find corresponding hazard-preserving paths.

Proposition 5.2.2 � � � ��� � � � � � �� �	�
� .

The proof of this proposition is straightforward but tedious, and is given in the next

section.

5.2.2 Proof of Proposition 5.2.2

We first prove � � 
 � � � � � � � �� �	�
� .

Let � be any path in � � , and � � its path-word. Let � � be the number of times excitation

� � changes along � , for each � � � � � .
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For all � � � � � , we have

# � � # � � � � �
� � � �� � � �� �

# � � # ��� �����
� � discussion in beginning of Section 5.2

�

� � � � � ��� ��� 	 � � � � � � ����� , for some integer � � � � .

Hence, for all � � � � � , � � � � � ��� ��� 	 � � � � �	� � ��� , with ��� � � . By Remark 5.2.1, it follows that � �
is in � � � � � . Word � � is relevant, since it is the path-word of � . Hence � � � � � � � � � � �� �	�
� .

Next we prove the converse, that is ��� � � � � � �� �	�
� 
 � � . In other words, we show that

if � is a balanced word relevant to � �� ���	� , then there exists a hazard-preserving path � such

that � � � � .

Let pred � � � denote the set of all predecessors of the variables in � , and succ � � � the

set of all successors of the variables in � . Since the variables in � are unrelated to each

other by the precedence relation, it follows that pred � � � � � � � , and succ � � � � � � � .

Also, since
�

is feedback-free, we have pred � � � �
succ � � � � � . Thus, pred � � ��� � ,

and succ � � � are disjoint. Therefore, there exists a partition (left � � ��� � � right � � � � of � ,

such that pred � � � 
 left � � ��� succ � � � 
 right � � � , and right � � � also includes any state

variable that has the same excitation as some variable in � . The other variables that are

unrelated to variables in � by the precedence relation are partitioned arbitrarily between

left � � � and right � � � . We consider any such partition. The variables of left � � � are not

influenced by the variables in � and those in right � � � . We now write a state tuple � as

� � � left � � � � � � right � � � � , where the sets are seen as tuples.

Let
�

� � � � � � ��� � � ������� � � � � , and
� � ��� � � ������� � � � ��� � ������� ��� � � , for all � � � � � .

Let � be a relevant balanced word, that is � � ��� � � � � � �� �	�
� . By definition, there

exists path � in ���� ���	� such that � � � �
� � � � �

� . Let � � � � �������	� � � . Suppose � is not

hazard-preserving (if it is, then we are done). Without loss of generality, we can assume
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Figure 5.7: Sample circuit for proof illustration.

that � � � � right
� � � � � � ��� ��� � � � � right � � � � � , that is variables in � and those in right � � �

retain their initial values along � . To justify this assumption, observe that the histories of

the excitations in
� � � � that determine the word � � � �

� depend only on left � � � , and are

not influenced by the variables of � , nor by the ones in right � � � . Thus, given a path with

certain histories for the variables of left � � � , we can always find an equivalent path that

satisfies our assumption. With this assumption, since the variables in � do not change,

� � � �
� ��� � � ��� �

� .

The proof is by induction, through a series of constructions. The constructions are

illustrated with an example using the complete binary network in Figure 5.7.

Example 5.2.4 The network is started in state ����� with �
	 � � � � 	���
 and

��	�
���
���
�
�
�
�
�����
����

where all variables are stable except the input-gate variables. Let ��	�� � � � � ��� . The partition

is shown in the figure. Variables in left ����� are labeled with subscripted
�

labels, and variables in

right ���
� are labeled with subscripted � labels. We choose word  !	�" � " � � � � � " � " � � � � � in #$�&% � � ,
and path ' in ( �� �)��� as shown in Table 5.1. The path-word  � is in this case " � " � " � " � . Word  
is relevant to ( �� ����� since  +* � � �

�
��,
	 	-" � " � " � " � 	- � . Note that ' is not hazard-preserving with

respect to � , since variables � � and � � become unstable, but never change along ' .

We prove our claim by induction on � , where � 
 � 
 �
.

Basis, � � � . We show that there exists a path � � from � in ���� ���	� such that � � � ����� �
� .

This is obvious, with � � � � .
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Table 5.1: Sample path ' .
state

� � � � � � � � � � � � � � � � � � � � � � � � � � � label� � 
 � 
 � 
 
 
 
 
 � � 
 �� � � � 
 � 
 
 
 
 
 � � 
 �� � � 
 
 � 
 
 
 
 
 � � 
 �� � � 
 � � 
 
 
 
 
 � � 
 �� � � 
 � � � 
 
 
 
 � � 
 �� � � 
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 � � 
 �� � � 
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 � � 
 �� � � 
 � � � � � 
 � � � 
 �
" �� � � 
 � � � � � 
 � 
 � 
 �
" �� � � 
 � � � � � � � 
 � 
 �� � � � 
 � 
 � � � � � 
 � 
 �� � � � 
 � 
 
 � � � � 
 � 
 �� � � � 
 � 
 
 
 � � � 
 � 
 �
" �� � � � 
 � 
 
 
 � 
 � 
 � 
 �� � � � 
 � 
 
 
 
 
 � 
 � 
 �� � � � 
 � 
 
 
 
 
 
 
 � 
 �
" �� � � � 
 � 
 
 
 
 
 
 � � 
 �

Induction hypothesis. Suppose there exists a path � � from � in � �� ���	� with � � � ��� � �

�
for some � such that � 
 � � �

.

Induction step. We prove there exists a path � � � � from � in ���� ���	� , with � � � � � �
� � �

� � � .
If � contains no occurrences of � ��� � , then ��� �

� � � � ��� �

� , so we can take � ��� � � � � .
Otherwise, we construct path � � � � from � � , guided by � � �

� � � . Let � � ��� �

� � � . Suppose

� � � � ����� � � . Word � is the same as word � � � , except that it also contains occurrences of

�	��� � . Hence, it is true that � � �

� � � � �

� � � � � . We insert in � � steps labeled with � ��� � , in

the places indicated by word � . We now describe the procedure.
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We illustrate the procedure with our example, by showing how we construct ' � from ' � , where

' � 	�' . In this case � 	 � �
�����

� �+	�" � " � � � " � " � � � .
� Let � � , with � � � 
 � be the first occurrence of � ��� � in � . Then � � ��� � � � � � contains

only letters from
� � . Since � � � � �

� � � , � � � � � � �
� � � � � 	 � � � � � � � �

� ��� � � 	 . Word � is

balanced with respect to � , so, from Remark 5.2.1, � � � � � � �
� � � � � 	 � � � ��� � � ��� � � ��� � �

,

for some integer � ��� � � � . Hence � � � � � � �
� ��� � � 	 � � � ��� � � ��� � ����� � �

. Since � � is the first

occurrence of � ��� � in � , it follows that

� � � ��� � � � � � � � � � � � �
� � � � � 	 � � ��� � �

i.e., � � ����� � � � � contains only one occurrence of � ��� � .
In our example

� 	�� and � � � � 	�" � " � .
Since � � ����� � � � � is a prefix of � � �

� which is the same as � � � , there must be a prefix

of � � whose path-word is � � ��� � � � � � . We call that a matching prefix. Let �
� �

� � ����� � ��� �
, with � � � 
 � , be the shortest such prefix (in fact, any such prefix

works). Since � ��� � is stable in � �

, the single occurrence of � ��� � corresponds to a step

in which variable � � � � becomes unstable. With no consequent occurrence of � ��� � or

� ��� � , � ��� � is still unstable in state � �
.

In the example, we take � 	�� , so ' � 	 � �

�����

� � , with path-word " � " � , and � � is indeed

unstable in state � � .
We can change � � � � from state � �

, and thus create another state � �
that differs from

� �
only in the value of � � � � . Note that � ��� � is stable in state � �

.

In the example, � � 	���
���������������
�
�
�� .
We insert the new state in � � right after � �

. If � � � then we are done. Otherwise,

we replace � � � � ����� �	��� � with � � � � ����� �	� � � , where each � � , with � � 
 
 � 
 � , differs

from � � only in the value of � � � � . This is possible since the variables in left � � � are

not influenced by � ��� � .
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The new path for our example is in the first 18 rows of Table 5.2 (above the horizontal line).

We then repeat the steps above taking � � � � � � � � ����� � � � for the role of � � and � � � � � ��� � �
in place of � . This is possible, since � � � � is stable in state � �

and word � � � � ��� � � � is

the same as the path-word of � � � � � � � ������� � � � , except for some occurrences of � ��� � .
We stop when we have exhausted all occurrences of ����� � in � .

At the end we have the desired � ��� � with � � � � � � ��� �

� � � .
For our example we repeat the procedure only once, with � � � � � � � ����� � � � � and � � ����� � � 	

" � " � � � . The first occurrence of � � is � � . We find prefix � � � ����� � � � � with path-word " � " � , and

� � unstable in � � � . We insert state �
� � 	���
���
�
�
�
�
�
�����
�� and obtain path ' � in Table 5.2.

The procedure above allows us to construct a sequence of paths

� � � � � ��� ���	� � � �

where � � � � and for all � � � � � , � � � � ��� �

� . The path � that we are looking for is exactly

� � , since � � � ��� � � � � � .

For our example the sequence is ' � � ' � � ' � , where ' � , obtained from ' � by the prescribed pro-

cedure, is shown in Table 5.3.

