
Covering of Transient Simulation of Feedback-Free

Circuits by Binary Analysis

Yuli Ye

Department of Computer Science

University of Toronto

Toronto, Ontario, Canada M5S 3G4

y3ye@cs.toronto.edu

and

Janusz Brzozowski

School of Computer Science

University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

brzozo@uwaterloo.ca

June 24, 2005

Abstract

Transient simulation of a gate circuit is an efficient method of counting signal changes
occurring during a transition of the circuit. It is known that this simulation covers the
results of classical binary analysis, in the sense that all signal changes appearing in binary
analysis are also predicted by the simulation. For feedback-free circuits of 1- and 2-input
gates, it had been shown that the converse also holds, if wire delays are taken into account.
In this paper we generalize this result. First, we prove that, for any feedback-free circuit
N of arbitrary gates, there exists an expanded circuit N̂ , constructed by adding a number
of delays to each wire of N , such that binary analysis of N̂ covers transient simulation
of N . For this result, the number of delays added to a wire is obtained from the transient
simulation. Our second result involves adding only one delay per wire, which leads to
the singular circuit Ṅ of N . This result is restricted to circuits consisting only of gates
realizing functions from the set H = {identity, and, or, xor}, functions obtained by
complementing any number of inputs and/or the output of a function from H, and forks.
The number of inputs of the and, or and xor gates is arbitrary, and all functions of two
variables are included. We show that binary analysis of such a circuit Ṅ covers transient
simulation of N . Finally, we also show that this result cannot be extended to arbitrary
gates, if we allow only a constant number of delays per wire.

1



1 Introduction

Hazard detection is important in circuit analysis and design, because unwanted hazard pulses
may affect the correctness of a circuit’s operation and may increase computation time and
energy consumption. Over the years, several multi-valued algebras have been proposed for
hazard detection; see [5] for a recent survey on this topic. Brzozowski and Ésik [4] generalized
these algebras to an infinite-valued algebra, which we call the algebra of transients. Simulation
in this algebra, called transient simulation, detects all hazards, and permits us to count the
number of signal changes occurring in a circuit under worst-case conditions. Furthermore, all
the previously defined multi-valued algebras are quotients of this algebra [4, 5].

We say that an analysis method A covers analysis method B if all signal changes predicted
by B are also discovered by A. To characterize transient simulation precisely, one can compare
it to classical binary analysis [3, 9, 10]. Of the several multi-valued simulations proposed for
hazard detection, only Eichelberger’s ternary simulation [6] has been completely character-
ized [3] in terms of binary analysis. Brzozowski and Gheorghiu [2] have proved that transient
simulation covers binary analysis; it is easy, however, to find examples of circuits in which
transient simulation predicts more changes than binary analysis.

A circuit is modeled by a network of gates and wires [3]. It appears that binary analysis
can cover simulation, if wire delays are taken into account. Gheorghiu [7, 8] has shown that
this is indeed the case for feedback-free networks of 1- and 2-input gates. In this paper we
first prove that, for any feedback-free network N of arbitrary gates, there exists an expanded
network N̂ , constructed by adding several delays to each wire of N , such that binary analysis
of N̂ covers transient simulation of N . Our second result involves adding only one delay per
wire to a feedback-free network N (as was done in [7, 8]), thus producing a singular network
Ṅ , but is restricted to circuits constructed with gates realizing Boolean functions from the
set G = H ∪H ∪ { fork }, where H = {identity, and, or, xor}, H is the set of functions
obtained by complementing any number of inputs and/or the output of functions from H, and
and, or, and xor can have an arbitrary numbers of inputs. We show that binary analysis of
a singular network Ṅ of N covers transient simulation of N . Since the set of functions that
we can handle includes all 1- and 2-variable functions, our result is a generalization of that
of [7, 8].

In addition to the positive results above, we also show that there exist networks in which
binary analysis does not cover simulation, if each wire has a constant number of delays. The
counterexample network contains a gate realizing the Boolean function x1 ∗x3 +x2 ∗x3, where
∗ and + are Boolean multiplication and addition, respectively.

The paper is organized as follows. In Section 2 we introduce the network model of gate
circuits. We decribe the classical binary analysis in Section 3. In Section 4, we present the
algebra of transients, and in Section 5 we introduce transient networks and transient simulation
based on this algebra. Section 6 introduces wire-delay extensions and two of their variants,
expanded networks and singular networks. We then present in Section 7 some additional

2



properties of the algebra of transients, and in Section 8, we introduce signal changes and their
properties in gate circuits. Finally, in Section 9, we prove that transient simulation of N can
be covered by binary analysis of some wire-delay extension of N .

2 Gate Circuits and Network Models

Our mathematical model of a gate circuit is based on those in [3, 7, 8], with some small
differences. A gate circuit consists of (external) input terminals (or simply inputs), input
gates (one for each input), (external) output terminals (or simply outputs), gates, forks, and
wires. An example is shown in Fig. 1, where 1 and 2 are input terminals, 3 and 4 are input
gates, each of which is connected to an input terminal, 10 and 11 are output terminals, 6 is
an inverter or not gate, 7 is a 3-input and gate, and 9 is a 2-input or gate. Input gate
3 is connected to gates 6 and 7; the branching point 5 is called a fork . For mathematical
convenience, we consider forks to be gates, and we refer to them as fork gates; all other gates
are called logic gates. We assume that each logic gate has one or more inputs and exactly one
output.1 In contrast to this, each fork has exactly one input and two or more outputs. The
fork gates of our example circuit are shown explicitly in Fig. 2. A wire connects two points;
multiple connections must be done with forks.

1

2

3 5

4

6

7
8

9 10

11

Figure 1: A gate circuit.

1

2

3

4

6

7 8

9 10

11

5

Figure 2: A circuit with fork gates.

1The model can be easily extended to multiple-output gates.

3



Our formal model of a circuit is called a network. The input gates always correspond to
identity functions; hence they are equivalent to delays. In general, we associate some delays
with wires, but we never add delays to the wires connecting input terminals to input gates.
From now on, when we talk about wires, we ignore all the wires connecting external inputs to
input gates. Thus every wire connects a gate output to either a gate input, or to an output
terminal. Every wire can have k ≥ 0 delays, but for now we assume all wires have zero delays.
If C is a circuit, let X = {x1, . . . , xp} be its set of inputs, Y = {y1, . . . , yn}, its set of gates
(including forks), and Z = {z1, . . . , zq}, its set of outputs. Note that X, Y and Z are pairwise
disjoint. We also label all the wires by variables from the set W = {w1, . . . , wm}. Variables in
X ∪Z are called external variables, whereas those in Y ∪W are internal . Figure 3 shows our
example circuit with all components labeled as described above.

z1

z2

x1

x2

w4

w5

w7

w9

w10

w8

w2

w1

w6

w3

y3

y4

y5 y6

y7

y1

y2

Figure 3: Circuit variables.

A directed graph, or digraph [1], D = (V,E), consists of a set V of vertices and a set
E ⊆ V × V of directed edges. We now introduce the network graph which describes the
connections among the components of a circuit.

Definition 1 The network graph of a gate circuit is a digraph D = (V,E), where V = Y ∪Z

is the set of vertices, and E = W , the set of edges. Associated with each input gate is its
corresponding external input. There is exactly one outgoing edge from each input gate to a
gate input, and one outgoing edge from each gate output to a gate input or an external output.

We assume that a network graph is connected; a network that is not connected can be
treated as several independent connected networks. In a digraph, a vertex is a source if it has
in-degree zero, a sink if it has out-degree zero, and an internal vertex if it is neither a source
nor a sink. In a network graph, input gates are sources, outputs are sinks, and other gates are
internal vertices. The distance of a vertex is defined to be the length of the longest directed
path from a source to that vertex.

