
Feedback-Free Circuits in the Algebra of Transients

Mihaela Gheorghiu and Janusz Brzozowski

School of Computer Science,
University of Waterloo,

Waterloo, ON, Canada N2L 3G1
{mgheorgh,brzozo}@uwaterloo.ca

Abstract. An efficient simulation algorithm using an algebra of transients for
gate circuits was proposed by Brzozowski and Ésik. This algorithm seems capa-
ble of predicting all the signal changes that can occur in a circuit under worst-case
delay conditions. We verify this claim by comparing simulation with binary anal-
ysis. For any feedback-free circuit consisting of 1- and 2-input gates and started
in a stable state, we prove that all signal changes predicted by simulation occur
in binary analysis, provided that wire delays are taken into account. Two types of
finite automata play an important role in our proof.

1 Introduction

Detecting signal changes in digital circuits is important, because unwanted (hazardous)
signal changes may affect the correctness of computations, and increase the computa-
tion time and energy consumption. To address this problem, Brzozowski and Ésik [1]
proposed an infinite-valued algebra C of transients, and an efficient simulation algo-
rithm for gate circuits based on this algebra. In a companion paper [2] we compare the
simulation of a circuit in C to the traditional binary analysis. We show that simula-
tion of an arbitrary circuit is sufficient: all the changes that occur in binary analysis are
also predicted by the simulation. In general, however, simulation is more pessimistic
than binary analysis. It is the purpose of this paper to determine how pessimistic the
simulation can be.

Here we consider the class of feedback-free gate circuits with stable initial states.
Although this is a special case, it is important in practice. For this case, we show that
all the changes predicted by simulation also occur in binary analysis, provided that wire
delays are taken into account. Our result is limited to gate circuits constructed with 1-
or 2-input gates; the general case remains open.

This paper is as self-contained as possible. The reader should see [2] for more de-
tails, and [5] for complete background information and proofs.

2 Circuits, Networks, and Binary Analysis

For an integer n > 0, [n] denotes {1, . . . , n}. Boolean operations OR, NOT, and XOR
are denoted ∨, −, and Y, respectively.

Figure 1(a) shows a gate circuit consisting of an inverter and an OR gate. It has
input variable X1 and state variables sa and sb. Each state variable si has an excitation

Si, which is the Boolean function of the corresponding gate. Here, Sa = X1, and
Sb = X1 ∨ sa. The value of a variable may be different from that of its excitation. This
allows us to represent the delay of a gate. A variable normally follows its excitation.
However, if the excitation changes quickly, the variable may fail to follow the excitation,
because of the inertial nature of the delay.

To account for other delays, we construct the complete counterpart of a circuit by
adding the following variables. For each input Xi, we add an input-gate variable si; we
represent the input gate by a triangle. We also consider each fork as a fork gate,1 and add
a variable for each fork output; we represent a fork gate by a rectangle. Finally, we add
a variable for each wire. The excitations of the added variables are identity functions.
For our example, see Fig. 1. We add input-gate variable s1, fork-gate variables s3 and
s4, wire variables s2, s5, s7, and s8, and we relabel sa as s6 and sb as s9. The new
excitations are: S1 = X1, S2 = s1, S3 = S4 = s2, S5 = s3, S6 = s5, S7 =
s6, S8 = s4, S9 = s7 ∨ s8.

(b)

s1

s3

s4

s6
s9

s8

s7s5

s2
X1

sb

sa

X1

(a)

Fig. 1. Circuit C1 and its complete version

Any circuit, complete or not complete, is modeled by a network.

Definition 1. A network [3] is a tuple N = 〈D,X ,S, E〉, where D is the domain of
values, X = {X1, . . . , Xn}, the set of inputs, S = {s1, . . . , sm}, the set of state vari-
ables with associated excitations S1, . . . , Sm, and E ⊆ (X × S) ∪ (S × S), a set of
directed edges. There is an edge between x and y iff the excitation of y depends on x.
The network graph is the digraph (X ∪ S, E).