Since � is balanced with respect to � , we know from Remark 5.2.1 that, for all � � � � � ,
� satisfies � � � � ��� � � 	 � � � � �	� � ��� , with � � � � . By construction, � � � � , so, for all ��� � � � ,
� � � � � � � � � 	 � � � � � � � ��� , with � � � � . This means that � � changes as many times as � � along

� , for any � � � � . Since each � � � � is initially stable, it follows that, for all � � � � ,

� � � � � � � . Hence � ��� � , and � � � � .
�

The path � constructed from � by the procedure above has some useful properties that

we will exploit in Chapter 7. Path � is � � ����� �	��� � , with each � � being

� left � � � � ��� � ��� � right ��� � � � ���

for all � � � � � . Let � be � � ������� � � � , where each � � , for � � � � � , is � left � � � � � � � � � � right � � � � � � .
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Table 5.2: Path ' � .
state

� � � � � � � � � � � � � � � � � � � � � � � � � � � label� � 
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 � � � � � 
 � � � 
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 �
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 � � �
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 �
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 �
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" �
� � � � 
 � 
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 � 
 
 
 �
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 � 
 
 
 
 
 
 
 
 
 �

" �
� � � � 
 � 
 
 
 
 
 
 � 
 
 � � �
�
� � � 
 � 
 
 
 
 
 
 � � 
 �

The procedure does not affect the sequence of partial states

�
left � left � � � � � ������� � left � � � � �

in � ; it at most duplicates some of them, so that, if we take the corresponding sequence

�
left � left �

� � � � ������� � left �
� � � � in � and eliminate duplicates, we obtain back �

left.

Therefore, we have ���� � � � � , for all � � � left � � � . Moreover, for each prefix � � of �

there exists a prefix � � of � such that ���
�

� � � � �

� , for all � � � left � � � .
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Let � � be a prefix of � and � � a prefix of the word � in the procedure, such that

� � � � ��� � � � � � � ��� � � . We argue that it is possible to construct � so that it has a prefix � �

that satisfies ���
�

� � � �
�

� , for all � � � left � � � , and � � � � � � . From the discussion above,

we know that � has a prefix � � such that ���
�

� � � � �� , for all � � � left � � � . By construction,

� � ��� ; since � � is a prefix of � , � must have a prefix � � such that � � , ��� � . We can make

� � � � � by using the following rule: in the induction step, when we process an occurrence

of � ��� � , we choose the shortest matching prefix if that occurrence belongs to � � , otherwise

we choose the longest matching prefix. We illustrate this policy with the next example.

Example 5.2.5 Suppose � is as shown in Figure 5.8(a), and � is � � � � � � � � � � � � � , with the

prefix � � � � � � � � � separated by “ � ” from the rest of the word. The path prefix � � is

separated in the figure by a horizontal line from the rest of the path.

In the first step of the procedure we construct � � from � , with � � � � � � � � � � � � . Since

� � is not from � � , we match its preceding � � � � with the longest matching prefix � � ����� � � of

� . We insert the corresponding state � � as described in the procedure and obtain the path

� � shown in Figure 5.8(b). Observe that the longest matching prefix policy ensures that we

do not insert in � � steps labeled with characters that are not � � .
In the second step we construct � from � � , having � � � � � � � � � � � � � � � � � � . For

the first occurrence of � � we choose the shortest matching prefix, that is � � ����� � � , because

� � belongs to � � . For the second occurrence of � � we have only one matching prefix. We

finally obtain the path � shown in Figure 5.8(c). Observe that the shortest matching prefix

policy ensures that we do insert in � � steps labeled with characters in � � .
Observe that the prefix � � of � has grown into the prefix � � � � � � ��� � � � � � � of � that has

� � � ��� � , and ���
�

� � � � �

� for all � � � left � � � .
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Figure 5.8: Sample path construction.
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5.3 Conclusions

In conclusion, in this chapter we have introduced delay automata to model the hazard-

preserving behavior of delays in binary analysis. Informally, a delay is hazard-preserving

if it does not lose any changes. For any set � of state variables that are initially stable, are

unrelated by the precedence relation, and have distinct excitations, we can define a delay

automaton
� � . We have proved that the problem of finding a hazard-preserving path with

respect to � reduces to finding a relevant balanced word (i.e., a word accepted by
� � that

corresponds to a path in binary analysis).
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Table 5.3: Path ' � .
state
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Chapter 6

Gate Automata

This chapter assumes the complete network
�

and its graphs � � ���	� and � �� ���	� , as defined

in the previous chapter.

6.1 Worst-Case Paths

In order to match the transients produced by the simulation, we need paths in the binary

analysis on which gates have worst-case behavior, that is they produce the largest number

of changes on their outputs, given the changes on their inputs; hence those paths are worst-

case paths, as defined next (a formal argument for the necessity of worst-case paths is

presented later in Chapter 7).

Definition 6.1.1 (Worst-case path) Let � be a path from � in � �����	� , and � � a gate variable

whose excitation computes Boolean function
� � �����	
 � � 
 	 ��� � 
 � that depends only on

state variables. Let the fan-in set of � � be
� ���	� � � ���	� � ��� ���	���	��� � . We call � worst-case

with respect to � � if
� �� � ��� � �� � ��� ��� � � ���� � . For a set of gate variables � 
 � , path � is

worst-case with respect to � if it is worst-case with respect to each � � � � .

66
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Example 6.1.1 For the circuit and ����� � � graph of Example 5.1.1 on page 47, a sample

worst-case path with respect to � � , for instance, is � � 
	��
	� 
��	
�
�
	��
��	
�
�
�
�
 , since
� � � � 


and ��� ���� � ���� � � ���� � ���� � 
 � ��
 � 
 ; in contrast, a sample path that is not worst-

case with respect to � � is � ��� 
 � 
	��
�����
�
 � 
�����
 � 
�
 , since
� �

�

� � 
 but ��� � � �� � ��� �

� � �
� �

�� � � �
�� � 
	� � � 
�� 
	��
 .

In order to characterize worst-case paths in binary analysis, we introduce in this chapter

Moore machines [8] that describe the behavior of gates. These machines are called gate

automata (gate automata are due to J. A. Brzozowski1).

6.2 Characterization of Worst-Case Paths

In this section we give a characterization of worst-case paths using gate automata. For the

same reasons as before, we restrict our attention to � �� � � � .
Let � � be a gate variable whose excitation depends only on state variables. For simplicity

of notation, let
� � � � � � ��� � � ����� ��� � � , with � �� � � � . Suppose the excitation of � � computes

Boolean function
� � ��� �	
 � � 

	 ��� � 
 � , that is � � � � ��� � ����� �	��� � � . In any state in � �� � � � ,

the tuple � � � ��� ��� � � � � of fan-in variables may have any value in �����	
 � � . Thus, we have

a machine state for each value in ��� �	
 � � . Each machine state has as output the value of

the gate excitation in that state. In any state of � �� ���	� only one of the fan-in variables may

change, in which case we move to a state that differs from the previous one only in the

value of the variable that changes. Thus, we have a transition between any two machine

states that differ in exactly one component. Each transition is labeled with the name of

the variable that changes. The initial state of the machine is given by the values of the

fan-in variables in the initial state � of � �� ���	� . The resulting automaton is called the gate

automaton of variable � � .
1Personal communication.
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Example 6.2.1 If � � corresponds to a two-input OR gate and
� ��� � � � ��� � ��� � � , then � � �

� � � � � . The corresponding machine is depicted in Figure 6.1. For simplicity, we write

binary tuples as words. The assumption is that � � � � � ��� . In the figure, a bidirectional

transition with a label stands for two opposite unidirectional transitions with the same

label. The output of a state is shown in the state label after the “/” symbol.

��� � �

� �

� �


�
 � 

� �


	� � 


� 
 � 


� �

Figure 6.1: OR gate automaton.

The formal definition of a gate automaton is given below. The definition uses the unit tuples

of ��� �	
 � � . For any � � � � �
, the � th unit tuple  � of �����	
 � � is the tuple in which only the

� th component is 
 , the rest being � . Observe that by taking the component-wise exclusive

OR, denoted � , of a tuple in ��� �	
 � � with  � , we obtain the tuple in ��� � 
 � � that differs from

the previous one only in the � th component, for any � � � � � .

Definition 6.2.1 (Gate automaton) The gate automaton with respect to � �� ���	� of gate vari-

able � � whose excitation computes
�

-ary Boolean function
�

is a Moore machine

� �	� � 	������ ��� ��� �
�

� ��� � � � �����

where 	 � � � � � � � is the input alphabet, ��� ��� �	
 � is the output alphabet, � � �������	
 � � is

the set of states, �
�

� � ��� � � �����	��� � � is the initial state, � � � � � 
 	 � 

	 � � is the transition

function defined for all � ��� � , and all � � � 	 � as � � � � � � � � � �$�  �� , and � � � � � 

	 � is

the output function defined for any � ��� � as � � � � � � � � � � .
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Note that the input language of
� � is 	 	� . We extend � � to words by defining

� � � � � 
 	 	� 
 	 � � �

with � � � � ��%�� � � � � � � � � ��� �	� � � � � � � � �	�  �� , for any state � ��� � and word � � 	 	� .
In a gate automaton

� � , any input word � � 	 	� produces a binary output word � as

explained below; we write � � � � � � � . If � is the empty word, then � � � � � � . A nonempty

input word � � � � � ������� � � � � � � � of length �

 � produces output word � ��� � � � � ��� � � ���� � � � ,

where � is the output word of � � � ����� � � � � � .

Definition 6.2.2 (Output profile) Let � � � ��� � � , for an input word � � 	 	� . Let �� be the

contraction of � . We call �� the output profile of � .

Example 6.2.2 For the gate automaton in Figure 6.1, the output produced by input word

� � � � � � � � , for instance, is �$� � 
�
�
 , so its output profile is �� � � 
 . If � � � � � � � � � � , then

�$� � 
	��
	� , so �� � � 
 � 
	� .

6.2.1 Extended Boolean Functions

In this section we establish an equivalence between longest output profiles and extended

Boolean functions for transients. We use a gate automaton
� � defined as before. We also

use an alternate representation of transients. Any transient
� � � is uniquely determined

by the pair � � � � � � length � � � 
 
�� , where length � � � denotes the number of characters in
�
.

