[Profiler: Profiling User-Level Threads in a
Shared-Memory Programming Environment

Peter A. Buhr! and Robert Denda?

! University of Waterloo, Waterloo, Ont., Canada
? Universitdt Mannheim, Mannheim, Germany

Abstract. A profiler is an important tool for understanding the dy-
namic behaviour of concurrent programs to locate problems and optimize
performance. The best way to improve profiling capabilities and reduce
the time to analyze a concurrent program is to use a target-specific pro-
filer that understands the underlying concurrent runtime environment.
A profiler for understanding execution of user and kernel level threads is
presented, which is target specific for the uC++ concurrency system. This
allows the insertion of hooks into the uC+H++ data structures and runtime
kernel to ensure crucial operations are monitored exactly. Because the
profiler is written in uCH and has an extendible design, it is easy for
users to write new metrics and incorporate them into the profiler.

1 Introduction

As programs grow more complex, a greater need arises for understand their dy-
namic behaviours, to locate problems and optimize performance. Concurrency
increases the complexity of behaviour and introducing additional problems not
present in sequential programs. An important tool for locating problems and
performance bottlenecks is a profiler. However, sequential profiling techniques
cannot be trivially extended into the concurrent domain. A concurrent profiler
must deal with multiple threads of control, all potentially introducing errors and
performance problems. Profiling concurrent programs has been done for perfor-
mance analysis, algorithm analysis, coverage analysis, tuning, and debugging.

We believe the best way to improve concurrent profiling capabilities and re-
duce the time to analyze a concurrent program is to use a target-specific profiler
that understands the underlying concurrent runtime environment. Qur experi-
ence in designing several target-specific concurrency tools (high-level concurrent
extensions for C++, called uCH+ [1], a debugger [2], a profiler [3], and other
concurrent toolkits) leads us to conclude that construction of a universal profiler
for all languages and concurrency paradigms is doomed to failure.

2 Motivation

The basis of this work is pCH++, a shared-memory user-level thread library run-
ning on symmetric multiprocessor architectures (e.g., SUN, DEC, SGI, MP-PC);
kernel threads associated with shared memory provide parallelism on multipro-
cessors, and user threads refine that parallelism. The pC4+ environment provides

(© Proceedings of the Second International Symposium (ISCOPE’98) on Computing
in Object-Oriented Parallel Environments, volume 1505, pages 159-166, Santa Fe,
New Mexico, U.S.A., December 1998. Springer-Verlag.

160

a target-specific debugger for break-point debugging on a user-level thread ba-
sis, and experience has shown it aids in the development of robust concurrent
programs. Nevertheless, debugging is normally based on a hypothesis concerning
the reason for the erroneous behaviour of a program. To reason about general
runtime behaviour, including performance analysis, coverage analysis and tun-
ing, a profiling tool is needed to monitor execution and reveal information at
different levels of detail.

Several profilers for concurrent programs exist, but most are general purpose
tools with little understanding of the concurrency paradigm. Each concurrent
environment provides a different paradigm, which a profiling tool must be aware
of in order to provide effective monitoring, analyzing and visualizing of the pro-
gram’s behaviour. The analysis of a concurrent program’s performance and al-
gorithmic behaviour becomes more effective and efficient through target-specific
profiling, where the profiler has internal knowledge about the runtime system
intrinsics and the underlying programming paradigm.

Extendibility is also crucial in designing and implementing an effective pro-
filer, since it is impossible to predict suitable metrics for all imaginable situations.
Therefore, a profiling tool should provide a set of general purpose metrics and a
mechanism enabling a program analyst to quickly develop new problem specific
metrics. Hence, an analyst must use knowledge about the profiler, which is eas-
ier when the profiler operates as part of the target system and when the metric
extensions can be written in a familiar language.. Ideally, the same language is
used for the profiled program and the profiler extensions.

Finally, a profiler must operate at different levels of detail on concurrent
programs to provide the functionality for both exact and statistical profiling. To
profile large-scale concurrent programs, selective profiling must be supported: It
must be possible to turn profiling on and off dynamically to target specific parts
of a large program.

