True Concurrency in Models of Asynchronous Circuit Behavior*

S.J. Silver J.A. Brzozowski

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
email: {sjsilver, brzozo}@plg2.uwaterloo.ca

Abstract. In the study of asynchronous designs most authors use the interleaving model of concur-
rency when describing the behavior of a network; this is usually done for simplicity. The interleaving
model assumes the behavior of an asynchronous circuit can be adequately represented by allowing
only one signal to change at a time. In contrast to this, true concurrency models allow an arbitrary
number of simultaneous signal changes. It seems that little effort has been made to determine what
effect the choice of model may have on the analysis of a network. In this paper, we attempt to dis-
cover the circumstances under which the assumption of single signal changes can be made without
affecting the results of circuit analysis. We prove, in a formal network model, that, in the context of
delay-insensitivity and semi-modularity, the single change assumption is valid. We also prove that
the same is true for a different definition of delay-insensitivity, restricted to deterministic behaviors.
Consequently, in these cases, the more complicated true concurrency analysis is not required.

Keywords: asynchronous, circuit, delay-insensitive, multiple-winner, single-winner, interleaving,
semi-modular, true concurrency

1 Introduction

Asynchronous circuits operate without the aid of a global clock. While this gives the
potential for high speed and low energy consumption, it also creates concerns similar to
those in other concurrent systems, such as deadlock and safety violations. Much of the
work on concurrency theory has been applied to asynchronous circuit theory, even though
some assumptions made in concurrent models may not be valid in the case of asynchronous
circuits. In particular, many models of concurrent behavior assume that a system can be
represented adequately by allowing only one action to occur at any given time. Most models
of asynchronous circuit behavior also use this assumption, although multiple signal changes
sometimes produce different results than single signal changes. It seems that little effort
has been made to determine what effect, if any, this assumption might have on the results
of the analysis of a circuit. This paper seeks to shed some light on this question. Qur main
results relate to delay-insensitivity and semi-modularity, but we also briefly mention such
concerns as safety and speed-independence.

Semi-modularity and delay-insensitivity are frequently encountered concepts in asyn-
chronous circuit theory. Semi-modularity was first introduced by Muller [19, 21]. Roughly

*This research was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) under grant No. OGP0000871 and by an NSERC/Sun Microsystems Industrially-Oriented Re-

search Grant.

speaking, it requires that no enabled transition can be disabled until it is fired. Varshavsky
et al. [32] proved that if a circuit is semi-modular then any state which is reachable from the
initial state using multiple changes can also be reached through a sequence of single changes.
It follows from this result that, when checking for semi-modularity, it is sufficient to consider
only single changes. Here we study the effects of simultaneous changes on the property of
quasi semi-modularity, introduced by Brzozowski and Zhang [6]'. Quasi semi-modularity is
a generalization of Muller’s semi-modularity to nondeterministic components.

The second property that we study is delay-insensitivity, which has recently received
considerable attention. Roughly speaking, a circuit is delay-insensitive if it operates cor-
rectly regardless of the delays in the circuit components and wires. Some of the first work
on circuit behaviors in the presence of arbitrary delays can also be traced back to Muller
[19, 21]. He described the behavior of a circuit by sets of allowed sequences that specify the
order in which circuit elements can change. If all the allowed sequences for a given circuit
with the same initial state end in the same state or a repeating set of states, then the cir-
cuit is said to be speed-independent. Later, Molnar et al. [20] introduced the “foam-rubber
wrapper” postulate to describe delay-insensitive specifications of circuit components. In this
point of view, each component is seen as being surrounded by a “foam-rubber wrapper.”
Signals travel through this wrapper, which assumes no specific form and may change shape
over time. Thus, the time it takes for signals traveling to and from circuit components is
unknown. Following this idea, Udding [30] introduced the first formal definition of delay-
insensitivity. Here we concentrate on two more recent definitions of delay-insensitivity. The
first is strong delay-insensitivity, introduced by Brzozowski and Zhang [6], which is based
on the notion of observational equivalence or bisimulation. This definition uses a model
which allows only single signal changes. We also consider a trace-based definition of delay-
insensitivity, called trace preservation, which compares the traces of a circuit to those of
the same circuit with arbitrary delays added.

In this paper, we explore the effect of multiple signal changes. We show that a circuit
may be speed-independent under the single-change model, but not under the multiple-
change model. A circuit is said to be safe if no component is ever sent a signal it is not
ready to receive. We show that a circuit may be safe in the single-change model, but not
in the multiple-change model. On a more positive note, our main results are as follows:

e A circuit is quasi semi-modular in the single-change model if and only if it is quasi
semi-modular in the multiple-change model.

e A circuit is strongly delay-insensitive in the single-change model if and only if it is
strongly delay-insensitive in the multiple-change model.

e For deterministic behaviors, a circuit is trace preserving in the single-change model if
and only if it is trace preserving in the multiple-change model. This result does not
hold for nondeterministic behaviors.

The paper is structured as follows. In the remainder of this section, we first briefly
survey the main types of models of concurrency. Next, we give some examples where
multiple signal changes can affect the results of the analysis of a circuit. In Section 2, we

"Most of the material in [6] appeared earlier in [5, 36].

describe the circuit model and the behavioral model used for most of our results. Section 3
deals with semi-modularity. Sections 4 and 5 deal with the two types of delay-insensitivity
we consider. Section 6 concludes the paper.

1.1 Models of concurrency

The simplest, and probably most common, way of describing a concurrent process is with an
interleaving model. In this type of model, concurrency is simulated by a nondeterministic
choice of the ordering of actions. An interleaving is thus a total order of event occurrences.
Each possible sequence of events is taken into account under the assumption that one (or
more) of these interleavings represents reality. The main advantage of this approach is
the simplicity of the underlying mathematics. Propomnents of this approach argue that
concurrency is not observable, and hence, it is not relevant in many circumstances [10].
Critics point out that the interleaving approach does not offer a faithful view of reality,
since it does not take into account the possibility that actions may occur simultaneously.
Nonetheless, this model is still probably the most popular model of concurrency in the
study of asynchronous circuits, as well as in concurrency theory in general. Trace theory
[8, 9, 30, 31, 33], often used to describe the behavior of an asynchronous circuit, is a type
of interleaving model.

