KDB: A Multi-threaded Debugger for Multi-threaded Applications

Peter A. Buhrf, Martin Karsten? and Jun Shih!
1 Dept. of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
1 Fakultat fiir Mathematik und Informatik, Universitdt Mannheim, Mannheim, Deutschland

E-mail: {pabuhr,mkarsten,jshih}@uwaterloo.ca

1 Introduction

Concurrent programs contain both sequential and concur-
rent errors. While deadlock and race conditions are unique
to concurrent programs, there also exist algorithmic design
errors, such as inhibiting concurrency, which are unknown
in the sequential domain. Recently, there has been a large
effort in debugging race conditions [16], both statically [8]
and dynamically [7], and to a lesser extent, deadlock [13].
Our experience shows that concurrent errors occur with di-
minishing frequency in the order: traditional sequential er-
rors, algorithmic design errors, deadlock, race conditions.
However, the difficulty in determining and fixing these er-
rors grows exponentially from sequential errors to race con-
ditions. Our experience also shows that the frequency of
deadlock and race-conditions diminishes significantly when
high-level concurrency constructs (e.g., task, monitor, actor,
etc.) are used, versus thread and lock programming.

We believe the best way to improve concurrent debug-
ging capabilities and significantly reduce debugging time is
to use high-level concurrency constructs with a symbolic de-
bugger that truly understands it is debugging a concurrent
program coupled with a cooperative concurrent run-time
system that actively participates in the debugging process.
Additionally, the debugger must provide independent and
concurrent access to every thread of control in the target
program. Such a debugger handles a large set of errors in
concurrent programs, leaving esoteric errors to specialized
debugging tools. Ultimately, a debugger and specialized
tools must complement each other.

Our experience comes from designing high-level concur-
rent extensions for C++, called uC+t+ [5], using uCH+ to
build itself, a debugger and visualization toolkit [4], a data-
base toolkit [3], and using uCH++ to teach concurrency to
undergraduate students. puC+H+ is a shared-memory user-
level thread library that runs on symmetric multiproces-
sor architectures (e.g., SUN, DEC, SGI, Sequent); user-level
threads are executed by multiple kernel threads associated
with shared memory, which provides true parallelism when
appropriate hardware is available. Furthermore, uC++ pro-
vides several high-level concurrency constructs, e.g., corou-
tines, monitors and tasks, for composing an application;
hence, programmers do not work at the level of threads

Permission to make digital/hard copies of all or part of this material
for personal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication and its date appear
and notice is given that copyright is by permission of the ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, require specific permission and/or fee.

SPDT'96, Philadelphia PA, USA

©1996 ACM 0-89791-846-0/96/05..$3.50

80

and locks. Over the last 5 years, we have experienced the
full gamut of sequential and concurrent errors in building
a reasonably large body of concurrent software, and espe-
cially working with students learning concurrent program-
ming (x1000 students).

2 Related Work

Rather than attempting to list all concurrent debuggers, we
have selected a few archetypical examples that cover the two
main concurrent domains.

Distributed Memory: Examples of interactive source-lev-
el debugging of distributed memory applications are given
by Node Prism [17] or LPdbz [18]. In these scenarios, tar-
get applications consist of multiple UNIX processes. A slave
debugger is attached to each target process using the UNIX
debugging primitives and it controls the process on behalf
of a master debugger. Depending on the architecture of the
master debugger, target processes can be controlled inde-
pendently and aggregated into groups so that a single debug
operation can be issued for a group of processes.

Shared Memory: Various approaches exist to build a de-
bugger for multi-threaded shared-memory applications [6,
14]. Most are like, or built from, Gnu’s Debugger, GDB [20],
which provides support to debug multiple kernel threads
sharing the address space of exactly one UNIX process. One
prototype debugger [10] handles multiple user-level threads
but only in a single UNIX process. Specifically, breakpoints
may be set for individual threads, and the target application
stops only if a particular thread encounters the breakpoint.
However, these shared-memory debuggers allow interaction
with only one thread of control at a time.

Our work concentrates on shared memory concurrency
because it is a simpler domain in which to write and de-
velop concurrent programs; in particular, pC+H+ is a shared
memory thread library. However, much of our work is ap-
plicable to both the shared and distributed domain.

