
� C++ Monitoring and Visualization

Reference Manual

Version 1.1

University of Waterloo

Peter A. Buhr c
���

1993, 1995

February 4, 1999

�
Permission is granted to make copies for personal or educational use

2 Visiaulization and Monitoring Reference Manual

Contents

1 Introduction 3

2 Statistical Monitoring 3

3 Implicit/Explicit Monitoring and Visualization 4

4 � C++ MVD Toolkit 4

5 Working with X Window/Motif 4

6 Structure of X 5

7 X Window System and � C++ 5

8 X Window Callbacks and C++ 6

9 The � X Package 7

10 Explicit Statistical Monitoring 10

11 Watcher Object 10

12 Sampler Object 11

13 Coding Conventions 13

14 Animated Bounded Buffer Example 14
14.1 Display Widget . 14
14.2 Buffer Sampler . 15
14.3 Visual Bounded Buffer . 17
14.4 Driver . 17

15 Implicit Statistical Monitoring 19

16 Kernel Display 19

17 Cluster Display 19

18 Task Display 19

19 Contributors 21

References 24

Index 25

Visiaulization and Monitoring Reference Manual 3

1 Introduction

The toolkit is built around � C++ [BS96], which is an extended version of C++ providing light-tasking facilities
using a shared-memory model. Most of the ideas presented here are language independent, and thus, are
applicable to a large number of concurrent and non-concurrent languages. Finally, this work is based in
UNIX1, using X/Intrinsic/Motif because of their current popularity and availability.

Monitoring is the process of asynchronously (or synchronously) collecting information about a pro-
gram’s execution, which can be displayed during the program’s execution or afterwards. When monitoring
a sequential program, it is generally true that the monitoring does not change the data values generated or
the order that the values are generated. However, the non-determinism and temporal aspects of concurrency
make it impossible to monitor a concurrent program without affecting its execution. Hence, as soon as a
probe is attached to monitor behaviour, the probe affects the system it is measuring so that the system may
not behave as it did before the probe was attached, called the probe effect. At best, a designer of monitoring
tools can only strive to minimize probe effects.

Both statistical and exact monitoring capabilities are needed. Statistical monitoring is done by periodi-
cally probing a target program’s memory from a separate task. This form of monitoring provides imprecise
information about a program, but has a lower probe effect than exact monitoring. Exact monitoring requires
that the target program generate events whenever interesting operations occur. This form of monitoring
provides precise information about the program, but has a much higher probe effect.

Monitoring may be on data or events, where data monitoring show a variable as it changes and event
monitoring show when an event has occurred. Data monitoring can be considered as event monitoring,
where the event is assignment to the variable; however, it is the value that is important and not the fact that
the assignment occurred.

Both statistical and exact monitoring can be done implicitly and explicitly, i.e., the monitoring is per-
formed automatically by the underlying runtime system or the user explicitly is involved in specifying the
monitoring.

Visualization is the process of displaying monitored information in a concise and meaningful way. The
raw monitored data can be presented directly as a sequence of data values; however, there is usually too
much data for people to interpret and comprehend. Instead, the raw data is transformed into another form
that allows large amounts of data to become comprehendable. For example, displaying data in the form
of a graph may allow large amounts of information to be understood at a glance. Just as some graphs
can represent multiple dependent and possibly independent variables [Tuf83, p. 40], so can a visualization
display represent multiple values and events. As more information is represented by a single display, the
more complex the display becomes, and usually, the more difficult it is for a user to understand the display
and comprehend its meaning. Colour is often an essential element of visualization because it provides yet
another mechanism for condensing and differentiating information in a display.

2 Statistical Monitoring

In general, a program generates too many data values and too many events occur during execution to be of
interest to or understood by a programmer. A programmer can often tell if a program is working according
to its design simply by examining its general behaviour. For example, are approximately the right number of
tasks created, blocked, or destroyed at approximately the right time? A program’s general behaviour can be
shown by statistically sampling its execution. For example, program profilers, like gprof [GKM82], provide
information about execution “hot spots” by sampling the current execution location. Execution hot spots
can then be examined as possible locations for optimization to improve program performance. Statistical

1UNIX is a registered trademark of AT&T Bell Laboratories

4 Visiaulization and Monitoring Reference Manual

information may be valuable for debugging a new algorithm or simply to understand the differences among
algorithms (that are already debugged). Statistical sampling can often be done without having to insert
code in an application so sampling can be done on existing execution modules. Furthermore, the probe
effect may be lessened on multiprocessor shared-memory architectures as the sampling can occur on a
separate processor (special sampling hardware can also be used). The drawback to statistical sampling is
that important events may occur between sampling, and hence, be missed.

In a concurrent program, a statistical examination of tasks that form a program, can tell a programmer
about the level of concurrency that is provided by a particular algorithm or by different data manipulated by
an algorithm. Statistical feedback about the communication among tasks can also be extremely informative.

3 Implicit/Explicit Monitoring and Visualization

In general, it does not seem possible to provide totally automated monitoring and visualization. That is,
no visualization system can anticipate all the different ways that users will want to collect and display their
information. Therefore, tools must be directly available to users so they have the freedom to experiment with
different approaches. On the other hand, some predefined facilities can be provided so that casual users do
not have to become experts to produce simple animation components. Therefore, a monitoring/visualization
system is best designed as a toolkit, which provides capabilities at a variety of levels.

This toolkit allows users to participate in the design activity by providing their own tools. Users can
easily build their own monitoring and displaying tools from existing tools. Furthermore, these same tools
are available to the system implementors to build low-level monitoring and visualization tools for the runtime
kernel.