Non-interleaving approaches are usually referred to as true concurrency models because
they handle concurrency explicitly. One true concurrency approach, which has been quite
popular for general concurrency models, is the partial order approach [1, 7, 11, 22, 27].
This model has also been used in asynchronous circuit theory [18, 23, 24, 25]. In the case
of partial order models, the behavior of a concurrent system is represented by a set of
possible actions and a partial order representing the necessary temporal precedences among
these actions. The partial order is usually expressed by the causality relation “—”, which
states that @ — b if and only if action a must precede action b [22]. In this model, two
actions are concurrent if they are independent, i.e., if there is no causal relation between
them. There is no necessary relation between concurrency and simultaneity; if two events
are independent then they may occur simultaneously or in either order. One of the main
advantages of this approach over interleaving is that the difference between independence
and nondeterministic interleaving, where two actions are not concurrent but may occur in
either order, is easily expressed in partial order semantics. Also, since this model allows
us to reason about sets of observations rather than considering every possible sequence
of events, it helps to avoid the state explosion problem usually associated with modelling
concurrency. If needed, one can easily retrieve the interleavings from a partial order model.
Unfortunately, causal partial orders are not expressive enough to satisfactorily model the
invariant properties of certain kinds of concurrent systems [16]. For example, a system
might include priority constraints on the ordering of events such as, “if event a has higher
priority than event &, then, whenever it is possible to execute both events, b must not be
executed.” It is not always possible to describe the behavior of such a system using only
causality [2, 15]. In the case of asynchronous circuits, there is no way to represent one event
disabling another. Consequently, this model does not address the possibility that there may
be events, which may occur simultaneously, but cannot occur one after the other.

Some true concurrency models do express concurrency as simultaneity rather than as
independence. One such model is step sequences or step traces [2, 14, 16, 26, 28, 34]. This

model is similar to interleaving except that, instead of sequences of actions, it represents
an execution as a sequence of sets of actions. Each of these sets is called a step and
represents a concurrent firing of a set of transitions. In this model, simultaneous actions
are eagily represented, and there is no need to assume that, because two actions occur
simultaneously, they must be able to occur in either order. Thus, this model gives a more
realistic representation of the execution of an asynchronous circuit. Rozenberg and Verraedt
[28] showed that using step sequences, it is possible to discover differences in behaviors
of Petri nets, which cannot be observed using a string language approach. Reisig [26]
gave similar examples. This model can also adequately represent systems with priorities,
which cannot be represented with interleavings or partial orders [2, 15]. One of the major
drawbacks of this approach is that it only makes the state explosion problem worse. In the
case of asynchronous circuits, unless the circuit is totally sequential, there are many more
step sequences to consider than interleaving sequences. Also, allowing sets of actions at
each step can complicate the underlying mathematics.

The first model designed specifically for asynchronous circuits was introduced by Huff-
man [13] in 1954. Although this model was introduced before step sequences were formally
defined, it can be considered a type of step trace model since it allows for simultaneous
changes. Many more asynchronous circuit models have been described since then and these
can be divided into interleaving and true concurrency models, depending on whether or
not they take simultaneous signal changes into account. We are using the GMW or general
multiple-winner model to study true concurrency in the analysis of asynchronous circuits.
In this model, any number of excited circuit components are allowed to change simulta-
neously. Such a model was first described by Muller [19, 21], but we use the notation of
Brzozowski and Seger [4]. The GMW model is in contrast to the GSW or general single-
winner model [4], which only allows one component to change at a time. Yakovlev et al.
[35] also introduced a model that uses the general single-winner relation (called the single
change model). As do step sequences, the GMW model provides a more faithful view of
reality, but greatly increases the complexity of the analysis. If there are n possible next
states to consider from a given state in the GSW model, then there are 2” — 1 possible next
states to consider when multiple signal changes are taken into account. We use the GSW
and GMW models to determine the effect of simultaneous signal changes for the results in
Sections 3-5.

1.2 Problems with Interleaving

In this section, we discuss some of the problems encountered if multiple changes are not
taken into account. Problems arise when multiple changes permit the circuit to enter a
state that could not have been entered if only single changes are considered. We first look
at this problem in the context of speed-independence, introduced by Muller [21]. A circuit
is speed-independent if the outcome of each of its transitions does not depend on the speed
of the individual circuit elements.

Figure 1(a) shows a circuit Cy and Figure 1(b) shows a state diagram for this circuit
using only single changes, with excited elements underlined. We can see that, starting from
state 00000, at most one of the two NOR. gates has output 1 at any given time. As a result,
the AND gate, and hence also the OR gate, remain stable and the circuit always terminates
in state 01100, independently of the delays in the individual circuit elements. However,

3 10000 —» 10100
pe= s
00000 =¥ » 00100 » 01100

T 01000

(b)

(a)
Figure 1: (a) Circuit Cy; (b) state diagram with single changes.

when multiple changes are included, the two NOR gates may temporarily become high,
changing the excitation of the AND gate, and causing the OR gate to stabilize in state 1
as shown in the following execution:

00000—11000—+11010—411011—-10011—-10111—-10101—00101.

This is impossible under the single-change model. Hence, a circuit may be speed-independent
under an interleaving model, but not under a multiple-change model.

Another concern in the design of asynchronous circuits is safety. Roughly speaking,
safety ensures that “something bad does not happen” [17]. This means that a circuit
element never receives a signal for which it is not ready.

Figure 2(a) shows a circuit Cy. The first three elements are C-elements defined by
C = ab+ (a+b)c, where a and b are the inputs, cis the current output, and C is the current
excitation. A MERGE element receives a signal from one of its input ports, produces an
output, and then waits for another signal from an input port. It is not prepared to re-
ceive a second input before it has produced an output, for this would be a safety violation.
Figure 2(b) shows the state diagram of the circuit in Figure 2(a) under the single-change
model. Only one of the AND gates may change, and hence the MERGE element receives
only one input. Figure 2(c) shows an execution of the circuit taking into account simulta-
neous changes. In this case, both AND gates may change, and the MERGE element may
receive a second input before it has time to process the first. This safety violation cannot
be found using the single-change model.

2 Networks

We now define a formal model in which we will prove our main results. For a complete
description of the model see [6].

A network consists of components, called modules, which are nondeterministic sequential
machines of the Moore type. To hide the details of the internal design and keep the model
simple, we represent a module by an abstract internal state taking its values from a finite
set; however, the inputs and outputs remain binary. Delays in the input and output wires
of a module are not introduced, which allows us to model isochronic forks and similar
components.

0 = 1
C-element
[V—— 4
0 9 6
C-element Merge
[— 5
— 3
0 C-element

(a)
/IQOOOO — 110000 —*110100 —>110101
000000 —>010000 —»011000 —=011010 —=011011

001000 —=101000
(b)

000000 —»111000 —111100 —» 111110
(c)

Figure 2: (a) Circuit Cy; (b) single changes; (c¢) multiple changes.