3 User-Level Threads

Currently, computer vendors providing shared-memory con-
currency hardware are creating non-standard support for
multiple kernel threads in an address space (UNIX process),
such as Solaris Threads. Along with kernel threads comes
additional support for debugging in the form of new capabil-
ities to query and manage the kernel threads, e.g., extensions
in /proc for kernel-level threads.

However, we argue that user-level threads are essential
[1], and will always exist. It is naive of operating system
developers to assume that the support they provide today
will encompass all extant or future concurrency paradigms.
Kernel threads must assume a worst case scenario for op-
erations like context switch because there is little or no
knowledge of the particular language and/or concurrency
paradigm running within the address space. As more state
is added to kernel threads, like UNIX signal delivery at the
kernel thread level, the cost of fundamental operations only
increases. Only the language system running within the ad-
dress space knows what constitutes the execution state. For
example, nano-threads have been suggested that are simple
finite state machines with statically determinable state; it
is possible to switch among nano-threads with as few as 2
or 3 register assignments. Kernel threads cannot achieve
this level of performance nor should it be expected of them.
Therefore, user-level threads have the potential to be signifi-
cantly less expensive than kernel-level threads in many cases,
because the language runtime system has specific knowledge
about the concurrency paradigm and its implementation.

Given that user-level threads are important, some mech-
anism must exist to debug concurrent programs using them.
To the best of our knowledge there are very few concurrent
debuggers that work with user-level threads [9]. The reason
is straightforward, each language and/or thread library is
different, and hence, each requires individual debugging sup-
port. Furthermore, computer vendors cannot be expected
to support all extant and future languages and thread li-
braries. It is the purpose of our work to show that it is
possible to build very powerful and flexible debugging sup-
port for user-level threads, and the concrete demonstration
system to illustrate these ideas is pCH+.

4 Asynchronous Control

It is important to note that all UNIX debuggers must use
the synchronous UNIX debugging primitives /proc or ptrace,
making it impossible to interactively control a thread while
other application threads execute; either the debugger pro-
cess is active and the application process blocked or vice
versa. These synchronous primitives preclude independent
and asynchronous control of individual threads within a
UNIX process and restrict a distributed debugger to inde-
pendent control of one thread per UNIX process.

The effect this has on debugging a concurrent program
is that it destroys the notion of concurrent execution. When
a user is debugging a particular user-level thread, all other
threads are quiesced, which violates the notion that threads
execute independently. In other words, normally there is no
expectation that stopping one thread should affect others
unless the stopped thread is holding shared resources. While
it maybe useful to stop all threads when one thread stops,
this should not be the normal mode of operation nor should
it be the only mode of operation. We cannot emphasize
enough that the debugging model must match with the con-
currency model. To force a sequential debugging model on
a concurrent model is unacceptable. For example, after sin-
gle stepping passed a lock release statement, other threads
waiting for the lock should continue execution immediately,
even though the thread being debugged is still stopped by
the debugger awaiting further operations. If other threads
do not make progress when the lock is released, how can a
user test the concurrent nature of the program?

81

5 Basic Debugging

The most common errors in both sequential and concur-
rent programs are simple errors. The kind of errors depends
on the particular programming language, e.g., uninitialized
variable, invalid subscript, incorrect use of a pointer, im-
proper expression or algorithm specification. A traditional
symbolic debugger is extremely useful for dynamically trac-
ing through a program to determine the cause of simple
errors. However, most traditional debuggers fail for concur-
rent programs because they are unable to locate and display
all the necessary context associated with concurrent execu-
tion. The problem is multiple thread stacks; a traditional
debugger assumes a single stack, and therefore, cannot lo-
cate variables and routine invocations for other threads of
control. Without this additional capability, locating simple
errors is extremely difficult, often requiring manually trac-
ing list structures and call frames. Independent recognition
and control of each thread by the debugger allows simple
errors in concurrent programs to be debugged in the usual
manner.

For a concurrent debugger to know about multiple stacks,
it must understand the runtime structure of the concurrent
system, e.g., find all threads, and if applicable, where they
are executing. Hence, the debugger needs to be kept in-
formed about the dynamic structure of the application. This
information can be displayed, in various ways, during execu-
tion to provide a simple monitoring tool that illustrates con-
current control flow. Such cheap visualization is often suf-
ficient to identify many algorithmic errors, such as threads
waiting unnecessarily or inhibiting concurrency.