A state of N is an m-tuple b of values fromD assigned to state variables s1, . . . , sm.
A total state is an (n + m)-tuple c = a · b of values from D, the n-tuple a being the
inputs, and the m-tuple b, the state. The value of Si in a ·b is denoted Si(a ·b). The tuple
of all Si(a · b), for i ∈ [m], is denoted S(a · b). For any a · b, the set of unstable state
variables is U(a ·b) = {si | bi 6= Si(a ·b)}. Thus, a ·b is stable iff U(a ·b) = ∅. For any
state variable si ∈ S, we define its fan-in set φ(si) = {x | x ∈ X ∪ S, (x, si) ∈ E}.
We call state variables si and sj related if siE

+sj or sjE
+si, where E+ is the transitive

closure of E ; otherwise, we call them unrelated.
For binary analysis we use the binary domain,D = {0, 1}. We describe the behavior

of a network started in a given state with the input kept constant at value a ∈ {0, 1}n

by defining a binary relation Ra on the set {0, 1}m of states of N . For any b ∈ {0, 1}m,
bRab, if U(a · b) = ∅, and bRabK , if U(a · b) 6= ∅, and K is any nonempty subset

1 Our reason for calling input delays and forks gates will become clear later.

of U(a · b), where by bK we mean b with the variables in K complemented. No other
pairs are related by Ra. As usual, we associate a digraph with the Ra relation, and
denote it Ga.

For given a ∈ {0, 1}n, and b ∈ {0, 1}m we define the set of all states reachable from
b in relation Ra as reach(Ra(b)) = {c | bR∗

ac}, where R∗
a is the reflexive and transitive

closure of Ra. We denote by Ga(b) the subgraph of Ga corresponding to reach(Ra(b)).

Example 1. For the complete circuit in Figure 2, with excitations S1 = X1, S2 =
X2, S3 = s1, S4 = s2, S5 = s3 ∨ s4, we show G01(10101), where tuples are shown
as words, unstable variables are underlined, and boldface features and edge labels are
for later use.

s4

X1

X2

s5

s1

s2

s3

s4

11101

S4

s4s4

S3

s3

11111
S3

01010

1 0101

01101
S3

s3

s3

00101

0100000000

011110100 1 0101100001
S4

s4S4

S4

Fig. 2. Circuit C2 and its binary analysis

3 Transients, Gate Automata, and Extended Functions

A transient [1] is a nonempty word over {0, 1} in which no two consecutive symbols
are the same. Thus the set of all transients is

T = 0(10)∗ ∪ 1(01)∗ ∪ 0(10)∗1 ∪ 1(01)∗0.

Transients represent changing signals in a natural way; for instance, transient 010 rep-
resents a signal changing from 0 to 1 to 0. For any t ∈ T we denote by α(t) and
ω(t) its first and last characters, respectively, and by |t|, its length. A transient can be
obtained from any nonempty binary word by contraction, i.e., the elimination of dupli-
cates immediately following a symbol (e.g., the contraction of 00100011 is 0101). For
a binary word s we denote its contraction by ŝ. For any t, t′ ∈ T, we denote by t ◦ t

′

concatenation followed by contraction, i.e., t ◦ t
′ = t̂t′.

Extensions of Boolean functions to the domain T of transients were defined in [1].
Here we give an equivalent definition using finite automata, needed for later proofs. For
common Boolean functions, [1] gives simpler formulas for computing extensions. For

example, let ⊕ be the extension of the OR function. Then, for transients w,w′ of length
> 1, w ⊕w

′ = t, where t is such that

α(t) = α(w) ∨ α(w′), ω(t) = ω(w) ∨ ω(w′), and z(t) = z(w) + z(w′) − 1,

where z(t) is the number of 0s in t. Also,

t ⊕ 0 = 0 ⊕ t = t, and t⊕ 1 = 1 ⊕ t = 1.

Let si be the state variable of a gate, let φ(si) = {s1, . . . , sk}, and let the excitation
Si be Boolean function f : {0, 1}k → {0, 1}. We extend f to f : T

k → T. For
any tuple(t1, . . . , tk) of transients, f(t1, . . . , tk) is the longest transient the gate could
produce at its output, if its inputs changed as shown by the k transients. Formally, the
definition uses a finite automaton to model the gate behavior. For any j ∈ [k], we denote
by ej the j-th unit tuple in {0, 1}k that has a 1 in position j and 0s elsewhere. By taking
the component-wise exclusive OR of a tuple t ∈ {0, 1}k with ej , we obtain the tuple
t′ ∈ {0, 1}k that differs from t only in the jth component.