The network graph of our example circuit is shown in Fig. 4, where we have used the
labeling of Fig. 3. The external input associated with each input gate is indicated in brackets.
The distance of y5 is 2, and the distance of y6 is infinity.

From now on, we assume that the network graph has been labeled with vertex and edge
variables, and we do not distinguish between an edge and its wire variable, or between a vertex

4



w1

w2

w7

z2

z1

w6 w9

w10

w8w3

w4

w5

y3

y4

y5

y6

y7y1

y2

(x2)

(x1)

Figure 4: Network graph.

and its variable. In any digraph, an edge e from vertex t to vertex h can be represented by
the ordered pair e = (t, h). Then t is the tail of e, and h is its head . We also view a wire as
an edge w = (t(w), h(w)), and treat t(w) and h(w) as both vertices and vertex variables.

The network graph of a gate circuit captures the connection structure of the circuit, but
does not include the gates’ functions; these are added next.

Definition 2 The excitation and output functions of a network are defined as follows:

• For a fork yi, the excitation is the identity function Yi = t(wj), where h(wj) = yi.

• For an input gate yi, the excitation is the identity function Yi = xi, where xi is the
external input associated with yi. Thus an input gate is equivalent to a delay.

• For any other gate yi with input wires wi1 , . . . , wik , the excitation is
Yi = f(t(wi1), . . . , t(wik)), where f is the Boolean function of the gate.

• The output function of output zi is the identity function zi = t(wj), where h(wj) = zi.

For our example circuit of Fig. 2 and its network graph of Fig. 4, we have the excitation
and output functions shown below, where we denote Boolean and(x1, x2) by x1∗x2, or(x1, x2)
by x1 + x2, and not(x) by x.

Y1 = x1, Y2 = x2, Y3 = y1, Y4 = y2 ∗ y3 ∗ y6, Y5 = y3, Y6 = y4, Y7 = y5 + y6,

z1 = y7, z2 = y6.

Definition 3 A network is a network graph (V,E) together with an assignment of excita-
tion functions to all of its gate variables, and output functions to its output terminals, as in
Definition 2.

5



Variables to which excitations are assigned are the internal state variables of the network.2

Note that there are no input or output excitations in the network; input values are assumed
to be supplied directly by the environment.

Definition 4 A network is feedback-free if its network graph is acyclic.

x2

x1

w1

w3

w2

w4

z1

y1

y2

y3

y4

Figure 5: A feedback-free network.

We consider only feedback-free networks from now on. In such networks, we can arrange
the gates and wires in levels. The level of a gate is the distance of the vertex of that gate
in the network graph. If the network is feedback-free, the level of a gate is always bounded.
Every wire is connected to the output of some gate; the level of a wire is the level of that gate.

A simple feedback-free circuit is shown in Fig. 5; for brevity, we omit its network graph.
In the corresponding network, gates y1 and y2 have level 0, gate y3 has level 1, and y4 has
level 2. Wires w1 and w3 have level 0, w2 has level 1, and w4 has level 2.

3 Binary Analysis

The classical binary analysis for our network model is due to Muller [9, 10], but we use the
terminology and notation of [3], where additional references can be found.

First we introduce several concepts related to states and state variables. In the sequel,
we denote tuples of variables by unsubscripted letters and their components by subscripted
letters. Let N be a network, and B = {0, 1}, the binary domain. For a positive integer
r, [r] denotes {1, . . . , r}. Let x = (x1, x2, . . . , xp) be the tuple of input variables of N , and
s = (s1, s2, . . . , sn), the tuple of state variables. An internal state of N is an n-tuple b of values
from B assigned to state variables s1, s2, . . . , sn. A total state is a (p + n)-tuple c = a · b of
values from B, the p-tuple a being the values of the input variables, and the n-tuple b, the
internal state (the “ · ” is used for convenience to separate the input from the internal state).

2In this section, only gates are state variables, and we denote them by yi; later, however, we add delays,
which are also state variables. All the state variables are then denoted by si.

6



Each state variable si has an excitation Si, where Si is a function of some inputs xj1 , . . . , xjl
,

and some state variables si1 , . . . , sik , i.e.,

Si = f(xj1 , . . . , xjl
, si1 , . . . , sik),

where f : Bl+k → B. It is often convenient to treat Si as a function from Bp+n into B. Thus
we define Ŝi : Bp+n → B by

Ŝi(a · b) = f(aj1 , . . . , ajl
, bi1 , . . . , bik),

for any total state a · b. From now on we write Si for Ŝi; it is clear from the context which
definition we use.

A state variable normally follows its excitation. However, if the excitation changes quickly,
the variable may fail to follow; in this sense, we are using an inertial-delay model [3]. A state
variable is stable if its value agrees with its excitation. For any i ∈ [n], the value of Si in total
state a · b is denoted by Si(a · b). The tuple (S1(a · b), . . . , Sn(a · b)) is denoted by S(a · b). For
a total state a · b, we denote the set of unstable state variables as Ua(b) = {si | bi 6= Si(a · b)}.
Thus, a · b is stable if and only if Ua(b) = ∅, i.e., S(a · b) = b. For any a · b and a · b̃, we denote
the set of state variables which differ in state b and b̃ as ∆a(b, b̃) = {si | bi 6= b̃i}.

Let a ∈ Bp be a fixed input, and b ∈ Bn, the initial internal state of N . Let Ga = (V,E) be a
digraph, where V = Bn, and for any u, v ∈ V , u 6= v, (u, v) ∈ E if and only if ∆a(u, v) ⊆ Ua(u).
If v ∈ V is stable, there is an edge in E from v to v; i.e., if Ua(v) = ∅, then (v, v) ∈ E. For
any u, v ∈ V , v is reachable from u if and only if there is a directed path from u to v in Ga.
The binary analysis of N with fixed input a and initial state b is the maximal subgraph Ga(b)
of Ga, such that each vertex in Ga(b) is reachable from b.

To simplify notation in examples, we denote binary tuples by binary words, where a binary
word is any word in B∗.

Example 1 Let s = (y1, y2, y3, y4) be the tuple of state variables of the network shown in
Fig. 5. The excitation functions of this network are:

Y1 = x1, Y2 = x2, Y3 = y1, Y4 = y2 + y3.

Suppose the internal state is b = 0111, and the input is fixed at a = 10; the binary analysis
G10(0111) is shown in Fig. 6, where tuples are shown as words, and unstable variables are
underlined.

4 Algebra of Transients

This section is based on [4]. A transient is a nonempty binary word in which no two consecutive
symbols are the same. We use boldface letters to denote transient variables. The set of all

7



0011

110111 11

1011 1001

0 111

1000

Figure 6: Binary analysis of a network.

transients is T = 0(10)∗ ∪ 1(01)∗ ∪ 0(10)∗1 ∪ 1(01)∗0. For a transient t ∈ T, α(t) and ω(t)
denote the first and last letters of t respectively, and l(t) is the length of t. A transient can
be obtained from any nonempty binary word by contraction, i.e., elimination of all duplicates
immediately following a symbol (e.g., the contraction of 00100011 is 0101). For a binary word
s, we denote by ŝ the result of its contraction. We denote by t ◦ t′ concatenation followed by
contraction, i.e., t ◦ t′ = t̂t′, where t, t′ ∈ T. The ◦ operation is associative, and is extended
to tuples component-wise.

