
Simulation of Gate Circuits in the Algebra of Transients

Janusz Brzozowski and Mihaela Gheorghiu

School of Computer Science,
University of Waterloo,

Waterloo, ON, Canada N2L 3G1
{brzozo,mgheorgh}@uwaterloo.ca

Abstract. We study simulation of gate circuits in algebra C recently introduced
by Brzozowski and Ésik. A transient is a word consisting of alternating 0s and 1s;
it represents a changing signal. In C, gates process transients instead of 0s and 1s.
Simulation in C is capable of counting signal changes, and detecting hazards. We
study two simulation algorithms: a general one, A, that works with any state, and
Ã, that applies if the initial state is stable. We show that the two algorithms agree
in the stable case. We prove the sufficiency of the simulation: all signal changes
occurring in binary analysis are also predicted by Algorithm A.

1 Introduction

Asynchronous circuits, in contrast to synchronous ones, operate without a clock. In-
terest in asynchronous circuits has grown in recent years [4, 6, 9], because they offer
the potential for higher speed and lower energy consumption, avoid clock distribution
problems, handle metastability safely, and are amenable to modular design.

Despite its advantages, asynchronous design has some problems, among them, haz-
ards. A hazard is an unwanted signal change, caused by stray delays. A hazard may af-
fect the correctness of a computation. Because hazards are important, much research has
been done on their detection. Multiple-valued algebras play an important role here [2].
Recently, Brzozowski and Ésik introduced an infinite-valued algebra C, which sub-
sumes all the previously used algebras [1], and a polynomial-time simulation algorithm
based on C. The algorithm is capable not only of detecting hazards, but also of counting
the number of signal changes in the worst case; this provides an estimate of the energy
consumption.

The purpose of this paper is to compare the Brzozowski-Ésik simulation of a circuit
with the binary analysis of the circuit. We prove that all the changes that occur in the
binary analysis, are also predicted by simulation.

2 The Network Model

The material here is based on [3]. For an integer n > 0, [n] denotes {1, . . . , n}. Boolean
operations AND, OR, and NOT are denoted ∧, ∨, and −, respectively. Given a gate
circuit with n inputs and m gates, we associate an input variable Xi with each input,
i ∈ [n], and a state variable sj with the output of each gate, j ∈ [m]. Input and state

s3s2

s1

X1

Fig. 1. Sample gate circuit

variables take values in the binary domain D = {0, 1}. Each state variable si has an
excitation Si, which is the Boolean function of the corresponding gate.

Definition 1. A network is a tuple N = 〈D,X ,S, E〉, where D is the domain of values,
X = {X1, . . . , Xn}, the set of inputs, S = {s1, . . . , sm}, the set of state variables with
associated excitations S1, . . . , Sm, and E ⊆ (X ×S)∪ (S ×S), a set of directed edges.
There is an edge between x and y if and only if the excitation of y depends on x. The
network graph is the digraph (X ∪ S, E). Note that D need not be {0, 1}.

Example 1. The circuit of Fig. 1 has input X1, state variables s1, s2, s3, and excitations
S1 = X1, S2 = s1 ∧ s3, S3 = s2 in domain D = {0, 1}. Its network graph is
shown in Fig. 2.

X1 s1 s2 s3

Fig. 2. Network graph for circuit of Fig. 1

A state of N is an m-tuple b of values fromD assigned to state variables s1, . . . , sm.
A total state is an (n + m)-tuple c = a · b of values from D, the n-tuple a being the
values of the inputs, and the m-tuple b, the values of state variables. The dot “ · ”
separates inputs from state variables.

Each excitation Si is a function of some inputs Xj1 , . . . , Xjl
∈ X , and some state

variables si1 , . . . , sik
∈ S, i.e., Si = f(Xj1 , . . . , Xjl

, si1 , . . . , sik
), where f : Dl+k →

D. We also treat Si as a function from Dn+m into D. Thus, let S̃i : Dn+m → D be
S̃i(a · b) = f(aj1 , . . . , ajl

, bi1 , . . . , bik
), for any a · b. ¿From now on we write Si for S̃i;

the meaning is clear from the context.
For any i ∈ [m], the value of Si in total state a · b is denoted Si(a · b). The tuple

S1(a ·b), . . . , Sm(a ·b) is denoted by S(a ·b). For any a ·b, we define the set of unstable
state variables as U(a · b) = {si | bi 6= Si(a · b)}. Thus, a · b is stable if and only if
U(a · b) = ∅, i.e., S(a · b) = b.

