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Abstract

Specifying hardware can present major challenges, especially when one is faced with a
system that involves a large degree of concurrency. We propose a simple formal framework
for representing concurrent systems. The framework is based on Enhanced Characteristic
Functions (ECFs), which assign labels to sequences of communication actions. Labels
represent properties of a process after a sequence of actions has been executed. A process

in the framework is called an ECF process.

The general ECF model does not rely on a particular set of labels. Instead, the labels
must satisfy a number of simple properties, which we use to define the operations on
processes: refinement, hiding, and process product. The properties of labels, lifted to

processes, lead to a number of desirable properties of these operations.

An instantiation of the general ECF model is obtained by choosing a particular set
of labels. We study two instantiated ECF models, one addressing safety properties, and
one addressing progress properties of processes. In each of the two models we give a
correctness condition for a process and we show that the refinement relation has three
equivalent characterizations. We also give alternative definitions of hiding for both the
safety and the progress model. Finally, we show that ECF processes lend themselves well

to a design technique based on the Factorization Theorem.

We define a specification composition, which combines behavioral constraints into one
specification. Constraints are expressed by so-called snippets. We propose a part-wise
design method that is applicable to specifications expressed in terms of snippets. This
design method allows us to find in isolation implementations of the snippets. These partial
implementations are then combined into an implementation of the original specification.

We illustrate the part-wise design method on a number of examples.
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Chapter 1

Introduction

The first step in building software or hardware is producing a specification. This step
can present major challenges, especially when one is faced with specifying a system that
involves a significant degree of concurrency. One challenge is to choose a notation that is
simple, yet expressive enough to capture the intended properties of a design. A formalism
behind the notation should provide means for comparing an implementation and the
specification, allowing one to check whether there is a match between what was intended

and what was done.

We propose a simple formal framework, based on Enhanced Characteristic Functions
(ECFs), that can be used for representing concurrent systems. A process in this frame-
work is called an ECF process. We show how to apply ECF processes to specifying
asynchronous circuit components and how we can use ECF processes for studying safety

and progress properties of networks of circuit components.



2 CHAPTER 1. INTRODUCTION

1.1 Asynchronous circuits

In this section we introduce asynchronous circuits, which we use in examples of applica-

tions of ECF processes.

The vast majority of circuits designed today are synchronous circuits, built around
an external synchronization signal called the clock. The role of the clock is similar to the
role of the drummer on a galley who was setting pace to the oarsmen: At a tick of the
clock, all components of a synchronous circuit must be ready to perform a subsequent
operation. The reasons why clocked circuits are today’s choice for the vast majority
of circuit designers are manifold. First, the discreteness of time introduced by the clock
simplifies many tasks in synchronous design. Second, in clocked circuits one does not have
to control or remove hazards [Huffman, 1964], thus Boolean algebra can be applied to
circuit design in a straightforward manner. Third, many design tools and large libraries
of components are available for synchronous-circuit design. Fourth, inertia caused by

industry and knowledge investments is unlikely to allow a rapid shift in a design paradigm.

An alternative to clocked circuits are asynchronous circuits, which are circuits without
the clock. An asynchronous circuit consists of a network of components, each operating
at its own speed. Global synchronization performed by the clock is replaced by local
synchronizations between components. The local synchronization is typically achieved

by means of request/acknowledge handshaking.

According to various models, we can classify asynchronous circuits into several cate-

gories. The most commonly used categories are as follows:

Self-timed circuits are described in [Seitz, 1980]. Their characteristic is that each cir-
cuit element is contained in a so-called equipotential region, where delays in wires

are under control. It is left open whether any assumptions are made about delays
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on wires that connect circuit components.

Speed-independent circuits, defined by Muller and Bartky [Muller and Bartky, 1959],
have delays associated with circuit components, but communication delays in in-
terconnecting wires are negligible. The class of speed-independent circuits has
some limitations as demonstrated in [Bush and Josephs, 1996]. Furthermore, the
assumption of negligible wire delays can be unrealistic for large circuits. As shown in
[Ebergen, 1991], communication delays can be modeled by inserting explicit WIRE
components, allowing us to avoid unrealistic assumptions. The ECF model pro-
posed in Chapter 2 applies to speed-independent circuits. With the ECF model we
demonstrate that speed-independence allows for a simple formal model that can be

easy to use.

Delay-insensitive circuits have no assumptions about delays in components and inter-
connecting wires. The concept of delay insensitivity grew from the work on Macro-
modules [Clark and Molnar, 1974], and was first formalized in [Udding, 1984]. If
logic gates are used as basic components, the class of delay-insensitive circuits is very
limited, as shown in [Brzozowski and Ebergen, 1992]. If more complex components
are used, however, practical circuits can be built. For example, circuits produced

by the Tangram compiler reported in [van Berkel, 1992] are delay-insensitive.

Quasi delay-insensitive circuits are delay-insensitive, except for so-called isochronic
forks. The term isochronic fork refers to a forked wire where all branches have the
same delay, or where the delay skew between the branches is bounded. Quasi delay-
insensitive circuits are used, for example, by Martin [Martin, 1990, Martin, 1993].
Circuits produced by the Tangram compiler [van Berkel, 1992] after the optimiza-

tion phase are also quasi delay-insensitive.
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We are not aware of formal characterizations of self-timed circuits and of quasi delay-
insensitive circuits. Also, speed-independence and delay-insensitivity were defined origi-
nally in different formal models. Consequently, a formal relationship between the models

described above has not been established.

In the early days of computing, asynchronous circuits were recognized as an “awkward
alternative” to clocked circuits [Turing, 1947]. Since then, researchers identified a number
of benefits that could be offered by asynchronous circuits and interest in asynchronous

circuits has been revived. Some of these benefits are

e Low power: The clock distribution contributes up to 50% of the power dissipa-
tion in a circuit [Badeau et al., 1992]. Because of the growing number of portable
devices where low power consumption is critical, low-power design techniques have
been gaining importance. Asynchronous circuits have a potential for low power,
because there is no clock driver on a chip and the synchronizations among the
components may be reduced to merely the essential ones. The Tangram compiler
[van Berkel and Saeijs, 1988, van Berkel and Rem, 1995] has been used to pursue
designing low-power asynchronous circuits. Examples of circuits designed are an Er-
ror Corrector for a DCC Player [van Berkel et al., 1994] and 80C51 microcontroller
for a pager [Kessels and Marston, 1997, Gageldonk et al., 1998]. Pagers seem to
be the first electronic products based on asynchronous circuits that are produced
massively. Another prominent example of low-power asynchronous circuits are
AMULET processors designed at the Manchester University [Furber et al., 1993,
Furber et al., 1996, Furber et al., 1998].

e Speed: In synchronous circuits, the clock must be slow enough to accommodate the
slowest component in the circuit. For this reason, the speed of synchronous circuits

is limited by the slowest component. In an asynchronous circuit, each component
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operates at its own speed; thus, the performance may not be limited by the slowest
component. Furthermore, the clock period must accommodate the worst possible
case for data dependent operations. Completion-detection circuits used in asyn-
chronous circuits allow for the average-case behavior, which may be significantly
better than the worst-case behavior reflected by clocked circuits. The division cir-
cuit presented in [Williams, 1994] is an example of a completion-detection circuit
that was used commercially, and was shown to perform faster than synchronous

division circuits.

Robustness to metastability: If a circuit enters a metastable state, it may re-
main there for an unbounded amount of time [Chaney and Molnar, 1973]. If the
metastable behavior is not resolved within a clock period, a clocked circuit may ex-
hibit erroneous behavior. Because chasing the clock is not an issue in asynchronous
circuits, the circuit can wait until metastability has been resolved and then continue

with its work, functionally unaffected by the unexpected delay.

Scalability: Synchronous designs are scalable only to a limited extent, because
delays in wires do not scale linearly with the characteristic dimensions of the cir-
cuit, including the clock period; see Section 4.13 of [Weste and Eshraghian, 1993]
or Chapter 4 of [van de Snepscheut, 1985]. As a consequence, timing constraints
may be violated in a scaled-down synchronous circuit and the circuit may not op-
erate properly. Delay-insensitive circuits are designed without any assumptions
about delays in responses of components and in interconnecting wires. Thus, delay-
insensitive designs can be scaled safely. The ease of scalability is yet to be demon-
strated as a practical benefit in designing asynchronous circuits. We believe that
advances in silicon compilation and requirements for speeding up the design cycle

will make the ease of scalability an important advantage of asynchronous circuits.
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e Modularity of design: The clock is a global signal which must be distributed
across the entire clocked circuit. The requirement that all circuit components
must meet the timing constraints imposed by the clock is a global condition which
does not naturally support modular design. Asynchronous circuits, on the other
hand, can be easy to compose and thus lend themselves to a modular design.
Ease of modular composition is also a reason why asynchronous circuits should
be a good choice for designing at a high level. Silicon compilers such as Tangram
[van Berkel and Saeijs, 1988, van Berkel and Rem, 1995] are early indicators that

modularity of asynchronous circuits may help in speeding up the design cycle.

For comprehensive overviews of formalisms and methodologies for asynchronous cir-
cuit design we refer the reader to Chapter 15 of [Brzozowski and Seger, 1995] and to
[Davis and Nowick, 1995].

1.2 Preview

In this section we give an intuitive preview of the theory of ECF processes developed in
Chapter 2. We show some examples of ECF processes and we demonstrate a number of
operations on ECF processes. ECF stands for “enhanced characteristic function”, which
assigns labels to traces. A trace label is used to indicate properties of a process that has
executed that trace. To keep the presentation short, we postpone discussing previous

work until Section 1.3.

We use ECF processes for modeling asynchronous circuit components. Figure 1.1
shows a schematic and a CMOS implementation of a common asynchronous circuit com-
ponent called the C-element. To make modeling of a circuit manageable and applicable

to large designs, we model circuits in a discrete binary domain. That is, we assume that
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a — ¢ ——
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e NE
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a) Schematic R

b) Implementation

Figure 1.1: C-element

transistors operate as on/off switches, and we assume that signals can have one of the two
possible values, either HIGH of LOW. Figure 1.2a shows a state graph that represents the
behavior of the C-element, assuming that all terminals are initially LOW. The symbol

> marks the initial state of the graph, 1 represents an up-transition, and | represents a
down-transition. In our specifications we assume that a component operates within some
environment. The environment controls the values of the inputs to the component and
the component controls the values of its outputs. For example, when both inputs to the
C-element have the same value, the output of the C-element will assume the value of its

inputs, otherwise the output of the C-element remains unchanged.

cl

a) C-element

Figure 1.2: C-element and JOIN

The environment of the C-element from Figure 1.2a can “revoke” an input. For
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example, the environment can initially change the value of input a from LOW to HIGH,
and then it can return the value of ¢ back to LOW, without ever changing the value of
input b. Revoking an input can create a race [Brzozowski and Seger, 1995]: Assume that
input @ has changed from LOW to HIGH. Now suppose that input a changes from HIGH
to LOW and, at the same time, input b changes from LOW to HIGH. What is the value
of output ¢? It is possible that input b wins the race, thus output ¢ changes from LOW
to HIGH. It is also possible that input a wins the race and the value of output ¢ remains
LOW. Looking at Figure 1.1, we observe that we could also get a short pulse on output c,
if transistors connected to input a switch more slowly than transistors connected to input
b. That is, the implementation of the C-element shown in Figure 1.1 has a static hazard
[Stevens, 1994, Brzozowski and Seger, 1995]. Hazards are undesirable, because they can

cause unpredictable behaviors.

In order to avoid the race, revoking of inputs of a C-element is often prohibited. A
C-element, where revoking an input is not allowed, is called a JOIN. Figure 1.2b shows a
state graph of a JOIN, ignoring differences between up-transitions and down-transitions.
We use a? and b7 to denote input transitions on ports a and b, respectively, and ¢! to
denote output transitions on port ¢. After transitions on both input ¢ and input b have

taken place, a transition on output ¢ takes place. This behavior can repeat.

Figure 1.2b contains only information on what the JOIN and its environment can
do, but it does not address the question of what the JOIN and its environment cannot
or must not do. Figure 1.3 shows a model for the JOIN that characterizes explicitly
sequences of communication actions (or traces) that the environment must avoid or that
the JOIN guarantees to avoid. In order to obtain the state graph in Figure 1.3, we added
two states to the graph from Figure 1.2b: the L state, and the T state. L is pronounced

as “bottom” and T is pronounced as “top”. All traces that cause a failure of the JOIN
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Figure 1.3: The JOIN with safety properties

lead to the L state. The JOIN fails if the environment provides two transitions on the
same input port without waiting for a transition on the output port. For this reason,
trace aa leads to the L state. The T state is the destination for the traces that cannot
take place. For example, the JOIN cannot initially produce an output on port ¢, thus a

transition on output ¢ leads from the initial state to the T state.

The specification of the JOIN shown in Figure 1.3 is an example of a process from the
safety model of Chapter 3. The safety model is an instantiation of the abstract model
of ECF processes developed in Chapter 2. In the safety model we focus on specifying
when a process is capable of receiving inputs and when a process is capable of producing

outputs.

Another instantiation of the general ECF model is the progress model presented in
Chapter 4. In the progress model we can specify when a component guarantees progress
by providing an output. We can also specify when a component demands progress from
its environment by demanding an input. Figure 1.4 shows a specification of the JOIN
that contains progress information. We denote progress information by attaching la-
bels to states: label O marks quiescent states where no progress is either required or
demanded; label A marks “demanding” states where the component demands progress
from its environment; label V marks transient states where the component guarantees

to make progress by producing an output. The symbolism behind these labels can be
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Figure 1.4: The JOIN with progress properties

memorized as follows. The transient triangle V will eventually topple. The demanding A

(delta) will not. The indifferent O has a flat base like A, but is upside-down symmetric.

For example, in the initial state, the JOIN makes no progress guarantees nor does it
demand an input from its environment. For that reason, the initial state is labeled with
O. After having received both inputs, the JOIN is in a state labeled with V. In that

state the JOIN guarantees to produce an output on port c.

The graph from Figure 1.4 contains the 1 and the T state. The meanings of the L
state and the T state are the same as in the safety model illustrated in Figure 1.3. Thus,

the progress model also addresses safety characteristics of a process.

We define a number of operations on ECF processes. One such operation is network
composition, which we use to model networks of processes. Take, for example, a network
consisting of the JOIN from Figure 1.4 and the WIRE from Figure 1.5. The WIRE is a
component that can receive an input and then it guarantees to produce an output. After
that, the behavior repeats. Figure 1.6 shows a state graph of a process that represents
a network of the JOIN and the WIRE. All missing output transitions lead to the T
state, which is omitted in order to reduce the clutter. The process is a result of the
network composition of the JOIN and the WIRE. The result of the network composition
contains information about the failures that can occur in the network. For example, if

the environment provides the second input on port a before the JOIN has produced an
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Figure 1.5: The WIRE

output, the network fails, which indicates a failure of the JOIN. Furthermore, suppose
that the JOIN produces the second output on port ¢ before the WIRE has produced an
output on port d. In that case the network fails, indicating that the JOIN has produced
an output when the WIRE was not able to receive an input. That is, failures of the

network can represent safety problems that are internal to the network.

1
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Figure 1.6: The network of the JOIN and the WIRE

After the network from Figure 1.6 has received inputs on ports a and b, it guarantees
progress towards producing an output on port d. That is, the network is in a V state.
First, an output on port ¢ is produced, indicating the communication between the JOIN
and the WIRE. The network is now in another state labeled with V, from which an

output on port d is guaranteed. Our network composition does not conceal connections
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between components within the network. Rather, the connections appear as output ports

of a network.

The refinement relation on ECF processes determines whether an implementation
satisfies a specification. Both the specification and the implementation are expressed as
ECF processes. The refinement relation allows us to compare only processes that have
the same input ports and the same output ports. If an implementation is a network of
components, we apply an operation called hiding in order to conceal internal connections
between components in the network. Figure 1.7 shows the result of hiding port ¢ from
the network of Figure 1.6. Port c represents the connection between the JOIN and the

WIRE.
d! a?

!
d! d! v g(} n

T -———— O

c! b?

Figure 1.7: The network of the JOIN and the WIRE after hiding output ¢

Hiding takes into account progress and safety properties of a process. For example,
the process of Figure 1.6 guarantees producing an output on port d after having received
inputs on ports a and b. Similarly, the result of hiding port ¢, shown in Figure 1.7 is in
a V state after inputs on ports a and b have been received, guaranteeing that an output

on port d will be produced.

Besides network composition, we also define a specification composition for ECF pro-
cesses. Our application of the specification composition is as follows: We look at the
behavior of a process in terms of constraints and we express each constraint as a so-called

snippet process. The specification composition allows us to combine the snippets into
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Figure 1.8: Two snippets for the JOIN

a specification of a process. For example, the behavior of the JOIN can be seen as a
“conjunction” of two constraints. The first constraint, shown in Figure 1.8a, states that
inputs on port ¢ and outputs on port ¢ must alternate. Furthermore, after receiving an
input on port a, the JOIN will produce an output on port c. The second constraint,
shown in Figure 1.8b, takes into account ports b and c¢. The constraint states that inputs
on port b and outputs on port ¢ alternate and that, after having received an input on port
b, the JOIN will produce an output on port c. The specification composition of the two
constraints results in the specification of the JOIN shown in Figure 1.4. In Chapter 6 we
propose a design method that one can apply to specifications expressed as specification

compositions of constraints.

1.3 Related work

In this section we survey previous work that influenced most of the work leading to the

ECF model proposed in this thesis.

A number of formalisms have been applied to asynchronous circuit design. Qur ECF
model belongs to the category of trace theory, introduced by Jan van de Snepscheut in
[van de Snepscheut, 1985]. Snepscheut discusses how trace structures can be applied to

modeling asynchronous circuits and stays short of defining a refinement relation, which



14 CHAPTER 1. INTRODUCTION

would link a specification of a circuit to its implementation. Snepscheut, however, does de-
fine formally the concept of transmission interference, which is a part of safety correctness
criteria in many of the later models, including our safety model from Chapter 3. Snep-
scheut defines three composition operators on trace structures, the weave, the blending,
and the agglutination. All three operators were intended to represent the joint opera-
tion of two “mechanisms” described by trace structures. The only difference between the
weave and the blending is that in blending the connections between devices are hidden.
Agglutination, on the other hand, is a much more complicated operator that assumes
arbitrary delays in connections between components. Snepscheut’s weave is captured by
the process product in the safety model in Chapter 3. Progress issues are not addressed

in [van de Snepscheut, 1985].

Jan Tijmen Udding used trace theory in order to state so-called JTU-rules that char-
acterize delay-insensitive circuits [Udding, 1984]. A refinement relation is not defined.
Udding, however, does give a formal definition of the absence of computation interfer-
ence. Together with the absence of transmission interference, the absence of computation
interference forms the basis for our safety condition. Udding also proves that the network
consisting of process P, its reflection ~P, and the connection wires between the two is

free of transmission and computation interference, if P is a so-called DI process.

This proof can be related to the work of Jo Ebergen, who proposed that the reflection
of a specification can be used in testing whether an implementation satisfies a given spec-
ification [Ebergen, 1989, Ebergen, 1991]. That is, implementation I satisfies specification
S if the network consisting of I and ~.S satisfies some correctness criteria. The reflection
of the specification acts as the environment in which the implementation must operate
correctly. We show that the refinement relations in the safety model of Chapter 3 and

in the progress model of Chapter 4 both can be expressed in terms of correctness of the
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network consisting of the implementation and the reflection of the specification. While
Udding concentrated on delay-insensitive circuits, the speed-independence is fundamental
to Ebergen’s model. Ebergen showed that delay-insensitive circuits can be characterized
with a speed-independent model by inserting explicit WIREs in connections between
circuit components. Such an approach has an advantage, because it allows for a compo-
sition operator that is simpler than Snepscheut’s agglutination. Ebergen does not define
an explicit composition operator on processes, but he has a refinement relation called
“decomposition”. In the definition of decomposition, the weave is used implicitly for

computing the joint behavior of a network of processes.

Among the correctness criteria for Ebergen’s decomposition is “the completeness of
network behaviors”, which is intended as a progress condition. Namely, Ebergen requires
that any implementation must be capable of exhibiting all sequences of communication
actions that the specification can exhibit. [Peeters, 1990] shows that this progress condi-
tion allows some undesirable implementations; for example, deadlock is not captured by
the completeness of network behaviors. Ebergen addressed the need for a better progress
condition in his verification program VERDECT [Ebergen and Berks, 1995], where two
additional progress conditions were implemented. One condition detects the presence of
unbounded sequences of internal communication actions between components within an
implementation, which may be an indication of a livelock. The other condition, called
“the absence of illegal stops” checks whether an implementation can produce an output at
any point where the specification can produce an output. These two conditions were de-
scribed only informally and their properties have not been studied. The output-persistent

refinement relation that we define in Chapter 5 captures the absence of illegal stops.

Ebergen recognized that the weave can be used not only for composing processes

that represent circuit components, but also for combining behavioral constraints into a
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specification of one component. Such a constraint-oriented specification approach can be
used for producing simple specifications of behaviors that involve a significant degree of
concurrency. See [Ebergen, 1992], [Ebergen et al., 1993], and [Benko and Ebergen, 1994]
for examples of such specifications. The Separation Theorem from [Ebergen, 1991] cap-
tures an elegant design technique that applies to specifications given as a weave of con-
straints. This design technique is illustrated in [Ebergen, 1992], [Ebergen et al., 1993],
and [Benko, 1993]. In this thesis we pursue the idea of constructing specifications from
behavioral constraints. We show that, when progress concerns are taken into account,
the operand for combining behavioral constraints differs from the operand for computing
the behavior of a network of independent components. In Chapter 6 we propose a “part-
wise” design method that is similar to an application of Ebergen’s Separation Theorem,

but now progress concerns are also taken into account.

David Dill’s prefix-closed trace structures and complete trace structures [Dill, 1989]
introduced a distinction between success traces and failure traces. Success traces corre-
spond to legal traces in the ECF model, and failure traces corresponds to traces labeled
with L. Dill introduces a composition operator on trace structures, but does not address
the question of combining behavioral constraints into one specification. Dill also defines
explicitly the hiding operation, used for hiding output symbols of a component. Hiding
is based on the projection defined in [van de Snepscheut, 1985]. A result of Dill’s hiding
can be a process for which some trace is both a success trace and a failure trace. Such an
ambiguity models situations where both success and failure are possible, depending on un-
known factors. In our hiding operation we take a more pessimistic approach, maintaining

the distinction between failure traces and success traces.

[Dill, 1989] introduces two separate models: Prefix-closed trace structures address the

question of safety. Complete trace structures, intended for studying progress properties,



1.3. RELATED WORK 17

are not prefix-closed and involve infinite traces. Infinite traces and the lack of prefix-
closedness make operations on complete trace structures fairly complicated. The progress
properties that can be captured by complete trace structures include liveness, which we
study in Chapter 4, and fairness, which, as argued in [Black, 1986], is beyond the power

of finite-trace models such as ECF processes.

The main inspiration for ECF processes comes from DI and XDI processes proposed
by Tom Verhoeff [Verhoeff, 1994, Verhoeff, 1998a]. One major difference between our
ECF model and Verhoeff’s DI and XDI models is that our ECF model describes speed
independent circuits, while the DI model and the XDI model apply to delay-insensitive
circuits only. The DI model is a sister model to our safety model from Chapter 3 and
addresses safety issues only. The XDI model, on the other hand, corresponds to our

progress model from Chapter 4 and deals with safety and progress concerns.

[Verhoeff, 1994] introduced Enhanced Characteristic Functions (ECFs) that are used
to attach labels to traces and has recognized that “ECF's are a neat way of describing
processes and their cooperation in systems”. On the other hand, Verhoeff did not base
the DI and the XDI model on ECFs, because “the tediousness and sheer number of de-
tails concerning ECFs was disappointing”. We find our ECF-based model that applies
to speed-independent circuits to be quite simple. In our opinion, the source of complex-
ity referred to by Verhoeff was delay-insensitivity. In particular, defining the process
composition in Verhoeff’s models was complicated: Verhoeff gives two definitions of the
composition. In the first definition, the composition is defined indirectly by using a
correctness condition. In the second definition, the process composition is defined as a
fix-point of a sequence of transformations. In our ECF model, on the other hand, we
were able to define process composition, or process product, as we call it, by simply

lifting the product on labels to ECFs. Also, Verhoeff does not address the question of
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combining constraints into one specification. The only composition operator defined in

[Verhoeff, 1994] corresponds to our network composition.

Verhoeff’s composition hides connections between components. One consequence of
that decision is that in DI and XDI processes we can have only point-to-point connec-
tions. In ECF processes, the composition does not hide connections between processes.
Instead, we can hide connections by applying a separate hiding operation. In our opinion,

separating hiding from process composition contributes to the simplicity of the model.

The testing paradigm [Nicola and Hennessy, 1983] is the basis for Verhoeff’s refine-
ment relation. That is, an implementation satisfies the specification if the implementation
passes all the tests that are passed by the specification. Our refinement relation, on the
other hand, is based on comparison of labels attached to traces. We prove that the refine-
ment relations in the safety model from Chapter 3 and the progress model from Chapter

4 can also be characterized by means of the testing paradigm.

Willem Mallon extended the XDI model by allowing so-called unhealthy processes
[Mallon et al., 1999]. In an unhealthy process, some trace indicates that a process guar-
antees progress after that trace. The process itself, on the other hand, is not capable
of producing an output. Unhealthiness indicates a problem with the process specifica-
tion; thus, Verhoeff excluded unhealthy processes from his XDI model. Mallon, on the
other hand, argues that allowing unhealthy processes simplifies the model and leads to
a number of desirable formal properties. Consequently, the X?DI model presented in
[Mallon et al., 1999] includes unhealthy processes. We agree with Mallon that unhealthy
processes lead to a simpler formalism and we include unhealthy processes in the progress
model of Chapter 4. The main focus of Mallon’s work is a design technique based on the
so-called Factorization Theorem. We prove that the Factorization Theorem also holds

for ECF processes. Mallon does not address the distinction between the specification
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composition and the network composition.

1.3.1 Other formalisms

Besides different versions of trace theory, there are a number of other formalisms that

relate to ECF processes. Here we discuss some of these models.

Mark Josephs introduced a model called “receptive process theory”. The name “re-
ceptive” was borrowed from [Dill, 1989] and means that a process has no control over
when its environment will provide an input. Receptive processes rework Hoare’s theory
of Communicating Sequential Processes [Hoare, 1985] under the assumption of receptive-

ness. ECF processes are also receptive.

Receptive processes capture progress concerns by using failure traces in order to ex-
press progress properties of a process: After a failure trace, a process cannot produce
an output. This approach is very similar to the treatment of progress in Dill’s complete
trace structures. Receptive processes, however, have no means of expressing progress con-
ditions for the environment of a process. Such conditions can be expressed in the ECF
progress model. A network composition is defined for receptive processes, but the ques-
tion of assembling specifications by combining behavioral constraints is not addressed.
[Josephs, 1992] hints that a refinement relation could be defined for receptive processes
by comparing failure sets of a specification and an implementation, but stays short of an
explicit definition of refinement. Rather, the examples in [Josephs, 1992] require that the
specification and the composition of components comprising an implementation are the

same.
Milner’s Calculus of Communicating Systems (CCS) [Milner, 1989] is another formal-

ism that was applied to modeling asynchronous circuits. [Stevens et al., 1993] demon-

strates how to express specifications of asynchronous circuits in terms of CCS. CCS
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specifications can be constructed as parallel compositions of CCS agents. The technique
of composing agents is different from composing constraints with the weave, because the
semantics of CCS parallel composition implies communication between agents. Thus,
an agent does not represent a constraint on a behavior of a process. Rather, we can
see agents as a means of breaking a specification in a hierarchical manner into smaller

objects.

CCS itself does not address progress properties of processes. [Liu et al., 1993] and
[Stevens, 1994] demonstrate how progress properties can be addressed by coupling CCS
with the modal-u calculus. More precisely, [Liu et al., 1993] and [Stevens, 1994] show how
to construct tests for the absence of deadlock, fairness, safety and liveness. These tests
are expressed as fixed points of u-calculus formulae and their formulation can be quite
involved. Fortunately, [Liu et al., 1993] and [Stevens, 1994] were able to take advantage
of results from temporal logic, which made the tests easier to understand. A general
purpose verification tool called Concurrency Workbench made it possible to automate

progress-property tests on CCS agents.

The theory of labeled transition systems provides a number of equivalences on CCS
agents. One can use these equivalences in order to compare a specification and its imple-
mentation. Ken Stevens [Stevens, 1994] argues that it is usually too tight a requirement
that a specification and implementation have equivalent behaviors. Instead, Stevens pro-
poses two refinement relations, called trace conformance and logic conformance. Trace
conformance is similar to our output-persistent refinement defined in Chapter 5: Both
relations require a match between outputs that can be produced by a specification and
outputs that can be produced by an implementation. Unfortunately, trace conformance
does not detect deadlocks. Stevens incorporated a number of aspects of bisimulation into

a stronger relation, called logic conformance, which does detect deadlocks. The exten-
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sions of CCS developed in [Stevens, 1994] were incorporated into a verification tool called

Analyze.

Radu Negulescu proposed process spaces [Negulescu, 1998], a very general formalism
that can be applied to studying safety and progress properties of asynchronous circuits.
Process spaces are built on top of a so-called set of abstract executions. A trace set
is an example of a set of executions. The executions are split into three sets: goals
represent a desirable course of actions; rejects are executions where the environment
behaves improperly, violating behavioral requirements of a process; escapes are executions

where a process behaves improperly, violating the requirements of its environment.

In process spaces, each property requires a separate specification. That is, if we were
to study safety and progress properties of a circuit, we would produce two specifications,
one for safety and one for progress properties. In our ECF model, we cover both safety

and progress with one specification.

Process spaces have a composition operator called process product. The process
product is similar to the product that we define for ECF processes and can be used
as a network composition or as a specification composition when only safety issues are a
concern [Negulescu and Peeters, 1998]. We show that, when progress issues are a concern,
the process product cannot be used as a specification composition. A refinement relation
is defined for process spaces and it was shown that the refinement relation conforms to the
testing paradigm. [Negulescu, 1998] mentions a possibility of defining a hiding operation

for process spaces, but does not give an explicit definition.

The safety condition on process spaces is expressed as so called robustness of a process.
As opposed to the absence of computation interference, robustness does not require that
the process has no input terminals. Rather, a robust process must be capable at any

time of receiving an input on any of its input ports. A robust process never fails by itself.
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The safety condition for ECF processes also does not require that a process has no input
terminals and the condition demands that a process cannot fail by itself. On the other
hand, our safety condition does not require that a process must always be able to receive

an input on any of its input ports.

Negulescu informally introduces the concept of finalization, which captures the same
progress condition as our refinement relation in the progress model of Chapter 4. While
finalization uses finite traces, the concepts of liveness and progress in process spaces
involve infinite traces. Liveness guarantees that desired events are not postponed forever
and progress in process spaces guarantees that desired events are not postponed for an
unbounded time. Negulescu’s liveness and progress capture correctness conditions that

are not addressed in ECF processes.

1.4 Contributions

The main contributions of this thesis are

e The abstract model of ECF processes is new. ECF processes rely on a number
of simple properties that must be satisfied by some unknown set of labels. These
properties are then lifted to ECF processes, which results in short and simple proofs

of properties of ECF processes.

ECF processes provide a unified framework that we can apply to studying various
properties of processes and of networks of processes. In order to apply ECF pro-
cesses, we instantiate the abstract ECF model with an appropriate set of labels.
This gives us a “concrete” model where all the properties proven for ECF pro-
cesses hold. In the thesis we discuss two instantiations of ECF processes: a model

where we address the safety of processes and a model where we address progress of
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processes.

ECF processes model so-called isochronic communication. That is, communication
between processes is assumed to be instantaneous. Isochrony allows us to lift the
product on labels to the product on processes in a straightforward manner. The
result is a simple definition of process product. In the instantiated models, the

process product serves as the network composition for processes.

The definition of hiding is new. We demonstrate that hiding applied to processes in
the safety model takes into account safety properties of a process. In the progress
model, hiding also takes into account progress properties of a process. This distin-
guishes hiding from a simple projection operation used in “standard” trace theory,
where progress and safety properties are not taken into account. Hiding enjoys
a number of desirable formal properties. Most notably, hiding is monotonic with

respect to the refinement relation and hiding distributes over process product.