We are about to introduce a network model in which gates process transients, instead
of binary values. For this purpose, we define extensions of Boolean functions to transients,
following [4]. Suppose that x = (x1, . . . ,xr) is an r-tuple of input transients of a logic gate
implementing Boolean function f . Define the directed graph D(x) to have as vertices r-tuples
y = (y1, . . . ,yr), where each yi is a prefix of length > 0 of xi, for each i ∈ [r]. There is an
edge from vertex y = (y1, . . . ,yr) to vertex y′ = (y′1, . . . ,y

′

r) if and only if y and y′ differ
in exactly one coordinate, say i, and y′i = yia, where a ∈ B. Graph D(x) shows all possible
orders in which the n variables can change, while undergoing a transition from the initial values
(α(x1), . . . , α(xr)) to the final values (ω(x1), . . . , ω(xr)). We label each vertex y = (y1, . . . ,yr)
of D(x) with the value f(a1, . . . , ar), where ai is the last letter of yi, i.e., ai = ω(yi), for each
i ∈ [r]. Figure 7 shows the graph D(01, 101) and its labeling for a 2-input or gate.

(0, 10)

(0, 101)

(01, 1)

(01, 10)

(01, 101)

1

0

1

1

1

1

π

π

π

(0, 1)

Figure 7: Graph D(01, 101).

Definition 5 Given a Boolean function f : Br → B, we define function f to be that function

8



from Tr to T which, for any r-tuple (x1, . . . ,xr) of transients, produces the longest transient
when x1, . . . ,xr are applied to the inputs of a gate performing function f . We call f the
extension of Boolean function f .

The value of f(x1, . . . ,xr) is the contraction of the label sequence of a path in D(x) from
(α(x1), . . . , α(xr)) to (x1, . . . ,xr) which has the largest number of alternations between 0 and
1. Path π in Fig. 7 is such a path. Let z(t) and u(t) denote the number of 0s and the number
of 1s in a transient t, respectively. We denote by ⊗ and ⊕ the extensions of the Boolean
and and or operations, respectively. It is shown in [4] that for any w,w ′ ∈ T of length > 1,
w ⊗w′ = t, where t ∈ T is such that3

α(t) = α(w) ∗ α(w′), ω(t) = ω(w) ∗ ω(w′), and u(t) = u(w) + u(w′) − 1.

Similarly, w ⊕w′ = t, where t ∈ T is such that

α(t) = α(w) + α(w′), ω(t) = ω(w) + ω(w′), and z(t) = z(w) + z(w′) − 1.

If one of the arguments is 0 or 1, the following rules apply:

t⊕ 0 = 0 ⊕ t = t, t⊕ 1 = 1 ⊕ t = 1,

t⊗ 1 = 1 ⊗ t = t, t⊗ 0 = 0 ⊗ t = 0.

The complement t of t ∈ T is obtained by complementing each character of t. For example,
1010 = 0101.

Algebra C = (T,⊕,⊗, , 0, 1), is called the change-counting algebra, and is a commutative
de Morgan bisemigroup [4]. We also refer to C as the algebra of transients, following [2, 7, 8].

Let π = s0, . . . , sh be a path of length h ≥ 0 in Ga(b). Recall that each sj = (sj
1, . . . , s

j
n)

is an internal state in Bn. For any i ∈ [n], we denote by σ
π
i the transient ̂

s0
i . . . sh

i , which
shows the changes of the i-th state variable along path π. We refer to σ

π
i as the history [2]

of variable si along the path. The histories of all state variables along π constitute tuple
σ

π = (σπ
1 , . . . ,σπ

n).

5 Transient Networks and Transient Simulation

We now extend the binary network model to the transient network model by changing its
domain from the binary domain B to the domain T of transients.

Definition 6 A transient network N is a network graph (V,E) together with an assignment
of excitation functions which are extensions of the Boolean excitations.

3The symbol + is used both as or and addition of integers; the meaning is clear from the context.

9



In a transient network, gates process transients instead of binary signals. Just as an
assignment of binary values to the variables of a Boolean network constitutes a total state of
the Boolean network, an assignment of transients to the variables of a transient network is a
total state of that network. Return to the binary network N of Fig. 5; its transient equivalent
N is shown in Fig. 8, where the excitation equations are:

Y1 = x1, Y2 = x2, Y3 = y1, Y4 = y3 ⊕ y2.

In a transient network, a gate is stable if the extension of its Boolean excitation agrees with
the present state of the gate, and a network N is stable if all of its gates are stable. If the total
state of the transient network in Fig. 8 is x1 = 10, x2 = 1010, y1 = 10, y2 = 1010, y3 = 01,
and y4 = 10101, then one verifies that the network is stable.

w1

w3

w4

w2

x2

x1

z1

y1 y3

y4

y2

Figure 8: A transient network.

We now describe an efficient simulation algorithm [4], Algorithm A, which we call transient
simulation. Let N be a transient network with x = (x1, . . . ,xp) as the tuple of input variables,
and s = (s1, . . . , sn) as the tuple of state variables. Assume that the network starts in a stable
initial state ã · b ∈ Bp+n, and the input is changed to a ∈ Bp.

Algorithm A
x := ã ◦ a;
s0 := b;
h := 1;
repeat {

sh := S(x · sh−1);
h := h + 1
}

until sh = sh−1;

For a feedback-free network, Algorithm A always terminates. Let the sequence of states
produced by Algorithm A be s0, . . . , sH , and let sH = {sH

1 , . . . , sH
n } be the final value after

termination. The transient of wire wi in this simulation is the final value of node variable
t(wi) upon termination.

10



Table 1: Simulation of a network.

01 01

01 01

01 01

x1 x2 y1 y2 state

s
0

s
1

s
2

1

1

1

1

1

01 01 01 01

y3 y4

0

01

01

0

01

01 10

10 101 s
3

Example 2 For the network of Fig. 8, with extended excitations Y1 = x1, Y2 = x2 Y3 = y1,
and Y4 = y2 ⊕ y3, let s = (y1,y2,y3,y4), and let b = 0011 be the initial internal state.
Suppose x = (x1,x2) changes from ã = 00 to a = 11. The result of Algorithm A is in Table 1.

6 Network Models with Wire Delays

We now introduce wire delays, and define the expanded and singular networks of any given
network; these are two special cases of networks with wire delays.

Let N be a network as in Section 2, and let W = {w1, . . . , wm} be the set of wires. Define
a function D that maps each wire variable to a non-negative integer; this is the wire-delay
function of the network. We add D(wi) delays to wire wi; let si1, . . . , sili be the outputs of
the added delays from right to left, where si1 is the head , and sili , the tail . We modify the
excitation functions as follows. If a delay variable sij is not a tail, then its excitation function
is Sij = si(j+1). If it is a tail, then its excitation is Sij = t(wi). The excitation function of a
fork yi with input wire wj is the identity function Yi = sj1, where h(wj) = yi, and sj1 is the
head segment of wj . The excitation function of an input gate remains unchanged. If yi is a
gate performing Boolean function f , and the incoming edges of yi are wires wi1 , . . . , wik , then
the excitation of the gate is Yi = f(si11, . . . , sik1). The output function of an external output
zi = h(wj) is the identity function zi = sj1. This modification allows a network to have any
number of delays on each wire. We call the modified network a wire-delay extension of N .
Note that N is just a special wire-delay extension, where each wire has zero delays.

Definition 7 An expanded network N̂ with respect to a given transient simulation is a wire-
delay extension of N with D(wi) = l(ti)− 1, for i = 1, . . . ,m, where ti is the transient of wire
wi in the simulation.

Figure 9 shows the expanded network of the network of Fig. 5, where the result of simulation
is given in Table 1. The excitation and output functions are:

S11 = y1, S21 = y3, S31 = y2, S42 = y4, S41 = s42,

11



x2

x1

z1

s11
y1

y2

y3

y4

s31

s42 s41

s21

Figure 9: An expanded network.

