Decomposition of Boolean Functions

Specified by Cubes.”

J. A. BRZOZOWSKI
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

T. LUBA
Institute of Telecommunications
Warsaw University of Technology
Nowowiejska 15/19
00-665 Warsaw, Poland

Abstract We study the problem of decomposing a Boolean function into a set of
functions with fewer arguments. This problem has considerable practical impor-
tance in VLSI, for example, for designs using field-programmable gate arrays. The
decomposition problem is old, and well understood when the function to be de-
composed is specified by a truth table, or has one output only. However, modern
design tools handle functions with many outputs and represent them by cubes,
for reasons of efficiency. We develop a comprehensive theory of serial decompo-
sitions for multiple-output, partially specified, Boolean functions represented by

cubes. A function f(z1,...,%,) has a serial decomposition if it can be expressed
as h(ui,...,ur,g(v1,...,vs)), where U = {uy,...,u,} and V = {vq,...,vs} are
subsets of the set X = {zy,...,2,} of input variables, and ¢ and h have fewer

input variables than f. The theory uses generalized set systems (which, in turn,
are generalized partitions), which we call blankets.

*This research was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada under grant No. OGP0000871; most of the work was done while T. Luba
was a Visiting Professor at the University of Waterloo.



Keywords: blanket, Boolean function, cube, decomposition, disjoint, “don’t
care,” multiple-output, set system

AMS Classification Codes: 06E30 Boolean functions, 94C10 Switching theory,
applications of Boolean algebra, Boolean functions.

1 Introduction

Decomposition is a fundamental problem in modern logic synthesis. Its goal
is to break a logic circuit into a set of smaller interacting components. Such
an implementation is desirable for a number of reasons. In the case of designs
using field-programmable gate arrays (FPGAs), particularly those with look-
up table structures [3], decomposition is a necessity, since FPGA cells can
only accomodate functions with very few inputs and outputs. In PLA- and
PLD-oriented designs, a decomposed circuit often leads to a smaller silicon
area and shorter signal delays [7]. Consequently, decomposition methods are
increasingly exploited in today’s logic synthesis systems [22].

Mathematically, decomposition is the process of expressing a function of
n variables as a function of functions of fewer variables [8]. In this paper, we
consider a function f(z1,...,x,) to be decomposable if it can be expressed
as f(x1,...,2,) = h(ug, ..., ur,g(v1,...,05)), where U = {uy,...,u,} and
V = {v1,...,vs} are proper subsets of the set X = {zy,...,2,} of input
variables, and g and A have fewer input variables than f.

Numerous decomposition algorithms have been developed. Ashenhurst,
in his fundamental paper [1], stated the disjoint decomposition theorem based
on decomposition charts, where a decomposition is disjoint if U NV = (.
Curtis extended Ashenhurst’s results to multiple decompositions [8], of the
form f(xy,...,2n) = h(ug, ..., U, 1(V1,. .., 0s), .., ge(w1, ..., we)), where
U=Aur,...,u.}, V=Avr,...,v},...., W = {ws,...,w} are proper subsets
of X such that UUV U...UW = X. The methods of Ashenhurst and Curtis
were restricted to single-output Boolean functions represented by truth tables
rearranged as charts. The use of charts for decomposition of logic networks
is applicable only to functions with few variables. To remedy this, Roth and
Karp used a more compact representation of a function in the form of a cover
of the on-set and a cover of the off-set [21]. However, their method does not
deal directly with multiple-output functions.

In the early 1980’s, functional decomposition methods received less atten-
tion because of the rapid development of synthesis techniques for multi-level



logic. A renewed interest in functional decomposition in recent years was
caused by the introduction of field programmable gate arrays by Xilinx in
1986, and other companies (AT&T, Actel, Altera) in succeeding years.

There are several approaches to FPGA-based logic synthesis. The most
common one relies on breaking the synthesis process into two phases: a
technology-independent phase and a technology-mapping phase. The first
phase generates a reduced technology-independent abstract logic network.
For combinational logic this is a Boolean network, i.e., a directed acyclic
graph G(V, E), where each node v € V represents an arbitrarily complex
single-output logic function, and each branch, an interconnection. The sec-
ond phase maps the abstract logic network onto cells of a given FPGA, and
performs technology-dependent optimizations taking the FPGA constraints
into account. The architecture based on look-up tables (LUTSs) is prevalent
among many FPGA architectures. An LUT-based FPGA consists of an ar-
ray of LUTs, each of which can implement any Boolean function with up
to k (typically 4 or 5) inputs. A Boolean network can be directly realized
by a one-to-one mapping between nodes and LUTs if every node in the net-
work is feasible, i.e., has up to k input variables. Nodes having more inputs
must be decomposed into subnetworks of smaller feasible nodes prior to the
actual mapping. This is why decomposition algorithms are usually incorpo-
rated into a multilevel synthesis environment [6, 12], where decomposition
is usually applied to multi-output functions which result from the node cre-
ation or node clustering process in a Boolean network. In methods using this
approach, the node function to be decomposed is usually represented by a
sum-of-products form, a truth table consisting of the ON-cover terms, or a
BDD. Thus there is no need for decomposition of the incompletely specified
multiple-output Boolean functions and usage of “don’t cares” for optimiza-
tion of the resulting circuit.

A different approach to FPGA-based technology mapping was proposed
in [10, 11, 16, 17, 26], where functional decomposition is applied directly
to the original function specification, in order to gain design freedom to
construct directly a feasible network of LUTs optimized for a given FPGA.
Moreover, the concept of parallel decomposition was introduced in [16] and
effectively applied in the so-called balanced decomposition method [17], or
decomposition using clusters of single-output functions to find good common
subfunctions [11, 26]. Using input variable analysis of each single output of
a multi-output function F', parallel decomposition separates F' into two or
more (multi-output) subfunctions, each of which has as inputs and outputs a



subset of the original inputs and outputs of F. Although the decomposition
program proposed in [16] uses a mix of serial and parallel decompositions,
the crucial process in the whole mapping is serial decomposition.

Our work was motivated by the paper of Luba and Selvaraj [16]. We
formalize and generalize the model used there. An approach somewhat sim-
ilar to ours has been recently developed independently by Shestakov. Since
there are some significant differences, a discussion of this work is outside
the scope of the present paper. We refer the interested reader to the litera-

ture [13, 14, 23, 24].

The contributions of this paper are as follows:

o We develop a mathematical theory of serial decompositions of Boolean

functions using certain generalizations of set systems, which we call
blankets.!

e The functions have multiple outputs, and are incompletely specified.

e The functions are represented in the consistent-cube notation, which
corresponds to the fr format used, for example, in ESPRESSO [2].
Multiple-output functions are treated as single entities.

e Both the disjoint and non-disjoint cases are treated in a single theory.
e The decompositions are carried out using a cube calculus.

The remainder of the paper is structured as follows. Section 2 presents
partially specified, multiple-output, Boolean functions and their represen-
tations in the consistent cube notation. In Section 3 we describe the no-
tion of separation of a function, where we express f(x1,...,x,) in the form
h(uy, ... ur,g(v1,...,0s)), but pay no attention to the number of arguments
of functions g and h. In Section 4 we discuss two generalizations of parti-
tions: blankets and set systems. The use of blankets for finding separations
of Boolean functions is described in Section 5. The special case of disjoint
separations, where the variable sets U and V are disjoint, is discussed in
Section 6. In Section 7, we show that the theory developed so far, can also
be expressed using set systems, but leads to more restrictive results. The use

The term rough partition has also been used [16], but we prefer the shorter term
blanket. Blankets could also be called covers; however, the word ‘cover’ has been used in
a number of ways, so we prefer to coin a new word.

4



of cubes in the decomposition process is justified and illustrated in Section 8.
Section 9 briefly describes a method for finding the blankets required for
the key step in the decomposition algorithm. Section 10, discusses decom-
positions with constraints on the number of arguments of the components.
Section 11 summarizes our results. The proofs of all the theorems are given
in the Appendix.

Most of the ideas in this paper were first presented in a technical report [5],
but were subsequently significantly revised and improved. Many of the ideas
presented here can also be extended to multivalued functions. For some work
in this direction see [4, 13, 14].

2 Boolean Functions in Consistent-Cube No-
tation

We use the convention that a vector of variables is denoted by a letter in lower
case, and the corresponding set of variables, by the same letter in upper case.

Thus, if s = (s1,...,5,) is a vector of variables, then S = {s1,...,s,} is the
corresponding set. Also, if § = {s1,...,5,} is a set of variables explicitly
represented in that order, then s = (sy,...,s,) is the corresponding vec-

tor. Suppose T = {s;, ...,s; } is a subset of § with #; < iy < ... < 1,
and t = (sj ...,s;,) is the corresponding vector. If b = (by,....,b,) is
any vector of values, then b’ is the projection of b to the variables in T,
le, bt = (b .,bi.). We also use the convention that vectors of val-
ues are written without parentheses and commas. For example, suppose
S = {s1, 82,83, 84} and s = (1, 2, 83, 84). It = (s1,83,84) and b= (4,1,2,0),
then b' = (4,2,0). In simplified notation without commas and parentheses,

b= 4120 and b" = 420.

IR

We are concerned with incompletely specified multiple-output Boolean func-
tions represented by function matrices, as explained below.

Example 1 Table 1 represents a function with four inputs x;,...,z4 and
two outputs yi,yz. For the mathematical theory, it is convenient to treat
the values assigned to variables as sets. Thus a variable can be assigned
{0}, {1}, or {0,1}, the interpretation being that it has the value 0, 1, or
“don’t care,” respectively. For brevity, we omit the curly brackets from ex-



amples, and denote {0,1} by ®. For example, formally, Row 1 should be
({0}, {0}, {0,1}, {0}, {1}, {1}), but is written 00P011. O

Table 1: Matrix notation F for function f.