Both livelock and deadlock errors can be located quickly
with a concurrent debugger. If the debugger can stop, ex-
amine, and step through individual threads, it is possible
to quickly locate which thread(s) are spinning and where,
or by examining call stacks, which threads have formed call
cycles and what resources they have allocated. It may still
take some effort to reason backwards to determine why the
livelock or deadlock formed, but the programmer is now rea-
soning with detailed information.

Our conclusion is that a concurrent debugger has the
potential to deal reasonably well with a large number of
sequential and concurrent errors. We have also observed
that application developers, often us and especially students,
do not want or have the time to deal with the complexity
associated with many static and dynamic analysis tools. Nor
do these tools deal with most of the errors that occur during
the software development process. When judiciously used,
these tools are invaluable; however, these tools alone are
insufficient to debug a concurrent program because they do
not address simple errors.

6 KDB

KDB (Kalli’s DeBugger) [11] is a concurrent debugger running
on UNIX based symmetric shared-memory multiprocessors
that achieves our goal of independent control of user-level
threads. The design for KDB (but not the present implemen-
tation) is applicable to both shared memory and distributed
memory, and is intended to be highly efficient and to coop-
erate with tools that implement high-level analysis. KDB
uses a large part of gdb to handle symbolic debug informa-
tion and to interpret raw application data, like variable or
stack contents, but gdb is not run as a separate process and
never controls the execution of the target. KDB supports the
uCH+ execution environment, which shares all data, and has

multiple kernel and user-level threads. Kernel threads pro-
vide parallelism on multiprocessors, and user threads refine
that parallelism; user threads can be executed by any kernel
thread. An unusual property of pC++ is that kernel threads
are obtained from UNIX processes instead of using vendor
specific kernel threads; a kernel thread is created by fork-
ing a UNIX process and mmaping all data to be shared with
the parent process. (This approach is more portable than
vendor specific kernel threads.) Unfortunately, the limita-
tions of mmap preclude sharing the code image, which means
there are multiple code images. These code images present a
problem only to a debugger, which must set and reset break-
points in each code image. Thus, KDB handles multiple code
images in multiple UNIX processes, and multiple kernel and
user-level threads are controlled.

The mechanism used to achieve asynchronous execution
of an application and the debugger is similar to that used
by distributed debuggers, but finer grain: part of the debug-
ger, called the local debugger, is distributed into the target
application (see Figure 1). The global debugger uses two
different channels of communication with the application
processes. The first channel is synchronous because it is
implemented by UNIX debugging primitives; this channel is
temporary, lasting only as long as necessary to modify an
application’s code, e.g., to set and reset breakpoints. The
second channel is asynchronous via a socket between the
global and local debugger; this channel is used to notify
the global debugger about debugging events in the appli-
cation, e.g., breakpoint encountered, or notify the local de-
bugger about events generated by the user interacting with
the global debugger, e.g., continue execution of a thread.
Finally, the global debugger is itself a multi-threaded appli-
cation, written in puCH+, so its internal as well as external
interactions are asynchronous, i.e., the debugger acts like a
multi-threaded server for a client application. This includes
communication with the X-window/Motif user interface so
the debugger can continue even when there is no user in-
teraction. (This required changes to X11R6 to work with
#CH.) This structure forms the basis for KDB, providing
the ability to independently control a dynamic number of
UNIX processes running a dynamic number of light-weight
pCH threads and a non-blocking interactive user interface.
It also means that KDB can be used to debug itself.

When a yC++ application is compiled using -debug and
-g flags, the local debugger’s code is linked in and sym-
bolic debugging information is generated. During applica-
tion startup, the local debugger checks for the presence of
the global debugger by checking for a shell variable created
by the global debugger. The pC+H++ runtime system coop-
erates during debugging by reporting certain events to the
local debugger, which in turn reports them to the global
debugger, if necessary.

