
Representation of Semiautomata by Canonical Words

and Equivalences?

Janusz Brzozowski1 and Helmut Jürgensen2

1 School of Computer Science, University of Waterloo, Waterloo, ON,
Canada N2L 3G1

brzozo@uwaterloo.ca http://maveric.uwaterloo.ca
2 Department of Computer Science, The University of Western Ontario,

London, ON, Canada N6A 5B7
and

Institut für Informatik, Universität Potsdam,
August-Bebel-Str. 89, 14482 Potsdam, Germany

helmut@uwo.ca http://www.csd.uwo.ca/faculty helmut.htm

Abstract. We study a novel representation of semiautomata, which is motivated
by the method of trace-assertion specifications of software modules. Each state of
the semiautomaton is represented by an arbitrary word, the canonical word leading
to that state. The transitions of the semiautomaton give rise to a right congruence,
the state-equivalence, on the set of input words of the semiautomaton: two words
are state-equivalent if and only if they lead to the same state. We present a simple
algorithm for finding a set of generators for state-equivalence. Directly from this set of
generators, we construct a confluent rewriting system which permits us to transform
any word to its canonical representative. In general, the rewriting system may allow
infinite derivations. To address this issue, we impose the condition of prefix-continuity
on the set of canonical words. A set is prefix-continuous if whenever a word w and a
prefix u of w are in the set, then all the prefixes of w longer than u are also in the set.
Prefix-continuous sets include prefix codes and prefix-closed sets as special cases. We
prove that the rewriting system is Noetherian if and only if the set of canonical words
is prefix-continuous. Furthermore, if the set of canonical words is prefix-continuous,
then the set of rewriting rules is irredundant. We show that each prefix-continuous
canonical set corresponds to a spanning forest of the semiautomaton.

1 Introduction

The trace-assertion specification [1, 2, 7] of a software module is based on an au-
tomaton defined in a rather indirect way. A set of important traces (sequences of
operations), called “canonical,” is first identified. Each of the remaining traces is
then classified as equivalent to some canonical trace, and a trace rewriting system
is used to find the canonical representative of any given trace. The trace-assertion
method was introduced in 1977 by Bartussek and Parnas [1] and further developed
by several authors. For a short history of the method and for further references
see [2].

In this paper we study the most important aspects of the trace assertion method,
namely, the choice of canonical traces, the generation of the trace equivalence rela-
tion, and the construction of the trace rewriting system. It turns out that these issues

? This paper appeared in Descriptional Complexity of Formal Systems, 6th Workshop, L. Ilie and
D. Wotschke, eds., Rep. 619, Dept. of Comp. Sc., Univ. of Western Ontario, (2004) 13–27.

2

can be studied entirely in the realm of semiautomata and without any reference to
software modules.

Every state of a semiautomaton is represented by a canonical word, an arbi-
trarily chosen word leading to that state. A right-congruence relation on the set of
words defines the transitions of the semiautomaton, and coincides with the state-
equivalence relation, by which words leading to the same state are identified. We
describe a simple algorithm for constructing a set of generators for this right con-
gruence. To transform any word to its canonical form algorithmically, we derive a
simple confluent rewriting system directly from the generators of the equivalence
relation. To avoid infinite derivations, we add the condition that the set of canonical
words be prefix-continuous. A set is prefix-continuous if whenever a word w and a
prefix u of w are in the set, then all the prefixes of w longer than u are also in the
set. Prefix-continuous sets include prefix-closed sets, where every word in the set has
all of its prefixes in the set, and prefix codes, where no word in the set is a prefix
of any other word in the set, as special cases. We prove that the rewriting system
is Noetherian if and only if the set of canonical words is prefix-continuous. More-
over, if the set of canonical words is prefix-continuous, then the rewriting system is
irredundant.

The remainder of the paper is structured as follows. Section 2 introduces our
terminology and notation. Arbitrary sets of canonical words are studied in Section 3.
Prefix-continuous sets of canonical words are discussed in Section 4. Our theory is
illustrated in Section 5 with the simple example of a counter. Section 6 concludes
the paper.

2 Terminology and Notation

We denote by P the set of nonnegative integers. If Σ is an alphabet (finite or infi-
nite), then Σ+ and Σ∗ denote the free semigroup and the free monoid, respectively,
generated by Σ. The empty word is ε. For w ∈ Σ∗, |w| denotes the length of w. If
w = uv, for some u, v ∈ Σ∗, then u is a prefix of w. A set X ⊆ Σ∗ is a prefix code if
no word of X is the prefix of any other word of X. Note that, with this definition,
the set {ε} is a prefix code, in contrast to most of the commonly used definitions.
A set X is prefix-closed if, for any w ∈ X, every prefix of w is also in X. A set X is
prefix-continuous if, whenever x = uav is in X, a ∈ Σ, then u ∈ X implies ua ∈ X.
Both prefix codes and prefix-closed sets are prefix-continuous.

