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Abstract

We give a geometric representation of free De Morgan bisemigroups, free commutative De
Morgan bisemigroups and free De Morgan bisemilattices, using labeled graphs.

1 Introduction

J. A. Brzozowski and Z. Esik have introduced in [3] algebra C' capable of representing and counting
hazards in asynchronous circuits. Algebra C' has two binary operations @ and ®, a unary operation
—, called quasi-complementation, and the constants 0 and 1 such that both (C, ®,0) and (C, ®, 1) are
commutative monoids, ~ is an involution satisfying De Morgan’s law with respect to the operations &
and ®, and such that 0 = 1. In [3], such algebras were called commutative De Morgan bisemigroups, a
generalization of De Morgan bisemilattices studied, in connection with circuits, in [2]. We conjecture
that the variety of De Morgan bisemigroups is in fact generated by algebra C, so that an equation
holds in C if and only if it is provable from the defining equations of De Morgan bisemigroups.

In this paper, building on the geometric description of free commutative bisemigroups and free
bisemigroups [9, 8, 6], we provide a concrete geometric description of the free De Morgan bisemi-
groups, free commutative De Morgan bisemigroups, and free De Morgan bisemilattices, using labeled
graphs and digraphs. In particular, we show that the free De Morgan bisemigroup on a set A may be
represented as an algebra of isomorphism classes of AU A-labeled sets, where A is a disjoint copy of
A, equipped with two transitive digraph structures, in fact two N-free partial orders, such that any
two elements of the set are related by exactly one of the two orders. The two binary operations are
the series products with respect to the two orders, and the operation of quasi-complementation ex-
changes the two orders and complements the labels. The free commutative De Morgan bisemigroup
on A has a similar description using A U A-labeled graphs. Our study of algebras of labeled graphs,
posets and biposets is also related to recent work on two-dimensional extensions of automata theory
by Lodaya, Weil, Hashiguchi, Kuske and others, see [13, 14, 11, 12, 7].

*This research was supported by the National Foundation of Scientific Research of Hungary under grant no.
T30511.




2 Preliminaries

Recall that bisemigroup' is an algebra B = (B, ®,®) equipped with binary associative operations
@ and ®. A commutative bisemigroup is a bisemigroup in which both operations are commutative.
A bisemilattice? [2] is a commutative bisemigroup in which both operations are idempotent. In a
bisemilattice, we will sometimes denote the operations by LI and A. Morphisms of bisemigroups
preserve the operations.

A De Morgan bisemigroup [2] is an algebra D = (D, ®,®,”,0,1) such that (D, ®,®) is a bisemi-
group, and the quasi-complementation operation ~ : D — D and the constants 0, 1 satisfy

2P0=00z ==z (1)
rR1=1Qz ==z (2)
z®0=0Qz=0 (3)
z@l=loz=1 (4)
and
T =z (5)
IOy = TRY (6)
IQy = TDT. (7)
It then follows that
0 =1 (8)
1 =0 (9)

A commutative De Morgan bisemigroup is a De Morgan bisemigroup which is a commutative bisemi-
group, and a De Morgan bisemilattice is a De Morgan bisemigroup which is a bisemilattice. Mor-
phisms of De Morgan bisemigroups, commutative De Morgan bisemigroups and De Morgan bisemi-
lattices also preserve the constants and the quasi-complementation. Note that any De Morgan
bisemigroup is determined by the @ and ~ operations and the constant 0.

In any bisemilattice B = (B,U, A), the binary operations determine two partial orders J and <
defined by x Jyif and only if x Uy = z and x < y if and only if x Ay = z, for all z,y € B. The
operations are in turn determined by the partial orders in that = Uy is the l.u.b. of z and y with
respect to the partial order J, and z A y is the g.l.b. of x and y with respect to <. It is known
that a bisemilattice is a lattice if and only if the partial orders J and < coincide. When B is a
De Morgan bisemilattice, 0 is least and 1 is greatest with respect to both partial orders. It is clear
that any homomorphism of bisemilattices preserves J and <. Moreover, for z,y in a De Morgan
bisemilattice,

rdy & T<T. (10)

This latter property is characteristic: If B is a bisemilattice equipped with a unary operation ~— and
constants 0 and 1 satisfying (1) — (4), then B is a De Morgan bisemilattice if and only if (5) and
(10) hold.

For all undefined notions of universal algebra, see any standard text such as [10, 4].