4 � C++ MVD Toolkit

The � C++ Monitoring, Visualization and Debugging (MVD) toolkit supports the following facilities:

� There is a general facility to construct statistical monitoring tools. These monitoring tools can be
connected to a (currently small) set of Motif visualization tools to display the monitored results. The
statistical monitoring and visualization can occur in real-time or monitored data can be written to a file
for post-processing visualization. A user may explicitly indicate in a program the variables that are to
be monitored and possibly how they are visualized. There is also an implicit visualization capability
to monitor the � C++ runtime kernel.

� There is an exact monitoring facility that is connected to a powerful post-processing event-replay
facility [TB96]. All � C++ objects can have certain critical events traced by simply compiling the
program with an appropriate flag.

� There is a symbolic debugger that understands multiple shared-memory execution states [BKS96]. It
concurrently presents sessions for an arbitrary number of tasks in a � C++ program and allows inde-
pendent control of each task. As well, it provides facilities to look up local data relative to any task’s
execution stack. Currently, it has limited support to control non-shared memory applications.

5 Working with X Window/Motif

X Window/Motif were chosen for the basic visualization platform because of their current popularity and
availability. Most of the ideas presented here would work equally well with other visualization toolkits, e.g.,
the xview toolkit or the athena widget set.

Visiaulization and Monitoring Reference Manual 5

6 Structure of X

Version 11, release 6 of the X Window System is the first release intended to support client applications
that work in a multi-threaded environment. See “Xlib - C Language X Interface” and “X Toolkit Intrinsics
- C Language Interface”, which are both distributed with the X Window System, for a detailed description
on how to create concurrent client applications. X provides an abstract locking interface that can be imple-
mented by any system- or user-level thread library. In general, locks in X are owner locks, i.e., they can
be re-acquired by the thread of control that currently holds the lock, but they have to be released exactly as
often as they were acquired.

At the Xlib level, multiple connections to the X server can be created and used concurrently, and multiple
threads of control can access the same connection. Automatic fine-grain locking is done internally by the
Xlib library. At the X Toolkit Intrinsics level (Xt), multiple application contexts can be created, each of
which has internal display connections. In general, locking at this level is done on the basis of application
contexts. Additionally, a global lock for the whole application can be used by widget developers, if global
data has to be protected.

The Xt is designed to use an event loop and callbacks. That is, an application program passes control
to X (by calling XtAppMainLoop), after it has built its windows and installed its callback routines. X then
waits for events either from the user’s terminal or other sources, such as timers, and it either invokes internal
code, e.g., puts down a menu, and/or it interacts with the application code by invoking the specified callback
routines.

The new X locking mechanisms can be used in various ways but the most common approach is the
following. A dedicated thread of control is used to receive events from the X server and dispatches them to
other objects. Concurrently, other threads can call X/Xt library routines to change application values.

7 X Window System and � C++

While the X client libraries are configured to work with the thread libraries of multiple vendors, some
additional changes were required to make them compatible with � C++. As a first step, wrapper routines are
planted, so that the X libraries, which are programmed in C, can internally use the uLock and the uCondition
classes of � C++. This enables cooperation with the basic scheduling and lightweight-blocking mechanisms
of � C++.

When using a vendor’s kernel thread package, blocking I/O only blocks the thread of control that calls
the appropriate operating system routine, for example select. Since � C++ provides user-level threads, its
special lightweight-blocking I/O library must be used to achieve the same effect. Therefore, calls to the
uSelect member routine of the uIOCluster are implemented in the X source code (by using wrappers from
� C++ to C) at places where usually select is called. A dedicated uIOCluster object (see [BS96] for a descrip-
tion) is created in an X application, because the X libraries use data that is private to each UNIX process,
like file descriptors, etc. A class uXwrapper is provided which migrates a task to this cluster when an object
is created, and migrates it back when the object is destroyed. This class can be used for automatic migration
in every routine that calls X library routines, like in:

6 Visiaulization and Monitoring Reference Manual

#include <uXlib.h>

Display *dpy;

void createInterface() {
uXwrapper dummy; // automatic migration
dpy = XOpenDisplay(NULL);
// . . .

} // automatic migration back on destruction of dummy

In a � C++ application, timer interrupts are used to realize preemptive scheduling. Certain UNIX system
calls return a failure value and set the error number, if a timer interrupt occurs while the system call is
executed. This is partly handled in the Xlib, except for initialization of the socket connection with the X
server. To prevent obscure error messages, preemption of � C++ is turned off, whenever a connection is
established. Again, this mechanism is planted into the Xlib using wrappers from � C++ to C.

Unfortunately, to this end, the Motif widget library is not reentrant. Therefore, every call that accesses a
Motif widget has to be explicitly made mutual exclusive for the whole application and the internal locking
mechanisms of the Intrinsics library are largely obsolete. This can be seen in the the following example:

#include <uC++.h>
#include <uXlib.h>
#include <X11/Intrinsic.h>

Widget my_widget;
XtApplicationContext app;

void changeValue(int x) {
XtAppLock(app);
XtProcessLock();
XtVaSetValues(my_widget, XmNvalue, x, NULL);
XtProcessUnlock();
XtAppUnlock(app);

}

8 X Window Callbacks and C++

The following coding convention was developed for working with X callbacks in C++. Callbacks are C
routines (C linkage) that are dynamically registered with X and subsequently invoked by X when particular
X-window events occur, such as a button press on the mouse or screen. This is the mechanism that X uses
to interact with an application. The following coding conventions allow C++ applications that interact with
X to still be written in an object-oriented style.

The conventions are as follows:

� All widget definitions should be defined as a class and that widget’s callback routines should be
private static members, as in:

Visiaulization and Monitoring Reference Manual 7

class widget {
int foo;
void bar() { . . . }
static xxxCB(Widget widget, widget *This, XmAnyCallbackStruct *call_data) {

This->foo = 3;
This->bar();

}
public:

. . .
};

Making the callback routines static members reduces global name-space pollution and a static member
routine is treated as a non-member routine so its address can be passed to X routines that are written
in C (i.e., static member routines do not have an implicit this parameter).