With a slight abuse of notation we write
� � � � � � ��� length � � � 
 
�� .

Every input word � � 	 	� determines
�

transients
� � � �����	� � � , where

� � � � � � � # � # � � � , for

all ��� � � � . Given any
�

transients
� � � ����� � � � , with � � � � � � � � , for all ��� � � � , there may be

more than one input word that determine them. Let
� � � � ��� ��� � � � � be the set of input words

that determine the
�

transients
� � ��� ��� � � � . Then

� � � � ����� � � � � � ��� � � 	 	� #�# � # � � � length � � � � 
 
�� for all ��� � � � � �
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Example 6.2.3 Consider the gate automaton in Figure 6.1. Then
� � % �!%�� ��% , and

� � � 
 � ����
	� � � ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Note that for generating transients the order of the characters does not matter, only their

number does. All words in
�

have the same length. Note also that any given input word

belongs to exactly one set
�

, since it generates a single tuple of transients.

Let
� � � � ��� ���	� � � � be the set of output profiles for the words in

� � � � ��� ���	� � � � , that is

� � � � ������� � � � � ��� �� # � � � � � � � � � � � � � � ������� � � � � � �

Let � � ��� be the longest profile in
� � � � ����� � � � � � .

Definition 6.2.3 (Worst-case word) An input word � � 	 	� is called a worst-case word for
� � if � has the longest output profile among the words in

� � � � ����� � � � � � , where
� � ������� � � �

are the transients generated by � ; formally, � � � � � � � and �� � � � ��� .

Note that the empty word is always worst-case, as are all words over one letter, in particular

all words of length 1. In all these cases
�

is a singleton; hence
�

is a singleton as well. For

words over at least two letters, this is no longer true, since, for instance, for the model of

Figure 6.1, if we take 
	� as the initial state, the profile of � � � � is 
	��
 , but that of � � � � is 
 .
For the gate automaton of Figure 6.1 (with initial state ��� ), if we take � � � � � � � � � � ,

then � � ��
�
�
	� so the output profile of � is ��
	� . If � � � � � � � � � � then the output profile is

� 
 � 
 � . The longest profile for
� � � 
 � ����
	� � is � � ����� ��
	��
	� , so the latter � is a worst-case

word.

Lemma 6.2.1 � � ����� ��� � � ������� � � � � .

Proof: We consider the 
 -graph 
�� � � ������� � � � � (defined in Section 2.5). The source node

of the 
 -graph is � and the sink node is � � � ��� ���	� � � � . We refer to a path from source to sink

in the 
 -graph as a complete path.
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Each node � � � ������� � � � � of the 
 -graph corresponds to state � � � � � ������� �	� � � � � � � of
� � .

The label
� � � � � � ������� � � � � � � � � of each 
 -graph node in its associated graph of labels is

the output � � � � � � � ��� ����� � � � � � � � of the state corresponding to that node.

We label each edge � � ��� � in the 
 -graph with � � , where � � � � � is the single component

that differs between � and � . The edge labels along each complete path in the 
 -graph form

a word belonging to 	 	� . Then each complete path in the 
 -graph corresponds to a path from

� � � � � � in
� � . Moreover, the set of edge-label words of all complete paths in the 
 -graph

is exactly
� � � � ����� �	� � � � . Therefore, the set of the contracted node-label sequences of all

complete paths in the 
 -graph is exactly
� � � � � �����	� � � � . Since ��� � � � ����� � � � � is by definition

the longest of those sequences, the claim follows immediately.
�

Example 6.2.4 We illustrate the result above with the gate automaton in Figure 6.1 and

the 
 -graph of Figure 2.13 that gives � 
 � ��
	� . We show the correspondence of these, as

established by the proof above, in Figure 6.2. The node labels of the 
 -graph are written

as exponents of the nodes. Observe that

� ����
�����
	��� ����� � � � � � � � � � � � � � � � � � � � � �

������� � �

� � ����
��
�

������� 
 � � � ����
�����
	���
�

� �

� �

� �
��� � �

��
 � 



	� � 



�
 � 


� �

� �

� �

� �

� �

� �

� �

����
������
�

����
�����
��
� � �

Figure 6.2: Labeled
�

-graph and gate automaton.
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6.2.2 Worst-Case Paths

In the following we find a necessary and sufficient condition for a path in � �� � � � to be a

worst-case path. We use a gate automaton
� � as before. For any path � from � in � �� ���	� we

label with � � each step in which variable ��� changes, for all ��� � � �
. The word obtained

by concatenating the labels along � is an input word � � ��	 	� that shows how the fan-in

variables of � � change along � . The output word �
� � � � � � � � shows how the excitation � �

changes on � . Word � � determines transients
� � � ����� � � � .

Remark 6.2.1 For � as above, we have


 � � �� � � � � for all � � � � � �
��� � �� � �

� � �

Proposition 6.2.1 Let � be a path from � in � �� � � � labeled as above with � � . Path � is

worst-case with respect to � � if and only if � � is a worst-case word.

Proof:

� is a worst-case path with respect to � �
� � definition of worst-case paths

�
� �� ��� � ��� � ����� � � ���� �

� � Remark 6.2.1
�

�

� � ��� � � � ��� ��� � � � �
� � Lemma 6.2.1

�
�

� � � � � ���
� � definition of worst-case words

�
� � is a worst-case word. �
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6.3 Gate Automata and Delay Automata

In this section we prove an important technical lemma that relates gate automata and delay

automata, and is used later in Chapter 7.

Proposition 6.3.1 Let
�

be a feedback-free complete network and � �� ���	� its binary analy-

sis without simultaneous changes, where � � � is a total state in which the only variables that

are unstable are input-gate variables. Let � � be a gate variable whose excitation depends

only on state variables. Then, there exists a delay automaton
�
� �
� �
� .

Proof: In order to be able to define a delay automaton for the variables of
� � � � � we have to

show that these variables

1) are initially stable in ���� � � � ,

2) are unrelated to each other by the precedence relation, and

3) have pairwise-distinct excitations.

Since
�

is complete, all gate variables other than those of input gates have only wire

variables in their fan-in sets. Since we assumed that the excitation of � � does not depend

on inputs, � � is not an input-gate variable, and all its fan-in variables are wire variables. We

assumed that only input-gate variables may be initially unstable in � �� � � � . Therefore the

variables in
� � � � � are initially stable, which satisfies (1).

If � � has only one fan-in variable (which happens if � � corresponds to a buffer, an in-

verter, or a fork gate) then conditions (2) and (3) are trivially satisfied. Suppose � � has more

than one fan-in variable.

Suppose (2) is not true and there exist two fan-in variables ����� � � of � � such that ���
precedes � � , i.e., ��� � � � � . Since the gate of � � is not a fork gate, � � is the only fan-out

variable of ��� . Therefore, we must have � � � � � � , so � � precedes � � . But � � precedes � � by
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virtue of being its fan-in variable. It follows that the network graph of
�

contains a loop,

which contradicts the fact that
�

is feedback-free.

Since the fan-in variables of gate variable � � are all wire variables, and only fork-gate

variables have identical excitations (see proof of Proposition 5.1.3), the fan-in variables of

�	� have pairwise-distinct excitations; hence (2) is true.
�

Definition 6.3.1 (Prefix-restricted word) Let � be any alphabet. A word � � � 	
is called

prefix-restricted if � has a prefix � � satisfying # � � #
�
� 
 for all letters ��� � that occur in

� (i.e., � has a prefix with exactly one of each of its letters). We call prefix � � the key

prefix of � .

Note that the empty word is prefix-restricted, as are all words of length 
 and � . An example

of a word of length
�

that is not prefix-restricted is � � � � � � � � � 	 	� .

Let
� � be a gate automaton defined as before. By Proposition 6.3.1, we have a delay

automaton
�

�

� . Recall that
� � 	 � � is the set of the excitations of the variables in 	 � , and

�
�

� ��	 � �
� � 	 � � is the alphabet of

�
�

� .

The following lemma relates words over
� � 	 � � to words over 	 � in the following sense.

Given any prefix-restricted word over
� � 	 � � , we can always find a worst-case word over 	 � ,

such that an interleaving of the two words is a balanced word. In terms of binary analysis

this means that as long as we have a prefix-restricted order in which the excitations of

the fan-in variables of a gate change, the fan-in variables can always change in a hazard-

preserving way, so that the worst-case output is produced by the gate. The result is limited

to one- and two-input gates, since a proof for any number of inputs is not known yet,

although we believe the result is true.

Lemma 6.3.1 Let
� � be the gate automaton of gate variable � � , corresponding to a one- or

two-input gate. For any prefix-restricted word � � � � 	 � � 	 with key prefix � � , there exists a

balanced word � � � � � �

� � such that:

(i) � � ����� � � � � ,
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(ii) � � �

� is a worst-case word, and

(iii) � has a prefix � satisfying � � ��� � � � � � � and � � �

� has an output profile of length � if

the output profile of � � �

� is of length

 
 .2

Proof: The case where � is the empty word is trivial, since we take � to be the empty word

as well. In the following we assume � is nonempty. Let � � � � 	
�

� be the word obtained from

� by replacing every letter � � of � with � � � � ; for example, if � � � � � � , then � ��� � � � � � � � � ;
if � � � � � � � � then � � � � � � � � � � � � � � � . Word � � satisfies � � � � � � �

� � and � � � ��� � � � � � .

If � � is a gate variable for a single-input gate, then 	 � � ��� � � , and � � � � � , so � � is

� � � � � � � , with � 
 � . Since every word over one letter is worst-case, � � � �

� is a worst-case

word. Word � ��� �

� has an output profile of length

 
 iff the transition with � � from the

initial state changes the output of the machine, i.e., the output profile of � � has length � ; in

that case, we take the prefix � � � � � � of � � that satisfies � � ����� � � � � � � � � , and � � �

� � � �

has an output profile of length � . Thus, ��� satisfies (iii).