One instantiation of ECF processes is the safety model of Chapter 3, where we
illustrate operations on ECF processes. The safety correctness condition presented
in Chapter 3 follows the same approach as in previous work with a minor change
in the formulation. Namely, our safety condition can be applied to any process in
contrast to the absence of computation interference, which is typically defined only
for a closed network. Furthermore, we do not require that a safe process withstand
misuse by the environment. This makes our safety condition less demanding than

robustness from [Negulescu, 1998].

We demonstrate that the process product defined for ECF processes in the safety
model can be used for modeling networks of processes as well as for combining
process snippets expressing behavioral constraints into a specification of one com-

ponent.
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e Another instantiation of ECF processes is the progress model of Chapter 4. Our
progress condition is the same as the progress condition in XDI model proposed in
[Verhoeff, 1994]. This means that we can detect deadlocks, but we do not address

questions of fairness and starvation.

We demonstrate that the process product can be used for modeling networks of pro-
cesses in the progress model. On the other hand, the process product is not suitable
for producing specifications by combining process snippets expressing behavioral
constraints. This is a new observation, revealing that, when progress properties
are a concern, there is a formal distinction between the network composition and
the specification composition. In previous work as well as in our safety model, no

distinction has been made between the network and the specification composition.

e The observation that the progress model demands a distinction between the net-
work composition and the specification composition led us to defining a domain of
snippets. Snippets are restricted processes that we use for expressing behavioral
constraints. We define the specification composition on snippets, which we use
for combining snippets into a specification of one process. We give a number of
examples that illustrate how to specify circuit components in terms of behavioral

constraints expressed by snippets.

e We propose a part-wise design method that can be applied to specifications con-
structed as a specification composition of snippets. The design method allows us to
find in isolation an implementation for each snippet. We then combine these partial
implementations into an implementation of the original specification. This design
method may help us avoid a state explosion in verification of implementations that
involve a large degree of concurrency. Instead of verifying the complete implemen-

tation, we only have to verify implementations of individual snippets. Because
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snippets tend to be small sequential processes, verifying their implementations is
usually not a difficult task. The rest of the work is then done by applying a num-
ber of theorems, which leads to the final implementation. We illustrate this design

approach on a number of examples.

e The refinement relation on ECF processes is defined in a simple manner by com-

paring labels of traces. For the safety and for the progress model we prove that the
refinement relation can be characterized by applying a correctness condition to a
network consisting of an “implementation” and the reflection of the “specification”.
Furthermore, we prove that the refinement relation can also be expressed in terms
of the testing paradigm. That is, process I implements specification S if I passes
all the tests that are passed by the specification. This means that our refinement

relation has three equivalent characterizations.

The testing paradigm allowed us to prove the Factorization Theorem in both the
safety and the progress model. The Factorization Theorem provides a bound on a
solution of the Design Equation [Verhoeff, 1994, Mallon et al., 1999], which is the
cornerstone of a design method advocated in [Mallon et al., 1999]. Consequently,
the design method based on solving the Design Equation is also applicable to ECF

processes.

1.5 Road map

In Chapter 2 we propose the general model of ECF processes. We define the refinement

relation, reflection, product and hiding, and we prove a number of properties that hold

for these operations. Finally, we prove the Substitution Theorem that forms the basis for

hierarchical verification and design.
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In Chapter 3 we present a safety model, which is an instantiation of the general ECF
model. We apply the safety model to studying safety properties of processes and networks

of processes.

In Chapter 4 we present a progress model, which is another instantiation of the general
ECF model. In the progress model we address progress properties of processes and of
networks of processes. We illustrate how progress properties are reflected in all the

operations on processes in the progress model.

In Chapter 5 we discuss the specification composition in the safety model and in the
progress model. In progress model, we define the domain of snippets, which are processes
that satisfy a number of conditions. We define the network composition for processes and
the specification composition for snippets.

In Chapter 6 we propose a part-wise design method, which applies to specifications
expressed as a specification composition of constraints. We illustrate the part-wise design
method on a number of examples. We also demonstrate a step-wise design method, based
on the application of the Substitution Theorem.

In Appendix B we briefly introduce the theory of ordered sets and lattices. Appendix

C contains proofs of the lemmas used in the main body of the thesis.

1.6 Notation

Function application is denoted with an infix dot: f.x is the image of x under application
of f. We use a slightly unconventional notation for expressing quantifications. Universal

quantification is denoted by

(VL: D: E)
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where L is a list of bound variables, D is the domain predicate, and FE is the quantified
expression. Typically, D and E contain variables from L. For example, the following

expression states that function f is monotonic:

(Ve,y: z<y: fa<fuy)

Existential quantification is denoted by J and is expressed in the same format as the

universal quantification. We write

{L: D: E}

to denote the set of all values E obtained by substituting values that satisfy predicate D
for the variables in L. For example, if N denotes the set of natural numbers, then the

set of all squares of natural numbers is denoted by

{n:neN:n?}

. Most proofs in the thesis have a special layout. For example, when we prove P = R by

first showing that P = @ and then Q & R, we write

P

= {hintwhy P=Q }
Q

< {hint why Q< R }
R
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Chapter 2

ECF processes

In “standard” trace theory, such as the one of [van de Snepscheut, 1985] or [Ebergen, 1989],
we specify the behavior of a device by listing all allowed sequences of interactions between
the device and its environment. Such a list of sequences is called a trace set. Traditionally,
traces that are not present in a trace set are forbidden and are considered to represent
invalid sequences of communication actions. The presence of a trace in the trace set
can be determined by a characteristic function, which distinguishes between valid and
invalid sequences of communication actions. [Verhoeff, 1994] proposed a model in which
a characteristic function can tell us more than whether some sequence of communication
actions is valid or not. Such an enhanced characteristic function (ECF) assigns a label
to a trace, and the label indicates some property of the trace. For example, the label can
specify the safety status of a process after that trace has taken place. More precisely, a
label can tell us whether a safety failure has occurred. In another application, an ECF

can specify the progress guarantees and demands of a process after exhibiting the trace.

In this chapter we develop an abstract model where a process is defined by an input

and an output alphabet and by an ECF. The ECF maps traces over the input and output
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alphabet to a set of labels A. We assume that A satisfies a number of conditions. On the
basis of the properties of A, we define a refinement relation and a number of operations
on processes. We emphasize that the properties of the operations and of the refinement
relation on processes hold regardless of the particular choice of A, as long as A satisfies
the basic requirements. Consequently, the abstract ECF model forms a framework for a
number of different models that could be geared towards studying specific properties of

processes and their networks.

In this chapter we refrain from discussing applications of the abstract model. Rather,
we do the groundwork for subsequent chapters, where we pick two concrete sets of labels

in order to study safety and progress properties of processes.

2.1 Labels

We require that a set of labels satisfies a number of conditions:

Definition 2.1.1 (Labels)

A set of symbols A is called a set of labels if it satisfies the following conditions:

1. A partial order C is defined on A, and (A, C) is a complete lattice with least element

1 and greatest element T.

2. A product, denoted by X, is defined on A, such that A is closed under product. The
product is associative, commutative, idempotent, and monotonic with respect to the

partial order C. For labels A\ and v, we have

Axye{T, 1} & Xe{T,1} vye{T, 1} (2.1)
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3. A reflection ~X is defined for each X\ € A. The reflection is its own inverse and it

reverses the partial order:

ALy = ~yLC~A (2.2)

We use lower-case Greek letters to refer to members of A.

Equations 2.2 and 2.3 imply that ~1 = T and ~T = L. The proof goes as follows:
Take any label A. We know that L T ~A. By Equations 2.2 and 2.3 we get for any label
A that A C ~1. We conclude that ~1 = T, because T is the greatest element in A.

Furthermore, by Equation 2.3 we have ~T = L.

Labels: A={L,0,0,T} Partial order: L COCEQLCT

Reflection:

. )\‘J.()C?T
Product: N)\‘T U o L

—H 3 | x
SIS
HO O O
H4H 3 HQ
H = [

Figure 2.1: An example of a set of labels

Figure 2.1 shows an example of a set of labels, and a partial order, a product, and
a reflection defined for that set of labels. One can verify by inspection that the set A
from Figure 2.1 satisfies the requirements from Definition 2.1.1. We have no intuitive
interpretation for the set of labels used in this chapter. On the other hand, we do provide

intuitive explanations for labels used in Chapters 3 and 4.
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2.2 Processes

A process P is a triple (i.P,0.P,f.P), where i.P is the input alphabet of P, 0.P is the
output alphabet of P, and f.P is the enhanced characteristic function for P. We stipulate
that i.P and o.P are disjoint. The alphabet of process P, denoted by a.P, is i.P U o.P.

The function f.P assigns labels to traces: f.P: (a.P)* — A.

We assume that, once something bad happens to a process, it cannot recover. That
is, once trace t is labeled with L, every extension tu of ¢ is labeled with L. We call this

property L persistence:

fPt=1 = (Vu:ue€(aP) : f.Ptu=1) (2.4)

Similarly, once trace t is labeled with T, every extension tu of ¢ is labeled with T. This

property is called T persistence.

fPt=T = (Vu: (a.P)* : f.Ptu=T) (2.5)

Definition 2.2.1 (Process)

A process P is a triple P = (i.P,0.P,f.P), satisfying the following conditions:

1. i.PNo.P = 0.

2. £.P is T and L persistent.

The set i.P is the input alphabet of P, 0.P is the output alphabet of P, and f.P : (a.P)* —

A is the enhanced characteristic function.

For process P, the set of legal traces, denoted by 1.P, is the set of all traces that are
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not labeled with either T or L:

LP={t:te(a.P)" Nf.Pt&{T,1} : t} (2.6)

Traces that are not legal are called illegal traces. That is, illegal traces are labeled with
either T or L. The name illegal suggest that we intend to use labels T and L in order to

represent undesired or erroneous events in the behavior of a device.

To each process one can naturally attach a directed state graph as follows: We start
by creating an initial state, which is labeled with f.P.e. Next we create a distinct state
for each one-symbol trace a; and label the state with f.P.a;. We also create a transition
for each symbol a;, such thet the transition leads from the initial state to the state
corresponding to one-symbol trace a;. To distinguish input symbols from output symbols,
we attach the question mark to input symbols and the exclamation mark to output
symbols. We continue this process inductively, creating an infinite graph where each
trace in process P has its own distinct state. The state graph is deterministic from the

automaton point of view.

Figure 2.2: Creating a state graph for a process

Figure 2.2 illustrates how one can create a state graph for an arbitrary process P.

Such a graph is infinite, because it contains a distinct state for each trace. A general
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graph can be reduced if subgraphs stemming from two states are the same. Such two

states are equivalent, and can, consequently, be merged.

For example, all states labeled with | are equivalenty because of L-persistence: All
states in a subgraph stemming from a | state are labeled with 1. For that reason, all
transitions leaving states labeled with T are self loops. A similar argument holds for T
states. In order to reduce the clutter, we do not depict self loops on T and L states when

we depict processes with state graphs.

Processes that we use in our examples have simple, finite state graph representations.
For example, the state graph in Figure 2.3 shows process P where traces are labeled
with labels from Figure 2.1. The process is defined as follows: i.P = {a}, 0.P = {b},

f.Pe=30,fPa=9,fPt=_1forte (b+ab)(a+b

~—

* and f.Pt =T for t € aa(a+b)*.
T

> ———=

—

a?

—

3

Figure 2.3: An example of a process represented by a state graph

What if the initial state (or the empty trace) is labeled with T or with 1?7 Then we
get two special processes. When the initial state of process P is labeled with T, then
f.P.e = T, which means that all traces in this process are labeled with T. We name this
process MIRACLE(I, O), where I is the input alphabet and O is the output alphabet. The
name MIRACLE is borrowed from [Verhoeff, 1994] and it suggests that MIRACLE is “the
best possible” process, which acts as a miraculous panacea. If the initial state of process
P is labeled with |, then f.P.c = 1. That is, all traces in such a process are labeled with
1. We call such a process ABORT(Z, O), where I and O are, respectively, the input and
the output alphabet of the process. The name ABORT comes from [Verhoeff, 1994] and

it suggests that ABORT is “the worst possible” process.
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We write PROC(I,0) to denote the set of all processes with input alphabet I and

output alphabet O.

2.3 Refinement and reflection

Recall that = denotes the partial order on labels. When we compare two processes, we
compare labels of their traces. The processes refinement is defined for processes that have
the same alphabets. The partial-order relation is called a refinement. The purpose of

refinement is to determine whether one process implements another.

Definition 2.3.1 (Refinement)
Let P and @ be processes, such that 1.P =i.Q) and 0.P = 0.Q). P is refined by @, denoted
by P CQ, iff:

PCQ = (Vt: te(aP): f.PIC f.Q.t) (2.7)

When P C (), we often refer to process P as the specification and to process Q) as
the implementation. That is, P C ) means that process () is an implementation of a

specification expressed by process P.

If processes P and @) are represented by state graphs, we can verify the refinement
relation directly on the state graphs: First, we check whether the input and the output
alphabets of the two processes are the same. Then we compute a direct product of two
state graphs by the following procedure: The set of states in the direct product is the
Cartesian product of the sets of states from graphs for processes P and Q. That is, if p is

a state in the graph representing process P, and if ¢ is the state in a graph representing
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process @, then (p,q) is a state in the direct product of the two graphs. The initial state
in the direct product is state (pg,qo), such that py and gy are initial states in the state

graphs for processes P and @, respectively. A transition on port a from state (p,q) to

Tb‘ ot Ta? Tb‘ o! Ta‘?

Direct product:

(T,7) (L, 1)

2(00) — = (%9

Orderon labels: LCOCQLC T

Figure 2.4: Verifying process refinement on state graphs

state (p', ¢') exists if there exists a transition of port a from state p to state p’ in the state
graph for process P and if there exists a transition from state ¢ to state ¢’ in the state
graph for process ). State (p,q) in the direct product has a pair of labels, (A7), such
that X is the label of state p and <y is the label of state ¢. Once we have computed the
direct product of the two state graphs, we can verify the refinement: For each reachable
state (p,q) in the direct product we check whether the label of state p in the graph for

process P is smaller than the label of state ¢ in the graph for process Q.

Figure 2.4 shows state graphs for two processes, P and (), and reachable states of the
direct product of the two graphs. Traces in processes P and @ are labeled with labels
from Figure 2.1. We can see that A C « for each pair of labels (A,7) in the reachable

states of the direct product. Consequently, P C Q.

Notice that in the refinement relation we simply compare labels of identical traces.

We know that the refinement on labels is a partial order. As a consequence, we have
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Theorem 2.3.2 (Partial order)

Refinement C is a partial order on PROC(I,0).

Proof: A relation is a partial order when it is reflexive, antisymmetric, and transitive.

It is easy to see that C is reflexive:
(Vt . te(aP): f.PtC f.P.t) ~ PCP

Assume that P and ) are processes where i.P = i.(Q and 0.P = o0.(). Antisymmetry,

PCQNQ@CP = P=Q(Q,can be seen as follows.

PEQ N QCP
= { Definition 2.3.1 }
(Vt: te(aP): f.PtC f.Q.t) A (w; te(aP): £f.Q4C f.P.t)
= {a.P=a.0,calculus }
(Vt: te(aP): fPICEQL A £.Q4C f.P.t)
= { C is antisymmetric for labels }
(Vi: te(@P)y: £.Pt=1£Qu)
= {iP=iQ, 0P =00, and f.P =£.Q}
P=qQ

Finally, we prove that C is transitive:

PCQ AN QCER
= { Definition 2.3.1 }

(Vt: te(aP): f.P4C f.Q.t) A (Vt: te(aQ): £.04C f.R.t)
= { Calculus, a.P = a.QQ }

(Vt: te(aP): f.PtCEQt A £.Q1C f.R.t)
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=  { C is transitive for labels }
(Vt: te(aP): f.PtC f.R.t)

= {aP =a.R, Definition 2.3.1 }
PCR

a

Recall that (A, C) is a complete lattice. Because the refinement relation on processes

simply lifts the partial order from labels to sets of traces, we can prove the following:

Theorem 2.3.3 (Complete lattice)
(PROC(I1,0),C) is a complete lattice.

Proof: In this proof we rely on the following property of complete lattices:

Let A be a non-empty set and let T be a partial order on A. (A,C) is a complete
lattice if and only if (P,C) has a mazimum element and the greatest lower bound MNB

exists for every non-empty subset B of A.
See Theorem 2.16 in [Davey and Priestley, 1990] for the proof of the property above.

Since PROC(I,0) has a maximum element MIRACLE(Z,O), we have to prove that

the greatest lower bound exists for any S C PROC(I,O). Let P be the following system:

iP = T
oP = O

fPt = (MR: ReS: f.R1)

P is the greatest lower bound on S. We still have to prove that P is a process. More
precisely, we need to prove that P satisfies Equations 2.5 and 2.4, which means that P is

T and L persistent.
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Take trace t such that f.P.t = T. Then, for all processes R € S, we have f.R.t = T.
Furthermore, for any trace u we have, for all processes R € S, f.R.tu = T, because each
process R is T-persistent. Consequently, for any trace u, we have f.P.tu = T. That is,

P satisfies Equation 2.5.

Now take trace ¢ such that f.P.t = 1. Then there exists a process R € S such that
f.R.t = 1. Furthermore, for any trace u, we have f.R.tu = |, because process R is |-
persistent. Consequently, for any trace u, we have f.P.tu = L. Equation 2.4 is satisfied
by P, hence P is a process. O

In our definition of refinement, we say that P C () if the label of each trace in process
P is at most the label of the same trace in process (). The following theorem allows us
to narrow the set of traces for which we have to compare labels in order to determine
whether one process refines another. The theorem states that it is sufficient to compare

the labels of the the empty trace and of all one-symbol extensions of legal traces of process

P.

Theorem 2.3.4

For processes P and @, where i.P =1i.Q) and o.P = 0.Q), the following holds:
PCQ & (Vt:te(lP)(aP)u{e}: f.PtCE.Q.1) (2.8)
Proof: We first recall the definition of refinement:
PCQ = (Vt: te(aP): f.PtC f.Q.t)
Obviously, we have

PCQ = (Vt: te (LP)(a.P)U{e}: £.P4C f.Q.t)
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Next we assume

(Vt: te (LP)(a.P)U{e}: f.PtCf.Q.t) (2.9)

and we prove that P C @ holds.

First take .P = (). Then, either f.P.e = 1, or f.P.e = T. If f.P.e = L, then, by
| -persistence, f.P.t = 1 for every ¢t € (a.P)*. Because L is the least label, f.P.t C f.Q.¢.
If f.Pe =T, then f.QQ.c = T, because f.P.c C f.QQ.e by Equation 2.9, and because T is
the greatest label. By T-persistence, we have f.P.t = f.Q.t = T for every ¢t € (a.P)*.
Hence, f.P.t C f.Q).t.

Now assume that 1.P # (). This means that ¢ € 1.P. Furthermore, by Equation 2.9

we can see that f.P.a C f.Q).a for every a € a.P. Consequently, Equation 2.9 implies

fPeCf.Qe A (Vta: teLPAa€a.P: f.PtaCf.Q.ta) (2.10)

Notice that in Equation 2.10 we compare all traces in (a.P)* other than traces in

((1.P)(a.P) — L.P)(a.P)". Thus, we must prove that Equation 2.10 implies:

(Vt: te ((1L.P)(a.P) —LP)(a.P)": f.PtCf.Q.t)

Take trace ¢t € (1.P)(a.P) — L.P and trace u € (a.P)". That is, trace ¢ is a one-symbol
extension of a legal trace, but trace t is not a legal trace itself. This means that f.P.t €

{1, T}. By T and L-persistence we know that f.P.t = f.P.tu. Therefore, f.P.tu € {1, T}.

We have to prove that f.P.tu C f.Q.tu. If f.P.tu = 1, then, because L is the least

label, we have f.P.tu C f.Q.tu. If, on the other hand, f.P.tu = T, we get the following:

f.Ptu=T
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= {f.Ptu=f.Pt}
fPt=T

= {f.PtLCf.Q.t, by Equation 2.9 }
£Qt=T

=  { T-persistence of Equation 2.5 }
fQitu=T

=  { assumption: f.Ptu=T }
f.PiuCf.Q.tu

a

Next we define reflection. When taking reflection we swap the input and the out-
put alphabet of a process, and for each label we calculate its reflection. As proposed in
[Ebergen, 1989], the reflection swaps the roles of a process and its environment. A spec-
ification can be seen as a contract that defines the obligations of the process and of its
environment. For example, a specification can define when the environment is allowed to
produce an input and when the process guarantees to produce an output. The reflection
of P, denoted by ~P, is a process that assumes the obligations of the environment of

process P. Furthermore, the environment of ~P assumes the obligations of process P.

Definition 2.3.5 (Reflection)

Reflection of process P, denoted by ~P, is defined as

i~P = o.P
o~P = 1P
f.~Pt = ~f.Pt

When process P is represented by a state graph, we can compute the reflection of

the process directly on the state graph: We take the graph for process P and we replace
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each state label with its reflection. Furthermore, all question marks in the original graph
are replaced by exclamation marks and all exclamation marks from the graph for process
P are replaced with question marks. Figure 2.5 shows an example of a reflection of a

process where traces are labeled with labels from Figure 2.1.

P 1 ~P: ) T
Tb! o Ta? Tb? b? Ta!
50 a? O S al o

Figure 2.5: Process reflection

We have

MIRACLE(I, 0) = ~ABORT(O, I) ABORT(I,0) = ~MIRACLE(O, I)

Reflection on processes reverses the partial order:

Property 2.3.6
The following holds for processes P and Q:

PEQ & ~QLC~P
Proof:
PCQ
= { Definition 2.3.1 }
(Vt: te(aP): f.PtC f.Q.t)
< { Equations 2.2 and 2.3 }
(Vt: te (aP): ~(£Q4)C ~(f.P.t))
& { Definition 2.3.5 }
(Vt: te (aP): f.~QiC f.~P.t)
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< { Definition 2.3.1 }

~Q T ~P

2.4 Product

Recall that we require that a product is defined on A and that the product on labels is
idempotent, commutative, associative, and that T and L are absorbing elements. We
define the process product on the basis of the product on A.. When we choose a concrete

set of labels, the process product models the joint operation of processes.

In the definition below we use t | A to denote trace t projected on alphabet A. That

is, t | A denotes trace ¢t from which all symbols not in A have been deleted.

In the first attempt at defining the ECF for the process product we might attempt to

compute the label as the product of labels in individual processes:

f'.(P x Q).t = f.P.(t L a.P) x £.Q.(t | a.Q) (2.11)

In Chapter 3 we show that processes are not closed under the product defined by Equation
2.11, because the result may not be L persistent. For this reason, our definition of process
product takes into account the T and the L persistence: That is, until the product reaches
T or L, the label of trace in the product is calculated as the product of labels in individual

processes. Once either T or L is reached, the label does not change.

Definition 2.4.1 (Product)
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The product of processes P and Q, denoted by P x Q, is defined as
i(PxQ) = (i.PULQ)—(0.PU0.Q)
0.(PxQ) = o0.PU0.Q
f(PxQ)e = f.Pexf.Qe
fP(talaP)xf.Q.(talaQ)  iff.(PxQ)tg{T,L}
£.(PxQ)t otherwise

f(PxQ)ta =

The labels of the empty trace, of all legal traces, and of all one-symbol extensions of
legal traces in P x () are calculated by Equation 2.11. If a one-symbol extension ta of legal
trace t is not a legal trace, then the label of all traces tau is determined by the label of
trace ta. For this reason, most of our proofs need to take into account only labels of one-
symbol extensions of legal traces. For example, Theorem 2.3.4 allows us to check process
refinement only by looking at one-symbol extensions of legal traces. Consequently, the

case-based definition of the process product does not introduce additional complications.

If processes P and () are represented by state graphs, we can compute a state graph
for P x @ directly from graphs for processes P and (). The state graph for P x @ is
based on the direct product of graphs for P and ). Because the process product requires
that the two state graphs have the same alphabets, we first add self-loops to state graphs
for processes P and ). The self loops are labeled with symbols that are present in
one process but not in the other. We mark new symbols as inputs. Next, we compute
the direct product of the state graphs as described in the procedure for verifying the
refinement on state graphs. To obtain the state graph for P x @, we take the direct
product and we modify the graph as follows: Each label (), ) is replaced by label A x ~.
All states labeled with T are merged into one state, and all states labeled with L are

also merged. All transitions leaving states labeled with either T or L are deleted and
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P: T L Q: T 1
P b e b
50 a? o 50 a? o

Self-loops added:
T

1
TN Ta? TC' cl Ta‘?
a? a?
c?

D

e D

Direct product: PxQ:
(T,<) (L, 1) T 1
Tb‘\ Ta Tb!,c! ol, c! Ta?
>(<>,i<>‘)“7 TW) o —T g
(<, T) (©,T)

Figure 2.6: Calculating the state graph for the process product
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replaced by self loops. Recall that in our depicting of state graphs we omit self-loops of

T and 1 states. Finally, each symbol associated with a transition is postfixed with the

question mark if the symbol belongs to the input alphabets of both process P and process

Q. Otherwise, the symbol is postfixed by the exclamation mark. Figure 2.6 shows an

example of computing the state graph for process P x () on the basis of state graphs for

processes P and (). Traces in processes P and () are labeled with labels from Figure 2.1.

The properties of the process product follow from the properties of the product on

labels:

Theorem 2.4.2 (Properties of product)
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The product on processes is idempotent, associative, commutative, and monotonic.

Proof: Idempotence and commutativity of process product follow directly from idem-
potence and commutativity of label product, thus the proofs are trivial and we omit them
for the sake of brevity.
Associativity: Proving that i.(P X (Q X R)) =i.((P x Q) X R) and o.(P x (@ X R)) =
0.((P x Q) x R) amounts to simple set manipulation. For the sake of brevity, we omit
this part of the proof.

We prove f.(P x (@ x R)).t = f.((P x Q) x R).t by induction on the length of the

string. First take t = ¢:

f.(Px(QxR)).e

= { Definition 2.4.1, twice }
f.Pex (f.Q.c x f.R.c)

= { x is associative on labels }
(f.Pexf.Q.e) xf.Re

= { Definition 2.4.1, twice }

f.(PxQ)xR)e

Now assume that, for any trace ¢ of length less or equal to n, f.(P x (Q x R)).t =
f.((P x Q) x R).t. Consider trace tz, where z € a.PUa.RUa.R. If f.(P x (Q X R)).t €
{L, T}, then, by L and T persistence, f.(P x (Q x R)).tz = f.(P x (Q x R)).t and
f.((PxQ)x R).tx =f.((P x Q) x R).t. Hence, f.(P x (Q x R)).tx = f.((P X Q) X R).tz.

Iff.(Px(QxR)).t¢{L, T}, we have:

f.(P x (Q x R)).tz

= { Definition 2.4.1, Equation 2.1 }
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f.P.(tz | a.P) x (£.Q.(tz | a.Q) x f.R.(tz | a.R))
—  { x is associative on labels }

(f.P.(tz | a.P) x £.Q.(tz | a.Q)) x f.R.(tz | a.R)
= { Definition 2.4.1, Equation 2.1 }

f.(PxQ) x R).tzx

Monotonicity: Assume that P C Q. Because i.P = i.QQ, we know that i.(P X R) =

i.(Q x R). Similarly, from 0.P = 0.Q) we conclude that o.(P x R) = 0.(Q X R).

In order to show the monotonicity for ECFs, we first show, by induction on the length

of the string, that

f(PxR)tCf(QxR).t

holds for all traces ¢ in a.(P x R)*. First let trace ¢ be an empty trace. Then, the label

of trace t is computed according to Equation 2.11. This leads to the following:

f.(P X R).c

= { Definition 2.4.1 }
f.PexfRe

C { X monotonic on labels }
£.Q.c x f.Re

cC { Definition 2.4.1 }

f.(Q x R).c

Now assume that

f.(Px R)tCf.(Qx R).t
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holds for all traces ¢ such that |t| < n, where n > 0. We have three cases to consider.

First we assume that trace t is a legal trace. Then we have, for some symbol z:

f.(P x R).tz
= { Definition 2.4.1 }
f.P.(tx | a.P) x f.R.(tz | a.R)
C  { x monotonic on labels, a.P = a.Q) }
£.Q.(tz | a.Q) x f.R.(tz | a.R)
C  { Definition 2.4.1 }
£.(Q x R).tz

Now assume that trace ¢ is not a legal trace in P x R. If f.(P x R).t = L, then it must

be the case that f.(P x R).tx C f.(Q x R).tz, because f.(P x R).tx =f.(P x R).t = L.

Iff.(PxR).t = T, then it must be the case that f.(QxR).t = T , because f.(PxR).t C
f.(Q x R).t. Furthermore, for any symbol z, f.(Q x R).tz = T, hence f.(P X R).tx C
f.(Q x R).tz.

a

2.5 Correctness and testing

When we study process networks, it is useful to define the concept of network cor-
rectness. In [Verhoeff, 1994], the notion of correctness was used as a basis for intro-
ducing the refinement relation, which was defined in terms of the testing paradigm
[Nicola and Hennessy, 1983]. In this section we show that the ECF model allows for

the same view of the refinement relation.

In the ECF model, a process network is just another process. We assume that we

have defined a predicate correct.P, which determines whether process P is “correct”.
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The definition of correct.P depends on the concrete instantiation of the set of labels.
We require, though, that the notion of correctness be related to the refinement relation

as follows:
PC Q@ < correct.(~P X Q) (2.12)

When we choose the particular set of labels and define correct.P, we have to prove that

Equation 2.12 is satisfied.

We can prove, in general, that a notion of correctness leads to the characterization of
the refinement relation in terms of the testing paradigm. That is, if P C @, then process
Q@ will pass any test that process P has passed. In our context, a test is a process that
operates in conjunction with processes P or (). The relationship between the refinement
relation and the notion of correctness as expressed in Theorem 2.5.1 was first established

in the model of [Verhoeff, 1994] and later in [Negulescu, 1998].

Theorem 2.5.1 (Testing)

Let P and Q) be processes such that 1.P =i.QQ and 0.Q = 0.P. Then

PCQ < (YR: RePROC(0.P,i.P): correct.(P x R) = correct.(Q x R))

Proof: We first tackle the implication from left to right. For all R € PROC(0.P,i.P),

we have

PLC Q A correct.(P X R)

=  { Commutativity of x, Equation 2.12 }
~RCP APCQ

= { C is transitive }

~RCQ
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=  { Equation 2.12, ~~R=R }
correct.(Q X R)

The implication from right to left can be proven as follows:

(VR: R € PROC(0.P,i.P) : correct.(P x R) = correct.(Q x R))
= {LetR=~P}

correct.(P x ~P) = correct.(QQ X ~P)
=  { Equation 2.12 }

PCP=PCQ
=  { C is transitive }

PLEQ

a

If Equation 2.12 holds, then we have three equivalent definitions of refinement. All
three definitions have different interpretations. In the first definition, the refinement is
based on the comparison of trace labels. In the second definition, the refinement used
the reflection of the specification as an environment in which an implementation must
operate correctly. In the third definition, the refinement is characterized with the testing
paradigm. That is, an implementation must pass all the tests that are passed by the

specification.

2.6 Hiding

The purpose of the hiding operation is to hide some of the “internal” ports of a process.
Recall that, when we compute the product of two processes, the connections between
the processes become output ports of the product. Because “internal” ports are always

output ports, we consider hiding output ports only.
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The idea for the definition below comes from Willem Mallon [Mallon, 1997] and it
captures the following argument. We assume that a label that is larger according to
the partial order represents a status of a process that is “better” than the status of the
process represented by a smaller label. When we hide some internal ports of a process, the
environment does not know in what state the process is, because the environment cannot
know what internal actions have been performed by the process. That is, a process can be
in one of several different states, where each state could carry a different label. Because
the environment of the process should be prepared for the “worst” possible behavior of

the process, the result of hiding represents the *

‘worst” possible state in which a process
can be after executing a sequence of communications actions, where not all the actions

may be visible to the environment.

Because (A, C) is a complete lattice, the least upper bound is defined for any T' C A.

Hence, the definition below is valid for all processes.

Definition 2.6.1 (Hiding)
Let P be a process and let A C 0.P. The hiding of A in P is denoted by |[A :: P]| and

defined by
if[A=P]] = iP
o][A:P]] = oP-A (2.13)

fl[A=P]t = (Ns:s€(@aP)* Asl(aP—A) =t: f.P.s)

Theorem 2.6.2 (Hiding yields a process)

Let P be be a process and let A C 0.P. Then, |[A :: P]| is a process.