1Bisemigroups with a a common neutral element for the two associative operations were called double monoids in
[9] and bimonoids in [1]. Some authors use the term binoid.
2Plonka [15] introduced the term quasi-lattice for these structures.



3 Labeled graphs

Suppose that A is a set. An A-labeled graph is a finite nonempty graph (G, ~¢) equipped with a
labeling function £ : G — A. Here, ~g C G x G is an irreflexive symmetric relation on the set G of
vertices. The elements of ~¢ are called edges. A morphism of A-labeled graphs is a function which
preserves the edges and the labeling. An isomorphism is a bijective morphism whose inverse is also
a morphism. We identify any two isomorphic A-labeled graphs.

Suppose that G and H are A-labeled graphs. Since we work with isomorphism classes of labeled
graphs, in the definitions of the @ and ® operations below we may without loss of generality assume
that G and H are disjoint. We define

GoH = (GUH,~¢geH,lcon),

where
~geH = ~gU~g

toont) = { (90 HLEG
Moreover, we define

G®H = (GUH,~ggHu,lcen),
where

~eggHE = ~gU~gUGxHUH xG,

and where lggy is defined in the same way as fggn. We also define an operation of quasi-
complementation:

G = G~z ba);
where {7 = £g and
~z = {u,v) €eGxG:u#v, (u,v) g~g}

The collection of all A-labeled graphs, equipped with the above operations, satisfies all of the defining
equations of commutative De Morgan bisemigroups not involving 0 and 1. Thus, if we add elements
0 and 1 such that (1) — (4), (8) and (9) hold, then we obtain a commutative De Morgan bisemigroup
Ga.

REMARK 3.1 The graphs in the smallest subalgebra of G4 containing the singletons are called
labeled cographs, or complement reducible graphs. Since the complement of any singleton graph is
itself, it follows that a labeled graph is a cograph if and only if it can be generated from the singletons
by any two of the operations @,® and —. It is also known, see [5, 16], that a (labeled) graph is
a cograph if and only if it is Py-free, i.e., when it contains no subgraph isomorphic to a path on 4
vertices.

REMARK 3.2 An A-labeled graph may also be represented as a system (G, =g, ~q,{g) where G is
a finite nonempty set, ~g and ~g are disjoint irreflexive and symmetric relations on G, and £g is
a labeling function G — A. Moreover, it is required that for any two distinct vertices u, v, either
u & v or u ~ v holds, i.e., that (G,~g U ~¢g) is a complete graph. The @ and ® operations can
then be defined so that

GoH = (GUHJQGEBHJNGEBHJKG@H)J



where

Rageg = NgU~sgUG@xHUHXG
and

G®H = (GUH,~gen,~aeHlasn),
where

RgegH = RgURgH

~NGRH = ~gU~gUGXx HUH x @G,

and where {ggy and {ggy are defined above. Quasi-complementation is given by
6 = (Ga S retirel, ZE);
where {z = {g and

za = ~g

For later use we note:

LEMMA 3.3 The following cancellation laws hold in G 4.

1. IfGl@HZGQ@H, then G1 = G5.
2. IfG1®H:G2®H, thenGlsz.

Proof. If Gy ® H and G4 ® H are isomorphic, then G; and G, have the same number of connected
components. Moreover, there is a bijection between the connected components of G ®H and Gy ® H
which assigns to any component of G; @ H an isomorphic component of Gy @ H. But then there is
a similar bijection between the components of G; and G», proving that G; and G2 are isomorphic.
The second claim follows from the first by taking complements. |

In order to represent the free commutative De Morgan bisemigroup by cographs, we modify the
operation of quasi-complementation. Suppose that A is a set and A = {@: a € A} is a disjoint copy
of A. We define a new quasi-complementation operation on the set of A U A-labeled graphs. Given
G = (G, ~ag,lg), define G = (G, ~g, {5), where

~z = {(u,v) e GxG:u#v, (u,v) €~g} (11)

tz(u) = Io(u), u€eG. (12)

Here we write @ = a, for all @ € A. As before, we define 0 = 1 and T = 0. The resulting algebra,
denoted G , %, is a again a commutative De Morgan bisemigroup. Let CDBS,4 denote the least
subalgebra of G , 4 containing the singleton graph labeled a, for each a € A. By Remark 3.1, an
AU A-labeled graph G belongs to CDBS4 if and only if G is P4-free. Since G, 1 is a commutative
De Morgan bisemigroup, so is CDBS 4. In the next result, we identify each letter in AU A with the
corresponding labeled graph having a single vertex.