Definition 2.1 A module M is a sequential machine M = (§,X,y, Z,6, \), where
o S is a finite set of internal states of M;
o X ={z,...,2,,} is the set of binary input variables;
e y is the internal state variable;
o Z=1{z,...,2p} is the set of binary output variables;

e 0§ is the ezcitation function, § : {0,1}™ x 8§ — 25\ {(}, satisfying the restriction that,
for any a € {0,1}™ and b € S, either §(a,b) = {b} or b ¢ 6(a, b);

o A= (Aq,...,) is the output function, A : S — {0, 1}2. O

The excitation function é takes an input vector and an internal state and returns a set
of possible next states. If §(a,b) = {b} then the module is stable; otherwise the module is
excited to change to one or more new states.

Example 2.1 Tables 1 and 2 define the functions of a delay module and a simple arbiter
respectively. A delay module has § = {0,1}, m = 1, and p = 1. An arbiter has § = {0, 1, 2},
m =2, and p = 2.

We now define a network. This definition is restricted to closed, or autonomous, net-
works. An open network can be transformed into a closed network by modeling the envi-
ronment as a module.

Table 1: Functions of a delay module. Table 2: Functions of an arbiter.
x X ={z1, 22}

0 1| My) 00 01 10 11 | Ay)
{0y {11] o {or {2} {1} {12} 00
1 {0} {1}] 1 {oy {o} {1} {1} | 10

5 y) 0} {2 {0} {23 | 01
5(z,y)

o=

N = O

Definition 2.2 A network is a pair N = (M, K), where
o M ={M!' ...,M"}, n>1,is aset of modules;

e [Cis aset of connections, each of which is an ordered pair (z;, z;), where z; is the output
variable of some module, and z; is the input variable of some module. Moreover, for
each input variable z; (respectively, for each output variable z;), there is exactly one
output variable z; (respectively, one input variable z;) such that (z;,z;) € K.

The state variable of module M? is y* and its state set is §*. The set of state variables
of a network is Y = {y',...,y"}. The set of states of a network is § = S! x ... x 8&". For
y' € Yand s = (s1,...,5,) €S, the ezcitation of y' in state s is denoted S;. A state is said
to be stable if S; = {s,} for all 7; otherwise s is unstable. The set of unstable state variables

in state s is denoted by U(s) = {y* € Y | S; # {si}}.

3
E

Figure 3: Example network N;.

Example 2.2 Figure 3 shows an example of a network with state variables Y = {y!, y%, y°}.
Let s be the current state of the network. For the OR gate module M?, Sy =21 +ﬁ3 and
z¥ = 23 = y*. For the two inverter modules M' and M3, S; = 2%, 2! = y', S35 = 22, and

23 = y3. After some substitutions we find Sy = y2, Sy = y' + 43, S3 = 2.

We now define the behavior of a network. To allow for simultaneous signal changes, the
GSW (general single-winner) relation used in the definition of a behavior in [6] is replaced
with the GMW (general multiple-winner) relation [4]. To avoid confusion, throughout
this paper we use subscripts s and m to differentiate between GSW and GMW behaviors,

respectively.

-1

Definition 2.3 The GSW relation on the set S of states of a network NV is a binary relation
R, such that (s,t) € R, if and only if s differs from ¢ in exactly one component, say 1,
(i.e., s; #t;), y* €U(s), and t; € S;.

Definition 2.4 The GMW relation on the set S of states of a network N is a binary
relation R,,, such that (s,t) € Ry, if and only if s differs from ¢ in one or more components,
and for each such component ¢ with s; # t;, we have y* € U(s), and t; € ;.

Definition 2.5 A GMW behavior of a network N is an initialized directed graph B,, =
<q7n7 Qm,y Rnl>7 Where

® (¢, € S is the initial state;

o Q.. specifying the vertices of B,,, is the set of states reachable via the relation R,,,
Qm ={s €S| (gms) € R}

e R,,, specifying the edges of B,,, is the R,,, relation restricted to Q,,.

If (s,t) € R, we attach to edge (s,t) a tag 7(s,t) € 2%, which denotes the set of state

variables in which s and ¢ differ. O
100 v 110
00 3 1 Yt
1 Y ‘ 3
V(\ yl y \
000 101 —= 111 010
1
yk\ /yl(9 Yy /yg 2
001 i 011 Y

000 X ******** - 1014; 111 «----"--=--- =010
4/ {/y2,y3} /
001 = 011

Figure 4: (a) A GSW behavior of Ny; (b) a GMW behavior of Nj.

We define the GSW behavior, Bs; = (gs, Qs, Rs), of a network N similarly, by replacing
R,, with R,. Under the GSW model, 7(s,t) € V. Figure 4(a) shows the GSW behavior of
network Ny of Figure 3 with initial state 000. Figure 4(b) shows the additional transitions
possible under a GMW model. If state t is reachable from state s under the GSW model
((s,t) € RY) through a sequence w € Y* of state changes, then we use the notation t € sw;

8

under the GMW model we write t € sW where W € (2¥)*. If w consists of only one element
y', then t € sy’; if W consists of only one set 7, then ¢ € s7. It is easy to see that R, is a
subset of R,,, and therefore Q, is a subset of Q,,.

A behavior B = (g, @, R) of a network can also be represented as a nondeterministic
finite automaton B where every state is an accepting state and the language L(B) accepted
by B is defined in the usual way [6]. A network is deterministic if its behavior automaton
is deterministic.

3 Quasi Semi-Modularity

Semi-modularity was first defined in [21] for deterministic behaviors, which include multiple
signal changes. A generalization, called quasi semi-modularity, was introduced in [6] to
allow nondeterminism, although the behaviors considered are restricted to those including
only single signal changes. The name semi-modularity comes from the fact that a certain
partially ordered set derived from the states of a semi-modular circuit forms a semi-modular
lattice [21]. No such correspondence has been found for circuits exhibiting nondeterminism,
hence the name quasi semi-modularity. When only deterministic circuits are considered, the
two definitions are equivalent. Quasi semi-modularity ensures that, once a variable becomes
excited to change to a certain value, that excitation cannot be destroyed until the variable
changes. For example, the behavior of the the circuit in Figure 1 is not semi-modular
because, from the initial state, either of the NOR gates may be disabled without changing.
We now modify the definition of quasi semi-modularity found in [6] to include simultaneous
signal changes.

Definition 3.1 Let B,, = (¢m, @m, Rm) be a (GMW) behavior of a network N. A state
s € Q,, is said to be multiple-change quasi semi-modular if, for all states t € Q,, and
T € 2Y,if t € sT, then the excitation of a module M7 in state s is a subset of its excitation
in state ¢t (S; C Tj) for all j such that y/ ¢ T and y’ € U(s). If s is multiple-change quasi
semi-modular for all s € Q,,, then B,, is multiple-change quasi semi-modular.

The type of semi-modularity introduced in [6], which we call single-change quasi semi-
modularity, is a special case of this definition, where only one element changes in going from
state s to state ¢, i.e., 7 is a singleton set.