Definition 2. The gate automaton of a gate si with Boolean function f : {0, 1}k →
{0, 1} is an (uninitialized) Moore machine Gi = (Ii, O,Pi, τi, oi), where Ii = φ(si) is
the input alphabet, O = {0, 1}, the output alphabet, Pi = {0, 1}k, the set of states, τi :
Pi × Ii → Pi, the transition function defined for p ∈ Pi, sj ∈ Ii as τi(p, sj) = p Y ej ,
and oi : Pi → O, the output function defined for p ∈ Pi as oi(p) = f(p). If Gi has an
initial state p0

i , then it is denoted by (Gi, p
0
i).

Example 2. The automaton of an OR gate with inputs s1 and s2 is shown in Fig. 3.

10/1

s2

11/1
s1

01/1

s2

s100/0

Fig. 3. OR gate automaton

We extend τi to words as follows: for the empty word ε, τi(p, ε) = p, and for any
p ∈ Pi and w ∈ I∗

i , τi(p, wsj) = τi(p, w) Y ej . Any state of Gi can be the initial state,
depending on the tuple of transients for which we compute the extension. Suppose
the initial state is p0

i . In (Gi, p
0
i), any input word u ∈ I∗

i produces an output word v

as follows. If u is the empty word, then v = f(p0
i). Otherwise, u = u′sj produces

v = wf(τi(p
0
i , u)), where w is the output word of u′. The contraction v̂ of v is the

output profile of u. For any tuple (t1, . . . , tk) of transients, describing the changes of
variables s1, . . . , sk, we choose p0

i = (α(t1), . . . , α(tk)). Thus p0
i shows the initial

values of s1, . . . , sk. An input word u ∈ I∗
i determines the unique tuple (t1, . . . , tk)

of transients if |u|sj
= |tj | − 1, for all j ∈ [k], where |u|sj

is the number of times sj

occurs in u. There may be several input words determining a given tuple of transients;
let U(t1, . . . , tk) be the set of all words determining (t1, . . . , tk). Let V(t1, . . . , tk) be
the set of output profiles of the words in U(t1, . . . , tk), and let vmax(t1, . . . , tk) be the
longest profile in V(t1, . . . , tk).

Definition 3. For any Boolean function f : {0, 1}k → {0, 1}, we define its extension
f : Tk → T by f(t1, . . . , tk) = vmax(t1, . . . , tk), for all (t1, . . . , tk) ∈ T

k .

Definition 4. For gate automaton (Gi, p
0
i), an input word u ∈ I∗

i is called worst-case
if u determines (t1, . . . , tk), and has the longest output profile among the words in
U(t1, . . . , tk), i.e., if v̂ = vmax(t1, . . . , tk), where v is the output word of u.

Example 3. We illustrate the new concepts of this section. Consider the automaton of
Fig. 3, with p0

i = 00. The output produced by u = s1s2s1 is v = 0111, and its output
profile is v̂ = 01. If u = s1s1s2s2, then v = 01010, and v̂ = 01010. Also

U(010, 010) = {s1s2s1s2, s1s2s2s1, s1s1s2s2, s2s1s1s2, s2s1s2s1, s2s2s1s1}.

We compute 01 ⊕ 010. We find U(01, 010) = {s1s2s2, s2s1s2, s2s2s1} and V =
{01, 0101}. Hence 01 ⊕ 010 = 0101. Word s2s2s1 is worst-case, in contrast to s1s2s2

or s2s1s2.

4 Simulation

To simulate a circuit having binary network N = 〈{0, 1},X ,S, E〉, we use the transient
network N = 〈T,X ,S, E〉. The inputs and state variables of N and N are the same, but
in N they take values in the domain T, and excitations in N are the extensions to T of
the Boolean excitations in N . Binary variables, words, tuples and excitations in N are
denoted by italic characters (e.g., s, S). Transients, tuples of transients, and excitations
in N are denoted by boldface characters (e.g., s, S).

The simulation consists of Algorithm Ã [1] given below. We want to know what
happens when the network starts in a stable binary initial state ã · b, and the input is
changed to a. We set the input of network N to ã◦a, where ◦ is applied componentwise.
We then change all variable values to the values of their excitations. For feedback-free
circuits Ã always terminates. Let the sequence of states produced by Ã be s

0, . . . , sH .
This sequence is nondecreasing in the prefix order on T; we say that Ã is monotonic.

