
KDB: Concurrent Debugger

Reference Manual

Version 1.1

University of Waterloo

Peter A. Buhr, Martin Karsten, Jun Shih and Oliver Schuster
c
���

1996, 1998, 2000

July 26, 2000

�
Permission is granted to make copies for personal or educational use



2 KDB Reference Manual

Contents

1 Introduction 3

2 KDB 3

3 Before Starting KDB 3

4 Accessing KDB 3

5 User Interface 4

6 Starting KDB 4

7 Terminating KDB 4

8 Reusing KDB 4

9 Main Window 6
9.1 Tasks list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
9.2 Clusters list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
9.3 Processors list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
9.4 Control Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

10 Task Window 8
10.1 Control Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10.2 Click to Print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.3 Examining a Running Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

11 Thread Groups 13
11.1 Operational Group Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
11.2 Behavioural Group Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

12 Reducing Window Clutter 14

13 Programmatic Interface 15
13.1 Supported Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

13.1.1 BP SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
13.1.2 BP CLEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
13.1.3 CONTINUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
13.1.4 STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
13.1.5 PRINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
13.1.6 ATTACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
13.1.7 CLUSTER LIST, THREAD LIST, PROCESSOR LIST . . . . . . . . . . . . . . . . . . . 18
13.1.8 BP HIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
13.1.9 PROGRAM TERMINATED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
13.1.10 TERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

14 Contributors 19

References 19

Index 21



KDB Reference Manual 3

1 Introduction

The definition of debugging used here encompasses debugging by a traditional interactive debugger, such as dbx or
gdb. This process involves an interactive session where a debugger is used to control the execution of an application
program by stopping its execution, examining it, possibly changing it, and restarting its execution so the cycle can
begin again [MH89]. A symbolic debugger provides the additional capability to refer to data using variable names,
and to code using file names and statement numbers from the original source program.

When debugging a sequential program, the process is synchronous between the debugger and the application,
i.e., when the program is running the debugger is not running, and vice versa. However, when debugging a concurrent
program, the process is asynchronous between the debugger and the threads running the application, i.e., when the
debugger is running some or all of the application may continue to run. As a result, the control and manipulation
mechanisms available for sequential debugging must be provided independently for every thread of control, and ad-
dition operations are needed to manage and manipulate multiple threads. Unfortunately, most debuggers do not work
with concurrent programming languages or environments, or treat the concurrent environment synchronously.

Of those that do deal with concurrency, most work only with kernel threads provided by the operating system.
Kernel threads are controlled and scheduled by the operating system, not by the runtime environment of the application
using them. While kernel threads are essential, so too are user threads [ABLL92], which subdivide a kernel thread’s
execution among user threads in an application. User threads have the potential to be significantly less expensive
than kernel threads in many cases because the language runtime system has specific knowledge about the form of
concurrency and its implementation.

Given that user threads are important, some mechanism must exist to debug concurrent programs using them.
The reason is straightforward: each language and/or thread library is different, and hence, each requires individual
debugging support. The KDB debugger [BKS96] shows that it is possible to build very powerful and flexible debugging
support for user threads.

Finally, debugging affects the execution of a concurrent program, called the probe effect [Gai86]. This influence
is partly determined by the commands to the debugger while debugging the application. Therefore, users must be
aware that a concurrent program may execute quite differently when being debugged.

2 KDB

KDB (Kalli’s DeBugger) [Kar95, Shi96] is a multithreaded debugger for debugging multithreaded � C++ applications.
� C++ [BS99] is an extended version of C++ providing light-weight tasking facilities, i.e., user-level threads, using a
shared-memory model. Both uniprocessor and multiprocessor � C++ applications may be debugged. KDB is based
on parts of the gdb debugger [SP95], and therefore, some of the commands and their syntax are the same. While
knowledge of gdb is an advantage, it is not essential.

3 Before Starting KDB

In order to debug a � C++ program with KDB, all program components should be compiled with the compilation flag
-debug and -g on the u++ command line; -debug is the � C++ default, so normally only -g has to be specified. The
-debug flag inserts additional code into the application to interact with the debugger, and the -g flag inserts symbol
table information needed for symbolic debugging. If a program compiled without -debug is run under KDB, the
debugger display simply remains blank. If a program compiled without -g is run under KDB, the debugger can provide
only very limited debugging capabilities.

4 Accessing KDB

To access KDB, the path:
/u/usystem/software/MVD/bin

must be added to the PATH environment variable. This variable is usually initialized in the .cshrc file in a user’s home
directory. Usually, there is a line in .cshrc that looks like:

setenv PATH � /bin/showpath $HOME/bin standard �

This line can be augmented to:



4 KDB Reference Manual

setenv PATH � /bin/showpath /u/usystem/software/MVD/bin $HOME/bin standard �

A symbolic link or alias to /u/usystem/software/MVD/bin is insufficient because the bin directory contains several other
executables needed to run KDB.