Let N be a network. Let B, = (¢s,Qs, Rs) be a GSW behavior of N and let B,, =
(¢m, @m, Rm) be the corresponding GMW behavior of N such that the initial states are
equal (¢m = ¢s = q). We show that the single-winner behavior B, is single-change quasi
semi-modular if and only if the multiple-winner behavior B,, is multiple-change quasi semi-
modular. It is proven by Varshavsky in [32] that, if a circuit is semi-modular, then the set of
states reachable from the initial state is the same as the set of states which can be reached
from the initial state by single changes. Basically, this is true because any modules which can
change simultaneously may also change one at a time, since the excitation cannot be lost.
In order to prove the final theorem for this section, we first show that this result also holds
for quasi semi-modular networks. This proposition is a simple extension of Varshavsky’s
result using the new definition of semi-modularity.

To improve the readability of the paper, we present the proofs of all our results in the
Appendix.

Proposition 3.1 If the behavior B, is single-change quasi semi-modular then Q, = Q,,.
Using this result, we can prove the following theorem.

Theorem 3.1 A GSW behavior B, = (q, Qs, Rs) of a network N is single-change quasi
semi-modular if and only if the GMW behavior B,,, = (q, Qm, Rm) is multiple-change quasi
semi-modular.

The proof of this theorem relies on the fact that, if a network is single-change quasi
semi-modular, then any state which may be reached by a multiple change may also be
reached by a series of single changes. Since the excitation of any unchanged components
in a single-change quasi semi-modular network cannot be destroyed through the series of
single changes, it cannot have been destroyed by the multiple change which reaches the
same state. Hence the network must also be multiple-change quasi semi-modular.

4 Strong Delay-Insensitivity

Roughly speaking, a network is delay-insensitive if it continues to operate correctly even if
the delays in its components and wires change arbitrarily [3]. Strong delay-insensitivity [6]
compares the behavior of a network NV to the behaviors of the networks obtained by adding
delay elements to N. Such networks are referred to as a delay extensions of N, are denoted
N, and are obtained from N by inserting some delay modules in its connections. Figure 5
shows a possible delay extension of network Ny from Figure 3, with a delay added between
modules M? and M. The set of all delay extensions of N is denoted D(N).

Figure 5: A delay extension of Nj.

A network N is defined to be strongly delay-insensitive if the behavior of any delay
extension N, with added delays projected out, is bisimilar (or observationally equivalent)
to the original network N. More precisely, N and N are bisimilar if every step of IV can be
simulated in N, and vice versa. It is shown in [6] that the first condition always holds, i.e.,
for every step of N there is a matching step of N. Thus bisimilarity is reduced to proving
that for every step of N there is a corresponding step of N. This condition is called safety
and is formally defined in Definition 4.2.

We now introduce some of the terminology of [6], and then redefine strong delay-
insensitivity to include behaviors with multiple signal changes. We then show that the
class of strongly delay-insensitive networks does not change under this less restrictive defi-
nition of behaviors.

10

A network is said to be delay-dense if, for every pair of connected modules, at least one
is a delay. It was proven in [6] that, under the general single-winner model, if a network is
delay-dense, then quasi semi-modularity and delay-density are equivalent. Here we chose not
to restrict our discussion to delay-dense networks; hence we prove our result independently
of the results of the previous section.

Definition 4.1 Let N € D(N). The projection of a state § of N with respect to N is the
|V|-tuple s = § |) obtained by removing all components corresponding to variables not
in Y. The projection of a word W e (2Y)* with respect to N is the word W = W Yy
obtained from W by erasing all the symbols not in Y. The projection of a word & € V*is
defined similarly.

A state & is said to be an extension of s if s is a projection of §. If § is the extension of
s where all the inserted delays are stable, then § is the stable-delay extension of s. We say
that a behavior B = (q, 9, 7@) of N is initial state compatible with a behavior B = (¢, Q,R)
of N if ¢ is the stable-delay extension of q.

Example 4.1 Counsider networks Ny and N of Figures 3 and 5 respectively. State s = 011
of Ny is a projection of state § = 0110 of Ni. Consequently, state § is an extension of
state s. State § = 0111 is the stable-delay extension of s. The projection of the word
W = {y2, y*Hy* Hy', y3} with respect to Ny is the word W = {y2}{y', 3.

The definition of strong delay-insensitivity depends on the notion of safety, which guar-
antees that, for any transition in a delay extension of a network, there is an equivalent
transition in the original network. Here we define safety for GMW behaviors. The defini-
tion for GSW behaviors can be obtained by substituting @ € Y* in place of W, and ¥, for
some 3 €), in place of T.

Let N € D(N). Let By, = (¢m, Qm, Rm) be a behavior of N, and let B,, = (Grm s Qm, 7A2m>
be the behavior of N, which is initial-state compatible with B,,.

Definition 4.2 The behavior B,, is said to be safe with respect to By, if whenever 8 € O
is an extension of s € Q,,,, then for all f € Q,,, and W € (2Y)*, if t € SWand W]lY=T
for some T € 2%, there exists t € Q,, such that ¢ € sT and t is the projection of ¢ with
respect to N.

Example 4.2 Consider networks N; and Nl of Figure 6. Let B,, be the GMW behavior
of Ny with initial state 000 and let Bm be the GMW behavior of Nl with initial state 0000.
Let the states of the modules be as shown, with unstable states underlined. Let s = 011
be the current state of Ny and let § = 0110 be the current state of Nj. Obviously, § is an
extension of s. From Figure 4, we can see that s is reachable from initial state 000. We
can see from the execution in Figure 6(c) that § is reachable from the initial state 0000, the
stable-delay extension of 000. We can also see that € §W, where £ = 1110 and W = {y'},
so that W 1Y = {y'}. Since y! is not excited in state s, there is a violation of safety.

Definition 4.3 A network N is strongly delay-insensitive with respect to ¢ if, for any delay
extension N of N, B is safe with respect to B.

11

Figure 6: (a) N; in state s; (b) Ny in state 3; (c) an execution of Nj.

In order to prove our main theorem concerning strong delay-insensitivity, we need the
following auxiliary results.

In [4] it was shown that, if a sufficient number of delays are included in the network,
then the GSW model can simulate the GMW model. A delay-completion of a network IV,
denoted N, is a delay extension obtained by inserting one delay module in each connection.

Let N be a network and let N be the delay-completion of N. Let By, = (¢m, Qm, Rim)
be the GMW behavior of N and let B, = (qs, Q5,7~25> be the GSW behavior of N that is
initial-state compatible with B,,. To prove the main result of this section, we first show
that, for any transition in B,,, there is a series of transitions in B, that produce the same
result.

Proposition 4.1 Suppose s,t € Qn, t € sT, § € Q,, and § is an extension of s. Then
there exists an extension t of t such that t € 5w for some W consisting of all the elements
of T and possibly some elements of (¥ —).