� When installing a callback routine, as in:

widget w;
XtAddCallback(w, XmNactivateCallback, xxxCB, this);

the last argument is a pointer to client data that is passed to the callback routine’s second parameter.
The convention requires that the last argument must always be the value of this, and hence, the second
parameter to a callback routine is always a pointer to the type of class that contains the callback
routine. Furthermore, the name of the second parameter should be This. Following this convention
allows the callback routine to access all the data and routines in the containing widget class as if it
was actually a member routine of the widget class (albeit explicitly through the This pointer). For
example, in callback routine xxxCB, members foo and bar are both accessed through the This pointer.

Figure 1 shows a program that uses the coding conventions to handle its callback routines.

9 The � X Package

A collection of classes is available to simplify the task of interacting with X and Motif under � C++. By
including file:

#include <uXlib.h>

after <uC++.h>, the basic cooperation is enabled and the class uXwrapper can be used for automatic migra-
tion (see Section 7). Additionally, the file

#include <uXmlib.h>

can be included to access classes to support using Motif: uXmwrapper and uXmCBwrapper. As stated
previously, Motif is not thread-safe and mutual exclusion must be acquired before any operation can safely
by invoked on Motif widgets. Additionally, if a task calls any X routine to send a request to the X server,
this request is buffered in the library. If changes shall become visible immediately, the buffer has to be
flushed. All this complexity is hidden within uXmwrapper, as well as migration. That is, if an object of
uXmwrapper is created at the beginning of a routine, the task is migrated, the necessary locks are acquired
and on destruction of the object the library’s event buffer is flushed. The above example then looks like:

8 Visiaulization and Monitoring Reference Manual

#include <uC++.h>
#include <uIOStream.h>
#include <uXmlib.h>
#include <uXtShellServer.h>

#include <Xm/Xm.h>
#include <Xm/MainW.h>
#include <Xm/PushB.h>

class uPushMeWidget {
static void uQuitCB(Widget widget, uPushMeWidget *This, XmAnyCallbackStruct *call_data) {

XtDestroyWidget(This->shell); // destroy parent and all its subwidgets
} // uPushMeWidget::uQuitCB

static void uPushMeCB(Widget widget, uPushMeWidget *This, XmPushButtonCallbackStruct *call_data) {
uCout << "Please don

�

t tread on me" << endl;
} // uPushMeWidget::uPushMeCB

Widget shell;
public:

uPushMeWidget(Widget shell) : shell(shell) {
Widget mainWindow = XtVaCreateManagedWidget("main", xmMainWindowWidgetClass, shell,

XmNwidth, 150, XmNheight, 75,
NULL);

XmString quitTitle = XmStringCreateSimple("Quit");
Widget menuBar = XmVaCreateSimpleMenuBar(mainWindow, "menuBar",

XmVaCASCADEBUTTON, quitTitle,
�

Q
�

,
NULL);

XmStringFree(quitTitle);
XtManageChild(menuBar);
XtAddCallback(XtNameToWidget(menuBar, "button_0"), XmNactivateCallback,

(XtCallbackProc)uQuitCB, this);
define uPushMeTitle "Tread on me"

Widget uPushMe = XtVaCreateManagedWidget("uPushMe", xmPushButtonWidgetClass, mainWindow,
XtVaTypedArg, XmNlabelString, XmRString, uPushMeTitle, sizeof(uPushMeTitle),
NULL);

XtAddCallback(uPushMe, XmNactivateCallback, (XtCallbackProc)uPushMeCB, this);
} // uPushMeWidget::uPushMeWidget

}; // uPushMeWidget

void uMain::main() {
Widget shell = uServerXtShell->XtCreateApplicationShell("uPushMeTest");
{

uXmwrapper dummy(shell);
uPushMeWidget pmw(shell);
XtRealizeWidget(shell);

}
uServerXtShell->XtMainLoopBlock();
uCout << "Quitter!" << endl;

} // uMain::main

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++-work -g uPushMe.cc -I/u/pabuhr/software/MVD-1.1/inc -I/u/pabuhr/software/MVD-1.1/X11R6/include -I/opt/SUNWmotif/include -L/u/pabuhr/software/MVD-1.1/lib -L/u/pabuhr/software/MVD-1.1/X11R6/lib -R/u/pabuhr/software/MVD-1.1/X11R6/lib:/opt/SUNWmotif/lib /u/pabuhr/software/MVD-1.1/lib/uVisual-d.a -lXm -lXt -lX11 -luX -lSM -lICE -lgen” //
// End: //

Figure 1: C++ Callback Coding Style

Visiaulization and Monitoring Reference Manual 9

#include <uC++.h>
#include <uXlib.h>
#include <uXmlib.h>

Widget my_widget;

void changeValue(int x) {
Xmwrapper dummy(my_widget);
XtVaSetValues(my_widget, XmNvalue, x, NULL);

}

When a callback routine is called, the lock for the application context and the global lock are acquired.
If a callback contains a call to a mutex member of a task, this can lead to deadlock situations, if the task
also tries to acquire the X locks to perform any changes in the interface. To handle this situation, the
uXmCBwrapper class can be used to release the owner locks temporarily and re-acquire them on destruction
of the object as in the following example:

#include <uC++.h>
#include <uXlib.h>
#include <uXmlib.h>

uTask fred {
void main();

public:
void request(int from);

}

fred f;

class MyWidget {
int id;
static void anyCallback(Widget w, MyWidget *This, XmAnyCallbackStruct *call_data) {

XmCBwrapper dummy(w);
f.request(This->id);

}

One should be aware that between creation and destruction of a callback wrapper no lock is held and
therefore, no call can safely be made that accesses Motif data. Additionally, a routine uXmAppMainLoop is
provided that performs the necessary locking when Motif is used and replaces the usual XtAppMainLoop. In
traditional X programming, the single thread of control passes control to X after it has initialized X and built
a series of widgets. There are many kinds of problems that are not amenable to the event-loop programming
style. In fact, virtually all concurrent applications are not amenable to this style because the application does
not want to block waiting for X events. Instead, the concurrent application has other work to do and the X
interface is only one component of this work. Therefore, the routine Uxmappmainloop can be called from a
dedicated task object.