5 User Interface

The user interface for KDB is based on the X Window System, the X Toolkit Intrinsics and the Motif widget set. All
windows in the interface can be resized from the window manager’s border and the size of components in a window
adapt automatically. Additionally, some windows are subdivided into stacked panes, separated with a horizontal sash
line with a sash button on the right-hand side. By dragging on the sash button, it is possible to adjust the vertical size of
a pane within a window. At times, a button may appear “greyed out”, which means the button is inactive (insensitive),
so pressing it does nothing (see Figure 2(a), where New Target is inactive). Inactive buttons are meaningless in that
particular context or mode; a button becomes active (sensitive) again when an appropriate mode change occurs.

6 Starting KDB

KDB operates as a server at which an application registers as a client (multiple clients are allowed). Figure 1 shows
this relationship, and some of the internal structure of KDB and the application. Both server and client can be started
together using the shell command:

% kdb application-name [application-argument-list]

The debugger’s main window appears when the debugger starts (see Figure 2(a)) and is discussed in Section 9.
Connecting the client (application) to an already running server (KDB) is discussed in Section 8. Connecting the
server (KDB) to an already running client (application) is discussed in Section 9.4.

Debugger
Global User-level

Thread Control

User Interface

Kernel Thread Control

Information
Symbol control and

communication Local Debugger

Application (client)KDB (server)

Figure 1: Debugging Structure

7 Terminating KDB

To terminate KDB, close the main window at any time by using the appropriate mechanism of the window manager.
Each window manager has a pulldown or popup menu with a close option that closes a window, and when KDB’s main
window is closed, it terminates. Alternatively, typing <Ctrl-C> anywhere in the main window terminates KDB. If an
application is executing when KDB terminates, it is released to continue execution normally. Other KDB windows may
be closed at any time through the window manager or by typing <Ctrl-C> anywhere in the window to remove them
from the display without terminating KDB.

8 Reusing KDB

After an application finishes execution, KDB is still running and can proceed with a new debugging session for the
same or a new application. In fact, because the cost of starting the debugger is fairly large, it is efficient to use the
same debugger instance for multiple debugging sessions.

When the application is finished, the debugger’s main window enters the state shown in Figure 2(b). The New Target
button is now active, and correspondingly, the buttons dealing with the application are inactive. To start debugging a
new application, a user must do both of the following in either order:



KDB Reference Manual 5

(a) Startup

(b) Termination

Figure 2: KDB main window



6 KDB Reference Manual

sash button

scroll slider

control buttons

Figure 3: Main Window Showing Symbol Lookup

1. click on the New Target button to prepare the debugger for a new application.

2. connect another application to KDB using the shell command:

% kdb_ target application-name [application-argument-list]

�
NOTE: It is very common to forget to press the New Target button when trying to start a new debugging

session.
�

9 Main Window

When the debugger starts, the main window appears and has 2 panes (see Figure 3).

1. The upper pane contains dynamic lists of tasks, clusters and processors1currently active in the application.

2. The lower pane contains controls for global debugger actions. Most of the operations at this level manage task
groups or query global variables.

The two panes are separated by a sash line; there is a sash button on the right-hand side of the pane separator
(labelled in Figure 3). By moving the mouse cursor over the sash button and pressing the left mouse button, the sash
line can be dragged up or down, changing the size of the upper and lower panes. When the mouse button is released,
the information is each pane is adjusted to the new pane size; however, there is a minimum pane size. In some cases,
scroll bars appear for lists that can no longer be completely displayed. For example, the bottom window of the lower
pane has scroll bars for both horizontal and vertical control. By moving the mouse cursor over the scroll slider (labelled
in Figure 3) and pressing the left mouse button, it is possible to drag the scroll slider, changing the text displayed in
the window associated with the scroll bar.

1Clusters and processors are artifacts of � C++ and not discussed here. See the � C++ Annotated Reference Manual [BS99] for details.



KDB Reference Manual 7

9.1 Tasks list

The left column of the upper pane is a list of all tasks currently active in the � C++ application. A task is identified
by its name and memory address in the target application. The default task name in � C++ is the type name for a task.
While � C++ allows a user-specified name for a task to be set at any time, the debugger only uses the type name given
when a task is created.

When debugging, the default action for each task in the application is to stop at the beginning of its main member
routine, unless the Stop Tasks button is toggled, where the Stop Tasks button is located on the first line of the upper
pane. When Stop Tasks is off, newly created tasks continue execution immediately.