This proposition can be extended easily to the case where t € sW for some W € (Zy)*.
Using Proposition 4.1, it is also easy to show the following.

Proposition 4.2 For every s € Q,, there exists at least one § € QS such that 5 is an
extension of s.

These propositions are used in the proof of our main theorem for this section.

Theorem 4.1 A network is strongly delay-insensitive with respect to a state under the

GSW model if and only if it is strongly delay-insensitive with respect to that state under the
GMW model.

The proof of this theorem relies on the fact that, if a network is strongly delay-insensitive
under the GSW model, then the delay-completion must be safe with respect to the original

12

network. Since any multiple change can be mimicked by a series of transitions in the delay-
completion, we can show that any delay extension of the network must also be safe under

the GMW model.

5 Trace Preservation

Trace theory [8, 9, 30, 31, 33] is a commonly used formalism for asynchronous circuit
specification. In terms of trace theory, there are two ways of defining delay-insensitivity.
The first, introduced by J. T. Udding [30], is a set of rules which each module in the circuit
must obey. The JTU rules insure the absence of ordering between certain signals, since
there is an unknown delay between the times a signal is sent and received. Another way of
checking delay-insensitivity is by adding delays to connections and comparing the traces of
the behavior of this network to those of the behavior of the network without these delays.
This is the definition used in this paper. We refer to this type of delay-insensitivity as trace
preservation. If a network is strongly delay-insensitive, then it must be trace preserving,
but the opposite is not always true. Because of this, and the fact that trace preservation
does not take the state of the network into account, the results of the previous sections
cannot be reused.

A trace structure is a pair T = (aT,tT'), where aT is the alphabet of T and tT C (aT)*
is the trace set of T. In our application, with the GSW model, the alphabet of a trace
structure is the set) of internal state variables of a network. In the GMW behavior of a
network, multiple state changes are allowed, and so, our traces consist of sequences of sets
of symbols. Hence, aT is the set of all non-empty subsets of }. This model is similar to
step sequences [2, 14, 16, 28, 34]. Note that we do not assume that, if two events occur
simultaneously, then they must also occur in sequence. Recall that L(B) is the language
defined by the finite automaton derived from a behavior B.

Definition 5.1 Let By = (g5, Qs, Rs) be a GSW behavior of network N. The trace struc-
ture induced by By is a pair Ty = (aT, tTs), where aly = Y and tT, = L(B,).

Definition 5.2 Let B,, = (¢m, @m, Rm) be a GMW behavior of network N. The trace
structure induced by By, is a pair Ty, = (aTly,, tT,), where aT,, = 29\{0} and tT,, = L(B.,).

01
1 {y*} {y'}
Yy 01
y? y! 00 {v4,v*} {y*, y*} 11
) 2
00 11 {y'} {v*}

—
o
~—
—
-
~~
@) =
~ =)

Figure 7: (a) Na; (b) GSW behavior of Ny; (¢) GMW behavior of Nj.

13

Example 5.1 The trace set of the GSW behavior of Figure 7(b) is {y', y*}, while that of
the GMW behavior of Figure 7(c) is {{y*}, {v*}, {v*, v?}, {y', v*Hy'}, .. .}

Let N be a network and let N be a delay extension of N. Let B; be the GSW behavior
of N with initial state g. Let B, be the GSW behavior of N which is initial state compatible
with B,. Let T, and T, be the trace structures of B, and B, respectively.

Definition 5.3 Network N is said to be single-change trace preserving with respect to
state ¢ if, whenever w € tT, there exists a w € tT such that @ | aT = w.

We define a multiple-change trace preserving network similarly.

Figure 8: (a) N, in state s; (b) N, a delay extension of Ny, in state 3.

Example 5.2 Consider networks N3 and N3 of Figure 8. Starting from state 01, network
N3 reaches the current state after trace y'. Starting from state 010, the stable-delay exten-
sion of 01, network Ny also reaches its current state after trace y'. We see that y'y? is also
a trace of this GSW behavior of Ng. This trace is not in the GSW behavior of N3; hence
N3 with initial state 01 is not single-change trace preserving.

Theorem 5.1 A deterministic delay-dense network N is single-change trace preserving
with respect to state q if and only if it is multiple-change trace preserving with respect to q.

Basically, this theorem holds because, if a network is deterministic and delay-dense, multiple
changes can be simulated by changing elements one at a time without effecting the next
non-delay element.

This theorem does not hold for networks which are nondeterministic since the state
reached by a particular trace in a nondeterministic network need not be unique. Hence,
there may be a trace which may lead to two different states from which two or more modules
can change in either order but not simultaneously. It is possible that, in a delay extension
of the network, an extension of that trace may lead to a state in which those modules may
change simultaneously. Such a network would not be multiple-change trace preserving but
may still be single-change trace preserving. For an example of such a network, see [29].

Similarly, if a network is not delay-dense it may have two excited non-delay elements in a
loop which may change in either order and excite a third element or change simultaneously
without exciting the third element. If a delay were added to the loop then, under the
multiple-change model, both elements in the loop could change simultaneously and excite
the third element which could result in a trace which was not possible before the delay
was added. Such a network would not be multiple-change trace preserving but may still be
single-change trace preserving.

14

6 Conclusion

We have shown that the multiple-change model produces the same results as the single-
change model for three properties: quasi semi-modularity, strong delay-insensitivity, and, for
deterministic delay-dense networks, trace preservation. Each of these properties is related
to the intuitive concept of delay-insensitivity, which states that the results of an analysis
of an asynchronous circuit should be independent of the exact sizes of the delays in its
components and wires. From this intuitive definition, it seems logical that simultaneous
changes should not play a significant role, if delays can be arbitrary. However, an open
question remains what constitutes a “delay-insensitive property,” since trace preservation
does not ensure delay-insensitivity for all types of networks.

As a consequence of our theorems, we have shown that the results of [6] proved in the
single-change model also hold in the multiple-change model. In particular the following
more general versions of theorems from [6] hold:

Theorem (6.1 of [6]) If a network is strongly delay-insensitive with respect to a state
under the GMW model, then its GMW behavior originating from that state is multiple-
change quasi semi-modular.

Theorem (6.2 of [6]) If a GMW behavior of a delay-dense network is multiple-change
quasi semi-modular, then the network is strongly delay-insensitive under the GMW model
with respect to the initial state of that behavior.

Our results are limited to certain properties of asynchronous circuits. They show that
true concurrency may or may not be equivalent to interleaving. More work needs to be
done on this topic; however, it seems clear that great care must be taken in any theory of
concurrency before deciding which model is appropriate.