Proof: Because P is a process, i.PNo.P = (. Consequently, i.P N (0.P — A) = (). That

is, the input and the output alphabets of |[A :: P]| are disjoint.

Next we show that f.|[A :: P]| is L-persistent. Take trace ¢, such that f.|[A4 :: P]|.t = L.
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Then, there exists trace s, such that s | (a.P — A) =t and f.P.s = 1. Because f.P is
1 -persistent, f.P.su = L for any trace u. Consequently, f.|[A :: P]|.tv = L for any trace
v.

To show T-persistence of f.|[A :: P]|, we take trace ¢, such that f.|[A :: P]|.t = T.
Then, for every trace s, such that s | (a.P — A) = ¢, f.P.s = T. Because f.P is T-
persistent, f.P.su = T for any trace u. Consequently, f.|[A :: P]|.tv = T for any trace
V. a

We provide an intuitive explanation of hiding and a number of examples of hiding in
Chapters 3 and in 4, where we discuss particular instantiations of the ECF model. In
Chapters 3 and 4 we also provide alternative definitions of hiding.

Below we prove a number of properties of hiding. In particular, we can hide ports in

an arbitrary order, hiding is monotonic, and hiding distributes over product.

Theorem 2.6.3 Let P be a process and let A and B be sets of symbols such that AUB C

0o.P. Then the following holds:

|[A:|[B:P]l]] = [[AUB:: P (2.14)

Proof: First we check the alphabets:

i|[A:|[B:: P i[AUB:P]| = 1P

o[A:|[B:=P]] = o|]][AUB:=P]] = oP—A-B
Next we compare the ECFs:

f.|[A:|[B:: P]|]|.t
= { Definition 2.6.1 }
(MNs: se(a|B=P)* Asl(al][Bu:P)]|—A) =t: £|B:Pl.s)
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= { Definition 2.6.1 }
(Ns: se(@P—-B)* Asl(aP—B—A)=t:
(Mu: ue(aP)* Aul(aP—B)=s: f.Pu))
= { Join the domains }
(MNs,u: se(@P—-B)* Asl(@aP—B—A)=t A
u€ (a.P)* ANul(a.P—B)=s: f.Pu)
= {ul(@P-B)=sAsl(@aP-B-—A)=t = ul(@P-B-—A)=t }
(MNu:ue@P)* Aul(@P—B—A)=t: f.Pu)
—  { Definition 2.6.1 }

f.[AUB :: P]|.t

Theorem 2.6.4 (Monotonicity of hiding)

Hiding is monotonic with respect to refinement. Let A C 0.P. Then:
PCQ = |[A:P]|CIA:Q]

Proof: Let P C . Then, i.P = i.QQ and, consequently, i.|[[4A :: P]| = i.|][4 = Q]|
Furthermore, 0.P = 0.Q), which implies 0.|[A4 :: P]| = 0.|[4 :: Q]| = 0.P — A.

We have to prove f.|[A :: P]|.t C f.|[A :: Q]|-t for any trace ¢:

f.[Azx P)|.t
= { Definition 2.6.1 }

(MNs: se(aP)*Asl(aP—A)=t: f.P.s)
C {fPsCfQsaP=aQ }

(MNs: se(a@Q)*Asl(aQ—A) =t: £.Q.s)
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= { Definition 2.6.1 }
f.][A:: Q]|-t

a

Hiding distributes over product if certain conditions are satisfied. More precisely, if
the symbols of A do not occur in @, then first hiding A in P and then composing P with

Q is the same as first composing P with () and then hiding A.

Theorem 2.6.5 (Distributivity of hiding)

For processes P and Q, such that ANa.Q = (), we have
[A:: P]| x Q=|[A: P xQ
Proof: First we check the alphabets:

iL([A=P]| x Q)=1i(P x Q)=1i|[A: PxQ]

0.[[A=P]| x Q) =o|[A=PxQ]=(0.PU0.Q)—A

Next we prove that f.(|[A :: P]| x Q).t = f.|[A :: P x Q]|.t). Because processes are
closed under hiding and product, and because of T and L-persistence, we only need to

consider ¢ being either an empty trace or a one-symbol extension of a legal trace.

£.([A4 5 Pl x Q)

= { definition of product }
f.J[A:=:Pll.(td (a.P—A)) x £.Q.(t | a.Q)

= { Definition 2.6.1 }

(MNv:ve@P)*Av](aP—A)=tl(aP—A) : f.Pv) x £.Q.(t|aQ)
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= { x is monotonic on labels, so x distributes over M }
(Nv:ve@P)*Av|(aP—A) =t](aP—A) : f.Pvxf.Q.(t|a.Q))
= {AnaQ=0; take v = w | a.P; Lemma 2.6.6 }
(NMw:we@PUaQ)*A wl((aP-4)UaQ)=t] ((aP—-A)UaqQ) :
f.P.(w)aP)xfQ.(t}aQ))
= {AnaQ=0,tl(aP-AUaQ)=t }
(Nw:w e (a.PUa.Q)*A w ((a.PUa.Q)—A) =t : f.P.(w | a.P)xf.Q.(t | a.Q))
= {wlaQ=t|laQsince ANa.Q=0}
(Mw:w € (a.PUa.Q)"Aw | (a.PUa.Q)—A) =t : f.P.(w | a.P)x£.Q.(w | a.Q))
= { Definition 2.4.1 }
(Mw:we (aPxaQ) Awl (aPUaQ)—A) =t:f.(PxQ)w)
= { Definition 2.6.1 }

f.][A:: P xQ]t

In the proof above we made use of the following lemma.

Lemma 2.6.6
Let P and @Q be processes and let A be a set of symbols such that ANa.QQ = 0. Fort, a

trace over alphabet (a.P — A) U a.Q, we have

{v :ve(@P)*Avl](aP—-A)=t](a.P—A) : v}
= {Ana@Q=0,v=wlaP,te((aP—-A)UaQ)" }

{w:we(@aPUa@Q)*N wl ((a.P—A)UaQ)=t: wlaP}

A corollary of the above theorem is
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Corollary 2.6.7

Hiding distributes over product. If ANa.Q =0 and BNa.P =0, then

I[A:: P]| x |[B:=Q]=|[AUB: P xQ]

Proof:

[A:: Pl x |[B = Q]

= {Ana.Q =0, Theorem 2.6.5 }
[A:: Px|[B: Q]

= {Bna.P =0, Theorem 2.6.5 }
[A::[[B:: P x Q]

= { Theorem 2.6.3 }
[AUB : P x Q]|

2.7 Substitution theorem

In this section we prove the Substitution Theorem, which is the cornerstone of the top-
down approach to design and verification. The Substitution Theorem allows us to sub-
stitute a component in any network with an implementation of that component. We
leave examples of applications of Substitution Theorem for Chapter 6 we discuss a design

methods based on ECF processes.

Theorem 2.7.1 (Substitution theorem)
Let P, Q, R, and S be processes. If

PC|[A:QxR]| and RC|[B: S
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then

PCl[A=Qx|[B:=9]]

Proof:

R C [B:5)

= { Theorem 2.4.2 — monotonicity of x }
QxR C Qx|B:S]

= { Theorem 2.6.4 — monotonicity of hiding }
[4:QxR] C [A:Qx|[B:8]]

= {PLC|[A:Q x R]|, Theorem 2.3.2 — transitivity of C }
PCIA=Q@x B8]

d

Thus, the scope of the local symbols B in the component S only pertains to S, and we
don’t have to invent fresh names for each new refinement. Local symbols can be reused,

just like in programming languages.

If we impose some alphabet restrictions, we can rephrase the Substitution Theorem

as follows.

Theorem 2.7.2 (Substitution Theorem, rephrased)
Let Bna.Q = 0. If

PC|[A:QxR|]] and RLC|[B: S|

then

PCI|[AUB: QxS
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Proof:

P
C  { Substitution Theorem }
[A:=Q x |[B:S]]
C { BNna.Q =0, Theorem 2.6.5 — hiding distributes over product }
(4B :Qx 5]
C { Theorem 2.6.3 }
[AUB:Qx 5]

a

The condition B Na.QQ = () can always be satisfied by a renaming the local symbols

Bin S.

2.8 Summary

In this chapter we developed a formal model, called the ECF model, where a process
is defined with its enhanced characteristic function (ECF). ECFs were introduced in
[Verhoeff, 1994]. However, the development of a formal model on the basis of ECFs is
a new result. An enhanced characteristic function maps traces to a set of labels. We
refrained from a concrete instantiation of the label set. Instead, we required a number
of simple properties to hold for the set of labels: the partial order on labels induces a
complete lattice, the reflection on labels turns the partial order upside down, and the
product on labels must be idempotent, commutative, associative, and monotonic. If the

set of labels is small, these properties are easy to check by inspection.

On the basis of the operations on labels, we defined the refinement relation on pro-

cesses and a number of operations on processes. We emphasize that all these properties
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hold in any concrete instantiation of the ECF model.

The following table summarizes the operations defined and the properties proven. In

the table, P, ), and R denote processes, and A and B denote sets of symbols.
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operation  notation

CHAPTER 2. ECF PROCESSES

property

refinement C
reflection ~P
product X
hiding |[A :: P

(PROC(I,0),C) is a complete lattice.
environment: P C () < correct.(~P X Q)

testing: P C @Q < (correct.(P X R) = correct.(Q X R))

turns refinement upside-down: PC Q = ~Q C ~P

idempotence: P x P = P
associativity: (P x Q) x R= (P x (@ X R)
commutativity: P X Q =Q x P

monotonicity: PCQ = PXR C @ XR

arbitrary order: |[A:: |[B:: P]|]|=|[AUB :: P]|
monotonicity: PC Q = |[[A: P]| C |[A = Q]
distributivity: [[A = P]|xQ=|[A=: P xQ]|,ifa.QNnA=10

Finally, we proved the Substitution Theorem, which is a foundation for hierarchical

design and verification:

PC|[A=:PxR]|ARC|B:8]] = PC|[A=Px|[B=S]]
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Chapter 3

ECF processes and safety

In this chapter we apply the ECF process model to studying safety of networks of devices.
By a network of devices we mean a set of devices where connections are established be-
tween ports that carry the same name. We model a device by an ECF process, and we say
that a process network is safe when each output that a process can produce can also be
accepted by all receiving processes. Previous studies of network safety have been exten-
sive and include [Udding, 1984], [van de Snepscheut, 1985], [Ebergen, 1991], [Dill, 1989],
[Verhoeff, 1994], and [Negulescu, 1998]. A safe network is also referred to as a net-
work with absence of computation interference [Udding, 1984, van de Snepscheut, 1985,

Ebergen, 1991] or with absence of choking [Dill, 1989].

There are some differences between our approach to safety and the approaches taken
in previous work. For example, in [Verhoeff, 1994], [Ebergen, 1991], and [Udding, 1984]
failures are represented by traces that are absent from the trace set of a specification.
We model failures explicitly by assigning the | label to traces that represent failures.
In [Ebergen, 1991], the safety condition is defined only for closed networks. Just as

[Verhoeff, 1994] does, we define safety as a stand-alone concept without any alphabet
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restrictions, and we prove that safety is closely related to our refinement relation.

The safety condition on process spaces [Negulescu, 1998] is expressed as so-called ro-
bustness of a process. As opposed to the absence of computation interference, robustness
does not require that the process have no input terminals. Rather, a robust process must
be capable of receiving an input at any time on any of its input ports. A robust process
never fails by itself. The safety condition for ECF processes also does not require that
a process have no input terminals and the condition demands that a process cannot fail
by itself. On the other hand, our safety condition does not require that a process must
always be able to receive an input on any of its input ports. If a process has no input

ports, then our safety condition is equivalent to the robustness from [Negulescu, 1998].

Hiding, used to conceal a subset of output ports of a process, is an operation that
distinguishes our model from the previous work. Hiding from [Dill, 1989] and projection
from [Ebergen, 1991] simply delete the hidden symbols from traces without taking into
account safety properties of a process. Our hiding operation takes the safety issues into
account. [Verhoeff, 1994] does not define an explicit hiding operation. Rather, hiding is
implicitly included in the process composition, which contributes to the complexity of

computing the composition of processes in the DI model of [Verhoeff, 1994].

In order to address safety properties, we instantiate the model from Chapter 2. We
first choose a set of labels and we demonstrate how our labels reflect safety of a process
Because the labels satisfy the requirements of the general ECF model, all properties

proven in Chapter 2 also hold for the instantiated model.

Besides illustrating the properties and operations defined in Chapter 2, we prove some
additional properties that pertain to the safety model. In particular, we give a formal
characterization of safety and show how this characterization relates to the refinement

relation. We also prove the Factorization Theorem, which provides a solution to the
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Design Equation from [Verhoeff, 1994].

3.1 Labels and processes

When we talk about safety of networks of processes, we are interested whether one pro-
cess can produce an output that some other process in the network is unable to receive.
We describe the behavior of a device by characterizing all sequences of possible commu-
nication actions that take place between the device and its environment. Following the
general ECF model, we assign a label to each sequence, indicating some property of that
sequence. In the safety model, our only concern is to know which sequences of commu-
nication actions are allowed to take place during the operation of a device. We call such
traces legal traces and we assign to them the label O. According to the ECF model, our

set of labels must also include T and L ; thus, the set of labels we use is

A={L1,0,T}

The meaning of the labels is as follows. For label O, we already know that it marks
sequences of allowed communication actions in the behavior of a device. Traces labeled

with either 1 or T can be divided into four categories:

e Trace ta is labeled with L and a is an input symbol. That is, a transition on
input symbol a leads to the L state. Such a trace denotes a requirement that the
environment of the process is not supposed to provide an input on port a after trace

t. If the environment provides an input on port a, the process fails.

e Trace ta is labeled with | and a is an output symbol. That is, a transition on

output symbol a leads to the L state. Such a trace denotes that, after exhibiting



64 CHAPTER 3. ECF PROCESSES AND SAFETY

trace t, the process fails while producing an output on port a.

e Trace ta is labeled with T and a is an output symbol. That is, a transition on
output symbol a leads to the T state. Such a trace denotes a requirement that,

after exhibiting trace £, the process is not supposed to produce an output on port a.

e Trace ta is labeled with T and a is an input symbol. That is, a transition on input
symbol a leads to the T state. Such a trace denotes that, after exhibiting trace ¢,

the environment of the process fails while providing an input on port a.

We denote the set of legal traces of process P by L.P. In the context of the model

presented in this chapter, we can rewrite Definition 2.6 as follows:

LP={t:te(a.P)* ANf.Pt=0 :t} (3.1)

Recall that labels of traces can be interpreted as labels of states in a state graph
depicting a process. All traces that lead to the same state have the same label. In Figure
3.1 we show a process that specifies the behavior of a WIRE with the input port ¢ and
the output port b. In the state graph we postfix inputs with a question mark and outputs

with an exclamation mark.

T €

Tb! a? Ta? a?

0 B! 1 0 B! 1
a) WIRE schematic ~ b) WIRE specification b) simplified graph

Figure 3.1: A specification of the WIRE

The WIRE may first receive an input on port a and then it may produce an output
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on port b. The cycle then repeats. In the initial state, the transition on output b leads
to the T state. This means that, initially, the WIRE cannot produce an output on port
b. Furthermore, the transition on port a starting in state 1, leads to the L state. This
means that the WIRE, after having received an input on port a, cannot receive another

input on the same port before producing an output.

In Figure 3.1c we show the “simplified” state graph that describes the behavior of
the WIRE. In the simplified graph we remove the T and the | state and the transitions
leading to these two states. We can use simplified graphs in the case where only input
transitions lead from a legal state to the L state and only output transitions lead from a

legal state to the T state.

3.2 Refinement

The ECF model requires that we define a partial order among labels, such that L is the

least element and T is the greatest element. We define the partial order on A as

1COCT (3.2)

The partial order defined above is a total order. Thus, we can immediately conclude that

(A,C) is a complete lattice as required by the ECF model.

In terms of safety considerations, our intuition behind the partial order is as follows.
If XA C v, for labels X and «y, we say than a trace labeled with X is less safe that a trace
labeled with 7. In particular, a failure trace, labeled with L, is less safe than a legal trace
labeled with O. A trace labeled with T is considered a miracle trace that cannot occur
and can cause no damage. Thus, a trace labeled with T is safer than any trace that can

occur.
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Following the ECF model, we extend the refinement on labels to the refinement on

processes:
PCQ = (Vt: te(aP): f.P4C f.Q.t)

With the examples below we demonstrate that P C (Q means that process () is “at least
as safe” as process P. By “at least as safe” we mean that process () can accept an input in
all situations where process P can accept an input. That is, the environment can violate
the specification of process () in fewer situations than it can violate the specification of
process P. Furthermore, when P C (), process () can produce an output in at most as
many situations as process P can. This means that process P has more opportunities to

violate processes in its environment than process Q).

Recall that (PROC(I,0),C) is a complete lattice. ABORT(Z,0) is the smallest
process, thus, we consider ABORT(I,0) to be the least safe process in PROC(I,O).
MIRACLE(Z, O) is the largest process in PROC(I, O), thus we consider it to be the safest.

3.2.1 Examples of refinement

Let us examine the refinement relation more closely. Recall that, when P C ), we refer

to process P as the specification, and we call process ) an implementation.

T L T L
Tb! a? Ta? Tb! b! Ta?
B!

Figure 3.2: An implementation of the WIRE

Figure 3.2 shows an implementation of the WIRE. This implementation can initially
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receive an input on port a, but will never produce an output on port b. We verify the
refinement by comparing the labels of the states in the two state graphs. The initial
states have the same labels, as do the states to which traces a and b lead. Trace b
leads to the T state, which means that, by T-persistence, the refinement holds for all
extensions of trace b. In the WIRE, trace ab leads to a state labeled with O, but in the
implementation, trace ab leads to the T state. Because T is the greatest of all labels, the
refinement holds for trace ab. Furthermore, by T-persistence we know that the refinement
holds for all extensions of trace ab. Finally, we observe trace aa. In the WIRE and in
the implementation trace aa leads to the | state. By |-persistence it follows that the
refinement holds for all extensions of trace aa. We conclude that the refinement holds for
the labels of all traces, thus the refinement between two processes of Figure 3.2 indeed

holds.

. b!
oL to o @ oteT

Figure 3.3: Another implementation of the WIRE

In the previous example we demonstrated that an implementation does not have to
be able to produce an output when a specification can. In the example of Figure 3.3
we show that an implementation can receive an input when the specification cannot:
Consider trace aa. In the WIRE process, trace aa leads to the L state, which means
that the WIRE cannot receive two inputs in a row on port a. In the implementation, two
inputs in a row are possible, because trace aa leads to the state labeled with O. One can
check that the refinement relation in Figure 3.3 holds by computing the direct product

of the two state graphs, as suggested in Chapter 2.
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Figure 3.4: A specification of the SELECTOR

In the next example we consider an output-nondeterministic specification, and we
check whether the nondeterminism must be preserved in an implementation. In Figure
3.4 we show a specification of the SELECTOR. The SELECTOR has one input port, a,
and two output ports, b and c¢. Initially, the SELECTOR is ready for receiving an input
on port a. After having received that input, the SELECTOR has a choice of producing an

output on either port b or port ¢. After an output has been produced, the cycle repeats.

p. T 1 Q: T
bl c! T B! a? b!
5N
a? a?
>0 O C >0 ®

>~ 1

c! c!

Figure 3.5: An implementation of the SELECTOR

State 1 is the point where the SELECTOR makes a nondeterministic choice between
producing either output b or output ¢. The SELECTOR can be implemented by process
Q@ of Figure 3.5. Notice that process () makes no choice between producing output b or
output ¢. That is, ) can only produce an output on port ¢, while port b always stays
inactive. This example shows that in our model nondeterminism needs not be preserved

in an implementation.

The next two examples illustrate violations of the refinement relation. Figure 3.6
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T 1
P: Tb!,c! B! Ta? Q:
) ) b, ¢! T
> O O z > O
0 A 1 a\?~L
c!

Figure 3.6: A bad implementation of the SELECTOR

shows a proposed implementation of the SELECTOR, where the implementation initially
cannot receive an input on port a. Notice that trace a in the SELECTOR leads to the
state labeled with O, and, in process @), trace a leads to the | state. Because O IZ L,
process @ of Figure 3.6 violates the refinement relation. This example illustrates that an
implementation must be capable of receiving at least the inputs that can be received by

the specification.
T 1 T L

P Tplel g a? Q: | b! a?
m h
>0 a? O z >O—abbl o
0 \\_/ 1

c! c!

Figure 3.7: Another bad implementation of the SELECTOR

In our last example we consider an “implementation” that can produce an output in
a state where the specification cannot produce an output. Process @ of Figure 3.7 can
produce an output on port b in its initial state. The SELECTOR can only receive an
input on port a in the initial state, but can produce no outputs. Thus, the label of trace
b in the SELECTOR is T, and in process ) the label of trace b is O. Because T [Z O, the
refinement relation between the SELECTOR and process @ of Figure 3.7 does not hold.

The example illustrates that an implementation cannot produce more outputs than what
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is allowed by the specification.

3.3 Product

In order for the properties from Chapter 2 to hold, the product on labels must be associa-
tive, commutative, idempotent, and monotonic with respect to C. We define the product
of the safety labels in Table 3.1. One can verify by inspection that all the properties
listed above indeed hold.

—4 O | X
==
- O | O
= = |

Table 3.1: Product of labels

How do we interpret the entries in Table 3.17 The result of the product reflects the
interaction between two processes. If one process exhibits a trace with label A and another
process exhibits a trace with label v, then the network of the two processes exhibits the
trace with label A x . This point of view is at the heart of the definition of the process

product.

Recall that label O indicates that the trace is in agreement with how the process
should behave. For this reason, we have O x O = O. That is, if a trace causes no
problems in either process, then the network of processes operates without problems for
that trace. Label T marks traces that cannot take place. For this reason, T x A = T
for any label A. That is, if a trace cannot take place in one of the processes, then it also
cannot take place in the network of processes. Finally, recall that label L represents a

failure. We stipulate that, if one of the processes in a network fails, then the network
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itself fails. For this reason, 1. x A\ = | for A being any label but T. If A = T, then the

trace cannot take place and the network does not fail.

Let us recall the definition of the process product. The product of processes P and

Q is a process, denoted by P x @, and is defined as

i.(PxQ) = (i.PULQ)—(0.PU0.Q)
o.(PxQ@) = o.PUo0.Q
f(PxQ)e = f.Pexf.Q.e
f.P.(tala.P) xf.Q.(tala.Q) iff.(PxQ)tg{T,L}

f(PxQ)ta =
f(PxQ)t otherwise

In the definition above, t is an arbitrary trace and a is a symbol.

We use the process product in order to model a network of processes. In the network
we assume that we have connections between ports with the same name. We also assume
that the communication between different processes takes place instantaneously. On the
other hand, a process can take an arbitrarily long time before producing an output.
These assumptions match a so-called speed-independent model, where arbitrary delays

can occur within components, but the communication is instantaneous.

The process product enjoys the properties we proved in Chapter 2: it is idempotent,

associative, commutative, and monotonic with respect to process refinement.

Let us examine the process product through an example. Figure 3.8 shows the result
of the product of two processes each specifying a WIRE. Process P corresponds to a
WIRE with input port ¢ and output port m. Process ) corresponds to a WIRE with
input port m and output port b. Figure 3.8 also shows process P X (), which represents a

network of two connected WIRES. The two L states in the state graph of process P x Q)
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- = Q: -
T 1 T 1
m! a? Ta? b! m? m?
A& &
> O O > O O
>~ - >~ -
0 m! 1 0 B! 1
PxQ a m ,b
T 1 T 1

Figure 3.8: The product of two WIRESs

are really the same state, which we depicted twice in order to reduce the clutter. The
same holds for the two T states. Notice that this network may fail. If the environment
produces an input on port a immediately after the first WIRE has produced output m,
then the first WIRE can produce another output on port m before the second wire has
produced an output on port b. The transition on output m from state 3 to the L-state
represents the possibility of this failure. This example demonstrates that the product of
two processes contains information on failures that can occur because one of the network

components can violate the specification of another network component.

In Chapter 2 we questioned why the label of the trace in the process product cannot

simply be calculated as

f(PxQ)t=f.P(tlaP) xf.Q.(tlaQ) (3.3)
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Processes P and ) and their product shown in Figure 3.9 demonstrate why we were not

able to simplify our definition.

a!
P >OHG! T Qa! a!/r—l— b!

P x Q: >Q\
b!
Q yo o J_Qb! + o

Figure 3.9: Process product illustration

Assume that the enhanced characteristic function of the process product was defined
by Equation 3.3. Let us apply this function to some traces in processes P and ) and see

whether the results conflict with the product depicted in Figure 3.9.

' (PxQ)e = OxO = O = f(PxQ)e
' (PxQ)a = TxO =T = f(PxQ)a
fPxQ)b = OxLl = L = f(PxQ).b
f'.(PxQ)ba = LxT = T # f(PxQ).ba

For traces of length zero and one, f'.(P x Q) agrees with f.(P x Q). The difference
appears in a trace of length two: f'.(P X Q).ba = T, but, because of L-persistence,
f.(P x @).ba should be equal to L. This means that using Equation 3.3 for calculating
the labels of traces in the process product would violate the 1-persistence requirement

for the processes.

For the product P x @, the labels of all legal traces and of all one-symbol extensions of
legal traces are calculated by Equation 3.3. These are the traces that play an important
role in our treatment of safety, as we are interested in whether a one-symbol extension of

a legal trace may carry the L label. Because we can use Equation 3.3 for all one-symbol
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extensions of legal traces, our proofs are not additionally complicated by the case-based

definition of the process product.

3.3.1 Product and legal traces

The process product models networks of processes. How can we characterize legal traces
in a network of processes? Recall that legal traces capture “allowed” sequences of com-
munication actions in a process. The theorem below states that a legal trace in a network
of processes is a legal trace with respect to each process in the network. That is, a legal
trace in a process product must be a result of a product of legal traces in individual

processes.

Theorem 3.3.1

The following holds for processes P and @ and any trace t € (a.(P x Q))*:

tel(PxQ) & (tlaP)elP A (tla.Q)elqQ (3.4)

Proof:

tel(PxQ)

< { Equation 2.6 — legal traces }
f(PxQ)tg{T,L}

< { Definition 2.4.1 — product }
f.P(tlaP)xfQ.(tlaQ)¢{L, T}

< { Table 3.1 }
fP(tlaP)g{L T} ANfQ.(tlaQ)&{L, T}

< { Equation 2.6 — legal traces }
(tla.P)elP A (tlaQ)el@
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a

A simple corollary of the theorem above is that an illegal trace in a process product

must be illegal in at least one of the individual processes:

tZ1L(PxQ) & (tlaP)¢glP Vv (tlaQ)¢LQ (3.5)

3.4 Reflection

Reflection is a known operator in trace theory [Ebergen, 1989]. The reflection of a process
exchanges the roles of input and output ports of the process. We use the reflection as an

environment for a prospective implementation of a process.

AL o T
~AT O L

Table 3.2: Reflection on labels

We define the reflection on labels in Table 3.2. By inspection we can verify that the

reflection on labels satisfies the requirements from Chapter 2. Namely,

ACy = ~yLC~A and ~(~A) = A

Now we can follow Chapter 2 further and extend the reflection to processes. That is,
when taking reflection we swap the input and the output alphabet of a process, and for

each trace we take the reflection of its label:

i(~P)=0.P o.~P)=iP f.(~P).t=~(f.Pt)

Recall that ABORT(Z,0) and MIRACLE(I, O) are reflections of each other. Further-
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more, taking the reflection of processes reverses the partial order:

PCQ = ~QL~P

In Figure 3.10 we illustrate the reflection of the WIRE. By means of reflection we
swapped inputs and outputs, and we exchanged the T and the | states. Observe that
the WIRE and the reflection of the WIRE form a safe network. That is, whenever the
WIRE is ready to produce an output, its reflection is ready to receive that output and,
vice versa, whenever the reflection of the WIRE is ready to produce an output, the WIRE

is ready to receive it.

T 1 1 T
Tb! a? Ta? Tb? al Ta'
b! b?
a) WIRE b) The reflection of the WIRE

Figure 3.10: The reflection of the WIRE

3.5 Safety

So far we made a number of informal remarks about process safety, but we have not
defined the concept formally. In this section we revisit the concept of safety, we give
a formal definition, and we establish a connection between the refinement relation and
safety.

Informally, we say that a process network is safe when each output that can be

produced also can be accepted by all receivers. Recall that a process product representing

a network contains information on failures that may occur. More precisely, a transition
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on an output port leading from a legal state to the | state points to a safety violation.
Consequently, we check the safety of a process by searching for output transitions leading

from a legal state to the L state.

In the definition below, juxtaposition denotes set concatenation.

Definition 3.5.1 (Safety)
Process P is safe, denoted by safe.P, if the following holds:

safe.P = (Vt: t € (LP)(o.P) U {e} : f.Pt # J_)

Notice that ABORT(Z, O) is not safe, but MIRACLE(I, O) is a safe process.

The process of Figure 3.11a is safe, but the process of Figure 3.11b is not safe, because
a legal trace can lead to a failure: Trace amam leads to the L state, because one WIRE

inside the network can produce an output while another WIRE cannot receive that input.

T N T 1 T 1
b!
Il a? a? mlLbl a? m! a?,m!

T ? 1 ?

>0 O >O—4+—=0o w0 O
Y T~ >~

bt b! bl

a) WIRE b) A network of two WIRES

Figure 3.11: A safe and an unsafe process

A safe process is not immune to misuse by its environment. A malign environment
can cause a failure in a safe process by providing an input when the process is not
ready to receive that input. On the other hand, if the environment never violates the
specification of the safe process, the process never fails by itself. For example, if a safe

process represents a network of processes, then no process in the network produces an
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output while some other process cannot receive that output.

3.6 An alternative characterization of refinement

Next we address the connection between the refinement relation and the definition of
safety. The theorem we prove below provides the following view of the refinement relation:
If P C @, then we call process P the specification and process () an implementation.
The reflection of the specification gives us the environment in which an implementation
must be able to operate safely. The idea for using the reflection of a specification as an
environment for an implementation comes from [Ebergen, 1989, Ebergen, 1991] and was

also applied in [Dill, 1989], [Verhoeff, 1994] and [Negulescu, 1998].

Theorem 3.6.1 (Refinement and safety)
Let P and @ be processes such that i.P =1.Q) and o.P = 0.Q). Then

PCQ < safe(~PxQ)

Proof: We have to prove for processes P and @, such that i.P =i.(Q), and 0.P = 0.Q),

P C @ is equivalent to safe.(~P x Q).

safe.(~P x Q)
& {Lemma 3.6.3, a.(~P x Q) =0.(~P x Q) }
(Vt: te (a.P)*: f.(~Px Q).t JO)
&  {iP=iQ, 0.P =0.Q, Lemma 3.6.4 }
(Vt: te (a.P)*: ~f.Ptxf.Q.t J0O)
&  { Lemma 3.6.2 }
(Vt: t e (a.P)*: f.PtC£.Q.t)
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< { Definition 2.3.1 — process refinement }

PCQ

a

We used the following three lemmas in the proof of Theorem 3.6.1. See Appendix C

for proofs.

Lemma 3.6.2

The following holds for labels X and ~y:

(MAxy3d0O) & (ACYy)

Lemma 3.6.3 For process P, where a.P = 0.P, we have:

safeP & (Vt:te(a.P)*: f£PtJ0)

Lemma 3.6.4

Let P and @ be processes, such that i.P =1i.QQ and o0.P C 0.Q). Then,

(Vt:te(aQ) :f.(~PxQ)tJ0) & (Vt:te (a.Q)" :f.~P.(t|la.P)xf.Q.t30)

Theorem 3.6.1 implies that the definition of safety satisfies Equation 2.12:

PC Q@ < correct.(~P x Q)

That is, the definition of safety can indeed be used as a correctness condition in our model.

This means, for example, that we can apply Theorem 2.5.1 and look at the refinement
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relation in the light of testing:
PCQ < (VR: Re PROC(o.P,i.P) : safe.(P x R) = safe.(Q x R))

The equivalence above states that, if P C @, then process () operates safely in any

environment R in which process P operates safely.