3 Binary Analysis of Networks

In response to changes of its inputs, a circuit passes through a sequence of states
as its internal signals change. By analyzing a circuit we mean exploring all possi-
ble sequences of states. This section describes a formal analysis model introduced by

Muller [10], and later called the General Multiple Winner (GMW) model. Our presen-
tation follows that of [3], but here we refer to the GMW model as binary analysis.

In this section we use the binary domain, D = {0, 1}. We describe the behavior of
a network started in a given state with the input kept constant at value a ∈ {0, 1}n, by
defining a binary relation Ra on the set {0, 1}m of states of N . For any b ∈ {0, 1}m,
bRab, if U(a · b) = ∅, i.e., total state a · b is stable, and bRabK , if U(a · b) 6= ∅, and
K is any nonempty subset of U(a · b), where by bK we mean b with all the variables in
K complemented. No other pairs of states are related by Ra. As usual, we associate a
digraph with the Ra relation, and denote it Ga. In examples, we represent tuples without
commas or parentheses, for convenience. Thus (0, 0, 0) is written as 000, etc.

For given a ∈ {0, 1}n, and b ∈ {0, 1}m we define the set of all states reachable from
b in relation Ra as reach(Ra(b)) = {c | bR∗

ac}, where R∗

a is the reflexive and transitive
closure of Ra. We denote by Ga(b) the subgraph of Ga corresponding to reach(Ra(b)).

(a)

100

110

001

111

101

000

(b)

1 10

000

001

111

01001 1 100

1 01

Fig. 3. Sample Ga(b) graphs for circuit of Fig. 1

Example 2. For the circuit in Fig. 1, graph G0(000) is shown in Fig. 3(a), where un-
stable variables are underlined. Note that the graph contains no stable states. Graph
G1(111) is shown in Fig. 3(b). Here there is one stable state. To illustrate hazardous
behavior, consider path π1 = 111, 011, 001. Here s2 changes once from 1 to 0, and s3

does not change. However, along path π2 = 111, 110, 100, 101, 011, 001, s2 changes
from 1 to 0 to 1 to 0, and s3 changes from 1 to 0 to 1. If the behavior of π1 is the
intended one, then π2 violates it. Along π2 there are unwanted signal pulses: a 1-pulse
in s2, and a 0-pulse in s3. The first pulse is an example of a dynamic hazard, and the
second, of a static hazard. These pulses can introduce errors in the circuit operation.

4 Transients

While binary analysis is an exhaustive analysis of a circuit, it is inefficient, since the
state space is exponential. Simulation using a multi-valued domain is an efficient alter-
native, if not all the information from binary analysis is needed.

The material here is based on [1]. A transient is a nonempty word over {0, 1} in
which no two consecutive symbols are the same. Thus the set of all transients is

T = 0(10)∗ ∪ 1(01)∗ ∪ 0(10)∗1 ∪ 1(01)∗0.

Transients represent waveforms in a natural way, as shown in Fig. 4.

0101

10101

1010

010

Fig. 4. Transients as words for waveforms

We use boldface symbols to denote transients, tuples of transients, and functions of
transients. For any transient t we denote by α(t) and ω(t) its first and last characters,
respectively. A transient can be obtained from any nonempty binary word by contrac-
tion, i.e., the elimination of all duplicates immediately following a symbol (e.g., the
contraction of 00100011 is 0101). For a binary word s we denote by ŝ the result of its
contraction. For any t, t′ ∈ T, we denote by tt′ the concatenation of t and t′.