2.1 Semiautomata and Equivalences

By a deterministic initialized semiautomaton, or simply semiautomaton, we mean a
tuple S = (Σ,Q, δ, qε), where Σ is a nonempty input alphabet, Q is a nonempty set
of states, δ : Q×Σ → Q is the transition function, and qε ∈ Q is the initial state. In
general, we do not assume that Σ and Q are finite. As usual, we extend the transition
function to words by defining δ(q, ε) = q, for all q ∈ Q, and δ(q, wa) = δ(δ(q, w), a)).
A semiautomaton is connected if every state is reachable from the initial state. We
consider only connected semiautomata. Thus, for every q ∈ Q, there exists w ∈ Σ ∗

such that δ(qε, w) = q. For any w ∈ Σ∗, we define qw = δ(qε, w).

3

For a semiautomaton S = (Σ,Q, δ, qε), the state-equivalence relation ≡δ on Σ∗

is defined by

w ≡δ w′ ⇔ qw = qw′ , (1)

for w,w′ ∈ Σ∗. Note that ≡δ is an equivalence relation, and also a right congruence,
that is, for all x ∈ Σ∗,

w ≡δ w′ ⇒ wx ≡δ w′x. (2)

Given any right congruence ∼ on Σ∗, we can construct a semiautomaton S∼ =
(Σ,Q∼, δ∼, q∼), as follows. For w ∈ Σ∗, let [w]∼ be the equivalence class of w. Let Q∼

be the set of equivalence classes of ∼, let q∼ = [ε]∼, and, for a ∈ Σ, let δ([w]∼, a) =
[wa]∼. Note that S∼ is connected. It is well-known that the semiautomaton S∼ is
isomorphic to S when ∼ = ≡δ, with the isomorphism mapping [w]∼ onto qw; see [6].

2.2 Rewriting Systems

In this paper we are concerned with very special rewriting systems. More information
about general rewriting systems can be found in [3].

Let Σ be an alphabet (finite or infinite). A rewriting system over Σ consists of a
set T ⊆ Σ∗×Σ∗ of transformations or rules. A transformation (u, v) ∈ T is written
as u |= v. Then |=∗ is the reflexive and transitive closure of |=. Thus, w |=∗ w′ if
and only if w = w0 |= w1 |= w2 |= · · · |= wn = w′ for some n, and n is the length
of this derivation of w′ from w. In the special cases considered in this paper, the
transformations have the pattern ux |= vx, where u, v ∈ Σ∗ are specific words and
x is an arbitrary word in Σ∗. Systems with this type of rules are known as regular
canonical systems [4, 5], where “canonical” is a term unrelated to our subsequent
usage of the term “canonical.” Finite regular canonical systems generate precisely
the regular languages and have been studied in detail by Büchi [4, 5]. These systems
are equivalent to expansive systems in which |u| ≤ |v|, whereas our systems do
not have this property. In fact, in the rewriting systems that we propose, only a
finite number of words can be derived from any given word. The second important
difference between our work and that of [4, 5] is that we have an infinite number of
patterns of rules, in general.

A rewriting system is confluent if, for any w,w1, w2 ∈ Σ∗ with w |=∗ w1 and
w |=∗ w2, there is w′ ∈ Σ∗ such that w1 |=∗ w′ and w2 |=∗ w′. It is Noetherian
if there is no word w from which a derivation of infinite length exists. A confluent
Noetherian system has the following important property: For every word w ∈ Σ ∗

there is a unique word τ(w), such that, for any u ∈ Σ∗ with w |=∗ u, one has
u |=∗ τ(w) and there is no word v ∈ Σ∗ with τ(w) |= v. For an effectively defined
confluent Noetherian system, one can compute τ(w) for every word w.

3 Arbitrary Sets of Canonical Words

Let S = (Σ,Q, δ, qε) be a semiautomaton, and χ : Q → Σ∗, an arbitrary mapping
assigning to state q a word χ(q) such that δ(qε, χ(q)) = q. By definition χ is injective.
Unless stated otherwise, we assume that χ has been selected. For w ∈ Σ∗, we call

4

the word χ(qw) the canonical word of state qw, and the canonical representative of
word w. Let the set of canonical words be X.

Our first objective is to find a suitable generating set for the state-equivalence
relation of a given semiautomaton. Our second objective is to transform any word
to its canonical representative. In this section we make no assumptions about the
nature of the set of canonical words.

Definition 1. Relation ≡ on Σ∗ is the smallest right congruence containing the
set Ĝ = G ∪ {(ε, χ(qε))}, where G is the set of all ordered pairs (wa, χ(qwa)), with
w ∈ X, a ∈ Σ, and wa 6∈ X.

We refer to the pairs in G as basic equivalences. Note that the pairs are ordered
for reasons that will become clear soon. The number of basic equivalences is infinite
in general; it is finite when Q and Σ are finite. In the sequel, we write the pairs in
G as equivalences, that is, wa ≡ χ(qwa); moreover, we label the pairs by E1,E2, . . .

For finite semiautomata, we calculate the number of equations in G as follows.