3.7 Hiding

Hiding is the operator for concealing a set of output ports of a process. In particular,
when we want to determine whether a network is an implementation of a specification, we
first compute the product of all processes in the network. Then we hide “internal ports”
that are not present in the specification. The result is a process with the same port
structure as the specification. Thus, we can then check whether the refinement relation

holds.

Recall from Chapter 2 that we defined hiding for process P and for set of output

symbols A:

if[A=P|]] = iP
o[A:P]] = oP-A
fll[A=P)lt = (Ns:se(@P)* Asl(aP—A)=t: f.Ps)

3.7.1 Examples of hiding

Below we provide a number of small examples that illustrate various aspects of hiding.
Situations highlighted by our examples can arise as part of hiding output ports in a

more complex process. In our examples we often mark transitions on hidden ports as
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e-transitions. We find such a transformation helpful in computing the result of hiding

according to Definition 2.6.1.

We start with the process that fails on any output it produces. Figure 3.12a shows
such a process. If we hide the output port of this process, then the result of hiding is

ABORT.

Py, J_Qa! SO € LQ& [a:: P]| =ABORT = > L
a) b) c)

Figure 3.12: A self-failing process

We can explain this result by means of the original definition of hiding. Figure 3.12b
shows process P after hidden transitions have been labeled as epsilon transitions. Notice
that we can reach the L state via a path of e-transitions starting in the initial state.

Thus, f.|[a :: P]|.e = L and |[a :: P]| = ABORT.

P: 50O a! L a! SO —£& L €
\b\g b! \b\v b!
O b!| - T al O o T €
@ b! £ bl
a) b)

[[a :: P]| = ABORT(, {b})
c)

Figure 3.13: A process that fails after a “hidden” transition

Process P shown in Figure 3.13a can reach a failure by producing a transition on
port a, but will not fail on producing a transition on port b. What is the result of hiding
port a? In Figure 3.13b we show process P, after we have labeled transitions on port a

as € transitions. There is an e-path from the initial state to the L state. Consequently,
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f.|la :: P]|.e = L, and the result of hiding is ABORT.

In the next example we consider a process that has a legal initial state, but all tran-
sitions lead to the T state. Figure 3.14a shows such a process P. In Figure 3.14b we
show process P after all hidden transitions have been marked as e-transitions. Notice
that £.P.c = O and the only transition leaving the initial state is a transition on port
a that leads to the T state. Therefore, f.|[A :: P]l.e = O M T = O, as shown in Figure

3.14c.

P >0 4w TQG! SO £ TQ& la:Pll: >O

a) b) )
Figure 3.14: Hiding transitions to T state

This example indicates that the result of hiding can only be MIRACLE(I, O — A) when

we start with process MIRACLE(Z, Q) and hide ports in set A.

P a? a?
>0 —4 O 1 >0 —4 O—= 1
k_r L,T
a) b)
|[b:: P]|: ,
>O a! L

c)
Figure 3.15: A process that aborts after receiving an input

Figure 3.15a shows a process that can fail on producing an output on port b after
receiving an input on port a. In Figure 3.15b we show the process after the transitions
on port b have been marked as € transitions. Notice that the initial state is labeled with

O, and there is no e-path that brings us from the initial state to the L state in Figure
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3.15b. Thus, f.|[b:: P]|.e = O. Furthermore, after receiving an input on port a, we have

an e-transition leading to the L state. Thus, f.|[b:: P]|.a = L, as shown in Figure 3.15c.

The example from Figure 3.15 demonstrates how hiding can bring a failure to the
surface: Process P fails after two inputs on port a have been received. Process |[A :: P]|,
on the other hand, fails immediately after receiving one input on port a, because of an

“internal” transition leading to the L state.

In Figure 3.16a we show a process that fails after producing an output on port b after
the process has produced an output on port a. Figure 3.16b shows the state graph after
b-transitions have been marked as e-transitions. Notice that, following an output on port
a, there is an e-transition leading to the L state. Thus, f.|[A :: P]|l.a = L, as shown in

Figure 3.16¢.

T T )
a) b) Q&
b= P)J: > O —2 1

c)

Figure 3.16: A process that aborts after producing an output

The following example shows a difference between our hiding and the implementation
of hiding in Dill’s verification tool [Dill, 1989]. Dill’s implementation of hiding is often
called “pruning”. When pruning a state graph, we look for “hidden” failures and then we
backtrack along the trace leading to the failure until we find the last input action. This
input action is then forbidden by labeling the trace leading to the input action a failure.

For more detail we refer the reader to [Dill, 1989], pages 60-61, and 104-105.

Figure 3.17a shows a process where a failure on port ¢ follows an output on port b.
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p. >0 al o L5 d N Nt
b! ol C' B! : T
b)
T a? /Q'\\
a) >0 "0 1
b! T
I[e = PJ|: \T a?

Figure 3.17: (b) pruning transitions on port ¢, versus (c) hiding port ¢

The output on port b follows an input on port a. Our intention is to hide port c. If we
follow the strategy of pruning, we obtain the process of Figure 3.17b. Notice that we
forbid the input on port a, thus we avoid the path that may lead to a failure.

Figure 3.17c shows the effect of hiding port ¢. We allow the input on port a, but the

subsequent output on port b is considered a failure. Recall that in our partial order we

have L C O, thus the result of hiding is larger than the result of pruning.

T 1 T 1
. B!
Schematic: !, bl a? m! a?,m!
b ? ! ?
L >O—4 oM. O
T~ > 2 8
Bl Bl

Figure 3.18: The product of two WIRESs

In the next example we take a product of two WIREs and show how to hide the
connection between them. Figure 3.18 shows the state graph of the product of two
WIREs. One WIRE has input port a and output port m, and the other WIRE has input
port m and output port b. The graph from Figure 3.18 is the same as the graph in Figure
3.8.
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1 T 1

T
b!
g, bl T Ta? Ts Ta?, €
O

>O a? Oe Oa? O

T~ > /2
bl bl

Figure 3.19: Hiding the connection between WIREs: Hidden transitions marked by ¢

Figure 3.19 shows the state graph where we converted all transitions on m into e-
transitions. Notice that an e-transition leads from state 3 to the L state. Furthermore,
we can only reach state 3 by an input transition on port a, which leads from state 2
to state 3. We learned in the example of Figure 3.15 that such an input transition is
effectively disabled, because it leads to the L state after hiding. This means that the
product of two WIREs, with the connection between the WIREs hidden, cannot accept
two inputs on port a in a row. Rather, the environment must wait for an output on port
b before providing the next input on port a.

T 1

Tb! a? Ta?
so~ o

b!

Figure 3.20: Hiding the connection between two WIREs: Final result
Figure 3.20 shows the result of hiding the connection between two WIREs. Not
surprisingly, the result is a specification of a WIRE, which we first gave in Figure 3.1.
3.8 Properties of hiding

The following theorem provides an alternative characterization of hiding and helps us

with an intuitive understanding of hiding:
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Theorem 3.8.1

Let P be a process and let A C o0.P. Then,

[A=:P]|=(UR:iR=iPAo.R=(0.P— A) A safe.(~Rx P): R) (3.6)

In words, |[A :: P]| is the greatest process R with the input alphabet i.P and with the
output alphabet 0.P — A, such that the reflection of R operates safely with P. Notice
that the safety of ~R x P must hold even though process ~R does not interact with any
of the outputs that process P produces on ports from A.

A proof of Theorem 3.8.1 is as follows:

Proof:

(UR:i.R=iPAo.R=(0o.P— A)Asafe.(~R x P): R)

= {Lemma 3.8.2 }
(UR:iR=iPA0.R=(0.P—A)A(RC|A:P]|):R)

= { Calculus, Theorem 2.3.3 — (PROC(i.P, (0.P — A)),C) is a complete lattice }
[A:: P

a

In the proof of Theorem 3.8.1 we used the following lemma. See Appendix C for the

proof.

Lemma 3.8.2

Let P and R be processes such that i.R =1i.P and 0.R = 0.P — A for some set A. Then

safe(~Rx P) <& RLC|[A:P]

By applying Property 2.3.6, we can derive yet another characterization of hiding:
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I[A: P
= { Theorem 3.8.1 }

(UR:i.R=iPAo.R=0.P— AAsafe(~Rx P):R)

{ Write S =~R }
(US:i.8=0.85—AANo0.S =iPAsafe.(S x P):~5)
=  { Lemma 3.8.3 }

~(MNS:i.8=0.85—AN0.8=iPAsafe(SxP):5)

In the result of hiding ports A in process P, we really are looking for an environment in
which process P operates safely. The environment is blind to the events on the ports in
set A. The reflection of the least, or the “least safe” such environment is the result of

hiding:

[A=zP]|=~(NR:i.R=0.P— AAN0o.R=1iP Asafe.(Rx P): R) (3.7)

In the proof of Equation 3.7, we used the following lemma.

Lemma 3.8.3

Let A be a set of processes. Then,
W{P: PeA: P} = ~N{P: PecA: ~P}

See Appendix C for the proof. Without proof we mention that the dual to the property

expressed in Lemma 3.8.3 also holds:

M{P: PeA: P} = ~U{P: PeA: ~P}
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Hiding enjoys all the properties we proved in Chapter 2: Ports can be hidden in
an arbitrary order, hiding is monotonic and hiding distributes over the product. These
properties hold, because the safety labels satisfy the properties required by the general
ECF model.

Hiding does not affect the safety of a process. More precisely, if we start with a safe
process P and we hide output symbols from set A, then the result of hiding, |[A :: P]|, is

also a safe process.

Theorem 3.8.4

For process P and set A C 0.P, we have

safe.P < safe.|[A :: P

Proof: We assume safe.P and we prove, for trace t € 1.|[A :: P]|.0.|[A :: P]|U{e}, that
f.|[A:: P]|.t # L.

First assume ¢t = €. Then, f.|[A :: P]|t = (MNs: s € A* : f.P.s). From safe.P it
follows that, for every s € (0.P)*, f.P.s # 1. Furthermore, as A C 0.P, we conclude
f.|[A:: P]l.e # L.

Now consider f.|[A :: P]|.t, where ¢ = t'a, such that ¢’ € L.|[A :: P]| and a € 0.P — A.
Then, f.|[A :: P]|.t'a = (Ns,s" : " € A*Ns'as" | (a.P — A) =t'a: f.P.s'as" ). What can
we say about f.P.s'as” from the equation above? First we observe that s’ | (a.P—A) = t'.
By assumption, ¢’ € 1.|[A :: P]|, thus f.P.s’ # L. Now we know that s'a € (1.P)(0.P)
and from safe.P it follows that f.P.s'a # 1. Thus s'a € LP. Because s” € (0.P)*, we
can see that s'as” € (1.P)(0.P). From safe.P it follows that that f.P.s'as” # L. Hence,
f.|[A:: P]|.t'a #£ L.

Now we prove the implication safe.|[A :: P]| = safe.P:
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safe.|[A :: P
= { Definition 3.5.1 — safety }
(Vt:teL|[A: Pllo][A: Pllu{e}:f.][A=Pll.t#1)
= { Definition 2.6.1 — hiding }
(Vt:t€L|[A: Pllo.|[A: P)|U{e}
:(Ms:s€aP*Asl(aP—A)=t:fPs)#1)
= { Calculus }
(Vt:t€L|[A: Pllo.|[A: Pl|U{e}
:(Vs:s€aP*As|(aP—A)=t:f.Ps# 1))
= { ACo.P; Calculus }
(Vs:s € (LP)(o.P)U{e}:f.Ps# 1)
=  { Definition 3.5.1 — safety }

safe.P

3.9 Factorization Theorem

Besides the testing view of the refinement relation, the notion of correctness also allows
us to apply ECF processes to the following design problem from [Verhoeff, 1994]. When
we are looking for an implementation of a given specification P, we can often guess at
least one process, call it (), that could be a part of an implementation. The question

remains, given specification P and process ), can we find process R such that

PCQXR
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This inequality, illustrated in Figure 3.21 is known as the Design Equation [Verhoeff, 1994,
Mallon et al., 1999]: The Factorization Theorem proven below, gives a bound for process

R, as shown in Figure 3.21.

Design Equation:

Bound for R:

v &2
&

Figure 3.21: Factorization Theorem

Our process product leaves the internal connections visible. For this reason, our
Design Equation and our Factorization Theorem take advantage of hiding in order to
conceal the internal connections between the processes in the implementation. More
precisely, if set A contains internal connections between processes ) and R, the Design

Equation becomes

PC|[A:QxR] (3.8)

The parallel composition of [Verhoeff, 1994] and [Mallon et al., 1999] hides internal
connections in a network. Thus, their formulation of Design Equation does not include

hiding.

Theorem 3.9.1 (Factorization Theorem)

Let P, Q, and R be processes and let A and B be sets of symbols such that ANa.P =),
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and BNa.R=10. Then,

PCl[A=2Q@QXxR|] & ~|[B:(~PxQ)]|CR

Proof:

PCIA:QxR]|

< { Theorem 3.6.1 }
safe.(~P x |[A:: Q X R]|)

<  {Ana.P =, Theorem 2.6.5 }
safe.|[A :: ~P x Q x R]|

< { Theorem 3.8.4 }
safe.(~P x Q X R)

< { Theorem 3.8.4 }
safe.|[B :: ~P x Q X R]]|

< {Bna.R=0, Theorem 2.6.5 }
safe.(|[B :: ~P x Q]| x R)

< { Theorem 3.6.1 }
~[[B:~PxQIER

a

Sets A and B in the theorem above represent “internal” symbols. Namely, set A rep-
resents internal connections between @@ and R, and set B represents internal connections

between ~P and Q.

Let us illustrate an application of the Factorization theorem through an example. Let
P be a three-input MERGE with inputs a, b, and ¢ and with the output d. A MERGE

is a common asynchronous component that waits for an input on any of its input ports
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and then produces an output on its output port. One restriction on the behavior of the
MERGE is that receiving an input and producing an output must alternate. That is, an
environment of the MERGE must not provide the second input before the MERGE has

responded to the first input. Figure 3.22a shows a specification of a three-input MERGE.

b T L o 1 L
Td’ a?,b?, c? T“?’b?’C? TI’ a?,b? T“?’b‘-’
d! z!
a) three-input MEGRE b) a guessed part of an implementation for P

Figure 3.22: The MERGE

We would like to implement a three-input MERGE with a two-input MERGE and
with another, yet unknown, component. Following the Factorization theorem we set
process @ to be a specification of a two-input MERGE shown in Figure 3.22b. Notice
that process @) has inputs a and b and output x, which connects process ) to process R.
Now we apply the Factorization Theorem. Figure 3.23a shows the result of computing
~P x (). Symbols a and b represent internal connections between processes ~P and (),
thus we hide them. Figure 3.23b shows the result of hiding. Notice that the lower bound
for process R is exactly a specification of a MERGE with inputs z and ¢, and output d.
To reduce the clutter, the state graph in Figure 3.23a does not contain the T state: All
missing output transitions lead to the T state and all missing input transitions lead to

the 1 state.

Similar applications of the Factorization Theorem are discussed in [Verhoeff, 1994]
and [Mallon et al., 1999]. They demonstrate that making a “good” guess for component
Q is vital for a successful application of the Factorization Theorem in a design process.
For example, when we make a bad guess for process ), the lower bound for process R may

become equal to MIRACLE. Process @ of Figure 3.24 is an example of a bad initial guess
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a) ~P xQ b) ~|[a,b:: ~P x Q]|

Figure 3.23: An application of the Factorization Theorem

Figure 3.24: A bad initial guess

for a part of an implementation of a three-input MERGE shown in Figure 3.22a. Notice
that process ) initially cannot receive an input on port a. It turns out that the lower
bound given by the Factorization Theorem gives us for process R is equal to MIRACLE.
Because process MIRACLE has no known physical implementation, we have to restart the

design process and look for a better initial guess.

3.10 Summary

In this chapter we instantiated the general ECF model with the set of labels that reflect
safety of a process. In Chapter 2 all operations on processes were defined in an abstract
manner. In this chapter, we were able to develop a concrete understanding of these

operations by working through a number of examples.

We defined formally a safety correctness condition. This condition allowed us to
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give three equivalent definitions of the refinement relation: One, the refinement can be
defined by comparing labels of traces. Two, the refinement can be defined by correctness
of the network consisting from an implementation and the reflection of the specification,
following the approach from [Ebergen, 1991]. Three, the refinement can be seen through

the testing paradigm, following the approach from [Verhoeff, 1994].

Through examples we illustrated the hiding operation that allows us to conceal output
ports of a process. Our operation differs from the previously used pruning [Dill, 1989]
and projection [Ebergen, 1991]. In particular, hiding does not just remove the hidden
actions, but it also takes into account potential safety problems that might occur when
we hide ports. We provided an alternative definition of hiding, which allows us to build
the intuitive understanding of the operation.

Finally, we proved the Factorization Theorem that provides an upper bound to the
Design Equation from [Verhoeff, 1994] and [Mallon et al., 1999]. Our reformulated De-

sign Equation takes advantage of hiding internal connections between processes. We

demonstrated how the Factorization Theorem can be applied in a design technique.
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Chapter 4

ECF treatment of progress

In Chapter 2 we developed a framework for modeling various properties of a process by
attaching a label to each sequence of communication actions. In Chapter 3 we demon-
strated how to apply the framework to studying safety of a process. In this chapter we
take an application of the framework a step further, and we focus on progress properties

of processes. Our progress condition detects possible deadlocks in a network of processes.

The model presented in this chapter is closely related to the XDI model of Tom
Verhoeff [Verhoeff, 1994]. We use the same set of labels, and our interpretation of the
labels is the same as in [Verhoeff, 1994]. There are, however, a number of important
differences between our model and the model of [Verhoeff, 1994]. Most notably, we do
not focus exclusively on delay-insensitive processes. Rather, we consider a larger domain
of processes, the so-called speed-independent processes. Although the domain of speed-
independent processes has its limitations [Bush and Josephs, 1996], it allows for a simpler
formalism than the XDI model of [Verhoeff, 1994]. Another major difference is in the
definition of process product, which models the joint operation of processes. In our

model, we define the process product directly via the product of labels, while Verhoeff
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defines the product indirectly, either by using his correctness conditions, or by using the

fix-point of a sequence of transformations.

Our progress criteria are closely related to finalization from [Negulescu, 1998]. There
are, however, differences between the two models. Most notably, the process spaces model
from [Negulescu, 1998] requires a separate specification of a process for each correctness
condition that is to be addressed. For example, if we want to study safety and finalization,
we are faced with producing two specifications, one addressing safety concerns and another
dealing with finalization. ECF processes, on the other hand, capture safety and progress

concerns at the same time.
Below, we introduce the new labels and we show a few examples of specifications

of basic asynchronous components. On the basis of results from Chapter 2 we discuss,

through examples, the refinement relation, the process product and the hiding operation.

4.1 Labels and processes

We use the set of labels from [Verhoeff, 1994]:

A = {J_7A7 D7V7T}

We use the same interpretation of the labels as [Verhoeff, 1994]: After a process has
executed a trace that is labeled with V, the process guarantees progress by eventually
producing an output on one of its ports. In other words, a trace that is labeled with
V puts the process to a transient state, which the process guarantees to leave. For this
reason, traces labeled with V are called transient traces. In a transient state, a process

may be capable of receiving an input.

A trace labeled with O brings the process in an indifferent state, thus such a trace is
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called an indifferent trace. After a process has executed an indifferent trace, the process
does not guarantee that it will produce any output. The process also does not demand

that its environment provide an input.

A trace labeled with A is called a demanding trace. After having executed such a
trace, a process demands an input from its environment. A demanding trace puts the
process to a demanding state. A process that is in a demanding state does not guarantee

that it will produce an output, but it may be capable of producing an output.

Label L indicates a failure. In a trace labeled with L either the environment produced
an input when the process was not ready, or the process failed by itself. The L label

indicates safety violations.

Finally, label T indicates traces that lead to a miracle. For example, if a process is
not able to produce an output on some port, the trace that ends with that output is
labeled with T. Similarly, if the environment fails by itself while producing an input, the
trace that ends with such an input is labeled by T. One could say that label T indicates

traces that can be executed only if a miracle happens.

4.1.1 Example processes

In order to illustrate our model, we give a number of specifications of asynchronous circuit

components. We start with a specification of a WIRE, shown in Figure 4.1.

T 1
Tb! a? Ta?
a b A
- >0 \V/
S~ -
b!
a) Schematic b) State graph

Figure 4.1: A specification of a WIRE
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Initially, the WIRE is in a quiescent state labeled with O. In a quiescent state there
are no progress obligations either for the WIRE or for the environment of the WIRE.
Thus, nothing happens until an input on port a is received. After that, the WIRE moves
to a transient state labeled with V. The WIRE cannot remain in a transient state, thus
the WIRE will produce an output on port b. After the WIRE has produced an output

on port b, the cycle resumes.

In the initial state, the WIRE cannot produce an output on port b. This is indicated
by the transition from the initial state to the state labeled with T. Once we reach the
T state, there is no escape, because of the T-persistence of processes. After receiving
one input on port a, the WIRE cannot receive another input until it has produced an
output on port b. That is, trace aa leads from the initial state to the | state, indicating
that the WIRE fails on that trace. Consequently, the environment is not allowed to
provide another input until the WIRE has responded to the previous input. Because of

the _L-persistence of processes, there is no escape from the L state.

. ﬁ/ @
b

'3 b?
\ ) State graph

b\/

c¢) Simplified graph

> O

Figure 4.2: A specification of a JOIN

The JOIN is another common component. Figure 4.2 shows a schematic of the JOIN
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and a state-graph specification. In order to reduce clutter, we can omit the states labeled
with | and T label, which results in the state graph of Figure 4.2c. When the T and the
1 state are not shown, we assume that all missing transitions on output symbols lead to

the T state and all missing transitions on input symbols lead to the L state.

Legal cyclic behavior of the JOIN consists of receiving an input on each of the two
input ports, followed by producing an output on the output port. Notice that the JOIN is
initially in a O state. That is, neither the JOIN nor its environment have any obligation
for producing a communication action. Furthermore, after the JOIN has received one of
the inputs, the progress requirements do not change, because the JOIN is still in a state
labeled with O. Only after both inputs have been received, the JOIN is in a V state,

where it is obliged to produce an output on port c.

?
| |
To % v go- , O I v
| — —— Tl? 7.0?
7 <o’ 7>< Td?
1 g1
R ™ R
ld‘? 17 d? 707
O
a) Schematic b) State graph

Figure 4.3: A specification of an arbiter

Figure 4.3 shows a specification of an initialized SEQUENCER [Ebergen, 1991]. This
component arbitrates between two requests, 7o and 7r;. The result of the arbitration
is announced by either producing output go, which grants request rg, or by producing

output ¢;, which grants request ;. The arbiter can grant a subsequent request only
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after receiving a “done” input d. Notice that the arbiter is in a V state only when it has
received a request (or both of them) and a done signal d. Otherwise, the arbiter is in one

of the states labeled with O, indicating that no action is either required or guaranteed.

4.2 Unhealthy processes and progress failures

The V label indicates that a process guarantees progress after exhibiting a trace carrying
this label. What if no outputs are possible after a trace labeled with V? Figure 4.4a

shows such a process. All output transitions from the state labeled with V lead to the

T 1 1 T
Tb! o Ta? Tb? b7 Ta!
>o —2 \Y >o —2@ A
a) no outputs from the V state b) no inputs from the A state

Figure 4.4: Unhealthy processes

T state. That is, the process cannot produce an output in the V state. In other words,
although the V state guarantees progress, no progress can be made. We call such a
process an unhealthy process [Mallon et al., 1999]. Unhealthiness of a process indicates

a progress problem with the process specification.

A similar observation can be made for A states where a process cannot receive an
input. The process demands from its environment to provide an input and, at the same
time, the process is not capable of receiving any input from the environment. Such a
process is shown in Figure 4.4b. Again, we call such a process unhealthy.

Just like unsafe processes are part of our process domain, so are unhealthy processes.

Safety failures manifest themselves by the presence of legal traces followed by an output

to the L state. Progress failures, on the other hand, manifest themselves by means of the
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presence of unhealthy states. Including unhealthy processes in the process domain is in

a contrast to [Verhoeff, 1994], where only healthy processes were considered.

Unhealthy processes can arise in various ways. We demonstrate below that an un-
healthy process can arise as a result of the product of healthy processes, or as a result of
hiding output symbols from a healthy process. Excluding unhealthy processes from our
process domain and requiring that the process domain be closed under product and hiding
would require more complicated definitions of these two operations. [Mallon et al., 1999]

also includes unhealthy processes in an extension of the XDI model from [Verhoeff, 1994].

4.3 Refinement

We define a refinement relation on our new process domain by following the framework
from Chapter 2. First, we require a partial order on labels, which we borrow from

[Verhoeff, 1994]:

LCACOCVCT (4.1)

Notice that the partial order above is a total order. This means that C induces a
complete lattice on A. T is the greatest element and L is the least element in the lattice.
These are exactly the requirements that the framework from Chapter 2 sets for the partial
order on labels. Consequently, we refer to Chapter 2 for the definition of a refinement

relation on processes with the same alphabets:

PCQ = (Vt:te(aP)* :f.PtCfQ.t)

From Chapter 2 we know that the refinement on processes is a partial order on
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PROC(I,0) and that (PROC(I,0),C) is a complete lattice with the least element
ABORT(I,O) and with the greatest element MIRACLE(Z, O).

The refinement relation tests whether one process implements another. That is, if
P C @, we say that process ) implements process P. Later in this chapter we show
formally that the refinement relation captures both safety and progress concerns. That
is, if P C @, then process @ is at least as safe as process P in terms of safety considerations
discussed in Chapter 3. Furthermore, if P C @, then process () makes at most as many
progress demands on its environment as process P, and process () makes at least as many
progress guarantees as process P. For this reason, the refinement relation used in this

chapter is called the “progress refinement”.

One justification for the partial order on labels is as follows: A failure trace can be
implemented by a trace that does not fail. For that reason, L is the least element in
the partial order on labels. A trace that demands an input can be implemented by a
trace that does not demand an input, but can still receive it. For that reason we have
A C O. A trace that makes no progress requirements can be implemented by a trace that
guarantees progress, hence 0 C V. Finally, producing a miracle is always better than

anything else, thus T is the greatest of all the labels.

4.3.1 Examples of refinement

Below we give a number of examples that illustrate the progress refinement. We start
with the processes of Figure 4.5. Process () in Figure 4.5 specifies a WIRE. Process P,
on the other hand, has different progress properties than the WIRE: In the initial state,
process P demands from its environment an input on port a. After having received an
input on port a, process P makes no progress guarantees. That is, process P may or

may not produce an output on port b. Process () implements process P, because in the
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Figure 4.5: An example of refinement

initial state process ) does not demand an input from the environment. That is, process
@ makes fewer progress demands on the environment than process P. Furthermore, after
having received an input on port a, process () guarantees that an output on port b is
produced. This means that process () guarantees progress where process P does not.
Finally, we notice that the same traces that lead to the L state in process P also lead to
the | state in process (). Similarly, the same traces that lead to the T state in process

P also lead to the T state in process (). Hence, process (Q refines process P.

LC ¥ 1 QT 1
Tb! a? Ta? Tb! a? Ta?
~— N N
>0 \Y z > O O
N>~ - >~ -
B! B!

Figure 4.6: A violation of refinement of the WIRE

When progress is guaranteed by the specification and the proposed implementation
does not guarantee progress, the refinement relation is violated. Process P of Figure 4.6
repeats the specification of the WIRE. Recall that WIRE guarantees that, after receiving
an input on port a, an output on port b is produced. Process ) of Figure 4.6, however,
cannot produce an output on port b after receiving an input on port b. That is, after
receiving an input on port a, process P guarantees progress, but process () does not, thus

the refinement relation does not hold.
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Tb! a? Ta? Tb' b! Ta"
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Figure 4.7: An unhealthy implementation

In Figure 4.7 we demonstrate that an unhealthy process can implement a healthy
process. Process P of Figure 4.7 specifies a WIRE that guarantees to produce an output
on port b after having received an input on port a. Receiving an input on port a, on the
other hand, puts process ) to a V state, where it cannot produce any outputs. Still,
one can check by inspection that for any trace ¢, f.P.t C f.Q.t, thus P C . This
example indicates that our model allows that a healthy specification has an unhealthy
implementation. Refining a healthy process by an unhealthy process is not really a
problem, because in all practical examples we have considered, both the specification and

the implementation were healthy processes.

Process P of Figure 4.8 is a specification of the SELECTOR. The SELECTOR is
a component that, after receiving an input on port a, makes a nondeterministic choice
between producing an output on port b or on port ¢. Process @ of Figure 4.8 is an
implementation of the SELECTOR. Notice that process @) always produces an output
on port b after having received an input on port a. This example shows that a non-

deterministic choice can be implemented with a deterministic choice.

4.4 Reflection

When taking reflection we swap the input and the output alphabet of a process, and

for each label we calculate its reflection according to Table 4.1, which we borrowed from
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P Q:
T 1 T 1
C'Tb! ¢! Ta? C'Tb' c! Ta?
Y R
S~ - _— S~ ae -
b! b!

Figure 4.8: Refinement does not preserve nondeterminism

[Verhoeff, 1994].

AL Ao v T
AT vV o AL

Table 4.1: Reflection on labels

~

The reflection is used to interchange the role of a process and the process’s environ-
ment. Consider, for example, the reflection of V. Recall that V denotes a state of a
process in which it guarantees to produce an output. The environment of such a process

can demand an input in that state, thus ~V = A.

Table 4.1 satisfies the requirements from Chapter 2. Namely, reflection on labels
reverses the partial order and reflection is its own inverse. Consequently, we use the

definition of the process reflection as given for ECF processes in Chapter 2:

i~P=o0.P 0.~P =i.DP f.~Pt = ~(f.P1)

From Chapter 2 we know that the least and the greatest element of PROC(I,0) are

reflections of each other.

MIRACLE(T, 0) = ~ABORT(O, I) ABORT(I,0) = ~MIRACLE(O, I)

As we showed in Chapter 2, the reflection on processes turns the partial order on
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processes upside down:

PCQ = ~QL~P

Without proof we mention that both healthy and unhealthy processes are closed under

reflection.

Our main application of reflection comes when we give an alternative characterization
of the refinement relation. In order to reach that point we must first define the product

of processes.

4.5 Product

A4
Ul "l ol g
<400+ 0
4444+ |4
H A

440D X

Table 4.2: Product table

Table 4.2 defines the product on labels. We borrowed the product table from Chapter 7 of
[Verhoeff, 1994], where it is shown that the product of labels is commutative, associative,
idempotent, and monotonic with respect to the partial order. These are exactly the

properties that we demanded in Chapter 2 for the product of labels.

We follow the definition of the process product given in Chapter 2, which simply lifts
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the product of labels to the product of processes:

i.(lPxQ) = (i.PUi.Q)—(0.PUo0.Q)
o.(PxQ@) = o.PUo0.Q
f(PxQ)e = f.PexfQ.e
f.P.(ta | a.P) x f.Q.(ta | a.Q) iff(PxQ@Q)teg{T,L
X O - (to L a.P) x £.Q.(ta | a.Q) (PxQ)t#{T, 1}
f(PxQ).t otherwise
The label of a state in P x @ is calculated as the product of state labels from processes
P and @), unless the T or the L state has been reached. Once the product reaches the T

or the L state, the product stays in that state.

All properties of process product that hold for the abstract ECF model also hold
for the progress model. Namely, the product of processes is associative, commutative,

idempotent, and monotonic.

How can we interpret the entries in Table 4.2 and what is the intuition behind the
product of processes? We take the same approach we took in Chapter 3: The product of
labels captures the interaction between two processes. Consider, for example, the table
entry A x O = A. This entry describes a state in an interaction between two processes
where one process demands an input and another process has no progress requirements
or obligations. The result of the label product tells us that the network of two processes

also demands an input from its environment.

If one process is in V state, guaranteeing an output, and another process is in a A
state, demanding an input, then the network of two processes will eventually produce an
output. Because we give process obligations a priority over environment obligations, we
have V x A = V. A similar argument explains why V x O = V: If one process guarantees

progress and the other process has no progress requirements and guarantees, then the
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network of these two processes guarantees progress.

We assume that, if one network component is in the T state, then the whole network
is in the T state. For this reason we have T x A = T for any label A. Finally, if one
network component has failed, which means that this component is in a 1 state, then
the network has failed as well. Thus, we have 1 x A = L for any label A\ other than T.

Notice that T x L = T. That is, no failure can take place in the T state.