3 Related Work

Most profiling tools have been developed for analyzing the performance of sci-
entific, mostly data-parallel programs, written in a message-based programming
environment. For this arena, successful and powerful tools with a wide range of
analysis and visualization modules exist. For example, Pablo [4] is a tool with
many visual [5] and audio [6] performance data presentation modules. Pablo
also introduced a standard trace log format, which is adopted by other profile
analysis and visualization tools. Another example is Paradyn [7], a tool for profil-
ing large-scale long-running applications. These program characteristics require
some novel instrumentation and analysis methods: dynamic instrumentation in-
sertion and removal based on execution-time profiling information, or user inter-
action. The results of dynamic instrumentation are promising, but the overhead
introduced may reduce effectiveness when profiling code-parallel (in contrast to
data-parallel) programs with shorter execution times.

161

Concurrent profiling tools may be available only as part of the operating
system, which allows monitoring of programs, and information about calls for
kernel thread creation, synchronization and communication primitives. For ex-
ample, the Mach Kernel Monitor [8] instruments kernel thread context switch-
ing. This approach assumes that the concurrent program’s runtime system uses
only operating system features, instead of providing portable, user-level thread
creation, synchronization and communication primitives.

Among the first profiling tools for a user-level thread-library was Quartz [9].
A target-specific profiling environment for concurrent object-oriented programs
is pCH+ [10]. pCH++ is one of the few cases where the integrated performance
analysis environment TAU [11] was implemented in concert with the language
and runtime system. However, the design of pC+-/TAU incorporates most of its
profiling functionality into the preprocessor and runtime system, so extending
the profiling metrics by the program analyst takes significant effort. The tight
coupling between the language/runtime system and the profiling tool makes
integration into other existing thread-libraries infeasible.

4 pProfiler

uProfiler [3] is a concurrent profiler, running on UNIX based symmetric shared-
memory multiprocessors, that achieves our goal of target-specific, extendible,
fine-grained profiling on a user-level thread basis. uProfiler supports the pCH+
shared-memory programming model, which shares all data and has multiple
kernel and user-level threads. Profiling pC++ programs requires incorporating
both concurrent and object-oriented aspects, i.e., profiling different threads of
control at the per-object level.

Profiling sequential programs is non-trivial but well-understood. Additional
challenges arise when profiling concurrent programs in a shared-memory envi-
ronment similar to pCH+. Since the environment provides user-level tasks, the
profiler must monitor the program’s activity at that level. The profiler also needs
internal knowledge about the runtime system to identify and monitor each ex-
ecuting task independently and exactly. The pProfiler design deals with these
challenges and presents a mechanism to effectively integrate extendible profiling
into the concurrency system.

pProfiler is a concurrent program written in puCH, executing concurrently
with the profiled pC+ application (see Figure 1). A cluster, which groups user
and kernel threads and restricts the execution of those user threads by the kernel
threads in the cluster, is the pC4++ capability which enables concurrent appli-
cation and profiler execution. The user threads in the profiler cluster monitor
execution of the runtime kernel and other clusters using direct memory reads
via the shared memory. On multiprocessor computers, the kernel thread in the
profiler cluster executes the profiler user threads in parallel with the application.
If the amount of the monitoring is large, more kernel threads can be added to the
profiler cluster to increase parallelism. So application performance is degraded
only by the contention created by profiler operations. This cost can be 100 to

162

shared memory

#CH+ runtime piProfiler

kernel cluster @ O

------ 9% @ |

Q kernel thread Q user thread

Fig. 1. Integration of pProfiler into the profiled program.

1000 times less than monitoring from a separate UNIX process, which requires
cross-address-space reads. More complex monitoring is thus possible, while still
having only a small effect on the application.