The local debugger is both a strong and weak point of
KDB. The strong point is that it provides an ideal loca-
tion for generalization and optimization. The local debug-
ger can be specific to particular kernel-threads and/or user-
level concurrency library but have a standard protocol for
communication with the global debugger. As well, the local
debugger can perform a significant amount of work on be-
half of the global debugger, e.g., looking up data/code and
performing certain checks, significantly reducing the probe
effect. For example, if multiple threads execute the same
code image, but a breakpoint is set for only a subset of
the threads, each thread triggers the breakpoint but most
triggerings are inadvertent. Checking whether a breakpoint
applies to a thread is done by the local debugger so no trap

82

or kernel context switch is necessary to continue execution.
Experimental results show a speedup factor of roughly 2,400
over the traditional method where this check is performed
in a different address space. Finally, the local debugger can
interact with other debugging tools, such as event tracers.
The major weak point is that the local debugger can be
corrupted by a runaway application. We believe additional
redundancy can be added to recover from almost all data
corruption. As well, part of the local debugger is imple-
mented as a uC++ task to provide independent execution,
which introduces a recursive dependency that precludes de-
bugging parts of the pC++ kernel using KDB. As a result,
puC+H implementers must use print statements and tradi-
tional debuggers at the lowest internal level of the pCH+
kernel. While this structure for a concurrent debugger is
reasonably intuitive [19], we know of no debugger that pro-
vides completely independent access to and manipulation of
shared-memory user-level threads executed cooperatively by
a group of UNIX processes.

7 KDB Functionality

Most user interactions occur through the two windows shown
in Figure 2.

Main Window: When the debugger starts, the main win-
dow appears and has 2 panes (see Figure 2 (a)). The top
pane contains dynamic tables of all tasks, clusters and pro-
cessors (UNIX processes) currently active in the applica-
tion. (Clusters and processors are artifacts of pCH+ and
not discussed here.) When connected to the debugger, the
default action is for a task to block after creation, unless the
Stop Tasks button is toggled. It is possible to select one or
more tasks in the task list by clicking on a task and dragging
to select a group (several Philosopher tasks are currently se-
lected); groups provide a mechanism to control a number of
tasks in some related way (see Section 8). The bottom pane
contains controls for global debugger interactions. Most of
the operations at this level manage or query task groups.
Individual task information and control is provided through
a task window (discussed next), which is created by select-
ing a task(s) in the main window and clicking on Inspect,
or implicitly pops up when a breakpoint is encountered for
a task. The group operation, Continue, is directly avail-
able to continue execution of all tasks of a selected group.
All other group operations are accessed through the popup
group windows available from buttons Operational Group and
Behavioural Group. The Command area is for typing in the
following commands:

e print ezpression: print global expression values.
o attach ezecutable-file process-id: attach KDB to the executable
that is already running.

Where appropriate, command results appear in the bottom
of the pane. If the Pretty Print button is toggled, complex
data is shown in an easier to read structured way but re-
sults in longer output. Each output in the bottom pane is
numbered on the left and separated with a row of dashes,
so a history of all output can be scrolled through using the
scroll bar on the right of the bottom pane. Finally, the inac-
tive button, New Target, is used to connect another program
to the debugger when debugging of the current program is
complete, which allows consecutive debugging of programs
without restarting the debugger.

Task Window: A task window has 2 panes (see Figure 2
(b)). The top pane displays information about source code.

Debugger Target
User Interface
asynchronous
Symbol Global User-level R Local Debugger
Information | Debugger Thread Control
temporary

Kernel Thread Control

=
synchronous channel

Figure 1: Debugger Design

The highlighted line marks the current statement being ex-
ecuted when stepping through a program, or by clicking on
a line, that line becomes the operand for a command like
setting or clearing a breakpoint. A task window begins by
showing the last known position of the corresponding task
by giving the source file name and line number (top right
of the top pane), and displaying the source code (bottom
of the pane) with the particular line highlighted. Button
Stopped Position returns to the last known execution position
from the current selection. Button Source Files pops up a
list of all source files for the program, which can be selected
for display in the top pane. The bottom pane contains con-
trols for sequential debugging of a thread; these buttons are
largely self-explanatory. The Breakpoints button pops up a
list of all breakpoints with additional controls for enabling,
disabling or removing them. The up and down arrows move
up and down a task’s stack frame, respectively, which also
causes the appropriate source code for the stack frame to be
displayed in the top pane. The Command area is for typing
in the following commands, print, break and clear, that are
evaluated in the scope of the current stack location. Where
appropriate, results are displayed in the bottom of the pane.
The Stop button is inactive when a task is stopped, and all
buttons, except Stop and Backtrace, are inactive when a task
is running. Pressing BackTrace for a running task prints a
snapshot of a task’s stack frame at the bottom of the pane,
which is useful for monitoring execution, but it is not pos-
sible to move up and down this stack frame because it is
changing dynamically as the task executes.