7 Appendix

7.1 Quasi Semi-Modularity

Proof of Proposition 3.1: Since we already know that Q, C Q,,, it remains to be shown
that if s € Q,,,, then s € Q,. The proof is by induction on the length [of the shortest path
from ¢ to s in B,,. If] = 0, then s = ¢, and the result holds trivially. Now suppose that
I = n. There must be some state r in the path from ¢ to s such that the length of the
path from ¢ to ris n — 1 and s € r7 for some T € 2Y. Assume that r € Q,. Clearly, if
y' € T, then y' is excited in r to change to its value in s (s; € R;). Since B, is single-change
quasi semi-modular starting from state r, each y* € T can change to its value in s, one at
a time, without destroying the excitations of the other variables of 7, which have not yet
changed. Hence, s € rw, where w consists of all the elements of 7 in any order, and s € Q.
Therefore, every state reachable from ¢ in B,, is also reachable from ¢ in B,, and hence

Qs =9,. O

Proof of Theorem 3.1: First we prove by contradiction that, if behavior B, is single-
change quasi semi-modular, then B,, must be multiple-change quasi semi-modular. Assume
that B, is single-change quasi semi-modular. Suppose that B,, is not multiple-change quasi
semi-modular. There must be some state s € Q,, that is not multiple-change quasi semi-
modular. Then there exists a state t € Q,,, such that ¢ € sT and there exists a j such that

15

v ¢ T,y € U(s), and S; € T;. By Proposition 3.1, s € Q,. Since B, is single-change
quasi semi-modular, starting from s, the values of each y* € T can change, one at a time,
without destroying the excitations of the other elements of 7 that have not yet changed.
Therefore, ¢ € sw, where w consists of all the elements of 7 in any order. Since y’ ¢ T,
y’ does not appear in w. Since B, is single-change quasi semi-modular and 3’ € U(s), we
know that S; C T}, which is a contradiction. Hence, B,, must be multiple-change quasi
semi-modular.

To prove the second part of the theorem, we show that, if B,, is multiple-change quasi
semi-modular, then B is single-change quasi semi-modular. Assume that B,, is multiple-
change quasi semi-modular. Let s be any state in Q,. Since @, C Q,,, we know that
5 € Qn. Forallt e Q,,ift € sy’, then t € sT with 7 = {y'}. Since s is multiple-
change quasi semi-modular with respect to B,,, S; C T} for all j # ¢ such that y € U(s);
hence, s is also single-change quasi semi-modular. Since s could have been any state, B; is
single-change quasi semi-modular. |

7.2 Strong Delay-Insensitivity

Proof of Proposition 4.1: By allowing the unstable inserted delays to change one at a
time, starting with those closest to an original module, as suggested in Proposition 4.2 of
[6], we get @, € (¥ — Y)* such that §@; = &, where & is the stable-delay extension of s. It
follows that the excitations of all the original modules of N are the same in s and §'. This
result is proven in Proposition 4.1 in [6]. Hence, S; = S'l’ for all ¢ such that ' € 7. The
inputs of every M in N such that y* € T are inserted delays; hence, starting from state
§', the elements of 7 can change to their values in ¢t one at a time without affecting the
excitation of the other elements of 7~ that have not yet changed. Let be the state reached
from § by applying the changes in @ = w,w3, where W consists of all the elements of 7.
Since t € 3, and f is an extension of #, our claim holds. |

Proof of Proposition 4.2: The proof is by induction on the length [of the shortest path
from ¢, to sin B,,. If [= 0, then s = ¢,,, then the result is trivial since ¢, is an extension
of ¢, with respect to N. Now suppose | = n. There must be some state r in the path
from ¢, to s where the length of the path from ¢, to r is n — 1 and s € r7 for some
T € 2. Assume that there is an 7 € Q,, which is an extension of r with respect to N. By
Proposition 4.1, there exists an § € Q, such that § is an extension of s with respect to N.
O

Proof of Theorem 4.1: Let N be a network and let B, = (¢s, @5, Rs) be a GSW behavior
of N. Let By, = {Gm, @m, Rm) be the GMW behavior of N with ¢, = ¢;. Let N e D(N)
and let B, = (G, Qm, 7A2m> be the GMW behavior of N which is initial state compatible
with B,,. First, suppose that N is strongly delay-insensitive with respect to ¢, under the
GSW model. We shall prove that N is also strongly delay-insensitive, with respect to the
same state, under the GMW model, by showing that B,, is safe with respect to B, as
shown in the following diagram.

A

B, : if §—W>tA,withW¢y:Tand§¢y:5,then

16

B, : 5l>t,wheretA¢y:t.

Let Jif be the delay-completion of]57. Since NN is a delay extension of N and~]§7 is a
delay extension of N, N € D(N). Let B, = <§§’ 9,, 7A25> be the GSW behavior of N which

is initial state compatible with Bm. Behavior BS must also be initial state compatible with
B,, since Bm is initial state compatible with B,,, which has the sameAinitial state as Bj.

Let 8 € O,, be an extension of s € Qm Letf€ Q,, and W ¢ (2%)* such that t € W
and W 1 Y =T forsome T € 2. Let 3 be an arbltraly element of 7. To prove that B, is
safe with respect to B,,, it is sufficient to show that #; € S,, i.e., that module M* is excited
in state s to change to its value in state #;. Let W = U TUs Where U, Us € (2y Y)* and
T 1Y =T and let W' = U{y'}. There must be some state © € O, such that # € §W’
and, since y' does not appear in Us, #; = t;. Note that y' is the only original module of N
included in W'.

By Proposition 4.2 we know that there exists an § € QS, where § is an extension of §
with respect to N. Hence, by Proposition 4.1, there exists an e QS such that # € $w,
where 7 is the projection of 7 with respect to N and @ consists of y* and possibly some

elements of (_')/ —Y). See the diagram below.

A

B, :if §1>f and

U

FRRANG AN , where y* € T and #; = #;, then

A

B,: § 7, wherew | Y = y'.

B

Since N is strongly delay-insensitive under the GSW model and N € D(N), BS is safe
with respect to B;. Hence, there must exist an r € Q, such that r € sy*, where r is the
projection of 7 with respect to N and y* = @ | Y. Therefore, y' € U(s) and r; € S;. Since
f; =t and r is a projection of 7, r; = 7; = t; and hence, t; € S;. Since yi could have been
any element of 7T, fj € Sj for all j such that y? € 7. If ¢ is the projection of ¢ with respect
to N, then ¢t € s7. Therefore, B,, is safe with respect to B,,. This argument is illustrated
below.

B, : if gﬂ%,whereﬁjiy:y",then
B,: s Ll> r and therefore

B, : sl>t.