Y1 = x1, Y2 = x2, Y3 = s11, Y4 = s21 + s31,

z1 = s41.

Definition 8 The singular network Ṅ of a network N is a wire-delay extension of N with
D(wi) = 1, for i = 1, . . . ,m.

x2

x1

s1

z1

s3

s2

s4

y1

y2

y3

y4

Figure 10: A singular network.

Figure 10 shows the singular network of the network of Fig. 5. Since there is only one delay
per wire, the output of the delay of wire wi is labeled si. The excitation and output functions
are:

S1 = y1, S2 = y3, S3 = y2, S4 = y4,

Y1 = x1, Y2 = x2, Y3 = s1, Y4 = s2 + s3,

z1 = s4.

7 More about the Algebra of Transients

For any two binary words t and t′, we denote their concatenation by tt′. We say that t is
a prefix of t′ if there exists a (possible empty) binary word t′′ such that t′ = tt′′. Similarly,
t is a suffix of t′ if there exists a (possible empty) binary word t′′ such that t′ = t′′t. Let

12



w = a1a2 . . . al be a binary word of length l. For an integer k, 1 ≤ k ≤ l, the prefix of w

ending at position k is denoted by k(w) = a1 . . . ak, and the suffix of w starting at position k

is denoted by (w)k = ak . . . al.
The prefix and suffix relations are partial orders on the set of binary words; the prefix

order is denoted by ≤. Let (x1, . . . ,xr) be an r-tuple of transients. It is shown in [4] that
extensions of Boolean functions are monotonic with respect to the prefix order, i.e., if f is the
extension of f , then

x1 ≤ x′1, . . . ,xr ≤ x′r ⇒ f(x1, . . . ,xr) ≤ f(x′1, . . . ,x
′

r).

This also holds for the suffix order.
Let f be the extension of the r-argument Boolean function and, and let y = f(x1, . . . ,xr).

Consider any xi, i ∈ [r]. If xi = 0, then y = 0 irrespective of the values of the other transients.
If xi = 1, then y is independent of xi. Now we evaluate f(x1, . . . ,xr) under the assumption
that all transients x1, . . . ,xr have length > 1. It is shown in [4] that the result y ∈ T is
uniquely determined by the first and last letters and the number of 1s, which are computed
as follows:

α(y) = α(x1) ∗ · · · ∗ α(xr)

ω(y) = ω(x1) ∗ · · · ∗ ω(xr)

u(y) = 1 +
r∑

i=1

(u(xi) − 1).

Proposition 1 If there exists an i ∈ [r] such that 01 ≤ xi, then

f(x1, . . . ,xr) = 0 ◦ f(x1, . . . , (xi)2, . . . ,xr).

Proof: Let y′ = 0 ◦ f(x1, . . . , (xi)2, . . . ,xr), and y′′ = f(x1, . . . , (xi)2, . . . ,xr); we prove that
y = y′ by showing that y and y′ have the same first letter, the same last letter and the same
number of 1s.

1. Since α(xi) = 0, also α(y) = 0 = α(y′).

2. Since ω(xi)2 = ω(xi), we have

ω(y) = ω(x1)∗· · ·∗ω(xi)∗· · ·∗ω(xr) = ω(x1)∗· · ·∗ω((xi)2)∗· · ·∗ω(xr) = ω(y′′) = ω(y′),

where the last equality holds because y′′, being a transient, is nonempty.

3. Since u(xi) = u((xi)2), we have u(y) = u(y′).

13



Proposition 2 If 1 ≤ xj for all j ∈ [r], and there exists an i ∈ [r] such that 101 ≤ xi, then

f(x1, . . . ,xr) = 10f(x1, . . . , (xi)3, . . . ,xr).

Proof: Let y′ = 10f(x1, . . . , (xi)3, . . . ,xr); we show that y = y′.

1. Since 1 ≤ xj for all j ∈ [r], we have α(y) = 1 = α(y′).

2. By the arguments used in the proof of Prop. 1, it is clear that ω(y) = ω(y ′).

3. Since u(xi) = u((xi)3) + 1, we have u(y) = u(y′).

Since f(x1, . . . , (xi)3, . . . ,xr) always begins with 1 here, we use concatenation, rather
than the ◦ operation, in 10f(x1, . . . , (xi)3, . . . ,xr) .

We now give a recursive algorithm which computes f , the extension of and.

Algorithm AND

if ∃ i ∈ [r] such that xi = 0
then f(x1, . . . ,xr) = 0

else if ∃ i ∈ [r] such that 01 ≤ xi

then f(x1, . . . ,xi, . . . ,xr) = 0 ◦ f(x1, . . . , (xi)2, . . . ,xr)
else if {∃ i ∈ [r] such that 101 ≤ xi}

then f(x1, . . . ,xi, . . . ,xr) = 10f(x1, . . . , (xi)3, . . . ,xr)
else if max{l(xi) | i ∈ [r]} = 2

then f(x1, . . . ,xr) = 10
else f(x1, . . . ,xr) = 1;

The algorithm is correct for the following reasons. If there is an i ∈ [r] such that xi = 0,
then f(x1, . . . ,xr) = 0. If there is an i ∈ [r] such that 01 ≤ xi, then f(x1, . . . ,xi, . . . ,xr) =
0 ◦ f(x1, . . . , (xi)2, . . . ,xr), by Prop. 1. If neither case above holds, then for all i ∈ [r], 1 ≤ xi.

If there is an i ∈ [r] such that 101 ≤ xi, then by Prop. 2, f(x1, . . . ,xi, . . . ,xr) =
10f(x1, . . . , (xi)3, . . . ,xr). Otherwise, if the maximal length of all transients is 2, then each
transient is either 1 or 10, and at least one transient is 10. Hence f(x1, . . . ,xi, . . . ,xr) = 10.
If each transient is of length 1, then each transient is 1, and f(x1, . . . ,xr) = 1.

Each transient represents a sequence of signal changes, and the extension of the and

function represents the and gate. Algorithm AND suggests an order in which input signal
changes should be processed through the gate to create the longest sequence of output changes.
We should first process 0 to 1 changes (transients with prefix 01), then changes from 1 to 0
to 1 (transients with prefix 101), and finally, changes from 1 to 0 (transients with prefix 10).

14



Note that it is possible that during the algorithm there might be more than one choice for the
transient to be processed. Algorithm AND does not specify the rules of breaking ties. These
rules will be introduced in Section 9.

Example 3 Let f be the and function and consider f(101, 10, 010). None of the transients is
0, but the third transient has prefix 01; hence

f(101, 10, 010) = 0 ◦ f(101, 10, 10).

Next, we have a transient with prefix 101 in f(101, 10, 10), and

f(101, 10, 010) = 0 ◦ f(101, 10, 10) = 010f(1, 10, 10).

Now all transients are of length 1 or 2 in f(1, 10, 10), and

f(101, 10, 010) = 0 ◦ f(101, 10, 10) = 010f(1, 10, 10) = 01010.

By duality, we also have a recursive algorithm to compute the extension for or.

Algorithm OR

if ∃ i ∈ [r] such that xi = 1
then f(x1, . . . ,xr) = 1

else if ∃ i ∈ [r] such that 10 ≤ xi

then f(x1, . . . ,xi, . . . ,xr) = 1 ◦ f(x1, . . . , (xi)2, . . . ,xr)
else if {∃ i ∈ [r] such that 010 ≤ xi}

then f(x1, . . . ,xi, . . . ,xr) = 01f(x1, . . . , (xi)3, . . . ,xr)
else if max{l(xi) | i ∈ [r]} = 2

then f(x1, . . . ,xr) = 01
else f(x1, . . . ,xr) = 0;

The order in which signal changes should be processed for the or gate is: 10, 010, 01.