8 Thread Groups

Different kinds of possibly overlapping groups can be formed
from selected tasks. However, grouping tasks together does
not affect the ability to control tasks separately; further-
more, task reactions to the commands issued to a group,
such as setting a breakpoint or continuing execution, be-
come visible in each task’s window.

Operational Group: Tasks can be grouped together and
operations issued on the group of tasks as a user convenience,
rather than entering multiple commands for each task (as
in Node Prism [17]). Multiple operational group windows
can be created, each defining a different group. A task may
appear in any number of operational groups. When an op-
erational group window is closed, that group is terminated.

Clicking on Operational Group forms a group of all tasks cur-
rently selected in the main window (see Figure 2 (a)), and
pops up a window (see Figure 3 (a)) where commands can
be issued on all tasks that belong to the group. The fol-
lowing commands, break, clear, stop, cont, next, step, can be
entered in this window and the corresponding operation is
performed on each task in the group. In general, if a com-
mand is not applicable to one of the tasks, e.g., stop for an

83

already stopped task, the command is silently ignored. The
upper right area of the window shows a history of commands
entered for this operational group. Figure 3 (a) shows an op-
erational group window where a breakpoint was previously
set for each philosopher task (upper right), and each task is
about to be continued.

Behavioural Group: A behavioural group is a set of tasks
whose behaviour is linked to some event. In other words,
if an event occurs for any task in a behavioural group, an
action is applied to all the tasks in the group, e.g., when
one task triggers a breakpoint, all tasks in the group are
stopped. Hence, a behavioural group must have an event
and operation associated with it. Furthermore, a task can
appear in only one behavioural group at a time because
actions in one group might cause inconsistent behaviour in
another group.

Clicking on Behavioural Group forms a group of all tasks cur-
rently selected in the main window (see Figure 2 (a)), and
pops up a window where an event and action can be issued
for all tasks that belong to the group (see Figure 3 (b)).
Currently, the only event command is break, and the only
operation command is stop. Figure 3 (b) shows a behavioural
group window where a breakpoint is about to be set for each
philosopher task, and each task in the group will be stopped
when one of the tasks reaches the breakpoint.

9 Debugging with KDB

This section explains how the different features of KDB can
be used to debug a concurrent pC+H application.

Most importantly, simple errors in tasks are handled by
traditional debugging methods applied at the user thread
level. The ability to individually control and examine each
user-level thread through a task window allows the program-
mer to precisely follow control flow and examine execution
state. A user is never in a situation of having informa-
tion about only one task at a time; all tasks can be queried
at all times. When an application fails, e.g., segmentation
fault, the local debugger catches the signal and informs the
global debugger, which stops all other UNIX processes run-
ning light-weight threads as quickly at possible. The user
can then examine all threads to investigate the error; how-
ever, no further execution is possible. Nevertheless, a pro-
grammer can examine all the existing execution states in a
symbolic manner.

The top pane in the main window and individual task
windows present a cheap dynamic visualization of the con-
currency in an application, making it easy to spot major al-
gorithmic errors. Simply watching the order that tasks are
created and/or destroyed in the main window can be ex-
tremely informative. When a failure occurs, knowing which
tasks have completed and which still exist conveys substan-
tial information.

kdb server

uTazk liszt I Stop Tasks uCluster list WProcesszor list

uMain Ox124c90 uSystemCluster Oxfeb33 14652 ¢ Owfebfd
I) ulzerCluster 0x113350 14602 / Oxlladb0

Inzpect Continue Operational Group Behavioral Group

2 Pretty . : ‘e
Print Command: | print Table: :putdowrd

1: Table::pickup = {woid (Table %, int)F Ow?592d <Table:ipickuplinti:

2+ Table::tputdown = {void (Table *, int)} 0x2R950 <Table::putdouniinti:>

(a) Main Window

Philosopher 0x12d290

Source Files Stopped Position || Philosopher,co E7

woid EickuE{ int me 3 1

ztatelme] = HUWGRY:
TestBeside! me I3

mﬂ“

Breal, Clear Continue S il Step q Return Step

I Pretty
Print

Command: | print #this Frame Backtrace|i Breakpoints

3t #this = {
zettings = &,
state = Ox1189f0,
zelf = OwlZcedd,
lock = £
ullestruct = uYes,

(b) Task Window

Figure 2: Debugger Interface

84

ThreadGroup

hilosopher 0x12d230 -
hilosopher 0x13d630 break. Philosopher,cotSd

hilozopher Ox14dad0

Enter your command

cont]