Row x4

1

-~ O Ot = LW N

O R = O
one-ar—\r—\ore-llelfj
l—\r—\Ol—‘P@dOO}j
—_ B o~ = =T
B = OB o S

We now introduce a number of concepts using the example above. Table 1
is a matrix F' with 7 rows and 6 columns. The first four components of each
row t are its input projection t*, and its last two components are its output
projection tY. If ¢t is a row of F', we write t € F. For t € F., we say that
input minterm (binary vector) b is involved in t if the input projection t* of
t contains b, where by containment we mean component-by-component set
containment. Let the set of all rows of F' involving minterm b be

Foop={t€ F |+ Db} (1)

For example, consider Row 4, which is ®®110®. The input projection of this
row 1s ®®11, and its output projection is 0®. The set of input minterms
involved in Row 4 is

{0011,0111,1011,1111},

since @11 D 0011, etc. We have Fy50000 = {1,3}, Fiooom = {3,7},
Frso010 = {1}, Fanoonn = {4}, Feoowo = 0, Fasoin = {6, 7}, Faooi0 = {5},
Frooin = {4,6}, Feoi00 = {2,3}, Feowoo = {3}, Froiowo = {2}, Faoion =
{4}, Foonioo = 0, Fusiion = {6}, Faoiio = {5}, Feonin = {4,6}.

The matrices we consider are consistent in the following sense. Consider
any set T of rows. If the input projections of the rows in T contain a com-
mon minterm, then the output projections of that set of rows also contain a
common minterm. In symbols,

() t° # 0 implies [t # 0, (2)

teT teT



where intersection of vectors is component-by-component intersection. For
example, minterm (zy, z3,x3,24) = 0000 is involved in Rows 1 and 3, the
input projections of which are 0090 and ®00®. Consistency holds for this
set of rows, since the output projections of these rows (11 and 1®) contain
minterm (y1,y2) = 11. We can check the consistency of a function matrix by
considering all the maximal sets of rows containing a common input minterm.
Clearly, if consistency is satisfied for a set of rows, then it also holds for any
subset of this set of rows.

In our example, we have the following set of maximal subsets (which we

call blocks) of the form F,:

Oz = {{17 3}7 {37 7}7 {67 7}7 {5}7 {47 6}7 {27 3}}

We can also find the sets of rows containing common output minterms. Let
¢ be an output minterm; then

Foe={te F|#"2c}. (3)

For Table 1 we have Fy500 = {4,5}, Fyoo1 = {4,6}, Fyo10 = {2,3,7}, Fyo11 =
{1,3,6,7}. The set of maximal subsets of the form F,5, is therefore

o, = {14,5}, {4,6},{2,3,7}.{1,3,6,7}1.

The reader can verify that the consistency condition can now be restated as
follows:

Every block of o, must be contained in some block of o,. (4)

This holds in our example, and Table 1 is indeed consistent.

Proposition 1 A set T of k rows of a function matriz is consistent iff every
pair or rows is consistent.

Proof: Suppose rows u and v of T are not consistent. Then u¥ N v¥Y = (.
Hence, MiertY = 0, and T cannot be consistent. This shows that, if T is
consistent, then every pair in 7' is also consistent.

Conversely, suppose T is not consistent, but all pairs of rows are consis-
tent. Then there is some minterm b contained in ¢* for every ¢ in T, but
MiertY = 0. Consider any component y;. If the entry in position y; is @
or 0 in each row of T, then the intersection of all these entries is nonempty.



Similarly, the intersection is nonempty, if each entry is either 1 or ®. Since
the intersection ;¢ t¥ s empty, there must exist some component, say y;,
and two rows, say u and v, such that u;,v; € {0,1}, and u; # v;. But then
the pair {u, v} is inconsistent, which is a contradiction. O

Since there are k(k — 1)/2 pairs of rows in T, consistency can be checked

efficiently.

A different approach would be to check for inconsistency as follows. Con-
sider a pair of rows, and determine whether the output projections of these
rows have a common minterm. If they do, then consistency cannot be vio-
lated by these two rows. If they don’t, examine the input projections. If they
have no minterms in common, then consistency cannot be violated. Other-
wise, we have found a violation, the matrix is inconsistent, and no further
chacking is required.?

Table 2: Truth table of f.

i i e e == R == R e B e T B e B e}
— 0O 000, R PR OOOO
—_— _, O, PR OO PP OREF,FOO
— O ) O, OF OF OO
cComoOoOR R, R OOROR = R~Y
O R O KOO KBRF B —~S

The matrix of Table 1 is a compact notation for function f of Table 2.
Here, each input takes on a binary value 0 or 1; each output, however, may

2The authors thank the anonymous referee for this suggestion.



be 0, 1, or ®. The value of f is determined as follows. We say that an input
minterm b is relevant to F if b is involved in some row of F. Recall that F,-
is the set of all rows of F' that involve minterm b; if b is relevant to F', then
F,>p is nonempty. The value y;(b) of output y; for b is the intersection of the
sets of values appearing in the ith position of the output projections of the
rows in F,5;. Since we assume that F' is consistent, this intersection is never
empty. In our vector notation, we have

fy= 1 . (3)

tely o

In case b is not relevant to F we define the output to be the vector of don’t
cares.

In our example, the set of rows containing minterm 0000 is {1, 3}. Hence,
the output vector assigned to minterm 0000 is 11, which is the common value
in the output projections 11 and 1® of Rows 1 and 3. Minterm 0001 is con-
tained only in Row 7; hence, the output vector for that minterm is 1® as
specified by Row 7. Minterm 0100 does not appear in any row of F'; hence,
both outputs are don’t cares here. By convention, we omit such rows from
the table of f. The remaining entries are similarly obtained.

We now generalize the terminology and notation introduced above. Let
D = {{0},{1},{0,1}}. A function matriz F is a matrix with A rows and
n 4+ m columns with entries from D, where n > 0 is the size of the vec-
tor * = (x1,...,2,) of input variables, m > 0 is the size of the vector
Y= (Y1,...,Ym) of output variables, and h > 0.

Ift = (ts,. s tn, tnsts ooy tugm) is any row of F, the input projection of
tis t* = (t1,...,tn), and the output projection is tY = (tut1, ..., tntm). Let
Y ={{0},{1}}. IV C X has s elements and d € £*, then d is involved in
row t if t¥ D d. Also d is relevant to F' if it is involved in some row of F'.

A function matrix is consistent if (2) holds. From now on we consider
only consistent function matrices. Each row of a function matrix is commonly
called a “cube.” We also refer to a consistent function matrix as a “consistent-
cube notation” for a Boolean function f. Each such matrix F' specifies a

function f from ¥" to D™ as defined by (5).



3 Separations of Functions

Our main goal is as follows. Given a Boolean function f(z) in consistent-
cube notation, decompose it in the form h(u, g(v)), where z is the vector of
input variables, X is the corresponding set, U and V are two subsets of X
satisfying U UV = X, u and v are the corresponding vectors, and h and g¢
are Boolean functions. See Fig. 1. We refer to such decompositions as serial
decompositions [16]. In this paper we deal only with serial decompositions;
consequently, we refer to them as just decompositions, if there is no danger
of ambiguity.

mn—s—l—l
Ty To Tn Z s Tn
E i1
... g
f w
v Wp

T

21 22 Zm

IS

Figure 1: Tllustrating decomposition.

One can view f(x) as a specification of a function and h(u, g(v)) as its
implementation. For any input minterm b of f, the inputs to ¢ are ", and
the inputs to h are (b*, g(b")). For h(u, g(v)) to be a decomposition of f(z),
we require two conditions:

1. h(u,g(v)) should produce for each of its outputs the same value as f(z),
whenever f(z)is0or 1. If f(z) = ®, we accept ® or either binary value
in h. Thus, for every minterm b relevant to f we should have

F(0) 2 h(b*, g(b%)). (6)

10



We require that ¢g(b”) be in ¥? for all relevant minterms b. Then we
guarantee that the inputs to h are well defined for all relevant minterms.
This is needed in our method, since the value of a function is defined
only for minterms.

2. Functions g and & should be “simpler” than f.

In Sections 3-9, we consider only the first condition; the second will be
added in Section 10. A pair (g,h) of functions is called a separation if it
satisfies the first condition.

Example 2 Consider function f represented by matrix F of Table 1, and
functions g and h represented by matrices G and H of Table 3. Function g
has inputs x,, x3, and x4 and output w. Function A has inputs xq, r4, and w
and outputs z; and z5. The reader can verify that both matrices G and H
are consistent. We will show that (g, k) is a separation of f.

Table 3: Matrices G and H for Example 2.

Matrix G Matrix H

Ty Tz T4 w T1 T4 W 21 2y
0 @ 0 0 d o 0 1 &
d 0 1 0 d o 1 0 &
o 1 1 1 o 1 @ o 1
1 1 @ 1 0 & 0 o 1

d® 0 1 o 0

1 0 & ¢ 0

Consider minterm 0000 of f. According to Table 2, f(0000) = 11. The
bits (z2, x5, x4) supplied to function g are 000 for this minterm. In the table
of G, 000 appears only in Row 1; hence w = ¢(000) = 0. The bits supplied
to h are therefore (x4, x4, w) = 000. In the table of H, 000 appears in Rows 1
and 4; hence h(000) = 1® N ®1 = 11. This agrees with the value of f;
hence, Condition 1 is satisfied for minterm 0000. Similarly, f(0001) = 19,
¢(001) = 0, and A(010) = 11. Since 1® D 11, Condition 1 is satisfied. For
minterm 0100, Condition 1 is satisfied vacuously, since this minterm is not
relevant. The remaining entries are verified in a similar way. O

11



The notions introduced above are now formalized. Let X = {z1,...,z,}
be the set of input variables of a function f(z1,...,2,). Let U and V be two
subsets of X such that UUV = X. Usually, for convenience and without loss
of generality, we assume that variables xy,.. ., z, have been relabeled in such
a way that v = (z1,...,2,) and v = (Z,,—541,...,2,). Then for any n-tuple
x, the first r components are denoted by z*, and the last s components, by
z¥. See Fig. 1.