For two-input gates, we have 	 � � ��� � � � � � . If only one of the two letters occurs in � ,

then this case reduces to the previous one. Suppose both letters appear in � and � begins

with � � , where � � ��
�� � � . Let � � be the other letter, that is � � ��
�� � � ��� �� � . Since � is

prefix-restricted, its key prefix � � is � � � � , so

� � � � � � ��� � � � � � � � � � � ��� � � , � ���	� (6.1)

with
�
�

 � . We call the factors � � � ���	� � � � � � � � � � � � � � � � , , etc. of � � maximal blocks. Some

discussion is needed, depending on the function
�

of the gate and the initial state of
� � .

There are 
 � Boolean functions of two variables. If
� ��� � ��� � � is ���	
���� � � � � ��� � , or � � ,

then
�

does not satisfy the assumption we made in Section 2.1, since
�

does not depend on

all its arguments. We are left with ten alternatives. When
� ��� � � � � � is � � � � � , or � � � � � , any

2This property has only technical value. It guarantees that the prefix-restricted property is preserved by

the induction step in a proof in Chapter 7.
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input word is a worst-case word because the value of the function changes every time one

of the inputs changes. Hence a transition with either � � or � � entails a change in the output

of
� � . In both of these cases � � from (6.1) is the desired word. Note that � � satisfies (iii), if

we take � to be � � � � � � . This leaves
�

functions:
� ��� � ��� � � � � � � � � , � � � � � � � � � � � � � � ,

� � � � ��� � � � � � � � � , � � � � ��� � � � � � � � � and their duals. Suppose
�

is one of these. Then
� �

has the property that one of its states has an output different from the other three. In other

words,
� � is of the type shown if Figure 6.3 (the initial state is not considered yet), where

� � � � � � 
 are distinct tuples (represented as words) in �����	
 � � and � ��� � ��� � 
 � ��� ���� .
� � � � � �

�
� �
 � �

� �

� �

� � � �

Figure 6.3: Gate automaton type.

We have several cases, depending on the initial state �
�

� of
� � .

Case I, �
�

� � �
. Every input word leads from state

�
to one of the states

� � � � ��� 
 .

Among the words that lead from
�

to
�

, those of type � � � � � � � � � � � 	 are worst-case, since

the output changes at each step, and we cannot do worse than that. Among the words that

lead from
�

to
�

, those of type ��� � � � � � � � � � 	 � � are worst-case, for the same reason as

before. The same happens with words of type ��� � � � � � � � � � 	 � � that lead from
�

to 
 .

Among those words that lead from
�

to � , the words of type � � � � � � � � � � � 	 ��� � � � � � � � � �
are worst-case; the output changes at every step except the last, but the last step never

brings any change, since it is either from
�

or from 
 , which have the same output as � .

It follows that all the words described by the regular expression

� � ��� � � � � � � � � � 	 � % � � � � � � � � � � � � � � � � �
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are worst-case words.

We transform word � � given by (6.1) into a word � such that ��� �

� is a worst-case

word belonging to
�

. Note that any word � belonging to
�

can be uniquely written as

body � � � tail � � � , where body ��� � � ��� � � � � � � � � � 	 , and tail � � � � � % � � � � � � � � � � � � � � � � � .
Our aim is to obtain a word � such that � � �

� is of this form. The idea of the transformation

is to make each maximal block of � (except for some at the tail) contain an even number

of occurrences of either � � or � � .

Example 6.3.1 We illustrate the procedure using the gate automaton of Figure 6.1, in which
� 	


�
 . We take  � 	�" � � � " � � � " � � � " � � � , with  +* �

� 	 � � � � � � � � , that is not worst-case. The worst-case

words in this case are � � � � �� and � �� � � � . Applying the procedure below, we obtain the former.

The procedure is the following.

� We process the maximal blocks of � � sequentially, from left to right. For each maximal

block � � � � � � � we do the following: if � is even, we do nothing, since we already have

an even number of � � ’s; if � is odd, we move the last ��� over the next maximal block
� � � � � ��� � � 	 ; thus, � � � � � � � � is replaced with � � � � � � � � � � � � � � . Now � � � � � � � � � � �

�
is � � � �� , and � 
 
 is even, so we now have � � an even number of times. We then

process block
�
, with the roles of � and � reversed. These transformations may create

subsequent maximal blocks of the form � � � � � � � � � . For such blocks, if � is odd we

do nothing, since we already have an even number of � � ’s; if � � � , we do nothing,

because that means we are at the end of our word; if � is even and nonzero, then again

we move the last ��� over the next maximal block
� � � � � ��� � � 	 ; hence, ����� � � � � � � �

becomes ����� � � � � � � � � � � � � � . We then process block
�
, with the roles of � and �

reversed, etc.

In our example, the first maximal block is " � � � , so we move � � over the next maximal block

and obtain " � " � � � � � " � � � " � � � . The next maximal block is " � � � ; we move � � over the next maximal

block and obtain " � " � � � " � � � � � " � � � . For the subsequent blocks � � " � � � and � � " � � � we do nothing.
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The procedure results in a word � whose ��� �

� has the form body � � � �

� � tail � ��� �

� � , with

body � � � �

� � being � � �� � �
,
� ����� , where � � � � � , etc. are even, and tail � � � �

� � � ��% ��� � ��� � ��� � � � ��� � � �
�
.

But this is just the form of words in
�

. Thus, � � �

� is a worst-case word, so � satisfies (ii).

The order of occurrence of � � with respect to � � is not affected by the procedure above, so

� � � � �
� � � 	 � � � � � � �

� � � 	 , for all � ����
�� � � ; hence � � � � � �

� � . The order of occurrence of

the letters in
� � 	 � � with respect to each other is also unchanged, so ��� ��� � � � � � � � ����� � � � � ,

which satisfies (i). Note also that, by construction and by the prefix assumption, � al-

ways has a prefix � , where � is � � � � � � , or � � � � � � . In any case � satisfies � � ����� � � � � � and

� � �

� � � � or � � �

� � � � , with output profile of length � . Thus, � � satisfies (iii), too, so it is

the word we were looking for.

Case II, �
�

� � �
. With a similar reasoning as for Case I, the words described by the

expression � � � are worst-case. If � � � � � � � � � � � � � � � � � � � � � � , ����� , we apply the procedure

of Case I to the suffix � � � � � � � � � � � � � � � , � ��� of � � . If � � � � � � � � � � � � � � � � � � � � � � , � ��� , we

move the first � � over the next maximal block � � � � � � � � and obtain

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � , ��� � �

we then apply the procedure of Case I to the suffix � � � � � � � � � � � � � � � � � � � , ����� of � � � . In any

case we obtain a balanced word � satisfying (i) and (ii). Note that � has a prefix � , where

� � � � � � � � , or � � � � � � � � . Word � satisfies � � ��� � � � � � � and � � �

� � � � , with output profile

of length � . Thus, � is the desired word.

Case III, �
�

� � 
 . This case is symmetric to the previous one, with the roles of � � and

� � reversed.

Case IV, �
�

� � � . For this case the words described by ��� � � � � � � � � � � are worst-case.

Note that on the worst path from � to any other state the output changes at each step except

the first, and from � to � the output changes at each step except the first and last. For � �
given by (6.1) we apply the procedure of Case I to its suffix � � � � � � � � � � � � � ��� � � , � ��� . The

word � obtained is balanced and satisfies (i) and (ii). In addition, � has a prefix � , where
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� � � � � � � � � � , so � satisfies � � ����� � � � � � and � � �

� � ��� � � , with output profile of length � .

Hence � satisfies all requirements.
�

It is important to notice that the condition that � be prefix-restricted is essential, as the

following example shows. Suppose we change the initial state for the model of Figure 6.1

to be 
	� . Assume we are given � � � � � � � � , that is not prefix-restricted. Any balanced

word � that satisfies ��� � �

� � � must start with � � � � � � so � � �

� must start with � � . To satisfy

(ii), ��� �

� must be a worst-case word with two � � ’s and one � � . But the only worst-case word

of this type is � � � � � � , that does not start with � � . Hence it is impossible to satisfy (i) and (ii).

6.4 Conclusions

In this chapter we have introduced gate automata to model the worst-case behavior of gates

in binary analysis. Informally, a gate has worst-case behavior if it produces the longest

output transient for the given input transients. We have established necessary and sufficient

conditions for a path to be a worst-case path. We have also proved an important technical

lemma that relates delay automata and gate automata and is instrumental for the construc-

tive proof in Chapter 7. The lemma implies that no matter the order in which the excitations

of the fan-in variables of a gate change, as long as this order is prefix-restricted, the fan-in

variables can always change in a hazard-preserving way, so that the worst-case output is

produced by the gate.



Chapter 7

From Simulation to Binary Analysis

This chapter concludes the process of showing that binary analysis covers simulation, for

feedback-free circuits with one- and two-input gates, and initial stable state. We prove that

for such circuits the result of Algorithm Ã is covered by the result of binary analysis, in

the following sense. Let
�

and

�
be the two networks modeling a circuit as before. We

run Algorithm Ã for

�
started in stable total state

�� � � , with the input tuple
�� changing to

� . We also perform the binary analysis for
�

with initial total state � � � . We show that

for any state � � resulting from Algorithm Ã, there exists a path � from � in �������	� such that

��� 
 � � .

7.1 Network Model

For the result in Chapter 4 the network model is irrelevant; the result holds for any set

of state variables. For the implication we prove here that is no longer true. The following

example shows that Algorithm Ã can produce states that are not covered by binary analysis,

if input-gate and wire variables are not included in the model.