To prove the second half of the theorem, we show that, if B,, is safe with respect to B,,,
then BS is safe with respect to B,. Let s € Q, be a projection of § € Q. Since Q, C Q,,
and QS C Qm, s€ Q,,and § € Qm. It is not hard to see that for any te Qs and W € :)7*
such that £ € § and @ | Y = o', t € §W where W consists of all the elements of @ in

17

singleton sets. Hence, WlYy= {y'}. Since B,, is safe with respect to By, t € s{y'},
where t is the projection of £ with respect to N. Hence, y' is excited in state s and t € sy’.
Therefore, B, is safe with respect to By. O

7.3 Trace Preservation

We denote traces of a GMW behavior by uppercase letters U, V', W, and those of a GSW
behavior, by lowercase letters u, v, w. We say that state s is reached by trace w (W)
if, starting from the initial state, the network could be in state s after trace w (W) has
occurred. If the network is deterministic, then the state reached by w (W) is unique.

Let N be a delay-dense network whose behavior is deterministic, and let N be a delay
extension of N. Let B, and B, be the GSW and GMW behaviors, respectively, of N with
initial state ¢. Let B and Bm be GSW and GMW behaviors of N which are initial state
compatible with B, and B,,. Let Ty, T,,, TS7 and Tm be the trace structures of By, By,
Bs, and B, respectively.

Proposition 7.1 Let 0 € tT, and let § be the state reached by w. Let s € Q, be the
projection of §. Then there exists u € (aTl, — aT,)* such that wu € tT, and the state
reached by wu is a stable-delay extension of s.

Proof: Create u by stabilizing the inserted delays, which are unstable in state §, one at
a time, starting with those delays closest to the original modules, as suggested in Proposi-
tion 4.2 of [6]. O

The next proposition is similar to Proposition 4.1. Let N be the delay-completion of N.
Let B, be the GSW behavior of N, which is initial state compatible with B,,, and let T,
be the trace structure of Bs.

Let 7 € 2 and let TI(T) be any string in 7* in which each element of T appears exactly
once. We call II(7) a permutation string of T.

Proposition 7.2 Let W € tT,, whereNW =7T;...T,. There is a trace © € tT, such that
w=dI(T)...d,JI(T,), where d; € (¥ —Y)*. Furthermore, the state § reached by @ is an
extension of the state s reached by W.

Proof: We will prove this by induction on the length of the trace W. If W = ¢, then
obviously @ = € € tT, is equal to W and the states reached by W and @ are the initial
states of the respective networks. Now suppose that W = U7, where U = T7 ...T;_1 € tT),
and 7; € aT,,,. Let r be the state reached by U and s be the state reached by U7;. Suppose
there exists a trace @ € tT, such that @ = dyI1(T1) .. .d;—1II(T;—1) and state 7 reached by
il is an extension of r. From Proposition 7.1, we know that there exists a ¢ € (aT, — aT,)*
such that the state 7' reached by uv is a stable-delay extension of r. Let dj = v. The
excitation of each module in N, and therefore each module whose internal state variable
appears in T, is the same in states 7 and r. This result was proven in Proposition 4.1 of
[6]. Since the inputs of every module M® in N such that y* € T are attached to inserted
delays, from 7/, the module variables of 7 can change to the same value as in state s, one
at a time, in any order, without affecting the excitation of the other elements of 7 which

have not yet changed. Thus, w = adiII(T) = diI1(T1) .. . di—1 IL(T1—1) i IL(T) € tT, for any

18

permutation string II(7;) of 7;. Furthermore, since 7 is an extension of r and each element
of T; changed to its value in s, state §, reached after , is an extension of s. O

In the following proposition we show that, if we have a number of singleton sets which
may appear together in any order in a GMW trace, then including all these elements in
one set, i.e., allowing them to change simultaneously, has no effect on the rest of that
trace. Let ¥ = {{y’}| Y€ y} be the subset of aT}, consisting of only singleton sets. Let
I’ be any subset of 3, and let V' be any string in I'* in which each element of I appears
exactly once. We call V' a permutation string of T'. For example, if Y = {y',...,y°} and

L= {{y'},{y*}, {v*}}, then V = {y3}{y*}{y'} is a permutation string of T.

Proposition 7.3 If there exist Uy, Uy € (aTly,)* such that UyVU; € tT,, for each permu-
tation string V of T, then Uy TU, € tT,,, where T = U{yi}EF{yi}'

Proof: Let s be the state reached by U;. Since V' can be any permutation string of I, all
the elements of ' must be excited in s and hence U;T € tT,,. To show that U; TU; € tT,,,
it is sufficient to show that the state reached by Uy T must be the same as the state reached
by U1V for some permutation string V. Let V be one of the permutation strings in which
all the non-delay elements come before any delay elements. Let r be the state reached by
UV. Since the network is delay-dense, the input to each non-delay element is a delay, and
hence, the excitation of each of these elements must stay the same as in s until it changes.
The same is true of all the delay elements in I' since they are all excited in s, and so, if
the excitation changed before the element changed, it would be disabled and V would not
be possible from state s. Thus, r; = S; for each {y'} € T and r; = s; for each {y/} ¢ T .
Obviously, the same is true for the state reached by U; 7, and hence, Uy TU; € tT,,. O

Proof of Theorem 5.1: Let]<7 be the delay-completion of N. Let és be the GSW behavior
of N which is initial state compatible with B,, (and hence with]3’5 as well). Let TS be the

trace structure of B,.

First, suppose that N is single-change trace preserving with respect to state g. To prove
that N is multiple-change trace preserving, it must be shown that for any trace W € tT,,
there is a trace W € tT,,, where 14 JaTl,, =W. Let W = ’7'1 .. .7;1 and let 7; LY =7; for
each ¢. Then, W = T;1...7,. From Proposition 7.2, we know that for any trace W e tT,,

there is a trace w € tTS7 where @ = d\TI(T;)...d,I1(7;) and TI(7;) is any permutation

string of 7;. Since N is single-change trace preserving with respect to state ¢ and B, is
initial state compatible with B,, there must exist a trace w € tT, such that @ | aT, = w.
Hence, w = II(T7) ...TI(7,). Since each II(7;) could be any permutation string of 7;, each
I1(7;) could be any permutation string of 7;. It is easy to see that for every trace in w € tT
there is a trace W' € tT,, with all the elements of w in singleton sets and in the same order
as they appear in w. Thus, W/ = &, ...®,,, where ®; is a string of singleton sets consisting
of all the elements of II(7;). Since II(7;) could be any permutation string of 7;, the singleton
sets in ®; could appear in any order. It remains to be shown that the elements of each 7;
may occur simultaneously in B,, so that W € tT,,. Let U; = ¢, T = {{y'}|y’ € II(T1)}, and
Us = ®,...9,. Each permutation string of I' is equal to some ordering of ®¢, and since
®,...®, € tT,, for any ordering of ®,, U1V U;s € tT,, for any permutation string V of I'.
Since T; = U{yi}er{yi}, from Proposition 7.3, U1T1Us = T1®,...9, € tT,,. We can repeat

19

this procedure by substituting 7; for ®; in W’ and letting U; = 71, T = {{y'}|y* € II(T2)},
and U3 = ®3...9,. This procedure can be repeated until W’ = 7;...7, = W. Thus,
W € tT,, such that W | aT,,, = W and N is multiple-change trace equivalent with respect
to q.