Algorithm Ã
a = ã ◦ a;
s
0 := b;

h := 1;
s
h := S(a · s0);

while (sh <> s
h−1) do

h := h + 1;
s
h := S(a · sh−1);

X1 s1 s2 s3 s4 s5 s6 s7 s8 s9 state
01 0 0 0 0 0 1 1 0 1 s

0

01 01 0 0 0 0 1 1 0 1 s
1

01 01 01 0 0 0 1 1 0 1 s
2

01 01 01 01 01 0 1 1 0 1 s
3

01 01 01 01 01 01 1 1 01 1 s
4

01 01 01 01 01 01 10 1 01 1 s
5

01 01 01 01 01 01 10 10 01 1 s
6

01 01 01 01 01 01 10 10 01 101 s
7

Example 4. For the circuit of Fig. 1(b), the extended excitations are: S1 = X1, S2 =
s1, S3 = S4 = s2, S5 = s3,S6 = s5, S7 = s6, S8 = s4, S9 = s7 ⊕ s8. Input X1

changes from ã = 0 to a = 1, and b = 000001101. The result is in the table above.

Theorem 1. Let Ñ = 〈T,X , S̃ , Ẽ〉 be the complete version of a feedback-free network
N = 〈T,X ,S, E〉. Let s

H be the result of Algorithm Ã for Ñ started in stable binary
total state ã · b̃, with input ã ◦ a. Let s

G be the result of Algorithm Ã for N, started in
stable binary total state ã · b, where bi = b̃i, for all si ∈ S, with the same input. Then
s
H and s

G agree on the variables in S.

The proof is given in [5]. The theorem shows that adding wire delays to N does not
affect the number of signal changes in N. In other words, simulation takes wire delays
into account automatically.

5 Covering of Simulation by Binary Analysis

Let N be the binary network of a complete feedback-free circuit. We start N in stable
total state ã · b, and change the input tuple ã to a. In the resulting state a · b only the
input gates corresponding to the inputs that change are unstable, all other state variables
being stable. Let Ga(b) be the result of the binary analysis of N with initial state a · b.
Here, by a path in Ga(b) we always mean a path starting in state b.

Definition 5. Let π = s0, . . . , sh be any path in Ga(b). Recall that each sj is a tuple

(sj
1, . . . , s

j
m). For any i ∈ [m], we denote by σ

π
i the transient ̂s0

i . . . sh
i showing the

changes of si along π. We call σ
π
i the history of si. We also define Σ

π
i to be Êi, where

Ei = Si(a · s0) . . . Si(a · sh) is the transient showing the changes of Si along π. We
call Σ

π
i the excitation history of si. We denote by σ

π the tuple (σπ
1 , . . . , σπ

m).

Let N be the transient counterpart of N , and let the result of Algorithm Ã for N,
with initial state ã · b, and input ã ◦ a be s

0, . . . , sH . If we find a path π in Ga(b) whose
history matches the last state s

H of the simulation, then π covers all simulation states,
due to the monotonicity of Algorithm Ã. Thus, we are looking for a matching path,
defined next.

Definition 6. Let π be a path in Ga(b). Let V ⊆ S be a set of state variables in N .
Path π is matching on V if σ

π
i = s

H
i , for all si ∈ V .

Our main result is stated next. The rest of the paper is devoted to its proof.

Theorem 2. Binary analysis covers simulation in the following sense. There exists a
path π in Ga(b) that is matching on S, i.e., that satisfies σ

π = s
H .

Let G′
a(b) be the subgraph of Ga(b) in which exactly one unstable variable changes

at each step. For example, G′
a(b) is shown in boldface in Fig. 2. The next proposi-

tion [5], stated without proof, allows us to restrict ourselves to G′
a(b). Paths π and π′

are equivalent if they have the same history, i.e., if σ
π = σ

π′

.

Proposition 1. For any path π in Ga(b) there exists an equivalent path π′ in G′
a(b).