The algorithm for xor is simple, since the output changes for every single input change:

Algorithm XOR

if max{l(xi) | i ∈ [r]} = 1 and the number of 1s is even
then f(x1, . . . ,xr) = 0

else if max{l(xi) | i ∈ [r]} = 1 and the number of 1s is odd
then f(x1, . . . ,xr) = 1

else {∃ i ∈ [r] such that l(xi) ≥ 2}
f(x1, . . . ,xi, . . . ,xr) = f(1(x1), . . . , 1(xi), . . . , 1(xr))f(x1, . . . , (xi)2, . . . ,xr);

15



It is clear that any order in which the signal changes are processed for the xor gate results in
the same transient output. Note that it is also easy to give recursive algorithms for nand, nor,

xnor, not and fork, since the first three are similar to Algorithms AND, OR, and XOR, and
the last two only have a single input. Finally, the algorithm also works for functions obtained
from one of the functions above by complementing any number of inputs. For example, if f has
a recursive algorithm as given above, and g(x1, . . . ,xi, . . . ,xr) = f(x1, . . . , x̄i, . . . ,xr), then g
also has a recursive algorithm to compute the longest transient. Therefore, the extension of
Boolean functions like x1 ⊕ x̄2 or x1 ⊗ x̄2 also have such recursive algorithms. This shows that
recursive algorithms exist for all the Boolean functions in the set G, which includes all the
functions of two variables.

8 Signal Changes in Gates

Before proceeding we add a comment about terminology. We find it convenient to present our
proofs using a somewhat informal framework. Binary analysis assumes that the delays in any
network are arbitrary and can change with time. In looking for paths with special properties,
we prefer to talk about “scheduling signal changes” to create these paths. Of course, our
statements can be rephrased in the standard terminology.

The following example shows the difference in terminologies. Suppose a gate network starts
in a stable total state, and some inputs change simultaneously, as is usually assumed in binary
analysis [3]. Let’s say inputs xi1 , . . . , xik are the changing inputs. In binary analysis, the corre-
sponding input-gate variables yi1 , . . . , yik are unstable after the inputs change. These unstable
variables can change in any order, and that includes simultaneous changes. In particular, they
can change one at a time in some order. We call such an order an “arrival order” of inputs to
the non-input gates of the circuit. Thus, rather than saying that in binary analysis there is a
path in graph Ga(b) in which the unstable input gates change in a certain order, we “schedule”
the changes in that order.

A signal change is a transient of length two, that is, either 01 or 10. A transient of length
l consists of l − 1 signal changes; every two consecutive changes are complementary. For
example, transient 010 consists of signal changes 01 and 10. Signal changes occur in both
binary analysis and transient simulation. In binary analysis, a change in the input tuple is
a set of signal changes, and a history σ

π
i of a state variable si along a path π contains the

sequence of changes that have occured in si along π. In transient simulation, the transient of
a variable at the end of simulation contains all the signal changes occurring in that variable in
the worst case. Our goal is to find a path in the binary analysis of some wire-delay extension
of N which contains all the signal changes predicted by the transient simulation of N .

In this section we study some properties of single gates. Consider a gate that is part of
some network, performs the function f(x1, . . . , xr), and has transient extension f . Suppose
that the input wires of this gate have transients x1, . . . ,xr in the last state of the transient

16



simulation of the circuit. Then the output of the gate has transient f(x1, . . . ,xr).
We assume that the initial state of the network is stable, and the initial signal on input

wire wi is a. Suppose that, in binary analysis, wi receives a sequence ci1 , . . . , cik of signal
changes that corresponds precisely to transient xi, where ci1 is a change from a to a, ci2 , from
a to a, etc. For convenience, we introduce the following terminology: Change ci1 is the winner
of the sequence of changes on wi, and ci2 , . . . , cik are losers. Also, ci2 is the runner-up on wi.

We postulate that the changes on the input wires of a network N arrive in some order,
called the arrival order . This order can be arbitrary, except that changes on a given wire
must appear consecutively, that is, the (j + 1)st change must appear after the jth change on
that wire; every arrival order must be consistent in this sense. We also assume that no two
changes arrive at the same time, that is, the arrival order is a total order. Our objective is
to determine how the arrival order can be modified in a delay-extension of N with the aid of
wire delays to produce the longest transients on the outputs of gates. This subproblem is a
key step in our proof that binary analysis covers transient simulation.

If an input wire of a gate has delays, then some changes can be postponed till a later
time. Figure 11(a) shows a 2-input and gate in a stable initial state. When the first change
arrives, the situation is as shown in Fig. 11(b); because of the delay, the gate does not “see”
the change. Before the next change arrives at the input of the delay, the first change needs to
be processed, as shown in Fig. 11(c), that is, when the new value reaches the gate, the gate
must evaluate its new inputs. Then a second change can arrive, and its processing can again
be postponed, if needed, as in Fig. 11(d) until it is evaluated as in Fig. 11(e).

1
1

01

(d)

11

(e)

1

11
1 1 0 0

1

10

1

00

(b)(a) (c)

1

Figure 11: Delaying signal changes.

We now examine a general and gate. Assume that the arrival order of the signal changes on
the input wires of the gate is given. We postulate that we can insert delays in the input wires
and use these delays to change the order to an evaluation order , which is the order of changes
at the outputs of the wire delays connected directly to the gate inputs. Thus, the arrival order
is the order of changes supplied by the environment, while the evaluation order is the order
of changes as “seen” by the gate. This approach is consistent with binary analysis. If a delay
is unstable, we can change it right away, or postpone the change until some other changes
have taken place. This is possible, because binary analysis permits the delay magnitudes to
be arbitrary.

Given an arrival order, we now describe Algorithm ANDI, which is an iterative version of

17



Algorithm AND. There is only one possible order of handling signal changes in ANDI, whereas
AND allows choice when handling transients beginning with 01 and 101.

First, ANDI tests if there is a transient that is 0, in which case f(x1, . . . ,xr) = 0. Next, if
there is a transient beginning with 01, then Algorithm AND01 is used to determine the order
in which 01 changes should be processed, and results in a vector (y1, . . . ,yr) of transients
all beginning with 1. Vector (y1, . . . ,yr) is passed to Algorithm AND1, which then evaluates
f(y1, . . . ,yr), and we have f(x1, . . . ,xr) = 0◦f(y1, . . . ,yr). If there are no transients beginning
with 0, Algorithm AND1 determines the order in which transients beginning with 101 should
be handled. If there are no such transients, then f(x1, . . . ,xr) = 10, if there is a transient that
is 10, and f(x1, . . . ,xr) = 1, otherwise.

Algorithm ANDI(x1, . . . ,xr) {Arrival order is given}

if ∃i ∈ [r] such that xi = 0
then f(x1, . . . ,xr) = 0

else if ∃i ∈ [r] such that 01 ≤ xi

then
Perform Algorithm AND01 to find (y1, . . . ,yr);
Perform Algorithm AND1 with (y1, . . . ,yr) to find f(y1, . . . ,yr);
f(x1, . . . ,xr) = 0 ◦ f(y1, . . . ,yr)

else
Perform Algorithm AND1 to find f(x1, . . . ,xr);

return f(x1, . . . ,xr);

Algorithm AND01 processes transients that begin with 01 in the order of their arrivals.