Proposition 1. Let S be a finite semiautomaton with n states and k input letters,
and let X be a set of canonical words for S. Let n0 be the number of words w ∈ X

such that w = ua with a ∈ Σ and u ∈ X. Then the number of equations in G is
nk − n0.

Proof. Each equation in G corresponds to a distinct transition of S. There is a total
of nk transitions, since there are k transitions out of each state. If u is a canonical
word, transitions of the form δ(qu, a) = qua, where ua is canonical do not contribute
to G. The number of such transitions is n0. Every transition in which ua is not
canonical contributes one equation to G. ut

Note that 0 ≤ n0 ≤ n − 1. If X is a prefix code, then n0 = 0. The converse does
not hold as shown in Example 1 below. At the other extreme, one verifies that X is
prefix-closed if and only if n0 = n − 1.

Lemma 1. ≡ ⊆ ≡δ.

Proof. By the construction of Ĝ, the words in each pair of Ĝ lead to the same state,
that is, Ĝ ⊆ ≡δ. By the right-congruence property of ≡δ, the claim follows. ut

We show later that the converse containment also holds.

We define a set T of basic transformations as follows. If w ≡ w ′ is a pair Ei

in G, then wx |= w′x is the corresponding basic transformation Ti in T. In these
transformations, w and w′ are fixed words and x is any word.

Lemma 2. For all w,w′ ∈ Σ∗, w |=∗ w′ implies w ≡ w′ and therefore w ≡δ w′.

Proof. By definition, each transformation preserves ≡, and ≡ is transitive. By Lemma 1,
each transformation also preserves the state. ut

5

Lemma 3. For w ∈ Σ∗, the following hold:

1. If no prefix of w is canonical, then w |=∗ w′ implies w′ = w.
2. If w has a canonical prefix and w |=∗ w′, then w′ has a canonical prefix.
3. w |=∗ χ(qw) if and only if w has a canonical prefix.

Proof. Suppose no prefix of w is canonical. Then no rule applies to w, because all
the rules are of the form ua ≡ χ(qua), where u is canonical. Consequently, w can
only derive itself, and it can do so, because |=∗ is reflexive.

For the second claim, suppose w has a canonical prefix. If w = w ′, the claim
holds. If w |= w′, then w has the form w = uav, where u, v ∈ Σ∗, a ∈ Σ, u is
canonical and ua is not canonical. Then w′ = χ(qua)v, where χ(qua) is canonical.
Now the claim follows by transitivity.

For the third claim, suppose that w has a canonical prefix. We show by induction
on the length of w that w |=∗ χ(qw). If w = ε, then w can only have one canonical
prefix, namely itself. Thus ε |=∗ ε = χ(qε), since |=∗ is reflexive; hence the claim
holds for the basis case. Now suppose that every word of length less than or equal
to n that has a canonical prefix satisfies the claim. Consider w = ua with |u| = n

and a ∈ Σ, where w has a canonical prefix. If w itself is canonical, then w |=∗

w = χ(qw). Otherwise, we know that u has a canonical prefix. By the induction
assumption, u |=∗ χ(qu), and so w = ua |=∗ χ(qu)a. If χ(qu)a is canonical, then
χ(qu)a = χ(qua) = χ(qw), and w |=∗ χ(qw). Otherwise, χ(qu)a |= χ(qua) is a rule in
T, and w = ua |=∗ χ(qu)a |= χ(qua).

Conversely, if w does not have a canonical prefix, then it can only derive itself.
Since w is not canonical, w 6= χ(qw). Therefore w cannot derive χ(qw). ut

1

q0qε

q1

0

0
1

0, 1

Fig. 1. Semiautomaton S1

Example 1. Consider the semiautomaton of Fig. 1. The initial state is indicated by
an incoming arrow, and each transition between two states is labelled by the input
causing the transition.

Suppose χ(qε) = ε, χ(q0) = 01, and χ(q1) = 1. Then we have the following basic
equivalences and corresponding basic transformations for all x ∈ Σ∗:

E1 0 ≡ 01, E2 10 ≡ 1, E3 11 ≡ 1, E4 010 ≡ ε, E5 011 ≡ 01.
T1 0x |= 01x, T2 10x |= 1x, T3 11x |= 1x, T4 010x |= x, T5 011x |= 01x.

On the other hand, let χ(qε) = 00, χ(q0) = 0, and χ(q1) = 1. Then we have:

E1 01 ≡ 0, E2 10 ≡ 1, E3 11 ≡ 1, E4 000 ≡ 0, E5 001 ≡ 1.
T1 01x |= 0x, T2 10x |= 1x, T3 11x |= 1x, T4 000x |= 0x, T5 001x |= 1x.

6

For this choice of χ, ε cannot derive χ(qε) = 00; this illustrates Lemma 3 (3).

If we use χ(qε) = ε, χ(q0) = 01, and χ(q1) = 10, then n0 of Proposition 1 is 0,
but X is not a prefix code. ut

Definition 2. Given a set X of canonical words, we define the following subsets:

– W = Σ∗ \ XΣ∗ is the set of acanonical words.

– X0 = X \ XΣ+ is the set of minimal canonical words.