(a) Operational Group Window

ThreadGroup

hilosopher 0x13d690 Enter ewvent
hilozopher Ox14dad0
hilosopher 0x145530 break Philosopher: 3

Enter operation

stu:uFI

(b) Behavioural Group Window

Figure 3: Thread Groups

uC++ Event Trace

Functions Re-order traces (Options

UMain{Ox1253d8 <O a= 0
Nizk (0<12d07ch = O
NiskScheduler{0=x12cF30)< O+ {1 E—D 1
NizkClient (0x13d5=02
NizkClient{0x13d6Fd:

NizkClient (0x13d3082
NizskClient{0=13d91c?

NizkClient (0x13das0

NizkClient {0x13dhdds:

NizkClient (0x13dc582
NizkClient{0=13ddec?

NizkClient (0x13deB02
NizskClient{0=13df94}

Middle: identify: Left/Right: scroll

Figure 4: Event Tracing

85

The ability to operate on groups of tasks simplifies work-
ing with large numbers of tasks. While an operational group
is merely a convenience capability, its usage cannot be un-
derestimated when working with non-trivial numbers of tasks
(e.g., tens or hundreds of tasks). Starting and stopping a
group of related tasks can significantly simplify certain de-
bugging operations. Behavioural groups are more powerful.
For example, a behavioural group can provide the capability
of debuggers that do not provide independent execution of
threads; these debuggers stop all threads when one thread
encounters a breakpoint. This capability is accomplished by
forming a behavioural group of all tasks, setting the event
to break and the operation to stop.

Livelock can be discovered by stopping tasks and step-
ping through them to determine if a task is spinning. If a
deadlock occurs, tasks are still running from the debugger’s
perspective, but blocked from the thread system’s perspec-
tive. Double clicking on the Backtrace button for a task en-
ables the stack arrows, making it possible to move up and
down a running task’s stack frame. This operation is safe
only when a task is application blocked. In this way, it is
possible to find call cycles that lead to the deadlock.

10 Fast Breakpoints

Fast breakpoints are essential to provide adequate perfor-
mance with multiple tasks sharing code images and are im-
plemented using the following fast breakpoint scheme (sim-
ilar to [12]). The maximum number of breakpoints, N, is
preset when pC+H+ is compiled (default is 64). Each task
has an N bit mask, and N handler routines are generated
in the local debugger, each containing some nop instructions
to reserve space. The global debugger cycles through the
N handler routines as breakpoints are set and released. A
breakpoint is implemented by selecting a handler routine,
M, turning on the Mth bit in a task’s mask, copying the in-
structions (with possible modifications for relative address-
ing) from the breakpoint into the handler, and inserting a
call to the handler at the breakpoint. When handler M is
called by a task, it checks if bit M 1is set in the task’s mask.
If the breakpoint is not applicable, the original instructions
are executed at their temporary location in the handler and
control transfers back to the breakpoint (approximately 25
instructions). If the breakpoint is applicable, the local de-
bugger is called, which blocks the task and informs the global
debugger through the asynchronous channel. This mecha-
nism places some restrictions on where breakpoints can be
set because some architectures restrict where calls may oc-
cur, but it is not a practical problem when debugging at the
statement level. When a task is continued by the user, the
global debugger informs the local debugger, and the local
debugger reschedules the task. Notice that the local debug-
ger must have knowledge of the user-level runtime system
to manipulate tasks and runtime data structures, and there-
fore, is specific to that particular user-level thread system.
Finally, implementing and removing a breakpoint for a task
must be done in the code image of each UNIX process eligi-
ble to execute the task (see Section 6).

In addition to fast breakpoints, we have implemented
restricted fast conditional breakpoints, e.g.,

break Philosopher.cc:98 if i == 10

The conditional breakpoint is “fast” because it is evaluated
by the local debugger during breakpoint evaluation, rather
than the global debugger. The conditional breakpoint is
restricted because the form of the conditional is only:

86

integer [== | 1= | >= | <= | > | <] integer

because there is no way to dynamically compile and in-
sert code into the application as commands are given to
the global debugger. Therefore, all possible combinations of
operand types and operators must be pre-compiled into the
local debugger, and the appropriate version selected dynam-
ically during breakpoint evaluation. Even with this restric-
tion, the conditional breakpoint is invaluable in controlling
loop execution by placing conditionals on the loop index.
We plan to add pointer data types, because many archi-
tectures now have different sized pointers and integers, and
possibly floating point types. This small set of data types
should handle 95% of all conditional breakpoint needs, while
providing extremely fast conditional breakpoint execution.