Algorithm AND01(x1, . . . ,xr) {∃i ∈ [r] such that 01 ≤ xi }

Let L be the list of 01 winner changes in arrival order;
yi = xi ∀i ∈ [r];

repeat {
Let xi be that transient beginning with 0c1 where c is first in L;
Delete c from L;
yi = (yi)2
}
until α(yi) = 1 ∀i ∈ [r];

return (y1, . . . ,yr);

Algorithm AND1 applies when all the transients x1, . . . ,xr begin with 1.

18



Algorithm AND1(x1, . . . ,xr) {∀i ∈ [r] α(xi) = 1 }

yi = xi ∀i ∈ [r];
k = 0; {k is a counter}
if ∃ i ∈ [r] such that 101 ≤ xi

then
repeat {

Let yi be the transient with a 10 winner whose runner-up
is first in arrival order;

yi = (yi)3;
k = k + 1
}

until no yi begins with 101;
if max{l(yi) | i ∈ [r]} = 2

then f(x1, . . . ,xr) = (10)k+1

else f(x1, . . . ,xr) = 1 ◦ (10)k; {Note: 1 ◦ (10)0 = 1}
return f(x1, . . . ,xr);

Example 4 Consider the evaluation of f(10101, 0101, 010) by Algorithm ANDI. We number
the changes for convenience: f(1c10c21c30c41, 0c51c60c71, 0c81c90). Arrival order

c8, c9, c1, c2, c3, c5, c6, c4, c7

is consistent; given this order, the evaluation of f is as follows:

There is no i such that xi = 0, but two of the transients begin with 01. Hence we invoke
AND01. List L is c8, c5.

y1 = 10101,y2 = 0101,y3 = 010;

xi = x3;

The list is now c5.

y1 = 10101,y2 = 0101,y3 = 10;

xi = x2;

The list is now empty.
y1 = 10101,y2 = 101,y3 = 10;

Now all the input transients begin with 1 and AND1 is invoked.

f(10101, 0101, 010) = 0 ◦ f(10101, 101, 10)

There remains to be evaluated the function f(1c10c21c30c41, 1c60c71, 1c90), with the arrival
order c9, c1, c2, c3, c6, c4, c7. We evaluate f by Algorithm AND1:

19



y1 = 1c10c21c30c41, y2 = 1c60c71, y3 = 1c90;

k = 0;

Transients y1 and y2 begin with 101.

yi = y1, since c2 arrives before c7;

y1 = 1c30c41, y2 = 1c60c71, y3 = 1c90;

k = 1;

yi = y1, since c4 arrives before c7;

y1 = 1, y2 = 1c60c71, y3 = 1c90;

k = 2;

yi = y2;

y1 = 1, y2 = 1, y3 = 1c90;

k = 3;

Now the maximum length of transients is 2, and f(10101, 101, 10) = (10)4 = 10101010, agreeing
with the formula in Section 4.

Algorithm AND1 imposes the evaluation order c1, c2, c3, c4, c6, c7, c9. For the complete ar-
rival order c8, c9, c1, c2, c3, c5, c6, c4, c7, the evaluation order is

c8, c5, c1, c2, c3, c4, c6, c7, c9.

We must use wire delays to produce this evaluation order. Change c8 can be processed on
arrival, and c9 must be delayed until all the other changes have taken place. This can be done
with one delay on the third wire. Next, c1, c2, c3 must be delayed until c5 arrives; this requires
3 delays on the first wire, etc.

Proposition 3 If each input wire wi of any gate has a transient of length ti and ti−1 delays,
then the evaluation order required for the longest output transient can be produced for any
arrival order.

Proof: Since each wire can store its transient, we can allow all the signal changes to arrive
without processing any of them. Graph D(xi1 , . . . ,xir) defined in Section 4 then gives an order
in which the signal changes should be processed to produce the longest transient.

In order to use only one delay per wire we need to restrict the arrival orders. An arrival
order is initial if all the wire winners arrive before any runner-up.

20



Proposition 4 If each input wire of an and gate has one delay, then the evaluation order of
Algorithm ANDI can be produced for any initial arrival order.

Proof: If the arrival order is initial, then no runner-up (01) belonging to a transient beginning
with 101 can occur until all the winners of transients beginning with 01 have occurred. Thus
we only need to delay at most one 10 change on a wire until there are no more changes to be
handled by Algorithm AND01. Algorithm ANDI now becomes Algorithm AND1.

Consider the first application of Algorithm AND1. If the 101 rule on wire wi is used first,
the arrival order must have the form u, (10)i, v, (01)i, w, where (10)i and (01)i are the winner
and runner-up on wi, respectively, and u and v contain only winners (10 changes), each on a
wire other than wi, and each involving a unique wire, since 10 changes cannot be consecutive
on the same wire. All winners in u are delayed by their individual wire delays. The change
(10)i is performed on arrival, and all winners in v are delayed. The runner-up (01)i is processed
on arrival. The reduced transient on wi, left after the winner (10)i and the runner-up (01)i

have been processed and removed, still begins with a 1, and there are no changes stored on
the delay of wi at this time. The delay on any other wire holds at most one winner (10), and
this change will be evaluated before any more changes are to be stored on that delay. Hence
we can view the new order as u, v, w. Since all the input transients again begin with 1, and
the total number of changes has been reduced, we can apply this argument inductively.

It is clear that the same approach works for nand gates, except that the output values are
complements of those of the corresponding and gate. A dual approach applies to or and nor

gates. The case of xor or xnor gates is the easiest one. Since every evaluation order leads to
the output transient of maximum length, the changes can be processed in the order of arrival.
Also, the case of inverters and forks is trivial, since they have only one input, and there is
only one way to process the arriving changes. Similar approaches work for functions obtained
from the functions above by complementing some of the inputs.

Lemma 1 Let f be any gate from the set G, with the set Win of input wires and the set Wout

of output wires. Let W be a set of wires such that Win ⊆ W and W ∩Wout = ∅. If the arrival
order for W is initial and each wire in Win has one delay, then f can process all the signal
changes on Win to produce the longest output transient, in such a way that the arrival order
for (W \ Win) ∪ Wout is still initial.

Proof: Since the arrival order for W is initial and Win ⊆ W , the arrival order for Win is
also initial. Since each wire in Win has one delay, by the observations above, the initial arrival
order for Win can be changed to an evaluation order producing the longest output transient.
We now concentrate on the winner c1 and runner-up c2 of an output wire in Wout.

In the case of the and gate, we claim that c1 can happen immediately after some winner
in Win, and before any runner-up in W \Win. If all the input transients are 0 or 1, then there
are no output changes; hence these cases are trivial. This leaves the following two cases:

21



• If at least one input transient starts with 0, let c be the last winner of type 01, among
all the winners of type 01 on the gate’s input wires, to be processed through the gate.
Then c1 is a 01 change on the output of the and gate, and it can happen right after c,
before any runners-up occur on W \ Win.

• If all the input transients start with 1, the output of the gate is 1. Let c be the first
winner in Win to be processed through the gate; this is necessarily a 1 to 0 change. It is
clear that winner c1 can occur immediately after winner c, and before any runner-up in
W \ Win occurs.

In summary, since the arrival order for W is initial, we can make winner c1 happen before any
runner-up of (W \ Win) ∪ Wout.

Next we claim that c2 can be made to occur after all the winners in W \ Win. Now we
assume that there are at least two output changes. There are two cases:

• If at least one input transient starts with 0, then the output is initially 0, c1 is a 01 change,
and c2 is a 10 change. Now c2 can be the result of a winner 10, or of a runner-up 10.

If it is the result of a winner change c, we wait until all the winner changes arrive. Then
we process c through the gate, creating c2. Thus c2 can be made to happen after all the
winners have occurred.

If c2 is the result of a runner-up change c, then c2 occurs after all the winners, since the
arrival order is initial.