– Y = X0Σ
+ is the set of post-canonical words.

Set W consists of all the words that do not have a canonical prefix; clearly, W

is prefix-closed. Set X0 is the set of canonical words w such that w has no canonical
prefix other than w. This set is a prefix code. Set Y is the set of all words w such
that w has at least one canonical prefix and is not in X0. Note that both Y and
X0∪Y are prefix-continuous. The triple (W,X0,Y) is a partition of Σ∗. In general,
all three sets may be infinite.

Theorem 1. ≡ = ≡δ.

Proof. By Lemma 1, ≡ ⊆ ≡δ. To prove the converse, we show that qw = qw′ implies
w ≡ w′, for all w,w′ ∈ Σ∗. We do this by showing that each word w is equivalent
to its canonical representative. From qw = qw′ it then follows that w ≡ χ(qw) =
χ(qw′) ≡ w′.

We first claim that each acanonical word is equivalent to its canonical representa-
tive. Suppose ε is acanonical. Since the pair (ε, χ(qε)) is in Ĝ, ε ≡ χ(qε). So the claim
holds for the acanonical word of length 0. Now suppose that the claim holds for all
acanonical words of length less than or equal to h, h ≥ 0. Consider acanonical wa,
where |w| = h, and a ∈ Σ. By the induction hypothesis, w ≡ χ(qw). Since ≡ is a right
congruence, we have wa ≡ χ(qw)a. If χ(qw)a is canonical, then χ(qw)a = χ(qwa),
and wa ≡ χ(qwa). Otherwise, by construction of G, the pair (χ(qw)a, χ(qwa)) is in
G, and our claim follows by transitivity of ≡.

Next, consider a word w in X0∪Y. By Lemma 3 (3), w |=∗ χ(qw). By Lemma 2,
w ≡ χ(qw). This completes the proof. ut

It is a disadvantage of the rewriting system T that an acanonical word cannot
derive its canonical representative. To remedy this, we augment T as follows:

Definition 3. T̂ = T ∪ {w |= χ(qε)w | w ∈ W}.

We call the added rules acanonical . Note that the acanonical rule w |= χ(qε)w can
be applied only to w and to no other word. After this rule is applied, the result is
a post-canonical word. By Lemma 3 (2), no acanonical rule is applicable after the
first step.

Theorem 2. The rewriting systems T and T̂ are confluent, and every w ∈ Σ∗

derives its canonical representative χ(qw) in T̂.

7

Proof. First consider derivations in T only. Suppose w ∈ Σ∗. If w has no canonical
prefix, then w can only derive itself, by Lemma 3 (1). Hence w cannot possibly
contradict the confluence property. On the other hand, if w does possess a canonical
prefix, and w |=∗ w1 and w |=∗ w2, then w1 and w2 also have canonical prefixes, by
Lemma 3 (2). By Lemma 3 (3), w1 |=∗ χ(qw1

), and w2 |=∗ χ(qw2
). By Lemma 2,

qw = qw1
= qw2

. Hence w1 |=∗ χ(qw1
) = χ(qw), w2 |=∗ χ(qw2

) = χ(qw), and T is
confluent.

For T̂, if a derivation starts with an acanonical word w, only the rule w |= χ(qε)w
is applicable. The resulting word χ(qε)w is post-canonical, and only the rules of T

apply to it. As T is confluent, this derivation, like any derivation starting with a
post-canonical word, cannot violate confluence.

By Lemma 3 (3), the last claim is true for all post-canonical and canonical words.
Now consider an acanonical word w. If w = ε, then ε |= χ(qε)ε = χ(qε) in T̂. Suppose
that w 6= ε. By rule w |= χ(qε)w, we convert acanonical word w to post-canonical
word χ(qε)w, which then derives, in T, the canonical representative χ(qχ(qε)w) of

χ(qε)w. Thus w |=∗ χ(qχ(qε)w) in T̂. Since ε ≡ χ(qε), we have w ≡ χ(qε)w and

qw = qχ(qε)w. Hence χ(qw) = χ(qχ(qε)w), and so w |=∗ χ(qw) in T̂. ut

Theorem 3. For any w,w′ ∈ Σ∗, we have χ(qw) = χ(qw′) if and only if w ≡ w′.

Proof. Suppose χ(qw) = χ(qw′). Since χ is injective, qw = qw′. By Theorem 1,
w ≡ w′. Conversely, if w ≡ w′, then qw = qw′ . Hence χ(qw) = χ(qw′). ut

One can reconstruct a semiautomaton from its canonical words and equivalences.
In fact, let S = (Σ,Q, δ, qε) be a semiautomaton, let X be a set of canonical words,
and let Ĝ be the set of equivalences derived from S. Let SX = (Σ,X, δX, χ(qε)),
where, for all w ∈ X, a ∈ Σ, δX(w, a) = wa if wa ∈ X, and δX(w, a) = χ(qwa), if
(wa, χ(qwa)) ∈ G.

Proposition 2. The semiautomata S = (Σ,Q, δ, qε) and SX = (Σ,X, δX, χ(qε))
are isomorphic, with the isomorphism mapping state q ∈ Q to χ(q) ∈ X.