To access pProfiler, compilation flags -profile and -kernelprofile cause the neces-
sary instrumentation insertion and linking with the profiling libraries. The first
flag profiles only the user program; the second flag profiles the pC4+ kernel calls
made by the program. (The latter information is often inappropriate and con-
fusing to users.) When the program starts, a menu appears, from which a user
selects several builtin metrics, after which the program is run, and the metric
output appears. Thus, in the simplest case, instrumentation insertion and ac-
tivation of the profiling modules is completely transparent to the programmer.
Additionally, parts of a program may be compiled with or without the profile
flag(s), and then linked together, creating an executable where selected parts are
instrumented and profiled. Finally, even more precise control is available through
routines in the pCH runtime system to turn profiling on and off for a particular
thread at any point during execution.

Because piProfiler is truly integrated with pC+4+, it was possible to insert hooks
into the pCH+ runtime kernel to ensure crucial operations are monitored exactly,
such as user and kernel thread creation/destruction, and migration of user and
kernel threads among clusters. Purely statistical monitoring and dynamic in-
strumentation could miss some of these events. Also, dynamic instrumentation
is considered too expensive when profiling programs with short or intermediate
execution times. Exact routine counts are obtained via static instrumentation
insertion at compile-time using shared trampolines. The C -pg option is used
to generate routine-entry instrumentation; the routine-entry instrumentation is
augmented to generate routine-exit instrumentation. In addition, arbitrary hooks
can be inserted into user code by the program analyst.

All hooks can be dynamically activated and deactivated on a per thread basis,
but only when the profiler is present in the application (i.e., the existence of the
profiler is checked for dynamically inside the runtime kernel). Each activated
hook results in the profiled thread sending event(s) to the profiler, which passes
the information to the active profiling monitors. Figure 2(a) shows a (simple)

Task Philosopher {[0x95464

|

Cloze Optiohs

esource Usage

Cloze Options

163

all Cycles:
<2 gl eycles deleciods

unction Callsy
Tahle::TestBeside

4944
[Tahle:LeftOf

3250
" Tahle::RightOf

1648
—— uSemaphore:uy

Tahle::putdown

3296
[Table:: TestBeside

1648
[uSemaphore:uy

1648
[Table::RightOf

1648
[Tahle:LeftOf

1648

usemaphore::uP

T

Tahle::pickup

3296

usemaphore::uP

T

1648
[uSemaphore:uy

1648
—* Table:: TestBeside
ilosopher::imain

1648
[Table::putdown

1648
— Tahle::pickup

CPU busy
498 %

Page Fanlts
000 %

User mode
7300 %

CPU sleep
2235 %

System mode
o8 %

CPU non-latent
LEx

Memarys:

Page faults due to 102 0
Page faultz not dus to 1503 O

Procezz swaps out of memory: 0

05 Interactiony

Yoluntary context switches:
Irwoluntary context switches:
Signals received:

System calls performed:

430
1265
g16
12434

Input/0utputs:

Blocks read; 0

Blocks written: 0O

Hetwork Actiwvity:

Messages sent: 0

Meszages received: 0

(a) Exact User Thread Metric

(b) Exact Kernel Thread Metric

Fig. 2. uProfiler Exact Metrics

exact metric operating at the user thread level. For each user thread, gprof-
like [12] routine call information is available, including call cycles. Function calls
from within each executed routine are presented with the corresponding routine
call count information. Figure 2(b) shows a (simple) exact metric operating

164

at the kernel thread level. For each kernel thread, UNIX level information is
available, including a Kiviat graph to quickly relate different time metrics.

For statistical monitoring, pProfiler can monitor selected threads by period-
ically sampling at a dynamically adjustable frequency to collect profiling data
with minimum interference. The current implementation of gProfiler monitors the
profiled program at the per-cluster, per-thread, routine level. Figure 3(a) shows
a statistical metric operating at the cluster level. For this cluster, performance
statistics are displayed for each task executing on it, broken down by task states
(running, ready, blocked). “Coverage Time” is the percentage of time the task is
sampled. By clicking on any of the tasks listed for a cluster, detailed information
is available for that task. Figure 3(b) shows a statistical metric operating at the
task level. For this task on the cluster, performance statistics are displayed for
each routine call executed by the task, broken down by task states.