P: e Jm Q: m»_»b
T 1 T 1
Tm! a? Ta? Tb! m? m?
P A
> 0O \Y4 >0 \Y
>~ - >~ -
0 m! 1 0 B 1
PxQ o m b

Figure 4.9: A product of two WIREs

Figure 4.9 shows a product of two WIREs. One WIRE has input port ¢ and output
port m, and the other WIRE has input port m the output port b. The structure of this
state graph is the same as the structure of the product of WIREs in Chapter 3. The state
labels in the graphs of Figure 4.9, however, tell us something about progress properties
of a network of two WIREs. For example, after the first WIRE has received an input on

port a and has produced an output on port m, the product ends up in a state labeled
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with V, because the second WIRE guarantees that it will produce an output on port b.

The result of process product indicates that the network of two WIREs can fail if its
environment provides two inputs on port @ in a row without waiting for an output on
port b. Notice that trace amam leads to the |-state via an output transition from a legal
state. This indicates that we can detect safety violations with the same strategy as in
Chapter 3: We simply have to check whether there is an output transition leading from
a legal state to the L-state.

The process product models a network of processes. The theorem below characterizes
legal traces of a network: A legal trace for the network must be legal with respect to all
individual components in the network. That is, a legal trace in a process product is a

result of a product of legal traces in individual processes:

Theorem 4.5.1

The following holds for processes P and @ and any trace t € (a.(P x Q))*:

tel(PxQ) & (tlaP)elP A (tlaQ)elqQ (4.2)

Proof: Take t € (a.(P x Q))*.

tel(PxQ)
< { Equation 2.6 — legal traces }
f(PxQ)tg{T,L}
& { Definition 2.4.1 — product }
(f.P.(t|a.P)xfQ.(tlaQ)) ¢ {L,T}
& { Table 4.2 }
fP(tlaP)g{L, T} ANfQ.(tlaQ)¢{L, T}
& { Equation 2.6 — legal traces }
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(tla.P)elP A (t]laQ)elqQ

a

A simple corollary of the theorem above is that an illegal trace in a process product

must be illegal in at least one of the individual processes:

tdlL(PxQ) & (tlaP)glLP V (tla.Q)¢LQ (4.3)

4.6 Progress and refinement

In this section we define our progress condition and we show how the progress condition
and safety conditions are related to progress refinement. We demonstrated in Figure 4.9
that in the progress model we can approach safety in the same way as we did in Chapter 3.
Consequently, the definition of safety in the progress model is the same as the definition

of safety in Chapter 3.

Definition 4.6.1 (Safety)

We say that process P is safe, denoted by safe.P, if the following holds:

safe.P = (Vt: t € (LP)(0.P)U{e} : £.P.(t) £ J_) (4.4)

In the safety model of Chapter 3 we established a simple relation between the refine-

ment relation and the safety condition:
PC QR < safe.(~PxQ)

In the progress model, this equivalence does not hold. Consider, for example, the processes

of Figure 4.10. Let P be the specification of the WIRE in Figure 4.10a and let () be a
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process of Figure 4.10b. We can see immediately that safe.(~P x @) holds. However,
f.P.a =V and f.Q.a = O; therefore, we know that () does not refine P. The example

demonstrates that safety of ~P x @ alone is not sufficient for the progress refinement

P C @ to hold.
T €L T €L
Tb! a? Ta? Tb! a? Ta?
N N
> O v >0 O
S>~> < S~ .
bl b!
a) WIRE b) not an implementation of a WIRE

Figure 4.10: Refinement requires more than safety

What went wrong in the example above? Figure 4.11 shows the product ~P x Q.
Notice that ~P x @ has an empty set of input symbols, which means that the network
consisting of processes ~P and @ is closed. The product ~P X @), however, has a state
labeled with A, which indicates that the network demands an input from its environment.
That is, process ~P X @ is unhealthy, demanding progress from its environment, while
no environment can satisfy such a demand.

T
b! al
a!

S

>0 A
SN

b!
Figure 4.11: A A state indicates lack of progress
The example above illustrates a violation of our progress condition: There should be

no traces labeled with A in ~P x Q. This condition is the same as the progress condition

from [Verhoeff, 1994].
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Definition 4.6.2 (Progress)

Process P satisfies the progress requirements, denoted by prog.P, if the following holds:
prog.P = (Vt: t€ (a.P)": f.Pt#A)

The progress condition is intended to be used on processes with no input ports. If
such a process fails to satisfy the progress condition, the process is unhealthy, which is

an indication of a progress failure.

We emphasize that, when we apply the progress condition to a process that has input
ports, a failure to meet the condition still implies a progress violation, if the process is
unhealthy. If the process is healthy, the failure to meet the progress condition indicates
that, at some point, the process may demand progress from its environment. We stipulate
that demanding progress from an environment is too strong a requirement, thus such a

process does not meet our progress condition.

In the example above we demonstrated that the safety condition alone does not suffice
for an alternative characterization of the refinement relation. The progress condition alone
is insufficient as well. One can check easily that process P from Figure 4.12 is not refined
by process () from the same figure: f.P.a = T, f.Q.a = L, hence f.P.a Z f.Q.a and
P IZ Q. On the other hand, product ~P x @), shown in Figure 4.12, does satisfy the

progress condition, because there is no A state in the graph for ~P x Q.

P: Q: ~P x @Q:
! ! !
SO0 e T z >0t SO0 -

Figure 4.12: The progress condition alone is insufficient for the refinement

Notice that the product ~P x () does not satisfy our safety condition. This indicates

that the safety and the progress condition together are sufficient to characterize the
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refinement relation.

Theorem 4.6.3 (Refinement characterization)

For processes P and Q we have

PC Q < safe.(~P x Q) A prog.(~P x Q)

Proof:

safe.(~P x @) Aprog.(~P x Q)

{i(~P x Q) =0, Lemma 4.6.4 }
(Vt: te(a.(~Px Q) : f.(~PxQ).t 1 0O)
<  {iP=1iQ@Q, 0o.P=0.QQ, Lemma 4.6.6 }
(Vt: te(a.P)*: ~f.Ptxf.Q.t J0)
<  { Lemma 4.6.5 }
(Vt: te(a.P) : f.PtC£.Q.t)
< { Definition 2.3.1 — process refinement }

PCQ

a

In the proof of the theorem above we used the lemmas listed below. All the lemmas

are proven in Appendix C.

Lemma 4.6.4

For process P, where a.P = 0.P, we have:

safe.P A progP < (Vt:te(a.P)*: fPt3J0)
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Lemma 4.6.5

The following holds for labels A and ~y:
ACy & (~Ax9) 30O

Lemma 4.6.6

Let P and Q be processes, such that i.P =1i.QQ and o0.P C 0.QQ. Then,

(Vt:te (aQ) f.(~PxQ)tJ0) & (Vi:te (a.Q) :f.~P.(t|aP)xf.Q.t30)

Theorem 4.6.3 implies that the conjunction of safety and progress conditions satisfies
Equation 2.12. That is, the conjunction of safety and progress conditions can be used as

a correctness criterion, as introduced in Section 2.5:
correct.P = safe.P A prog.P (4.5)
Now we can rewrite Theorem 4.6.3 as
PC Q@ & correct.(~P x Q) (4.6)
We can apply Theorem 2.5.1 and look at the refinement relation in the light of testing:
PCQ & (VR: RePROC(0.P,i.P): correct.(P x R) = correct.(Q x R))

The equation above tells us that, if P C (), then process () operates correctly in any
environment where process P operates correctly. Notice that we restricted the alphabet

of process R, which represents the environment, to match the alphabet of processes P
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and Q.

Now we have three equivalent definitions of the refinement: One definition comes from
the abstract ECF model; in another definition we take approach from [Ebergen, 1991],
where we require that an implementation operates correctly together with the reflection
of the specification; finally, the refinement can be seen from the testing point of view,
which was the approach taken in [Verhoeff, 1994]. [Negulescu, 1998] also shows that the

refinement relation in process spaces conforms to the testing paradigm.

4.7 Hiding

Hiding conceals output ports of a process. Recall that our refinement relation requires
that an implementation has the same input and output ports as a specification. This
alphabet restriction may cause a problem if an implementation is expressed as a product
of a number of processes, where “internal” connections between these processes appear
as output ports in the product. The output alphabet of the specification may not include
internal ports of the implementation, thus we cannot compare the implementation and
the specification. By means of hiding we can hide the internal ports and then verify

whether the refinement holds.

The model presented in this chapter is an instantiation of the ECF model of Chapter
2. Thus, we take the definition of hiding directly from the ECF model. For process P
and set A C o.P, hiding output symbols from set A in process P is denoted by |[A :: P]|
and defined as

if[A=P|]] = iP
o][A:=P]] = oP—-A
fll[AzPllt = (Ns:se(@P)* Asl(aP—A)=t: f.Ps)
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The result of hiding tells us what kind of behavior the environment can expect from
process P when ports in set A are concealed. Suppose that process P has executed trace

s. The environment of P has seen only communication actions in trace t = s | (a.P — A).

Let

X({t)={s:se(a.P)"Asl(a.P—A)=1t:s}

X (t) is the set of all traces that process P could have executed in order for the environment
to observe communication actions that amount to trace . The environment does not
know which trace from set X (t) process P has executed. For this reason, after observing
trace ¢, the environment does not know in which state process P is: L, demanding,
indifferent, transient, or T. In order for the environment to be able to cope with the
worst possible outcome of the events, the environment must assume that the state of

process P is represented by the least label of all traces in X (t). Consequently,

f.[A: P]llt=(Ns: se€ X(¢): f.P.s)

P Q = |[m :: P]|:
a m b a b
————— P —
T 1 T 1
Bl T 1
ml, b!T \ Ta? Tm' Ta?, m! Tb! a? ch’
? m) ? LS
>0 -2 e \Y Y > 0O \Y
0 1 2 e
b! b!
a) Before hiding m b) After hiding m

Figure 4.13: Hiding a connection between two WIREs
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The definition of hiding is the same as in the safety model of Chapter 3, but hiding
now also takes into account progress properties of a process. For example, consider the
product of two WIRESs, shown as process P in Figure 4.13a. The result of hiding output
m is the specification of the WIRE, shown as process @) in Figure 4.13b. One can verify,
by inspection, that for every trace ¢t € (a.QQ)* we have f.Q.t =MN{s: s € X(¢) : f.P.s}.
For example, take trace t = aa. Some traces in X (aa) are aa, ama, and amam. Their
corresponding labels in process P are f.P.aa = L, f.P.ama =V, f.P.amam = 1. Because

f.P.aa = 1, we know that f.|[m :: P]|.aa = L, which agrees with f.Q.aa = L.

4.8 Hiding and unhealthy processes

The result of hiding can be an unhealthy process. Consider the “ticker” process of Figure
4.14a. After having received an input on port a, the ticker guarantees that it will keep

producing outputs on port b.

P: Q=|b: Pl
T 1 1
Tb! Ta? Ta?
oy W So %y
a) the process b) after hiding

Figure 4.14: The ticker process

The result of hiding output b is unhealthy process ) shown in Figure 4.14b. After
having received an input on port a, process () is in a V state, but no output is possible.
Notice that the V state appears in the result of hiding, because, after receiving an input
on port a, the ticker is trapped in a cycle of “internal” symbols passing only through

V states. Without proof we mention that hiding outputs in a healthy process yields
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a healthy process if there is no V-cycle of “internal” symbols. This observation is in

agreement with the interpretation of unhealthiness adopted in [Mallon et al., 1999].

The process of Figure 4.14b is unhealthy, because it has a V state with no outputs
possible. Can the result of hiding be a state graph that has a A state with no inputs
possible? The answer is no, because we are hiding output ports only, thus all input

transitions from the original state graph remain after hiding.

N
P a? Q Tb! R
— ?
>0 v >o —% = v ch
‘\—/
B

Figure 4.15: A prospective implementation of the WIRE

The following example illustrates how the result of hiding can indicate a progress
problem with a network that is supposed to implement a specification. Let process P
from Figure 4.15 be a specification that we are trying to implement with a network
consisting of processes ) and R from Figure 4.15. Process P specifies a WIRE, process )
can receive an input on port a, but will never produce an output on port b, and process
R keeps producing outputs on port c¢. Process R can be seen as a producer of an infinite

sequence of ticks, which may occur at irregular intervals.

T T
Q X R: I[c:: @ x R]|: T
a? " a? "
>V \% Y
SR

Figure 4.16: An unhealthy process reveals progress problems

We ask whether P C |[c :: @ x R]| holds. Figure 4.16 shows process |[c :: @ X R]|.
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By inspection we can verify that process P can indeed be refined by |[c:: @ X R]|. That
is, a WIRE can be implemented with a process that never produces an output and a
process that produces hidden ticks. [Negulescu and Brzozowski, 1995] uses this example
in order to demonstrate that the progress condition from [Verhoeff, 1994] does not catch
transient cycles of internal symbols. The same critique applies to our progress condition.
One can observe, however, that process |[c :: @ X R]| is not healthy, although process
@ X R is healthy. As observed above, unhealthiness introduced by hiding is an indication
of an internal V-cycle of internal symbols. Consequently, we can use unhealthiness as an

indication of a progress problem with our implementation.

4.9 Hiding and correctness

Recall that in the safety model hiding does not affect the correctness of a process. We
proved in Theorem 3.8.4 that hiding output ports yields a safe process if and only if we
started with a safe process: safe.P < safe.|[A :: P]|. In the progress model, however, this
equivalence does not hold in general. Process P of Figure 4.17 demonstrates that, in the
progress model, correct.|[A :: P]| does not imply correct.P. Notice that, for process
P of Figure 4.17, correct.P does not hold, because the state graph corresponding to
P contains a A state. On the other hand, correct.|[b :: P]| holds. Without proof we

mention that correct.P implies correct.|[A :: P]| for any process P.

1
P: T I[b:: P]|:
a?
SO b! 0 a? A a? - SO a? 1

Figure 4.17: Hiding can mask incorrectness

Our main application of correctness is limited, however, to processes with no input
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ports, which we call “closed” processes. The name closed suggests that a process repre-
sents a network where every input port is connected to some output port. For any closed

process P, correct.P is equivalent to correct.|[A :: P]|.

Theorem 4.9.1

For process P, such that i.P = (), and set A C 0.P, we have

correct.P < correct.|[A :: P||

Proof: We first recall Lemma 4.6.4, which tells us that, for a closed process P, one can

simplify the definition of correctness:
correct.P < (Vt:te (a.P)":f.Pt3J0)

correct.|[A :: P]|
&  {iP =0, Lemma 4.6.4 }
(Vt:te (a4 P))*:f|[A= P)l.t30)
& { Definition 2.6.1 }
(Vt:te (al[A: Pl))*: (Ms:s€ (a.P)*Asl(a.P—A)=t:f.Ps)10)
< { Calculus, C is a total order on A }
(Vt:te(a|[A=P))*:(Vs:s€ (aP)*Asl (aP—A)=t:f.P.s)J0)
< { Calculus }
(Vs:s € (a.P)*: f.P.s 1 0O))
& {Lemma4.6.4,iP =0}

correct.P
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4.10 An alternate definition of hiding

The following theorem provides an alternative view of hiding. When we compute the
result of hiding |[A :: P]|, we look for the greatest process R with input alphabet i.P
and t output alphabet 0.P — A, such that the reflection of R operates correctly in the
presence of process P. The correctness for ~R x P must be guaranteed although process

R does not have access to all ports of process P.

Theorem 4.10.1

Let P be a process and let A C o.P. Then,
[A=Pll=(UR:i.R=iPAo.R=(0.P— A) A correct.(~R x P) : R) (4.7)

We remark that Theorem 3.8.1 offers exactly the same characterization of hiding for
the safety model of Chapter 3. The proofs of the two theorems follow the same strategy,
with the only differences coming from different sets of labels used in the two models and

from different definitions of correctness.

Proof:

(UR:iR=iPAo.R=(0.P— A)Acorrect.(~R x P): R)

=  {Lemma 4.10.2 }
(UR:i.R=iPAo.R=(0.P—A)A(RC|[A:P]|):R)

= { Calculus, Theorem 2.3.3 - (PROC(i.P, (0.P — A)),C) is a complete lattice }
[A:=P]|

a

In the proof of Theorem 4.10.1 we used the following lemma. See Appendix C for the

proof.
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Lemma 4.10.2

Let P and R be processes such that i.R =1i.P and 0.R = 0.P — A for some set A. Then

correct.(~Rx P) & RLC|[A:P]

By applying Property 2.3.6, Theorem 4.10.1 can be rewritten as

(A= P)
—  { Theorem 4.10.1 }

(UR:i.R=iPAo.R=(0.P— A)Acorrect.(~R x P): R)
—  { Write S=~R}

(US:i8=(0.8—A) Ao.S =i.P Acorrect.(S x P):~S)
=  { Lemma 3.8.3 }

~(MNS:i8= (0.8 —A)Ao.S =iP Acorrect.(S x P):S)

The derivation above leads to yet another characterization of hiding:
[A:P]] = ~(MNR:i.R=(0.P—A)Ao.R=iP Acorrect.(Rx P): R) (4.8)

This equation provides a connection between the process product and the composition
operation from [Verhoeff, 1994]. Verhoeff’s composition implicitly hides internal connec-
tions between network processes. Furthermore, Verhoeff’s composition is defined as the
reflection of the least environment in which the network can operate without violating any
of the correctness concerns. If we take processes P and () and we assume that symbols

in set A represent connections between P and @, then |[A :: P X Q]| amounts to

~(MR:iR=(0.(PxQ)—A)Ao.R=1i(P x Q) Acorrect.(Rx PxQ):R)
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That is, |[A :: P x Q]| is the reflection of the least environment in which P x @) operates

correctly, which matches the definition of composition from [Verhoeff, 1994].

4.11 Factorization Theorem

In Section 3.9 we found a lower bound for solutions of the Design Equation [Verhoeff, 1994].
Here we demonstrate that, in the progress model, a lower bound to the solution of the

Design Equation can be calculated by the same expression as in the safety model.

In the Design Equation we start with process P and we guess that process @ will be

a part of an implementation of process P:

PCQxR

We are asked to find process R on the basis of processes P and @), such that the Design

Equation above is satisfied.

The parallel composition of [Verhoeff, 1994] and [Mallon et al., 1999] implicitly hides
internal connections in a network. Our process product, on the other hand, leaves the
internal connections visible. For this reason, our Design Equation and our Factorization
Theorem include an explicit application of hiding. That is, we assume that set A contains
the ports that form internal connections between processes  and R. Our formulation of

the Design Equation then becomes

PC|A=QxR)

Theorem 4.11.1 (Factorization Theorem)

Let P, Q, and R be processes and let A and B be sets of symbols such that ANa.P =),
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and BNa.R=10. Then,

PCl[A=Q@QxR|] & ~|[B:(~PxQ)]|CR

Proof:

PCA:QxR]

< { Equation 4.6 }
correct.(~P x |[[A : Q x R]|)

<  {Ana.P =, Theorem 2.6.5 }
correct.|[A :: ~P x Q x R

&  { ~P xQ xR is closed, Theorem 4.9.1 }
correct.(~P X @ x R)

& {~PxQ xR is closed, Theorem 4.9.1 }
correct.|[B :: ~P x Q X R]|

< {Bna.R=0, Theorem 2.6.5 }
correct.(|[B :: ~P x Q]| x R)

< { Equation 4.6 }
~[[B:~PxQIER

a

Sets A and B in the theorem above represent “internal” symbols. Namely, set A rep-
resents internal connections between @@ and R, and set B represents internal connections
between ~P and (). Because progress refinement requires equal alphabets, sets A and B

are defined implicitly. That is, 0.P = (0.Q Uo.R) — A and i.R = (i.P Uo0.Q) — B.

We demonstrate the application of the Factorization Theorem with the same example

as in Section 3.9. The difference is that now the design equation also takes progress
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properties into account. Figure 4.18a shows process P, which is a specification of a three-
input MERGE. Process @ of Figure 4.18b is a specification of a two-input MERGE. We
would like to implement a three-input MERGE with the two-input MERGE, and we

would like to find a process R that would complete the implementation.

p: T L Q T L
Td! a?,b?,c? Ta?,b?,c? Tw! a?,b? Ta?,b?
d! x!
a) three-input MERGE b) a guessed part of an implementation for P

Figure 4.18: The MERGE

Figure 4.19b shows the lower bound for process R as given by the Factorization Theo-
rem. The lower bound for process R is a specification of another two-input MERGE. Just
as we learned in Section 3.9 we can see that a three-input MERGE can be implemented
with two two-input MERGESs, but now we also considered progress concerns on top of

the safety concerns.

T 1

d__zhe T:v?, c?

>0 \Y
>~ -

d!
a) ~P xQ b) ~|[a,b:: ~P x Q]

Figure 4.19: An application of the Factorization Theorem
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4.12 Summary

In this chapter we instantiated the ECF model of Chapter 2 with the set of labels that
describe safety and progress properties of a process. The set of labels we use was taken

from [Verhoeff, 1994].

We illustrated how the refinement relation and operations on processes address progress
properties of a process. The correctness condition we defined for the progress model con-
sists of the progress condition and the safety condition. Our progress condition is exactly
the same as the progress condition in [Verhoeff, 1994], which means that we are able to

detect deadlocks in implementations of a given specification.

Similarly to the safety model, the refinement relation in the safety model has three
equivalent definitions: One definition comes straight from the ECF model; in one def-
inition we require correctness of an implementation operating together with the reflec-
tion of the specification, which is the approach proposed in [Ebergen, 1991]; finally, the
refinement relation can also be defined via the testing paradigm. Such a testing ap-
proach to the refinement relation was taken in [Verhoeff, 1994] and was also addressed in

[Negulescu, 1998].

We see the existence of three characterizations of refinement as a justification for the
definition of refinement in ECF processes and as a justification for the definition of our

correctness condition.

The hiding operation allows us to conceal output ports of a process. We gave a number
of examples of hiding and showed that hiding and process product are closely connected
to the composition from [Verhoeff, 1994]. We also showed that the result of hiding can
be an unhealthy process, which may indicate the presence of internal transient cycles in

a network.
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Finally, we proved the Factorization Theorem and demonstrated how this theorem

can be applied in a design process.
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Chapter 5

Specification composition

In this chapter we discuss two composition operations on ECF processes, the network
composition and the specification composition. We use the network composition to com-

pute the joint behavior of a set of devices connected to form a network. For example,

Ly

N=P| Q

Figure 5.1: The network composition

processes P and () from Figure 5.1 each represent a physical device. Ports of P and @)
with the same name are connected, meaning that communication between P and () may
take place. The network composition of P and @, denoted by P || @, is a process that

models the joint operation of processes P and Q).

The specification composition is another operation that we define for ECF processes.
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We use the specification composition to arrive at processes that specify communication
behaviors of individual devices. Such specifications are called constraint-oriented spec-
ifications. When producing a constraint-oriented specification, we find constraints that
determine the communication behavior of a process. A constraint can be seen as a re-
stricted view of the communication behavior of the process. For example, Figure 5.2
shows constraints Sy, S1, and Sy, which represent restricted views at the behavior of
process S. Once we have collected a set of constraints that completely determine the
behavior of a process, we combine the constraints with the specification composition.
The result of the specification composition of constraints is a process. For example, the
specification composition of constraints from Figure 5.2, denoted by Sy & S1 & So, yields

process S.

S=5 &S5 &85

Figure 5.2: The specification composition

It turns out that constraints themselves are processes. Thus, a process can be used
for two different purposes. One, a process can model the behavior of one physical device
or of a network of devices; two, a process can model a constraint on the behavior of one

device.

The constraint-based approach to building specifications can be very useful, especially

when behaviors involve a large degree of concurrency. This approach to constructing spec-
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ifications has been applied in different formalisms that have found applications in different
areas: [Bolognesi and Brinksma, 1987] discusses how a constraint-based specification ap-
proach is supported in LOTOS. [Ebergen, 1991] advocates that the weave, which is a com-
position operation in “standard” trace theory, can be used for building specifications from
constraints. The usage of the weave in [Ebergen, 1992] and [Benko and Ebergen, 1994]
demonstrates how combining behavioral constraints can lead to concise specifications of
non-trivial behaviors that involve a large degree of concurrency. [Molnar et al., 1992a]
and [Molnar et al., 1992b] define the weave for Petri nets and demonstrate its applica-
tion in specifying asynchronous-circuit components. In [Negulescu and Peeters, 1998],
the constraint-oriented specification approach takes advantage of chain constraints to

introduce timing requirements into specifications.

In the remainder of this chapter we study the two compositions in both the safety and
the progress model. To the best of our knowledge, applications of the constraint-based
specification approach were limited to situations when only safety was a concern. For the
safety model, we demonstrate that from the formal point of view both the specification
composition and the network composition correspond to the process product. That is,
there is no formal difference between the specification composition and the network com-
position. Such a view has been adopted in [Jong and Lin, 1994], [Ebergen et al., 1995],
[Pena and Cortadella, 1996], and [Negulescu, 1998].

For the progress model, on the other hand, we show that the process product cannot
be applied for combining constraints into one specification. We define the specification
composition in the progress model for the domain of snippets, which are ECF processes
obeying a number of restrictions. We prove a number of properties of the specifica-
tion composition and we provide a few examples of building specifications by composing

snippets.
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5.1 The specification composition and the network compo-

sition in the safety model

In the safety model, process product has, in addition to modeling process networks, an-
other application. The product allows us to express a specification as a conjunction of
constraints, where each constraint can be expressed as a process. Because the process
product “synchronizes” common outputs and inputs of the constraint processes, the prod-
uct exhibits exactly all the behaviors that are in accordance with each of the constraint
processes. Such a “constraint-oriented” specification is a powerful tool that can greatly
simplify producing a specification of a process, especially when the specification involves

a large degree of concurrency.

For example, let us show how to apply the product of constraints in specifying the
behavior of the JOIN. Recall that the JOIN has two input ports, a and b, and output
port c. Initially, the JOIN waits for both inputs a and b. After the inputs have arrived,

the JOIN produces an output on port ¢, and the cycle repeats.

The behavior of the JOIN can be seen as a product of two constraints. We first focus
only on the behavior of the JOIN with respect to the input port a and the output port
c. Input actions on port a¢ and output actions on port ¢ alternate. The JOIN can only
produce an output after receiving an input, and we do not allow a further input until the

output is produced. We express this alternation with the constraint shown in Figure 5.3a.

a? b? a?/r O @\
PN PN !
> O O wx >0 O — >0==- O
Ya e BN O 47
a) b) ¢)

Figure 5.3: A specification of the JOIN
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The inputs on port b and the outputs on port ¢ also alternate, which we express as
the process of Figure 5.3b. Finally, Figure 5.3¢ shows the product of the two constraints.

The result is a specification of the JOIN.

We demonstrated in Chapter 3 that process product can also be used for modeling
networks of independent devices modeled by processes. Thus, in the safety model, process
product serves as a network composition and as the specification composition. When we
apply process product as a network composition, denoted by P || @ for processes P and
@, we forbid connections between output ports of P and (). This restriction comes from
physical properties of electronic circuits: When we connect electronic circuits, we should
avoid connections between output terminals, because we could create damaging short

circuits.

On the other hand, when we use process product as the specification composition,
denoted by P & @ for processes P and @), we forbid connections between input ports and
output ports of processes P and (). We introduce this restriction because each of the
processes captures an aspect of the behavior of the same device. Thus, each port is either

an input or an output in all constraints describing the device.

5.2 Healthy and unhealthy processes

The process product cannot be used as a specification composition in the progress model.
In order to demonstrate why this is the case we first recall the concept of unhealthiness,
introduced in Chapter 4. A process that guarantees progress after some trace ¢t should
be capable of producing an output after exhibiting trace . Such a process is called a
healthy process. More precisely, healthy processes are processes where in each V state at

least one output can be produced, and in each A state at least one input can be received.
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Formally, processes P is healthy if the following holds for every trace t:

(f.Pt=V=(Ja:a€o0.P:fPta#T))
AN (fPt=A= (Ja:a€iP:f.Pta# 1))

Healthy processes are not closed under the product of ECF processes. This is the
reason why the process product is not suitable for composing behavioral constraints. In
order to illustrate this unsuitability we attempt to specify the JOIN with inputs a and b
and with output ¢ as a product of two constraints. One constraint specifies that output
¢ must be produced only after input a has been received, and another constraint states
that output ¢ must be produced only after input b has been received. Figure 5.4 shows
the product of the two constraints. In the state graphs of Figure 5.4 we omitted the T
and the 1 states to reduce the clutter; all missing output transitions lead to the T state

and all missing input transitions lead to the L state. One can see that the product of the

a? b?

T T RN \
> O \Y4 X > O v —
‘ﬁ/ ‘ﬁ/ b\ /

JOIN— >0 =-—"——V

Figure 5.4: Product is not a specification composition

two constraints is an unhealthy process that differs from the specification of the JOIN.
Namely, after receiving an input on port a, the product is in a V state, but no output

can immediately be produced.
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The example above emphasizes two problems with using process product as the spec-
ification composition. One problem is that the result of the process product is different
from what we would like to have as a specification. The second problem is that the result
of the process product may be an unhealthy process and we see no practical use for an

unhealthy specification.

In order to improve our understanding of the problems described above, we take a
closer look at unhealthy processes. The healthiness of a process can be violated in two
ways. We can have a V trace after which no outputs can be produced. An example
of such a process is the result of the process product shown in Figure 5.4. The set of

processes that violate healthiness in a V state are called V-unhealthy processes.

We find it convenient to characterize the set of traces that are labeled with V and
that cannot be followed by a legal output. For process P, we denote such a set with

uy.P, and we call it the set of V-unhealthy traces. We define uy.P as follows:

uy.P={t: f.Pt=VANa: a€0.P: f.Pta=T): t} (5.1)

For a healthy process P we have uy.P = ().

Another way to violate healthiness is to have a A trace after which the process cannot
receive any inputs. Following the pattern from above, we first characterize A-unhealthy
traces. The A-unhealthy traces are labeled with A, but a process cannot receive an input
after such a trace. The set of A-unhealthy traces of process P is denoted by ua.P and

is defined as

upa.P={t: fPt=AAN(Na:a€iP: f.Pta=1): t} (5.2)

For a healthy process P, we have ua.P = (. In Figure 5.4 we demonstrated that a
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V-unhealthy process can be a result of the product of two healthy processes. Figure
5.5 shows that a A-unhealthy process can be the result of the product of two healthy

processes.

so % | X SA-0le g 0o ) = SA - )

Figure 5.5: A A-unhealthy process can be the result of a process product

For process P, the set of unhealthy traces u.P is the union of ua.P and uy.P. For

a healthy process P, u.P is empty.

5.3 Rounding processes up and down

As the example of Figure 5.4 demonstrates, the unhealthiness of a process product pre-
vents us from using the process product as the specification composition. In order to re-
solve this problem, one could identify all the states that cause unhealthiness and change
their labels to O. This procedure can be seen as rounding the process up or down,

depending on the label of the state that causes unhealthiness.

First we take a look at rounding up. Process P, rounded up, is denoted by [P], and

is defined as

i.[P] = iP
o.[P| = o.P
(5.3)
f.Pt iftZua.P
£.[P]t = #ua
a if t € ua.P

The operation defined above is called rounding up, because labels of some traces

may change from A to O, and A £ O in the partial order on labels. Thus, the result
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of rounding up is a process that is potentially larger than the process we started with:

PC[P].

round up S0 a? 1

SA e )

Figure 5.6: Rounding up a A-unhealthy process

Figure 5.5 shows that the process product can yield a A-unhealthy process. Such a

process can be rounded-up and the result is a healthy process, as shown in Figure 5.6.

We define rounding down in a similar way. Process P, rounded down, is denoted by

|P|, and is defined as

ilP] = iP
o.|P|] = o.P
(5.4)
f.Pt if t Zuy.P
£.|P]t = # 1
a if t € uy.P

When we round a process down, the label of some traces might change from V to
O. In the partial order of labels we have O C V, thus the result of rounding down is a

process that may be smaller than the process we started with: |P] C P.