The prefix order on T is denoted≤, and is extended to tuples. For u = (u1, . . . ,um)
and v = (v1, . . . ,vm) in Tm, we say that u is a prefix of v and write u ≤ v, if ui ≤ vi,
for all i ∈ [m].

Extensions of Boolean functions to functions of transients are defined in [1]. Any
Boolean function f : Bn → B is extended to a function f : Tn → T so that, for any
tuple (t1, . . . , tn) of transients, f produces the longest transient when t1, . . . , tn are
applied to the inputs of a gate performing the Boolean function f . We give an example
of extended Boolean function next. For more details see [1].

Example 3. Let f to be the two-input OR function and f , its extension. Suppose we
want to compute f(01, 010). We construct a digraph D(01, 010) in which the nodes
consist of all the pairs (t, t′) of transients such that (t, t′) ≤ (01, 010), and there is
an edge between any two pairs p,p′ only if p ≤ p′, and p differs from p′ in exactly
one coordinate by exactly one letter. The resulting graph is shown in Fig. 5(a). Also,
for each node (t, t′) in the graph we consider as its label the value f(ω(t), ω(t′)). This
results in a graph of labels, shown in Fig. 5(b). The value of f(01, 010) is the contraction
of the label sequence of those paths in the graph of labels that have the largest number
of alternations between 0 and 1. Therefore, f(01, 010) = 0101.

Let z(t) and u(t) denote the number of 0s and the number of 1s in a transient
t, respectively. We denote by ⊗ and ⊕ the extensions of the Boolean AND and OR
operations, respectively. It is shown in [1] that for any w,w′ ∈ T of length > 1,
w ⊗w′ = t, where t ∈ T is such that

α(t) = α(w) ∧ α(w′), ω(t) = ω(w) ∧ ω(w′), and u(t) = u(w) + u(w′) − 1.

Similarly, w ⊕w′ = t, where t ∈ T is such that

α(t) = α(w) ∨ α(w′), ω(t) = ω(w) ∨ ω(w′), and z(t) = z(w) + z(w′) − 1.

If one of the arguments is 0 or 1 the following rules apply:

t⊕ 0 = 0 ⊕ t = t, t ⊕ 1 = 1 ⊕ t = 1,

t⊗ 1 = 1 ⊗ t = t, t ⊗ 0 = 0 ⊗ t = 0.

The complement t of t ∈ T is obtained by complementing each character of t. For
example, 1010 = 0101.

(0, 010)

(01, 01)

(01, 010)

(01, 0)(0, 0)

(a)

(0, 01)

(b)

0

1

0

1

1

1

Fig. 5. Graph D(01, 010) with labels

The algebra C = (T,⊕,⊗,−, 0, 1), is called the change-counting algebra, and
is a commutative de Morgan bisemigroup [1]. We also refer to C as the algebra of
transients.

We denote by t ◦ t′ concatenation followed by contraction, i.e., t ◦ t′ = t̂t′. The ◦
operation is associative, and also satisfies for t, t′, t1, . . . , tn ∈ T and b ∈ {0, 1}: 1. if
t ≤ t′ then b ◦ t ≤ b ◦ t′; and 2. t1 ◦ . . . ◦ tn = ̂t1 . . . tn.

5 Simulation with Algebra C

A simulation algorithm using algebra C has been proposed in [1]; it generalizes ternary
simulation [3, 5]. We now give a more general version of the simulation algorithm,
and show how it relates to the original version. This parallels the extension of ternary
simulation from stable initial state to any initial state [3].

Given any circuit, we use two networks: a binary network N = 〈{0, 1},X ,S, E〉
and the transient network N = 〈T,X ,S, E〉 having set T of transients as the domain.
The two networks have the same input and state variables, but these variables take
values from different domains. A state of network N is a tuple of transients; the value
of the excitation of a variable is also a transient. Excitations in N are the extensions to
C of the Boolean excitations in N . It is shown in [1] that an extended Boolean function
depends on one of its arguments if and only if the corresponding Boolean function
depends on that argument. Therefore N and N have the same set of edges.