Definition 1 Let F be a consistent function matrix, with n > 0 inputs
and m > 0 outputs, and let (U, V) be as above. Let G be a consistent func-
tion matrix with s inputs and p outputs, and let H be a consistent function
matrix with r 4 p inputs and m > 0 outputs. The pair (G, H) is a separation
of F' with respect to (U, V), if, for every minterm b relevant to F, g(b") is in
¥P. and
f(b) 2 (D%, g(b")).

In case (G, H) is a separation of F, we also say that (g, h) is a separation of

I O

The condition that g(b”) is in X7, i.e., that the outputs of g should be
specified for all relevant inputs, ensures that the inputs to function ~ will be
well defined for all relevant minterms.

It is clear that every consistent function matrix F' always has at least one
separation, because we can choose p = n — r, let g be the trivial function
that just passes its last n — r input values to its p = n — r outputs, and let A
be f. Then h(b*, g(b")) = f(b), and (6) is satisfied. However, it is not at all
obvious how to find nontrivial separations. In the next section we introduce
the tools that allow us to generate many separations.

4 Blankets

Given a finite set S, by a cover of S we mean a collection of subsets of

S, called blocks, whose union is §. For example, if § = {1,2,3,4}, then
T = {{17 2}7 {37 4}}7 o = {{17 27 3}7 {17 4}}7 /8 = {{17 27 3}7 {27 3}7 {4}}7 and
p = {{1,2},{1,2},{3,4}} are all covers of S. The last type permits repeated
subsets. We will not consider any covers with repeated subsets in this paper.

A blanket on a set S isa cover f = {Bj,..., B} of nonempty and distinct
subsets of S, called blocks, whose union is S. For example, if § = {1,2,3,4},

12



then 3 above is a blanket on S. To improve the notation, we often write
B = {1,2,3; 2,3; 4}, instead. Also, when it is possible to avoid reference
to the number k of blocks in a blanket § = {By,..., By}, we simply write
B ={Bi}.

A set system [9] on a set S is a blanket {B;} in which the blocks are
maximal in the sense that B; C B; implies 1 = j. A partition on a set S is a
set system {B;}, where the blocks are disjoint, that is, B, N B; = 0, if i # j.
For example, o above is a set system on S, and 7 is a partition on 5.

Define the “nonempty” operator ne as follows. For any set {9;} of subsets
of a set S, ne{S;} is the set {S;} with the empty subset removed, if it was
originally present. The product 5+ of two blankets is defined as follows:

ﬁ*ﬁ/ = ne{B,' N B; | B, € g and B; e 6/} (7)

If g and ' are blankets on S, we write 8 < A’ if each block B; of 3 is
contained in a block B; of 3’

The following examples illustrate the product of blankets and the < re-
lation. Here S = {1,...,5} for the first two examples, and S = {1,2,3} for
the last two.

{1,2,3; 3,4,5}%{1.2,3; 3,4,5} = {1,2,3; 3; 3,4,5},
{1; 2; 3} < {1,2; 2,3},
{1,2; 2,3} <{1,2;2,3; 1,3}.

Intuitively, blankets on a set § = {s;,...,8,} carry some information
about elements of 5. For example, if we know that we are dealing with
the first block of the blanket {1,2; 2,3; 1,3}, then we know that we are
dealing with elements 1 and 2 of the set {1,2,3}. The n-block blanket
{{1},{2},...,{n}} carries the maximum information, for if we know a block
of this blanket, we know precisely which element is involved. The one-block
blanket {{1,2,...,n}} carries zero information, since no elements are ex-
cluded if we know the block. In general, if 3 < ', then [ carries at least as
much information as 3’

If 8 = {B;} is any blanket on S, then

maz3 = {B € | B= B, for some i, and B C B; implies B; = B}. (8)

13



Note that maz maps blankets to set systems by removing blocks contained in
other blocks. The product o o o’ of two set systems [9] is defined as follows:

o oo’ = maz(oxo').
For example,

{1,2,3;3,4,5} 0 {1,3,4; 1,5; 2,3,4} = {1,3; 2,3; 3,4; 5}.

We will be using blankets on the set of rows of a consistent function
matrix F'. Assume that the rows of F' are numbered 1,..., h. For simplicity,
we denote blankets on the set of rows of F' by blankets on the set {1,... h}
of row indices. Suppose V is an r-element subset of the set X UY of input
and output variables. Blanket (3, is defined by

B =ne{Fyq | de X} (9)
For the function of Table 1, if we let V =Y, we obtain the output blanket
00 o1 10 11

By, =1{4,5;4,6;2,3,7, 1,3,6,7},

where we have indicated the values of the variables y;, y, corresponding to
each block. This blanket happens to be a set system and is equal to the
oy that we found earlier in connection with checking the consistency of F.
Similarly, if V = X, then

0000 0001 ooto Poir o101 D110 @111 1000 1001 1010 1101

Be=11,3;3,7, 1; 4 ;6,7; 5 ;4,6;2,3 3; 2; 6}

Here, we have used the shorthand that ®011 represents both 0011 and 1011,
etc. Note that there is no block corresponding to 0100 and 1100, since these
combinations are not included in any row. One verifies that the o, that we

found for F' in Section 2 is
O = Mmaz 3.

U ={zy,24} and V = {x3, 23, 24}, then

00 01 10 000 001 010 011 101 110

11
Bu=1{1,3,5;3,4,6,7;2,3,5; 3,4,6} and f, ={1,2,3; 3,7; 1,2; 4;6,7; 5;

The following observation relates the notion of consistency of a function
to a relation on its blankets.

Proposition 2 Let F be a function matriz; then the conditions below are
equivalent: (a) F is consistent, (b) B, < By, (¢) 0z < 0y.

14




5 Finding Separations Using Blankets

Consider function F of Table 1. Let V = {z3, 23,24}, and let G be the
function of Table 3. Row 1 of F has the vectors 000 and 010 for zs, x3, 4.
From Table 3 we see that g(000) = ¢(010) = 0. Thus Row 1 can only produce
a 0 for w. In fact, Rows 1, 2, 3, and 7 can only produce 0, Rows 4 and 5 can
only produce 1, and Row 6 can have both 0 and 1. The set of rows that can
produce a 0 for w is therefore F,,—q = {1,2,3,6,7}, and the set of rows that
can produce a 1 is F,—; = {4,5,6}. In this way we define a blanket which
we call v,. Here v, = {1,2,3,6,7; 4,5,6}.

In general, suppose we are given a consistent function matrix F'(z) with
n inputs, a set V C X of cardinality s, and a consistent function matrix G(v)
with s inputs and p outputs. Furthermore, assume that ¢g(b¥) € ¥P for all
minterms b € X" that are relevant to F. Let e € ¥P, and let

Foee={t€ F|3d e ¥’ :¢" D dand g(d) = e} (10)

be the set of all rows of F that can produce the value e for w. Note that
Fy=c is always a union of blocks of the form F,54. Blanket 7, is defined by

Yo = ne{Fu=c}. (11)

Theorem 1 Let F(x) be a consistent function matriz and let (U, V) be a
pair of subsets of X satisfying U UV = X. For every blanket B, satisfying
the conditions

1. By < By, and
2. PuxBg < By,

there is a separation (G, H) of F with respect to (U, V) such that
* Y < By

Proof: The proof is constructive, and is given in the appendix. O

This theorem is a generalization of a result by Luba and Selvaraj [16], who
limited their attention to decompositions obtainable with partitions. Also,
the model used in [16] is rather informal and incomplete, and the proof of
the theorem is only sketched. Moreover, it is claimed incorrectly that the

15



converse of the result also holds. We show in Example 4 that the converse is
false in general, although it does hold in the case of disjoint decompositions,
as we prove in Theorem 2.

Intuitively, Condition 1 states that the information present in the inputs
of vector v should be sufficient to compute the outputs of function g. Con-
dition 2 requires that the information contained in input vector u together
with the information contained in the outputs of ¢ should be sufficient to
reproduce output y. The condition 7, < §, can be interpreted as stating
that function ¢ is derived from blanket f,. The theorem would not make
sense if this condition were omitted, because one might be able to find a
decomposition that has nothing to do with the given f,. Since we are going
to use 3, to generate g, this condition is needed. We are not aware of any
special properties of decompositions in which v, = j,.

Example 3 In this example we illustrate the construction in the proof of
the theorem. We will find a separation of the function of Table 1 with U =
{z1, 24}, and V = {x9, 23, 24}, using a given blanket 8, = {1,2,3,6,7; 4,5,6}.
We verify that 3, satisfies the two conditions of the theorem. We now show
the steps of the construction.

Table 4: Function g for Example 3.

ry w3 x4 Blockof 5, Block of j,
0 {17273} {172737677}
1 3.7 {1,2,3,6,7}
0 {L2} {12367
14 {456}
1
0
1

(6,7} {1,2,3,6,7}
{5} {4,5,6}
{4,6} {4,5,6}

_ =0 O OO
—_— O = =IO O
= ===

1. Suppose the given blanket 3, has g blocks. We encode the blocks of 3,
by a set of p > [log, ¢| binary variables in such a way that each block
corresponds to a unique code word. Here ¢ = 2; we choose p = 1 and
the following encoding:

0 1
By ={1,2,3,6,7; 4,5,6}.