Proof. By Theorem 1, the right congruence generated by Ĝ is precisely ≡δ. ut

All the results of this section hold for arbitrary sets of canonical words. Equiva-
lence of two words w and w′ is provable in the following sense. By Theorem 2, there
exist (finite) derivations w |=∗ χ(qw) and w′ |=∗ χ(qw′). By Theorem 3, w ≡ w′ if and
only if χ(qw) = χ(qw′). However, we still have the problem that the rewriting system
may permit infinite derivations. This problem is addressed in the next section.

4 Prefix-Continuous Sets of Canonical Words

We now show that, if X is prefix-continuous, the process of reducing a word to
its canonical representative by a derivation in T̂ is deterministic. Equivalence of
two words is then proved by reducing them to their canonical representatives, and
comparing the representatives. Without prefix-continuity, however, T̂ may allow
infinite derivations, as in the next example.

8

Example 2. Return to the semiautomaton of Fig. 1, with χ(qε) = ε, χ(q0) = 01, and
χ(q1) = 1, and the corresponding rules:

T1 0x |= 01x, T2 10x |= 1x, T3 11x |= 1x, T4 010x |= x, T5 011x |= 01x.

We consider derivations starting with 0. The first one leads to χ(q0):

0
T1

|= 01.

Note, however, that rule T1 can be applied repeatedly, leading to the derivation

0
T1

|= 01
T1

|= 011
T1

|= 0111
T1

|= . . . ,

which never terminates. There is yet another derivation

0
T1

|= 01
T1

|= 011
T5

|= 01
T1

|= 011
T5

|= 01 . . .

which is also infinite. ut

We avoid infinite derivations by adding the condition of prefix-continuity.

Lemma 4. If X is prefix-continuous, the set L of all left-hand sides of the generat-
ing equivalences in G is a prefix code. If X (and therefore also the semiautomaton)
is finite, the converse also holds.

Proof. Suppose there exist words w,w′ ∈ X and letters a, a′ ∈ Σ, such that wa and
w′a′ are in L, wa 6= w′a′, and wa is a prefix of w′a′. Then wa is a prefix of w′. But
then wa must be canonical, since w and w′ are canonical, w is a prefix of w′, and
X is prefix-continuous. This contradicts the fact that wa is the left-hand side of an
equivalence. Hence L is a prefix code.

Conversely, suppose that X is finite but not prefix-continuous, and L is a prefix
code. Then there exists w = uav ∈ X such that u ∈ X, and ua 6∈ X. Consider the
infinite set of words wΣ∗. Since X is finite, all these words cannot be canonical.
Hence there exists some extension wxb of w such that wx is canonical and wxb

is not. Therefore G contains the equivalences ua ≡ χ(qua) and uaxb ≡ χ(quaxb),
showing that ua, uaxb ∈ L. Therefore L cannot be a prefix code. ut

The next example shows that the converse of Lemma 4 does not hold in general.

Example 3. In the semiautomaton of Fig. 2, the states are labelled with their canon-
ical representatives. From state 00 on (to the right) the semiautomaton consists of
an infinite binary tree. The set of canonical words is {ε, 1} ∪ 00Σ∗, which is not
prefix continuous. The set of basic equivalences is {0 ≡ 1, 10 ≡ 00, 11 ≡ 00}. The
set L = {0, 10, 11} of left-hand sides is a prefix code. ut

Lemma 5. At most one rule of T̂ applies to any word if and only if L is a prefix
code.

9

0011

0, 10, 1
00ε 1

1

1

0

0

0

1

000

001

0000

0001

0010

Fig. 2. Semiautomaton illustrating that the converse of Lemma 4 is false

Proof. If w is acanonical, the acanonical rule w |= χ(qε)w is the only rule that
applies. If w is minimal canonical, then no rule of T̂ applies. If w is post-canonical,
then only the rules of T can be applicable. If L is a prefix code, at most one rule
applies.

Conversely, if L is not a prefix code, then there exists a post-canonical word to
which at least two rules apply. ut

Lemma 6. If X is prefix-continuous and w ∈ X, no rule of T̂ applies to w.

Proof. As X is prefix-continuous, w cannot have a canonical prefix u and a non-
canonical prefix ua. Hence, by the definition of T, no prefix of w is in L, and no rule
applies. Also, no acanonical rule can apply to w ∈ X. ut

Theorem 4. The rewriting system T̂ is Noetherian if and only if the set X of
canonical words is prefix-continuous.

Proof. Suppose X is prefix-continuous. By Lemma 4, L is a prefix code. By Lemma 5,
at most one rule applies to any word. Hence the rewriting process is deterministic.
By Theorem 2, each word derives its canonical representative, from which no further
derivation is possible, by Lemma 6. Therefore T̂ is Noetherian.