Binary variables, words, tuples and excitations in N are denoted by italic characters
(e.g., s, S). Transients, tuples of transients, and excitations in N are denoted by boldface
characters (e.g., s, S). We refer to components of a tuple by subscripts (e.g., si, si).

5.1 General Simulation: Algorithm A

We want to record in the value of a variable all the changes in that variable since the start
of the simulation, as dictated by its excitation. For variables that are stable initially, since
the initial state agrees with the initial excitation, the state transient and the excitation
transient will be the same, so at each step we just copy the excitation into the variable.
For example, with initial state 0 and excitation 0, if the excitation becomes 01, we set
the variable to 01, and so on. For variables that are initially unstable, we first record the
initial state, and then the excitation. The operator that gives us the desired result in both
cases is ◦; thus we have new value = initial value ◦ excitation.

Let a · b be a (binary) total state of N. Algorithm A is defined as follows:

Algorithm A
s0 := b;
h := 1;
sh := b ◦ S(a · s0);
while (sh <> sh−1) do

h := h + 1;
sh := b ◦ S(a · sh−1);

where ◦ is applied to tuples component-wise, i.e., for all m-tuples u,v of transients,
u ◦ v = w, where w is such that wi = ui ◦ vi, for all i ∈ [m].

Algorithm A produces a sequence s0, s1, . . . , sh, . . ., where sh = (sh
1 , sh

2 , . . . , sh
m) ∈

Tm, for all h ≥ 0. This sequence can be finite, if we reach sh0 = sh0−1 for some
h0 > 0, or infinite otherwise. For convenience, we sometimes consider the finite se-
quences as being infinite, with sh = sh0 , for all h > h0.

It is shown in [1] that any extended Boolean function f : Tm → T is monotonic
with respect to the prefix order, i.e., for any x,y ∈ Tm, if x ≤ y, then f(x) ≤ f(y).

Proposition 1. The sequence resulting from Algorithm A is nondecreasing or mono-
tonic with respect to the prefix order, that is, for all h ≥ 0, sh ≤ sh+1.

Proof: Since extended Boolean functions are monotonic with respect to the prefix order,
so are excitations. We proceed by induction on h.
Basis, h = 0: s0 = b ≤ b ◦ S(a · s0) = s1.
Induction step: sh = b ◦ S(a · sh−1) ≤ b ◦ S(a · sh) = sh+1. �

For feedback-free circuits, the sequence resulting from Algorithm A is finite. We
can see this if we order the state variables by levels as follows. Level 1 consists of
all state variables which depend only on external inputs. Level l consists of all state
variables which depend only on variables of level < l, and on at least one variable of
level l − 1. Since the inputs do not change during simulation, level-1 variables change
at most once, in the first step of Algorithm A. In general, level-i variables change at
most i times. Since the number of levels is finite, our claim follows. Thus the running
time of A for feedback-free circuits is polynomial in the number of state variables.

For display reasons, in examples of simulation we write binary states as words, but
during computations they are regarded as tuples.

Example 4. Consider the feedback-free circuit in Fig. 6. The excitations are: S1 =
X2, S2 = X1 ⊗s1, S3 = s2, S4 = s2⊕s3. For the initial state a · b = 11 ·1011,
Algorithm A results in Table 1 (left).

s4

s3

s1
X2

X1 s2

Fig. 6. Circuit with finite simulation

Table 1. Results of Algorithms A and Ã

X1 X2 s1 s2 s3 s4 state
1 1 1 0 1 1 s

0

1 1 10 01 1 1 s
1

1 1 10 010 10 1 s
2

1 1 10 010 101 1010 s
3

1 1 10 010 101 10101 s
4

X1 X2 s̃1 s̃2 s̃3 s̃4 state
1 10 0 0 1 1 s̃

0

1 10 01 0 1 1 s̃
1

1 10 01 01 1 1 s̃
2

1 10 01 01 10 1 s̃
3

1 10 01 01 10 101 s̃
4

Example 5. For circuits with feedback the simulation sequence may be infinite. Con-
sider the circuit with feedback in Fig. 1. The excitation functions are: S1 = X1, S2 =
s1⊗s3, S3 = s2. We run Algorithm A for this network started in state a · b = 0 ·000;
the resulting sequence of states, which is infinite, is illustrated in Table 2.