Since the circuit is feedback-free, we can arrange the state variables of N in lev-
els as follows: level 0 consists of the input gates; level 1 is comprised of all vari-
ables whose fan-in set belongs to level 0, and in general level l consists of all vari-
ables whose fan-in variables belong to levels < l, and which have at least one fan-in
variable in level l − 1. This level assignment results in even levels containing gate
variables and odd levels containing wire variables.2 We use level(si) to denote the
level of si. The last level of any network is always a gate level, so N has an even
number 2L of levels. Let 2l, where 0 < l ≤ L, be a gate level of the circuit. Let
V2l = {si ∈ S | level(si) = 2l}. Let V =

⋃
si∈V2l

φ(si). Suppose V = {s1, . . . , sK}.

Note that s1, . . . , sK are all wire variables and are initially stable; they are not nec-
essarily all of level 2l − 1, but they belong to levels < 2l. The circuit is partitioned
by these variables into two areas, denoted L2l and R2l. Area L2l contains the gates
of level 0 and those of levels < 2l together with their fan-in variables. Area R2l con-
tains the gates of level 2l and those of levels > 2l together with their fan-in variables.
Since the circuit is feedback-free, there are no signals flowing from R2l to L2l, but
there may be wires that connect outputs of gates in L2l to inputs of gates of levels
> 2l in R2l. Formally, L2l =

⋃
level(si)=0

{si} ∪
⋃

0<level(si)<2l,

level(si) even

({si} ∪ φ(si)), and

R2l =
⋃

level(si)=2l

{si} ∪
⋃

level(si)>2l,

level(si) even

({si} ∪ φ(si)). Note that L2l, V,R2l form a

partition of the set S of state variables in N , L2 =
⋃

level(si)=0

{si}, R2L+2 = ∅ and

L2L+2 = S, if we assume a fictitious gate level 2L + 2.

Example 5. We illustrate the partition in Fig. 4. Here l = 3. We relabel the state vari-
ables in L2l with subscripted λs, and those in R2l, with subscripted ρs.

L6

X1

X2

X3

X4

X5

gate
levels

λ7

λ8

λ11

λ10

2

λ6

0

λ1

λ4

s2

ρ1

s1

R6

6

ρ2

s3

s4

ρ3

ρ4

ρ5

84

λ12

λ13

λ2

λ3

λ5

λ9

ρ6

Fig. 4. Sample circuit with partition.

2 For this reason we consider input delays and forks as gates.

5.1 Proof of Theorem 2

The proof of Theorem 2 is by induction on l, where 1 ≤ l ≤ L. We give only a
sketch of the proof here (see [5] for details). We show there exists a path in G′

a(b) that
is matching on L2L+2 = S. The basis consists of showing there exists a path that is
matching on L2, i.e., on the input-gate variables. In the induction step we assume we
have a path τ that is matching on L2l, and construct a path π that is matching on L2l+2.
A preliminary result characterizes π in terms of the hazard-preserving and worst-case
properties defined next.

Definition 7. Let π be a path in Ga(b), and si a state variable that is initially stable.
We call π hazard-preserving on si if σ

π
i = Σ

π
i . For V ⊆ S, path π is hazard-preserving

on V if it is hazard-preserving on all si ∈ V .

Definition 8. Let π be a path in Ga(b), and si a gate variable implementing Boolean
function f : {0, 1}k −→ {0, 1} that depends only on state variables. Let φ(si) =
{s1, . . . , sk}. We call π worst-case on si if Σ

π
i = f(σπ

1 , . . . , σπ
k). For a set of gate

variables V ⊆ S, path π is worst-case on V if it is worst-case on each si ∈ V .

Example 6. Consider the graph in Fig. 2. Path π = 10101, 00101, 00001, 01001, 01011
is hazard-preserving on s3 and s4, but not on s5, since σ

π
5 = 1 and Σ

π
5 = 101. Path π

is worst-case on s5, but π′ = 10101, 11101, 11111,01111, 01011 is not, since Σ
π′

5 = 1
and 10⊕ 01 = 101.

Lemma 1. Path π in G′
a(b) is matching on L2l+2 iff it is matching on L2l, hazard-

preserving on V and V2l, and worst-case on V2l.