Now suppose that T, is trace preserving. Let @ € th be a trace. Let W € tTm consist

of all the elements of @ in singleton sets. Since T}, is trace preserving, there is a trace
W € tT,, such that W JaT = W. Trace W must also consist of singleton sets, and so we
also have a trace w € t7 such that @ | al' = w. Therefore, N is also single-change trace
preserving with respect to g. |

References

(1]

E. Best and R. Devillers. “Interleaving and Partial Orders in Concurrency: A Formal Compari-
son”. In M. Wirsing, editor, Formal Description of Programming Concepts - 111, pages 299-322.
North-Holland, 1987.

”

E. Best and M. Koutny. “Petri Net Semantics of Priority Systems
Science, 96:175-215, 1992.

Theoretical Computer

J. A. Brzozowski. “Delay-Insensitivity and Ternary Simulation”. Theoretical Computer Science.
to appear.

J. A. Brzozowski and C-J. Seger. Asynchronous Circuits. Springer-Verlag, New York, NY,
1995.

J. A. Brzozowski and H. Zhang. Delay-Insensitivity and Semi-Modularity. Research Report
CS-97-11, Department of Computer Science, University of Waterloo, Waterloo, ON, Canada,
March 1997.

J. A. Brzozowski and H. Zhang. “Delay-Insensitivity and Semi-Modularity”. Formal Methods in
System Design. to appear. Also Research Report CS-97-11, Department of Computer Science,
University of Waterloo, Waterloo, ON, Canada, March 1997.

P. Degano, R. De Nicola, and U. Montanari. “A Partial Ordering Semantics for CCS”. Theo-
retical Computer Science, 75:223-262, 1990.

D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits.
The MIT Press, Cambridge, MA, 1989.

J. C. Ebergen. Translating Programs into Delay-Insensitive Circuits. PhD thesis, Depart-
ment of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven,
The Netherlands, October 1997. Also, CWI Trace 56, Center for Mathematics and Computer
Science, Amsterdam, The Netherlands, 1989.

G. L. Ferrari and U. Montanari. “The Observation Algebra of Spatial Pomsets”. In CON-
CUR ’91: 2nd International Conference on Concurrency Theory, pages 188-202, 1991.

V. Gupta, R. Jagadeensan, and V. Saraswat. “Truly Concurrent Constraint Programming”.
In Proceedings of the 7th International Conference on Concurrency Theory, Pisa, Italy, August
26-29 1996.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

D.A. Huffman. “The Synthesis of Sequential Switching Circutis”. IRF Transactions on FElec-
tronic Computers, 257:161-190 and 275-303, 1954.

20

[14]

[15]

[16]

[17]

R. Janicki. “A Formal Semantics of Concurrent Systems with a Priority Relation”. Acta

Informatica, 24(1):33-55, 1987.

R. Janicki and M. Koutny. “Invariant Semantics of Nets with Inhibitor Arcs”. In CONCUR °91:
2nd International Conference on Concurrency Theory, pages 317-331, 1991.

R. Janicki and M. Koutny. “Invariants and Paradigms of Concurrency Theory”. In Proceedings
of Parallel Architectures and Languages Furope, pages 59-74, 1991.

L. Lamport and N. Lynch. Distributed Computing: Models and Methods. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B, pages 1159-1196. the MIT Press
- Elsevier, 1990.

A. J. Martin. “The Limitations to Delay-Insensitivity in Asynchronous Circuits”. In Advanced

Research in VLSI, pages 263-278, 1990.

R. E. Miller. Switching Theory, Volume II: Sequential Circuits and Machines. John Wiley &
Sons, 1965.

C. E. Molnar, T. P. Fang, and F. U. Rosenberger. ”Synthesis of Delay-Insensitive Modules”.
In H. Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference on VLSI, pages 67-86,
Rockville, Maryland, 1985. Computer Science press.

D. E. Muller and W. S. Bartky. “A Theory of Asynchronous Circuits”. In Proceedings of an
International Symposium on Switching Theory, pages 204-243, April 1957.

V. R. Pratt. “Modeling Concurrency with Partial Orders”. Int. J. of Parallel Programming,
15(1):33-71, 1986.

D. K. Probst and H. F. Li. “Modeling Reactive Hardware Processes Using Partial Orders”.
Semantics for Concurrency, pages 324-343, 1990.

D. K. Probst and H. F. Li. “Using Partial-Order Semantics to Avoid the State Explosion
Problem in Asynchronous Systems”. Computer-Aided Verification, pages 146-155, 1990.

D. K. Probst and H. F. Li. “Partial-Order Model Checking: A Guide for the Perplexed”.
Computer-Aided Verification, pages 322-331, 1991.

W. Reisig. “On Semantics of Petri Nets”. Formal Models in Programming, pages 347-372,
1985.

W. Reisig. “Temporal Logic and Causality in Concurrent Systems”. In Concurrency 88, pages
121-139, 1988.

G. Rozenberg and R. Verraedt. “Subset Languages of Petri Nets Part I: The Relationship to
String Languages and Normal Forms”. Theoretical Computer Science, 26:301-326, 1983.

S. J. Silver. True Concurrency in Models of Asynchronous Circuit Behaviour. Master’s thesis,
University of Waterloo, 1999.

J.T. Udding. Classification and Composition of Delay-Insensitive Circuits. PhD thesis, Eind-
hoven University of Technology, Eindhoven, The Netherlands, 1984.

J. L. A. van de Snepscheut. Trace Theory and VLSI Design. Springer-Verlag, New York, NY,
1985.
V. Varshavsky, M. Kishinevsky, V. Marakhovsky, L. Rosenblum, A. Taubin, et al. Self-timed

Control of Concurrent Processes. Kluwer Academic Publishers, 1990.

T. Verhoeff. A Theory of Delay-Insensitive Systems. PhD thesis, Department of Mathematics
and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands, May
1994.

21

[34] Vogler. “A Generalization of Traces”. Theoretical Informatics and Applications, 25(2), 1991.

[35] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli. “A Unified Signal Transition Graph
Model for Asynchronous Control Circuit Synthesis”. Formal Methods in System Design, 9:139—
188, 1996.

[36] H. Zhang. Delay-Insensitive Networks. Master’s Thesis, Department of Computer Science,
University of Waterloo, Waterloo, ON Canada, 1997.

22