It is possible to select one or more tasks in the task list by moving the mouse cursor over a task, pressing the left
mouse button, possibly dragging to select a group of tasks, and then releasing the mouse button. The selected tasks are
highlighted (reverse video) to confirm the selection. For example, the three highlighted Philosopher tasks in Figure 3
form a group. To select a large contiguous set of tasks, especially when tasks are scrolled off the list, select the start
task by moving the mouse cursor over a task, pressing the left mouse button, and then releasing the mouse button.
Then move to the end task, possibly by scrolling with the slider, hold down the <Shift> key, and select the end task in
the same way as the start task. All tasks between the start and end task become selected. To select a non-contiguous set
of tasks, hold down the <Ctrl> key during the selection, make any number of selections by clicking and dragging, and
raise the <Ctrl> key to end the selection. As long as the <Shift> or <Ctrl> key are used during selection, the selections
accumulate, so it is possible to perform a series of contiguous and non-contiguous selections to form the desired group
of tasks.

9.2 Clusters list

The centre column of the upper pane is a list of all clusters currently active in the � C++ application. A cluster is
identified by its name and memory address in the target application. The default cluster name in � C++ is the type name
for a cluster.

There is one operation available for clusters. By clicking on an entry in the cluster list, a window pops up (see
Figure 4) to control whether the debugger is notified of task migration to and from this cluster. Selecting Yes means
the debugger ignores further task migration and No means the debugger is notified about further task migration.

Figure 4: Task Migration Dialog

Because every migration of a task involves additional overhead during debugging, there can be situations where
ignoring migration improves performance substantially. However, this mechanism should be used only by experienced
� C++ programmers, since the debugger and application are no longer coordinated, i.e., what appears on the debugger
display may not reflect the actual state of the application.

9.3 Processors list

The right column of the upper pane is a list of all processors (UNIX processes) currently active in the � C++ application.
A processor is identified by its UNIX process id and memory address in the application. In Figure 3, both processors
have the same UNIX process id, which means the � C++ application is running uniprocessor.

The only operation available for processors is a mechanism to ignore migration of processors among clusters. As
for clusters, this is an insecure optimization mechanism that should only be used by experienced � C++ programmers.

9.4 Control Buttons

The control buttons (labelled in Figure 3) are the set of buttons at the top of the lower pane:



8 KDB Reference Manual

Inspect button Individual task information and control is provided through a task window (see Section 10), which is
created by selecting a task(s) in the main window and typing <Return> or clicking on Inspect. Double-clicking
on a single entry of the task list does the same as selecting a task and clicking on Inspect.

Continue button The group operation, Continue, continues execution of all tasks of a selected group. If some of the
tasks are already running, the continue request is ignored for these tasks.

This operation is the only group operation directly accessible from the main window because it is commonly
used. All other group operations are provided via the Operational and Behavioural buttons.

Operational and Behavioural buttons Group operations on the selected tasks are accessed through the popup group-
dialogs available from buttons Operational Group and Behavioural Group. Both are discussed in detail in Sec-
tion 11.

New Target button The New Target button is discussed in Section 8.

Info button The Info button pops up a copyright notice.

Pretty Print button If the Pretty Print button is toggled, data is printed in an easier to read way but results in longer
output.

Command area The Command area is for typing in the following commands:

� [ print | p ] expression: print global variable names or expressions.
� [ attach | a ] executable-file process-id: attach KDB to an executable that is already running.

Positioning the cursor in the command box makes it active so a command can be entered; typing <Return>
executes the command. The result of the command appears in the command output-area of the lower pane.
Each output in the command output-area is numbered on the left and separated with a row of dashes, so a
history of all output can be scrolled through using the scroll bar on the right of the command output-area.

10 Task Window

A task window2 appears when a task is inspected from the main window or a breakpoint is encountered for a task; it
has 2 panes (see examples in Figure 5).

1. The upper pane displays information about source code. The highlighted line (reverse video) marks the current
statement about to be executed when stepping through a program, or by clicking on a line, that highlighted line
becomes the operand for a command like setting or clearing a breakpoint.

2. The lower pane contains controls for sequential debugging of a thread and an output area for the results of certain
operations.

A task window begins by showing the last known position of the corresponding task by presenting the source
file-name and line number on the first line of the upper pane, and displaying that source-code line in the source-code
area with the particular line highlighted. It is possible to look at any part of the file in the source-code area by scrolling
using the scroll bars on the right and bottom, or by entering a number into the line-number field on the first line and
typing <Return>. It is possible to look at any file by entering a file name into the source-file field on the first line and
typing <Return>. Clicking the Source Files button pops up a list of all source files for a program (see Figure 6). To
select a file for display in the source-code area, either double-click on the name or click on both the name and OK.
Finally, clicking the Stopped Position button returns to the file and line number of the last known execution position.

�
While it is possible to view different source files when a task is running, as soon as the task encounters

a breakpoint, the source-code area of the upper pane changes immediately to show the breakpoint location.
�

2This window is similar to the main debugging window of xxgdb [CW94].



KDB Reference Manual 9

(a) Backtrace

(b) Symbol Lookup

Figure 5: Task Windows



10 KDB Reference Manual

Figure 6: Source File List

10.1 Control Buttons

The control buttons are the set of buttons at the top of the lower pane (see Figure 5), and are used to control execution
of a task. While some tasks may be blocked by the debugger during the debugging process, all other tasks continue to
execute in real time; these tasks only block if they become application blocked on resources that are held directly or
indirectly by debugger blocked tasks.