Consider the circuit in Figure 7.1 with associated networks
�

and

�
.

80
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� � � � � �
� �

� �

Figure 7.1: Sample circuit for network model relevance.

The excitations in
�

are:

� � � � � � � � � � � � � � � � � � � � � � � �

and those in

�
are:

� � � � � �
� � � � � � � � � � � � � � � � � �

We run Algorithm Ã for

�
started in stable total state

�� � � , where
�� � ��
 and � � ����� ;

we change the input
�� to �$� 
 � . The result is in Table 7.1.

Table 7.1: Result of Algorithm Ã.
� � � � � � � � � � state

� 
 
 � � � � � �

� 
 
 � ��
	� � � �
�

� 
 
 � ��
	� � 
 � � 
 � �
�

� 
 
 � ��
	� � 
 � � 
 � 
	� � �

Graph � � � ������� � resulting from the binary analysis of
�

has only one state ����� , since

total state 
	� � ����� is stable. Hence, there is no path in � � � � ����� � whose history covers states

�
�

� �
�

, or �
�

of the simulation. This shows that there exist networks whose binary analysis

does not cover simulation.

One problem in our example is the static hazard ��
	� on � � that is predicted by the

simulation but does not occur in binary analysis. As in [8], we add input-gate variables to
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fix this problem.1 We add an input-gate variable for each input port. The new network is in

Figure 7.2.

� � � � � �� �

� �

���
� �

Figure 7.2: Circuit of Figure 7.1 with input-gates.

The excitations in
�

are now:

� � � ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

and those in

�
are:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

We take � � � 
 ����� . The result of the simulation is shown in Table 7.2. We now write

state � as � � ����� ��� �	��� � ��� � ��� � � . This time, in � � � ����
	����� � we find path

Table 7.2: Simulation for circuit of Figure 7.2.
� � � � � � � � � � � � � � state

��
 
 � � 
 � � � � �

��
 
 � ��
 
 � � � � �
�

��
 
 � ��
 
 � � 
	� � � �
�

��
 
 � ��
 
 � � 
	� ��
	� � 
	� � �

��
 
 � ��
 
 � � 
	� ��
	� ��
	� 
 � � �

� � � 
 ����� �	
�
 � ��� �	
 � 
 � � �	
	��� 
 
 �	
	�������
1Input-gate variables are equivalent to wire variables. We choose to call them input-gate variables for

emphasizing the fact that they are associated to the inputs.
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that covers states � � � �
�

� �
�

� � � . However, we show next that there is no path that cov-

ers state � � .
We know from Proposition 3.2.1 that the result of Algorithm Ã is the same as the result

of Algorithm A for networks containing input-gate variables, in particular for our network�
. Hence, we can apply the propositions and corollaries of Chapter 4 for the result of

Algorithm Ã and the graph � � � ����
	����� � in our example.

Since � � � � � 
	� and � � � � ��
	� , from Corollary 4.2.4 we know that, for any path � from

� 
 ����� in � � � ����
	����� � , we have � � � 
 ��
	� and � � � 
 � 
 � . The graph of Figure 7.3(a)

shows all possible orders in which ( � � , � � ) may change along paths starting from ��
	����� in

� � � ��� 
 ����� � . Any path from � � ����� in this graph shows a possible scenario. Note that we

do not claim all such scenarios actually take place in � � � � � 
 ������� . If we replace each pair

� 
������

� � ����� ��� � � �� � �	
 �

� 
�� � �

��� � � �

� 
��	
 �

� � �	
 �� � �����

(a)

�




�










�




�

(b)

Figure 7.3: Possible changes of � � , � � , and � � � � � .

��� � ��� � � of values in this graph with the corresponding value of � � � � � , we obtain the graph

of Figure 7.3(b) which shows all possible orders in which � � � � � may change along paths

from the initial state in � � � � � 
 ������� . Since � � � � � � � � , this graph gives us the possible

excitation histories of � � . Observe that the longest history of � � in this graph, � 
 � 
 � , can

be obtained in only two cases:

������� � 

	 �����	
�� 

	 ��� � � � 

	 � 
���� � 

	 � � ����� ,
or

������� � 

	 � 
���� � 

	 ��� � � � 

	 �����	
�� 

	 � � ����� .
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With � � initially stable, by Corollary 4.2.2 we know that � �� 
 � 
	��
	� . Suppose there

exists a path � from the initial state in � � � ��� 
 ����� � with ���� � ��
	��
	� . The two cases above

show that � must have a prefix � � with (i) ���
�

� � � 
 � and ���
�

� � � , or (ii) ���
�

� � � and

���
�

� � � 
	� . Case (ii) is impossible, as explained next.

By Corollary 4.2.2, � �
�

� 
 � �
�

� . Hence case (ii) implies that
� �

�

� � � 
 � . But � � � � �

means
� �

�

� � ��� �

� . Therefore ��
	� 
 ���
�

� , which contradicts the fact that in case (ii) ���
�

� � � .

Thus only case (i) is possible, with � �
�

� � ��
	� , and ���
�

� � � . It follows that the last

state of path � � , say � � , is such that � � � � � , and � � � � � . In such a state neither one

of these variables is unstable and cannot become unstable since all changes on � � have

been exhausted. So � � and � � do not change further along � . Hence � has � �� 
 ��
	� ,
which contradicts our supposition. This shows there does not exist a path � from ��
	�����
in � � � ����
	����� � with ���� � ��
	��
	� . Thus, there is no path � from ��
	����� in � � � � � 
	������� that

covers � � .
The problem is solved if we add a wire variable � � on the input wire of the OR gate

coming from the buffer. We now have the circuit in Figure 7.4. The excitation of � � is

� � � � � and the excitation of � � is now � � � � � � � � . The other excitations are unchanged.

The simulation with ��� ��
	������� is in Table 7.3 (the inputs are not shown). State � is now

� � � ���	��� �	��� � � � � � � � ��� � � .

� � � �� �

� �

���
� �

� �
� �

Figure 7.4: Circuit of Figure 7.2 with a wire variable.

In � � � ����
	��������� we find path � shown in Table 7.4 with

� � � ����
��	
 � ����
	� � � 
	����� 
 ����� 
 ��
 � � �

which satisfies ���� 
 � �� , for all � � � � � ��� � � � � � ��� � .



CHAPTER 7. FROM SIMULATION TO BINARY ANALYSIS 85

Table 7.3: Simulation for circuit of Figure 7.4.
� � � � � � � � � � � � state

� 
 � � � � � �

� 
 
 � � � � � �
�

� 
 
 � � 
 � � � � �
�

� 
 
 � � 
 � � 
	� � � 
	� � �

� 
 
 � � 
 � � 
	� ��
	� � 
	� � �
� 
 
 � � 
 � � 
	� ��
	� ��
	� 
 � � �

Table 7.4: Path with desired history.

��� � � � � � � � � � �
� 
 � � � �

 
 � � � �

 � 
 � � �

 � � 
 � 


 � � � 
 �

 � � � � 


 � � � � �

The lesson learned from the previous example is that forks constrain the inputs of the

gates to change only in certain orders, that might not be worst-case. Wire variables can

solve the problem since they can perturb the order of the changes on their inputs, and

produce worst-case orders at their outputs, as we have proved in Chapters 5 and 6. The

example above motivates us to use a network model that contains wire variables. Note

that if we associate a state variable to each wire, we automatically have a state variable

for each input port, because there is a wire for each such port, so input gates might not be

needed. We decide, however, to use input gates as well, since they provide a simple basis

of induction for the main proof in the next section. We choose the complete network model
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that contains input-gate and wire variables. It also contains fork-gate variables. They are

needed to guarantee that no two wire variables have the same excitations, and thus to permit

the use of delay automata in our proof.

7.2 Covering of Simulation by Binary Analysis

For an arbitrary feedback-free circuit, let
�

be its binary complete network model. Suppose

that in stable total state
�� � � of network

�
we change the input tuple

�� to � . In the resulting

total state � � � only input gates are unstable, namely those corresponding to the inputs that

change; all other state variables are stable. We perform the binary analysis of
�

started in

state � � � and obtain graph � � � � � . Network
�

and graph � � ���	� thus defined are like those

in Chapters 5 and 6; therefore, all the results of those chapters apply here.

Let

�
be the transient counterpart of

�
. We run Algorithm Ã for

�
with initial total

state
�� � � , and the input changing to � . Since the circuit is feedback-free, the algorithm

terminates and we obtain a finite sequence �
� ��� ���	� � � of states. Since

�
contains input-gate

variables, by Proposition 3.2.1, this sequence is the same as that resulting from Algorithm

A for

�
with initial state � � � , so all the results of Chapter 4 apply here. If we find a path

from � in �������	� whose history matches the last state of the simulation, then that path covers

all simulation states, due to the monotonicity of Algorithm Ã. Thus, we are looking for a

transient-matching path, in the sense that we define next.

Definition 7.2.1 (Transient-matching path) Let � be a path from � in � ��� � � . Let � 
 �
be a subset of the state variables in

�
. We call path � transient-matching with respect to

� if ���� � � �� , for all � � � � .

The main claim we prove is stated next. The analysis that follows for the rest of this chapter

serves for proving this claim.
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Theorem 7.2.1 There exists a path � from � in ����� � � that is transient-matching with re-

spect to � , i.e., that satisfies

� � � �
� �

Proposition 5.1.1 guarantees that in looking for a transient-matching path it is enough

to restrict ourselves to ���� � � � . Therefore we use ���� ���	� from now on.

We arrange the state variables of
�

in levels as described in Section 3.1. This level

assignment results in even levels containing gate variables and odd levels containing wire

variables. We refer by level � � � � to the level of a state variable � � . The last level of any

network is always a gate level, so
�

has an even number � �
of levels.