Conversely, suppose that X is not prefix-continuous. Then there exists w =
uav ∈ X such that u ∈ X, but ua 6∈ X. Therefore (ua, χ(qua)) ∈ G, and w = uav |=
χ(qua)v. By Lemma 2, w and χ(qua)v lead to the same state. By Lemma 3 (3),
χ(qua)v |=∗ χ(qw) = w. Thus w |= χ(qua)v |=∗ w, and the rewriting system is not
Noetherian. ut

Theorem 5. If X is prefix-continuous, then Ĝ is irredundant in the following sense:

– If ε 6∈ X, then G does not generate ≡δ.
– For any pair p = (ua, χ(qua)) ∈ G, the set Ĝ \ p does not generate ≡δ.

Proof. Removing a pair from Ĝ amounts to removing the corresponding rule from T̂.
If ε 6∈ X and (ε, χ(qε)) is removed, then the equivalence class of ≡ containing ε

must be a singleton, since ε cannot appear on either side of any rule in T, and the
equivalence ε ≡ χ(qε) cannot be derived from any other equivalence by applying the
right-congruence property.

Now suppose that (ua, χ(qua)) is removed from G. By Lemma 6, no rule applies
to χ(qua). On the other hand, ua cannot appear as either side of any other pair

10

in G. By Lemma 5, at most one rule of T̂ applies to any word. Since the only rule
applicable to ua has been removed, nothing else is applicable. Hence ua and χ(qua)
must be in different equivalence classes. ut

Example 4. This example shows that Theorem 5 does not hold in general. Consider
the semiautomaton of Fig. 3, where the canonical traces are shown as state labels.
Here, X = {ε, 1, 00, 100} is not prefix-continuous. The set of basic equivalences is

{0 ≡ 1, 10 ≡ 00, 11 ≡ 00, 000 ≡ 100, 001 ≡ 100, 1000 ≡ 100, 1001 ≡ 100}.

The equivalence 0 ≡ 1 implies 000 ≡ 100 by right congruence. Hence 000 ≡ 100 is
redundant. ut

0, 1
0, 1 0, 10, 1

00 100ε 1

Fig. 3. Semiautomaton with redundant equivalence

Prefix-continuous canonical sets can be found with the aid of certain graph-
theoretic constructs. Recall that a directed graph is a pair G = (V,E), where V is
the set of vertices of G and E ⊆ V ×V is the set of (directed) edges of G. A spanning
forest of a directed graph G = (V,E) is a set of pairwise disjoint trees, such that
V is the union of all the vertices in the trees. A spanning tree is a spanning forest
consisting of a single tree.

To find a prefix-continuous canonical set for a semiautomaton S, we can use a
spanning forest. Given such a forest of disjoint trees, for the root r of a tree, choose
an arbitrary word wr leading to state r from the initial state of S. Proceeding by
induction, if state q has been assigned word wq and state q′ is a child of q reached
from q by applying input a, then state q ′ is assigned word wqa. In this way we
associate a word with each state of S. The set of these words is then the canonical
set for S, and it is prefix-continuous.

Example 5. Consider the semiautomaton of Fig. 1, and the forest of three one-vertex
trees {qε}, {q0} and {q1}. We can choose 00, 01, and 1 for the roots {qε}, {q0} and
{q1}, respectively, resulting in the set {00, 01, 1} of canonical words. This set is a
prefix code. The acanonical words are ε and 0, and the set of post-canonical words
is {00, 01, 1}Σ+ .

On the other hand, we can choose the trees with vertices {q1} and {qε, q0}. If we
pick q1 and q0 as roots, and assign 1 to q1, and 0 to q0, then qε is assigned 00, and
X = {1, 0, 00}.

We can also choose a single tree with vertices {qε, q0, q1} and root q0. If we assign
0 to the root, then qε and q1 are assigned 00 and 001, respectively. ut

Conversely, given a prefix-continuous canonical set X, we can construct a span-
ning forest for S. The states reached from the initial state by the minimal canonical
words are the roots of the forest. Continuing by induction, if word u ∈ X corre-
sponds to state q, and if a ∈ Σ and ua ∈ X, then qua is a child of q under input a.

11

Thus to each word in X we associate a vertex in the forest; this is possible because
X is prefix-continuous.

The family of prefix-continuous canonical sets contains two extreme special cases:
prefix-closed sets and prefix codes. We now give examples of these types of sets.

To find a prefix-closed set of canonical words we can use a spanning tree of the
state graph of the semiautomaton S, with qε as root, and χ(qε) = ε.

Example 6. Consider the semiautomaton S2 of Fig. 4. We show three spanning trees
for S2. The basic equivalences corresponding to the three spanning trees are, by rows,

E1 01 ≡ 1, E2 10 ≡ 00, E3 11 ≡ 1, E4 000 ≡ 1, E5 001 ≡ 0.
E1 1 ≡ 01, E2 00 ≡ 010, E3 011 ≡ 01, E4 0100 ≡ 01, E5 0101 ≡ 0.
E1 00 ≡ 10, E2 01 ≡ 1, E3 11 ≡ 1, E4 100 ≡ 1, E5 101 ≡ 0.