One interesting problem in implementing fast breakpoints
is that most RISC architectures require replacing multiple
instructions at a breakpoint site (a call and a nop, because
of the delay slot). This requirement results in a race con-
dition when setting or resetting a breakpoint as a task may
have executed at least one of the original instructions at the
breakpoint site but become “ready” because of a time slice.
When the task runs again, it executes incorrect code at the
breakpoint. The local debugger deals with this problem by
checking the execution location of all tasks before allowing
the global debugger to set a breakpoint. If a task is ready
but executing at the breakpoint location, the global debug-
ger retries setting the breakpoint after a short delay. Since
the check is one compare and done locally, the cost is very
low, even for a large number of tasks. We are willing to
pay a higher cost to set and reset a breakpoint, which is
normally done as part of a slow user interaction, to obtain
a very fast breakpoint applicability check.

11 Future Work

As mentioned in the introduction, a complete debugging en-
vironment must provide additional tools for event collec-
tion, analysis and replay. We are aware of this requirement
and have begun to work on this issue. uC4+ programs can
already be compiled with event tracing for all accesses to
coroutines, monitors, and tasks [2]. The events are currently
displayed by a powerful event tracing viewer [21] (see Figure
4). The next step is to connect KDB, the local debugger, and
the event tracer to provide debugging support for deadlock
and race conditions. KDB will be extended with a program-
matic interface, so that its functionality can be accessed by
commands sent through a socket instead of through the user
interface. Then the event tracer can use KDB to control indi-
vidual threads to force execution to follow a previous event
trace, and hence, produce replay of previous executions [15].

We are still learning about behavioural groups. What
events other than break might provide useful capabilities
for debugging? For example, event stop and operation stop,
might stop all tasks in the group when stop is pressed by the
user for any task in the group. Finally, we need to make the
local debugger’s data more robust from inadvertent memory
assignments. One possible solution is to write protect the
page containing the local debugger’s data, except when the
local debugger needs to make changes.

12 Conclusion

While deadlock and race conditions are the bane of all con-
current programs, they represent only a small portion of the
total errors. It is crucial to provide an environment that

allows, at the very least, the ability to get to the complex
errors. Many concurrent programmers are thwarted by sim-
ple errors long before they reach the difficult ones, making
the presence of sophisticated concurrency tools moot.

We argue that a concurrent debugger, with adequate
knowledge of the concurrent runtime system, should be the
focal point to support programmers through initial and in-
termediate errors, and provide an engine for supporting other
analysis tools (e.g., like Dynascope [19]). We have shown
that such a debugger can be built for user-level threads,
which we believe will become the most common form for
providing concurrency to application developers in the fu-
ture. As well, a user-level thread debugger can provide in-
dependent control of user-level threads, which preserves the
concurrent execution model. Preserving this model is essen-
tial or the debugging environment does not reflect the nor-
mal execution environment. Finally, it is possible to move
all user-thread specific code into the local debugger, mak-
ing the largest debugger component, the global debugger,
user-thread independent but still kernel-thread dependent.

References

[1] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and
Levy, H. M. “Scheduler Activations: Effective Ker-
nel Support for the User-Level Management of Paral-
lelism”. ACM Trans. Comput. Syst., 10(1):53-79, Feb.
1992.

Buhr, P. A., Coffin, M. H., Jacobs, R. A., Larson, J.,
and Zinn, R. S. “Concurrent Monitoring, Visualiza-
tion and Debugging”. In Proceedings of ACM/ONR
Workshop on Parallel and Distributed Debugging, pages
178-180, San Diego, California, May 1993. [Extended
abstract].

Buhr, P. A. and Goel, A. K. “uDatabase Annotated
Reference Manual, Version 1.0”. Technical Report
Unnumbered: Available via ftp from plg.uwaterloo.ca
in pub/uDatabase/uDatabase.ps.gz, Department of Com-
puter Science, University of Waterloo, Waterloo, On-
tario, Canada, N2L 3G1, June 1995.