We can, for example, take the unhealthy process of Figure 5.4 and round it down in

order to obtain a healthy process, as shown in Figure 5.7.

a7 N

!
v round down S0 c! v

V 7
a?/( c!\

> 0O

b?\\v/a?( N1

Figure 5.7: Rounding-down a V-unhealthy process
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Of course, an unhealthy process can be both V-unhealthy and A-unhealthy. In order
to make such a process healthy, we round it up and down. We call such an operation

rounding, and we denote it by [P] for process P. We define rounding as follows:

i[P] = iP
o.[P] = o.P
(5.5)
f.Pt if t  u.P
f.[P].t =
O ifteupP

Rounding a process up does not affect the V-unhealthy traces and rounding a process
down does not affect the A-unhealthy traces. For this reason, rounding is a combination

of rounding up and rounding down:

[P] =[P = L[P]] (5.6)

We use ® to denote the rounded product. For processes P and () we have

PRQ = [PxQ (5.7)

In the remainder of this chapter we demonstrate that, with some additional restric-
tions, the rounded product can be used as the specification composition. The restrictions
stem from the formal properties that we would like to hold for the specification com-
position. One of these properties is monotonicity, which does not hold for the rounded
product of processes as we demonstrate in the example of Figure 5.8. Process P from
Figure 5.8 is refined by process (). On the other hand, P ® R is not refined by @ X R,
because f.(P® R).e =0, f.(Q ® R).e = A, but O Z A.

A justification for the use of the rounded product as the specification composition
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P Q: R:

a? a? a? a? a?
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Figure 5.8: The rounded product of processes is not monotonic

is as follows. The product of two healthy processes yields an unhealthy state in one of
the following two ways: A V-unhealthy state is a result of the direct product of a state
labeled with O and a state labeled with V. A A-unhealthy state, on the other hand, is a
a result of the direct product of a state labeled with O and a state labeled with A. When
we defined the product on labels, we chose to give the progress obligations expressed by V
and A a priority over the lack of progress requirements expressed by O. For that reason,
VxO=V and A x O= A. In the specification composition, however, we have to take
into account that it should be possible to satisfy all progress requirements present in a
specification. For that reason, we remove the requirements that cannot be satisfied either
by a process or by its environment. This removal of unsatisfiable progress requirements
is achieved by rounding a process down, which removes the requirement that a process
produce an output when an output cannot be produced, and by rounding a process up,
which removes a requirement that the environment provide an input when a process is

unable of receiving any input.

In the following sections we restrict the domain for the specification composition and
we define a stricter refinement relation. The combination of the restricted domain and
the stricter refinement relation allows us to use the rounded product as the specification

composition and, at the same time, we get all the formal properties that we would like
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to hold.

5.4 Snippets and output-persistent refinement

Snippets are processes that belong to the restricted domain defined below.

Definition 5.4.1 (Snippet)

Process P is called a snippet if it satisfies the following restrictions:

1. P is V-healthy
2. P never demands an input: (Vt: t € (a.P)*: f.Pt# A)
3. P has no optional outputs: (Vt,a:t€ (a.P)*Na€o.P: f.Pt=0=fPta=T)

4. Each input transition leads either to a legal state or to the failure state:

(Vt:te (LP)i.P)U{e}: £.Pt£T)

A snippet is A-healthy, because a state graph for a snippet contains no A states.
Because, by definition, a snippet is also V-healthy, we can see that snippet is a healthy
process. Consequently, a product of snippets rounded down is the same as a rounded

product of snippets, because of the absence of A traces.

Let us take a closer look at the requirements that a process must satisfy in order
to be a snippet. Condition 1 demands that a snippet be a V-healthy process. That
is, a snippet does not exhibit any progress violations. Safety violations, however, are
allowed in a snippet. It has been our experience that most practical examples we have
considered satisfy this restriction. Furthermore, we demonstrate below that the presence

of V-unhealthy traces breaks associativity of the rounded product on snippets.
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Condition 2 excludes A-traces from a snippet. We need the absence of A traces
in order to prove that the specification composition is monotonic with respect to the

output-persistent refinement that we define below.

Condition 3 tells us that a snippet cannot produce an output after a O-trace. This
means that a snippet can make progress by producing an output only after a V-trace,
but no progress by producing an output is possible after a O-trace. We show that, if a
snippet can produce a legal output from a O state, the rounded product of snippets is

not associative.

Condition 4 forbids input transitions from a legal state to the T state. We show
that without this requirement the rounded product is not monotonic with respect to the
output-persistent refinement.

Notice that MIRACLE is not a snippet, because it does not satisfy condition 4. ABORT,
on the other hand, is a snippet.

The example of Figure 5.8 demonstrates that the rounded product of processes is not

monotonic. Unfortunately, when we restrict our domain to snippets, the rounded product

still lacks monotonicity, as we demonstrate in the example of Figure 5.9.

" Q//H
v, al,b! O al, bl T E v a! - al,b! T
al
R:
b! al, b
P®R: >VHD L) > —l—

al QRR:
v, b! O al,b! T z SO al,b! T

Figure 5.9: Rounded product on snippets is not monotonic



142 CHAPTER 5. SPECIFICATION COMPOSITION

In order to regain the monotonicity of rounded product of snippets, we define a stricter
refinement relation, called output-persistent refinement: In the output-persistent refine-
ment we require that output transitions are preserved in a refinement. This requirement

is called “output persistence”.

Definition 5.4.2 (Output persistence) Let P and Q be snippets, such that i.P =1.Q
and 0.P = 0.Q). Process Q) is output-persistent with respect to process P, denoted by

P <, Q, if the following holds

P=,Q = (Vt,a:teLPAa€o.P: (fPta#T=£fQ.ta#T)) (5.8)

The output-persistence captures the requirement that, if after legal trace ¢ process
P can produce output a, then process () can also produce output a. Notice that, after
producing an output on port a, processes P and () can be in a state labeled by any label

other than T and that there is no relationship between labels of the two target states.

In the output-persistent refinement we strengthen the progress refinement by the

output persistence.

Definition 5.4.3 (Output-persistent refinement)
The output-persistent refinement of snippet P by snippet QQ is denoted by P T, Q) and is
defined as

PL,Q@ = PCQAPZQ

In Figure 5.10 we illustrate the output-persistent refinement. Figure 5.10a shows
that the output-persistent refinement allows us to refine a process failure with a legal

output transition. The example of Figure 5.10b demonstrates that the output-persistent
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Figure 5.10: Examples of output-persistent refinement

refinement allows us to refine an illegal input transition with a legal input transition.
That is, more inputs can be allowed on the right-hand side of the refinement relation.
Finally, Figure 5.10c shows that the output-persistent refinement relation requires that
all legal outputs that are present in the left-hand side process must also be present in the

right-hand side process, but the outputs do not have to lead to the same state.

5.5 Properties

In this section we prove a number of properties of the rounded product of snippets and
of the output-persistent refinement. Obviously, the output-persistent refinement implies

the refinement for any processes P and Q:

PC,Q = PCQ (5.9)

Next we prove that C, is a partial order.

Theorem 5.5.1 (Partial order)

C, is a partial order on processes.

Proof: By Theorem 2.3.2 we know that C is a partial order. That is, C is reflexive,
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transitive, an antisymmetric.

Output persistence is reflexive. That is, P <, P, because
(Vt,a :t€elPANa€o.P: (f.Pta# T = f.Pta# T))

We can see that T, is reflexive, because C is reflexive and =, is reflexive.

Next we look at transitivity of C,. Take processes P, @), and R, such that P C, Q
and @ C, R. Because output persistent refinement implies “vanilla” refinement, we know

that PC Q, Q E R, and PC R.

We have to show that P <, R. By assumption, we have P <, ) and @Q =<, R:

(Vt,a: telPAa€o.P: (fPta#T=fQta#T)) (5.10)

(Vt,a: telQAa€o0.Q: (f.Qta# T =fRta#T)) (5.11)

Take trace t € 1.P and symbol a € o0.P, such that f.P.ta # T. The following argument
shows that ¢t € 1.Q): Because P C @) and ¢ € 1.P, we know that f.(Q).t # 1. Furthermore,
by Equation 5.10, f.Q).ta # T, and, by T-persistence, f.QQ.t # T. Because f.Q.t # 1 and
f.Q.t # T, we have t € L.Q.

By Equation 5.11, we now get
(Vt,a: telPAa€o.P: (fPta#T=fRta#T)) = P=,R

Because P C R and P <, R, we have P C, R. That is, C, is transitive.

Finally, we prove that C, is antisymmetric:

P, QNQE, P

= { By Equation 5.9 }



5.5. PROPERTIES 145

PEQANQCP
= { C is antisymmetric }

P=Q

Next we turn to properties that involve the rounded product.

Theorem 5.5.2

Snippets are closed under ®. For snippets P and (), we have

PRQ=|PxQ]

Proof: We prove in turn each of the requirements in the definition of a snippet (Defi-

nition 5.4.1).
Because of rounding, P ® @ = [P x Q)] is healthy.

No A-trace can appear in [P X )], because there are no A-traces in snippets P or Q.

Furthermore, from Equation 5.5 it follows that there are no unhealthy traces in [P x Q).

Because no legal outputs are possible after O-traces in either P or @), no legal outputs
are possible after O-traces in P x (). Consequently, no legal outputs are possible after
O-traces in [P X Q).

Finally, in both snippet P and snippet @), input transitions from a legal state can lead
only to a legal state or to a L state. From the product table for labels (Table 4.2), we
can see that this property also holds for P x ). Furthermore, rounding does not affect
the legality of a state, neither does it affect the | state. Consequently, in P ® @, input

transitions from a legal state can lead only to a legal state or to a L state.

We conclude that [P x @] satisfies all requirements for a snippet.
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Recall that, for snippet S, [S] = |.S], because there are no A-traces, thus, no rounding

up takes place:

P®Q
=  { By definition }
[P x Q]
= { P x @ contains no A-traces }

[P x Q)

Theorem 5.5.3

The rounded product is idempotent, commutative, and associative in the snippet domain.

Proof: Idempotence and commutativity follow directly from idempotence and commu-

tativity of process product. We omit the proofs for the sake of brevity.

Associativity:

(P®Q)®R
= { Theorem 5.5.2 }
[P x Q] x R
= { Lemma 5.5.4 }
[P x @ x R]
= { x is commutative and associative }
|Q x Rx P|
= { Lemma 5.5.4 }
L[[Q x R] x P]

= { X is commutative }
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[P x |Qx R]]
= { Theorem 5.5.2 }

P®(Q®R)
Od

We used the following lemma when we proved associativity of ® on snippets. See

Appendix C for the proof.

Lemma 5.5.4

For snippets P, QQ, and R, we have

[P x@Q]xR]=[PxQxR)|

P Q: R:
a!/(V a!/(T a!/(|v
>V >V >o —¢& v
T Vv Vv
!
al,b! a/:!
>0 ————>T >V \Y
b!\\v
(PRQ)®R P®(Q®R)
So kb oo sy kbl o
c! c!
v Vv

Figure 5.11: Rounded product is not associative for processes

In the example of Figure 5.11 we illustrate that the rounded product is not associative

for processes. Notice that process R of Figure 5.11 is not a snippet, because it has an
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output transition on port c¢ leaving the O state and ending in a V state, which violates
condition 3 from Definition 5.4.1.

The example of Figure 5.12 demonstrates that, if we allow that a process fails on a

transition from a O-state, then the rounded product is not associative.

P Q: R:
a'/(V a!/(T
>V >V >o0 —&—» |
B A
T \v/
P®Q Q®R T
a!/(
e R >y —d 1
B
v
(PRQ)®R P®(Q®R)
>po bt o >y kb o o

Figure 5.12: Rounded product is not associative for processes that fail on a transition
from a O-state

The following property establishes a relationship between the process product and the

rounded product of snippets.

Theorem 5.5.5

For snippets P and Q where 0.PN0.Q =0, we have PR Q = P x Q.

Proof: Recall that P ® Q = [P x @] for snippets P and Q. In order to prove

P® @ = P x @, we show that no rounding-down takes place. That is, we show that
uv.(P X Q) = 0.
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Recall that uy.P is defined as

uy.P={t: fPt=V A Va: a€o.P: fPta=T): t}

We know that uy.P = uy.Q = ), because P and @ are snippets.

Now take trace t € (a.(P x Q))*, such that f.(P x Q).t = V. Recall from the definition

of process product (Definition 2.4.1) that for a legal trace ¢ we have

f(PxQ)t=Ff.P(tlaP)xfQ.(t,aQ)

From the product table for labels we can see that we have two cases for f.(P x Q).t = V.
In the first case, f.P.(t | a.P) = V and £.Q.(t | a.QQ) € {V,O}. The second case is
symmetric: f.Q.(t | a.P) =V and f.P.(t | a.P) € {V,0}. We only need to consider the

first case, because of symmetry.

f.P(t,laP)=V

=  { P is a snippet, thus uy.P =0 }
(3a: a€o.P: f.P(ta la.P)e{V,0O})

= { Assumptions: a € 0.P, 0.PNo0.Q =0, f.Q.(t | a.Q) € {V,0O}, def. of x }
(Ja: a€o0.P: f(PxQ).ta€{V,0})

In other words, trace ¢ is not a V-unhealthy trace. Because ¢ is an arbitrary trace from

P x @, we have

uv.(P X Q) =0

Theorem 5.5.6 below addresses the monotonicity of the rounded product.
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Theorem 5.5.6 (Monotonicity)

For snippets P, Q, and R, we have

PC,Q = PORLE,Q®R

Proof:

PLC,Q
=  { Lemma 5.5.7 }
PxXRC,QxR
=  { Lemma 5.5.8 }
P x R| G, |Q x R|
= { Theorem 5.5.2; P, @, R are snippets }

PRRLC,Q®R

a

Two of the restrictions in our definition of a snippet were introduced because we
wanted Theorem 5.5.6 to hold. In the following two examples we illustrate each of the
two restrictions and we show why the theorem breaks down if the restrictions are not in

place.

The example of Figure 5.13 demonstrates that the monotonicity with respect to the

output-persistent refinement does not hold if there is a A-trace in a snippet.

Figure 5.14 shows an example that illustrates how the monotonicity of the rounded
product breaks if we allow an input transition from a legal state to the T state. Process
P ® R of Figure 5.14 guarantees to produce an output on port b after having received

an input on port a. Process @ ® R, on the other hand, cannot produce an output on
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Figure 5.13: The monotonicity does not hold for the rounded product of processes

port b after having received an input on port a. Because not all outputs from P ® R are
preserved by Q @ R, PO R [Z, Q ® R.

In order to prove Theorem 5.5.6, we needed the two lemmas shown below. See Ap-

pendix C for the proofs.

The first lemma, tells us that the product of snippets is monotonic with respect to the

output-persistent refinement.

Lemma 5.5.7

For snippets P, @@, and R, we have

PC,Q = PXRLC,QxR

The second lemma, tells us that rounding down is monotonic with respect to output-
persistent refinement.
Lemma 5.5.8

For processes P, QQ, and R,

PL,Q = [P| 5o Q] (5.12)



152 CHAPTER 5. SPECIFICATION COMPOSITION
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Figure 5.14: The monotonicity does not hold if we allow input transitions from legal
states to the T-state

5.6 The network composition in the progress model

We reached the point where we can make a distinction between the network composition
and specification composition. What are the two compositions? When we talk about
network composition, we talk about describing a network of devices. We represent each
device as a process and we are interested in the behavior of the whole network as a
collection of devices. In our framework, we describe the network as another process,
which we compute by taking a network composition of processes representing individual

devices.

Formally, the network composition is nothing but the product of processes with an ad-
ditional restriction imposed. The restriction stems from physical properties of electronic
circuits, which is the main target application of our formalism. Namely, when we connect
electronic circuits, we should avoid connections between output terminals, because we

could create damaging short circuits. For this reason, we define the network composition
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as the process product, where there are no connections between output ports:

Definition 5.6.1 (Network composition)
The product of processes P and Q, where 0.PNo.Q = (0, is called the network composition
and is denoted by P || Q.

We observe that, by Theorem 5.5.5, P || @ = P ® Q, for snippets P and Q.

We would like to make a number of additional comments on the network composition.
Notice that, unlike [Verhoeff, 1994, we make no restrictions on connections between
inputs. That is, we can connect any number of input ports in order to create a “composite”
input port of the network. We allow such connections, although we realize that connecting
a large number of input ports can create a large fan-in which slows down the operation
of a circuit. If we are concerned about creating large fan-ins, we can connect input ports

via explicit fork components that may provide necessary amplification.

Notice also that we leave internal network connections visible, unlike [Verhoeff, 1994].
More precisely, a connection between an input port and an output port within a network
is seen as an output port of the network. An internal connection between two input ports
is seen as an input port of the network. If we wish to make any of the output ports of
the network invisible, we can apply the hiding operator. The hiding operator as defined

in Chapter 2 is used only for hiding output ports, but not for hiding input ports.

The network composition explicitly reveals safety failures of the network. Consider,
for example, the network composition of two WIRES, one with input @ and output m, and
another with input m and output b. Figure 5.15 shows the network composition of the
two WIREs. Notice that, if the first wire receives an input on port a before the second
WIRE has produced an output on port b, the network may fail. In the state graph of

Figure 5.15, we can see this failure, because the trace amam leads to the L-state. That
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is, the last symbol in trace amam is an output symbol that leads from a legal state to the
1 state. In contrast to the above, the models of [Verhoeff, 1994] and [Mallon et al., 1999]

exclude processes that have an output transition leading to the L state.

T 1 T 1
T 1 T 1 .
Tm! a? Ta? Tb! m? Tm? m!,b!T\ Ta? Tm! Ta?,m!
vol Sv || vel Sv = co v mMev iy
m! b! = .

Figure 5.15: The network composition of two WIREs

The network composition tells us what the progress properties of the network behavior
are. For example, if a process corresponding to a closed network, which is a network with
no input ports, contains a A state, then we know that this network can run into progress
problems. More precisely, a A state in this case indicates a deadlock where some device
in the network demands progress, but no other device in the network guarantees that
progress will be made. Even the presence of a O state in a network gives us an indication
that the network may, at some point, simply stop. Recall that in a O state no device

guarantees to provide an output and no device demands an input.

5.7 The specification composition in the progress model

The specification composition is an operation that we do not use for computing the
behavior of a network of components. Instead, we use the specification composition to
construct a specification of one device. We build a specification by looking at various
constraints on the behavior of a component. We express each constraint as a snippet.
Once we have collected all the relevant constraints, we compose all the snippets in a

specification of the device’s behavior. The operation we use for combining the snippets
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into one specification is the rounded product. We do, however, impose one alphabet
restriction on the specification composition. We prohibit connections between input and
output ports of different snippets. Our rationale behind this restriction is as follows.
Each snippet captures an aspect of the behavior of the same device. Thus, each port is

either an input or an output in all snippets describing the device.

Definition 5.7.1 (Specification composition)
The rounded product of snippets P and @Q, where o.P Ni.Q = 0, and 0.Q Ni.P =  is

called the specification composition and is denoted by P & Q.

By Theorem 5.5.2 we know that snippets are closed under the specification compo-
sition. Does this mean that by using the specification composition we limit ourselves to
only processes from the domain of snippets? As examples in Chapter 6 demonstrate,
we often build specifications by composing a number of snippets. In these snippets we
introduce “auxiliary internal” symbols, which serve as internal synchronization points.
After we have composed the snippets, we hide these internal symbols. Because snippets
are not closed under hiding, the final specification belongs to a domain that is larger than
the domain of snippets. We do not have a characterization of the domain of processes

obtained by hiding symbols from snippets.

As an example of the use of the specification composition we return to the specification
of the JOIN. In Figure 5.4 we show two snippets that each capture an aspect of the
behavior of the JOIN. One snippet tells us that the JOIN will produce an output on
port c¢ after receiving an input on port a. The other snippet tells us that the JOIN will
produce an output on port ¢ after receiving an input on port b. Thus, both snippets tell
us that the JOIN will not produce an output on port ¢ until having received inputs on
both port a and b. Figure 5.16 shows the result of the specification composition of the

two snippets. In contrast to the process product, the specification composition results in
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the correct specification of the JOIN.

a? b? O
R PR a? 7 l\b?\
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Figure 5.16: The specification composition for the JOIN

In the next example we use specification composition in order to arrive at a spec-
ification of an arbiter. An arbiter is a device that arbitrates among requests that can
concurrently arrive from a number of different sources. The arbiter ensures that only one

pending request is granted at any time.

The arbiter we specify here is called an initialized SEQUENCER [Ebergen, 1991],
which we already considered in Chapter 4. Figure 5.17 shows a schematic for the SE-
QUENCER. Observe that the SEQUENCER has two input ports for receiving requests,
namely ports 1o and ;. Ports ggp and g; are used for granting requests rg and r1, respec-
tively. Finally, the input port d is called the “done” port. Receiving an input on port d
tells the arbiter that the last granted request has been served, thus the arbiter can grant

a subsequent request.

7o » J0

L - J1

L

Figure 5.17: A schematic for the SEQUENCER

In Figure 5.18 we show three snippets that capture the behavior of the SEQUENCER.
The first snippet indicates that a request rg is granted by grant go. The snippet also states

that requests 7y and grants gy must alternate and that, after receiving request rg, the



5.7. THE SPECIFICATION COMPOSITION IN THE PROGRESS MODEL 157

arbiter guarantees progress. The second snippet is similar to the first, except that it
addresses the alternation of 1 and g;. Finally, the third snippet expresses the mutual
exclusion between grants gy and g;. This snippet also states that a grant and done signal
must alternate. Moreover, by labeling the initial state of this snippet with V we require

that the SEQUENCER does not stop when it can issue a grant.

ro? r? go!
R RN /?\
> O v & o v & >v-—9 ¢
go- gi- gi'

Figure 5.18: Snippets for the SEQUENCER

Figure 5.19 shows the result of the specification composition of the snippets of Figure
5.18. In order to reduce the clutter, we omitted the T and the L state from the state
graph in Figure 5.19: All missing input transitions lead to the L state and all missing
output transitions lead to the T state. Notice that the initial state of the graph of Figure
5.19 carries label O, whereas the product of the labels of the initial states of the snippets
from Figure 5.18 is V. This means that the label of the initial state of the specification
of the SEQUENCER is rounded down to O, because the SEQUENCER  initially cannot

produce an output.

The specification of the SEQUENCER involves a significant amount of concurrency.
Requests ¢ and r; can arrive independently of each other, which contributes to sequences
of events that may not be easy to envision if we were to generate the state graph directly
rather than by computing the specification composition of snippets. Thinking in terms of
snippets allows us to focus on a few aspects of the behavior of the SEQUENCER, which

combined lead to the final specification.
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Figure 5.19: A specification for the SEQUENCER

The usefulness of the specification composition becomes apparent when we specify
complex behaviors that involve a large degree of concurrency. State graphs for such
specifications tend to grow quickly and may become difficult to keep track of. It has been
our experience that individual snippets tend to remain rather small in size, such as the
snippets of Figure 5.18. A list of snippets tends to be smaller and easier to keep track
of than the state graph that represents the complete behavior. Furthermore, focusing on
small individual aspects of a complex behavior allows us to gain a better insight into the

operation of the device.

5.8 Summary

In this chapter we open the path for constructing concise specifications by means of spec-
ification composition of snippets. We first demonstrate that process product is an ap-
propriate operation for the specification composition in the safety model. In the progress

model, on the other hand, process product cannot be used as the specification com-



5.8. SUMMARY 159

position. Instead, we introduce the rounded product and introduce a restricted process
domain called snippets. We prove that snippets are closed under the rounded product and
that the rounded product on snippets is idempotent, commutative and associative. We
also introduce a stricter refinement relation, called output-persistent refinement, which
requires that all legal outputs from a specification must be preserved in an implemen-
tation. We demonstrate that we need this stricter refinement relation in order to prove
that the rounded product on snippets is monotonic with respect to the output-persistent
refinement. We also demonstrate that each of the restrictions for snippets is needed in
order to prove the associativity and the monotonicity of the rounded product, which
provides a justification for our definition of snippets. Finally, we show how the process
product can be used to describe the behavior of a network of devices and how the rounded
product can be used to specify a concurrent behavior as a specification composition of

simple snippets.
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Chapter 6

Applications

In this chapter we present a number of examples that demonstrate applications of the
theory developed in previous chapters. The examples are worked out in the progress

model, but they could be easily transcribed into the safety model.

We begin by introducing “commands”, a textual notation for representing snippets.
Our commands are an adaptation of the commands used in [van de Snepscheut, 1985]
and [Ebergen, 1991]. Having a simple textual notation allows us to tackle examples

where state graphs could become rather large.

In Section 6.2 we demonstrate how to apply the Substitution Theorem in a design
of a 2-to-4 phase protocol converter. The Substitution Theorem (Theorem 2.7.1) is the
cornerstone of hierarchical design and verification. The theorem allows us to do “stepwise
refinement” of a specification. First we refine the specification by a network of potentially
complex components. For each of these components we can find its own implementation,
possibly consisting of a network of simpler components. The Substitution Theorem allows
us to use these implementations as a substitute for the components in the implementation

of the original specification.
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In Section 6.3 we outline a “part-wise” design method. In this method we assume that
we have a specification expressed as a specification composition of a number of snippets.
For each of these snippets we can find its own implementation. We show how to apply
the theory of ECF processes to transform the implementations of individual snippets to

an implementation of the original specification.

Just like the step-wise refinement, the part-wise design method can help us avoid the
state explosion in verifying the refinement relation. We avoid the state explosion, because
the design method only requires that we verify refinements of individual snippets. One
snippet typically represents a simple sequential behavior that can be expressed in a small
state graph. Thus, verifying a refinement of a snippet tends to be a manageable task.
On the other hand, the number of states in a state graph representing the specification
composition of snippets corresponds roughly to the product of the number of states of
the state graphs in individual snippets. For this reason, verification of a decomposition
of the complete specification may not be feasible. The part-wise design method, however,
allows us to perform just a number of “small” verification tasks. We then derive an
implementation for the complete specification by applying a number of properties proven

in previous chapters.

The design method presented in Section 6.3 proposes a design approach that is similar
to an application of the Separation Theorem from [Ebergen, 1989]; see [Ebergen, 1992]
and [Benko, 1993] for examples of applications of the Separation Theorem. The design
method from Section 6.3, however, applies to a model that addresses safety and progress
concerns, while the Separation Theorem from [Ebergen, 1989] applies to a model where

progress concerns were not the major focus [Peeters, 1990].

It is also possible to undertake a similar design approach using the theory of Process

Spaces of [Negulescu, 1998]. The composition operator used in Process Spaces corre-
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sponds to our process product. In Chapter 4 we demonstrated that the process product
cannot be used as a specification composition in a model that addresses both safety and
progress concerns. For this reason, we believe that the application of the part-wise design
method in Process Spaces is limited to safety models. The step-wise design approach

based on the Substitution Theorem, however, is applicable in Process Spaces.

In Sections 6.4 — 6.7 we apply the design method from Section 6.3 to a number of
examples. In Section 6.4 we design a micropipeline cell [Sutherland, 1989], in Section 6.5
we design a FIFO buffer, in Section 6.6 we show how to solve the dining-philosophers
problem [Dijkstra, 1971], and in Section 6.7 we show how to derive an implementation
of a 3-input SEQUENCER. With these examples we demonstrate that the ECF snippets

are flexible and expressive enough to handle a wide variety of design problems.

6.1 Commands

In previous chapters we represented processes by state graphs. In this section we repre-
sent snippets in a concise textual notation called “commands”, which were inspired by
Dijkstra’s “guarded commands”. The commands were introduced in [Rem et al., 1983]
and were further refined in [van de Snepscheut, 1985] and [Ebergen, 1991]. Below we

introduce commands and we show how a command defines a snippet.

Definition 6.1.1 (Commands)
Let A be a set of symbols and let a € A. Commands on A are defined recursively as

follows:

1. a? and a! are commands

2. If E and F are commands then E;F, E | F, and *[E] are commands
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For command E, the set of symbols postfixed with ? is called the input alphabet of the
command and is denoted by i.E. The set of symbols postfived with ! is called the set of

output symbols and is, for command E, denoted by o.E. We stipulate that i.ENo.E = (.

Commands a? and a! are often called atomic commands.

A command is a regular expression [Hopcroft and Ullman, 1979], just that we use a
non-standard notation: E;F denotes concatenation, E | F' denotes union, and *[E] de-
notes Kleene closure. We stipulate the following priority for the operations on commands:

repetition has the highest priority, followed by concatenation, and choice.

A language for command F is denoted by lang.F, and is defined in the following way:

lang.a? = {a?} lang.(E;F) = (lang.E)(lang.F)
lang.a! = {al} lang.(E|F) = lang.E Ulang.F
lang.(x[E]) = (lang.E)*

Notice that a? and a! are treated as single symbols.

A language of a command is a regular set, because a command is a regular expression.
We recall that regular sets are closed under prefix-closure. That is, if L is a regular
language, then the prefix-closure of L, denoted by pref .L is also a regular language.

The prefix-closure of the regular set corresponding to a regular expression obtained

from a command is called the trace set of the command:

Definition 6.1.2 (The trace set of a command)

The trace set of command E is denoted by t.E and is defined as

t.E = pref .lang.E
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Because a command defines a regular expression, we can follow the standard algorithm
from [Hopcroft and Ullman, 1979] and obtain a minimized deterministic automaton that
accepts the language of the command. Then, we remove the “dead” state and make all

states accepting. The result is a state graph for the trace set of a command.

Now we show how a snippet can be uniquely associated with the state graph for
the trace set of a command. In the algorithm described below, transitions labeled with
symbols from i.F are called input transitions and transitions labeled with symbols from

0.F are called output transitions.

1. Add two states, one labeled with T and the other labeled with L.

2. Make the state graph complete: All missing transitions on output symbols lead
to the T state; all missing transitions on input symbols lead to the L state. All

transitions leaving the T and the L state are self-loops.

3. All states that have an outgoing legal output transition (not leading to the T or L

state) are labeled with V.
4. All states that have not been labeled yet are labeled with O.

By proc.E we denote the triple P = (i.E,0.E,f.E), where f.E is the enhanced
characteristic function. We compute f.E.t by following trace ¢ in the labeled state graph
obtained from command E. The theorem below characterizes proc.E in the context of

ECF processes:

Theorem 6.1.3 (Command defines a snippet)

Let E be a command. Then, proc.E is a safe snippet.

Proof: First we prove that P = proc.F is a process. Notice that i.P = i.E and

0.P = 0.E. Because E is a command, we have i.ENo.E = (). Consequently, i.PNo.P = (.



166 CHAPTER 6. APPLICATIONS

In the state graph for P, all transitions leaving the T and L state are self-loops. This

means that f.F is | and T persistent. Hence, P = proc.FE is a process.

Next we prove that P is a snippet by proving that P satisfies all four conditions from
Definition 5.4.1: P is V-healthy by construction of the state graph for P, because only
states with an outgoing legal output transition are labeled with V; thus, condition 1
is satisfied. By construction, the state graph for P does not contain a A state, which
satisfies condition 2. By construction, all states with an outgoing legal output transition
are labeled with V, satisfying condition 3. By construction, all illegal input transitions

lead to the L state, which satisfies condition 4.

Finally, we prove that P is safe: The safety condition from Definition 4.6.1 is satisfied,
because in the state graph for P, no output transition leads from a legal state to the L

state. O

Without proof we mention that the trace set of command FE is equal to the legal set

of the snippets defined by command E:

t.E = lproc.E

Figure 6.1a shows the state graph for the snippet corresponding to command a?.
This snippet may receive one input on port ¢ Command a!, on the other hand, denotes
a snippet that guarantees to produce one output on port a. Figure 6.1b shows the state

graph for the snippet corresponding to command a!.

> O a? O (],?I L > \v} al O a! - T
a) The snippet for command a? b) The snippet for command a!

Figure 6.1: State graphs for atomic commands
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In Theorem 6.1.3 we showed that a command defines a snippet. In the rest of this
chapter we slightly abuse the notation and use commands as a textual representation of
snippets. Although commands do not contain any explicit information about progress
properties, commands establish implicitly “default” progress properties that are reflected
in snippets corresponding to commands. Design methods for ECF processes applied to
specifications expressed in terms of commands guarantee that implicit progress properties

included in commands are satisfied.

In specifications expressed as commands, we use concatenation to denote that be-
havior expressed in one command follows the behavior expressed in another command.
Repetition tells us that some behavior will repeat, and we use the choice to express several

alternatives that the behavior can follow.

We illustrate the operations on commands by giving specifications of a number of

asynchronous circuit components. We can specify a WIRE with input ¢ and output b as

WIRE = x[a?;d!]

In this command, a?; b! specifies that an input on port a will be followed by an output on
port b. The repetition expresses that the WIRE may repeat its behavior after producing

an output on port b.