Note that all three spanning trees define the same number of basic equivalences, as
guaranteed by Proposition 1. ut

qε q1

q0 q2

0 1 0

0

1

1

0

1

0

0

0

0

0

1

1 1

0

Fig. 4. Semiautomaton S2 and spanning trees

1

0 0
01

1

0

1

0

y2

x

y1

11

10

01

00

0

Fig. 5. 2-bit shift register

Example 7. This example illustrates the usefulness of prefix codes as canonical sets.
Consider the 2-bit shift register of Fig. 5, started in state (y1, y2) = (0, 0), with
binary input x. The register contents are shifted to the left, with the value of x

shifted to y2 and the value of y2 shifted to y1. Assume that the shifts occur at
integral values of time: 1, 2, . . . t, . . . At time t + 1, we have y2(t + 1) = x(t) and
y1(t + 1) = y2(t). The semiautomaton of the shift register is shown in the figure,
with parentheses and commas omitted from the state tuples for simplicity.

12

One representation for the states of the register is shown in Fig. 5, where each
state corresponds to the register contents. The set of basic equivalences is:

{000 ≡ 00, 001 ≡ 01, 010 ≡ 10, 011 ≡ 11, 110 ≡ 10, 111 ≡ 11, 100 ≡ 00, 101 ≡ 01}.

The set {00, 01, 10, 11} of canonical words has the advantage of using the natural
state representation, and has much symmetry. For example, all eight equivalences
can be summarized in one statement:

abc ≡ bc, ∀a, b, c ∈ Σ.

This symmetry is lost if a prefix-closed set is used. ut

5 Counter

We illustrate our method using the example of a counter. We also consider the effects
of changing the initial state, and of choosing different spanning forests.

5.1 Counter with Empty Initial State

The initial count is 0. Only two operations are possible: INCREMENT, denoted by
1, and DECREMENT, denoted by 0. If the count is 0, DECREMENT is illegal and
leads to a special illegal state. In any legal state it is possible to INCREMENT the
count by 1. If the count is (n + 1), where n ≥ 0, DECREMENT subtracts 1 from
the count.

Definition 4. The counter semiautomaton is S = (Σ,Q, δ, qε), where Σ = {0, 1},
Q = P ∪ {∞}, qε = 0, and δ is defined as1

C1′ δ(n, 1) = n + 1, ∀n ∈ P,

C2′ δ(0, 0) = ∞,

N1′ δ(∞, a) = ∞, ∀a ∈ Σ,

N2′ δ(n + 1, 0) = n, ∀n ∈ P.

The counter semiautomaton is shown in Fig. 6 (a). The first step in constructing
a trace specification of a semiautomaton is to select canonical words. We can use
the spanning tree with initial state as root; this results in canonical word 1n for the
state with n entries, and in 0 for state ∞. Of course, the set {1}∗ ∪ {0} is prefix
closed. This step is illustrated in Fig. 6 (b).

The second step consists of finding the set G of basic equivalences. These equiv-
alences provide the missing transitions in Fig. 6 (b), resulting in Fig. 6 (c).

The basic equivalences and the corresponding basic transformations are

E1′ 00 ≡ 0, E2′ 01 ≡ 0, E3′ 10 ≡ ε, E4′ 110 ≡ 1, . . .

T1′ 00x |= 0x, T2′ 01x |= 0x, T3′ 10x |= x, T4′ 110x |= 1x, . . .

The set of equivalences is, of course, infinite. However, we can represent this infinite
set by two patterns:

1 The reason for the particular labelling of items will become apparent later.

13

0

1 1

0

1
ε 1 11

1
· · ·

0

1n

(a)

(b)

(c)

1

0

1

0

0 0

1
0 1 2

1
· · ·

0, 1

∞

n

1

0

1

0

0 0

1
ε 1 11

0

1
· · ·

0, 1

0

1n

Fig. 6. Counter semiautomaton and canonical words

E1 0a ≡ 0, ∀a ∈ Σ,

E2 1n+10 ≡ 1n, ∀n ∈ P.

In fact, if we relabel the states with their canonical representatives, the definition of
δ becomes

C1 δ(1n, 1) = 1n+1, ∀n ∈ P,

C2 δ(ε, 0) = 0,
N1 δ(0, a) = 0, ∀a ∈ Σ,

N2 δ(1n+1, 0) = 1n, ∀n ∈ P.

Now there is a 1-1 correspondence between the Ni and the Ei. Equations Ni cor-
respond to noncanonical extensions of canonical words by letters. Equations Ci

correspond to canonical extensions of canonical words by letters; hence they do not
contribute to the equivalences.

In summary, we obtain the following specification for the counter:

Canonical words:

{1}∗ ∪ {0}

Equivalence:

E1 0a ≡ 0, ∀a ∈ Σ,

E2 1n+10 ≡ 1n, ∀n ∈ P.

Transformations:
T1 0ax |= 0x, ∀a ∈ Σ, x ∈ Σ∗,

T2 1n+10x |= 1nx, ∀n ∈ P, x ∈ Σ∗.