Table 2. Infinite simulation

X1 s1 s2 s3 state
0 0 0 0 s

0

0 01 0 01 s
1

0 01 01 01 s
2

0 01 01 010 s
3

.

5.2 Simulation with Stable Initial State: Algorithm Ã
Algorithm A above makes no assumptions about the starting state a · b. If the network
starts in a stable total state and the inputs change, then we have a slightly simpler formu-

lation which we call Algorithm Ã; this is the version used in [1]. Assume N is started
in stable total state ã · b and the input tuple changes to a.

Algorithm Ã
a = ã ◦ a;
s̃0 := b;
h := 1;
s̃h := S(a · s̃0);
while (s̃h <> s̃h−1) do

h := h + 1;
s̃h := S(a · s̃h−1);

Example 6. We illustrate Algorithm Ã with the network in Fig. 6, started in stable state
ã·b = 11·0011, with the input changing to a = 10. The result is shown in Table 1 (right).

It is shown in [1] that the sequence of states resulting from Algorithm Ã is nonde-
creasing with respect to the prefix order, i.e., Algorithm Ã is monotonic.

For our next result, we modify the circuit model slightly. For each input Xi we add a
delay, called input gate, with output si and excitation Si = Xi. This follows the model
of [3]. The following shows that Algorithms A and Ã are equivalent for any network N

started in a stable state, provided that N contains input-gate variables.

Theorem 1. Let N be a network containing input-gate variables. Let s̃0, s̃1, . . . , s̃h, . . .

be the sequence of states produced by Algorithm Ã for N started in the stable (binary)
total state ã · b with the input tuple changing to a. Then, for all h ≥ 0, s̃h = sh, where
s0, s1, . . . , sh, . . . is the sequence of states produced by Algorithm A for N started in
total state a · b.

Proof: We prove the theorem by induction on h.
Basis, h = 0. Since s0 = b = s̃0, the basis holds.
First step, h = 1. In states s̃0 and s0 only input-gate variables can be unstable; therefore
only they can change in the first step of Ã, and of A. One easily verifies that s̃1 = s1.
Induction step. For any i ∈ [m], if si is an input-gate variable then sh

i = sh−1

i and
s̃h
i = s̃h−1

i , because in both algorithms the input-gate variables do not change after
the first step. By the induction hypothesis, we have sh

i = s̃h
i . If si is not an input-gate

variable, then it is initially stable in both algorithms, and its excitation does not depend
on the input tuple, i.e., Si(a · x) = Si(a · x), for any (internal) state tuple x. Then
sh
i = Si(a · sh−1) = Si(a · s̃h−1) = s̃h

i . Hence s̃h
i = sh

i , for all i ∈ [m]. �

6 Covering of Binary Analysis by Simulation

Given the two networks N and N modeling a gate circuit, we perform the binary anal-
ysis for N and Algorithm A for N, both with the same starting total state a · b. The
binary analysis results in graph Ga(b). Let the state sequence resulting from Algorithm
A be s0, s1, . . . , sh, . . ., where sh = (sh

1 , sh
2 , . . . , sh

m) ∈ Tm, for all h ≥ 0.
We now show that binary analysis is covered by Algorithm A. Take any path from

the initial state b in graph Ga(b). Suppose the length of the path is h. For each state

variable si we consider the transient that shows the changes of that variable along the
path. We show that this transient is a prefix of the value sh

i that variable si takes in the
h-th iteration of Algorithm A.

Example 7. Consider the binary counterpart of the transient network in Fig. 6 with
S1 = X2, S2 = X1 ∧ s1, S3 = s2, S4 = s2 ∨ s3. In G11(1011), with the same
initial total state as in Example 4, we find a path π = 1011, 1111, 0111, 0001 of length
h = 3. If we follow state variable s3, for example, it changes from 1 to 0 along this
path, so the corresponding transient is 10. The value of s3 in the third step of Algorithm
A is s3

3 = 101, which has 10 as a prefix. In fact, this holds for all variables, since
(10, 010, 10, 1) ≤ (10, 010, 101, 1010).