5.2 Hazard-Preserving Paths

We now characterize hazard-preserving paths by automata. For V = {s1, . . . , sk} ⊆ S,
let Ξ(V) = {Si | si ∈ V }, and ∆(V) = V ∪ Ξ(V). Suppose the variables in V are
initially stable in G′

a(b), unrelated to each other, and have pairwise distinct excitations.
Recall that every state variable represents a delay. We want to describe the hazard-
preserving behavior of these delays in G′

a(b), i.e., we are interested in paths on which
the k delays do not ‘lose’ any changes. We describe the hazard-preserving behavior
of si ∈ V by the automaton shown in Fig. 5(a); this is Di

V , the delay automaton for
variable si. The label on a transition of the automaton shows the excitation or variable
that changes in that transition. Subscript j ranges over [k] \ i. The label of each state
shows whether si is stable (label is ∅) or unstable (label is {si}) in that state. Changes
of excitations or variables other than Si and si do not alter the state, since variables in V

are unrelated and have distinct excitations. Variable si changes each time it is unstable,
so as not to lose any changes.

To describe the hazard-preserving behavior of all si ∈ V at the same time we take
the direct product [4] DV of D1

V , . . .Dk
V .

Example 7. The delay automaton of set V = {s1, s2} is shown in Fig. 5(b). The
nonempty components of a state label show the variables that are unstable.

({s1}, {s2})

si

∅ {si}

Sj , sjSj , sj

Si

(b)(a)

({s1}, ∅)

S1

s1

S2 s2

S1

(∅, {s2})

S2 s2

(∅, ∅)

s1

Fig. 5. Delay automata: (a) for variable si, and (b) for set {s1, s2}

Let L(DV) be the language accepted by DV . We call the words in L(DV) balanced
on V . By the definition of the direct product, we have L(DV) = L(D1

V)∩ . . .∩L(Dk
V).

¿From the definition of each Di
V , it follows that w ∈ ∆∗

V belongs to L(Di
V) iff

w↓{Si,si}= (Sisi)
ci , for some integer ci ≥ 0, where w↓A is the projection of w to

alphabet A. Then a word w ∈ ∆∗
V is balanced on V iff, for all si ∈ V , w↓{Si,si}=

(Sisi)
ci , for some integer ci ≥ 0. Language L(DV) is a regular subset of the Dyck

language Dk [6].
We now establish the relation between hazard-preserving paths and delay automata.

Let V be defined as before. We limit our interest to paths that are hazard-preserving on V .
To any path π in G′

a(b) we associate wπ ∈ ∆∗
V called the path-word on V as

follows: we label each step of the path with Si if Si changes, and with si if si changes
in that step, for Si ∈ Ξ(V), si ∈ V . Other steps are labelled by ε. Since the variables
of V are unrelated and have distinct excitations, each step has a single label. Path-word
wπ is the concatenation of the labels along path π.

Example 8. Consider Ga(b) of Example 1. The subgraph G′
a(b) is shown in Fig. 2 by

boldface edges. We choose V = {s3, s4} and show the labels on edges. The values of
s3, s4 are also in boldface in each state. For π = 10101, 00101, 01101, 01111, 01011,
wπ = S3S4s4s3.

We denote by HV the set of all paths in G′
a(b) that are hazard-preserving on V .

Let WV = {wπ | π ∈ HV }. The delay automaton is quite general, and applies to
any network N and any G′

a(b), as long as we find a set V that satisfies the necessary
requirements. For a particular network N and G′

a(b), not all words accepted by the
automaton correspond to paths in G′

a(b). We find a necessary and sufficient condition
for a balanced word to be a path-word.

Definition 9. A word w ∈ L(DV) is relevant to G′
a(b) iff there exists a path π in

G′
a(b) such that w↓Ξ(V)= wπ↓Ξ(V). We denote by L(DV)↓G′

a(b) the set of all words
in L(DV) that are relevant to G′

a(b).

Example 9. For the circuit and G′
a(b) of Example 8, with V = {s3, s4}, the delay

automaton DV is in Fig. 5 (right), with S3, s3, S4, s4 taking the roles of S1, s1, S2, s2,

respectively. For example, S4S3s4s3 and S3s3S4s4 are relevant, S3s3S3S4s3s4 and
S3S4s4S4s3s4 are irrelevant.

We state without proof (see [5] for details) the following proposition that reduces
finding a hazard-preserving path to finding a relevant balanced word.

Proposition 2. WV = L(DV)↓G′

a(b).