16



2. In Table 4, we show in the first three columns all the minterms from
V' that are relevant to the function G being constructed. In the fourth
column, we assign to each minterm d the block of 3, corresponding to
that minterm, that is the block F,54. For example, F,5000 = {1, 2, 3}.

3. In the fifth column we show a block of f, containing each block of
By. The existence of such a block is guaranteed by the first condition
of the theorem. If there is more than one such block, we select one
arbitrarily. In this case there is no choice. For example, block {3,7} of

By 1s contained in block {1,2,3,6,7} of j3,.

4. In the last column we show the output value corresponding to each
block of 3, as chosen in Step 1.

The first three columns of Table 4 together with the last column define
g. The reader may verify that this is the same function as that defined by
Table 3. Note that v, = 3,4; hence v, < f,, as required.

Next, we construct function h. The steps of the algorithm are shown in

Table 5.

1. For each minterm b relevant to F, construct the corresponding minterm
(", g(b")) of h. For example, b = 1101 is relevant; so b* = 11, and
g(b’) = ¢(101) = 0 from Table 4. Altogether, (b%,¢(b")) = 110 is a
mintermrelevant to H. This procedure produces the first three columns

of Table 5.

2. Each minterm of & found in Step 1 is of the form (z1, x4, w) = (1, ¢2, d).
For each such minterm, list the corresponding block F,>. of 3,, where

¢ = (c1,¢2), in Column 4 of the table. For example, in the fourth row,
01 corresponds to {3,4,6,7}.

3. For each value of w in Column 3, list the corresponding block of 3, in
Column 5. For example, w = 1 corresponds to {4,5,6}.

4. Intersect each block from Column 4 with the block from Column 5,
and list the result in Column 6. For example, in Row 1, {1,3,5} N
{1,2,3,6,7} = {1,3}. Thus, Column 6 has blocks of f,*3,. By
the second condition of the theorem, each such block is contained in
some block of 3,. Because of this and because F' is consistent, the

17



intersections of the output vectors corresponding to the blocks in Col-
umn 6 are nonempty. Assign these intersections as outputs of A in
Columns 7 and 8. For example, for the last row, we have the intersec-
tion 0® N ®1 = 01 in Columns 7 and 8.

The table consisting of the three input columns and two output columns
defines A. The reader can verify that this & is the same as the function

defined by Table 3. O

Table 5: Defining function h.

T1 T4 w Bu By Bu*fy 21 22
0 0 0 {35 {1,2,3,6,7] {13} 1 1
0 0 1 {1,3,5} {4,506} (510 0
0 1 0 {3,467 {1,2,3,6,7) {3,6,7} 1 1
0 1 1 {3,467 {456} {46} 0 1
1 0 0 {235 {12367 {23 1 0
10 1 {2,350  {4,5.6) (51 0 0
1 1 0 {3,46} {1,2.3,6,7} {3,6} 1 1
1 1 1 {346 {456} {46} 0 1

We have seen from Theorem 1 that, if there is a blanket satisfying the
conditions of the theorem, then there is a separation. In general, the con-
verse of this theorem is false, as is demonstrated by Example 4 below. We
show in the next section, however, that the result is true in the special case
of disjoint separations, for which U N’V = ().

Example 4 Consider matrix F' of Table 6 and matrices G and H of Ta-

Table 6: Matrix F for Example 4.

18



Table 7: Matrices G and H for Example 4.

Matrix G Matrix H
Ty Tz T4 w T1 Ty w z
0 0 1 0 0 0 O 0
0 1 1 1 0 0 1 1
1 0 1 1 0 1 0 1
1 1 1 0 0 1 1 0

ble 7. Let U = {x1, 22} and V = {x3, x5, 24}. One verifies that (G, H) is
a separation of F with respect to (U, V). Note, however, that 8, = {1,2},
B» = {1; 2}, and G, = {1; 2}. The blanket constructed from Gisv, = {1,2}.
For v, < 3, we need to have 8, = {1,2}. But this blanket fails to satisfy the
condition f,*83, < B,. Consequently, the converse of the theorem does not
hold here.

Note that blanket 8, = {1; 2}, satisfies both conditions of the theorem:;
however, it fails the condition v, < j,. O

Example 5 This example illustrates the choices that might exist in the
decomposition process. We decompose the matrix of Table 8 with U = {z;}

and V = {$2,$3,$4} The blankets for this decomposition are: g, =

000 001 010 011 100 101 111
{134562345}ﬁv—{1,2,3636,1,2;4;6 645}andﬁy—
00 o1 00 01 10

{4, 4,5; 1,2 3 6; 1, 3 5 ,6}. Suppose 3, = {1,2,3,6; 5,6; 4,5; 3 6} One ver-
ifies that the condltlons of Theorem 1 are satlsﬁed.

In Table 9 we show the minterms relevant to g and the corresponding
blocks of 3,. There are several choices for covering blocks of 3, with blocks
of 8,. For example, block {6} of 3, can be covered by the first, second, or
fourth block of 3,. This results in three choices for the output assigned to
100. The last three columns of Table 9 show three different assignments,

resulting in three different functions g, ¢’ and ¢”. Calculating blanket ~,
00 01 10

corresponding to each of these functions, we find: 7, = {1,2,3,6; 5,6; 4,5
00 01 10 00 01 10 11

6} 7o = {1,2,3,6; 5,6; 4,5}, v,» = {1,2,3,6; 5,6; 4,5; 3,6}. In each case,

the condition v, < ﬁg is satisfied, and in one case we have equality. The

19



Table 8: Matrix F for Example 5.

Row 1 xy z3 x4 Y Y2
1 0 0 @ 0 1 @
2 1 0 @& 0 1 0
3 0 0 @ 1 @
4 e o 1 1 0 &
5 e 1 & 1 d 1
6 0o & 0 @ 1 @

assignment involving ¢’ shows that we could have used a set system, namely
vg', to find this decomposition. This has only 3 blocks, as compared to the

4 blocks of 3,; however, the number of outputs remains two.

Table 9: Choices for ¢ in Example 5.

/

"

6 Blankets from Disjoint Separations

A separation of F with respect to (U, V) is disjoint f UNV = (.

xy x3 x4 Blockoff, g ¢ ¢

0 0 0 {1,2,3,6} 00 00 00
0 0 1 {3,6} 00 00 11
0 1 0 {1,2} 00 00 00
0 1 1 {4} 10 10 10
1 0 0 {6} 11 00 11
1 0 1 {5,6} 01 01 01
1 1 1 {4,5} 10 10 10

O

Theorem 2 Let F(x) be a consistent function matriz and let (U, V) be a
pair of disjoint subsets of X satisfying U UV = X. For every separation

(G, H) of F with respect to (U, V') blanket ~, satisfies the conditions

* fv < g, and

20



i ﬁu*’)/g < 6y-

Proof: The proof is constructive, and it is given in the appendix. O

Example 6 Matrix F' of Table 1 is decomposed with respect to U = {1}
and V = {x, 23, 24}. Here

0 1
ﬁu = {17374757677; 273747576}7

and, as before,

000 001 010 011 101 110 111
3

e =1{1,2,3;3,7;1,2; 46,7,

and
00 o1 10 11

By, ={4,5;4,6;2,3,7,1,3,6,7}.

Table 10: Matrices G and H for Example 6.

Matrix G Matrix H

Ty Tz T4 wy Wy T1 Ty w 21 Zg
0 0 0 0 0 0 0 O 1 1
0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 1 1
0 1 1 1 1 0o 1 1 0 1
1 0 1 1 0 1 0 0 1 0
1 1 0 0 1 1 0 1 0 0
1 1 1 1 1 1 1 0 o 1

1 1 1 0 1

Table 10 shows a matrix G, such that g(b") is specified whenever b is
relevant to F, and a matrix H. One verifies that (G, H) is a separation of
F. Blanket v, for this case is {1,2,3,7; 5; 6,7; 4,6}. It is easily verified that
this blanket satisfies the two conditions of the theorem. O

21



7 Finding Separations Using Set Systems

The main results about the existence of separations and blankets remain true
if we use set systems instead of blankets.

Theorem 3 Let F(x) be a consistent function matriz and let (U, V) be a
pair of subsets of X satisfying UUV = X. For every set system o, satisfying

1. 0, < 04, and
2. oy004 < 0y,

there is a separation (G, H) of F with respect to (U, V) such that
* mazyy < g,

where o, = maz B, 0, = mazf,, and o, = mazf,.

Proof: The proof is given in the appendix, where we show that every solution
constructed using set systems throughout is among the solutions constructed
using blankets. O

Example 7 Consider how the use of set systems would change Example 5.
Blocks {3,6}, {1,2}, and {6} of 3, would be replaced by the maximal block
{1,2,3,6}, and block {4} would be replaced by {4,5}. Then only function
g' would be found.

For function h, consider Example 3. Here, we would use {3,4,6,7} as the
block of 3, in Rows 7 and 8. In Row 7 the block of 3,3, would be {3,6,7};

the output for that row would not change in this case. O

The use of set systems restricts the solution space. In general, in con-
structing g we have more choice with blankets. Recall that we are looking
for a blanket 3, satisfying 8, < fB,. A given block of 3, may be contained
in more blocks of 3,, if B, is a blanket rather that a set system. Also, in
constructing h, the larger the block we use, the more constraints we impose
on the value of h. Thus, blankets are less restrictive. On the other hand, if
one wishes to reduce the size of the solution space, set systems are preferred.
The decision is left to the implementer.

Theorem 2 also has its counterpart in terms of set systems.