Definition 2. Let π = s0, . . . , sh be a path of length h ≥ 0 in Ga(b). Recall that each

sj is a tuple (sj
1, . . . , s

j
m). For any i ∈ [m], we denote by σ

π
i the transient ̂s0

i . . . sh
i ,

which shows the changes of the i-th state variable along path π. We refer to it as the
history of variable si along the path. We define Σ

π
i to be Êi, where Ei = Si(a·s0)Si(a·

s1) . . . Si(a · sh), and we call it the excitation history of variable si along path π. The
histories of all variables along π constitute tuple σ

π = (σπ
1 , . . . , σπ

m). The histories of
all excitations along π form tuple Σ

π = (Σπ
1 , . . . , Σπ

m).

Note that σ
π
i and Σ

π
i are not always the same. If si is unstable initially, they are obvi-

ously different, since their first characters are different, that is s0
i 6= Si(a · s0

i). Even if
the variable is stable initially, σ

π
i and Σ

π
i can still be different.

Example 8. An example of a path in graph G11(1011) of the previous example, on
which a variable changes fewer times than its excitation is path π = 1011, 0111, 0011,

where σ
π
3 = 1, whereas Σ

π
3 = 101.

Let sh be the state produced by Algorithm A after h steps, and let π = s0, . . . , sh

be a path of length h ≥ 0 in Ga(b), with s0 = b. We prove that σ
π ≤ sh.

Proposition 2. Let π = s0, . . . , sh, sh+1 be a path in Ga(b), and let π′ = s0, . . . , sh.
Then, σ

π ≤ σ
π′

◦ S(a · sh).

Proof: For any variable si we have one of the following cases.
Case I, si changes during the transition from sh to sh+1. Then si must be unstable
in state sh, i.e., Si(a · sh) 6= sh

i , and sh+1

i = Si(a · sh), by the definition of binary

analysis. Hence σ
π
i = ̂s0

i . . . sh
i sh+1

i = ̂s0
i . . . sh

i ◦ sh+1

i = σ
π′

i ◦ Si(a · sh).
Case II, si does not change during the transition from sh to sh+1. Then sh+1

i = sh
i ,

by the definition of binary analysis. Then σ
π
i = ̂s0

i . . . sh
i sh+1

i = ̂s0
i . . . sh

i = σ
π′

i ≤

σ
π′

i ◦ Si(a · sh). Thus, our claim holds. �

Corollary 1. For any path π = s0, . . . , sh, sh+1 in Ga(b), with π′ = s0, . . . , sh we
have σ

π ≤ s0 ◦ Σ
π′

.

Proof: σ
π ≤ σ

π′

◦ S(a · sh) ≤ (. . . ((s0 ◦ S(a · s0)) ◦ S(a · s1)) ◦ . . .) ◦ S(a · sh) =

s0 ◦ (S(a · s0) ◦ S(a · s1) ◦ . . . ◦ S(a · sh)) = s0 ◦ Σ
π′

. �

Proposition 3. For any path π = s0, . . . , sh in Ga(b), Σ
π ≤ S(a · σπ).

Proof: Let πj = s0, . . . , sj , for all j such that 0 ≤ j ≤ h. Then σ
π0 ≤ σ

π1 ≤ . . . ≤
σ

π. Thus a ·σπ0 ≤ a ·σπ1 ≤ . . . ≤ a ·σπ, which means that a ·σπ0 , a ·σπ1 , . . . , a ·σπ

is a subsequence q of nodes on a path p from a · α(σπ
1) . . . α(σπ

m) = a · s0 = a · σπ0

to a · σ
π in the graph D(a · σ

π). For any i ∈ [m], we consider the labeling of graph
D(a·σπ) with Boolean excitation Si. Let λ be the sequence of labels of p. The sequence
of labels on q is Ei = Si(a · s0), Si(a · s1), . . . , Si(a · sh). Since q is a subsequence of
p, Êi ≤ λ̂. By the definition of extended Boolean functions, Si(a · σπ) is the longest
transient obtained by the contraction of the label sequences of paths from a · σ

π0 to
a · σπ in graph D(a · σπ). Hence λ̂ ≤ Si(a · σπ). By the definition of the excitation
history, Σ

π
i = Êi. It follows that Σ

π
i ≤ Si(a · σπ). �

Theorem 2. For all paths π = s0, . . . , sh in Ga(b), with s0 = b, σ
π ≤ sh, where sh is

the (h + 1)st state in the sequence resulting from Algorithm A.