Example 7.2.1 We illustrate the level arrangement with the circuit in Figure 7.5.

� �

� �
� �

levels � �

� �

� � � � �

� � � � � �

� � �

� � � �

� � �

� � �

� � �
� � � � � �

� � �

� � �
� � �
� � �

��

� �
���
� �
� �

� �




� � �

� �
� �
� �

� �

Figure 7.5: Sample feedback-free circuit with levels.

Let � � , where � � � 
 �
, be a gate level of the circuit. Let � � � be the set of gate

variables of level � � , that is

� � � ����� � � � # level ��� � � � � �
� �

Let � be the set of all fan-in variables of the variables of level � � , that is

� � �

�����
� , �

� � � � � �
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Suppose � � ��� � ������� ��� �
�
. Note that � � ������� ��� � are all wire variables; they are not nec-

essarily all of level � � 
 
 , but they belong to levels � � � . Since
�

is feedback-free and

complete, the variables in � are unrelated to each other by the precedence relation and

their excitations are pairwise distinct; also, since they are all wire variables, and thus dif-

ferent from input-gate variables, they are initially stable in � �� ���	� . Hence we have a delay

automaton
� � .

The view that we have of the circuit is pictured in Figure 7.6. The figure depicts the �

external
inputs

� �

� �
� � � �

� �

�����

level��� �
� ���

� � �
	 � �

� �

gate levels

� �gate levels � � � � �

Figure 7.6: View of a feedback-free circuit.

wire variables represented by delays, together with their excitations. The circuit is parti-

tioned by these variables into two areas, denoted � � � and
	 � � . Area � � � contains the gates

of levels � � � together with their fan-in variables. Area
	 � � contains the gates of level

� � , and the gates of levels



� � together with their fan-in variables. Since the circuit is

feedback-free, there are no signals flowing form
	 � � to � � � , but there may be wires that

connect outputs of gates in � � � to inputs of gates of levels



� � in
	 � � . Formally, � � � and

	 � � are sets defined as

� � � � �

level
�
���
� � � �

�
level

�
� �
���������

� ��� � � � � � � � � � �

	 � � � �

level
�
� �
�	� � �

��� � � � �

level
�
� �
��
 � �

�
level

�
���
���������

� ��� � � � � � � � � � �
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� �

� �
� �
� �
� �

gate
levels

� �

� �

� � �

� � �

# �

�

� �




� �

� �

� �
� �� �

� �

�

� �� �

� �

� �
� �� �

��

� � �

� � �
� �

� �

� �

� � � �

Figure 7.7: Sample circuit with partition.

Observe that � � � �!��� � � �����	��� �
� � 	 � � form a partition of the set � of state variables in

�
.

Note that � � � �
level

�
� �
�	� �
��� � � . Note also that

	 ��� � � � � and � ��� � � � � , if we assume

a fictitious gate level � � � � .

Example 7.2.2 We illustrate the partition with the previous sample circuit. The partition,

shown in Figure 7.7, is done with respect to the fan-in variables of level- � gates. We

relabel the state variables in � � � with subscripted � labels, and state variables in
	 � � with

subscripted � labels.

The proof of Theorem 7.2.1 is by induction on � , where 
 
 � 
 �
. We prove that

there exists a path from the initial state in � �� ���	� that is transient-matching with respect to

� ��� � � ��� . The basis of the induction consists of showing that there exists such a path

that is transient-matching with respect to � � , i.e., with respect to the input-gate variables.

In the induction step we assume we have a path � in � �� ���	� that is transient-matching with

respect to � � � . We show that there exists a path � in � �� � � � that is transient-matching with

respect to � � � � � . The proof is given in Section 7.2.1. We first prove a preliminary result.

The following lemma gives necessary and sufficient conditions for a path to be transient-
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matching with respect to � � � � � . Recall that � � � is the set of gate variables of level � � , and

� is the set of fan-in variables of the variables in � � � .

Lemma 7.2.1 Path � from � in � �� ���	� is transient-matching with respect to � � � � � if and

only if it is

1) transient-matching with respect to � � � ,

2) hazard-preserving with respect to � ,

3) worst-case with respect to � � � , and

4) hazard-preserving with respect to � � � .

Proof: Since � � ������� ��� � are wire variables, each of them has a single fan-in variable. Let

�	� � � �����	���	� � be the fan-in variables of � � ��� ���	��� � , respectively. Then � � � �	� � , for all

��� � � � . By the definition of extended excitations in

�
, we have, for all ��� � � � ,

� � � � � � � (7.1)

For all state variables � ��� � , by the termination condition for Algorithm Ã,

� �� � � � � � � � � � � (7.2)

Then, for all ��� � � � ,
� ��

= � (7.2)
�

� �	� � � � � �
= � (7.1)

�
� �� � .

Hence, for all ��� � � � ,
�
�� � �

�
� � � (7.3)
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We first prove the necessity of conditions (1) - (4). Let � be a path in � �� � � � that is transient-

matching with respect to � � � � � . Since � � � � � � � � � , � is transient-matching with respect to

� � � ; hence it satisfies condition (1) of the lemma.

For all � � � � we have

����
= ��� � � � � � � � , hypothesis, definition of transient-matching paths

�
� ��

= � (7.3)
�

� �� �

= ���	� � � � � � � � , hypothesis, definition of transient-matching paths
�

���� �

= � � � � � � �
�

� �� .

By the definition of hazard-preserving paths, � is hazard-preserving with respect to � .

Therefore (2) is satisfied.

The variables of � � � are all gate variables. Since �

 � , they are not input-gate variables;

hence they are initially stable in ���� � � � , and their excitations depend only on state variables.

For any � � in � � � , let
�

be the Boolean function computed by the excitation � � , and
� ��� � � �

��� � � ��� ��� � � � � � . Then � � � � ��� � � ������� ��� � �	� , and

� � � � � � � � ����� � �� � � ����� � � �� � � � (7.4)

Then

� ��
� ��� � initially stable, Corollary 4.2.2

�
����

= ��� ��� � � � � � , hypothesis, definition of transient-matching paths
�
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� ��
= � (7.2)

�
� � � � � � � �

= � (7.4)
�

��� � �� � ��� ��� � � �� � �
= ��� � � � � � � � � , for all � � � � � , hypothesis, definition of transient-matching paths

�

��� � �� � ����� �	� � �� � �
� � Corollary 4.2.3

�
� �� .

It follows that � �� � � �� � ��� � �� � � �����	� � �� � � , for all � � � � � � . This shows that � is both

hazard-preserving and worst-case with respect to � � � ; hence it satisfies (3) and (4).

Next we prove the sufficiency of conditions (1) - (4). Let us take a path � in � �� � � � that

satisfies (1) - (4).

For all � � � � , we have

����
= � (2), definition of hazard-preserving paths

�
� ��

= � � � � � � �
�

� �� �

= ���	� � � � � � , (1), definition of transient-matching paths
�

� �� �

= � (7.3)
�

� �� .

Hence, for all � ��� � ,

� �� � �
�
� � (7.5)
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By the definition of transient-matching paths, � is transient-matching with respect to � .

For all � � � � � � we have

� ��
= � (4), definition of hazard-preserving paths

�
� ��

= � (3), definition of worst-case paths
�

��� ���� � ����� �	� ���� � �
= ��� � � � � , for all � � � � � , (7.5), definition of transient-matching paths

�

��� � �� � ��� ��� � � �� � �
= � (7.4)

�
� �	� � � � � �

= � (7.2)
�

� �� .

Hence, for all � ��� � � � ,
� �� � �

�� � (7.6)

By the definition of transient-matching paths, � is transient-matching with respect to � � � .
Since � � � � � � � � � � � � � � � , (1), (7.5), and (7.6) imply that � is transient-matching

with respect to � � � � � . �

7.2.1 Proof of Theorem 7.2.1

This section concludes the proof of Theorem 7.2.1. We assume the given circuit contains

only one- and two-input gates. Recall that the circuit is partitioned as shown in Figure 7.6,

� � � is the set of gate variables of level � � , and � is the set of fan-in variables for the variables

of � � � . We have a delay automaton
� � . We take � � � ������� ��� � � to be the fan-in variables of

the variables in � .
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Example 7.2.3 Consider the circuit in Figure 7.7, with � � �
. In this case � � � � � � � � � � ,

and � ����� � � � � ��� � ����� � . The fan-in variables � � � ������� ��� � � are � � � � � � � � � � � � � , respectively.

Let � �� � be the subset of � � � obtained in the following way: from � � � we select for � �� �
all variables that are not fork-gate variables, and from all the variables of each fork gate

we select for � �� � any one of them. By this construction, the variables in � �� � have pairwise-

distinct excitations; since they are in the same level, they are unrelated to each other by the

precedence relation. Also, since �

 � , the variables in � �� � are not input-gate variables; thus

they are initially stable. Hence there exists a delay automaton
� � �, � .

Since �

 � , the variables of � � � are not input-gate variables, and their excitations

depend only on state variables. Then, for each gate variable ��� � � �� � we have a gate

automaton
� � defined as in Chapter 6, with 	 � � � � � � � .

Example 7.2.4 With the same circuit as in the previous example, � �� � � � � � � � � � � � ,
since there are no fork-gate variables in � � . We also have 	 � ����� � ��� � � , and 	 � ����� � ����� �

(where by 	 � we mean the fan-in set of � � ).

Proposition 7.2.1 Given the set � �� � defined as above, the sets
� � 	 � � , for all � � � � �� � , form

a partition of
� � � � .