22



Theorem 4 Let F(x) be a consistent function matriz and let (U, V) be a
pair of disjoint subsets of X satisfying U UV = X. For every separation
(G, H) of F with respect to (U, V), the set system o, = maz~y,, satisfies the
conditions

o 0, <0, and
e 0,00, < 0y

Proof: The proof is given in the appendix. O

The following summarizes our reasons for using blankets instead of only set
systems:

e Blankets arise naturally, since each minterm defines a block of a blan-
ket. To find the corresponding set system, we must first find the blanket
and then remove subsets contained in other subsets.

e Blankets are more general, and lead to more separations. Theorem 3
assures us that, if there is a separation based on a blanket, then there
is one based on a set system, but there are many separations based on
blankets corresponding to the same set system.

e The theory is no more complicated with blankets than it is with set
systems. Thus, generality does not cost us anything at this stage.

e The decomposition method described in Section 8§ works with blan-
kets, but not with set systems, and there are other examples [13] of
techniques where only blankets could be used.

e Given the general theory of blankets, the implementer of a software
package based on this theory may add the constraint that only set
systems should be used, or that some blankets and some set systems
be used, for example, 3., B, 0, and o,.

8 Finding Separations Using Cubes

Finding a separation of a function f consists of finding functions ¢ and A,
specified in some way. For convenience and simplicity, in the proof of The-
orem 1 we have used (incomplete) truth tables for g and k. Note, however,

23



that F' is specified by cubes, and it would be desirable to have a method that
handles all functions uniformly as cubes. We now present such a method.

Example 8 Table 11 shows a matrix F' to be decomposed with respect to
(U, V), where U = {x1, 22} and V = {x3, 24, x5, z6}. Blanket 3, is

Assume that we have found blanket (3, below, in this case a set system,
that satisfies the conditions of Theorem 1. Assume that the blocks of 3, are
encoded as shown.

00 10 11

01
By =1{3,4,7,8;3,5,8; 6,8, 1,2,5,8}.

Table 11: Matrix F.

Ty T2 T3 T4 Ts Tg Y Y2 Y3
1 ® 0 1 & 0 0 1 & @
2 0 @& 1 1 0 0 1 & @
3 1 & & & 0 1 » 1 &
4 o & 0 & ¢ 1 » 1 &
5 1 & 1 & 0 @ ¢ 1
6 ¢ 1 0 1 @ 0 0 O
7 & 0 & 0 0 ® & 0
8 1 1 & & & 1 0o & o

A number of new concepts are now introduced with the aid of Example 8.

To define a function ¢ by a matrix G of cubes, we must represent each
minterm relevant to g by some cube. All minterms in {0,1}* are relevant
except 0010, 0110, and 1110. Instead of minterms we will use blocks of 3,.
As we have seen, each such block has the form B = F,5q for some d € ¥°.
A minterm d of ¢ that so defines B will be called a characteristic minterm
of B. Note that every minterm relevant to g is a characteristic minterm of
exactly one block of 3,.

24



Table 12: Characteristic minterms for g.

Block of 3, Rows of ' Characteristic minterms

B, {7} {0000, 0100}
B, {3,4,8} {0001,0101}
Bs {4,8} {0011,0111}
B, {1,5} {1000}
Bs {3,5,8} {1001,1101}
Be {6} {1010}
B: {6,8} {1011}
Bs {1,2,5} {1100}
Bo {8} {1111}

Blocks of (3, and their characteristic minterms are shown in Table 12. For
example, minterm 0011 is a characteristic minterm of block Bj consisting of
rows 4 and 8 of F, since the set of all rows that contain 0011 in the v positions
is precisely {4,8}. Another characteristic minterm of Bz is 0111. We will
ensure that all the characteristic minterms of a block will be accounted for
by the cube corresponding to that block.

The v-intersection of a block B of rows of F is defined as the intersection
of the v-projections of the rows in B: ;cpt’.

For example, for B3 the v-intersectionis 0®®1, which contains all the min-
terms common to Row 4 and Row 8. Note that this v-intersection contains
not only the characteristic minterms of By, but also two other minterms,
namely 0001 and 0101. These other minterms will be accounted for by block
B, since they are characteristic minterms of that block. The v-intersections
will be used as the input cubes for g.

Computing the v-intersections for each block of 3,, we obtain Columns
2-5 of Table 13. (For now, ignore the last line and the columns labeled ‘Final
cubes.”) In effect, we have now represented all the relevant minterms of ¢
by the v-intersections in Table 13. These v-intersections are now the input
cubes for G.

Recall that each block B of 3, is contained in some block B’ of blanket
B4 used in the decomposition. We assign the output values associated with
B’ to the cube of B. In our example, the outputs will be assigned as in the
sixth and seventh columns of Table 13. Block By = {7} is contained only

25



Table 13: Cubes for G .

Block of 3, First cubes Outputs  Final cubes
B 0 & 0 0 00 0 & 0 0
B, 0 @ 0 1 00 0 @& 0 1
Bs 0 & ¢ 1 00 0 ¢ & 1
B, 1 & 0 0 11 1 & 0 0
Bs 1 & 0 1 01 1 & 0 1
Bg 1 01 & 10 1 0 1 @
B; 1 0 1 1 10 1 0 1 1
By 1 1 0 0 11 1 1 0 0
By ® ¢ P 1 00 0o & & 1

00 ¢ 1 1 1

in block {3,4,7,8} of 3,; hence, its cube should be assigned output 00. The
same type of argument applies to all the other blocks, except By, which is
contained in all four blocks of 3,. We arbitrarily assign the value 00 to this
block.

Matrix GG constructed in this fashion is not necessarily consistent. Roughly
speaking, we must ensure that two cubes that have a nonempty intersection
are assigned the same output value. For example, cube ®®P1 of block By
has a nonempty intersection with cube 0®01 of B;. This does not matter,
since the same output has been assigned to both cubes. But ®®®1 also has
a nonempty intersection with cube 1901 of Bs, which has been assigned a
different output. This conflict must be resolved.

In the following, the cube of block B, is called ¢;. One verifies that the fol-
lowing pairs of cubes have nonempty intersections and are assigned different
outputs: (cs, ¢), (s, o), and (c7,c9). We avoid these conflicts by subtracting
cubes ¢5 = 1901, ¢g = 101®, and ¢; = 1011 from cube ¢y = ®®P13. Then,
only those minterms in ®®®1 which do not conflict with any of the cubes ¢s,

g, and ¢; will be assigned the value 00. One verifies that this subtraction®
results in two cubes: 0®®1 and ®111, as shown in Table 13.

Before we describe the general method, we need to point out some prop-

3We show later that cg needs not be subtracted.
4An efficient method for carrying out such cube operations can be found in [2].

26



erties of cubes and blankets.

Proposition 3 Let B and B’ be distinct blocks of 3, and let ¢ and ¢’ be the
corresponding cubes (v-intersections). Then

BCB iffcD/.

Proof: The proof is given in the appendix. O

To illustrate this proposition consider the blocks of 3, in Table 13. They
are partially ordered by set inclusion. For example, By O B3 O Bg, since
{3,4,8} D {4,8} O {8}. The corresponding cubes are in reverse order:
cs C 3 C ¢g, since 0001 C 09P1 C PP P1.

Proposition 4 Let B and B’ be distinct blocks of 3, and let ¢ and ¢ be
the corresponding cubes. Cube ¢ contains a characteristic minterm of B' iff
¢ D . Also, if ¢ contains a characteristic minterm of B', then ¢ contains
no characteristic minterms of B.

Proof: The proof is given in the appendix. O

In the example of Table 13, there are conflicts (es,¢9), (¢s,¢9), and (e7, ¢9).
Note that ¢g contains the characteristic minterms 1001 and 1101 of Bs, and
the characteristic minterm 1011 of B;. However, it does not contain the
characteristic minterm 1010 of Bg. One verifies that cg O ¢5, and ¢9 O ¢z,
but ¢ 2 cg. It will be shown below that these containments mean that only
cs and c7 need to be subtracted.

The propositions above permit us to develop a general algorithm for re-
solving conflicts. To keep the ideas simple, we do not attempt to make the
algorithm efficient, but just to convince the reader that method works. To
construct G we proceed as follows:

1. For each block B of 8, find the v-intersection ¢ of B; this becomes a
candidate input cube for G.

2. Find any block B’ of g, that contains B, and assign the output vector
d of B’ to b.

27



3. Let ¢« = 1, and pick cube ¢;. If there is a cube ¢j, 5 # 7, such that

e ¢; has been assigned a different output than ¢;, and

e ¢; contains a characteristic minterm of ¢;,
then replace ¢; by ¢; — ¢;.
4. Repeat Step 2 for each ¢; conflicting with ¢; as above.

5. Repeat Steps 2 and 3 for « = 2,...,k, where k is the number of blocks
in f3,.

In our example, the first conflict is (¢5, ¢9), so we replace ¢g by ¢ = ¢g—cs.
The second conflict is (¢7, ), so we replace ¢, by ¢y = ¢ — ¢7. There are no
other conflicts, so the final cubes are as shown in Table 13. Note that (cs, cp)
is only an apparent conflict, since ¢g does not contain any characteristic
minterms of ¢g, even though it shares with ¢g the non-characteristic minterm
1011.

Next, we obtain a specification of function H. Here, we deal with blocks
of the product 3, * 3, to derive the input cubes of H, and with blocks of 3,

to derive the output cubes, where

/BU = {17274767 7; 274767 7; 173757677; 375767 778}7

and
111 110 101 100 011 010 001 000

By =1{1,2,3,4,5;1,2,3,4,7; 1,2,5; 1,2,7; 3,4,5,8; 3,4,7,8; 5,8; 6,7, 8}.
We find

By By, By By B; B By B, Bi

To compute the table for H we consider each block of §,*f3, in turn,
and generate Table 14 as follows. For B = {4,7}, the u-intersections from
Table 11 are 0 N ®® = 0P, so 0P becomes the first part of an input cube of
H. Since block Bj is contained in the block of 3, that has output 00, then
00 becomes the second part of the input cube. The output value assigned
to this cube is ®1® N ®P0 = P10; this is the y-intersection of Rows 4 and
7. The remaining rows are completed in the same fashion. Note that Bj,
appears in blocks 01 and 11 of B,; we arbitrarily pick 01 as its output.