5.3 Worst-Case Paths

We now characterize worst-case paths using gate automata. Let si be any gate variable
in S, with φ(si) = {s1, . . . , sk}, and let (Gi, p

0
i) be its gate automaton, with p0

i =
(b1, . . . , bk) (the values of s1, . . . , sk in b). For any path π in G′

a(b) we label with sj

each step in which sj changes, for all j ∈ [k]. The word obtained by concatenating
the labels along π is an input word uπ ∈ I∗i that shows how the fan-in variables of
si change along π. The output word vπ produced by uπ shows how the excitation Si

changes on π. Let t1, . . . , tk be the transients determined by uπ. Then the following
hold: 1) σ

π
j = tj , for all j ∈ [k], and 2) Σ

π
i = v̂π. Let π be a path in G′

a(b) labelled
with uπ as above.

Proposition 3. Path π is worst-case on si iff uπ is a worst-case word for (Gi, p
0
i).

5.4 Delay Automata and Gate Automata

Having reduced finding a hazard-preserving path to finding a relevant balanced word,
and finding a worst-case path to finding a worst-case word, we now state an important
lemma that relates these two kinds of words, and guarantees the existence of a path that
is both hazard-preserving and worst-case. For any gate variable si of a feedback-free cir-
cuit, we have a delay automaton Dφ(si) for its fan-in set, and a gate automaton (Gi, p

0
i).

For any alphabet A, a word r ∈ A∗ is called prefix-restricted if r has a prefix r′

having exactly one occurrence of each letter of r. We call r′ the key prefix of r. For
example, word abaabb is prefix-restricted, with key prefix ab, but aabab is not prefix-
restricted.

Recall that Ii = φ(si), Ξ(Ii) is the set of the excitations of the variables in Ii, and
∆Ii

= Ii ∪Ξ(Ii) is the alphabet of DIi
. The lemma below relates words over Ξ(Ii) to

words over Ii in the following sense. Given any prefix-restricted word over Ξ(Ii), we
can always find a worst-case word over Ii, such that an interleaving of the two words is
a balanced word. The result is limited to 1- and 2-input gates; we conjecture the result
to be true in the general case.

Lemma 2. Let (Gi, p
0
i) be the gate automaton of variable si, for a 1- or 2-input gate.

For any prefix-restricted word r ∈ Ξ(Ii)
∗ having key prefix r′, there exists a balanced

word w ∈ L(DIi
) such that w↓Ξ(Ii)= r, and w↓Ii

is a worst-case word for (Gi, p
0
i).

Also, w has a prefix w′ such that w′↓Ξ(Ii)= r′, and the output profile of w′↓Ii
has

length 2 if the output profile of w↓Ii
has length > 1.

Proposition 2 and Lemma 2 help us construct a path π satisfying the conditions of
Lemma 1, and hence conclude the proof of Theorem 2. For details see [5].

6 Conclusions

Our results can be summarized as follows. Assume that we have a feedback-free gate
network N , in which state variables are associated with gates only. We perform the
binary analysis of N started in a stable state. We extend the Boolean functions in N to
functions on transients. This gives us the transient version N of N . We now simulate
N using algorithm Ã; for feedback-free circuits this algorithm always terminates. Next,
we add wire delays to N , obtaining the complete binary network Ñ and its transient
counterpart Ñ. By Theorem 1, the simulation of Ñ agrees with the simulation of N on
the variables of N. Finally, by Theorem 2, we know that binary analysis of Ñ covers
the simulation of Ñ, and hence that of N. In conclusion, we have shown that simulation
of feedback-free circuits is not pessimistic, if wire delays are taken into account.

Acknowledgments: This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada under grant No. OGP0000871.

References

1. Brzozowski, J. A., Ésik, Z.: Hazard algebras. Formal Methods in System Design, to appear.
2. Gheorghiu, M., Brzozowski, J. A.: Simulation of gate circuits in the algebra of transients.

Proc. CIAA 2002, this volume.
3. Brzozowski, J. A., Seger, C.-J. H.: Asynchronous circuits. Springer-Verlag (1995)
4. Eilenberg, S.: Automata, languages and machines, Academic Press, A (1974)
5. Gheorghiu, M.: Circuit simulation using a hazard algebra. MMath Thesis, School of Computer

Science, University of Waterloo, Waterloo, ON, Canada (2001)
6. Salomaa, A.: Formal languages, Academic Press (1973)