For convenience, the � X toolkit provides an additional server, called uServerXtShell, which is an in-
stance of:

10 Visiaulization and Monitoring Reference Manual

data �

application

data �

data �

watcher �

sampler �

sampler �

sampler �

terminal

display �

display �

display �

Figure 2: Watcher/Sampler Structure

class uXtShellServer {
public:

uXtShellServer();
~uXtShellServer();

Widget XtCreateApplicationShell(const char *title, String fallBacks[] = NULL);

void XtMainLoopBlock();
void XtMainLoopNonBlock();
void XtMainLoopWait();

}; // uXtShellServer

extern uXtShellServer *uServerXtShell;

This server is globally available to � C++ programs that interact with X. The server shell operations are:

XtCreateApplicationShell – creates a new shell widget under which a new widget hierarchy can be cre-
ated. This routine handles the special case of initializing X/Intrinsic on the first call.

XtMainLoopBlock – acts similarly like the usual XtAppMainLoop. Control is passed to X and the routine
eventually returns, when the user interface is destroyed.

XtMainLoopNonBlock – create a dedicated task that executes the main loop. The caller task continues
execution.

XtMainLoopWait – waits for the task created with XtMainLoopNonBlock to finish execution. This can be
used to synchronize with the destruction of the user interface.

10 Explicit Statistical Monitoring

Explicit statistical monitoring requires a detailed understanding of the low-level structure provided by the
� C++ MVD toolkit. Explicit monitoring is performed by two kinds of objects: watcher and sampler objects.
Figure 2 shows how watchers and samplers cooperate to produce a display. Both the watcher and sampler
objects need to be fairly small and fast because they may be probing an application at a high frequency.

11 Watcher Object

A watcher is a task that manages an event list of user-specified sampler objects. At specified intervals, the
watcher invokes a sampler object on its event list, and that sampler then inspects part of the application and

Visiaulization and Monitoring Reference Manual 11

possibly displays the inspected data. Multiple watchers can be created if the number of samplers is large
and/or the sampling frequencies are high; normally a single watcher is sufficient. A watcher is least invasive
on machines with multiple processors where the watcher can execute on a separate processor independent of
the application. On a single processor machine, a watcher can only be expected to produce a coarse-grained
view of the application. Nevertheless, this still can be useful in many cases. The watcher is provided by the
� C++ monitoring toolkit and its interface is:

uTask uWatcher {
public:

void add(uBaseSampler &sampler); // add sampler to event list
void remove(uBaseSampler &sampler); // remove sampler from event list

};

The member routines add and remove a sampler to/from the watcher’s event list, respectively. Normally,
these routines are called by the constructor and destructor of a sampler, respectively.

12 Sampler Object

A sampler inspects data values in an application and possibly displays the inspected data. A sampler has two
basic operations: poll memory in a particular way to determine some relevant information, and display that
information in some useful format. These two operations are invoked by the watcher object that a sampler
is associated with. In detail, a sampler indicates to the watcher the frequency in microseconds at which
its polling and display operations are invoked. These two frequencies may be different. A sampler must
be derived from class uBaseSampler to ensure it has the necessary member routines that are called by the
watcher:

class uBaseSampler {
protected:

int pollFreq, displayFreq; // poll and display frequency
public:

uBaseSampler(uWatcher &w, const int pollFreq, const int displayFreq);
virtual void poll() = 0; // called by watcher
virtual void display() = 0; // called by watcher
void pause(); // stop sampling temporarily
void resume(); // restart sampling

};

The sampler is associated with watcher w, which calls the sampler’s poll member at frequency pollFreq and
display member at frequency displayFreq.

The following generic sampler preforms simple sampling of a numeric memory value:

12 Visiaulization and Monitoring Reference Manual

template<class T> class uNumSampler : public uBaseSampler { // T requires: 0, =, >, <, +, /, <<
public:

uNumSampler(uWatcher &w, // watcher where sampler resides
int pollFreq, // polling frequency
int displayFreq, // display frequency
T &locn, // location to be sampled
char *name, // widget title
T dialMin, // absolute minimum
T dialMax, // absolute maximum
T zero, // zero value for type T
uNumGaugeTL::GaugeType gauge // initial gauge type

);
void poll();
void display();

}; // uNumSampler<T>

This sampler examines a numeric object at memory location locn. To make the numeric sampler generic it
is necessary to pass a value corresponding to zero for the type T.2 This simple sampler maintains a running
average of the sampled values at location locn as well as the minimum and maximum values. Appendix 19
shows the complete generic numeric sampler.