In general, to find H, we carry out the following steps:

28



Table 14: Cubes for H .
Block Bu By Output

B! 0 00 010
B, o0 10 000
B, 00 11 199
B, 0® 11 19®
B! 1® 00 010
B! 19 01 o11
B! 10 11 191
B} 1100 010
B} 11 01 011
B!, 11 10 000
B!, 11 01 091

1. For each block B of blanket 3,%3, find the u-intersection b of B; this

becomes the first part of an input cube for H.

2. Find a block C of 3, containing B; the output ¢ assigned to C' becomes
the second part of the input cube for H.

3. Assign to (b, c¢) the y-intersection d of B. Now (b, ¢,d) is a row of H.

Theorem 5 Let F'(x) be a consistent function matriz and let (U, V) be a
pair of subsets of X satisfying U UV = X. Let B, be a blanket satisfying
the conditions of Theorem 1. Then matrices G and H constructed by the
algorithm given above constitute a separation of F.

Proof: The proof is given in the appendix. O

We close this section by pointing out that this method does not work if we
use set systems throughout, rather than blankets. If we try to use set system
o, = maz 3, instead of 3,, we have no way of representing the characteristic
minterms of Bjs, since it has been absorbed in Bj, etc. Thus function g¢
obtained in this way would not be defined for all relevant minterms.

29



9 Finding Blanket 3,

So far we have assumed that the blanket 3, is given. In this section we show
how 3, can be calculated. We return to Example 3, where the function of
Table 1 is decomposed, with U = {x1, 24} and V = {z3, 23, 24}. For this
function we have

Bu=1{1,3,5;3,4,6,7; 2,3,5; 3,4,6},

B B By By Bs Be By

and

By =1{4,54,6:2,3,7; 1,3,6,7}.
We are looking for a blanket 3, satisfying

* By < fy, and

* Buxfy < By

We verify that (3, itself satisfies these conditions. The first condition holds
trivially. For the second condition, we use a proposition of [13]:

Proposition 5 Let U and V' be two subsets of the set X of input variables.
Then

o if VDO U, then B, < Bu;
o f W =UUYV, then B,*5, < Pw.

Proof: The proof is given in the appendix. O

To complete the proof that g,*8, < f,, note that from the second prop-
erty of Proposition 5 with W = X it follows that £,*3, < .. Because F' is
consistent, we always have g, < 3,. Hence, 8,3, < f,.

Of course, using 3, as 3, leads to a trivial separation. Usually, we try
to minimize the number of blocks of 3,, to minimize the number of outputs
of g. We can try merging two blocks of 3, to obtain /. Clearly, 8, < f3!;
however, 3/ may not satisfy the second condition required by Theorem 1.

For example, we can merge By and B,, obtaining new block {1,2,3,7}.

Intersecting this block with blocks of 3,, we get {1,3},{3,7},{2,3},{3}.

30



Since all these blocks are contained in blocks of 3,, blocks By and B; are
mergeable. On the other hand, if we merge By and B4, we get new block
{1,2,3,4}, and intersections {1, 3}, {3,4},{2,3},{3,4}, and {3,4} is not con-
tained in any block of §,. Hence, By and B, are not mergeable.

We can repeat the merging procedure, until we get a set system whose
blocks are no longer mergeable. In our example, one can verify that blocks
By, By, B;s, and Bs can all be merged into a single block, as can blocks By,
Bg, and B;. This way we obtain 8, = {1,2,3,6,7; 4,5,6}.

We now outline a procedure for finding a blanket 3, satisfying the condi-
tions of Theorem 1. The procedure actually produces a set system o, which
guarantees the smallest possible number of blocks, and hence the smallest
number of outputs in g.

Two blocks B; and B; of blanket 3, are compatible if blanket 3;; obtained

from f, by merging B; and B, into a single block satisfies the second con-

dition of Theorem 1. Otherwise, the blocks are incompatible. A subset § of
blocks of 3, is a compatibility class of blocks, if the blocks in § are pairwise
compatible. A compatibility class is mazimal if it is not contained in any
other compatibility class.

From the computational point of view, finding maximal compatiblity
classes is equivalent to finding maximal cliques in a graph I' = (N, E), where
the set IV of nodes is the set of blocks of 3,, and the set E of edges corresponds
to compatible pairs.

The next step in the calculation of o, is the selection of a minimum-
cardinality set of maximal classes that covers all the blocks of 3,. The min-
imum cardinality results in a set system.

In certain heuristic strategies, both procedures (for finding maximal com-
patibility classes, and for finding the minimal cover) can be reduced to the
graph coloring problem. Thus the task of finding o, can be reduced to the
graph coloring problem in the graph I' = (N, E) defined above. The number
of blocks of o, corresponds to the minimal number £ of colors for I'. Although
the problem of finding the minimal chromatic number for a given graph is
NP-complete, a number of fast heuristics have been developed for it [25].

In the example above, the incompatible pairs are: (Bi, B4), (B, Be),
(B1, Br), (B2, Bs), (B2, Bs), (B2, Br), (Bs, Bg), (Bs, Bs), and (Bs, Br). There-
fore two colors are needed: one for nodes By, By, B3, Bs, and the other, for
nodes By, Bg, B;. The union of all the sets of rows associated with nodes as-
signed the same color forms a block of o,. For example, for nodes By, Bg, Br

we have {4} U{5}U{4,6} = {4,5,6}. Thus we find o0, = {1,2,3,6,7; 4,5,6}.

31



The following example® shows that it is not possible to always replace
blankets by set systems when using the block merging method. Consider
matrix F' of Table 15, and its decomposition (G, H) with respect to U =
{z1,22} and V = {3, 24}, as shown in Table 16.

Table 15: Matrix F.

Row 7 x29 23 x4 Y1 Y2
1 0o & 0 @ 0 1
2 1 0 @ 0 0 0
3 1 1 0 0 1 0
4 1 1 0 1 0 0
5 1 1 1 0 0 0
6 1 1 1 @ ® 0

Table 16: Matrices G and H.

Matrix G Matrix H
T3 T4 w T1 Ty w 21 2z
0 0 0 0o & < 0 1
0 1 1 1 0 @ 0 0
1 0 1 1 1 0 1 0
1 1 0 1 1 1 0 0

S _Bi By By By
We have 3, = {1; 2; 3,4,5,6}, 5, = {1,2,3; 1,4; 2,5,6; 6}, and 3, =
{2,4,5,6; 1; 3,6}.

For this decomposition, blanket 5, is

v =1{1,2,3,6; 1,2,4,5,6}.

One blanket 3, satisfying v, < 8, i1s 8, = 74. This blanket can be obtained
by merging blocks By with By, and By with Bs.

This is a modification of an unpublished example by J. J. Lou

32



If we use set systems throughout instead of blankets, we have o, = f,,
oy = By and o, = {1,2,3; 1,4; 2,5,6}.

Since 00 and 11 are both assigned output 0 by g, Rows 3 and 6 of F' must
be in the same block of o,. We cannot obtain such a o, by merging blocks
1,2,3 and 2,5,6 of o, since {1,2,3,5,6} has intersection {3,5,6} with o,
and this block is not contained in any block of o,.

10 Decompositions

Suppose we have a separation (G, H) of a matrix F' of n variables, where G
has s inputs and p outputs, and H has r + p inputs and m outputs. Such a
separation is not quite a decomposition, because in a decomposition we want
G and H to have strictly fewer inputs than F. Thus we should insist that
s<nandr+p<n.

Definition 2 A decomposition of F with respect to (U, V) is a separation
(G,H), in which s < n, and r +p < n.

Proposition 6 If a separation (G, H) based on blanket 3, is a decomposi-
tion, then s < n and the number q of blocks of B, satisfies

e r+ [log, q| < n.

We now develop a useful necessary condition for the existence of a de-
composition. Let § be a blanket on a set, and 8’ = {B!}, a blanket on the
same set. The quotient of a block B of 8 by 3’ is a set system on the set B
defined by

B/p" = maz{B N B/}.

The block-cover cost ¢(By, ') is the minimum number of blocks of B/p’
required to cover B, in the sense that the union of these blocks is B. For

example, let
B By By  Bs
B8 ={1,2,3;3,6,7;1,2,5; 4,6},

and

p'={1,3,6,7,2,3,7;4,6;4,5}.

To calculate ¢( By, '), we first intersect By with all the blocks of ', obtaining
,3; 2,3; 0; 0. Applying the maz operation, we get By /3’ = {1,3; 2,3}. Since

—_

33



both blocks are needed to cover By, we have ¢(By, ') = 2. Similarly, we find
BZ/B/ = {W}a B3/5/ = {Ta 5; 5}7 and B4/6/ = {476} Thus 6(3275/) = 17
¢(Bs, ') = 3, and ¢(By, 8') = 1.

The cover cost, ¢(3,p'), is now defined as the largest block-cover cost,
that is,

o(B,B') = maz{c(B, ') | B € B},
where maz here denotes the largest integer in a set. In the example above,
c(B,8") = 3.
The following result was previously stated without proof by Luba [15]. A
proof was provided by Brzozowski and Luba [5] and improved by Lou [13].