Proof: Since
�

is complete, by Proposition 5.1.3, any two variables with distinct excita-

tions have disjoint fan-in sets. The variables in � �� � have pairwise-distinct excitations, so for

any distinct � � � � � � � �� � we have 	 � � 	�� � � . By the construction of � �� � , for any variable � �
in � � � � � �� � there exists a variable � � in � �� � such that 	 � ��	�� . Thus

�

�����
� �, �
	 � � �

� � �
� , �
	 � � � �

Hence the sets 	 � , for all � � in � �� � , form a partition of � . From here we get

�

� � �
� �, �

� � 	 � � � � �
�

��� �
� �, �
	 � � � � � � ���
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and for any distinct � � ��� ��� � �� � ,
� � 	 � � � � � 	�� � � � � 	 � � 	�� � � � � � � � � �

Thus, the sets
� � 	 � � , for all � � � � �� � , form a partition of

� � � � . �

Example 7.2.5 For the same circuit as before,
� � � � � � � � � � � � � � � � � � is partitioned as

� � 	 � � ��� � � � � � � � � � 	 � � ��� � � � � � � .

Definition 7.2.2 (Edge) For any
� 
 � , we define the edge of

�
as the subset of vari-

ables from
�

whose fan-out variables are not in
�

, i.e.,

edge � � � ����� � � � # ����� � � � � � � � �

For the circuit of the previous examples, we have, for instance,

edge � ���	� ��� � � � � � � � � � � � � � � � � �
� �

Note that � � � � ����� ��� � � belong to edge � � � � � .

Definition 7.2.3 (Path-prefix property) A path � in ����� � � is said to have the path-prefix

property with respect to a set
�

of state variables if � has a prefix � � with length � � �
�

� � � � ,

for all � � � edge � � � that change along � (i.e., � � is such that each variable in edge � � �
that changes along � changes exactly once along � � ).

The proof of Theorem 7.2.1 is by induction on � , where 
 
 � 
 �
. The induction step

involves a lengthy construction that proceeds in several steps. The steps of the construction

are outlined below.

1. From a path � from � in ���� ���	� that is transient-matching with respect to � � � and has

the path-prefix property with respect to � � � , we construct a path � from � in � �� ���	�
that is transient-matching with respect to � � � , hazard-preserving with respect to � ,

and worst-case with respect to � � � .
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2. From path � constructed in the previous step, we obtain a path
�

from � in � �����	� that

is transient-matching with respect to � � � , hazard-preserving with respect to � and

� � � , and worst-case with respect to � � � . Path
�

also has the path-prefix property with

respect to � � � � � . Path
�

does not necessarily belong to � �� ���	� .

3. By eliminating all the simultaneous changes from path
�

obtained in the previous

step, we obtain a path � from � in � �� ���	� that is transient-matching with respect to

� � � , hazard-preserving with respect to � and � � � , and worst-case with respect to � � � .
By Lemma 7.2.1, � is transient-matching with respect to � � � � � . In addition, � has

the path-prefix property with respect to � � � � � .

The following lemmas drive the steps of the construction.

Lemma 7.2.2 Let � be a path in � �� ���	� that has the path-prefix property with respect to

� � � , and let ��� be its path-word with respect to � . Then ����� ��� ��� is prefix-restricted.

Proof: Let ������� , and let � ����� ��� � � . We have to show that � is prefix-restricted.

Since � has the path-prefix property with respect to � � � , by the definition of that prop-

erty, � has a prefix � � such that length � � �
�

� � � � , for all � � � edge � � � � � that change along

� . Since � � � ������� ��� � � belong to edge � � � � � , � � has length � � � �

� � � � � , for all � � � , with ��� � � � ,
that change along � . With � � � � � � , for all � � � � � , this means � � has length � � �

�

� � � � , for

all � � , with � � � � � , that change along � . Let � � be the path-word of � � with respect to � .

Word � � is a prefix of � . We take � � to be � � � ��� ��� . Then � � is a prefix of � with # � � # � � � 
 ,
for all � � � � � � � that occur in � . Then, by the definition of prefix-restricted words, � is

prefix-restricted, with key prefix � � . �

Lemma 7.2.3 Given any prefix-restricted word � � � � � � 	 with key prefix � � , there exists

a balanced word � � � � � � � that satisfies ��� ��� ��� � � , and has a prefix � with � � ��� � � � � �

such that, for each � � � � �� � , the following hold:

1) � � �

� is a worst-case word for the gate automaton
� � of �	� , and
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2) if the output profile of ��� �

� has length

 
 , the output profile of � � �

� has length � .

Proof: We write � � � � � � � . For any � � � � �� � we take � � � � � ��� � � � and � �� � � � � ��� � � � . Word

� being prefix-restricted, with key prefix � � , � �� is a prefix of � � such that # � �� # � � � 
 , for

all � � � � � 	 � � that occur in � � . In other words, � � is prefix-restricted, with key prefix � �� .
By Lemma 6.3.1 we obtain a word � � � � � 	 � �	� 	 � that is balanced with respect to 	 � and

satisfies:

i) � � � ��� � � � � � � ,

ii) � � � �

� is a worst-case word, and

iii) � � has a prefix � � such that � � � ��� � � � � � �� , and � � � �

� has an output profile of length � if

the output profile of � � � �

� has length

 
 .

Since, by Proposition 7.2.1, the sets
� � 	 � � are a partition of

� � � � , � is an interleaving of

all � � . Similarly, � � is an interleaving of all � �� . We take an interleaving � of all � � such that

� � ��� ��� � � � . There always exists such an interleaving, since each � � has � � � ��� � � � � � �� , and

� � is an interleaving of all � �� . We also take an interleaving � of all � � such that ��� ��� ��� � � � � .

We always find such an interleaving, since each ��� satisfies ��� � ��� � � � � � � �� , and � � � is an

interleaving of all � � �� .
Each � � is balanced with respect to 	 � , so, for all � ��� 	 � , it satisfies � � � � � �

� � � 	 � � � ��� � � � �
,

with integer � � � � . Word � � � � is an interleaving of all � � , so, for all � � � 	 � , and, for

all 	�� , � satisfies ��� � � � � � 	 � � � � � � � � �
, with integer � � � � . Word � is then balanced with

respect to � , i.e., � is in ��� � � � . By construction, the prefix � of � has � � ��� ��� � � � . Word

� satisfies (1), since � � �

� � � � � �

� satisfies (ii), and � satisfies (2), since � � �

� � � � � �

� is like

in (iii). Thus, � is the desired word.
�

Lemma 7.2.4 Given a path � from � in � �� ���	� that is transient-matching with respect to

� � � , and has the path-prefix property with respect to � � � , there exists a path � from � in
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� �� � � � that is transient-matching with respect to � � � , hazard-preserving with respect to � ,

and worst-case with respect to � � � .

Proof: Let � � ����� ��� � � . Since � has the path-prefix property with respect to � � � , by

Lemma 7.2.2 � is prefix restricted. Let � � be the key prefix of � . With Lemma 7.2.3 we

obtain a word ��� � � that is balanced with respect to � . Word � is also relevant, since

� � ��� � � � � � ��� � � � ��� ����� � � � � � � � � � � ��� � � ��� � � �
By Proposition 5.2.2, we find a path � that is hazard-preserving with respect to � , and

whose path-word with respect to � is � . Path � is constructed from � . Observe that the

partition � � � � � � � 	 � � � satisfies pred � � � 
 � � � , succ � � � 
 	 � � , and there are no state

variables with the same excitations as variables in � . Hence, we can choose left � � � � � � �

and right � � � � 	 � � in the procedure that constructs path � . From the discussion at the end

of Chapter 5 we know that, by construction, � �� � � � � , for all � � � � � � . Since � is transient-

matching with respect to � � � , it follows that � is also transient-matching with respect to

� � � .
Each word ��� �

� shows how the fan-in variables of variable � � change along � . Thus

� � �

� � � � , with � � defined as in Section 6.2.2. Since every � � �

� is a worst-case word, by

Proposition 6.2.1 � is worst-case with respect to each � � � � �� � . Hence � is worst-case with

respect to � �� � . Since the variables in � � � � � �� � have the same excitations as variables in � �� � ,
� is worst-case with respect to � � � .

Thus, path � is transient-matching with respect to � � � , hazard-preserving with respect

to � , and worst-case with respect to � � � . �

Lemma 7.2.5 Any path � constructed as in the proof of Lemma 7.2.4 has the path-prefix

property with respect to � � � via a prefix � � that also satisfies length � � �
�

� � � � , for all

� � � � � � � � � that change along � .

Proof: Word � is a prefix of � that, by construction, satisfies � � ��� � � � � � . Recall that � � is

� � � ��� ��� , where � � is the path-word of � � with respect to � , � � being the prefix of � from
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the definition of the path-prefix property. So, on one hand we have path � with prefix � � ,

and on the other, word � with prefix � such that � � ��� � � ��� � � � ��� ��� . From the discussion at

the end of Chapter 5 we know we can construct � so that it has a prefix � � whose path-word

� � �

is � and whose history with respect to � � � is the same as that of � � . Since � � satisfies

length � � �
�

� ��� � , for all � � � edge � � � � � that change along � , � � satisfies length � � �
�

� ��� � ,

for all � � � edge � � � � � that change along � . Hence � has the path-prefix property with

respect to � � � .
Word � is an interleaving of all � � . Recall that each � � � �

� , for � � � � �� � , has an output

profile of length � when the output profile of � � � �

� is

 
 . The output profile of each � � � �

�
is the history of the excitation � � along � � , while the output profile of � � � �

� is the history

of the excitation � � along � . The output profile of � � � �

� is of length

 
 iff � � changes

along � . In other words, we have length � � �
�

� ��� � , for all � � � � � � �� � � that change along

� . Since the variables in � � � �� � have the same excitations as variables in � �� � , we have

length � � �
�

� � � � , for all � � � � � � � � � that change along � .
�

Lemma 7.2.6 Given a path � constructed as in the proof of Lemma 7.2.4, there exists a

path
�

from � in � ��� � � that is transient-matching with respect to � � � , hazard-preserving

with respect to � and � � � , and worst-case with respect to � � � .