THEOREM 3.4 CDBS 4 is freely generated by A in the variety of all commutative De Morgan bisemi-
groups.



Proof. Suppose that S is a commutative De Morgan bisemigroup and h is a function 4 — S. We
show how to extend h to a homomorphism h* : CDBS,4 — S. First, we define h*(0) = 0 and
ht(1) = 1. Moreover, we define h¥(a) = h(a) and h¥(@) = h(a), for each a € A. Suppose now that
G € CDBS 4 has 2 or more vertices. If G is not connected, write G in the form G =G, ... D Gy,
where the G; are all of the connected components of G. We have G; € CDBS4, foralli =1,...,n.
Define h*(G) = h*(G1)®...@h*(G,). If G is connected, then G can be written as G = G1 ®...® Gy,
where the G; are disconnected. In this case, define h*(G) = h*(G1) ® ... ® h*(G},). That h* is well-
defined follows by the associativity and commutativity of the operations. It is now immediate that h*
preserves @ and ®. The fact that hf also preserves quasi-complementation follows from Lemma 3.5.

O

LEMMA 3.5 Suppose that S and S' are De Morgan bisemigroups. Suppose that X C S is closed for
quasi-complementation.

1. Then X generates S if and only if every s € S — {0,1} can be generated from X by @ and ®.

2. Suppose that S is generated by X. Then a function h : S — S’ is a De Morgan bisemigroup
homomorphism if and only if h preserves 0,1, the quasi-complementation on the elements of
X, and the ® and ® operations.

When A has a single element, G 4 may be considered to be a commutative De Morgan bisemigroup of
unlabeled graphs, and the constants 0 and 1. Let G denote this commutative De Morgan bisemigroup
and let CG denote the subalgebra of G determined by the cographs and the constants. It is natural
to ask whether there are equations that hold in G but fail to hold in all commutative De Morgan
bisemigroups, i.e., whether the variety of commutative bisemigroups is generated by G. Below we
answer this question. We will show that both G and CG generate the variety of commutative De
Morgan bisemigroups.

PROPOSITION 3.6 When A is a countable set, there is an embedding of the free commutative De
Morgan bisemigroup CDBS 4 into CG.

Proof. Let a1,as, ... be a fixed enumeration of A, and for each n > 1, define
(n+1)—times
——
G, = o®(o@9,,,@o),

where o denotes the singleton graph. Note that the complement of G,, in CG is

(n+1)—times

_ —_—
G, = ed(e®...Q%).
Let f denote the homomorphism CDBS4 — CG determined by the assignment a,, — G, n > 1.

For a graph G € CDBS4, f(G) can be constructed by replacing each vertex of G labeled a, by
a copy of G, and each vertex labeled @, by a copy of G,. Thus, if u and v are connected by
an edge in G, then any vertex of the graph replacing u will be connected in f(G) to each vertex
of the graph replacing v. Clearly, each graph in the image of f contains both vertices that are
connected by an edge and disconnected vertices. Using this fact, it follows that when G € CDBS 4
is connected and G is not a singleton, then f(G) contains both a complete graph on three vertices
and a graph isomorphic to Pz, the path on three vertices. Also, if G is connected, then so is f(G),
unless G consists of a single vertex labeled @, for some n. Thus, when G is connected and is not a
singleton, no strongly connected component of f(G) is isomorphic to any of the G, or to a connected
component of any of the G,,.



We claim that f is injective. To prove this, suppose that H, K € CDBS,4, H # K have minimal
number of vertices with f(H) = f(K). If H or K is a singleton, then H = K, since there is
no nontrivial way of generating any of the G, and G, form the graphs G,,,G,,, m > 1 by the
operations @ and ®. Thus we may assume that neither H nor K is a singleton. Suppose that H
is disconnected, say H = H; @& ... ® H,,,, where m > 1 and the H; are connected. Then K is also
disconnected, since otherwise f(K) would be connected, but f(H) is not. Let K = K1 & ... ® K,
where the K; are connected. If one of the H; has a single vertex, then by the preceding argument,
there is a j with H; = K;. Removing these components from H and K, the resulting graphs H'
and K' are distinct and satisfy f(H') = f(K'), by Lemma 3.3. Since also H' # K', this contradicts
our assumption on H and K. We conclude that none of the H; is a singleton. In the same way,
none of the K is a singleton. But then all of the graphs f(H;) and f(K;) are connected, so that
f(H) = f(K) only if m = n and there is a permutation 41, ...,%, of the integers 1,...,n such that
f(Hj;) = f(Kj;), for all j =1,...,n. But since H # K, there is a j with H; # K;,. This is again
a contradiction. If H is connected, consider H and K. They have the same number of vertices as
H and K, and f(H) = f(K). But since H is disconnected, we can derive a contradiction as before.