Theorem 6 Let F be a consistent function matriz and let U and V' be subsets
of X, UUV = X, where X has n elements, U has r < n elements, and V
has s < n elements. If a decomposition of F' based on blanket (3, exists, then

n—r > [log, ¢(Bu, By)] -

Proof: The proof is given in the appendix. O

Intuitively, the condition in the theorem can be interpreted as follows. If
(g,h) is to be a decomposition, then h must have fewer inputs than f, i.e.,
r+p < n, or, equivalently, p < n —r. Hence, the number p of outputs from ¢
must be at most n —r —1. Let ¢ = 2"7"7!; then ¢ is the maximum number of
possible output combinations from g. Now ¢(f3,, 3,) is the maximum cost of
covering a block of 3, by blocks of 3,. The maximum number of blocks of 3,
needed to cover a block of 3, can be interpreted as the amount of information
we still require to determine the outputs y, if we only know the inputs wu.
At least this amount of information must come from the outputs of g, which
provide at most ¢ combinations. Hence, ¢ must be greater than or equal to
¢(Bus By). See the proof of the theorem for more details.

Example 9 Let us find all the sets U for which a disjoint decomposition of
the matrix F' of Table 1 is not ruled out by the condition of Theorem 6. For
convenience, we will use ¢ as a shorthand for [log, ¢(8y, By)]|. Recall that

By, ={4,5;4,6;2,3,7,1,3,6,7}.

For one-variable sets, that is, for U = {z,}, we have n — r = 3. The con-
dition of the theorem is satisfied, because the number of blocks in 3, is 4;

34



consequently, the cost ¢(B, 3,) cannot be greater than 4 for any block B of
Bu. Therefore, cg <2 <n—r =3.
For larger sets U, some computation is required. For U = {z1, 23}, we

have:
B By Bs B,y
Bu=1{1,3,4,7,4,5,6,7; 2,3,4; 45,6},
Bi/B, = maz{4; 4;3,7; 1,3, 7} = {4, 1,3, 7},
By/B, = maz{4,5; 4,6; 7; 6,7} = {4,5; 4,6; 6,7},
Bs/By = maz{4; 4; 2,3; 3} = {4; 2,3},
and

B./fy, = maz{4,5; 4,6; §; 6} = {4,5; 4,6}.
The corresponding costs are ¢(By, 3,) = 2, ¢(B2,fy) = 2, ¢(Bs,y) = 2,
¢(By,By) = 2. Hence ¢cg =1 < n —r =2, and the condition is satisfied.

For U = {z1, x5},

B, B Bs By
Bu=1{1,3,6,7;1,4,5,6; 2,3,6; 2,4,5,6}.

Here U fails to satisfy the condition, because

By/f, = mas{T,5; 1,6, Z; 6} = {L,5, 1,5, 2}.

Hence,co=2£2=n—r.
Altogether, the condition is satisfied for the following subsets of X:

{1}, {x2}, {xs}, {za}, {z1, 22}, {21, 24}, and {zq, 24}

After the verification of the necessary conditions from Theorem 1, we find
that only three of these sets, namely Uy = {21}, Uy = {x2}, Us = {z3}, lead
to disjoint decompositions. O

11 Conclusions

We have presented a comprehensive theory of serial decompositions of multiple-
output, incompletely specified, Boolean functions represented in the compact
consistent-cube notation. The task of finding a decomposition of a function

35



f has been divided into the problem of finding a separation of a given func-
tion, which is concerned only with functional properties, and the problem of
finding functions g and h having fewer inputs than f. We have discussed the
use of both blankets and set systems, and have illustrated various options in
the decomposition process.

Many ideas presented here have been implemented and applied to prac-
tical decomposition problems. In particular, a program, called DEMAIN, uses
some of these ideas. Serial decomposition constitutes a part of the techniques
used in DEMAIN. A discussion of DEMAIN is outside the scope of this paper,
and we refer the interested reader to [17, 18, 19, 20] for additional details.

Appendix

Proof of Theorem 1

Suppose that a blanket [, satisfying the conditions of the theorem exists,
and has ¢ blocks. We define a function g with s inputs and p > [log, ¢|
outputs as follows. Encode the ¢ blocks of 3, by p variables in such a way
that each block B is assigned a distinct p-tuple aB); otherwise, the coding
is arbitrary. For each b € 3" relevant to F', block F,54 is a nonempty block
of 3,. By the first condition of the theorem, this block is contained in some
block B of 3,. Then assign g(b") = a(B).

We claim that v, < §,, by construction of g. For suppose that ¢ is in
the block of v, that produces value e for the output w of g. Then there is a
minterm d of g such that ¥ 2 d, and g(d) = e. Consider the row containing
d in our construction of g. Minterm d defines block F,54 of 3,. Since we
know that g(d) = e, we know that the block of 3, containing F,54 must be
the block that has been assigned the code e. Thus, if £ is in the block of ~,
that produces e, then ¢ is in the block of 3, that corresponds to e. In other
words, every block of 7, 1s contained in a block of 3y, 1.e., v, < f,.

Next we construct a function A with r + p inputs and m outputs. Let
b € X" be a minterm relevant to F'. Since b is relevant, F,5; is not empty.
By construction of ¢, ¢g(b”) is in ¥?. Hence the input vector (b*,¢(b")) to
function A is completely specified.

Define
A, g(b") = [

teB1NBy

36



where By = Fyopu, and By = F,_guv). The intersection By N By is not
empty since Fyop C Fyope = By, and Fiop C Fy—gpv) = Bo. By the second
condition of the theorem, B; N B; is contained in some block of 3,. Since
F is consistent, the intersection defining % is nonempty, and A is indeed well

defined.
Since F,o C By N By,

hpYg0) = 1 #C ) #=f(v).

t€B1NBs tEF b

In words, the larger set By N By can only add more constraints to the inter-
section; hence the intersection can only be the same or smaller. Thus (g, h)
is indeed a separation of f. O

Proof of Theorem 2

For convenience, and without loss of generality, we assume that the vari-
ables x4, ..., z, have been relabeled in such a way that v = (z4,...,z,) and
v = (y41,...,2,). Consequently, for an n-tuple z, the first r components
are r", and the last s = n — r components, z".

We first claim that 3, < v,. Let b be relevant to F'; then F,5p is a
nonempty block of 3,, and every block of 3, has this form. Each such block
is contained in the block F—,@v) of 74. Hence our claim holds.

Now we check that 8,*y, < 3,. Let By = F,5, be a block of 3,. Then
te By iff t D ad for some a € ¥" and o’ € ¥"". Let By = F,,—. be a block
of 75. Then t € By iff t O b'b for some b’ € ¥" and b € ¥"77, such that
g(b) = e. Thus t € By N By implies t O ab. Define blanket ), over F as

Bn = ne{F.oc}, (12)
where ¢ € ¥™ and
Fooo={t€ F|3d€ " : 1" D d and h(d",g(d")) D c}. (13)
Suppose h(a,g(b)) O k. Clearly, t € By N B, implies ¢t € F,5;. Hence
By N By C F.5p, and Bu*xyy < fBp.

Since (g, h) is a separation of f, we have f(ab) D h(a,g(b)) 2 k. Hence
t € Fyor, showing that 8, < 3,. Consequently, 3,*%y, < 3, as required. [

37



Proof of Theorem 3
One easily verifies the following properties of blankets:

A < B and p' < " imply g < 87,
B < 3" implies BxB" < f'x5",
if 0 = mazx (3 then § < o and o < f3.

Suppose now that we have a set system o, satisfying the conditions of The-
orem 3. Since 3, < 0, and 0, < 04, we have

By < 0y
Also, since
Bukoy < maz (Bu*oy) = maz(oyko,) = 04004 < 0y < Py,

we have
614*0'9 < 6y-

Hence o, satisfies the conditions of Theorem 1, and one can construct a
separation (G, H) of F as in the proof of Theorem 1, where v, < 0, In
this construction, we can also use set systems throughout for the following
reasons.

In constructing g, we take a relevant minterm d of ¢, find the associated
block B of 3,, and find a block C of 3, containing it. If there is choice, we
pick an arbitrary block of 3,. Instead, we can pick a maximal block B’ of
By containing B, i.e., a block of g,. This block must be contained in some
block C’ of 0,4, which also contains the original block B. Hence the function
g that is constructed using set systems throughout is one of the solutions we
could have found using blankets.

Now consider the construction of h. We find a minterm d relevant to h
and then blocks B of 3, and C of o,. Next we find the intersection B N C,
which is guaranteed to be contained in a block D of 3,. Instead, we could
have found a maximal block B’ of 3,, containing B, i.e., a block of o,. Now
B'N C is contained in some maximal block D’ of 3, i.e., in a block of o,.
Hence, the function A that is constructed using set systems throughout is
one of the solutions we could have found using blankets. O

38



Proof of Theorem 4

Suppose F' has separation (G, H). Let o, = maz~y,, where v, is defined
in (11). It is straightforward to verify that o, satisfies the conditions of the
theorem. O

Proof of Proposition 3
If B is a block of 3,, it is defined by some characteristic minterm d, i.e.,
B = Fy5a = {t € F | t" D d}. Cube ¢ of B has the form ;cgt". Suppose
B C B’; then cube ¢ of B’ is the v-intersection of all the blocks of B and
the blocks of B’ — B. Hence, ¢’ C c.

Conversely, suppose B ¢ B’. Then there exists t € B— B’. Since t ¢ B’,
t¥ does not contain the characteristic minterm d' of B’. Hence ¢, the v-
intersection of all the ¢ in B, cannot contain d’, whereas ¢’ does contain it.