Break button To add a breakpoint, click on the desired line of code, which becomes highlighted, and then click on
Break.

Clear button To remove a breakpoint, click on the desired line of code, which becomes highlighted, and then click
on Clear. If there is no breakpoint set at the line, a warning-beep sounds. If the line is already highlighted, just
click on Clear.

Break Points button The Break Points button pops up a list of all breakpoints currently set for this task (see Figure 7).
Breakpoints can be cleared by selecting one or more breakpoints from the list and then pressing the Clear button.
(See section 9.1 for details on selecting a contiguous and/or non-contiguous group of items from a list.) It is
possible to view the source-code location of a breakpoint by double-clicking on the breakpoint in the list. The
source-code area of the upper pane in the task window changes to display the line of code containing the selected
breakpoint.

Figure 7: Breakpoint List

Continue button Clicking the Continue button resumes execution of the task.



KDB Reference Manual 11

Stop button Clicking the Stop button stops the task at the next possible location. If a task is currently blocked in the
application, e.g., if a task is waiting on the entry queue of a mutex object, or executing in a system routine, e.g.,
reading or writing to a file, the stop request does not take effect until the task eventually becomes active again
or returns to user code.

Next and Step button Clicking the Next button executes a line of source code. If this line contains routine calls, the
routines are completely executed. The Step button also executes a line of source code, but steps into each routine
call in the line, stopping execution at the beginning of the routine. For both Next and Step buttons, a number
can be specified in the corresponding field beside each button to perform multiple operations.

The � C++ translator inserts code into multiple locations in a � C++ application. In general, KDB is aware of all
inserted code and automatically ignores it during debugging. However, there is one case where hiding could not
be accomplished. � C++ creates a constructor and destructor for all mutex objects. There is no way for KDB to
tell if a constructor or destructor is � C++ or user generated. Therefore, a Step operation at the declaration or
termination of a mutex object always transfers to the object. If there is no user supplied constructor or destructor,
this action seems peculiar. Performing another Step operation returns back to the previous point of execution.

Just as KDB is aware of � C++ inserted code, it is also aware of new � C++ forms of control flow. In particular, a
Step operation at a uResume or uSuspend statement steps from one execution-state to another, just as a Step
operation at a call or return statement steps into a routine or back to a caller.

Return Step button Clicking on Return Step causes execution to continue until the end of the current routine is
reached. Execution stops after the routine call to the just completed routine.

Pretty Print button If the Pretty Print button is toggled, as in Figure 5(b), complex data is printed in an easier to read
structured way but results in significantly longer output in the command output-area.

Command area The Command area is for typing in the following commands:

� [ print | p ] expression: print local variable names or expressions.
� [ break | b ] [ [ source-file ]:line-no | function-name ] [ if simple-expression ]: add a breakpoint at specified

line in source file or at start of function.
The conditional clause, i.e., the if clause, means the breakpoint is only triggered if a task encounters the
breakpoint and the conditional expression is true. The simple-expression is of the form:

integer-[variable
�
constant] [ == | != | >= | <= | > | < ] integer-[variable

�
constant]

pointer-[variable
�
constant] [ == | != | >= | <= | > | < ] pointer-[variable

�
constant]

where the variable forms allowed are: V, *V, V->F and V.F
� [ clear | c ] [ [ source-file ]:line-no | function-name ]: remove a breakpoint at specified line in source file or

at start function.

Positioning the cursor in the command box makes it active so a command can be entered; typing <Return>
executes the command. The result of the command appears in the command output-area of the lower pane.
Each output in the command output-area is numbered on the left and separated with a row of dashes, so a
history of all output can be scrolled through using the scroll bar on the right of the command output-area.

For all commands, variable names are evaluated in the scope of the current stack location for the specific task
associated with the window. For example, in Figure 5(b), the print command of variable this refers to the object
for which the class method pickup is invoked.

Frame/Backtrace buttons The Backtrace button produces a backtrace of the calling stack for a task, which is shown
in the command output-area of the lower pane (see Figure 5(a)). The arrow buttons to the left of the label Frame
step up and down the calling stack, respectively, which also causes the appropriate source code for the stack
frame to be displayed in the source-code area of the upper pane. The frame position is displayed beside the
arrow buttons; it is possible to go directly to a particular frame by entering the frame number in this field and
typing Return. While moving up and down the calling stack, routines may be encountered that are compiled
without -g, e.g., system libraries, UNIX signals, � C++ kernel. In this case, a message appears in the source-code
area of the upper pane stating this fact; keep pressing the Frame arrows until routines are found that are compiled
with the -g flag.