14

Note that the number of rewriting rules is infinite, as it must be by [4], since the
semiautomaton is infinite. By Theorem 5, the set of rewriting rules is irredundant.
One might be tempted to replace T2 by 10x |= x; but then there is no proof of the
equivalence 110 ≡ 1, for example.

5.2 Counter with Nonempty Initial State

Our next example shows that the trivial semiautomaton operation of changing the
initial state can lead to some complications in a semiautomaton specified by canon-
ical words and equivalences.

Suppose that we want to change the initial state of the counter from the empty
state to the state that contains two 1s. In the specification by automaton, this
operation is entirely trivial. For example, in the automaton of Fig. 6 (a), instead
of S = (Σ,Q, δ, 0), we now use S = (Σ,Q, δ, 2), and, for Fig. 6 (c), instead of S =
(Σ,X, δX, ε), we have S = (Σ,X, δX, 11). In the specification by canonical words,
however, we need to find a new spanning forest, and recalculate the equivalences.

In Fig. 7 (a), we show the solution using the spanning tree corresponding to the
canonical set {ε, 0, 00, 000, 1, 11, 111, . . .}. This solution has the disadvantage that
the state label no longer corresponds to the current count. Also, we must calculate
a new set of equivalences, in this case:

E1 01 ≡ ε,

E2 001 ≡ 0,
E3 000a ≡ 000, ∀a ∈ Σ,

E4 1n+10 ≡ 1n, ∀n ∈ P.

A second solution is shown in Fig. 7 (b), where we use the two trees corresponding
to two sets of canonical words: {00, 000, 001} and {11, 111, . . .}. The advantage of
this solution is that, except for three states, the state label denotes the contents of
the counter. Now the equivalences are

E1 110 ≡ 001,
E2 0011 ≡ 11,
E3 0010 ≡ 00,
E4 000a ≡ 000, ∀a ∈ Σ,

E5 1n+10 ≡ 1n, ∀n ≥ 2.

To complete the specification, we must add the rule ε ≡ 11 to take care of the new
initial state. The acanonical words are ε∪ 0∪ 1∪ (01∪ 10)Σ∗. To find the canonical
representative of any nonempty acanonical word w, we use the right-congruence
property: ε ≡ 11 implies w ≡ 11w, and then apply the transformation rules from T

to 11w, which is post-canonical. This approach would require us to test the given
word for membership in the set of acanonical words. Alternatively, one can put χ(qε)
in front of any word, and then derive the canonical representative as above, thus
avoiding the membership test, at the cost of one extra step in the derivation.

6 Conclusions

We have developed a theory of semiautomata which is based on canonical words
and equivalences. The motivation for this came from trace-assertion specifications

15

(b)

(a)

0

0

0

1
0

1
· · · 1n

000

00 ε

0

1
11

1
· · · 1n

1
00 001

000

Fig. 7. Counter automaton with changed initial state

of software modules. For that application, our theory provides a simple foundation
for the selection of canonical traces, the definition of trace equivalence, and the
transformation of traces to canonical form. A key role in the theory is played by
prefix-continuous languages, which include both prefix codes and prefix-closed lan-
guages as special cases. The use of prefix-continuous canonical languages, along with
our constructions, guarantees that the process of rewriting any word to its canonical
form is deterministic.

Acknowledgments:

We are very grateful to David Parnas for his insightful critical comments on
earlier versions of this paper, and for a crucial example which challenged us to
extend our theory beyond prefix-closed canonical sets; this led us to a complete
characterization of the canonical sets for which the rewriting system is well behaved.

This research was supported by the Natural Sciences and Engineering Research
Council of Canada under grants No. OGP0000871 and OGP0000243.

References

1. Bartussek, W. and Parnas, D.: Using Assertions About Traces to Write Abstract Specifications
for Software Modules. Report No. TR77-012, University of North Carolina at Chapel Hill, De-
cember (1977) 26 pp. Reprinted in Software Fundamentals (Collected Works by D. L. Parnas),
D. M. Hoffman and D. M. Weiss, eds., Addison-Wesley (2001) 9–28

2. Brzozowski, J. A. and Jürgensen, H.: Theory of Deterministic Trace-Assertion Specifications,
Technical Report CS-2004-30, School of Computer Science, University of Waterloo, Waterloo,
ON, Canada, May 2004: http://www.cs.uwaterloo.ca/cs-archive/CS-2004/CS-2004.shtml

3. Book, R. V. and Otto, F.: String-Rewriting Systems. Springer-Verlag, Berlin (1993)
4. Büchi, J. R.: Regular Canonical Systems. Archiv für Math. Logik und Grundlagenforschung, 6

(1964) 91–111
5. Büchi, J. R.: Finite Automata, Their Algebras and Grammars, (Siefkes, D., ed.), Springer-Verlag

(1988)
6. Gécseg, F. and Peák, I.: Algebraic Theory of Automata. Akadémiai Kiadó, Budapest (1972)
7. Wang, Y. and Parnas, D. L.: Simulating the Behavior of Software Modules by Trace Rewriting.

IEEE Trans. on Software Engineering, vol. 20, no. 10, October (1994) 750–759