The generic sampler uNumSampler is used in the following way to sample numeric values in a program:
void uMain::main() {

uWatcher w; // create watcher
int i; // target variable
uNumSampler<int> sd(w, 50000, 500000, i, "i", 0, 50000, 0, uNumGaugeTL::digital),
sb(w, 50000, 500000, i, "i", 0, 50000, 0, uNumGaugeTL::bargraph),
ss(w, 50000, 500000, i, "i", 0, 50000, 0, uNumGaugeTL::speedometer);

for (i = 0; i <= 50000; i += 1) uDelay(); // delay necessary on a uniprocessor
} // uMain::main

In this example, a watcher is created with three samplers for variable i each displaying the value of i in a
different format. (On a multiprocessor, the watcher is automatically created on a separate processor to reduce
the probe effect.) When the program is run, the variable i is displayed in three different formats: digitally,
as a bar graph, and as a speedometer, as illustrated in Figure 3. In the bargraph, the minimum, average and
maximum values appear in the left column, while the current value appears in the right column. The spacing
of the values between the top and bottom of the window shows the relative location of the values between
the absolute minimum and maximum (0-50000). In the speedometer, there are pointers to the minimum,
current, and maximum values and the current value is also displayed digitally at the bottom-centre of the
speedometer (the average value is not displayed). Since, the current and maximum values are the same for i,
the current and maximum pointer are displayed on top of one another, and hence, appear as a single pointer
line. Normally, it is unnecessary to create three samplers to obtain three views of a variable because the
pull-down menu, Display Format, allows any of the three display forms to be changed dynamically to
digital, bar graph or speedometer.

A sampler can be written to sample any data structure and generic samplers can be constructed for com-
mon types of data structures so many users will never have to write a sampler. For example, uNumSampler
samples any type that has the operations, = > < + / <<, and a 0 (zero) constant. One important aspect of
this design is that the sampling frequency and the display frequency are independent. This feature allows
filtering of large numbers of values while still being able to capture peak values. For example, the minimum
and maximum values can be sampled at a high rate, but writing to the display may only be done every

2This is an artifact of the C++ type system.

Visiaulization and Monitoring Reference Manual 13

Figure 3: Different Numeric Displays: digital, bar graph, speedometer

1/30 of second because that is the refresh rate of the display device. ([] report that a refresh rate as slow
as 1/10 of a second is sufficient for people to perceive smooth motion.) A sampler can also greatly reduce
the display updates by not sending an event if the value(s) have not changed. Furthermore, a sampler can
dynamically control its poll and display frequency by adjusting the values of the protected variables pollFreq
and displayFreq of the base class uBaseSampler. For example, the longer it has been since a change oc-
curred in a value being probed, the less urgent it is to probe again. Finally, it is a sampler’s responsibility to
deal with non-atomic data structures. For example, when updating a binary tree, there may be a short time
interval when the tree is disconnected and a sampler that is probing the tree must be prepared to deal with
this. Such samplers must be very pessimistic about the object they are examining and very robust in their
probing algorithms. For example, a simple precautionary measure when sampling is to check that a pointer
is within the address space before dereferencing it.

Thus, users can write their own samplers or use one of the the predefined samplers. We hope to enlarge
the current suite of samplers and displayers as time permits.

13 Coding Conventions

Additional coding conventions are used in the construction of samplers and their display widgets. These
conventions follow directly from the X/C++ conventions discussed in Chapter 5. A sampler passes its address
to its display widget, just as and the widget does to its callbacks, and the callbacks to X. This approach allows
the object receiving the address to communicate back to its creator. In Figure 4, these pointers allow the
top communication lines from right to left. (even though the pointers go the other direction). As well, each
creator maintains a pointer to the object it created to allow the bottom communication lines from left to
right. Hence, there is bidirectional communication among the objects used as follows: output flows from
the sampler to the widget to X; input flows from X to the callback to the widget to the sampler and possibly
to the watcher.

14 Visiaulization and Monitoring Reference Manual

watcher widgetsampler X

callbacks

Figure 4: Coding Conventions

Figure 5: Animated Bounded Buffer

14 Animated Bounded Buffer Example

The following example visualizes the effect of inserting a bounded buffer between a producer and consumer
task using synchronous communication (see Figure 5). The buffer is size 100 and the number of elements
in the buffer is displayed by a horizontal slider (0 on the left). Feedback controls are provided to adjust
the speed of the producer and consumer tasks. These controls adjust random delay cycles, with the random
number generated around an average with a particular standard deviation. By playing with the delay controls,
it is possible to see that the buffer fills or empties if the speed of the producer and consumer varies only
slightly or their speed fluctuates significantly. There are 4 basic components to the animated bounded buffer:
display widget, buffer sampler, visual bounded buffer, driver; each is discussed separately.

14.1 Display Widget

While the display widget is the most complex of the components, this results from all of the calls to X to
build the display. Since this manual is not an X manual, the details of the display only appear in Appendix
19 and are not discussed. Only the interface to the display widget is Figure 6 is relevant to this discussion.

There are 5 callback routines corresponding to the quit button and 4 sliders. While the quit button halts
the program, the slider values have to be available to the driver so it can adjust its execution. Each callback
routine has a This parameter, whose value is an instance of the class that contains them. The constructor
receives the title for the display and the size of the buffer, which is used to set the maximum size of the
buffer slider (horizontal slider). There are 4 get routines to retrieve the values returned from the sliders to

Visiaulization and Monitoring Reference Manual 15

#include "uXserver.h"

class uProdConsWidget {
static void QuitCB(Widget widget, uProdConsWidget *This, XmAnyCallbackStruct *call_data);
static void prodStdWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void prodAvgWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void consStdWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void consAvgWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);

Widget parent, bufScaleWD;
const int NumDecPts = 2;
float prodStd, prodAvg, consStd, consAvg;

public:
uProdConsWidget(const char *title, int bufSize);
virtual ~uProdConsWidget();

float getProdStd() {
return prodStd;

} // uProdConsWidget::getProdStd

float getProdAvg() {
return prodAvg;

} // uProdConsWidget::getProdAvg

float getConsStd() {
return consStd;

} // uProdConsWidget::getConsStd

float getConsAvg() {
return consAvg;

} // uProdConsWidget::getConsAvg

void setValue(int val);
}; // uProdConsWidget

Figure 6: Display Widget

adjust the producer and consumer tasks and one set routine to move the buffer slider to the current number
of items in the buffer.