Buhr, P. A. and Karsten, M. “uC++ Monitor-
ing, Visualization and Debugging Annotated Refer-
ence Manual, Version 1.0”. Technical Report Un-
numbered: Available via ftp from plg.uwaterloo.ca in
pub/MVD /Visualization.ps.gz, Department of Computer
Science, University of Waterloo, Waterloo, Ontario,
Canada, N2L 3G1, Sept. 1995.

Buhr, P. A. and Stroobosscher, R. A. “uC++ Anno-
tated Reference Manual, Version 4.4”. Technical Report
Unnumbered: Available via ftp from plg.uwaterloo.ca
in pub/uSystem/uC++.ps.gz, Department of Computer
Science, University of Waterloo, Waterloo, Ontario,
Canada, N2L 3G1, Sept. 1995.

Caswell, D. and Black, D. “Implementing a Mach De-
bugger for Multithreaded Applications”. Technical Re-
port CMU-CS-89-154, CMU, Nov. 1989.

Damodaran-Kamal, S. K. and Francioni, J. M. “Non-
determinacy: Testing and Debugging in Message Pass-
ing Parallel Programs”. In Proceedings of ACM/ONR
Workshop on Parallel and Distributed Debugging, pages
118-128, San Diego, California, May 1993.

87

[8] Emrath, P. A., Ghosh, S., and Padua, D. A. “Detecting
Nondeterminacy in Parallel Programs”. IEEE Software,
7(1):69-77, January 1992.

[9] IBM Canada Ltd. Laboratory, Information Develop-

ment, 844 Don Mills Road, North York, ONT, Canada.

M3C 1V7. 05/2 Developer C/C++ Toolkit.

[10] Jacobs, R. A. “A Debugger for Multi-Threaded Appli-
cations”. Master’s thesis, The University of Waterloo,
July 1995.

[11] Karsten, M. “A Multi-Threaded Debugger for Multi-

Threaded Applications”. Diplomarbeit, Universitat
Mannheim, Mannheim, Deutschland, Aug. 1995.

[12] Kessler, P. B. “Fast Breakpoints: Design and Imple-
mentation”. In Proceedings of the SIGPLAN ’90 Con-
ference on Programming Language Design and Imple-

mentation, published in ACM SIGPLAN Notices, vol-
ume 25, pages 78-84, June 1990.

[13

=

Masticola, S. P. and Ryder, B. G. “A Model of Ada
Programs for Static Deadlock Detection in Polynomial
Time”. Proceedings of the ACM/ONR Workshop on
Parallel and Distributed Debugging, published in ACM
SIGPLAN Notices, 26(12):97-107, December 1991.
[14] Nasser, F. and Stumm, M. “Extending gdb for Func-
tional and Performance Debugging of Parallel Programs
on Shared-Memory Multiprocessors”. In Proceedings
of ACM/ONR Workshop on Parallel and Distributed
Debugging, pages 214-216, San Diego, California, May
1993. [Extended abstract].

[15] Netzer, R. H. B. “Optimal Tracing and Replay for De-
bugging Shared-Memory Parallel Programs”. In Pro-
ceedings of ACM/ONR Workshop on Parallel and Dis-
tributed Debugging, pages 1-11, San Diego, California,
May 1993.

[16] Netzer, R. H. B. and Miller, B. P. “What are Race
Conditions? Some Issues and Formalizations”. ACM
Letters on Programming Languages and Systems, 1:74—
88, March 1992.

[17] Sistare, S., Allen, D., Bowker, R., Jourdenais, K., Si-
mons, J., and Title, R. “A Scalabe Debugger for
Massively Parallel Message-Passing Programs”. IEEE
Parallel & Distributed Technology, 1(2):50-56, Summer
1994.

[18] Sorel, P. E., Fernandez, M., and Gosh, S. “A Dynamic
Debugger for Asynchronous Distributed Algorithms”.
IEEE Software, 11(1):69-76, January 1994.

[19] Sosi¢, R. “The Dynascope Directing Server: Design
and Implementation”. Computing Systems, 8(2):107—
134, Spring 1995.

[20] Stallman, R. M. and Pesch, R. H. Debugging with GDB.
Free Software Foundation, 675 Massachusetts Avenue,
Cambridge, MA 02139 USA, 1995.

[21] Taylor, D. “A Prototype Debugger for Hermes”. In Pro-
ceedings of the 1992 CAS Conference, volume 1, pages
29-42, Toronto, Ont., Canada, November 1992. IBM
Canada Ltd. Laboratory, Centre for Advanced Studies.