12 KDB Reference Manual

Figure 8: Task Window Showing Running Task

10.2 Click to Print

One of the most common operations performed during debugging is printing the value of a variable; therefore, this
operation is optimized so that text can be selected directly from the source-code area of the upper pane. There are two
ways to select text for printing:

Double clicking To select simple variable names and expressions, position the mouse cursor over the desired block of
text and double click with the left mouse button. KDB attempts to select the longest C++-style variable/expression
not separated by whitespace. For example, double clicking anywhere over the text “state[ me ]” selects the entire
string.

Click and drag To select text that contains whitespace or less text than selected with a double-click, position the
mouse cursor at the start of the text, press the left mouse button down, drag the cursor to the end of the text,
and release the left mouse button. For example, positioning the mouse cursor at the start of the text “a + b / c”,
pressing the left mouse button down, and dragging to the end of the text, selects the entire string.

A print command with the selected text is then inserted into the command prompt verifying the command executed.
This command can be subsequently edited in the command area, which is useful for printing slight variants of selected
text, e.g., to print *phil[ i ] after printing phil[ i ].

10.3 Examining a Running Task

When a task is running, the task-window mode changes to the state shown in Figure 8: only the Stop and Backtrace
buttons are active. Clicking the Stop button stops the task at the next possible location, which may not occur immedi-
ately.

It is possible to monitor the execution of a running task by clicking on the Backtrace button, which generates
a snapshot of the current execution stack for a task (see lower pane of Figure 8). For example, if an application
terminates with an error, such as a deadlock or segment fault, � C++ prints an appropriate error message in the shell
where the application is connected to the debugger, such as:



KDB Reference Manual 13

uC++ Runtime error (UNIX pid:12768) : no ready or pending tasks. Possible cause is tasks in a synchro-
nization or mutual exclusion deadlock. Error occurred while executing task 0xbf500 (uSystemTask).

and informs the debugger of the error. The debugger stops all tasks in the application (but not instantly in multipro-
cessor applications) and a window pops up (see Figure 9) to control when the application terminates and possibly
produces a core file. Before pressing OK, KDB can be used to examine all of the tasks in the application. In particular,
walking the stack of some or all tasks provides detailed information about the state of the application leading to the
error.

Figure 9: Application Abort Dialog

However, for a deadlock, tasks are still running from the debugger’s perspective, but blocked from the thread
system’s perspective, which means stack walking is disabled, i.e., the frame arrows are disabled. Double clicking on
the Backtrace button for a task enables the frame arrow buttons, making it possible to move up and down a running
task’s stack frame. This operation is safe only when a task is application blocked. For the deadlock situation, all
of the tasks are application blocked, and hence, none can continue execution. If a task should begin execution again
while pressing the frame arrows, it may cause incorrect information to be printed or even cause the debugger to fail.
Be careful when using this feature. Finally, after examination of the application is complete, clicking OK in the abort
window to release the application or it can terminate.

11 Thread Groups

Different kinds of possibly overlapping task-groups can be formed. This capability is an important feature when
scaling to medium or large numbers of threads. Once a group of tasks is formed, an operation can be applied to all
members of the group. Instead of interacting with a large number of individual threads, a user can interact with a
small number of groups. However, grouping tasks does not affect the ability to control tasks individually; furthermore,
a task’s reactions to the commands issued to a group, such as setting a breakpoint or continuing execution, become
visible in each task’s window.

11.1 Operational Group Window

Tasks can be grouped together and operations can be issued on a group of tasks as a user convenience, rather than
entering multiple commands for each task. Multiple operational group windows can be created, each defining a
different group. A task may appear in any number of operational groups. However, certain commands may only be
meaningful to all tasks in the group if they all execute the same source code. For instance, setting a common breakpoint
is meaningless for threads that do not execute common code. When an operational group window is closed, that group
is terminated.

Clicking the Operational Group button forms a group of all tasks currently selected in the main window (see
selected Philosopher tasks in Figure 3), and pops up a window (see Figure 10) where commands can be issued on
all tasks that belong to the group. The following commands can be entered in this window and the corresponding
operation is performed on each task in the group:

� [ break | b ] [ [ source-file ]:line-no | function-name ] [ if simple-expression ]: add a breakpoint at specified line in
source file or at start of function.

� [ clear | c ] [ [ source-file ]:line-no | function-name ]: remove a breakpoint at specified line in source file or at start
function.

� stop: stop task execution



14 KDB Reference Manual

Figure 10: Operational Group Window

� cont: continue task execution

� next [number] : execute number source lines of code (default value for number is 1) not entering routine calls

� step [number] : execute number source lines of code (default value for number is 1) entering routine calls

Positioning the cursor in the command box makes it active so a command can be entered; typing <Return> executes
the command. In general, if a command is not applicable to one of the tasks, e.g., stop for an already stopped task, the
command is silently ignored. The upper right area of the group window shows a history of group commands entered
for this operational group. Clicking on a previous command copies it into the command area, where it can be edited if
necessary before executing. Figure 10 shows an operational group window where a breakpoint was previously set for
each philosopher task (upper right), and each task is about to be continued.