Proof: Let
�

be the path-word of � with respect to � �� � . Let � � � � ��� � �, � � . We replace each

letter � � in � with � � � � and obtain word � . Word � is a balanced word in ��� � � �, � � that is also

relevant. By Proposition 5.2.2, we obtain a path
�

that is hazard-preserving with respect

to � �� � , and whose path-word with respect to � �� � is � . Observe that pred � � �� � � 
 � � � � � ,

succ � � �� � � 
 	 � � � � �� � , and
	 � � � � �� � includes � � � � � �� � that contains all variables with the

same excitations as variables in � �� � . These facts permit us to take left � � �� � � � � � � � �
and right � � �� � � � 	 � � � � �� � for the construction of

�
. By construction,

�
then has the

same history as � with respect to � � � � � , so
�

is transient-matching with respect to � � � ,
hazard-preserving with respect to � , and worst-case with respect to � � � .
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We make
�

hazard-preserving with respect to � � � when we construct it, by using the

following convention: whenever we change along
�

a gate variable in � �� � that belongs to

a fork, we simultaneously change all the variables of that fork. This is possible since all

the variables of each fork have identical excitations. This convention does not affect the

construction procedure, since all variables in � � � � � �� � are in right � � �� � � , and they do not

influence the variables in left � � �� � � or those in � �� � . Note that this convention may introduce

simultaneity in
�

, so that
�

is not guaranteed to belong to � �� � � � . �

Lemma 7.2.7 Any path
�

constructed as in the proof of Lemma 7.2.6 has the path-prefix

property with respect to � � � � � .

Proof: Word
�

has a prefix
�
� that is the path-word of � � with respect to � �� � . We take

� � � �
� � ��� � �, � � . The word � has a prefix � � that is � � with each � � changed to � � �	� . Note that

� � is balanced with respect to � �� � . Path
�

has a prefix
�
� whose path-word with respect to

� �� � is � � . Since � � is balanced with respect to � �� � , � � is hazard-preserving with respect to

� �� � . With the convention mentioned before,
�
� is hazard-preserving with respect to � � � .

With a similar reasoning as before, it is possible to construct
�

so that
�
� has the same

history with respect to � � � � � as � � . Then
�
� has length � �

� �

� � � � , for all � � � edge � � � � �
that change along

�
, and length � �

� �

� � � � , for all � � � � � � � � � that change along
�

. Since
�
� is hazard-preserving, we get length � �

� �

� � � � , for all � � � � � � that change along
�

. Since

edge � � � � � � � is

� edge � � � � � � ��� � � ��� ���	��� � �

� � � � � � �

it follows that length � �
� �

� � � � , for all � � � edge � � � � � � � that change along
�

. Hence
�

has

the path-prefix property with respect to � � � � � . �

We are now ready to proceed with our induction.

Basis, � � 
 . We show that there exists a path in � �� ���	� that is transient-matching with

respect to � � .



CHAPTER 7. FROM SIMULATION TO BINARY ANALYSIS 101

Suppose � � � � �����	��� � � are the input-gate variables that are unstable in the initial state �
that is common for simulation and binary analysis. By the definition of Algorithm Ã, these

variables change in the first step and they never change again, so that in the last state �
�

their values are �
�� � � ��� � ��� � , for all ��� � � �

. Other input-gate variables ��� that are initially

stable never change during simulation so that in state �
�

their value is �
�� � � � .

Variables � � � ��������� � � are unrelated to each other by the precedence relation, so changing

one of them in ���� ���	� does not affect the instability of the others. Thus, we can construct

path � � � � ������� ��� � such that � � � � and in each step � only ��� � changes, for all � � � � � . It

follows that � �� � � � � � � � � , for all � � � � � , and � �� � � � , for all input gates � � that are stable in

� . Hence ���� � � �� , for all input-gate variables ��� . Therefore � is transient-matching with

respect to � � . Note that � also has the path-prefix property with respect to � � , because

edge � � � � � � � , and ���� � � � ��� , for all � � � � � that change on � ; hence length � � �� � � � ,

for all � � � edge � � � � that change along � .

Induction hypothesis. Suppose we have a path � from � in � �� ���	� that is transient-

matching with respect to � � � , and has the path-prefix property with respect to � � � , for some

� , with 
 
 � 
 �
.

Induction step. We show that there exists a path � that is transient-matching with

respect to � � � � � and has the path-prefix property with respect to � � � � � .
From the induction hypothesis, � is transient-matching with respect to � � � , and has the

path-prefix property with respect to � � � . Applying Lemma 7.2.4, we construct a path � that

is transient-matching with respect to � � � , hazard-preserving with respect to � , and worst-

case with respect to � � � . We then apply Lemma 7.2.6 to obtain a path
�

that is transient-

matching with respect to � � � , hazard-preserving with respect to � and � � � , and worst-case

with respect to � � � . By Lemma 7.2.7,
�

also has the path-prefix property with respect to

� � � � � . Path
�

, however, does not necessarily belong to � �� ���	� . By Proposition 5.1.1 we find

a path � from � in ���� ���	� that is equivalent to
�

, so it is transient-matching with respect to
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� � � , hazard-preserving with respect to � and � � � , and worst-case with respect to � � � . Then,

by Lemma 7.2.1, � is transient-matching with respect to � � � � � . Path � also has the path-

prefix property with respect to � � � � � , since
�

has it. Therefore, the claim of the induction

step is true.

Since � � � ��� � � , the claim of the theorem follows.
�

In conclusion, we have shown that there exists a path � from � in � �����	� that satisfies

� � � �
� �

By the monotonicity of Algorithm Ã, we know that �
�


 ����� 
 � � . It follows that, for any

state � � , with � 
 � 

�

, resulting from Algorithm Ã, � satisfies

� � 
 � � �

Hence � covers all the states resulting from Algorithm Ã.

By Corollary 4.2.4, �
�

covers all paths in binary analysis, that is, for any path � in

� ��� � � ,
� � 
 �

� �
Therefore, we can conclude that the results of Algorithm Ã and binary analysis agree

(i.e., they cover each other) under the complete network model, for feedback-free circuits

of one- and two-input gates. We can refine this result further, by using the insensitivity of

Algorithm Ã to input-gate, fork-gate and wire variables (see Chapter 3). Our result can

then be reformulated as follows.

Let
�

be a binary network modeling a feedback-free circuit with one- and two-input

gates, and let

�
be its transient counterpart. Let

��
be the complete version of

�
. Then,

the result of Algorithm Ã for

�
agrees with the result of binary analysis for

��
with respect

to the initial state variables in
�

.
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7.3 Conclusions

In this chapter we have concluded the process of showing that the result of simulation is

covered by the result of binary analysis, in the sense that all the signal changes predicted

by the simulation are possible in binary analysis. This covering has been proven using

Algorithm Ã of the simulation (with stable initial state), applied to feedback-free circuits

of one- and two-input gates. The result also assumes a complete network model for the

binary analysis.



Chapter 8

Conclusions

8.1 Summary

We have studied the simulation method based on algebra � of Brzozowski and Ésik. We

have investigated its correctness by comparing it with binary analysis.

We have shown that, for any gate circuit, the result of binary analysis is covered by the

result of simulation, under any network model, and for any initial state. Covering is the

property that all the changes that happen to state variables in binary analysis are reflected

in the result of simulation. This implies that all the changes that correspond to hazard

conditions are detected by simulation.

We have also shown that, for feedback-free circuits of one- and two-input gates, the

result of simulation is covered by the result of binary analysis carried out in the complete

network model, with stable initial state. Here, by covering we mean that all the changes

predicted by simulation happen in binary analysis.

These results provide a full characterization of the simulation for feedback-free circuits

with one- and two-input gates, and stable initial state. The characterization states that the

result of the simulation for any given transient network agrees with the result of the binary

analysis for the complete binary version of the given network.

104
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8.2 Open Problems

The only reason for our restriction of the result in Chapter 7 to circuits composed of one-

and two-input gates is Lemma 6.3.1. Generalizing that lemma to gates with any number of

inputs remains the main open problem of our work. We expect that a generalization of the

lemma to basic gates (i.e., gates implementing AND, OR, XOR and their complements)

having any number of inputs is possible by an extension of the current proof. For arbitrary

functions, however, generalizing the current proof is not feasible, and other approaches

need to be explored.

While the need for wire variables in the model used for the result in Chapter 7 is justi-

fied, our use of input and fork gates is motivated only mathematically. We believe that the

result of Chapter 7 can be strengthened to network models without input and fork gates.

Another improvement that could be made to the result of Chapter 7 is the generalization

to any initial state, by using Algorithm A instead of Algorithm Ã.

Our choice for a proof by construction in Chapter 7 has resulted in a very lengthy

and complicated argument. An alternative approach to showing the existence of transient-

matching paths without explicit construction seems to be more difficult, but it could result

in a more elegant proof, so it is definitely worth pursuing.

It was noted in [9] that the simulation using algebra � is impractical for circuits with

feedback, since it may not terminate. For such circuits, Brzozowski and Ésik propose the

use of different algebras. These algebras are obtained by coupling algebra � with an integer
� 
 � that functions as a threshold: all transients of length � �

are mapped to � , where

� designates an unknown, or uncertain value, similar to the one in ternary algebra. For

any value of
�

, we have an algebra � � . Simulation with algebra � � involves two passes:

Algorithm A followed by Algorithm B. Algorithm A is identical to the one for algebra � ,

and it is guaranteed to terminate for any circuit. Algorithm B starts with the last state of

Algorithm A, and is meant to remove uncertainty; it is also guaranteed to terminate. A
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study of the simulation with algebra � � is an open problem. We hope that our work for the

simulation with algebra � can provide some useful insights toward such a study.
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