14.2 Buffer Sampler

Figure 7 shows the sampler that periodically samples the size variables in the monitor and updates the display
widget accordingly. The sampler’s constructor has the same first 5 parameters as the numeric sampler,
uNumSampler, followed by the size of the monitor’s buffer to set the horizontal slider. The constructor uses
these parameters to initialize the base sampler, location to be sampled, and display widget, respectively.
The constructor and destructor add and remove the sampler to/from the watcher in the appropriate manner.
The poll routine makes a copy of the buffer’s current size and the display routine displays this value in the
widget’s horizontal slider. Finally, the 4 get routines return the values of the sliders directly from the display
widget.

16 Visiaulization and Monitoring Reference Manual

#include "uBaseSplr.h"
#include "uProdConsWD.h"

class uProdConsSampler : public uBaseSampler {
const int &locn;
int curr;
uProdConsWidget pcWD;

public:
uProdConsSampler(uWatcher &w, // watcher where sampler resides

const int pollFreq, // polling frequency
const int displayFreq, // display frequency
const int &locn, // location to be sampled
const char *title, // widget title
int bufSize) : // buffer size
uBaseSampler(w, pollFreq, displayFreq), locn(locn), pcWD(title, bufSize) {

w.add(*this); // add sampler to watcher
�

s event list
} // uProdConsSampler::uProdConsSampler

~uProdConsSampler() {
if (!paused) { // check if already removed from watcher

�

s event list
w.remove(*this); // remove sampler from watcher

�

s event list
} // if

} // uProdConsSampler::~uProdConsSampler

void poll() {
curr = locn; // get current value

} // uProdConsSampler::poll

void display() {
pcWD.setValue(curr); // display current value

} // uProdConsSampler::display

float getProdStd() {
return pcWD.getProdStd();

} // uProdConsSampler::getProdStd

float uProdConsSampler::getProdAvg() {
return pcWD.getProdAvg();

} // uProdConsSampler::getProdAvg

float uProdConsSampler::getConsStd() {
return pcWD.getConsStd();

} // uProdConsSampler::getConsStd

float uProdConsSampler::getConsAvg() {
return pcWD.getConsAvg();

} // uProdConsSampler::getConsAvg
}; // uProdConsSampler

Figure 7: Buffer Sampler

Visiaulization and Monitoring Reference Manual 17

#include "/u/usystem/software/collection/src/uBoundedBuffer.h"

template<class ELEMTYPE> uMonitor VisualBoundedBuffer : public uBoundedBuffer<ELEMTYPE> {
uWatcher w;
uProdConsSampler pcsampler;

public:
VisualBoundedBuffer(const int size = 10) :

uBoundedBuffer<ELEMTYPE>(size),
w(), pcsampler(w, 50000, 100000, count, "Bounded Buffer", size) {

} // VisualBoundedBuffer::VisualBoundedBuffer

uNoMutex float getProdAvg() {
return pcsampler.getProdAvg();

} // VisualBoundedBuffer::getProdAvg

uNoMutex float getProdStd() {
return pcsampler.getProdStd();

} // VisualBoundedBuffer::getProdStd

uNoMutex float getConsAvg() {
return pcsampler.getConsAvg();

} // VisualBoundedBuffer::getConsAvg

uNoMutex float getConsStd() {
return pcsampler.getConsStd();

} // VisualBoundedBuffer::getConsStd
}; // VisualBoundedBuffer

Figure 8: Visual Bounded Buffer

14.3 Visual Bounded Buffer

Figure 8 shows the enhancements to an existing generic bounded buffer implemented as a monitor. The
visual bounded buffer inherits the insert and remove routine from the base monitor, and all the variables
needed to manage the buffer. The base monitor is extended with watcher and sampler variables, along with
4 get routines to obtain the values from the display sliders. The visual buffer’s constructor initializes the
base buffer, widget and sampler, respectively. (Notice that the watcher is initialized in the constructor’s
initialization list even though it does not require any initialization arguments. This is because the sampler
depends on the watcher, and hence, the watcher must be initialized first. By appropriately ordering the
variables in the constructor’s initialization list, it is possible to control the ordering of initialization.) The
monitor variable count is passed to the sampler, pcsampler, as the variable to be sampled. This variable
contains the number of items in the bounded buffer.

14.4 Driver

Figure 9 shows the driver program using the visual bounded buffer between a producer and consumer task.
The only additions over a non-visual bounded buffer are the two calls to uDelay before and after the calls
to insert and remove, respectively. These two delay calls read the current values of the appropriate sliders
associated with the buffer display and then delay the producer or consumer task for some appropriate period
of time.

18 Visiaulization and Monitoring Reference Manual

#include <math.h>

inline double UniformRand(void) {
return (double)(rand() % 10000 + 1) / (double)10000;

} // UniformRand

inline double ExpRand(double Average) {
return - (double)Average * log(UniformRand());

} // ExpRand

inline double HypExpRand(double Average, double Std) {
if (UniformRand() < (double)Std) {

return ExpRand(1.0) * ((double)Average / (2 * (double)Std));
} else {

return ExpRand(1.0) * ((double)Average / (2 * (1 - (double)Std)));
} // if

} // HypExpRand

uTask producer {
VisualBoundedBuffer<int> &buf;
void main() {

uFloatingPointContext fpcxt;
for (;;) {

uDelay((int)HypExpRand(buf.getProdAvg(), buf.getProdStd())); // spend time producing
buf.insert(rand() % 100 + 1); // insert item into queue

} // for
} // producer::main

public:
producer(VisualBoundedBuffer<int> &buf) : buf(buf) {
} // producer::producer