Next we specify a MERGE with inputs a and b and output c. Initially, the MERGE
can receive an input on one of its two input ports, which we express by a? | b?. After
having received an input, the MERGE will produce an output on port ¢. The behavior

then repeats.

MERGE = x[(a?]|b?);c!]
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INVERSE TOGGLE also has two input ports, a and b, and one output port c¢. The
behavior of an INVERSE TOGGLE is similar to the behavior of the MERGE, just that
INVERSE TOGGLE requires that inputs on ports a and b alternate. That is, initially the
INVERSE TOGGLE can receive an input on port a, which is followed by an output on
port ¢. Then, the INVERSE TOGGLE can receive an input on port b, which is followed

by an output on port c¢. After that, the behavior repeats, which we express as

INVERSE TOGGLE = x[a?;c!;b?;(!]

The next component we specify is the TOGGLE, which has one input port, a, and
two output ports, b and ¢. The TOGGLE can first receive an input on port a, which
is followed by an output on port b. The next input on port a causes the TOGGLE to
produce an output on ports ¢. Then the behavior repeats. That is, outputs on ports b

and c are produced in an alternating manner. A specification of the TOGGLE is

TOGGLE = x[a?;bl;a?;!]

The specification of a JOIN with inputs ¢ and b and output ¢ can be composed from
two snippets as shown in Figure 5.16. Here, we use the notation of commands in order to
denote the same snippets that we used in Figure 5.16. One snippet states that an output
on port ¢ is produced only after receiving an input on port a, and the other snippets tells
us that the JOIN will produce an output only after receiving an input on port b. Thus,
the JOIN can be specified as

JOIN = «[a?;cl] & *[b7;¢]
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Next we introduce two more components that we are going to use in our examples
later in the chapter. The first component is a 2-by-1 JOIN, shown in Figure 6.2a. The
2-by-1 JOIN is a generalization of the JOIN, performing synchronization between inputs
ag and n or a; and n. Either ag and n are received in an arbitrary order and output
bg is produced, or a; and n are received and output b; is produced. The environment is
restricted to produce only one of the inputs agp and a; in each cycle. We can express the
behavior of the 2-by-1 JOIN with two constraints. First, either input ag is followed by

output by, or input a; is followed by output b;. The snippet capturing this constraint is

*[a,()?; b()' | al?; bl']

The second constraint on the behavior of the 2-by-1 JOIN states that input n is followed

by either output by or b;. The snippet expressing this constraint is

Finally, a specification of the 2-by-1 JOIN is the specification composition of the two

snippets capturing the constraints:

2-by-1 JOIN = x[ag?;bo! | a1?;01!] & *[n?;(bo! | b1!)]

The 2 — by — 1 JOIN is also referred to as the DECISION-WAIT [Verhoeff, 1998b].

Figure 6.2b shows the Arbitrating-Test-and-Set (ATS) component that was introduced
by Keller [Keller, 1974]. The ATS can be seen as a one-bit memory cell with built-in test-
and-set operations: During its operation the ATS may be either “set” or “reset”, with
”set” being the initial state. Upon receiving a “test-and-set” input ¢, the component

responds with either g, if it is “reset”, or with ¢; if it is “set”. Furthermore, an input
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40— i» by T»—A;ATS» ty
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a) 2-by-1 JOIN b) ATS

Figure 6.2: 2-by-1 JOIN and Arbitrating Test-and-Set

t always causes the component to become “set”. After receiving “reset” input r, the
component becomes “reset” and remains in this state until a “test-and-set” input ¢ causes

to to be produced.

Inputs £ and r may arrive simultaneously. In such a situation arbitration takes place
and the ATS component chooses whether the “test-and-set” input ¢ will be served before

the reseting of the ATS component takes place.

The behavior described above can be captured with two constraints. First, after

receiving a “test” input ¢, the ATS component responds either by t or #;:

#[17; (to! | t1!)]

Second, after receiving a “reset” input r, the ATS component will respond by producing

an output p:

x[r75t0!]

The specification of the ATS component is the specification composition of the snippets

representing the constraints:

ATS = *[t?; (to! | t1!)] & *[’l"?;to!]
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6.2 2-to-4 phase converter

This section demonstrates an application of the Substitution Theorem (Theorem 2.7.1).
In an application of the Substitution Theorem, we start with a network that implements
some specification. The theorem allows us to replace a component in the network by any

implementation of that component.

Consider a 2-to-4 phase converter, shown in Figure 6.3a. The 2-to-4 phase converter
transforms the 2-phase protocol on terminals 7y and ag to the 4-phase protocol on ter-
minals 71 and a;. The 2-phase protocol, initiated by the environment, is a sequence of
two communication actions r1la;?. The 2-phase protocol is commonly used in so-called
transition signaling. The 4-phase protocol, initiated by the converter, is a sequence of
four communication actions r¢?ag!rg?ag!. One can find the 4-phase protocol in interfaces
of many data latches [Day and Woods, 1995, Furber and Day, 1996]. If we interpret com-
munication actions as voltage transitions, we can see that, after one cycle of the 4-phase
protocol, the voltage levels on all ports are the same as in the beginning of the cycle. In

the 2-phase protocol, the voltage levels are changed after each cycle.

. MERGE
-
"o | — —— "o - N %1
T
@0 D B ap L) —
-
a) schematic b) implementation - TOGGLE

Figure 6.3: 2-to-4 phase converter

A specification of the 2-to-4 phase converter is

P =x[rg?;r1a17; 71 al?; al!
0> ) ) 3 y
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The first occurrence of ry triggers one cycle of the 4-phase protocol. After one cycle of
the 4-phase protocol has been completed, the cycle of the 2-phase protocol comes to an

end as well.

Notice that the first input on port a; triggers output 71 and the second input on a;
triggers output ag. This suggests that a TOGGLE might be used in an implementation.
Furthermore, outputs on port r; are triggered by alternating inputs rg and a;. This
suggests that an INVERSE TOGGLE might appear in an implementation. Port r; cannot
appear as an output of both TOGGLE and INVERSE TOGGLE. For that reason, we
introduce an “internal” symbol z in the specification of the converter. Our intention is

that z serve as a connection between the TOGGLE and the INVERSE TOGGLE:

!
P’ = x[ro?;m 017521 0175 ap!]

We introduced symbol z in such a way that it cannot prevent P’ from receiving any input
that component P can receive, neither can internal symbol z prevent P’ from producing

any output that component P can produce. For that reason, we have P = |[z :: P']|.

In general, we can always introduce “internal” output symbols in a sequential com-
mand between an input and an output. Hiding those “internal” symbols gives back the

original command. We apply this heuristic in a number of examples in this chapter.

Below we show that P’ is refined by R || S, where R is an INVERSE TOGGLE and
S is a TOGGLE:

R = «ro?yrilz?;r]

S = x[a17xa17;a0!]

We have P = |[z :: P']|, and, P C R || S. By the Substitution Theorem, we get
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PClz=R]|S].

Let us provide a few observations that indicate that the refinement P C R || S indeed
holds. We have to verify that the network consisting of ~P, R, and S is safe and that
the network satisfies the progress condition from Definition 4.6.2. In other words, we
have to argue that network R || S can receive an input at any point where process P can
receive an input. Furthermore, wherever P guarantees progress, progress must also be

guaranteed by R || S.

Process P can initially receive an input on port rg, but there are no progress obli-
gations on either P mnor on its environment. The same holds for the product R || S:
process R can initially receive an input on port ry and there are no progress obligations
imposed. After receiving the input on 7y, process P guarantees an output on port 7,
which also holds for process R in the implementation and thus for R || S. After having
produced an output on port r1, process P engages in the remaining part of the 4-phase
protocol. The same holds for the implementation: Process S can receive an input on port
a1. Then process S guarantees an output on port =, which can be received by process R.
Furthermore, process R then guarantees producing an output on port ;. At that point,
process S is waiting on an input on port a1, which completes the 4-phase protocol. After
the 4-phase protocol is completed, the converter P guarantees to complete the 2-phase
protocol by producing an output on port ag. Similarly, process S in the implementation
also guarantees to produce an output on port ag after having received the second input on
port a;. When both protocols have been completed, the converter returns to the initial
state, waiting for an input on port ag. Similarly, both processes in the implementation

also return to their respective initial states, thus a new cycle can begin.
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An INVERSE TOGGLE can be refined further by a MERGE:

*[ro?srilsz?ir!] © *[(ro?|x?);m!]

The MERGE does not specify the order in which the inputs have to arrive while the
INVERSE TOGGLE does. Let T' denote the MERGE component used in the refinement
above: T' = *[(ro?|xz?);71!]. When we apply the Substitution Theorem again and replace

INVERSE TOGGLE R by MERGE T, we get

PCllz=7| S

Figure 6.3b shows the final implementation of the 2-to-4 phase converter.

6.3 Part-wise design method

In this section we outline the part-wise design method.

Assume that we are given an informal specification of the behavior of a process. We
produce a formal specification by collecting snippets that represent partial views of the
behavior of the process. Once we have collected the set of snippets that specify completely
the behavior of the process, we combine the snippets with the specification composition
and we hide the set A of “auxiliary internal” symbols that we have introduced. The result

of this process is a specification S, expressed in the following form:

SCA:P&Q)

We remark that S belongs to a process domain that is larger than the domain of snippets,

because snippets are not closed under hiding.
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It is a non-trivial task to determine whether a set of snippets specifies completely
some communication behavior: There can be no general algorithm for verifying whether
our initial specification is correct, because we have no reference point to which we could
compare our specification. We can, however, build confidence in our specification by
performing simulations and comparing the behavioral patterns that result from the sim-
ulations to our informal specification. We remark that he simulations do not require

building a complete state graph for P & @), thus we can avoid state explosion.

Our intention is to seek refinements for snippets P and ( in isolation and then combine
the two refinements in a refinement of specification S. We emphasize that verifying
refinements of P and @ in isolation tends to be significantly less complex than verifying
an implementation of the original specification S. The number of states in P & @) can
be of the order of the product of the number of states of P and . Thus, by looking at

snippets P and @ in isolation, we may avoid a state explosion.

Assume that snippet P can be refined by the network composition of snippets Py and
P;, and that snippet @) can be refined by the network composition of snippets @y and

Q1. Assume, furthermore, that these refinements are output-persistent refinements:

P C, B|h

Q Lo QO “ Ql

By Theorem 5.5.5 we know that the network composition of snippets that have no outputs

in common is the same as the rounded product of those snippets. Hence, we can write
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By Theorem 5.5.2, snippets are closed under rounded product. This indicates that Py ®
P, and @y ® Q1 are snippets. Hence, we can apply monotonicity of rounded product
with respect to output-persistent refinement (Theorem 5.5.6) and transitivity of output-

persistent refinement (Theorem 5.5.1), which leads to

PRQ C, LhdPL®Qy®Q1

Next we group snippets that have common outputs. For example, assume that snippets
Py and Q¢ have common outputs. Thus, we can write Py ® Q¢ = Py & Qy. From the

specification S we also know that P ® Q) = P & (). Hence, we get

P&Q C, (P& Qo) ® P ®Q:

Finally, we recall that, by Theorem 5.5.5, the rounded product of snippets with no com-

mon outputs is equal to their network composition:

P&Q C, (P& Qo) || P1 | Q1

Now we know that the specification composition of snippets P and () can be refined with
a network of three components. Recall that the output-persistent refinement implies
“vanilla” refinement. Furthermore, Theorem 2.6.4 tells us that hiding is monotonic with

respect to refinement. Thus, we get

[A=P&Q| C [[A=(Po&Qo) || 1| Q1]

Finally, we recall that the refinement is transitive by Theorem 2.3.2. Consequently,
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specification S can be refined as

S E A= (Po&Qo) [l Pl Qull

Let us summarize the design approach presented in this section: If we are able to express
a specification as a specification composition of snippets, we can look in isolation at
refinements of individual snippets. Then, we group snippets with common outputs and
each of these groups of snippets represents a component in an implementation of the
original specification. The subsequent sections illustrate this design method on a number

of examples.

6.4 Micropipeline cell

A micropipeline [Sutherland, 1989] consists of a series of cells shown in Figure 6.4. In
this section we consider the design of one micropipeline cell. We give a specification of
the cell, and we apply the part-wise design method from Section 6.3 in order to arrive at

an implementation of the cell.

6.4.1 Micropipeline cell: Specification

o »—— 711

>

a a1

Figure 6.4: A micropipeline cell

A micropipeline cell receives a datum from the left and passes on the datum to the right.

The operation of the micropipeline cell can be seen as a series of interactions with its
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left environment and its right environment. Both environments operate concurrently
and independently of each other. The ports of the micropipeline cell can be explained
as follows. Ports 7o and r; represent requests. A signal on ry indicates that the left
environment is ready to pass a datum to the cell. When the cell produces a signal on ry,
the cell indicates that the right environment can take a datum from the cell. Ports ag
and a; represent acknowledgments. A signal on ag indicates that the cell has received a
datum from the left environment. A signal on a1, on the other hand, indicates, that the

right environment has taken a datum from the cell.

A micropipeline cell interacts concurrently with its left and right environment. We
assume that initially the cell is empty and that the right hand side environment is ready
for receiving data. We can describe interaction with each of the two environments with a
snippet. The output z in the snippets below tells us that the data has been latched by the
cell. Signal z is not a part of the communication between the cell and its environment.
Rather, we use signal z for internal synchronization between the interactions of the cell
with its left and right hand side environments. In the specification of the cell, we will

hide signal z.

Let us begin with the left environment:

P = «[ro?; z!; a0!]

Snippet P tells us that, after receiving input ry, the data is first latched, denoted with

output z, and then the cell sends acknowledgment ay.

The snippet for the right-hand side is as follows:

Q = [zl 017
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Snippet @ tells us that the cell will first latch a datum, which we indicate by output
z. The cell then produces output ri, informing the right environment that there is a
new datum available. After the right environment provides input a1, telling the cell that
the datum has been taken, the cycle repeats, because the cell is ready to capture a new

datum.

The specification composition of snippets P and ) combines the interactions with the
left and the right environment into a specification of a micropipeline cell. Both, left and
right-hand side interactions “synchronize” on latching a datum. Because the interface of
the micropipeline cell does not include output z, a specification of a micropipeline cell is

the specification composition of snippets P and ) where we hide output z:

CELL=|[z = P & Q]

6.4.2 Micropipeline cell: Implementation

We expressed the specification of the micropipeline cell as a specification composition of

snippets; thus, we can follow the design approach outlined in Section 6.3.

Each of the snippets can be refined in a straightforward manner:

P =x[ro?;2%a0!] T, x[ro?;z! || *[z?;a0!]

Q = *[z!;r15al?] T, *[zha1?] || *#[z7;7]]

By Theorem 5.5.5, E | F = EQF for snippets E and F' that have no outputs in common.
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Hence, we have

P T, *[ro?;z!] @ *[z7;a0!]

Q T, #*[zla17] @ *[z7?;m]]

By Theorem 5.5.6, the rounded product is monotonic with respect to output-persistent
refinement. Furthermore, the output persistent refinement is transitive by Theorem 5.5.1.

These two properties lead to

PeQ C, *[re?;z!] @ *[z7;a0!] ® *[z!;a17] @ *[z7;7!]

After grouping the processes with common outputs we get:

PoQ C, (*[r?as!®@+[zha1?) @ x[z?7;71!] @ *[27; a0!]

In Theorem 5.5.5 we proved that the rounded product and the product are the same

when snippets have no outputs in common. Hence, we have

P®Q C, (*[ro?;a!)@x*[zha1?2l) || x[z?;71!] || %[27?;a0!]

By the definition of specification composition, Definition 5.7.1, we can see that the two
remaining rounded products can be seen as specification compositions. Furthermore, we

recall that the output-persistent refinement implies the “regular” refinement:

P&Q C (*[roh2& *[zl5a17]) || #[z75m1!] || *[z7; a0!]

By Theorem 2.6.4, we have that hiding is monotonic with respect to the refinement, which
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leads to

CELL C |[ ==
(*[ro?; 2! & *[z);a17])
| *[z?;r!]

|| *[x?;al!]

The first group of snippets is a specification of a JOIN with inputs 9 and a; and
output z. Input a; to the JOIN is initialized, thus, in the first cycle, the JOIN only waits
for an input on port rg. The remaining two processes each represent a WIRE. Figure 6.5
shows a schematic of the implementation we derived. The implementation derived is the
standard implementation of the control circuit in a micropipeline cell. Figure 6.5 does

not show the data latch that is activated by the output of the JOIN.

To a1

TN

ao 71

Figure 6.5: An implementation of a micropipeline cell

6.5 FIFO

In this section we follow the design approach from Section 6.3 and we derive an imple-
mentation for an asynchronous FIFO. A FIFO is a device that can store a number of
datums that can later be retrieved in a First-In-First-Out fashion. Figure 6.6 shows a

schematic of the FIFO. Signal reg_put tells the FIFO that its environment wants to put a
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datum in the FIFO. The FIFO acknowledges the receipt of the datum by producing signal
ack_put. On the right-hand side, the FIFO produces signal req_get when the environment
can retrieve a datum from the FIFO. The environment acknowledges that it has taken a
datum from the FIFO by providing a signal on port ack_get. In a synchronous FIFO, the
left and the right interface of the FIFO would operate in a lock-step. In an asynchronous

FIFO, on the other hand, datums can be put in the FIFO and taken out of the FIFO

concurrently.
req_put w—| = TEg_get
FIFO [ >
ack_put ™ ~ ack_get

Figure 6.6: A schematic of the FIFO

6.5.1 FIFO: Specification

A FIFO can be built from a linear sequence of cells, each capable of storing one datum.
A datum enters the left-most cell in the FIFO and then moves towards the right-most
cell where the datum waits until it is taken out of the FIFO. In a synchronous FIFO,
datums would move in lock-step, while in an asynchronous FIFO each datum can move
at its own pace. Figure 6.7 shows a three-place FIFO, consisting of three cells connected
in a sequence. The picture also contains “internal” signals that indicate data movement.
Namely, signal put indicates that the first cell has taken a datum from the environment.
Signal m; indicates that a datum has moved from cell 1 to cell 2. Signal ms indicates that
a datum has moved from cell 2 to cell 3. Finally, signal get indicates that the environment

has taken a datum from cell 3.

There are many configurations in which we can connect cells in order to build a
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req-put w— L = TEQ_get

put | mq mo
< ILAC I I

ack_put™ 1 2 3 =~ ack_get

Figure 6.7: Internal data movement in the FIFO

FIFO. For example, cells can be connected into a tree [Brunvand, 1995] or in a square
block [Molnar, 1993]. The architecture of a FIFO implementation is determined by how

we introduce internal symbols in the specification.

In order to specify the behavior of a three-place FIFO, we produce snippets describing
data movement between cells. The first snippet describes the interactions between cell
1 and the environment: The environment first produces signal reg put and informs the
FIFO that it would like to put a datum in a cell. After the datum has been moved to
cell 1, indicated by signal put, the FIFO produces signal ack_put, telling the environment

that the datum has been captured. This behavior can then repeat:

A = x[req_put?; put!; ack_put!]

Snippet B describes filling and emptying of cell 1. The cell must first receive a datum,
indicated by signal put, and then it can pass the datum to the next cell, which is indicated
by signal m;. Because a cell can contain at most one datum, filling and emptying of a

cell must alternate.

B = [ put!; mq!]

After cell 2 has received a datum, which is indicated by signal m, it can pass the datum

to cell 3, which is indicated by signal ms. Filling and emptying of cell 2 is described by
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snippet C:

C = x[mq!l; ma!]

Finally, snippet D describes filling and emptying of cell 3.. First, the last cell must
receive a datum, which is indicated by signal mso. The cell then produces signal req_get,
telling the environment that there is a datum available. After the environment has taken
the datum from the FIFO, it acknowledges the receipt of the datum by providing signal

ack_get:

D = «[my!; req_get!; ack_get?]

We build the specification of a three-place FIFO as a specification composition of

snippets A, B, C, and D.

FIFO = |[put,mi,me : A & B & C & D]|

The specification above involves a significant degree of concurrency: several datums
can travel along the FIFO at the same time. In spite of the degree of concurrency involved,
the specification above is easy to extend to a FIFO of a larger size. For each additional
cell we simply add a snippet of the form x[m;!; m;;1!]. A specification of a 10-stage FIFO

would, thus, require 11 snippets.

6.5.2 FIFO: Implementation

In order to obtain an implementation for the three-stage FIFO, we find refinements for

each of the snippets. All refinements are simple and, for the sake of brevity, we omit the
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correctness arguments.

A C, #[reqput?; put!] || *[put?; ack_put!]

E\ E>

B Co x[puth mi?] || *[put?; mi!]

~~ ~"

F1 F2

C Co  x[mily me?] || *[m17; m2!]

G1 G2

D LT, #[ma%regget!] || x[ma!;ack_get?]

-~ -~

H;p H,

Because, for snippets, the network composition is the same as the rounded product
(Theorem 5.5.5), we can replace all occurrences of || in the refinements above with ®.
Furthermore, by monotonicity of rounded product (Theorem 5.5.6) and by transitivity of

Co (Theorem 5.5.1), we get

ARBRCR®DLC, (E1F)®E® (F,®G) ® (G ® Hy) ® Hy

Now we group the snippets with common outputs and apply the definition of specifi-

cation composition:

A& B&C&D C, (E1&F1) @ B2 @ (Fo& G1) ® (G2 & Ha) ® Hy

Finally, we recall that for snippets with no common outputs the rounded product and

the network composition are the same:

A&B&C&D C, (E1&F1) || B | (Fa&Gh) || (Go & H) || Hy

In order to obtain an implementation of the FIFO, we only have to hide internal sym-
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bols. We take into account that output-persistent refinement implies “vanilla” refinement.

Furthermore, hiding is monotonic by Theorem 2.6.4, thus we have

FIFO E |[put,m1,m2 o (El&Fl) || E2 || (FQ&Gl) || (GQ&HQ) || H1]|

Below we examine the specifications of the components that implement a three-place

FIFO. The components we find are JOINs with one initialized input, and WIRES.

E, & F1 = «[reqput?; put!] & x*[put!; m7?] (JOIN)
By = «[put?; ack_put!] (WIRE)
F, & Gi = «[put?; mi!] & *[mql; ma?] (JOIN)
Go & Hy = «[m17; mal] & x[mo!;ack_get?] (JOIN)
H = «[ma?;req get!] (WIRE)

Figure 6.8 shows the schematic of the implementation of a three-place FIFQ. The im-
plementation consists of three micropipeline stages discussed in Section 6.4. We conclude
that a micropipeline implements a FIFO, satisfying both progress and safety require-
ments. We also remark that the derivation above can be generalized in a straightforward

manner to apply to an implementation of a FIFO of any size.

req_put req_get

put mo
ack_put ack_get

Figure 6.8: An implementation of the FIFO
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6.6 Dining philosophers

The dining philosophers is a canonical synchronization problem that was originally stated

by Dijkstra [Dijkstra, 1971]:

Five philosophers, numbered from 0 through 4 are living in a house where
the table is laid for them, each philosopher having her own place at the table.
Their only problem — besides those of philosophy — is that the dish served is
a very difficult kind of spaghetti, that has to be eaten with two forks. There
are two forks at each plate, so that presents no difficulty: as a consequence,

however, no two neighbors can be eating simultaneously.

f2

fo 1 fo

. 2 L1
[ — —= €0
S = €1
fO fl hf2 | — | = €2

ho
a) dining table b) schematic

Figure 6.9: Dining philosophers

6.6.1 Dining philosophers: specification

In order to keep the example simple, we consider the case with only three philosophers.
The table is illustrated in Figure 6.9a. We would like to design a device that schedules

the meals for the philosophers. Figure 6.9b shows the schematic of the scheduler. The
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operation of the scheduler is as follows. When philosopher 7 is hungry, she sends signal
h; to the scheduler. The scheduler informs philosopher ¢ that she can eat by producing
signal e;. When philosopher ¢ has finished a meal, she produces signals f; and f;_1 in
order to let the scheduler know that forks ¢ and i —1 are no longer in use. The subtraction

is modulo 3.

Each fork can be accessed by two philosophers, but only one philosopher may use it
at a time. Signal e; indicates that philosopher ¢ is eating, using forks ¢ and ¢ — 1. These
two forks cannot be used again until philosopher 7 puts them back on the table. Thus,
for fork i, signals e; and e; 1 must alternate with signal f; in order to guarantee that fork
1 is used by only one philosopher at a time. We assume that initially all forks are on the

table.

We specify the behavior of the scheduler as a specification composition of snippets.
First we observe that only a hungry philosopher can eat. That is, signal e; must be

preceded by h;. This observation leads to the following three snippets:

*[ho?;eo!] & *[hl?;el!] & *[hg?;eg!]

Next we turn to the use of the forks. Fork 0, for example, can be used by philosophers 0
and 2. Furthermore, two philosophers cannot use the same fork at the same time. This
means that a fork must be put on the table before it is used again. For example, if
philosopher 0 is eating, indicated by signal eg, fork 0 cannot be used again until signal fy
arrives, telling the scheduler that fork 0 has been released. That is, neither philosopher
0 nor philosopher 2 can eat until fork 0 has been put on the table, thus signals eg and

es must alternate with signal fy. These observations lead to the following snippet that
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describes the usage of fork 0:

*[ (eo! | e2!); fo?]

The snippet above implies that fork 0 is initially on the table. Snippets that describe
the use of forks 1 and 2 are similar: *[(eg! | e1!); f17] describes the use of fork 1 and

[ (e1! | e2!); f27] describes the use of fork 2.

The specification of the meal scheduler is the specification composition of all snippets:

SCH = *[ho?ie0!] & *[h175e1!] & x [ha?5eq!]
& «+[(eo!| e2!); fo?]
& «[(eo!|el); f?]
& #[(e!]| e2!); f27]

6.6.2 Dining philosophers: Implementation

In order to apply our part-wise design method, we introduce a number of internal symbols

in the specification of the scheduler:

SCHy, = *[ho?;xlseo!] & *[MTylier!] & *[ha?;2)ser!]
& *[(zl5eo! | 25 e2!); fo?]
& #[(eo! |yl el); f17]
& x[(er! | e2l); f2?]

In specification SCH, the receipt of signal hy indicates that philosopher 0 wants to
use forks 0 and 2, but the specification does not say whether the forks are taken in some
particular order. In SCHy we assume that philosophers take forks one after another.

More precisely, philosopher 0 first takes fork 0, which is indicated by internal signal z.
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Signal e, which indicates that philosopher 0 has taken both fork 0 and fork 1 can only
take place after signal z. This means that philosopher 0 takes fork 1 only after she
has already captured fork 0. We can make similar observations about the order in which
philosophers 1 and 2 take their forks. Philosopher 1 first takes fork 1, which the scheduler
indicates with internal signal y. After that, philosopher 1 takes fork 2 and is able to eat,
indicated by signal e;. Philosopher 2 first takes fork 0 indicated with internal signal z.
When philosopher 2 has also obtained fork 2, the scheduler lets the philosopher eat by
producing signal es.

SCH{ assumes that philosophers 0 and 1 first take their left-hand forks and then their
right-hand forks. Philosopher 2, on the other hand, first takes her right-hand fork and
then her left-hand fork. This approach follows Dijkstra’s solution [Dijkstra, 1971] of the
dining philosophers problem, where such an asymmetry in the sequence of acquiring forks
guarantees the absence of deadlock. Internal symbols z, y, and z only impose the order in
which philosophers take their fork. The internal symbols do not, however, prevent SCHy
from producing any input that SCH can produce, neither can internal symbols prevent

SCHy from receiving any input that SCH can receive. For that reason we have:

SCH C |[z,y,z :: SCHy]|

In order to obtain a refinement for SCHy, we apply the following heuristic to snippets

that form SCHy: Suppose that we have a snippet of the following form

E = «[a?;bl; c!]
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Snippet E can be rewritten as follows

x[a?;blcl] = *[a?;bl] & x[bl;c!] & *[a?;c!]

Snippet x[a?; c!] in the specification composition above ensures that F cannot receive an
input on port a before an output on port ¢ has been produced. The output-persistent
refinement, however, allows us to relax such a requirement by allowing an implementation

to receive an input when the specification cannot. Thus, snippet £ can be refined as:

x[a?; bl ] T, *[a?;bl] & =« [bl;c!]

We can apply this heuristic and obtain the following refinements for the snippets that

form SCHy:
*[ ho?; z!; ep! ] Co *[ho?;z!] & * [z);ep!]
x[h1 75yl er!] o #[hi?y! & *[ylser!]

*[ ha?; 215 ea! ]
[ (zhieol | 2liexl); fo?] Co *[(z! | 21); fo?7] & * [zhe0!] & x[2];ea!]
[ (eo! | ylse1l); f17] Eo *[(eo! [y); f17]& *[y!seq!]

[ (er! | e2!); f27] Co *[(er! [ e2!); f27]

Co *[ho?; 2] & *[2!];e9!]
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Let SCH; denote the specification composition of the refinements above:

SCH, = *[ho?; 2] (snippet A)
& +[m%y!] (snippet B)
& #[ho?;2!] (snippet C)
& #[(a!]2): fo?] & *[zleol] & *[21es!] (snippet D)
& #[(eo! |yh); f1?7] & *[ylerl]] (snippet E)
&  x[(er!] eal); f2?] (snippet F')

By monotonicity of rounded product (Theorem 5.5.6) we know that

SCHy L, SCH;

Furthermore, because the output-persistent refinement implies the vanilla refinement, we

can apply the Substitution Theorem and get

SCHEC |[z,y,2z : SCHy]|

We follow the part-wise specification method, thus we first find refinements for each

of the snippets in SCH;. Because snippets are very simple, we quickly find the following:

Co *#[ho?;a!]

Co *[Mm75y!]

Co *[h2?;2!]

Co *[(a!|2); fo?] || *[z75e0!] || *[27;e2!]
Co =[(eo! [y /1?] || *[y75ex!]

Eo *[(ex!]e2!); f2?]

49 8 O Q B =
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All the refinements above are easy to verify. In the refinements of snippets A, B, C, and

D, the specification and the implementation are the same. In the refinements of snippets

D and F we simply took the original snippets and we assigned the input and output

alphabets such that the conditions for the network composition are satisfied.

After we group snippets with common output symbols, we get

SCH; C (x[ho?;2!] & *[ha?;2!] & *[(z!] 2");fo?]) (SEQUENCER)
I (Ih?%y] & #[a%ieol] & *[(eo! | 4)i £17])  (SEQUENCER)
| (x[yT;er!] & *[27;ex!] & «[(e1! | e2)); f2?]) (SEQUENCER)

The implementation of SCH; consists of three SEQUENCERSs connected as shown

in Figure 6.10. Consequently, the meal scheduler is implemented by the same network

where we hide internal symbols z, y, and z.

The solution to the dining philosophers problem presented in Figure 6.10 is just a

hardware rendition of Dijkstra’s solution from [Dijkstra, 1971]: The SEQUENCERs im-

plement semaphores that philosophers use in order to get access to their forks.

:1; —_— = €0
S
hl >
h Y
0 > —= €1
S . |5
R — - — = €2
| I I
fo fi f2

Figure 6.10: A solution to the dining philosophers problem
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6.6.3 An “implementation” with deadlock

What would happen if all three philosophers took their left-hand forks first and then
their hight-hand forks? Such an approach would lead to the following specification of the

scheduler:

SCH, = *[ho?; 1! eq!] snippet A)

x[h1 7yl er!] snippet B
x[ ha?; 21; e! ] snippet C
[ (yhe! | eol); f17]

[ (2l ea! | er!); f2?]

snippet E

IS S S R

(

( )

( )
*[(zl;eo! | e2!); fo?]  (snippet D)

( )

( )

snippet F

In SCHy, philosopher 0 first captures fork 0, which is indicated by signal z. Only then
signal ey can take place, indicating that philosopher 0 has also captured fork 1. We
can make similar observations for philosophers 1 and 2. For philosopher 1, signal y
indicates that first fork 1 is picked up and only then philosopher 1 can pick up fork 2. For
philosopher 2, signal z indicates that first fork 2 is picked up and only then philosopher

1 can pick up fork 0.

Observe that f.SCHa.hoxhiyhez = O, because of rounding down no output is possible
after this trace: Snippets A and D allow producing output eg, which is blocked by snippet
E. Snippets B and E allow producing output ej, which is blocked by snippet F. Finally,
snippets C and F' allow producing output es, but snippet D is blocking that output.