11.2 Behavioural Group Window

A behavioural group is a set of tasks whose behaviour is linked to some event. In other words, if an event occurs for
any task in a behavioural group, an action is applied to all the tasks in the group. For example, when one task triggers a
breakpoint, all tasks in the group are stopped. Hence, a behavioural group must have an event and operation associated
with it. Furthermore, a task can appear in only one behavioural group at a time because actions in one group might
cause inconsistent behaviour in another group, such as Stop and Continue operation.

Clicking the Behavioural Group button forms a group of all tasks currently selected in the main window (see
selected Philosopher tasks in Figure 3), and pops up a window where an event and action can be issued for all tasks
that belong to the group (see Figure 11). The following commands can be entered in the event window:

� [ break | b ] [ [ source-file ]:line-no | function-name ] [ if simple-expression ]: add a breakpoint at specified line in
source file or at start of function.

The following commands can be entered in the operation window:

� stop: stop task execution

Figure 11 shows a behavioural group window where a breakpoint is about to be set for each philosopher task, and each
task in the group is stopped when one of the tasks reaches the breakpoint.

12 Reducing Window Clutter

When debugging a large number of threads, a computer screen does not have enough space to show many thread
windows, especially when working with operational/behavioural groups with a large number of threads. When a



KDB Reference Manual 15

Figure 11: Behavioural Group Window

breakpoint is encountered in a thread, the default action is to create a thread window on the screen. This semantics
can be very inconvenient if a breakpoint hit occurs in multiple threads within a group, causing multiple windows to
pop-up and flood the screen.

To partially solve this problem, the thread windows of a group can be created in iconic state, if one does not already
exist, by toggling the Iconify Task button in the group window.

13 Programmatic Interface

KDB provides a programmatic interface, which allows it to be operated by commands sent through a communication
channel rather than the graphical user interface presented earlier. The purpose of the programmatic interface is to
allow KDB to be used by other tools as part of a more sophisticated concurrent debugging and analysis environment.
The communication channel is an INET socket so that remote (distributed) interaction is possible. The protocol is a
simple machine level protocol for controlling KDB and obtaining output.

Two additional command line options are introduced:

-api enables the programmatic interface, an INET socket is created, and the socket port number is printed on the
terminal.

-nointerface disables the Motif debugger interface so KDB is started without any window interface.

To use the programmatic interface in a C++ program, include the file:
#include <uDebuggerAPI.h>

at the beginning of each source file. This file contains constant and type declarations to construct communication
messages (see Figure 12 and the next section).

13.1 Supported Messages

The following messages are supported by the programmatic interface, where each message name has a corresponding
#define in the programmatic interface include file.

13.1.1 BP SET

Set a breakpoint in the specified user-thread. The message specifies the user thread id and the breakpoint location,
which is parsed by KDB, e.g.,

� 82 // breakpoint at line 82
� Table::pickup // breakpoint in the function pickup



16 KDB Reference Manual

#define MAX_ CMD_ LEN 256
#define MAX_ VAR_ LEN 64
#define MAX_ COND_ LEN 128
#define MAX_ PATH_LEN 256
#define MAX_ PRINT_ LEN 1024

typedef enum {
BP_ SET,
BP_ CLEAR,
CONTINUE,
STOP,
PRINT,
ATTACH,
CLUSTER_LIST,
PROCESSOR_ LIST,
THREAD_ LIST,
BP_ HIT,
PROGRAM_ TERMINATED,
TERMINATE,

} MessageType;

typedef int NotifyMsg;
typedef void *ThreadId;
typedef void *ListId;

Figure 12: Programmatic Interface: Constants and Types

� Philosopher.cc:82 if k1 <= 10 // breakpoint in file Philosopher.cc at line 82 if k1 <= 10

The structure of the message from the controlling program to KDB is:
struct BP_ SET_MSG {

MessageType msg;
ThreadId thread_ id;
char break_cmd[ MAX_ CMD_ LEN + MAX_COND_ LEN ];

};

The structure of the notification message from KDB to the controlling program is:
struct GENERAL_ NOTIFY {

MessageType msg;
NotifyMsg nmsg;

};

nmsg is set to one of the following values:

0 � success
1 � thread does not exist
2 � thread is not in stopped state
3 � breakpoint command error
4 � other error

13.1.2 BP CLEAR

Clear a breakpoint in the specified user thread. The message specifies the user thread id and the breakpoint location,
which is parsed by KDB. Clear commands are similar to breakpoint commands except there is no conditional clause.
For example:

� 82 // breakpoint at line 82
� Table::pickup // breakpoint in the function pickup
� Philosopher.cc:82 // breakpoint in file Philosopher.cc at line 82



KDB Reference Manual 17

The structure of the message from the controlling program to KDB is:
struct BP_CLEAR_ MSG {