Therefore, ¢ € c. O

Proof of Proposition 4

Let d’ be a characteristic minterm of B’, and suppose ¢ O d'. Then every
t € B satisfies tV O d', i.e., B C B’. By Proposition 3, ¢ C ¢. Now, if
¢ contained a characteristic minterm of ¢, then we would have ¢ C ¢, and
¢ = ¢, which is a contradiction. O

Proof of Theorem 5

First we verify that G is consistent. Consider a minterm b relevant to F' and
let d = b”. Minterm d of GG is a characteristic minterm of precisely one block
By ={t|t" D d} of B,, and d is contained in the cube ¢4 of By.

We claim that d cannot be removed from ¢4 by the process of subtraction.
Suppose another original cube ¢ also contains d. In our construction, we
subtract ¢g from ¢; thus, we never subtract from ¢4 any cube containing d.
At the end of the algorithm, d is contained only in the final cube derived
from the original cube ¢;. Hence, g(d) is the output associated with that
final cube, and G is consistent. By our construction, g(b¥) € XP? for every b
relevant to F.

Now we show that v, < §,. Suppose t € F,—.. Then there exists a
minterm d € £°, such that ¥ O d, and g(d) = e. Let B. be the block of 3,
assigned the value e. By our construction, B, must contain block F,54 of 3,.
Thus t € B., and F,=. C B., showing that v, < j,.

39



Next, we check the consistency of H. Let e = (e, e¥) € TP be a
minterm relevant to H. Then e* must appear in at least one row of F', and
it must be a characteristic minterm of exactly one block, call it B,, of 3,.
Suppose the block of 3, that has been assigned the value € is B;,. Then
e 1s involved in that row of H that corresponds to block B of §,*f3,, where
B = B, N B,.

Suppose € is also involved in a row s = (s¥, s, s*) of H that corresponds
to block B’ of f,%8,; thus s* D e*. Also, t* D s" for all t € B’, since s*
is the intersection of all the u-projections of rows of F that belong to B'.
Therefore, t* D ¥, for all t € B'. Since B, = F,5ev, we have B’ C B,. By
construction, B’ C B, because s¥ = e*. Altogether, B’ C B,N B, = B. By
the condition B,*3, < B, we know that B is contained in some block of j,,.
Since s* is defined as ;g ¥, we have s* D ;cp, t¥. Since this holds for all
rows s of H in which e is involved, all these rows are compatible, since they
have MN;ep, t¥ in common. Therefore, H is consistent.

It remains to verify that f(b) D g(b*, g(b")) for every minterm b relevant to
F. The argument is essentially the same as that in the proof of Theorem 1. [0

Proof of Proposition 5
Let B be the block of 3, with characteristic minterm d; then ¢t € B iff tV D d.
Let B' = Fysge. If t € B, then t* D d*, since V 2 U. Hence, t € B', i.e.,
B D B'and 8, < f..

For the second claim, if W = U UV, let V' =V — U, then V 2 V' and
W = UUYV’. By the first part, 3, < ... To prove the second part, it suffices
to prove that £,%0, < B,. Suppose B € [,%0,; then B = B, N B, for
some blocks B, of 8, and B,s of 3,,. Suppose B, = F\,5, and B, = Fy.
Now, for any row t in B, we have t* D a, and t* D b. Since U and V' are
disjoint, we also have t* O ab. Hence, F,5q 1s nonempty, and is a block of
Bw. Therefore, t € B implies t is in block Fy5q4p of 3y, and our claim follows.
0

Proof of Theorem 6
Here we follow the proof in [13]. To prove that

n—r> [10g2 C(ﬁuvﬁy)—l 5

1t 1s sufficient to show that

n—r—12>1log,c(fu,By),

40



which is equivalent to showing that g > (B4, 8y), where ¢ = 2"7"~1. Since
(g,h) is a decomposition, g has at most n —r — 1 outputs, and, hence, at
most ¢ distinct output combinations. Therefore, there are at most g blocks
of the form Fy5n(a,), for a fixed a € {0,1}", and ¢ = g(d), as d varies over
{0,1}*. We claim that this set of blocks covers block F,5, of ,.

Let s € F,5q; then there is a minterm b such that s* O b and b* = a.
Also, g(b") is defined, since b is relevant to F'; say g(b’) = ¢. By definition of
f, we have f(b) = Nyep,,, . Since s* D b, we have s € {t [t € F,op}, and
s D f(b). By definition of separation, f(b) 2 h(a,c). Thus, s € Fyon(ae)-
This shows that any block of 3, is covered by at most ¢ blocks of 3,, and
the theorem follows. O

References

[1] R. L. Ashenhurst, The Decomposition of Switching Functions, Proc. of
International Symp. Theory of Switching Functions, 1959.

[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis, Kluwer
Academic Publishers, Boston, MA, 1984.

[3] D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field Pro-
grammable Gate Arrays, Kluwer Academic Publishers, Dordrecht, 1992.

[4] J. A. Brzozowski and J. J. Lou, Blanket Algebra for Multiple-
Valued Function Decomposition, pp. 262-276 in Algebraic Engineering,
C. L. Nehaniv and M. Ito, eds., World Scientific Publishing Co. Pte.
Ltd., Singapore, 1999.

[5] J. A. Brzozowski and T. Luba, Decomposition of Boolean Functions
Specified by Cubes, Research Report CS-97-01, Department of Com-
puter Science, University of Waterloo, Waterloo, ON, Canada, 36 pp.,
January 1997.

[6] S.-C. Chang, M. Marek-Sadowska, and T. Hwang, Technology Mapping
for TLU FPGAs Based on Decomposition of Binary Decision Diagrams,
IEEE Trans. on CAD, Vol. 15, No. 10, pp. 1226-1236, 1996.

41



[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. J. Ciesielski and S. Yang, PLADE: A Two-Stage PLA Decomposi-
tion, IEEE Trans. on CAD, Vol. 11, No. 8, August 1992.

H. A. Curtis, A New Approach to the Design of Switching Clircuits,
D. Van Nostrand Co. Inc., Princeton, NJ, 1962.

J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of Sequential
Machines, Prentice-Hall, Englewood Cliffs, NJ. 1966.

L. Jézwiak, General Decomposition and its Use in Digital Circuit Syn-

thesis, VLSI Design, Vol. 3, No. 3—4, pp. 225-248, 1995.

L. Jézwiak, Information Relationships and Measures in Application to
Logic Design, Proc. 29th IEEE International Symposium on Multiple-
Valued Logic, Freiburg, Germany, IEEE Computer Society, Los Alami-
tos, pp. 228-235, 1999.

Y.-T. Lai, K.-R. Pan, and M. Pedram, OBDD-Based Function De-
composition: Algorithms and Implementation, IEEE Trans. on CAD,
Vol. 15, No. 8, pp. 977-990, 1996.

J. J. Lou, Decomposition of Multi-Valued Functions, MMath Thesis,
Department of Computer Science, University of Waterloo, Waterloo,

ON, Canada, 88 pp., July 1998.

J. J. Lou and J. A. Brzozowski, A Formalization of Shestakov De-
composition, Proc. 29th IEEE International Symposium on Multiple-
Valued Logic, Freiburg, Germany, IEEE Computer Society, Los Alami-
tos, pp. 66-71, 1999.

T. Luba, Multi-Level Logic Synthesis Based on Decomposition, Micro-
processors and Microsystems, Vol. 18, No. 8, pp. 429-437, October 1994.

T. Luba and H. Selvaraj, A General Approach to Boolean Function De-
composition and its Application in FPGA-Based Synthesis, VLSI De-
sign, Vol. 3, Nos. 3—4, pp. 289-300, 1995.

T. Luba, H. Selvaraj, M. Nowicka, and A. Krasniewski, Balanced Mul-
tilevel Decomposition and its Application in FPGA-Based Synthesis,

Logic and Architecture Synthesis, G. Saucier and A. Mignotte, eds.,
Chapman & Hall, 1995.

42



18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

M. Nowicka, Balanced Decomposition for Technology Mapping of FP-
GAs, (in Polish), Ph.D. Thesis, Warsaw University of Technology, War-
saw, 1999.

M. Nowicka, T. Luba, and H. Selvaraj, Multilevel Decomposition Strate-
gies in Decomposition-Based Algorithms and Tools, Proc. International
Workshop on Logic and Architecture Synthesis, Grenoble, Institut Na-
tional Polytechnique de Grenoble, pp. 129-136, 1997.

M. Nowicka, T. Luba, and M. Rawski, FPGA-Based Decomposition of
Boolean Functions. Algorithms and Implementation, Proc. Sizth inter-

national Conference on Advanced Computer Systems, Szczecin,pp. 502—

509, 1999.

J. P. Roth and R. M. Karp, Minimization over Boolean Graphs, IBM
Journal of Research and Development, Vol. 6, pp. 227-238, April 1962.

A. Sangiovanni-Vincentelli, A. Gamal, and J. Rose, Synthesis Meth-
ods for Field Programmable Gate Arrays, Proc. IEEE, Vol. 81, No. 7,
pp. 10571083, 1993.

E. Shestakov, Decomposition of Systems of Completely Defined Boolean
Functions by Argument Covering, Automatic Control and Computer Sci-

ences, Vol. 28, No. 1, pp. 12-20, 1994.

E. Shestakov, Decomposition of Systems of Incompletely Defined
Boolean Functions by Argument Cover, Automatic Control and Com-
puter Sciences, Vol. 28, No. 6, pp. 4-15, 1994.

M. Systo, N. Deo, and J. Kowalik, Discrete Optimization Algorithms,
Prentice-Hall, Inc., Englewood Clifts, NJ, 1993.

F. A. M. Volf, L. Jozwiak, and M. P. J. Stevens, Division-Based ver-
sus General Decomposition-Based Multiple-Level Logic Synthesis, VLSI
Design, Vol. 3, No. 34, pp. 267-287, 1995.

43