Following the definition of hiding, we can compute that f.|[z,y, z :: SCHy]|.hoh1hy =
O. On the other hand f.SCH.hgh1hs = V, because the scheduler guarantees producing
either eg, e1 or ez after receiving inputs hg, h1, and he. This means that SCH IZ |[z,y, z ::

SCH,]|, thus we cannot apply our part-wise design method to SCHa.
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From [Dijkstra, 1971] we know that the meal scheduler specified by SCHy leads to a
deadlock. Because SCH IZ |[z,y, z :: SCHy]|, we can see that the deadlock was caught by
our progress condition. From the observations above we know that f.(~SCH).hgh1he = A
and that f.|[z,y, z :: SCHy]|.hgh1he = O. Thus, f.(~SCH X |[z,y, z :: SCHs]|).hoh1he =
A, which means that prog.(~SCH X |[z,y, z :: SCHy]|) does not hold. Notice that the
network consisting of ~SCH and |[z,y, z :: SCHy]| is closed. The presence of a A state in
a closed network indicates that some component in the network demands an input, but
no component is obliged to guarantee any progress. That is, the presence of a reachable

A state in the state graph of a closed network indicates a possibility of deadlock.

6.7 3-input SEQUENCER

In this section we address an implementation of a 3-input SEQUENCER. While a “regu-
lar” SEQUENCER arbitrates between two requests, a 3-input SEQUENCER arbitrates
between three requests. Figure 6.11 shows a schematic of a 3-input SEQUENCER, where
r9, T1, and 79 denote the three request inputs, gg, g1 and gs indicate the outputs that
grant requests, and input d denotes the “done” signal. The “done” signal indicates that

the last granted request has been served and that a new request can be granted.

TO?F %go!
il L g!
! 1-
’1"2?& —» g !
. 2_

Lo

Figure 6.11: 3-input SEQUENCER

The specification of the 3-input SEQUENCER  follows the same pattern as the speci-
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fication of the 2-input SEQUENCER in Section 5.7:

SEQ = *[7"0?;90!]
& #[ri?%g1!]
&  #[ra?;99!]

& #[(go!| g1!| g21);d7]

Below we derive an implementation of the 3-input SEQUENCER. The implementation

employs a token ring in order to poll requests.

In the token-ring implementation we would like to poll requests in order to see whether
there is any pending request that the SEQUENCER should grant. Known token-ring im-
plementations of an arbiter include [Martin, 1985] and [Ebergen, 1992]. [Martin, 1985]
proposes a circuit that allows the token to circulate only when an arbiter has received
a request signal. Thus, the arbiter from [Martin, 1985] reduces the number of commu-
nication actions that take place before the arbiter responds to a request signal. In our
implementation, on the other hand, we allow the token to circulate even when the arbiter
has not received a request. [Ebergen, 1992] derives a token-ring implementation of an
arbiter by applying the Separation Theorem from [Ebergen, 1991]. Ebergen’s Separation
Theorem is similar to our part-wise design method, but it does not address progress

concerns.

Figure 6.12 shows the topology of a token-ring implementation that we are aiming for.
Signals ¢, g, t1, and to represent the propagation of the token around the ring. Notice
that the token can be inserted into the ring by the “done” signal. Granting a request

takes the token out of the ring.

We introduce internal symbols into the specification of the SEQUENCER such that
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AT

1 to ty

0 »— L R — T2
—‘go 191 192

Figure 6.12: The topology of a token-ring implementation for a SEQUENCER

the internal symbols reflect the operation of the token ring:

SEQ, — ¥[r07 go] (snippet A)
& [ri%gil] (snippet B)
&  #[r27; go!] (snippet C)
& [t (goh d?[tol; (915 d?[t1}; (g2); d?(t2!)))]  (snippet D)

Snippets A, B, and C come straight from the specification SEQ. Snippet D, on the
other hand, introduces the token ring. One trip around the ring consists of the sequence
ttgt1 to. Initially, the token starts traveling around the ring, which is indicated by symbol
t. Once the token comes around the ring, signal £ is produced. At that point, the token
is re-sent around the ring. The token passes through three stations on its way around the
ring. At each station a pending request can be granted or the token gets passed along
the ring. At the first station, grant go! can be produced or the token can be sent along,
which is indicated by symbol #y3. The token is consumed upon granting a request and a
new token is generated when the done signal d is received.

SEQq can receive inputs at any time that specification SEQ can receive inputs.

Namely, inputs rg, 71, and ro appear only in snippets A, B, and C, respectively, and

these three snippets are present in SEQ. Furthermore, SEQ can receive a “done” input
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d only after a request has been granted. The same holds for SEQy.

Specification SEQ guarantees that, once a request has been received, it will be granted,
unless the arbiter has to wait for a “done” signal. That is, unless SEQ waits for a “done”
signal, progress is guaranteed. Because the token ring in SEQ, cannot stop until a
pending request is granted, and because a token is consumed when a request is granted,
we conclude that SEQqg also guarantees progress unless it waits for a “done” signal.

Consequently, we have

SEQ E |[t,t0,t1,t2 ol SEQ()”

Snippet D from SEQq can be refined as follows:

* [th (gols d?|to!; (g1 d?|t1 s (go!s d?|t2!)))]

o *[t', (d?‘tg')] & * [t', (g()' ‘ to')] & x [to!; (91' | tl')] & x [tl!; (gg' | tg')]

We apply the monotonicity of output-persistent refinement, and we get

SEQo E, SEQ

where

SEQ: = *[707; 90! ] (snippet A)
& «[ri?91!] (snippet B)
&  *[r27;99'] (snippet C)

& #[th (t!dD)] & *[th(go! | to))] &

*[to!; (91' | tl')] & * [tl!; (gg' ‘ t2')] (snippet D,)
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Following our design method we find implementations for each of the snippets that

form SEQ;:

A T, #[ro?590!]
B L, *[Tl?;gl!]
C L, *[re?;5g9!]

D' Ty st (ta20d?)] || #[t7 (0! | t)] | #[to%s (aut [ )] 1] *[627%: (92! | £21)]

All refinements above are trivial. Snippets A, B, and C are refined by themselves, and in
the refinement of snippet D’ we assigned the input and output alphabets such that the

alphabet conditions for the network composition are satisfied.

After grouping snippets with common outputs we get

SEQi C *[ro?590!] & = [17;(go! | t)]  (
[ *[m?5a1!] & *[to? (1! [8a)] (
| #[ra?592!] & = [117;(g2! | 82!)] (ATS)
I [tk (227]d7)] (

ATS)
ATS)

initialized MERGE)

t N d
to
T to} t té t
ATS IATS ATS

To -— 1 L T2 -
—‘go —#91 —‘92

Figure 6.13: A token-ring implementation of a 3-input SEQUENCER
Thus, the 3-input SEQUENCER can be implemented by a network consisting of an

initialized MERGE and of three ATS components connected in a ring as shown in Figure

6.13. An initialized MERGE behaves exactly like a regular MERGE, only that it starts
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the operation by producing an output.

6.8 Summary

In this chapter we demonstrated how ECF models can be applied to finding implemen-
tations for a variety of specifications. In particular, we presented a part-wise design
method that may help us avoid the state explosion that often occurs when we verify an
implementation of a specification of a large component. For example, our derivations of
implementations of a FIFO, of a scheduler for dining philosophers, and of a 3-input SE-
QUENCER can all be generalized to inductive derivations of implementations for these
components, where the size of a component is arbitrary. The examples in this section also
demonstrate that we can arrive at an implementation that may involve a large degree
of concurrency by verifying a number refinements of simple snippets representing simple
sequential behaviors. Then we can apply a number of properties of the ECF model and
perform a sequence of simple algebraic manipulations to transform implementations of

individual snippets into an implementation of the original specification.
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Chapter 7

Conclusions

ECF processes are a simple framework for describing concurrent systems. The ECF
model is built on top of enhanced characteristic functions which assign labels to traces
that represent sequences of communication actions. We use labels in order to express
properties of a state of a process after the process has executed a trace. The general ECF
model does not depend on a particular set of labels. We only have to assume that the
labels enjoy a number of simple properties. Based on the properties of labels, we define

operations on processes.

The close connections between labels and processes allows, in many instances, for
simple proofs of properties that hold for operations on processes. We agree with Tom
Verhoeff, who introduced enhanced characteristic functions [Verhoeff, 1994], that “it is
intriguing that so many properties can be lifted from a small algebra on trace labels to
ECFs”. Tom Verhoeff found “the tediousness and sheer number of details concerning
ECFs disappointing”. In contrast to Verhoeff’s XDI model, which captures the delay-
insensitive paradigm, our ECF model is based on the assumption of speed-independence.

We find the ECF model quite simple, and we believe that delay-insensitivity was the
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source of the tediousness that disappointed Tom Verhoeff.

ECF processes have a “plug-and-play” nature. Namely, we only have to choose a set
of labels and use it to instantiate a concrete ECF model, where all the properties of the
general abstract model still hold. We study two such instantiations, the safety model and
the progress model. The safety model addresses safety of processes. The progress model,

on the other hand, addresses progress properties on top of safety properties.

In both the safety model and the progress model we were able to provide three equiva-
lent characterizations of refinement. One characterization is based on comparison of trace
labels. Another characterization is based on Ebergen’s approach [Ebergen, 1991] that re-
quires the correctness of an implementation operating in the environment determined
by the reflection of the specification. The third characterization of refinement captures
the testing paradigm, which was the basis for Verhoeff’s refinement in the XDI model
[Verhoeff, 1994]. We see the existence of three equivalent characterizations of refinement
as a justification for our definition of refinement and as a justification for the definitions

of our correctness conditions.

Choosing whether the composition of processes will hide the connections between
processes is an important step in developing a formalism. In a contrast to [Verhoeff, 1994],
we chose that the connections between the processes remain visible. We believe that this
choice resulted in a simpler definition of process product. In order to gain the ability to
conceal connections between components, we defined a separate operation called hiding.
In both, the safety model and the progress model, we gave an alternative definition
for hiding, which establishes a connection between product and hiding, and between
Verhoeff’s composition. We see this connection as a justification for our definition of
hiding.

In the safety model, the process product has a dual role. First, the product can
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be used as a network composition, modeling joint operation of independent processes.
Second, the product can be used for combining behavioral constraints into a specification
of one component. This dual role of the product mirrors the use of process product
(or composition) in previous work such as [Jong and Lin, 1994], [Ebergen et al., 1995],

[Pena and Cortadella, 1996] and [Negulescu and Peeters, 1998].

In the progress model, however, we learned that the process product was not an
appropriate operation for combining behavioral constraints. In order to be able to define
the specification composition, we defined a restricted set of processes, called snippets.
Furthermore, in order to gain monotonicity of specification composition, we strengthened
the refinement relation. We demonstrated through a number of examples how snippets
can express behavioral constraints and how the specification composition can be used
for combining snippets into specifications. Introducing restrictions is, of course, always
a disappointment. We showed, however, that the restrictions were necessary in order to
prove a number of formal properties of specification composition. On the basis of the

examples we worked out we believe that the restrictions were not overly cumbersome.

In order to avoid restricting the process domain for the specification composition,
we attempted to develop another model, where we attached labels to transitions instead
of attaching labels to states. Unfortunately, we have not been successful in defining an
appropriate hiding operation. We believe that attaching labels to transitions might be
a viable approach, thus we include development of such a model in our plans for future
work.

We highlighted three different design techniques that can be used with ECF pro-
cesses. The Substitution Theorem allows for the standard hierarchical design by means

of step-wise refinement. The Factorization Theorem opens the door for a design approach

advocated in [Verhoeff, 1994] and further refined in [Mallon et al., 1999]. In this design
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technique we guess a part of an implementation and the Factorization Theorem gives
us a bound for the remainder of the implementation. The third design method, called
part-wise refinement, is similar to Ebergen’s Separation Theorem [Ebergen, 1991], but
now we can also take into account progress concerns. The part-wise design method ap-
plies to specifications constructed as a composition of snippets. We can find in isolation
implementations for each of the snippets. Then, we apply some theorems and obtain
an implementation of the original specification. We find the part-wise design method
attractive, because it can prevent state explosion. Namely, implementations of individual
snippets tend to be simple enough that there is no danger of state explosion. The rest of

the work is then done by applying theorems.

We illustrated the part-wise design method on a number of examples, some of them
non-trivial. We felt that larger examples were beyond the scope of this thesis. On the
basis of [Ebergen and Berks, 1995] we have strong evidence that the part-wise design
method can be applied to a derivation of an implementation of the counterflow-pipeline
control circuit [Sproull et al., 1994]. We include that derivation and the search for more
design examples in our plans for future work. We also believe that future efforts could be
applied towards identifying heuristics that could help us in applying the part-wise design

method. We mentioned several such heuristics in our examples.

At the moment, we do not have a tool that would directly support verification, de-
sign, or simulation using ECF processes. We were, however, able to use VERDECT
[Ebergen and Berks, 1995] to help us with the verification of implementations from Chap-
ter 6. Our use of VERDECT required a rather intricate understanding of the tool and its
underlying formalism, because VERDECT does not apply to ECF processes in general.
Our list of projects for the future includes development of tools that would help with the

design process based on ECF processes.
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Finally, we remark that our application of the theory of ECF processes has been, so
far, limited to asynchronous circuits. Are there applications in the design and analysis of
concurrent programs? Applications of trace theory in Tangram [Berkel et al., 1991] lead
us to believe that concurrent programs can be analysed using ECF processes. We leave

this application of ECF processes for the future work.
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Glossary of symbols

t,8, U,V

A,B

t] A

UA

nA

A*

A

A7, 0

~A

A Xy

ACy
PROC(I,0)
P,Q,R
ABORT(Z,0)

traces

the empty trace

sets

the projection of trace t on set A
least upper bound of set A
greatest lower bound of set A

the Kleene closure of set A

a set of labels

labels

the reflection of a label

the product of labels

label A is refined by label «y
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the set of processes with input alphabet I and output alphabet O

processes

the abort process with input alphabet I and output alphabet O
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ABORT(Z,0)
i.P
o.P
a.P
f.P

LP
uy.P
ua.P
u.P
LP]

[P]

[P]

~P
PxQ
P®Q
PIlQ
P&Q
[ : P
PCQ
P=,Q
PL,Q
safe.P
prog.P

correct.P

APPENDIX A. GLOSSARY OF SYMBOLS

the miracle process with input alphabet I and output alphabet O

the input alphabet of process P

the output alphabet of process P

the alphabet of process P

the enhanced characteristic function for process P
the set of legal traces of process P

the set of V-unhealthy traces of process P

the set of A-unhealthy traces of process P

the set of unhealthy traces of process P

process P rounded down

process P rounded up

process P rounded

the reflection of process P

the product of processes P and Q)

the rounded product of processes P and @

the network composition of processes P and @

the specification composition of snippets P and @
process P where outputs in A were hidden

process P is refined by process @)

process () is output-persistent with respect to process P
snippet P is output-persistence refined by snippet @
process P satisfies the safety condition

process P satisfies the progress condition

process P satisfies the correctness condition
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Appendix B

Ordered sets and lattices

In this appendix we briefly summarize some definitions and theorems from the theory
of ordered sets and lattices. We refer the reader to [Davey and Priestley, 1990] for more

details.

B.1 Relations

Let C be a binary relation on set A; that is, E C A x A. We often write u C v for
(u,v) € C. The following table summarizes common terminology for relations.

Ris when

reflexive uCuforallue A
anti-reflexive | =(u C u) for all u € A
symmetric uCv<svEwuforal u,v e A

antisymmetric | uCv A vCu = u=vforallu,ve A

transitive uCv AvCw = ul wforall u,v,we A

A relation is called pre-order when it is reflexive and transitive. An antisymmetric pre-
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order is called partial order. A partial order is a total order, when v C v Vv C u for any

u,v € A.

B.2 Ordered sets and lattices

For partial order C on set A, we call pair (A, C) a partially ordered set or a poset.
Let (A,C) be a poset and let B C A. Then, (B,C') is also a poset for C' being the

restriction of C to B. It is customary to denote the restricted order C’ by LC.

v € A is a lower bound of set B, denoted by v C B, and defined as

(Vu: ueB:vCu)

Dually, v € A is an upper bound of set B, denoted by B C v, and defined as

(Vu: ueB:ulw)

Set B can have several upper bounds and several lower bounds. We call v the least in
B, or minimum in B, when u € B and v C B. Dually, v is called greatest in B, or the
mazimum of B, when v € B and B C v. When the minimum and the maximum of BC

exist, they are denoted by min B and max B, respectively.

We call v a greatest lower bound, or infimum, of B, when v is the greatest in the set of
all lower bounds of B. If a greatest lower bound exists, it is unique, and we denote it by
MB. We write u Mv for M{u,v}. Dually, v is called a least upper bound, or supremum, of
B if v is the least in the set of all upper bounds of B. If it exists, the least upper bound

of B is unique and is denoted by LIB. We write u Ul v for U{u,v}.

Poset (A,C) is a lattice when v Mwv and u U v exist for all u,v € A. If (4,C) is a
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lattice, then M and U can be seen as binary operators on A. M and U enjoy the following

properties for any u, v, w € A:

uC(wNw) & uCv AuCw ulCv & ullv=u

(WUv)Cw & ulw AvCw uCov & ulv=wv

Poset (A, C) is a complete lattice when MB and UB exist for any B C A. Equivalently,
(4,C) is a complete lattice when max A exists, and MB exists for any B C A. Any finite

lattice is a complete lattice.
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Appendix C

Proofs

Lemma 3.6.2

The following holds for labels A and ~y:
(~MAxy30) & (AEY)

Proof: The table below lists all pairs of labels A and «y. Notice that, for all pairs of

labels, A C v coincides exactly with ~\ x v # L.

Ay ~A ~AXy ALy A v ~A ~AXy ALy
1 1 T T 0 T 1 1 1 0

1 O T T 0 T O 1 1 0

1 T T T 0 T T 1 T 0

O 1L O 1 O

o O O O 0

O T O T 0
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Lemma 3.6.3

For process P, where a.P = 0.P, we have:

safeP & (Vi:te(a.P)' : f.PtJ0)

Proof:

safe.P
< { Definition 3.5.1 }
(Vt: t € (LP)(o.P)U{e}: £.P.(t) # 1)
< {iP=0,thuso.P=a.P}
(Vt: t € (LP)(a.P)U{e}: f.P.(t) # 1)
< { Equation 2.4 — L-persistence }
(Vt: t € (a.P)*: £f.P.(t) # 1)
< { Equation 3.2 — partial order; Calculus }

(Vt: t € (a.P)*: £.P.(t) 2 0)

Lemma 3.6.4

Let P and @ be processes, such that i.P =1.QQ and o.P C 0.Q). Then,

(Vt:te (aQ) :f.(~PxQ)t30) & (Vt:te (a.Q)* : f.~P(tlaP)xf.Q.tJ0)

Proof: First we assume (V¢ : t € (a.Q)* : f.(~P x @).t J O). Because L.(~P x
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Q)a.(~P x Q) U{e} C (a.Q)*, we have, by definition of product

(Vi:te(a.Q)" : f.(~PxQ)t3J0O)
= (Vt:tel(~PxQ)a.(~PxQ)u{e}:f.~P(t|laP)xf.Q.tJO)

Now take trace ¢t € (a.QQ)* such that ¢t € 1.(~P x Q)a.(~P x Q) U {e}. Then, ¢t = t'at”,
where t’ € L.(~P x Q)a.(~Px Q) and t'a € 1.(~P x Q). By assumption, f.(~P x Q).t'a 3
O. Because t'a is not a legal trace in ~P x @, it must be the case that f.(~PxQ).t'a = T.
By Equation 3.5 and by Table 3.1 we know that either f.(~P).(t'a | a.P) = T or
f.Q.t'a = T. By T-persistence, either f.(~P).(t |l a.P) = T or f.Q.t = T. Consequently,

f.~P.(tla.P)xf.Qt=T2O.

Now we prove the implication from right to left:

(Vt:te (a.Q)* : f.~P.(tla.P)x £f.Q.tJ0O)
= {L(~PxQa(~P xQ)U{c} C (a.Q)" }
(Vt:t € L(~P x Q)a.(~P x Q) U{e} : f.~P.(t L a.P) x £.Q.t I O)
= { Definition 2.4.1 — product, Definition 2.3.5 — reflection }
(Vt:t € L(~P x Q)a.(~P x Q) U {e} : f.(~P x Q).t 3 O)
= { L-persistence }

(Vt:te (a.Q)* : f.(~P xQ).t30)

Lemma 3.8.2

Let P and R be processes such that i.R =1i.P and 0.R = 0.P — A for some set A. Then

safe(~Rx P) < RLC|[A:P]|

Proof:



216 APPENDIX C. PROOFS

safe.(~R x P)
< {a(~RxP)=o.(~RxP)=a.P, Lemma 3.6.3 }
(Vt:te(a.P)*: f.(~Rx P)JO)
<  {Lemma 3.6.4 }
(Vt:te(a.P)": f.~R.(t |l a.P) xf.Pt10)
< { Definition 2.3.5, Lemma 3.6.2 }
(Vt:t e (a.P)*: f.R.(t | a.P) C f.P)
< { Calculus }
(Vs:s€(a.R)*: (Vt:te (aP)*AtlaR=s:f.RsCf.Pt))
< { Calculus }
(Vs:s€(a.R)*:fRsC (Mt:t€ (a.P)* Atla.R=s:f.Pt))
< {i.R=1iP,0.R=0.R— A, Definition 2.6.1 — hiding }
(Vs:s€(a.R)*: f.RsCf.][A:: P]|.s)
< { Definition 2.3.1 — refinement }

RC|[A::P]

Lemma 3.8.3

Let A be a set of processes. Then,
W{P: PeA: P} = ~N{P: PecA: ~P}
Proof: Let R=U{P: P € A: P}. By definition of LI, R is an upper bound of A

(VP: Pe A: PCR)
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and R is smaller than any other upper bound of R

(VQ : @ an upper bound of A: RE Q)

(VP: PeA: PCR) A (VQ: Q an upper bound of A: RC Q)
< { Property 2.3.6: PC R = ~RC ~P }
(VP: PeA: ~NRC ~P) A (VQ: @ an upper bound of A: ~Q C ~R)

< { Write S = ~R. @ is an upper bound of A implies, by Property 2.3.6, that
~(@ is a lower bound of A. }

(VP: PeA: SC~P) A (VQ: Q alower boundof A: QC S)

By definition of 1M, we get

S=n{P: PcA: ~P)}

Because R = ~S, we have

R={P: PecA: P}=~T1{P: Pc A: ~P}

Lemma 4.6.4

For process P, where a.P = 0.P, we have:

safe.P A progP < (Vt:te(a.P)*: f.PtJ0)

Proof:
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safe.P A prog.P

< { Definitions 4.6.1 and 4.6.2 }

(Vt: t € (LP)(o.P)U{e}: f.P.(t) £ L) A (Vt:te (aP)*: f.Pt#A)

< {iP=0,thuso.P=aP}

(Vt: t € (LP)(aP)U{e}: £.P.(t)#L) A (Vt:te (aP)*: f.Pt#A)

< { Equation 2.4 — | -persistence }

(Vt: t € (aP) : fP.(t)#L) A (Vt:te(aP)* : f.Pt#A)

< { Equation 4.1 — partial order; Calculus }

(Vt: t € (a.P)*: £.P.(t) 2 D)

Lemma 4.6.5
The following holds for labels A and ~y:

ALy & (~Axv)30

Proof: We first inspect all pairs of labels A and v for which A C « holds. The following

list shows that the left-hand side of the equivalence above implies the right-hand side:
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1C1L @ ~Ilx1l = Tx1 =T

~1lxA = TxA = T
CO : ~1lxO = TxO0O =T

~1lxV = TxV =T
CT : ~LxT = TxT =T
C ~AXA = VxA =V
ACO : ~AxO = VxO = V

~AxV = VxV =V
CT : ~AXT = VxT = T
OCO : ~OxO = Ox0O = 0O
OCV : ~OxV = OxV =V
OCT : ~OxT = OxT =T
cC ~VxV = AxV =V

~VxT = AxT = T
TET : ~TXxT = 1xT =T

Now we check the implication in the opposite direction. The encircled entries in the
table below are the entries for which the right-hand side of the equivalence above holds:

x| L A O VvV T
Ll1L + 1+ 1 (7
AlL A A (v] (T
ol A @@ ®
vii Vv @@
HORGRGRGNG
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The encircled entries exactly correspond to the list above, where we assumed that the
left-hand side of the equivalence holds. This means that the implication holds in both
ways. O
Lemma 4.6.6

Let P and Q be processes, such that i.P = 1.QQ and o.P C 0.Q). Then,

(Vt:te (aQ) :f.(~PxQ)t30) & (Vt:te (a.Q) :f.~P.(t|aP)xf.Q.t 3 0)

Proof: First we assume (V¢ : ¢ € (a.Q)* : f.(~P x @Q).t J O). Because L(~P x

Q)a.(~P x Q) U{e} C (a.Q)*, we have, by definition of product

(Vt:te (a.Q)" : f.(~Px Q)t30O)
= (Vt:tel(~P x Q)a.(~P xQ)U{e}:f.~P.(t]aP)xf.Q.t 10)

Now take trace t € (a.QQ)* such that t ¢ L.(~P x Q)a.(~P x Q) U {e}. Then, t = t'at”,
where t’ € 1.(~P xQ)a.(~Px Q) and t'a € 1.(~P x Q). By assumption, f.(~P x Q).t'a J
O. Because t'a is not a legal trace in ~P x @, it must be the case that f.(~P x Q).t'a =
T. By Equation 3.5 and by Table 3.1 we know that either f.~P.(t'a | a.P) = T or
f.Q.t'a = T. By T-persistence, either f.~P.(t | a.P) = T or f.Q.t = T. Consequently,
f.~P.(tla.P)xf.Qt=T230.

Now we prove the implication from right to left:

(Vt:te (a.Q)* : f.~P.(t ] a.P) x f.Q.t 3 0O)
= {L(~PxQ)a.(~PxQ)U{e}C (a.Q)* }
(Vt:tel(~P x Q)a.(~P x Q)U{e}:f.~P.(t | a.P) xf.Q.t J0)

= { Definition 2.4.1 — product }
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(Vt:tel(~PxQla.(~PxQ)U{e}:f.(~P x Q).t J0O)
=  { L-persistence }

(Vt:te(a.Q) : f.(~Px Q).t30)

Lemma 4.10.2

Let P and R be processes such that i.R =1i.P and 0.R = 0.P — A for some set A. Then

correct.(~Rx P) & RLC|[A:P]
Proof:

correct.(~R x P)
< {a(~RxP)=o.(~vRxP)=a.P, Lemma 4.64 }
(Vt:te (a.P)*:f.(~Rx P)J0O)
<  { Lemma 4.6.6 }
(Vt:t€ (a.P)* : f.~R.(t L a.P) x £.Pt O 0O)
<  { Lemma 4.6.5 }
(Vt:te (a.P)*: f.R.(t | a.P) C f.P.t)
< { Calculus }
(Vs:s€(@R): (Vt:t€ (aP) AtlaR=s:f.RsCfPt)
< { Calculus }
(Vs:s€(a.R)*:fRsC (Mt:t€ (a.P)*Atla.R=s:f.Pt))
<  {iR=1iP,0.R=0.R— A, Definition 2.6.1 — hiding }
(Vs:se€(a.R)*: f.RsCf.|[A:: P]|s)
< { Definition 2.3.1 — refinement }

RC|[A:P)]
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Lemma 5.5.4

For snippets P, @@, and R, we have

[[PXxQ]xR]=|PxQxR)]

Proof: For trace ¢, we prove

f.lI[PxQ]xR|t=Ff|PxQxR|t

First, assume that £.|P x Q|.(t | a.(P x Q)) = f.(P x Q).(t } a.(P x Q)). That is, no
rounding down takes place. In this case, f.|[P x Q| x R].t =f.|P x Q X R].t.

Now assume f.|P x Q|.t = O and f.(P x @Q).t = V. That is, rounding down takes

place, because ¢ is V-unhealthy in P x Q:

(Va: a€o.(PxQ):f.(PxQ).(tala(PxQ))=T) (C.1)

We have four possibilities for f.R.(t | a.R):

e f.R.(t | a.R) = L: Then, by the definitions of product and of rounding, f.||P X
Q| xR|t=f.|PxQxR|t=1.

e f.R.(t | a.R) = T: Then, by the definitions of product and of rounding, f.||P x
Q| xR]t=f|PxQXR|]t=T.

e f.R.(t | a.R) = O: Then, by the definitions of product and of rounding, f.||P X
Q| x R|.t = 0O. Furthermore, f.| P x @ x R|.t = V. However, by Equation C.1, we



223

have

(Va: a€0.(PxQ):f(PxQXR)ta=T)

Furthermore, because f.R.(t | a.R) = O and because R is a snippet, it follows that

(Va: a€oR:f(PxQxR)ta=T)

Therefore, ¢ is V-unhealthy in P X X R and rounding down takes place, so f.| P x
Q x R].t=0.

e f.R.(t | a.R) = V: Here we consider two cases. In the first case,

(Va: a€o0RANago(PxQ):f.Rta=T)

In this case, ¢t is V-unhealthy in P x ) X R and rounding down takes place, so

f./|PxQ] xR|.t=f|PxQx R|.t=0. In the second case,

(Ja:ac€oRANado(PxQ):fRta#T)

Here, no rounding down takes place, thus f.||[Px Q| X R|.t=f.|PxQXx R]|.t=V

a

Lemma 5.5.7

For snippets P, @@, and R, we have

PC,Q > PXRC,QxXR
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Proof: Recall

PC,Q = PCQA (Vt,a: telPAa€o.P: (fPta#T=fQta#T))

Our proof is by contradiction. We assume P C, ) and we show that P x R [Z, Q@ X R

leads to a contradiction to the assumption.

By monotonicity of product, we know that P x R C @ x R. Consequently, if P x R [Z,
@ X R, then ) x R is not output-persistent with respect to P x R. That is, there must
exist a trace t € 1.(P x R) and symbol a € 0.(P x R), such that f.(P x R).ta # T and
f.(Q x R).ta = T. From Equation 4.3 and the product table for labels we conclude that
f.P.(ta | a.P) # T and f.R.(ta | a.R) # T. On the other hand, f.(Q x R).ta = T.
Because f.R.(ta | a.R) # T, it must be the case that £.Q.(ta | a.Q) = T.

If a € 0.P, then we have a contradiction to our assumption that P C, Q: By output-

persistence, f.P.(ta | a.P) # T implies f.Q.(ta | a.Q) # T.

If a ¢ 0.P and £.Q.(ta | a.QQ) = T, then we have two cases to address:

o Iff.QQ.e = T, then Q = MIRACLE. This contradicts the assumption that process Q)

is a snippet.

o f.QQ.c # T. By T-persistence we know that there exists the shortest non-empty
prefix s of trace ta | a.Q, such that f.Q.s = T. Trace s can be written as s = t'z,
where z is a symbol and ' is a trace. Because s is the shortest prefix of ta | a.Q
such that £.Q.s = T, we know that f.Q.t' # T. Because Q is a snippet, we refer
to condition 4 of Definition 5.4.1 and conclude that z € 0.QQ. P C, @ implies that
0.P = 0.Q, thus = € 0.P. Furthermore, because f.P.(ta | a.P) # T, we know that
f.P.t'z # T. Consequently, we have a contradiction to P C, Q: We showed above

that f.Q.t'z = T, but, by output-persistence, f.P.t'z # T implies that f.Q.t'z # T.
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Lemma 5.5.8

For processes P, @, and R,

PL,Q = |P| L Q] (C.2)

Proof: We prove that, after trace ¢ has been rounded down in process @, its label is

still at least as large as the label of the same trace in process P:

uy.Q Cuy.PU{t:f.Pte{L,0}:t} (C.3)

Take trace t € uy.Q. Then, f.Q.t =V and Va:a€0.Q:f.Q.ta=T).

Iff.Pt= 1 or f.P.t = 0O, then Equation C.3 holds.

If f.Pt =V, then either t € uy.P or t € uy.P. If t € uy.P, then Equation C.3
holds. On the other hand, if ¢t & uy.P, then (Ja:a € 0.P : f.P.ta # T). Because P C, @

and 0.P = 0.Q, we know that f.Q).ta # T. That is, trace ¢ cannot be a V-unhealthy

trace in @), which contradicts our assumption that ¢ € uy.Q.

Finally, f.P.t cannot be equal to T, because f.P.t C f.QQ.t and f.Q.t = V. O
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