To ensure a high degree of flexibility and extendibility, uProfiler is subdivided
internally into parts representing the underlying functionality, including a profil-
ing kernel, execution monitors, metric analyzers, and visualization devices. Each
of these parts is split into submodules, which are ordered in a class hierarchy. To
build a new metric requires building at least two components: an execution mon-
itor component and a metric analysis component. An execution monitor is built
as follows. Determine the functionality of the metric: e.g., exact, statistical or
both kinds of profiling. Then create a C++ class that inherits from the abstract
class uExecMonitor, and specialize a subset of uExecMonitor’s virtual routines to
provide the necessary functionality. Class uExecMonitor provides virtual members
for different purposes such as routine entry/exit notification, periodical polling,
etc. Finally, add an initialization call to the routine Initialize in the construc-
tor of the new class. Each execution monitor is responsible for operating and
updating its own objects and possibly accumulating, filtering or summarizing
the profiling data collected when the profiler task calls the registered members.
Creating new metric analysis components is done in a similar manner by inher-
iting from a class called uMetricAnalyze. Specialized members of uExecMonitor are
automatically registered with the profiler during the call to Initialize along with
the new execution monitor. pProfiler maintains a list of all execution monitors
and their member routines, and invokes them during execution as needed. Since
the registration process of new metrics is done dynamically, they can simply be
linked with the application, restart it, and pProfiler calls into the metric class’s
member routines when the requested events occur.

Additional reuse is provided by inheriting from existing metrics that come
with the pProfiler library or previously built by the program analyst. All uProfiler
metrics conform to the above mechanism. uSPMonitor, for instance, is an execu-
tion monitor that statistically samples a task and measures the time the task
spends on a certain cluster in a certain routine in a particular state. Because
uSPMonitor is based on statistical sampling, it inherits from uExecMonitor and
specializes the poll routine, in which the data collection is performed.

Through this mechanism, an analyst can efficiently extend the functionality
of uProfiler by metrics that fit the analyzed problem much better than general

165

Performance Profiling, Cluster ulserCluster {0:2b8528)

Tazk Hame Running Blocked Life Time Cowverage Time
hilosopher {0xBdd1c8)

hilosopher (0x91cae8)
hilosopher (0x985418) Philogopher (0x9edd48) 0,303 sec 0,479 1,207 106,00 ¥

hilosopher {0xabEEbE} Philozopher (OxBddlc8) 0,179 sec 0,561 1,168 100,00 #
Main L0x72Felf) Philosopher (Oxflcael) 0,177 sec 0,444 1,171 100,00 #
Philozopher {(0x985418) 0,175 sec 0,590 1,165 100,00 %
Philosopher {(0xaBBEbS: 0,170 sec 0,593 1,150 100,00 ¥
uMain (Ox72Fe182 0,005 sec 1.101 1,106 100,00 %

(a) Cluster Performance Metric

Performance Profiling, Task Philosopher (0x8edd48) on Cluster uUserCluster (0x2bf
Options '

0,204 zec Philosopheriimain ¢ line 94 in AuZ/pabubr/Philozopher,cc)
28 0,035 sec uSemaphoreiiuP line 33 in Julfusystemssoftwaresut+—4,7/inc/uSemaphore,h)
38,025 sec uSemaphoreiiu¥ (line 2% in Auldusystem/softwaresut+-4,7/inc uSenaphare,h 2
48 0,020 sec Tableiiputdown ¢ line 81 in Au2fpabuhrsFhilosopher,cc
584,019 sec TablepiRizhtOf ¢ line 37 in JuzdpshubrePhilosopher,cc o

0,345 zec Philosopheriimain © line 94 in Au2/pabubr/Philozopher,cc 2
2B g, 062 sec uSemaphoreiiuP ¢ line 33 in Juldusystem/software utt—4,7-inc/uSemaphore.h
I8 0,08 zec Tablefipickup ¢ line 73 in Ju2fpabuhr-Philozopher,cc)

(3

A 0,391 sec uSemaphoreiiuP © line 33 in Auldusystemssoftwaresut+—4,.7/inc uSemaphor
2 & g, 061 sec Philosopheriimain ¢ line 94 in Ju2/pabubr/FPhilosopher,ce
280,027 zec Philosopherii®Philosopher (line 91 in Ju2 pabubr-Philosopher,cc 3