MessageType msg;
ThreadId thread_ id;
char clear_ cmd[ MAX_ CMD_ LEN ];

};

The structure of the notification message from KDB to the controlling program is:
struct GENERAL_NOTIFY {

MessageType msg;
NotifyMsg nmsg;

};

nmsg is set to one of the following values:

0 � success
1 � thread does not exist
2 � thread is not in stopped state
3 � clear command error
4 � other error

13.1.3 CONTINUE

Continue a user thread, which may be previously stopped or has encountered a breakpoint. The message specifies the
user-thread id of the user-thread to be continued. The structure of the message from the controlling program to KDB
is:

struct CONTINUE_ MSG {
MessageType msg;
ThreadId thread_ id;

};

The structure of the notification message from KDB to the controlling program is:
struct GENERAL_NOTIFY {

MessageType msg;
NotifyMsg nmsg;

};

nmsg is set to one of the following values:

0 � success
1 � thread does not exist
2 � thread is not in stopped state (thread is in running already)

13.1.4 STOP

Stop a specified user thread. The message specifies the user thread id to be stopped. The structure of the message from
the controlling program to KDB is:

struct STOP_MSG {
MessageType msg;
ThreadId thread_ id;

};

The structure of the notification message from KDB to the controlling program is:
struct GENERAL_NOTIFY {

MessageType msg;
NotifyMsg nmsg;

};

nmsg is set to one of the following values:

0 � success



18 KDB Reference Manual

1 � thread does not exist
2 � thread is in stopped state (thread is stopped already)

13.1.5 PRINT

Print a variable in the specified user thread. The message specifies the user thread id and the variable name. The result
of print is sent back to the controlling program. The structure of the message from the controlling program to KDB is:

struct PRINT_ MSG {
MessageType msg;
ThreadId thread_ id;
char var_ name[ MAX_ VAR_ LEN ];

};

The structure of the notification message from KDB to the controlling program is:
struct PRINT_ NOTIFY {

MessageType msg;
NotifyMsg nmsg;
char print[ MAX_ PRINT_ LEN ];

};

The raw output is put in field print. nmsg is set to one of the following values:

0 � success
1 � thread does not exist
2 � thread is not in stopped state

13.1.6 ATTACH

Attach the debugger to the specified process. The message specifies the process id and the relative or absolute path of
the executable. The structure of the message is shown below:

struct ATTACH_MSG {
MessageType msg;
int pid;
char path[ MAX_ PATH_LEN ];

};

The structure of the notification message from KDB to the controlling program is:
struct GENERAL_ NOTIFY {

MessageType msg;
NotifyMsg nmsg;

};

nmsg is set to one of the following values:

0 � success
1 � process does not exist
2 � executable file does not exist
3 � executable file is not compiled with -debug option

13.1.7 CLUSTER LIST, THREAD LIST, PROCESSOR LIST

Send the current cluster list, thread list, or processor list, depending on the msg, to the controlling program. The
structure of the message is shown below:

struct LIST_ MSG {
MessageType msg;

};

The structure of the notification message from KDB to the controlling program is:



KDB Reference Manual 19

struct LIST_NOTIFY {
MessageType msg;
NotifyMsg nmsg;
ListId id;

};

Members of a list are sent one at a time. nmsg is set to one of the following values:

0 � current list requested is completely sent
1 � more list items are to be sent

13.1.8 BP HIT

Notification only message. Notify the controlling program that a breakpoint is encountered in a thread. The structure
of the message is shown below:

struct BP_HIT_ NOTIFY {
MessageType msg;
int thread_ id;

};

13.1.9 PROGRAM TERMINATED

Notification only message. Notify the controlling program that the program has terminated. The structure of the
message is shown below:

struct PROGRAM_ TERMINATED_NOTIFY {
MessageType msg;

};

13.1.10 TERMINATE

Close the connection. KDB removes any outstanding breakpoints from the application and terminates. At this point,
the application continues execution normally. The structure of the message is shown below:

struct TERMINATE_MSG {
MessageType msg;

};

There is no notification.

14 Contributors

While many people have made numerous suggestions, the following people were instrumental in turning this project
from an idea into reality. Rory Jacobs [Jac95] wrote the prototype concurrent debugger for the � System [BMS94].
“Totally Cool” Martin Karsten designed and wrote version 1.0 of KDB for � C++, and Jun Shih extended it with many
essential features. Oliver Schuster added support for replay [Sch99]. Peter Buhr did sundry coding as needed in
versions 1.0, and rewrote much of the code for version 1.1.

References

[ABLL92] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism. ACM Transactions on Computer
Systems, 10(1):53–79, February 1992.

[BKS96] Peter A. Buhr, Martin Karsten, and Jun Shih. KDB: A Multi-threaded Debugger for Multi-threaded Appli-
cations. In Proceedings of SPDT’96: SIGMETRICS Symposium on Parallel and Distributed Tools, pages
80–87, Philadelphia, Pennsylvania, U.S.A., May 1996. ACM Press.