}; // producer

uTask consumer {
VisualBoundedBuffer<int> &buf;
void main() {

uFloatingPointContext fpcxt;
for (;;) {

int item = buf.remove(); // remove from front of queue
uDelay((int)HypExpRand(buf.getConsAvg(), buf.getConsStd())); // spend time consuming

} // for
} // consumer::main

public:
consumer(VisualBoundedBuffer<int> &buf) : buf(buf) {
} // consumer::consumer

}; // consumer

void uMain::main() {
srand(getpid()); // set random number seed
VisualBoundedBuffer<int> buf(100); // create a buffer monitor
{

consumer cons(buf); // create a consumer tasks
{

producer prods(buf); // create producer tasks
}

}
} // uMain::main

Figure 9: Animated Bounded Buffer: Driver

Visiaulization and Monitoring Reference Manual 19

15 Implicit Statistical Monitoring

By including file:
#include "/u/usystem/software/MVD/src/uKernelSplr.h"

after <uC++.h>, implicit monitoring and visualization of the � C++ kernel is presented. The runtime monitor
is built using the same facilities detailed in Chapter 10. The only additional capability of the � C++ runtime
sampler is that it is allowed to reference variables internal to the runtime system, which are normally hidden.

16 Kernel Display

The � C++ runtime system groups tasks and processors together into entities called clusters (see “ � C++ An-
notated Reference Manual”). When the application begins execution, a list of clusters in displayed (left
window in Figure 10). On a uniprocessor there is only one cluster, called the uSystemCluster. The slider
at the top of the window dynamically controls the sampling and display frequency of the information in the
window. The polling and display frequencies are combined because there is no state that is saved on each
poll; the cluster list simply traversed and displayed.

17 Cluster Display

By selecting a cluster from the list of clusters, detailed information about that cluster’s execution is pre-
sented. For example, cluster uSystemCluster has been selected (indicated in reverse video in the left win-
dow) and its detailed information is shown in the right window in Figure 10. The lower portion of the right
window shows the tasks currently executing on the cluster (left column) and which tasks are actually exe-
cuting on processors (right column). The first five tasks are administrative tasks and tasks fred, mary, and
john are user tasks. Task uWatcher is currently executing. (The example was run on a uniprocessor). The
slider at the top of the window dynamically controls the sampling and display frequency of the information
in the window. The polling and display frequencies are combined because there is no state that is saved on
each poll; the cluster list simply traversed and displayed.

18 Task Display

By selecting a task from the list of clusters, detailed information about that task’s execution is presented. For
example, tasks uMain and uWatcher have been selected (indicated in reverse video in the left column) and
their detailed information is shown in the right window in Figure 11. The sliders at the top of the window
dynamically controls the sampling and display frequency of the information in the window. The polling and
display frequencies are separate because there is state, stack high-water mark and task status information,
that is saved on each poll. By polling at a high frequency, more precise stack high-water mark and task
status information is acquired.

A task display shows the status of the task’s stack and execution status; more information may be added.
The stack display shows the size of the stack the last time the task performed a context switch (bottom
number in the column). This value is displayed in a range from 0 to the task’s maximum stack size. As well,
there is a high-water mark indicator showing the maximum amount of stack space observed thus far (top
number in the column). This information is useful for setting the amount of stack space for a task. If a task
is using most of its stack, it could be increased. A task can exceed its stack limit between samples so just
because a task’s high-water mark has not exceeded the maximum do not assume the stack size is sufficient.

The status display shows the percentage of time a task spends in the running, ready and blocked states,
respectively. This information indicates which tasks are performing most of the work and can be used
to determine if a group of tasks are achieving expected levels of concurrency. Task uMain is spending

20 Visiaulization and Monitoring Reference Manual

Figure 10: Cluster Displays

Figure 11: Task Displays

Visiaulization and Monitoring Reference Manual 21

approximately half of its time in the ready and blocked state. Task uWatcher is spending all of its time in the
running state. On a uniprocessor, all tasks except uWatcher will have zero running state because the kernel
watcher is always running when it invokes the task samplers so a task sampler cannot see its task running.
On a multiprocessor, where the kernel watcher is on a separate processor, task displays will show all three
states.

19 Contributors

While many people have made numerous suggestions, the following people were instrumental in turning
this project from an idea into reality. Peter Buhr got � C++ and X to speak on intimate terms and forced the
coding conventions on others; he wrote the first statistical sampling code, the documentation, and did other
sundry coding as needed. Thomas Pflum worked on the second version of the statistical sampling code.
Martin Karsten wrote the visualization of the dining philosophers. Peter Buhr wrote the visualization of the
bounded buffer.

Numeric Sampler

// -*- Mode: C++ -*-
//
// Visualization 1.0, Copyright (C) Peter A. Buhr 1992
//
// uNumSplr.h – generic sampler for numeric types
//
// Author : Peter A. Buhr
// Created On : Sun Feb 9 20:34:28 1992
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Nov 27 19:12:37 1996
// Update Count : 149
//

#ifndef __U_NUMSPLR_H__
#define __U_NUMSPLR_H__

#include "uBaseSplr.h"
#include "uNumGauge.h"

// T must have operations: 0, =, >, <, +, /

template<class T> class uNumSampler : public uBaseSampler {
const T &locn;
int count, firstMin, firstMax;
T curr, min, avg, max, sum;
uNumGauge<T> numgauge; // displayer object

public:
uNumSampler(uWatcher &w, const uDuration pollFreq, const uDuration displayFreq, const T &locn, const char *name,

const T dialMin, const T dialMax, const T zero, uNumGaugeTL::GaugeType gauge = uNumGaugeTL::digital) :
uBaseSampler(w, pollFreq, displayFreq), locn(locn), numgauge(name, gauge, dialMin, dialMax) {

firstMax = firstMin = 1;
sum = zero;
count = 0;