Since the arrival order for W is initial, we can also make c2 happen after all the winners
of (W \ Win) ∪ Wout.

• If all the input transients start with 1, then the output is initially 1. Since there are
at least two output changes, at least one input transient must begin with 101. We take
that transient ti beginning with 101 whose runner-up is earliest; let the winner of ti be c

and the runner-up, c′. We first process c, producing c1, and follow it by c′, which results
in c2. Thus c2 can happen after all winners have arrived.

A similar situation occurs if f is any other gate from the set G. Therefore the arrival order
for (W \ Win) ∪ Wout can be made initial.

Example 5 This example illustrates Lemma 1 in the case of and gate. In Fig. 12(a), let
W = {w1, w2, w3, w4, w5} be a set of wires , and let the arrival order for W be

c1, c8, c7, c5, c10, c2, c3, c4, c6, c9, c11, c12;

this order is initial. Let Win = {w2, w3, w4} be the set of input wires of an and gate, and let
Wout = {w6} be the (singleton) set of output wires. Note that Win ⊆ W and W ∩ Wout = ∅.
According to Lemma 1, the signal changes are processed as follows:

22



0← 1

1← 0← 1

c5c6

c7

c8c9

w2

w3

w4

w5

w1

w1

w2

w4

w3

w5

0← 1← 0

0← 1← 0← 1← 0

1← 0← 1← 0← 1
c1c2c3c4

1← 0← 1← 0← 1
c1c2c3c4

1← 0← 1← 0
c10c11c12

1← 0← 1← 0
c10c11c12

c13c14c15c16
w6

c1, c8, c7, c5,
c10, c2, c3, c4,

(a) The arrival order before adding and gate.

(b) The arrival order after adding and gate.

Arrival order:

Arrival order:
c1, c13, c10, c2,
c3, c4, c14, c15,
c16, c11, c12

c6, c9, c11, c12

Figure 12: Example to illustrate Lemma 1.

1. We begin with w2 = 0, w3 = 1, and w4 = 1. Thus we want to use Algorithm AND01,
that is, process c5 first. Change c1 arrives and has no effect on the gate.

2. c8 arrives and is held by the delay.

3. c7 arrives and is held by the delay.

4. c5 arrives and propagates through the gate, which creates c13. We now have w2 = 1,
w3 = 1, and w4 = 1, and so we use Algorithm AND1. More specifically, we want to
process c8 and c9, when c9 arrives.

5. c10, c2, c3, and c4 arrive, in that order. They have no effect on the gate.

6. c6 arrives and is held by the delay.

7. c9 is about to arrive next. Hence c8 propagates through the gate, creating c14.

8. c9 arrives, propagates through the gate, and creates c15. We have w2 = 1, w3 = 1, and
w4 = 1 again, and the transients left on the gate inputs are 10 on w2 and w3, and 1
on w4.

23



9. c7 propagates through the gate, creating c16.

10. c6 propagates through the gate; nothing changes.

11. c11 and c12 arrive.

The winner c13 on the output wire arrives immediately after c5, the winner of w2. Hence c13

arrives before any runner-up. Runner-up c14 on the output wire arrives immediately before c9,
which is the runner-up on w4. Hence c14 arrives after all the winners. The arrival order for
(W \ Win) ∪ Wout is c1, c13, c10, c2, c3, c4, c14, c15, c16, c11, c12, which is still initial.

9 Covering of Simulation in Wire-Delay Extensions

It is shown in [7] that, if wire delays are not considered, binary analysis of a network may not
cover its simulation. Let N̂ be the version of a network N expanded with respect to a particular
transient simulation. We show that binary analysis of N̂ covers this transient simulation of
N . Furthermore, if N is a network consisting only of gates from G, then transient simulation
of N is covered by binary analysis of its singular network Ṅ .

Theorem 1 Let N be a network constructed of arbitrary gates, let N be its transient network,
and N̂ , its expanded network. Binary analysis of N̂ covers transient simulation of N.

Proof: The external input transients of N are of length 1 or 2. In the binary analysis, the
corresponding sequences of binary signals on the wires leaving the input gates appear as well.
Thus all the wires of level 0 have the required binary sequences. Now assume that a gate of
level k has the correct binary sequence corresponding to the final transient on each input wire.
By Proposition 3, it is possible to produce the correct binary sequence on the gate’s output
wire. Hence the induction step goes through, and the theorem holds.

Theorem 1 states that, for a network N and a particular transient simulation of N, we can
always find an expanded network N̂ with respect to this transient simulation such that binary
analysis of N̂ covers this transient simulation of N. This result has two limitations. First,
different transient simulations of the same network may result in different expanded networks.
Hence there is no 1-1 correspondence between a network and its expanded network. Second,
the numbers of wire delays cannot be bounded uniformly and tend to grow fast as the number
of levels in the network increases. Our next theorem improves this result using the additional
properties of transients given in Section 7. From now on, we only consider networks consisting
of gates in G.

Theorem 2 Let N be a network constructed with gates from G, let N be its transient network,
and Ṅ , its singular network. Binary analysis of Ṅ covers transient simulation of N.

24



Proof: In transient simulation, each transient on an external input has length zero or one.
Thus, in the corresponding binary analysis, each input also has zero or one changes. As usual,
we assume that in binary analysis the inputs change all at once [3]. By using input gates, we
can produce any arrival order at the outputs of the input gates. In particular, we can produce
some arrival order in which no two changes arrive at the same time. This arrival order is
necessarily initial, since each wire that changes has exactly one change, that is, all changes
are winners. Thus, if W1 is the set of wires of level 1, that is the set of output wires of input
gates, the changes in W1 have an initial arrival order. This provides a basis for a proof by
induction on the number of non-input gates. We prove that, if we add a gate, we can produce
the longest transient output for that gate, and also cause the arrival order of signal changes
on the wires connected to external outputs to be initial.

Suppose Nn is a network with n ≥ 0 non-input gates, and Wn is the set of wires connected
to external outputs. By the inductive hypothesis, we assume that the arrival order of changes
on the wires in Wn is initial.

Let y be a new gate (logic gate or fork) with input wire set Wy and output wire set W ∗,
where Wy ⊆ Wn. By Lemma 1, we can use wire delays in such a way that y produces the
longest transient output and the arrival order on (Wn\Wy)∪W ∗ can be made initial. Therefore
the statement holds for n+1 gates. This shows that we can reproduce the transient that occurs
at the end of simulation on the output wire of a gate in binary analysis. Consequently, binary
analysis covers simulation.

s1

s2

s3

s51

s41

s81 s10

s42

s52

s62

s71

s61

s82

s92 s91

1

0

1

1
1

0
0

s72

0

1

1 0
1

0
0

0

1

x1

x2

x3

1

0

1

0

r2

r3

1

1

r1

Figure 13: Example circuit.

Example 6 The circuit of Fig. 13 is started in the stable total state shown in the figure. The
inputs change from 101 to 010. The input transients in the simulation are x1 = 10, x2 = 01,
and x3 = 10. We use square brackets to indicate the new signal changes being added to the
list at each step.

25



We can pick an arbitrary arrival order by using input delays r1, r2, r3. We select the order

[(10)r1
, (01)r2

, (10)r3
].