(b) Task Performance Metric

Fig. 3. uProfiler Performance Metric

purpose metrics created by the developers, resulting in profiling results that
directly correspond to the problem under investigation. This approach enables an
analyst to extend uProfiler’s functionality by any metric, analysis or visualization
device utilizing using exact or statistical monitoring. It is more important to
integrate the basic functionality for different execution monitoring, analyzing and
visualizing methodologies on which both general and problem-specific modules
can operate, than to build a fixed set of highly sophisticated metrics.

Concurrency is also part of some object-oriented language, e.g., puCH-. pProfiler
can identify the corresponding objects (both caller and callee side) when a moni-
tored task invokes an object’s member routines. While there are no metrics using
this feature, we anticipate them soon.

166

5 Conclusion

Concurrent systems have increased dynamic behaviour with significant implicit
information embedded in the runtime environment. Our claim is that target-
specific profilers can do a better job extracting and displaying information from
this environment. We show tight integration is possible with a target-specific pro-
filer, i.e., between pProfiler and puCH+, resulting in better information gathering
at lower cost, and the ability to easily add new metrics through a single program-
ming language. The pProfiler displays are simple but informative, requiring the
program the analyst to manually locate performance issues, e.g., hot spots, by
examining the data. We have found manual determination to be straightforward,
and have discovered several performance problems using pProfiler while examin-
ing both uC++ and pCH- applications to understand their dynamic behaviour.

References

1. Peter A. Buhr and Richard A. Stroobosscher. puC++ annotated reference manual,
version 4.6. Technical report, Univ. of Waterloo, July 1996. Available via ftp from
plg.uwaterloo.ca in pub/uSystem/uC++.ps.gz.

2. Peter A. Buhr, Martin Karsten, and Jun Shih. A multi-threaded debugger for
multi-threaded applications. In Proc. of SPDT’96: SIGMETRICS Symp. on Par-
allel and Distributed Tools, pages 80-87, Penn., U. S. A., May 1996. ACM Press.

3. Robert R. Denda. Profiling Concurrent Programs. Diplomarbeit, Universitat
Mannheim, Mannheim, Deutschland, September 1997. Available via ftp from
plg.uwaterloo.ca in pub/MVD/DendaT hesis.ps.gz.

4. D.A. Reed et al. Scalable Performance Analysis: The Pablo Performance Analysis
Environment. Scalable Parallel Libraries Conference, 1993. Computer Society.

5. Daniel A. Reed et al. Virtual reality and parallel systems performance analysis.
IEEE Computer, 28(11), November 1995.

6. Tara Maja Madhyastha. A portable system for data sonification. Master’s thesis,
Rutgers State Univ., 1990.

7. Barton P. Miller et al. The paradyn parallel performance measurement tools. I[EEE
Computer, 28(11), November 1995.

8. T. Lehr et al. MKM: Mach Kernel Monitor Description, Examples and Measure-
ments. Technical report, Carnegie-Mellon Univ., March 1989. PA-CS-89-131.

9. T.E. Anderson and E.D. Lazowska. Quartz: A Tool for Tuning Parallel Program
Performance. In Proc. of the 1990 SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 115-125, Boston, May 1990.

10. A. Malony et al. Performance analysis of pC++: A portable data-parallel pro-
gramming system for scalable parallel computers. In Proc. of the 8th International
Parallel Processing Symp., pages 75—85, Cancun, Mexico, April 1994.

11. Darryl Brown et al. Program analysis environments for parallel language systems:
The 7 environment. In Proc. of the 2nd Workshop on Environments and Tools For
Parallel Scientific Computing, pages 162—171, Townsend, Tennessee, May 1994.

12. S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a call graph execution
profiler. SIGPLAN Notices, 17(6):120-126, June 1982. Proc. of the SIGPLAN’82
Symp. on Compiler Construction, June 23-25, 1982, Boston, U.S.A.