22 Visiaulization and Monitoring Reference Manual

// The sampler must be added to the watcher
�

s event list at the end of the derived
// sampler because the moment it is added to the event list, the poll and display
// routine can be invoked by the watcher; therefore, the derived class must be
// completely initialized. Furthermore, the sampler cannot be added to the watcher

�

s
// event list in the base sampler

�

s constructor because the base sampler
�

s poll and display
// routine would be invoked instead of the derived sampler

�

s routines, which is incorrect.

watcher.add(*this); // add sampler to watcher
�

s event list
} // uNumSampler<T>::uNumSampler

~uNumSampler() {
watcher.remove(*this); // remove sampler from watcher

�

s event list
} // uNumSampler<T>::~uNumSampler

void poll() {
curr = locn; // get current value

if (firstMin) { // maintain minimum value
min = curr;
firstMin = 0;

} else {
if (curr < min) {

min = curr;
} // if

} // if

count += 1; // calculate running average
sum += curr;
avg = sum / count;

if (firstMax) { // maintain maximum value
max = curr;
firstMax = 0;

} else {
if (curr > max) {

max = curr;
} // if

} // if
} // uNumSampler<T>::poll

void display() {
numgauge.display(curr, min, avg, max);

} // uNumSampler<T>::display
}; // uNumSampler<T>

#endif __U_NUMSPLR_H__

// Local Variables: //
// compile-command: “dmake” //
// End: //

Visual Bounded Buffer Widget

// -*- Mode: C++ -*-
//
// Visualization 1.0, Copyright (C) Peter A. Buhr 1992

Visiaulization and Monitoring Reference Manual 23

//
// uProdConsWD.h –
//
// Author : Peter A. Buhr
// Created On : Tue Sep 29 13:30:45 1992
// Last Modified By : Peter A. Buhr
// Last Modified On : Thu Jan 23 15:44:25 1997
// Update Count : 42
//

#ifndef __U_PRODCONSWD_H__
#define __U_PRODCONSWD_H__

#include <uXmlib.h>
#include "uXtShellServer.h"

class uProdConsSampler; // forward declaration

// The widget structure for a ProdConsWidget:
//
// * Top-level Shell
// * Main Window Widget
// * Menubar Widget
// * Cascade Widget (quit)
// * Form Widget
// * Label Widget (Producer)
// * Separator Widget
// * Scale Widget (Producer Average)
// * Separator Widget
// * Scale Widget (Producer Std Dev)
// * Separator Widget
// * Label Widget (Delay)
// * Separator Widget
// * Scale Widget (Consumer Std Dev)
// * Separator Widget
// * Scale Widget (Consumer Average)
// * Separator Widget
// * Label Widget (Consumer)

class uProdConsWidget {
static void QuitCB(Widget widget, uProdConsWidget *This, XmAnyCallbackStruct *call_data);
static void pollingFreqCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void displayFreqCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void prodStdWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void prodAvgWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void consStdWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void consAvgWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);

uProdConsSampler &prodconsSampler;
Widget shell, pollingFreqWD, displayFreqWD, bufScaleWD;
const int NumDecPts;
float prodStd, prodAvg, consStd, consAvg;

public:

24 Visiaulization and Monitoring Reference Manual

uProdConsWidget(uProdConsSampler &prodconsSampler, const char *title, int bufSize);
virtual ~uProdConsWidget();

float getProdStd() {
return prodStd;

} // uProdConsWidget::getProdStd

float getProdAvg() {
return prodAvg;

} // uProdConsWidget::getProdAvg

float getConsStd() {
return consStd;

} // uProdConsWidget::getConsStd

float getConsAvg() {
return consAvg;

} // uProdConsWidget::getConsAvg

void setValue(int val);
}; // uProdConsWidget

#endif __U_PRODCONSWD_H__

// Local Variables: //
// compile-command: “dmake” //
// End: //

References

[BKS96] Peter A. Buhr, Martin Karsten, and Jun Shih. KDB Reference Manual, Version 1.1. Technical
report, Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada,
N2L 3G1, December 1996. Available via ftp from plg.uwaterloo.ca in pub/MVD/KDB.ps.gz.

[BS96] Peter A. Buhr and Richard A. Stroobosscher. � C++ Annotated Reference Manual, Ver-
sion 4.7. Technical report, Department of Computer Science, University of Waterloo, Wa-
terloo, Ontario, Canada, N2L 3G1, July 1996. Available via ftp from plg.uwaterloo.ca in
pub/uSystem/uC++.ps.gz.

[GKM82] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a Call Graph Execution Profiler.
SIGPLAN Notices, 17(6):120–126, June 1982. Proceedings of the SIGPLAN’82 Symposium on
Compiler Construction, June 23–25, 1982, Boston, Massachusetts, U.S.A.

[TB96] David Taylor and Peter A. Buhr. POET with � C++. Technical report, Department of Com-
puter Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, December 1996.
Available via ftp from plg.uwaterloo.ca in pub/MVD/Poet.ps.gz.

[Tuf83] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, 1983.

Index
� C++ MVD Toolkit, 4

application context, 5
athena, 4

callback coding convention, 6
callbacks, 5, 6
cluster, 19
contributors, 21

display widget, 13, 14

event loop, 5
example

Numeric Sampler, 21
Visual Bounded Buffer Widget, 22

explicit statistical monitoring, 10

implicit statistical monitoring, 19

probe effect, 3

sampler, 11, 13
sampler object, 11
statistical monitoring, 3

watcher, 10
watcher object, 10
widget, 13

Xlib, 5
Xt, 5
xview, 4
X Toolkit Intrinsics, 5

25