Proof: We prove the theorem by induction on h ≥ 0.
Basis, h = 0. We have π = s0 = b = s0; hence σ

π = s0 = s0, so the claim holds.
Induction hypothesis. The claim holds for some h ≥ 0, i.e., for all paths π of length h

from b in Ga(b), we have σ
π ≤ sh.

Induction step. Let γ = s0, . . . , sh, sh+1 be a path of length h + 1 from b in Ga(b).
Then π = s0, . . . , sh is a path of length h, and we have

σ
γ ≤ s0 ◦ Σ

π { Cor. 1 }
≤ b ◦ S(a · σπ) { s0 = b and Prop. 3 }
≤ b ◦ S(a · sh) { induction hypothesis, monotonicity of excitations,

and property of ◦ }
= sh+1 { definition of Algorithm A }.

�

Corollary 2. If Algorithm A terminates with state sH , then for any path π from b in
Ga(b), σ

π ≤ sH .

Proof: Suppose there exists a path π from b in Ga(b) that satisfies σ
π
i > sH

i , for some
i ∈ [m]. Let h be the length of π. If h ≤ H , Theorem 2 shows that σ

π ≤ sh. We also
have sh ≤ sH , by Prop. 1. So σ

π ≤ sH , and in particular σ
π
i ≤ sH

i , which contradicts
our supposition. If h > H , then Theorem 2 states that σ

π ≤ sh. By our convention,
sh = sH . So, again we have σ

π
i ≤ sH

i , which is a contradiction. �

7 Conclusions

We have proved that all the changes that occur in binary analysis are also detected by
simulation. In a companion paper [8] we prove a partial converse of this result.

Acknowledgments: This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada under grant No. OGP0000871.

References

1. Brzozowski, J. A., Ésik, Z.: Hazard algebras. Formal Methods in System Design, to appear.
2. Brzozowski, J. A., Ésik, Z., Iland, Y.: Algebras for hazard detection. Proc. 31st Int. Symp.

Multiple-Valued Logic, IEEE Comp. Soc. (2001) 3–12
3. Brzozowski, J. A., Seger, C.-J. H.: Asynchronous circuits. Springer-Verlag (1995)
4. Coates, W. S., Lexau, J. K., Jones, I. W., Fairbanks, S. M., Sutherland, I. E.: A FIFO data

switch design experiment. Proc. ASYNC ’98, IEEE Comp. Soc. (1998) 4–16
5. Eichelberger, E. B.: Hazard detection in combinational and sequential circuits. IBM J. Res.

and Dev. 9 (1965) 90–99
6. Garside, J. D., Furber, S. B., Chang, S.- H.: AMULET3 revealed. Proc. ASYNC ’99, IEEE

Comp. Soc. (1999) 51–59
7. Gheorghiu, M.: Circuit simulation using a hazard algebra. MMath Thesis, School of Com-

puter Science, University of Waterloo, Waterloo, ON, Canada (2001)
8. Gheorghiu, M., Brzozowski, J. A.: Feedback-free circuits in the algebra of transients. Proc.

CIAA 2002, this volume.
9. Kessels, J., Marston, P.: Designing asynchronous standby circuits for a low-power pager.

Proc. ASYNC ’97, IEEE Comp. Soc. (1997) 268–278
10. Muller, D. E., Bartky, W. C.: A theory of asynchronous circuits. Proc. Int. Symp. on Theory

of Switching, Annals of Comp. Lab., Harvard University 29 (1959) 204–243