20 KDB Reference Manual

[BMS94] Peter A. Buhr, Hamish I. Macdonald, and Richard A. Stroobosscher. � System Annotated Reference Man-
ual, Version 4.4.3. Technical report, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, N2L 3G1, September 1994. ftp://plg.uwaterloo.ca/pub/uSystem/uSystem.ps.gz.

[BS99] Peter A. Buhr and Richard A. Stroobosscher. � C++ Annotated Reference Manual, Version 4.7. Technical
report, Dept. of Computer Science, University of Waterloo, August 1999. ftp://plg.uwaterloo.ca/pub/-
uSystem/uC++.ps.gz.

[CW94] P. Cheung and P. Willard. XXGDB – X Window System Interface to the GDB Debugger, November 1994.
Distributed with XXGDB.

[Gai86] J. Gait. A Probe Effect in Concurrent Programs. Software Practice and Experience, 16(3):225–233, March
1986.

[Jac95] Rory Alan Jacobs. A Debugger for Multi-Threaded Applications. Master’s thesis, University of Waterloo,
Waterloo, Ontario, Canada, N2L 3G1, July 1995.

[Kar95] Martin Karsten. A Multi-Threaded Debugger for Multi-Threaded Applications. Diplomarbeit,
Universität Mannheim, Mannheim, Deutschland, August 1995. ftp://plg.uwaterloo.ca/pub/MVD/-
KarstenThesis.ps.gz.

[MH89] Charles E. McDowell and David P. Helmbold. Debugging Concurrent Programs. ACM Computing Sur-
veys, 21(4):593–622, December 1989.

[Sch99] Oliver Schuster. Replay of Concurrent Shared-Memory Programs. Diplomarbeit, Universität Mannheim,
Mannheim, Deutschland, April 1999. ftp://plg.uwaterloo.ca/pub/MVD/SchusterThesis.ps.gz.

[Shi96] Jun Shih. Debugging Concurrent Programs. Master’s thesis, University of Waterloo, Waterloo, Ontario,
Canada, N2L 3G1, December 1996. ftp://plg.uwaterloo.ca/pub/MVD/ShihThesis.ps.gz.

[SP95] Richard M. Stallman and Roland H. Pesch. Debugging with GDB. Free Software Foundation, 675 Mas-
sachusetts Avenue, Cambridge, MA 02139 U.S.A., 1995.



KDB Reference Manual 21

Index
-api, 15
-debug, 3
-g, 3
-nointerface, 15

active, 4
application blocked, 10
ATTACH, 18

Backtrace button, 11, 12
Behavioural Group button, 8, 14
BP_ CLEAR, 16
BP_ HIT, 19
BP_ SET, 15
Break button, 10
Break Points button, 10

click to print, 12
cluster

address, 7
name, 7

CLUSTER_LIST, 18
Clusters list, 7

migration, 7
Command area

main window, 8
task window, 11

concurrent program, 3
CONTINUE, 17
Continue button, 8, 10
contributors, 19
control buttons, 7, 10

main window, 7
task window, 10

dbx, 3
debugger blocked, 10
debugging, 3

concurrent, 3
sequential, 3

Frame button, 11

gdb, 3

inactive, 4
Info button, 8
insensitive, 4
Inspect button, 8
interface, 4

KDB, 3

interface, 4
reusing, 4
starting, 4
terminating, 4

kernel threads, 3

main window, 4, 4, 6
control buttons, 7

New Target button, 4, 8
Next button, 11

Operational Group button, 8, 13

panes, 4
Pretty Print button, 8, 11
PRINT, 18
probe effect, 3
processor

address, 7
id, 7

PROCESSOR_ LIST, 18
Processors list, 7

migration, 7
PROGRAM_ TERMINATED, 19
programmatic interface, 15

ATTACH, 18
BP_ CLEAR, 16
BP_ HIT, 19
BP_ SET, 15
CLUSTER_LIST, 18
CONTINUE, 17
PRINT, 18
PROCESSOR_ LIST, 18
PROGRAM_ TERMINATED, 19
STOP, 17
TERMINATE, 19
THREAD_LIST, 18

Return Step button, 11
reusing, 4

sash button, 4, 6
sash line, 4, 6
scroll bars, 6
selection

task, 7
sequential program, 3
Source Files button, 8
starting, 4
Step button, 11
STOP, 17



22 KDB Reference Manual

Stop button, 11, 12
Stop Tasks button, 7
Stopped Position button, 8
symbolic debugger, 3

task
address, 7
name, 7
selection, 8

contiguous, 7
non-contiguous, 7
single, 7

task window, 8, 8, 12
control buttons, 10

Tasks list, 7
TERMINATE, 19
terminating, 4
THREAD_ LIST, 18

u++, 3
uDebuggerAPI.h, 15
user interface, 4
user threads, 3