We illustrate our algorithm using Table 2, where new values are shown in boldface. Row 0
shows the initial stable state, and the three changes in the ri are in Rows 1–3 of the table. The
external outputs of the network considered so far are r1, r2, and r3, and the set of winners is
{(10)r1

, (01)r2
, (10)r3

}; the set of runners-up is empty, and the arrival order is initial.
We decide next to add the fork with input s1 to the order. The order for the fork outputs

can be selected arbitrarily, and we chose (10)s42
to be first. Thus we perform the changes

(10)s1
, (10)s42

, (10)s52
in that order, as shown in Rows 4–6. Since both (10)s42

and (10)s52
are

winners, we can merge the two lists ((10)r1
, (01)r2

, (10)r3
) and ((10)s1

, (10)s42
, (10)s52

) freely,
as long as (10)s1

occurs after (10)r1
. One extended order is

(10)r1
, (01)r2

, (10)r3
, [(10)s1

, (10)s42
, (10)s52

].

The external outputs of the network considered so far are s42, s52, r2, and r3, and the set of
winners is {(01)r2

, (10)r3
, (10)s42

, (10)s52
}; the set of runners-up is empty. The arrival order

is initial.
Now we add the fork with input s2, as shown in Rows 7–9. This time we choose to change

s72 first. The order becomes

(10)r1
, (01)r2

, (10)r3
, (10)s1

, (10)s42
, (10)s52

, [(01)s2
, (01)s72

, (01)s62
].

The external outputs of the network considered so far are s42, s52, s62, s72, and r3, and the
set of winners is {(10)r3

, (10)s42
, (10)s52

, (10)s72
, (10)s62

}; the set of runners-up is empty. The
arrival order is initial.

We can now add the or gate. According to Algorithm OR01 (dual of AND01), we must
change s51 first, and then s61. Note that, after we change s51, we must change s82. Then we
change s61, and change s82 again. Thus we perform the changes (10)s51

, (10)s82
, (01)s61

, (01)s82

in that order, as shown in Rows 10–11 and 20–21. Note that the change (01)s82
, being a runner-

up, must arrive after all the winners. Change (10)s51
must occur after (10)s52

, and (01)s61
must

occur after (01)s62
. Therefore the order becomes

(10)r1
, (01)r2

, (10)r3
, (10)s1

, (10)s42
, (10)s52

, (01)s2
, (01)s72

, (01)s62
,

[(10)s51
, (10)s82

, (01)s61
, (01)s82

].

The external outputs of the network considered so far are s42, s82, s72, and r3, and the set
of winners is {(10)r3

, (10)s42
, (10)s72

, (10)s82
}; the set of runners-up is {(01)s82

}. The arrival
order is initial.

We can now add the and gate with input s3 and s71. According to Algorithm AND01,
we perform the changes (01)s71

, (01)s92
, (10)s3

, (10)s92
in that order, as shown in Rows 12–13

26



and 18–19. Change (10)s92
, being a runner-up, must arrive after all the winners. The order

becomes
(10)r1

, (01)r2
, (10)r3

, (10)s1
, (10)s42

, (10)s52
, (01)s2

, (01)s72
, (01)s62

,

(10)s51
, (10)s82

, [(01)s71
, (01)s92

, (10)s3
, (10)s92

], (01)s61
, (01)s82

.

The external outputs of the network considered so far are s42, s82, and s92, and the set of
winners is {(10)s42

, (01)s92
, (10)s82

}; the set of runners-up is {(01)s82
, (10)s92

}. The arrival
order is initial.

Finally we add the last and gate. According to Algorithm AND01, we perform the changes
(01)s91

, (01)s10
, (10)s81

, (10)s10
, (01)s81

, (01)s10
, (10)s41

, (10)s10
, (10)s91

in that order, as shown
in Rows 14–17 and 22–26. The order becomes

(10)r1
, (01)r2

, (10)r3
, (10)s1

, (10)s42
, (10)s52

, (01)s2
, (01)s72

, (01)s62
,

(10)s51
, (10)s82

, (01)s71
, (01)s92

, [(01)s91
, (01)s10

, (10)s81
, (10)s10

],

(10)s3
, (10)s92

, (01)s61
, (01)s82

, [(01)s81
, (01)s10

, (10)s41
, (10)s10

, (10)s91
].

This is the final arrival order for the whole network. The final external output of the network
is s10.

In Theorem 1 we show that, for a general network N , the binary analysis of its expanded
network covers the transient simulation of its transient network. The expanded network does
not have constant bounds on the numbers of delays on each wire. The question remains
whether there exists a network with a constant number of delays on each wire such that its
binary analysis covers the simulation.

The answer is negative. Consider a 3-input gate A with inputs x1, x2 and x3 realizing
the Boolean function fA: x1 ∗ x3 + x2 ∗ x3. If x3 = 0, the output is equal to x1; otherwise,
it is x2. Suppose that x1 and x2 both come from a fork, as in Fig. 14, and that the fork
input wire has a transient (10)k . Then the transients on x1 and x2 are both (10)k. Suppose
further that the transient on x3 is 10. Then the extension of the function fA has the value
fA((10)k, (10)k , 10) = (10)2k . In order to get the same number of changes in binary analysis,
we require at least 2k − 1 delays in the input wire of x1 to hold the signal changes on x1.
Therefore, there is no constant bound on the number wire delays for this gate.

Acknowledgment
This research was supported by the Natural Sciences and Engineering Research Council of

Canada under grant No. OGP0000871. The authors are greatly indebted to Mihaela Gheorghiu
for her constructive criticisms of several versions of this paper.

27



(10)k

A

(10)k
x1

x2

x3

(10)2k

10

(10)k

Figure 14: A counterexample with a 3-input Boolean function.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications (American Elsevier,
1976).

[2] J. A. Brzozowski and M. Gheorghiu, “Gate circuits in the algebra of transients,” Theo-
retical Informatics and Applications, 39, pp. 67–91, 2005.

[3] J. A. Brzozowski and C.-J. H. Seger, Asynchronous Circuits (Springer, 1995).

[4] J. A. Brzozowski and Z. Ésik, “Hazard algebras,” Formal Methods in System Design, 23,
pp. 223–256, 2003.

[5] J. A. Brzozowski, Z. Ésik, and Y. Iland, “Algebras for hazard detection,” Beyond Two
- Theory and Applications of Multiple-Valued Logic, M. Fitting, and E. Or lowska, eds.,
pp. 3–24 (Physica-Verlag, Heidelberg, 2003).

[6] E. B. Eichelberger, “Hazard detection in combinational and sequential switching circuits,”
IBM J. Research and Development, 9, pp. 90–99, 1965.

[7] M. Gheorghiu, Circuit Simulation Using a Hazard Algebra, MMath Thesis, (Department
of Computer Science, University of Waterloo, Waterloo, ON, Canada, 2001)

[8] M. Gheorghiu and J. A. Brzozowski, “Simulation of feedback-free circuits in the algebra
of transients,” Int. J. on Found. of Computer Science, 14(6) pp. 1033–1054, 2003.

[9] D. E. Muller, A Theory of Asynchronous Circuits. Technical Report 66, (Digital Computer
Laboratory, University of Illinois, Urbana-Champaign, Illinois, USA, 1955).

[10] D. E. Muller and W. S. Bartky, A theory of asynchronous circuits, Proceedings of an Inter-
national Symposium on the Theory of Switching, pp. 204–243, Annals of the Computation
Laboratory of Harvard University, (Harvard University Press, 1959).

28



Table 2: Path in binary analysis.

r1 r2 r3 s1 s2 s3 s42 s41 s52 s51 s62 s61 s72 s71 s82 s81 s92 s91 s10

0 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0
1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0
2 0 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0
3 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0
4 0 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0
5 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0
6 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0
7 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0
8 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0
9 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0
10 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0
11 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0
12 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0
13 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0
14 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0
15 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 1
16 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 1
17 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0
18 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0
19 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0
20 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0
21 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0
22 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1 0
23 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1 1
24 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1
25 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0
26 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0

29