O

THEOREM 3.7 The variety of commutative De Morgan bisemigroups is generated by either one of
the algebras G and CG.

Proof. Since CG is a subalgebra of G and G is a commutative De Morgan bisemigroup, it suffices
to prove that the variety generated by G contains the free commutative De Morgan bisemigroup
CDBS 4 generated by a countable set A. But this holds by Proposition 3.6. O

4 Labeled directed graphs

In order to give a representation of the free De Morgan bisemigroups, we will now consider labeled
2-digraphs (G, pc,7a,la), where G is a finite nonempty set, pg and 7 are irreflexive antisymmetric
relations on G, and £g : G — A. We also require that for any two distinct vertices u,v € G, either
u and v are related by pg, or else u and v are related by 7o, but not by both. An isomorphism
G — H of A-labeled digraphs G, H is a bijection which preserves the edges and the labeling, i.e., a
bijective function f : G — H such that for all u,v € G, (u,v) € pg if and only if (f(u), f(v)) € pu
and £g(u) = Ly (f(u)). It then follows that (u,v) € 7¢ if and only if (f(u), f(v)) € 7. We identify
any two isomorphic A-labeled 2-digraphs. The @ and ® operations are defined as follows, where
without loss of generality we again assume that G and H are disjoint.

GoH = (GUH, peon,con,lcon),
where
peeH = paUpap UG x H
TGeH = TG UTH,
and
G®H = (GUH,pcen,cen, lean),
where
pPagH = paUpH
TaeH = TeUTHU G X H,



and where {gen and {ggm are defined above. Quasi-complementation is given by
6 = (G7 PaTa» ea),
where {z = {g and

P = TG
Ta = PG-

Let D4 denote the structure that results by adding 0 and 1 to A-labeled 2-digraphs such that (1)
~ (4) and (8), (9) hold. Clearly, D4 is a De Morgan bisemigroup. When A is a disjoint copy of
A, we may also define the De Morgan bisemigroup D A which is the same as D , 7 except that
the labeling function of the quasi-complement is given by (12). Let DBS 4 denote the subalgebra of
D AR generated by the singleton 2-digraphs corresponding to the elements of A.

REMARK 4.1 The paper [6] contains a common generalization of the geometric characterization of
series-parallel digraphs (or posets) [9, 16] and cographs [5, 16]. It follows from this general result that
an A-labeled 2-digraph (G, pg, 7a, £c) belongs to the subalgebra of D4 generated by the singletons
if and only if both pg and 7¢ are transitive (so that they define partial orders), and pg is N-free.
Thus there are no distinct vertices u,v,w, z such that the order relations between them are given
by upgw, vpgw, vpgz. It then follows 7¢ is also N-free. The same conditions characterize the
2-digraphs in DBS 4.

THEOREM 4.2 DBS 4 is freely generated by A in the class of all De Morgan bisemigroups.

The proof is similar to that of Theorem 3.4.

Consider now the De Morgan bisemigroup D of unlabeled 2-digraphs, and its subalgebra ND gen-
erated by the singleton 2-digraph. We have:

THEOREM 4.3 The variety of De Morgan bisemigroups is generated by both D and ND.

This can be proven following the lines of the proof of Proposition 3.6 and Theorem 3.7. One shows
that when A is a countable set {ai,as,...}, the homomorphism g : DBS4 — ND determined by
the assignment

n—times

———
a, — ed(e®...Qe n>1)

is injective. Indeed, this fact follows from Proposition 3.6, since the homomorphism f given in the
proof of Proposition 3.6 is the composite of the homomorphism g with a homomorphism CG — ND.

5 Free De Morgan bisemilattices

In order to obtain a geometric representation of the free De Morgan bisemilattices, we will consider
labeled graphs with a particular property. We call an A-labeled graph G ®-irreducible if G is
connected, i.e., when there exist no labeled graphs G; and G with G = G1 & G2. Similarly,
we call G ®-irreducible, if G is @-irreducible, i.e., when there exist no labeled graphs G; and
Gy with G = G; ® G5. If G is both @-irreducible and ®-irreducible, then we call G irreducible.
The ®-components of G are the connected components of G. The ®-components of G are the



quasi-complements of the @-components of G. Thus, denoting the @-components by G; and the
®-components by H;, wherei =1,...,nand j =1,...,m, we can write

G = H®...9 H,,

where each G; is @-irreducible and each Hj is ®-irreducible.

We say that an A-labeled graph G has inherently nonisomorphic components if it is irreducible, or
for each way of writing G =G @ ... ® G, or G = G1 ® ... ® G, the labeled graphs G; are pairwise
nonisomorphic and have inherently nonisomorphic components. Clearly, if G is not @-irreducible
then G has inherently nonisomorphic components if and only if the &-components of G are pairwise
nonisomorphic and have inherently nonisomorphic components. And if G is not ®-irreducible then
G has inherently nonisomorphic components if and only if the ®-components of G are pairwise
nonisomorphic and have inherently nonisomorphic components.

Suppose that G, H have inherently nonisomorphic components. Up to isomorphism, let Cy,...,C),
denote all of the ®-components of G and H, and D+,...,D, the ®-components of G and H. We
define

GUH = (Cie...eoC,
GANH = Di®...%D,.

It is easy to see that G has inherently nonisomorphic components if and only if G has. It follows
that the quasi-complementation operation is well-defined on A-labeled graphs having inherently
nonisomorphic components. When we add 0 and 1, there results a De Morgan bisemilattice IG 4.
In a similar way, we can define the De Morgan bisemilattice IG , A

For any G,H € 1G4 or G, H € IGAA,We have G J H if and only if G = 1 or H = 0 or every
@-component of H is a @-component of G, and G < H if and only if G = 0 or H = 1 or every
®-component of H is a ®-component of G. (The relations J and < were defined in Section 2.)
Thus, GMH = inf5{G, H} always exists. Moreover, when G H is a graph, its set of ®-components
is the intersection of the sets of ®-components of G and H. In the same way, GV H = sup.{G,H}
also exists.

PROPOSITION 5.1 Suppose that G,H € 1G4, or G,H € IGAA If G and H are cographs, then
G U H and G AN H are also cographs. Moreover, G H and GV H are either cographs or belong to

{0,1}.

Proof. G U H contains a Py if and only if G or H does, and similarly for G A H. Moreover, G M H
contains a Py if and only if both G and H do, and similarly for GV H. O

Thus, those A U A-labeled cographs that have inherently nonisomorphic components form a subal-
gebra of IG A Let DBSL 4 denote this subalgebra.

PROPOSITION 5.2 For any G € G, 7z, G € DBSLy if and only if G can be generated from the
singletons corresponding to the letters in A and the constants 0, 1 by the operations U, A\ and ~.

Thus, DBSL 4 is the subalgebra of IG , 4 generated by the singletons corresponding to the letters
in A.

THEOREM 5.3 For each set A, DBSL 4 is the free De Morgan bisemilattice on A.



Proof. We have already noted that DBSL 4 is a De Morgan bisemilattice. By Theorem 3.4, there
is a homomorphism h : CDBS4 — DBSL,4 which maps the labeled graph corresponding to each
letter in A to itself. By Proposition 5.2, h is surjective. To complete the proof we need to show
that whenever 6 is a congruence relation on CDBS4 such that the quotient CDBS4/8 is a De
Morgan bisemilattice, i.e., such that @& and ® are idempotent on CDBS 4/6, then the kernel of h
is included in 6. But this follows from the fact that for all such congruence relations 8 and any
G € CDBS4, GOh(G). Indeed, this is clear when G is a singleton. We proceed by induction on
the number of vertices of G. When G has two or more vertices, then G is either not ®-irreducible
or not ®-irreducible. We only consider the first case. If G is not @-irreducible, then we can write
G=G1®...9G,, n > 1, where the G; are @-irreducible labeled graphs in CDBS 4. By induction,
G; 0 h(G;) holds for each i = 1,...,n. Let {i1,...,4,} denote a maximal subset of {1,...,n} such
that h(G,), ..., h(G;,,) are pairwise nonisomorphic. Since the h(G;) are connected, we have

G = G19...0G,
6 h(G)®...»hG,)
0 h(Gi,)®...®h(G,)
h(G1)U...Uh(Gr)
(G). O

|
>

Call a De Morgan bisemilattice S a De Morgan bilattice [2] if z My and z V y exist for all 2,y € S.
Moreover, call a De Morgan bilattice S locally distributive [2] if (S, LI, M) and (S, A, V) are distributive
lattices.

COROLLARY 5.4 FEwvery free De Morgan bisemilattice is a locally distributive De Morgan bilattice.
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